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ABSTRACT 

 Switchgrass (Panicum virgatum L.), a warm season grass native to North 

America, is being developed as a biofuel crop. Plant breeding can improve biofuel 

characteristics further, particularly if the genetic diversity of germplasm resources is 

clearly understood. The objective of this study was to examine the population structure 

and relatedness within and among forty-nine switchgrass populations mainly derived 

from the southern United States and use the information to identify putative QTLs 

associated with biomass yield, plant height, stem diameter and days to flower. These 

populations included both upland and lowland ecotypes. A total of 511 genotypes were 

selected for genotyping and phenotyping. SSR markers developed from switchgrass and 

well distributed across the switchgrass genome were used to genotype the individuals. 

We used 35 markers and 365 alleles were discovered for those markers. In addition, we 

used a Genotyping-by-Sequencing (GBS) protocol to identify and utilize SNPs as genetic 

markers. With GBS, we identified 65,328 SNP markers. We only used 3,196 SNPs for 

our analysis, after filtering for read depth of at least 6 reads per locus per genotype and 



 

 

 

 

requiring no more than 20% missing genotypic data for any given locus. In order to 

investigate the effect of missing data, we also used a second dataset of about 20,000 

SNPs allowing up to 50% of individuals to have missing genotypic data for any given 

locus. We also used nine chloroplast specific markers to identify the cytotype. The data 

were used to examine the population structure and to perform phylogenetic analysis. 

Along with measuring dry biomass after harvest, we collected three canonical 

morphological data; plant height, stem diameter and flowering time on the individuals. 

We found a population differentiation in the two major groups, upland and lowland 

ecotypes, with phenotypic, cytotypic and genotypic data. A deeper sub-population 

structure was identified within the broad lowland and upland population. The sub 

population structure was correlated with the geographical origins of those accessions. We 

were able to identify two groups within lowland ecotypes, one of which did not exhibit 

the typical morphological characteristics of lowland accessions. We also studied the 

association of markers with above mentioned traits, and within the limitations of the 

number of environments used, identified several QTL significantly associated with each 

trait.  
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CHAPTER 1 

INTRODUCTION 

Switchgrass 

Switchgrass is a native North American C4 perennial grass. Historically it has 

been used as a component of conservation reserve program (CRP) lands and as pasture 

and hay production (Bouton, 2007). However, the current research focus in switchgrass 

has been as a major herbaceous feedstock for production of cellulosic biofuel. The 

Bioenergy Feedstock Development Program (BFDP) in the U.S. Department of Energy 

began evaluating a wide variety of potential feedstocks in 1978 (McLaughlin and Adams 

Kszos, 2005). Among herbaceous feedstocks, switchgrass (Panicum virgatum L.), was 

identified as the most promising target to develop as a bioenergy crop. Switchgrass has 

many characteristics of a desirable biofuel feedstock because it is perennial, has high 

productivity (Wright, 1994) is adapted to a wide variety of sites, including to poor soil 

conditions (Sanderson et al., 1996).  

Switchgrass is an erect, bunch-type grass with numerous tillers and can grow up 

to 4.0 m tall (Bouton, 2007). Based on morphological characteristics, switchgrass is 

mainly divided into two ecotypes, lowland and upland. Lowland plants have taller tillers, 

thicker stems and later flowering and senescence than upland plants. Lowland 

switchgrass is predominantly tetraploid (2n = 4× = 36); however, uplands are both 

tetraploid and octoploid (Costich et al., 2010; Narasimhamoorthy et al., 2008; Zhang et 

al., 2011a; Zhang et al., 2011b) and aneuploidy (Costich et al., 2010), especially in 
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octoploids, has been identified. Upland and lowland genotypes can be distinguished 

based on morphological characteristics, or by DNA-based markers from the nuclear or 

chloroplast genomes (Missaoui et al., 2005; Narasimhamoorthy et al., 2008; Zhang et al., 

2011a; Zhang et al., 2011b). These uplands and lowlands can further be classified into 

subgroups of genetic pools that can be differentiated with genetic markers. Those include 

the Gulf Coast and Great Plains lowlands, eastern and western upland and octoploid 

uplands (Zhang et al., 2011a; Zhang et al., 2011b). The tetraploid switchgrasses have 

interbred giving rise to some mixed populations. Switchgrass migrated north following 

the last glaciation of North America, and the upland tetraploids possibly arose from 

upland octoploids, which emerged after a ploidy level shift from southern lowlands (Lu et 

al., 2013). 

Switchgrass is allogamous, and consequently, more genetic variation is generally 

observed within than among accessions. Within accession variation ranges from 65-80% 

of the total observed variation based on molecular marker diversity (Casler, 2012). 

Significant phenotypic variation also exists in terms of key yield and compositional traits 

(Lemus et al., 2002).  

The main breeding objectives for switchgrass improvement are biomass yield and 

altered composition to minimize recalcitrance to digestion. Switchgrass is affected by 

some diseases, including rust and smut, and resistance to these and other pathogens is 

also a breeding goal. Improving biomass per se is a main breeding goal that could be 

facilitated by modifying yield components, such as plant height, stem diameter, and tiller 

number. However, perhaps the easiest way to improve total biomass yield under single 
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harvest biofuel management is to extend the vegetative growth period – for northern US 

regions, this can be accomplished by adapting lowland germplasm to survive winter.  

Recalcitrance to digestion, either by ruminant livestock or by industrial enzymes, 

is significantly affected by lignin content, so minimization of lignin is important for 

digestion-based used. Ultimately, for liquid fuel or animal performance, the real goal is to 

increase the amount of sugar released from the biomass, so in addition to lignin, total 

sugars are also of relevance to breeders. Rust (Puccinia emaculata) can affect biomass 

yield in switchgrass (Zale et al., 2008). We have also observed blast (Magnaporthe 

grisea) that appeared to affect plant growth in Watkinsville, GA, although we do not have 

quantitative data supporting this observation (unpublished).  

 

Genetic markers 

Molecular markers can be used in modern breeding programs to assess population 

diversity and relatedness of germplasm or to apply marker assisted selection. Older types 

of markers, including Restriction Fragment Length Polymorphism (Botstein et al., 1980), 

Random Amplified Polymorphic DNA (Williams et al., 1990), Amplified Fragment 

Length Polymorphism (Vos et al., 1995), and simple sequence repeats (SSR) (Tautz and 

Renz, 1984) enabled the development of molecular breeding programs but all suffered 

from various shortcomings that limited their utility for many applications on a routine 

basis. 

Today, most genotyping is based on Single Nucleotide Polymorphisms (SNP). 

These polymorphisms represent base changes at a specific nucleotide position and are 

highly abundant in genome. SNP can be identified easily by sequencing a given genomic 
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region in multiple genotypes (or even in a single heterozygous genotype), and next 

generation sequencing technologies greatly facilitate comparative sequencing and SNP 

discovery. Once identified, SNP can be developed into assays for analysis. Numerous 

genotyping techniques are available to assay SNPs, mostly based on either allele specific 

hybridization or primer extension (Kim and Misra, 2007; Sobrino et al., 2005), and 

depending on the technology, from one to hundreds of thousands of SNP loci can be 

assayed simultaneously. Basically SNP assay technologies can be grouped in six groups 

based on assay technology; a) physical property based (melting) b) single nucleotide 

extension based c) 5’ exonuclease activity based d) ligation based e) hybridization based 

and f) sequencing based. Higher Resolution Melting (HRM) analysis based on the 

difference in melting temperature of two different alleles is mostly used to assess single 

SNPs. LightScanner® (BioFire Diagnostics) platform utilizes the high resolution melting 

technology. Single nucleotide extension based technologies such as SNaPshot® (Life 

Biosciences) and iPlex® (Sequenom) extend the single base from the primer and allelic 

differences are assessed by capillary electrophoresis (SNaPShot) or mass spectrometry 

(iPlex). KASPar® (K-Biosciences).  TaqMan® (Life Biosciences) uses the 5’exonuclease 

property of Taq polymerase to detect the allelic differences through Real Time (RT) 

PCR. The ligation based primer extension technologies are SNPplex® (Life Biosciences) 

and GoldenGate® (Illumina). Infinium® (Illumina) and Axiom® (Affymetrix) are 

hybridization based SNP assays. These different methods are suitable for different kind 

of studies. HRM based technology has been used in alfalfa (Han et al., 2012), potato (De 

Koeyer et al., 2010), soybean (Ha and Boerma, 2008) etc. The cost is higher per data 

point and this method has less throughput as compared to technologies that are able to 
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assay multiple SNPs at a time. However it is best suited for screening a single to few 

markers in a large number of populations (e.g., marker assisted backcrossing selection). 

Microarray based technology has been used for genotyping soybean (Hyten et al., 2010), 

wheat (Wang et al., 2014), and alfalfa (Li, 2014). Even though the cost of developing the 

initial assay is rather high, subsequent cost per data point is low.  

Next generation sequencing technologies can be used to inexpensively identify 

SNPs. In some cases, SNPs can be determined directly from sequence data on all 

members of a mapping population, thus combining SNP detection and genotyping into 

one step. Because the entire genome of each individual cannot be sequenced 

economically at the current time, sequencing generally is focused on a part of the genome 

and can be accomplished using a) transcriptome sequencing (Marioni et al., 2008), b) 

sequence capture (Ng et al., 2009), c) restriction enzyme-based genome reduction (Baird 

et al., 2008).  Transcriptome sequencing (RNA-seq) methods sequence cDNA developed 

from RNA and is representative of gene space. This method has been used to develop 

SNP marker arrays in many crops including alfalfa (Li et al., 2012). Transcriptome 

sequencing, however, is mostly used for identifying the SNPs and developing an array 

based on the results rather than combining the steps of SNP identification and genotyping 

in the same step. Sequence capture or exome sequencing targets specific genomic regions 

of interest with oligonucleotide baits and the captured sequences are sequenced to 

discover SNPs. Exome capture requires known sequences to generate the baits, and 

consequently, has only been used in a few crops to date, including wheat (Winfield et al., 

2012).  
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Restriction enzyme-based genome reduction is accomplished by first restricting 

the genome with one or two enzymes and then sequencing the ends of the resulting 

fragments. Methylation sensitive restriction enzymes will preferentially target genic 

regions of the genome rather than repetitive sequences. Enzymatic genome reduction can 

assess a broader region of the genome. Reduced representation libraries (RRL) can be 

filtered by a size selection step to further reduce the complexity and to have similarly 

sized fragments to facilitate consistent sequencing (Altshuler et al., 2000).  

Two primary methods have been developed for reduced representation 

sequencing – Restriction site Associated DNA (RAD-seq) and Genotyping-by-

Sequencing (GBS). The RAD-seq method uses restriction enzymes to digest the DNA 

followed by shearing and size selection to further reduce the complexity (Baird et al., 

2008). Double digest RAD-seq (Peterson et al., 2012) eliminated the shearing step by 

using another frequent cutting restriction enzyme to digest the genome. The GBS 

procedure (Elshire et al., 2011) removes the size selection step to make the method 

simpler. Modifying the GBS protocol by using two enzymes improved the sequence 

representation throughout the genome in wheat (Poland et al., 2012). A novel GBS 

method was proposed using a restriction enzyme type 2b that produces equal sized 

fragments flanking a recognition site (Wang et al., 2012). However, because of the small 

fragment size (28-33 bp), including a 6-8 bp non-polymorphic recognition site, 2b-RAD 

has limited use.  

The goal of a GBS project is to inexpensively generate a large amount of SNP 

marker data on a large number of individuals. The challenge is generating enough 

sequence so that most individuals have been sequenced for most of the SNPs to be 
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assayed. Generally, restriction enzymes with a longer recognition site will generate fewer 

fragments (and thus loci) and provide a higher marker coverage compared to restriction 

enzymes with shorter recognition sites, given the same number of sequences generated 

per individual.  

After the libraries for all individuals being assayed have been sequenced, the data 

need to be manipulated so that SNPs can be identified and marker scores generated for all 

individuals in the population. This is a computationally intensive process and canned 

programs have not been developed, in general. Although traditional assembly algorithms 

can be used, new algorithms have been developed to handle these specific types of 

sequence data. STACKS (Catchen et al., 2013; Catchen et al., 2011) is a program 

specially designed for handling RAD-associated loci and has been used extensively. The 

UNEAK pipeline (Lu et al., 2013), incorporated into the TASSEL software (Bradbury et 

al., 2007), is also useful. STACKS is more flexible and provides the user with greater 

control over how the data are analyzed than UNEAK, but the latter is faster.  

STACKS basically consists of a series of steps to call the genotype. First, it 

searches for exactly matching sequencing reads and builds a dictionary. Second, it finds 

the polymorphism within a single genotype and records the reference sequence of each 

locus. Third, it builds a catalog of those loci from across the population and merges two 

or more loci depending upon the among-individual merging parameter and compares the 

loci to call the genotype and haplotype of the individual. In contrast, UNEAK searches 

for the tag pairs with exactly one mismatch within the read and a filter is applied to 

discard complex SNP structures involving non-reciprocal SNPs and only SNPs with 

reciprocal pairs are retained and used in SNP calling. Further, UNEAK pipeline does not 
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process the paired end data and does not utilize the fragments of length longer than 64. 

The suitability of UNEAK and STACKS depends several factors, one of which is 

complexity of the genome. The availability of a reference genome makes the locus 

identification process easier, and both STACKS and UNEAK can map reads to the 

reference sequence using open source programs such as BWA (Li and Durbin, 2010) or 

BOWTIE2 (Langmead et al., 2009). However, the reference genome of switchgrass is 

still incomplete, so only partial alignment of GBS reads to known locations can be 

completed. 

At the current time, GBS typically results in a large amount of missing data – that 

is, individuals for which no or insufficient sequencing reads are available for a given 

locus. Numerous algorithms have been developed and tested to impute the missing 

genotype calls such as random forest regression (Stekhoven and Bühlmann 2011), nearest 

neighborhood (Troyanskaya et al., 2001), singular value decomposition (Troyanskaya et 

al., 2001), expectation maximization (Dempster et al., 1977) etc. Rutkoski et al. ( 2013) 

experimented with several algorithms, including k-nearest neighbors, singular value 

decomposition, random forest regression, and expectation maximization imputation, and 

concluded that the imputation accuracy depended on factors such as proportion of 

missing values, heterozygosity, linkage disequilibrium, but that the inclusion of markers 

that have had genotypes imputed led to the increased genomic selection accuracy (Poland 

et al., 2012).  
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Genetic mapping and marker-trait associations 

Generally speaking, the use of genetic markers in most plant breeding programs 

has been based on specific markers associated with specific trait loci. Many 

agronomically important traits are controlled by multiple quantitative trait loci (QTL).  

Traditionally, QTL mapping has being done based on biparental, segregating populations 

(Lander and Botstein, 1989; Zeng, 1994; Li et al., 2007 ). This approach has been 

successful in identifying the QTL and in some cases, applying the resulting markers in 

selection programs (Duvik et al., 2004; Collard and Mackill, 2008; Cooper et al., 2009). 

Classical biparental mapping has limitations. First, the genetic variance within the 

population is limited to the two parents (Malosetti et al., 2007), and second, the inference 

space of loci is also limited to those parents or related population. Third, because of the 

extended linkage disequilibrium (LD), very few identified loci can be pinpointed to the 

gene level, and are often located in quite large genomic intervals (Zhu et al., 2008).  

Genome wide association study (GWAS) or linkage disequilibrium (LD) mapping 

can be conducted using markers to saturate the genome of populations with limited LD, 

thereby identifying markers closely associated with trait loci.  In the best case, 

association mapping can resolve complex trait variation down to the sequence level by 

exploiting evolutionary or historical recombination events (Nordborg and Tavare, 2002). 

The key to successful LD mapping is a population with a limited extent of LD and 

consequently a high density of markers. Association mapping is conducted using a mixed 

model statistical analysis to associate phenotypes and genotypes (Yu et al., 2006; Stich et 

al., 2008). The structure of the population due to the presence of subpopulations and the 

kinship of the individuals being assayed need to be controlled in the analysis to avoid 
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false positive associations (Yu et al., 2006). The population structure is generally 

controlled with the fixed effect covariates of either principal components or membership 

to a given subpopulation. This approach may miss true positive marker-trait associations 

if the real association is nested within the structure (Brachi et al., 2011). Ideal 

populations for GWAS have been constructed to introduce new recombination into 

existing historical recombination to help avoid this problem. 

Apart from LD-based QTL mapping with bi-parental families and association 

mapping using germplasm accessions or breeding populations, bulked segregant analysis 

(Michelmore, et al., 1991) can be used to map loci with large effects, as has been done in 

rice (Venuprasad et al., 2009), wheat (Shen et al., 2003), maize (Cai et al. 2003), soybean 

(Hyten et al., 2009), and others. A high density of markers makes this method feasible.  

 

Marker-assisted breeding 

Markers can be used to identify different heterotic groups. In maize, the variance 

of yield described by SSR markers was slightly better (54%) than traditional Specific 

Combining Ability (SCA) based heterotic group analysis (52%) (Fan et al., 2009), 

suggesting that markers could replace costly and time-consuming traditional heterotic 

group identification. In switchgrass, heterosis can be exploited using semi-hybrids 

between contrasting populations (Brummer, 1999). The upland and lowland switchgrass 

ecotypes are reported to be different heterotic groups (Martinez-Reyna and Vogel, 2008), 

and markers could help distinguish populations within these ecotypes for more careful 

heterotic pairings. 
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Marker-assisted selection (MAS) can be used to evaluate breeding material for the 

presence, absence, or allele frequencies of loci associated with important traits. Given a 

reliable marker or a pair of flanking markers tightly linked to the trait locus, the markers 

can be used in a selection program.  These markers can be used for backcrossing with 

both “foreground selection” (using markers linked to the trait) and “background 

selection” (using markers not linked with target locus to select against other donor parent 

chromatin) (Frisch et al. 1999). In addition to the use of markers to select for single loci, 

multiple loci can be pyramided to increase the trait value or to provide durable disease or 

pest resistance (Singh et al., 2001). MAS can also be used in a selection program 

especially in early generations when LD remains extended due to few recombination 

events (Ribaut and Betran, 1999). Genotype × environment interactions and germplasm × 

marker interactions can limit the reproducibility of markers across breeding programs (Li 

et al., 2003). Nevertheless, a number of breeding programs are using MAS successfully, 

including in rice (Singh et al., 2011), wheat (Collard et al., 2005), barley (Dwivedi et al., 

2007), fava bean (Torres et al., 2010), soybean (Walker et al., 2004), and others.  

An alternative to identifying and applying selected markers linked to a trait is to 

use genomic selection (GS) (Heffner et al., 2009; Jannick et al., 2010). In a genomic 

selection program, genome-wide markers are assayed and the breeding value for each 

marker is determined. Selection is based on the aggregate breeding value of all markers, 

regardless of whether those markers are individually associated with the trait or not. The 

availability of high density SNP markers with reduced cost has made genomic selection 

practical for selection (Jannink et al., 2010). The breeding values changes as the allele 

frequencies change but practically it will still be useful for a certain cycles of selection. 
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Assuming that the breeding values of markers are largely retained across several cycles 

of selection i.e , genomic selection can outperform phenotypic selection or marker-

assisted selection (Jannink et al., 2010). The SNP discovery by Genotyping-By-

Sequencing (GBS) is the cheapest and fastest way to get high density markers, thus, 

enhancing the application of GS in plant breeding.    

 

Switchgrass Breeding 

Switchgrass is a cross-pollinating, largely self-incompatible species, so the 

breeding method is mostly recurrent selection (Vogel and Pederson, 1993), typically 

using space-plant nurseries. Space-planting can be efficient for high heritability traits, but 

quantitative traits with low heritability may benefit from controlling for spatial variability 

(Missaoui et al., (2005), Casler (2010) or using family selection (Casler, 2010) (Bhandari 

et al., 2010, Rose et al., 2008). Early generation cultivars were simply the seed increases 

from adapted landraces. Later, regional seed collections at the University of Nebraska 

were used to initiate a breeding program (Eberhart and Newell, 1959).  While switchgrass 

cultivars are commercialized as synthetics today, the presence of heterosis for yield has 

shown the potential of hybrid cultivar development (Vogel and Mitchell, 2008; Martinez-

Reyna and Vogel, 2008).  

In most breeding programs, the breeding emphasis focused on In Vitro Dry 

Matter Digestibility (IVDMD), a lab method simulating the process in rumen of animal 

(Hopkins et al., 1993, Vogel et al., 2002). The increased IVDMD was reported to be 

associated with low lignin content (Casler et al., 2002). With the choice of switchgrass as 

source of cellulose based ethanol biofuel, breeding has emphasized increased biomass 
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yield and decreased recalcitrance to degradation by industrial enzymes. Recently, 

biomass yield has been studied extensively (Bhandari et al., 2010, Rose et al., 2008, 

Casler, 2010, Vogel and Mitchell, 2008; Martinez-Reyna and Vogel, 2008). Choosing 

appropriately adapted cultivars can increase biomass yield by approximately 20-25% 

(Sanderson et al., 2007). 

Along with the traditional breeding approaches, switchgrass could greatly benefit 

from advances in genomics and biotechnology (Bouton, 2007). The use of molecular 

markers to assess the genetic diversity was already discussed above. Several switchgrass 

genetic maps have been published (Missaoui et al., 2005, Okada et al., 2010 and Liu et 

al., 2012, Serba et al., 2013) and linkage map based QTL mapping is in progress (Serba, 

pers. comm.). These QTL can be used in marker-assisted selection as described above. 

Further QTL mapping using high density markers can assist in fine mapping of trait loci. 

A draft reference genome has been built for switchgrass (http://www.phytozome.net/ 

panicumvirgatum_ er.php). The genetic map can be linked to the sequence assembly to 

locate genes of interest and to facilitate comparative mapping across species.   

 

Dissertation Objectives 

My dissertation research will analyze switchgrass germplasm derived from the 

southern United States. Our guiding hypotheses are that this germplasm consists of 

diverse, primarily tetraploid populations, that abundant variability exists among this 

germplasm for important biofuel-related traits, and that associations between genetic 

markers and phenotypes in this population can identify QTL useful for breeding 

programs. To address these hypotheses, first, I will develop SNP markers using GBS. 
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Then, I will analyze the population structure of our germplasm collection using nuclear 

SSR markers, SNP markers, and plastid markers to assess the presence of population 

substructure and to understand the relationships of the accessions in this study. Then, I 

will assess phenotypic diversity within this collection for agronomic traits. Finally I will 

use the SNPs to identify quantitative trait loci associated with these traits. 
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CHAPTER 2 

GENETIC DIVERSITY AND POPULATION STRUCTURE INFERENCE OF 

SWITCHGRASS (PANICUM VIRGATUM L.) ACCESSIONS USING GENOTYPIC 

AND CYTOPLASMIC SSR MARKERS, SNPS AND MORPHOLOGICAL TRAITS
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Abstract 

Switchgrass (Panicum virgatum L.), a warm season grass native to North 

America, can be cultivated as a forage or biofuel crop. Improved biofuel characteristics 

can be selected by tapping the genetic diversity within the species. The objective of this 

study was to examine the population structure and relatedness within and among 

switchgrass populations mainly derived from the southern United States. A total of 464 

individual plants from 49 accessions were selected for genotyping and phenotyping. 

Genotyping was done using SSR markers and SNP markers well distributed throughout 

the switchgrass genome. We used 35 SSR markers that generated 365 alleles and 

Genotyping-by-Sequencing (GBS) to identify 3,196 SNP that were present in at least 

80% of the population and that had at least six sequencing reads per locus per genotype. 

We also used nine chloroplast specific indel markers to identify the cytotype of each 

individual. We collected data from a field trial on three canonical morphological traits 

that typically are used to differentiate switchgrass ecotypes: plant height, stem diameter, 

and flowering time. Based on marker analyses, we identified the expected population 

differentiation into two major clusters representing upland and lowland ecotypes, with a 

further clear subdivision of lowland ecotypes into two subgroups. Further subgroups 

could be discerned in all major groups, and these groupings were largely based on 

geographical origin of the accessions. Based on the literature, lowland ecotypes are 

expected to flower later, be taller, and have thicker stems than upland ecotypes. Our 

analysis showed that one of the lowland clusters had plant height similar to the upland 

cluster and stem diameter intermediate between the other lowland cluster and upland 
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accessions. Thus, this experiment shows that few distinguishing traits are not sufficient 

for clasifying ecotypic status in switchgrass.  
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Introduction 

Bioenergy is a renewable energy source that can help meet the world’s increasing 

demand for energy in an environmentally sensible manner. The Bioenergy Feedstock 

Development Program in the U.S. Department of Energy began evaluating a wide variety 

of potential feedstocks in 1978 (McLaughlin and Adams Kszos, 2005). Among 

herbaceous feedstocks, switchgrass (Panicum virgatum L.), a perennial, warm-season 

(C4) grass native to North America, was identified as the most promising target to 

develop as a bioenergy crop. Switchgrass has many characteristics of a desirable biofuel 

feedstock including high productivity (Wright, 1994), broad adaptation to a wide variety 

of environments, including to poor soil conditions (Sanderson et al., 1996), and 

familiarity to farmers as a forage crop. 

Switchgrass germplasm has been classified into lowland and upland ecotypes 

based on their phenotypes (Das et al., 1997; Porter, 1966). Uplands tend to be shorter, 

have thinner stems, and flower and senesce earlier compared to lowlands. All lowland 

and some upland ecotypes are tetraploid (2n = 4x = 36), but most upland ecotypes are 

octoploid (2n = 8x = 72) (Hopkins et al., 1996; Narasimhamoorthy et al., 2008b). 

Agenetic linkage map has recently been developed from a cross between two tetraploid 

genotypes, and disomic inheritance has been confirmed (Okada et al., 2010c; Serba et al., 

2013). Aneuploidy has been identified in switchgrass (Costich et al., 2010), although the 

extent to which it exists across all germplasm is not known.  

A successful crop improvement program requires genetic variation. Genetic 

diversity within switchgrass germplasm is extensive, although the amount identified in 

any given experiment varies depends on the populations evaluated (Cortese et al., 2010; 
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Gunter et al., 1996; Narasimhamoorthy et al., 2008b; Zalapa et al., 2011; Zhang et al., 

2011a; Zhang et al., 2011b). Variation within switchgrass populations is considerably 

higher than variation among populations (Narasimhamoorthy et al., 2008a; Zalapa et al., 

2011), which is a common finding in other outcrossing grass species (Mian et al., 2005; 

Ubi et al., 2003).  

Ecotypic differentiation was initially based on morphological and ecogeographic 

characteristics, but molecular marker analyses have enabled a more detailed exploration 

of switchgrass germplasm relationships. Two main germplasm groups, upland and 

lowland ecotypes, have been easily distinguished using chloroplast markers (Hultquist 

1997), nuclear SSR markers (Cortese et al., 2010; Gunter et al., 1996; Narasimhamoorthy 

et al., 2008; Zalapa et al., 2011; Zhang et al., 2011a; Zhang et al., 2011b), and SNP 

markers (Lu et al., 2013). Marker-based diversity has been explicitly related to 

morphological diversity (Cortese et al., 2010). Genotyping-by-sequencing (Elshire et al., 

2011) was used to identify over 700,000 SNP markers in a (mostly) northern USA 

association mapping panel (Lu et al., 2013). A diversity analysis based on 29,000 of these 

markers indicated clear differentiation between ploidy levels, with two main 

subpopulations present among lowland accessions, among 4x upland accessions, and 

among 8x upland accessions (Lu et al., 2013). Fine-grained analysis of switchgrass 

germplasm using SSR markers has identified numerous sub-populations of both upland 

and lowland germplasm and apparent hybrids both between ecotypes and across ploidy 

levels (Zalapa et al., 2011; Zhang et al., 2011a; Zhang et al., 2011b) 

 As a prelude to association mapping of important traits for bioenergy production, 

we evaluated a large germplasm collection of accessions from mainly the southern USA, 
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a complement to the northern germplasm panel described by Lu et al. (2013). Although 

many of these germplasms have been included in previous genetic diversity analyses, we 

needed to estimate relationships among these genotypes to appropriately adjust our 

GWAS models. Further, because a number of accessions in our panel were collected in 

the southeastern US, which appears to be a center of diversity for switchgrass (Zhang et 

al., 2011b), we were interested in clarifying the levels of hybridity between ecotypes 

observed previously (Zhang et al., 2011a) and in comparing the marker-based results 

with canonical morphological traits often used to discriminate ecotypes, especially for the 

hybrids.  

 Our hypotheses were (1) that upland and lowland accessions can be identified by 

marker analyses, (2) that evidence of hybrid origin of at least some genotypes in certain 

populations could be identified using markers, and (3) that a phenotypic analysis of 

maturity, plant height, and stem diameter would be able to clarify hybrid status in 

southern USA switchgrass germplasm. The objective of this study was to test these 

hypotheses by evaluating diversity of southern USA switchgrass accessions using 

chloroplast and nuclear SSR markers, SNP markers generated by GBS, and phenotypic 

analysis of key traits. In addition, because we used both nuclear SSR markers and GBS-

generated SNP markers, a further goal of this experiment was to compare genetic 

diversity estimates generated by the two marker types.  
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Materials and Methods 

Plant materials:  

The germplasm we analyzed in this experiment largely derived from the southern 

half of the US, with a few exceptions, and included both upland and lowland accessions. 

We included 29 accessions from the National Plant Germplasm System (NPGS), seven 

populations we collected from Florida, Georgia and South Carolina, and two genotypes 

that are the parents of a genetic mapping population (Missaoui et al., 2005; Serba et al., 

2013), AP13 derived from ‘Alamo’ and VS16 derived from ‘Summer’ (Table 2.1, Fig 

2.1). Each accession was represented by between one and 16 plants (each having a 

distinct genotype) for a total of 480 genotypes measured for various phenotypic traits in 

Watkinesville, GA. An additional 31 genotypes from seven populations recently collected 

from Florida by the NPGS and six ornamental switchgrass genotypes were included for 

both nuclear and cytoplasmic SSR genotyping. Of the 511 total genotypes, 372 were 

sequenced for SNP genotyping. Overall, there were 322 “core” genotypes on which all 

genotypic and phenotypic data were recorded. The core genotypes were used to compare 

marker types.  

Phenotyping:  

The 480 genotypes from the 36 accessions were clonally propagated in the 

greenhouse and planted into the field at the UGA Plant Sciences farm near Watkinsville, 

GA in July 2009 with 90 cm spacing on center in a 16 × 30 α-lattice design with 3 

replications. Each replication consisted of 16 genotypes in each of 30 blocks. Each 

genotype was represented by a single clone in each replication. No data were taken 

during 2009, allowing the plants to fully establish. We collected data for three canonical 



 

30 

traits – height, stem diameter, and flowering date – that define switchgrass ecotypes. 

Height was measured on three tillers per plant from the ground to the uppermost node of 

a flowering stem. Stem diameter was measured on three tillers 5 cm from the ground. For 

flowering date, we recorded the date when at least three tillers showed emergence of the 

inflorescence. The height and stem diameter were measured after full maturity and before 

harvest in December 2011 and December 2012.   

SSR Genotyping:  

We extracted DNA from young leaves of switchgrass using the CTAB method 

(Doyle and Doyle, 1990). We screened 50 SSR markers developed from switchgrass 

(Okada et al., 2010b; Serba et al., 2013) covering the genome and selected 35 SSR 

markers for analysis  based on the polymorphism and signal quality (Table 2.2). The M13 

tailing method (Schuelke, 2000) was used to label PCR products. Reactions were 

prepared in a volume of 10 μl with 20 ng of template DNA, 2.5mM of  MgCl2, 10× 

buffer, 0.5 U AmpliTaq Gold® (Applied Biosystems, Foster City, CA, USA), 0.15 mM 

dNTPs, 0.25 pmol forward primer, 0.5 pmol backward primer and 1.0 pmol M13 

universal primer. The M13 universal primer was labeled with one of the blue (FAM), 

green (HEX) or yellow (NED) fluorescent dyes. We pooled the PCR products of different 

fragment size and florescent labels. The pooled sample was then mixed with 4μl 

deionized formamide, 25 μM ROX size standard were added, and the sample was 

analyzed on an ABI3730 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) 

at the University of Georgia Genomics Facility (GGF). The genotypic data received from 

GGF were analyzed with Genemarker 1.85 software. Each allele (fragment) for each 

marker was scored as a dominant marker, with 1 for presence and 0 for absence of the 
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specific DNA fragment size in each individual genotype. Individual markers had <5% 

missing data.  

We also designed nine primers specific to the chloroplast, one from Missaoui et 

al. (2005) and eight from Young et al. (2011). Each of these markers showed an indel of 

more than 17 base pairs between the upland and lowland ecotypes. We genotyped these 

markers using conditions similar to nuclear SSRs described above and scored the 

fragment sizes. If the genotyping yielded more than two previously identified alleles, at 

least three genotypes were sequenced with ABI 3730XL (Applied Biosystems) at The 

Samuel Roberts Noble Foundation genomics core facility for each allele size to identify 

any further indels.  

SNP Genotyping:  

In addition to SSR genotyping, we also analyzed SNP genotypes on 372 

genotypes. We used the same genomic DNA as above. The concentration of DNA was 

initially measured by nanodrop and DNA concentrations were diluted and normalized to 

20 ng/ul based on further quantification using PicoGreen. Single nucleotide 

polymorphisms (SNP) were identified using the two-enzyme Genotyping-by-Sequencing 

(GBS) method described by Poland et al. (2012) except that we used FseI, a methylation 

sensitive restriction enzyme with an 8-bp recognition site, instead of PstI, to further 

reduce the number of fragments generated. Following digestion with FseI and MspI, 

sample barcodes, FseI adaptors, and a common adapter were ligated and fragments were 

amplified by PCR using Illumina sequencing primers. We multiplexed 48 genotypes for 

single end sequencing with a read length of 101 bases in a single lane on an Illumina 

HiSeq 2000 sequencer at the University of Texas, Austin sequencing facility 
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(http://www.icmb.utexas.edu/core/DNA/). We obtained about four million raw 

sequencing reads per genotype.  

We analyzed the sequencing reads using the STACKS software (Catchen et al., 

2013; Catchen et al., 2011) to assemble reads and to identify SNP marker loci without the 

use of reference genome. We considered de novo assembly to capture all polymorphic 

site because only 65% of raw reads aligned to 18 pseudomolecules of Panicum virgatum 

reference genome 1.1 (available at ftp://ftp.jgi-

psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/). After Illumina’s 

internal quality filtering (chastity filter, www.illumina.com) discarding low quality reads, 

we demultiplexed the data according to barcode and trimmed the sequencing reads to 64 

bases, including the restriction site. We allowed up to three mismatches within a 

genotype and up to two additional mismatches among genotypes to assemble reads. We 

required a minimum of six sequencing reads in order to call a given locus as either 

homozygous or heterozygous, with the further requirement that any given allele be 

represented by at least two reads. Loci with an allelic ratio less than 0.01 within a given 

genotype were corrected to be homozygous and loci with allelic ratio between 0.01 and 

0.1 were discarded from the analysis because their genotype would be ambiguous (that is, 

potentially either homozygous or heterozygous). We used loci with a minor allele 

frequency (MAF) greater than 3% across the entire population for further analysis. We 

required at least 80% of genotypes to be called with a minimum of six reads per loci 

(S80-6) in order for them to be included in the analysis of population structure. 

Additionally, we prepared other datasets with lower number of genotypes called (S50-6) 

and also lower number of minimum reads (four) for comparison purposes. The scripts to 

ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/
ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/
http://www.illumina.com/
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filter genotype calls are available in supplementary data and online at 

https://gist.github.com/anantaacharya.   

A sample with few or no sequencing reads for a given locus was assigned a 

genotype based on imputation. We imputed SNP genotypes using the random forest 

procedure implemented in the MissForest (Stekhoven and Buhlmann, 2012) package in 

R. The SNP markers were aligned with the Panicum virgatum reference genome 1.1 

(available at 

ftp://ftp.jgipsf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/) by 

using a custom BLAST (Altschul et al., 1990). We discarded the SNP’s from fragments 

that mapped to more than one genome position to ensure that the SNP’s were not from 

paralogous or homeologous loci.  

Population Structure and Diversity:  

The structure of the entire population was evaluated using the program 

STRUCTURE v2.3.1 (Hubisz et al., 2009; Pritchard et al., 2000). The model was 

evaluated with 50,000 repetitions of Markov Chain Monte Carlo (MCMC) preceded with 

20,000 burn-ins and with a predetermined number of sub-populations ranging from one 

to twelve with five replication each. We used the change in likelihood method (Evanno et 

al., 2005) to determine the most likely number of sub-populations within the overall 

population of genotypes. The program POWERMARKER (Liu and Muse, 2005) was 

used to calculate genetic distances among genotypes based on shared alleles and to draw 

a neighbor joining dendrogram (Jin and Chakraborty, 1994). FigTree v1.4 

(http://tree.bio.ed.ac.uk/software/figtree/) was used to format the dendrograms. A 

principal components analysis was conducted to further characterize the population 

ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/
http://tree.bio.ed.ac.uk/software/figtree/
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structure using the R statistical packages (R Development Core Team, 2011). An analysis 

of molecular variance (AMOVA) was conducted to partition molecular variation within 

and among populations and ecotypes using the “pegas” software package for R (Paradis, 

2010). Graphics were produced with R (R Development Core Team, 2011) with aid of 

“ggplot2” package (Wickham, 2009).  

We calculated summary statistics for the phenotypic data using analysis of 

variance. For each trait, we performed the mixed model (with lme4 package in R) with 

genotype as a fixed effect and replication within environment, environment, and 

genotype × environment interaction as random effects. We computed Pearson 

correlations (r) among the phenotypic traits based on mean values for each genotype. 

Statistical significance was assessed at the 5% level unless indicated otherwise. 

 

Results  

Nuclear DNA SSR polymorphism: 

The 35 SSR markers we evaluated produced 389 alleles, with individual markers 

having between two and 28 alleles across all genotypes. All markers had a very high 

Polymorphism Information Content (PIC), ranging from 0.38 to 0.99. Of the 389 alleles, 

32 were present in fewer than 5% of the genotypes. However, eight of these 32 were 

present in genotypes of only one or two accessions and consequently, we included them 

in further analyses while removing the others. Therefore, overall, 365 alleles were used 

for the genetic diversity and population structure analysis. Considering only the alleles 

retained in the analysis, markers averaged 10.4 alleles across the population and 

individual genotypes averaged two alleles per marker.  
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SNP polymorphism: 

We identified 65,328 SNPs across all genotypes regardless of read depth. We 

required at least six sequencing reads within a given individual in order to call a 

genotype, and further required that heterozygotes included at least two reads of each 

allele. By requiring six reads per locus (assuming bi-allelic loci), we could be 95% sure 

of identifying at least one read of each allele in a heterozygote, assuming each allele had 

an equal opportunity to be sequenced (Sedcole, 1977). We removed SNPs with a minor 

allele frequency (MAF) less than 3% from further analysis. After applying these filters, 

3,196 SNPs were present in at least 80% of the population. The minor allele frequency 

ranged from 0.03 to 0.50 with the average of 0.16. The mean PIC per locus was 0.19, 

with a maximum of 0.38. If we retained SNP whose genotype could be called in at least 

50% of the population (S50-6), Re-filtering to retain SNP loci present in at least 50% of 

the population resulted in 20,233 SNP markers, with a minor allele frequency ranging 

from 0.03 to 0.50, and an average of 0.14.  

Chloroplast specific indel polymorphism: 

We identified 32 alleles from nine chloroplast markers. Fourteen of these alleles 

had not been identified in previous experiments. For all markers, only one allele was 

present per genotype, as expected. Two markers (rps4-ndhJ-a and rbcL-psaI ) only had 

two alleles and upon sequencing, they showed the same indels as reported previously 

(Young et al., 2011). The remaining seven chloroplast markers generated three to seven 

alleles across the whole population. For each of these markers, sequencing identified the 

previously reported indel alleles (Missaoui et al., 2005; Young et al., 2011) as well as 

additional indels (Table 2.3). 
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Genetic Diversity and Population Structure: 

We assessed population structure independently for the nuclear SSR and SNP 

datasets, and in both cases, the STRUCTURE (Pritchard et al., 2000) analysis suggested 

that our genotypes were substructured into two groups (K) (Fig. 2.2a). An additional 

analysis using the change in likelihood (ΔK) method (Evanno et al., 2005) suggested two 

major subpopulations as well, with possibly additional subpopulations (Fig. 2.2b). The 

membership plot suggested that the two groups generally corresponded to upland and 

lowland ecotypes, with some individuals showing mixed parentage (Fig 2.3a). The 

membership plots from both the SSR and SNP analyses were consistent, with SNP 

markers showing less admixture of subpopulations (Fig 2.3b). Genetic distances 

computed between all genotypes for both SNP and SSR were similar when plotted as 

neighbor joining tree.  

We computed genetic distances among genotypes based on the SNP data and used 

these distances to build a phylogenetic tree. This analysis also identified the two broad 

groups (Fig 2.4), but clearly indicated that the lowland group was further divided into two 

subgroups, one with mostly southeastern USA accessions and the other containing 

accessions from other regions (Fig 2.1). Using STRUCTURE to place genotypes into 

K=3 groups, we similarly identified the two main lowland groups (Fig 2.5).  We identify 

these three groups as Upland, Lowland A and Lowland B, and use these group names as a 

basis of discussion of cytotype and phenotypic variation below.  

On the phylogenetic tree, further clusters of accessions and/or genotypes were 

present within each of the three groups, suggesting a fine-grained structure similar to that 

identified by Zhang (2011b).  In that study (Zhang et al., 2011b), switchgrass germplasm 
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was partitioned into ten separate groups. In our experiment, eight of these groups could 

be identified based on clustering in the neighbor-joining tree (Fig 2.4, labels in second 

columns from right), but two upland groups were not identified probably because our 

experiment focused on southern-USA derived accessions. The “Lowland 4x C” was 

identified as “Lowland A” and “Lowland 4x D” was identified as “Lowland B”. Other 

lowland groups of Zhang et al. (2011b) were hybrids of Lowland A and Lowland B and 

hybrids of Upland with either or both of Lowlands. We identified more clusters of 

lowland groups and a new upland group compared to Zhang et al. (2011b).  

Most accessions belonged to one of the three main groups, and all genotypes of 

those accessions were members of the same group. We noted several exceptions, 

however.  We identified accessions that appeared to be hybrids between groups and 

others that had mixtures of genotypes derived from multiple groups (Fig 2.5). Hybrid 

accessions (PI 315723, PI 317525, PI 422016, PI 476290, PI 476293, PI 422003 and 

Sprewell Bluff) uniformly included genotypes having genomes with similar proportions 

derived from two or more groups (e.g., Sprewell Bluff with Upland and Lowland B) 

based on the Structure analysis (Fig 2.5).  

However, some accessions (PI 422006, PI 476291 and Pasco co-FL) included 

genotypes with strikingly different group memberships. PI 422006 is putatively the 

cultivar Alamo, but some genotypes showed membership to Lowland A and the rest to 

the Upland cluster. Because Alamo is known to be a lowland accession, we believe that 

our seed source was contaminated; in fact, a similar result was found by 

Narasimhamoorthy et al. (2008). Accessions with mixed Upland and Lowland B 

genotypes included PI 476291 (four and three genotypes in each group, respectively), and 
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Pasco Co-FL (seven and five, respectively). Two genotypes of accession PI 476293 

belonged to Lowland A but six of them had an apparent hybrid origin showing 

membership to both Lowland A and Upland. Seven out of eight genotypes of PI 422003 

showed membership to all three groups (Upland, Lowland A, and Lowland B). The one 

remaining individual belonged to the Upland group.  

Based on the chloroplast specific markers, the genotypes were classified into two 

broad groups. The Lowland A and Lowland B group were also evident with chloroplast 

specific SSR markers, but the genetic distances were not as pronounced as with SNP 

markers. Clustering based on chloroplast marker cytotypes generally reflected the SNP 

marker groupings. However both Lowland B genotypes of PI 315725 (Coffeeville, MS) 

had a cytotype typical of Upland genotypes. We also identified some accessions that were 

a mixture of Lowland A and Upland. Interestingly, these had only one of the cytotypes, 

either upland or lowland. The Sprewell Bluff accession from Georgia had a Lowland A 

phenotype except for plant height, but had an upland cytotype. Genetically, it was hybrid 

of both upland and lowland. PI476293 from New Jersey had a Lowland B but exhibited a 

mixed phenotype and a hybrid nuclear genetic constitution.  One accession from Florida 

(SWFWMD) had Upland cytotype but clustered with Lowland A genetically and to 

Lowland B morphologically. The hybrids between Lowland A and Lowland B had either 

of lowland specific cytotype. For mixture accessions, the cytotype reflected nuclear 

genotype groups.  

Analysis of Molecular Variance: 

We used analysis of molecular variance (AMOVA) to estimate the relative 

amount of SSR and SNP-based genetic variation present within and among accessions. 
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About half of the SNP-based variance (49.2%) was present within accessions with the 

remainder among accessions; for SSR markers, nearly three-quarters of the variance 

(71.5%) was within accession. Adding an ecotypic classification, based on the clusters 

developed with genetic markers, as a third hierarchical level to the analysis showed that 

SNP-based among accession variation was split roughly equally among ecotypes (25.1%) 

and among accessions within ecotypes (25.7%). However, with SSR markers, 28.2% of 

28.5% variance was explained by ecotype and virtually none was accorded among 

accessions within ecotypes.  

Phenotypic diversity: 

Across all germplasm, the three phenotypic traits often used to distinguish 

between ecotypes suggested a bimodal distribution (data not shown). Flowering time was 

positively correlated with both plant height (r=0.49) and stem diameter (r=0.62) and plant 

height was positively correlated with stem diameter (r=0.85). We compared phenotypes 

of these traits among the three DNA-based groups and also included a fourth group that 

included hybrids between any of the groups. Upland genotypes flowered earlier than 

either of the Lowland groups, which were similar and flowered late; the hybrids were 

intermediate. The Lowland B group was taller than the other groups; interestingly, the 

Lowland A group had similar height as the Upland group, suggesting that this trait alone 

is insufficient to discriminate among ecotypes. Lowland B had the thickest stems, Upland 

thinnest, and the other groups in between (Table 2.4, Figure 3.6 and Fig 3.7). One 

particular hybrid is noteworthy; PI 422003 contained the genome of all three major 

germplasm groups. The mean flowering time of this accession was 199 days, which was 

later than any other groups, including both lowland groups. Mean plant height was 104 
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cm and stem diameter was 48 mm, both of which were in between upland and lowland 

types.  

Based on marker profiles, some accessions were mixtures of genotypes with 

distinctly different genome group memberships (see above). Pasco Co-FL was a mixture 

of seven Upland and five Lowland B genotypes. The average flowering time for the 

Upland genotypes was 160 days and for lowlands, 196 days. Similarly, the stem diameter 

was 22 and 38 mm and plant height 54 and 68 cm, respectively. The two groups differed 

for these traits based on a t-test. The difference in the flowering time probably enabled 

these two groups to remain genetically isolated within the same collection location.  PI 

476291 was a mixture of four Upland genotypes, one Lowland A genotype, and two 

genotypes that were putative hybrids between the two Lowland groups. The average 

flowering time for Upland genotypes was 165 days, and for the Lowlands 168 days, a 

non-significant difference. However, for height the two groups measured 80 and 112 cm, 

respectively, and for stem diameter measured 26 and 40 mm, respectively; in both cases, 

these differences were statistically significant.  

 

Discussion 

From the results of both SSR and SNP markers, we differentiated the switchgrass 

into the two well-known switchgrass ecotypic groups – Upland and Lowland (Casler et 

al., 2007; Cortese et al., 2010; Gunter et al., 1996; Lu et al., 2013; Narasimhamoorthy et 

al., 2008b; Okada et al., 2010c; Zhang et al., 2011b). Both SNP and SSR markers gave 

similar results, with SNP markers giving higher resolution. Some accessions appeared to 
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be mixtures of ecotypes, and others are apparent hybrids, some of which were reported 

previously by Zhang (2011b).   

Our DNA marker results suggested that the Lowland accessions could be split 

into two groups – the southern Great Plains lineage (Lowland A) and southeastern 

lineage (Lowland B). Accessions from Florida belonged to either the Lowland A or 

Lowland B cluster, potentially because their natural habitat could have been either in or 

near wetlands or at higher elevations. We identified accessions that were natural hybrids 

between groups, and these tended to be derived from geographic zones of overlap 

between ecotypic groups. Across accessions, 20 were Upland, 13 Lowland A, 13 

Lowland B, four hybrids and two mixtures.  

This study complements a previous switchgrass diversity study using SNP 

markers (Lu et al., 2013) by including more lowland genotypes. Based on accession that 

overlapped, our clustering results using fewer SNP markers with less missing data were 

similar to those of Lu et al. (2013). Although we did not present the results, we did 

similar analyses using SNP datasets we generated based on fewer required reads to call 

genotypes and with higher percentages of missing data, and we achieved a similar result 

in terms of clustering relationships. We conclude that for the study of genetic diversity 

and population classification, lower quality genetic data with less read depth and more 

missing genotypes can be used but probably does not yield more information than does a 

smaller amount of high quality data. 

All individuals that were clustered as Uplands using DNA markers had the same 

cytotype. Except for one Lowland A (PI317525, MS) and one lowland B (SWFWMD, 

FL) accession, which had Upland specific cytotypes, all Lowlands had cytotypes that 
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matched their marker-assigned group. For mixtures, the cytotypic group of an individual 

reflected its genotypic group, so accessions with mixtures based on SSR or SNP markers 

were mixtures of cytotypes as well. For individuals that appeared to be hybrids, their 

cytotype matched only one of the putative parental groups. The chloroplast specific 

markers could be useful in classifying upland and lowland ecotypes, but populations from 

geographic regions in between upland and lowland centers of diversity were often 

ambiguous in terms of cytotype. Genomic markers are more effective in separating 

ecotypes.  

A higher molecular variance within vs. among populations is expected in cross-

pollinated crops (Huff, 1997; Kölliker et al., 1999; Ubi et al., 2003). The high genetic 

diversity within populations will likely make selection from any accession successful for 

many traits (Bouton, 2007). The morphological analysis indicated that Lowland A was 

superior in terms of biofuel-related traits, with Uplands decidedly inferior when grown in 

this Georgia environment.  

We assigned membership of individual plants to ecotypic clusters based solely on 

DNA marker analysis. Once we made the assignment to clusters, we then evaluated the 

phenotypes of plants within those clusters. Traditionally, plants with early flowering, 

short stature, and thin stems have been described as upland ecotypes, whereas lowland 

ecotypes were described as late flowering, tall, and having thick stems. We discovered in 

this experiment that one lowland group  (Lowland B) did not have the typical lowland 

characteristics – while it was indeed late flowering as expected for lowland ecotypes, it 

did not have thick stem or tall stature. This result indicates the value of DNA markers to 

differentiate germplasm. Divergent germplasm with similar trait values may be useful to 



 

43 

breeders because it could provide additional alleles and/or alternate loci for the control of 

traits of interest.  

Although we did not analyze any hybrids of known accessions, an accession 

PI422003 that was apparently derived by roughly equal hybridization among all three 

ecotypic groups had very desirable characteristics for biomass production: taller, thicker 

stems, late flowering, and high yield.  This observation may support the suggestion that 

different ecotype pools represent heterotic groups for hybrid switchgrass production ( 

Brummer, 1999; Martinez-Reyna and Vogel, 2008). Tropical maize germplasm heterotic 

groups developed using SSR markers were similar to those based on test cross and hybrid 

index (Aguiar et al., 2008). Specific Combining Ability (SCA)-based heterotic groups 

were also consistent with DNA marker-based groupings in other experiments (de MC. 

Pinto et al., 2003; Fan et al., 2009). This suggests the grouping in our study could 

possibly represent the heterotic groups, and with high similarity of SSR and SNP markers 

in our study, any type of DNA based markers can be used.  

The presence of population structure among this germplasm collection has 

implications for genetic mapping and for breeding. For genome-wide association studies, 

we will incorporate population structure into our statistical models to minimize false 

associations of markers and traits. For breeding programs, the clearly distinct genetic 

pools can be used in two main ways. First, while the upland/lowland heterotic grouping 

has been discussed previously, the presence of a bifurcation of the lowland ecotype into 

two major groups should be investigated further. Ploidy differences that are often present 

between the upland and lowland groups will not pose a challenge for inter-lowland group 

hybrids, which will all be tetraploid. Population hybrids between these groups should be 
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evaluated. Second, the two different lowland groups may represent distinct reservoirs of 

alleles for traits of interest, and careful selection and hybridization of germplasm from 

these two groups may result in significant improvement in some traits. Marker-assisted 

selection to transfer desired genes or QTL will further help this trait introgression.  

Finally, the direct result of this experiment is the identification of individual 

genotypes that have desirable phenotypes, and these can be added to existing breeding 

programs directly. Because their genetic profile is known, possibly useful QTL alleles 

can be monitored, and their effect in hybrid progenies evaluated. 

 .  
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Table 2.1: Accessions used in diversity study with their location, ecotype and morphology.  

 

ID Name Location Latitude Longitude Genotypic 

group
1
 

Cytotype
2
   Plant 

height 

Floweri

ng time 

 Stem 

diameter 

       -cm- -Julian 

Days- 

-mm- 

1 PI 315723 Hoffman, NC 35.04 -79.56 L-A:L-B L 96 180 43 

2 PI 315724 Ellsworth, KS 38.73 -98.23 U U 67 164 23 

3 PI 315725 Coffeeville, MS 33.98 -89.68 L-A U 99 189 44 

4 PI 315727 Apex, NC 35.75 -78.84 L-A L 57 157 24 

5 PI 315728 Scotland County, 

NC (donated by 

Maryland) 

34.79 -79.55 L-A L 54 165 29 

6 PI 337553 Rafaela 

Experiment 

Station, Argentina 

-31.18 -61.55 U U 67 166 24 

7 PI 414065 Pangburn, AR 35.42 -91.84 L-A L 121 178 55 

8 PI 414066 Grenville, NM 36.74 -103.46 U U 62 151 27 

9 PI 414067 Soil Conservation 

Service, NC 

35.84 -78.63 U U 74 170 30 

10 PI 414068 Soil Conservation 

Service, KS 

38.83 -97.62 U U 73 162 24 

11 PI 414070 Soil Conservation 

Service, KS 

38.83 -97.62 L-A L 118 186 52 

12 PI 421138 Moore County, 

NC 

35.34 -79.36 L-A U 79 178 32 

13 PI 421520 Kay County, OK 36.8 -97.29 U U 72 163 24 

14 PI 421521 Wetumka, OK 

(developed in KS) 

35.24 -96.24 L-A L 126 185 51 
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15 PI 421999 Pangburn, AR 35.42 -91.84 L-A L 131 175 50 

16 PI 422001 Stuart, Martin 

County, FL 

27.2 -80.25 L-B L 80 191 43 

17 PI 422003 FL 28.57 -82.38 L-A:L-

B:U 

L,U 99 194 45 

18 PI 422006 George West, TX 29.29 -98.73 L-A L 119 188 51 

18.

1 

Unknown Unknown NA NA U U 78 162 27 

19 PI 422016 FL 28.57 -82.38 L-B L 96 172 41 

20 PI 431575 Raleigh County, 

WV (from KY) 

37.79 -81.19 U U 61 177 32 

21 PI 476290 Wilmington, NC 33.92 -78.13 L-A L 98 170 41 

22 PI 476291 MD 39.04 -76.91 L-A,U L,U 92 167 32 

23 PI 476292 Franklin County, 

AR 

36.23 -91.75 U L,U 65 168 29 

24 PI 476293 Heislerville, NJ 39.25 -74.99 U L 60 161 26 

25 PI 476294 Eads, CO 38.46 -102.65 U U 54 154 26 

26 PI 476295 Colorado Springs, 

CO 

38.79 -104.83 U U 41 156 21 

27 PI 476296 MD 39.04 -76.91 U U 57 153 23 

28 PI 642190 NM 34.78 -106.69 U U 45 147 20 

29 PI 642191 SD 44.08 -103.17 U U 56 156 23 

30 Citrus Co-FL Citrus County, FL 28.75 -82.53 L-B L 45 178 23 

31 HSP-FL Hillsborough 

River State Park, 

FL 

28.06 -82.3 L-B L 123 187 52 

32 OSSP-FL Oscar Scherer 

State Park, FL 

27.18 -82.49 L-B L 84 204 40 

33 Pasco Co-FL Pasco County, FL 28.36 -82.21 L-B, U L,U 60 175 29 
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34 SNF Sumter National 

Forest, SC 

34.22 -82.16 L-B L 126 191 53 

35 SPBluff Sprewell Bluff, 

GA 

32.91 -84.33 L-B:U U 58 195 35 

36 SWFWMD-

FL 

Southwest Florida 

Water 

Management 

District, FL 

28.58 -82.17 L-B L,U 44 187 22 

38 GRIF16964 Florida 30.49 -81.62 U U NA NA NA 

40 GRIF16967 Florida 29.6 -81.11 L-B L NA NA NA 

41 GRIF16968 Florida 29.59 -81.1 L-B L NA NA NA 

42 GRIF16969 Florida 29.28 -81.04 L-B L NA NA NA 

46 GRIF16982 Florida 30.26 -84.03 L-B L NA NA NA 

49 GRIF16991 Florida 29.72 -85.4 U U NA NA NA 

57 JDSPI NA NA NA L-A L NA NA NA 

58 GRIF16570 NA NA NA L-B L NA NA NA 

59 Rotstrahlbusc

h 

NA NA NA L-B L NA NA NA 

60 KC/SC NA NA NA L-A:U L NA NA NA 

63 Hanse Herms NA NA NA U U NA NA NA 

66 Heavy Metal NA NA NA L-A L NA NA NA 

68 Tyclo/MS NA NA NA U U NA NA NA 

98 AP13 Derived from 

Alamo 

29.29 -98.73 L-A L 119 175 47 

99 VS16 Derived from 

Summer 

44.08 -103.17 U U 52 160 24 

1. Genotypic group based on SNP markers. L-A, Lowland-A; L-B, Lowland-B; U, Upland. Separated by “:” hybrids, separated 

by “,”, mixture of individuals in accesion 

2. Cytotype based on nine chloroplast specific markers. L, Lowland; U, Upland 
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Table 2.2: List of nuclear SSR markers and their source used in the study 

Marker Forward Reverse Source 
SWW918 GCAAGATGGGAAGACA

ATAAAGC 

GCTTGACATTGTTGAAG

CTCTCC 

(Okada et al., 2010a) 
SWW620 ACCTCAAGTGGGTGTCC

AAG 

CTTATCTCCCTCGGTAC

CTTGCT 

(Okada et al., 2010a) 
SWW303

5 

ATCCTCTCCTTCCTCATC

A 

GGTAGTAGTGCTCCACG

AAG 

(Okada et al., 2010a) 
SWW301

7 

CCTCTCCTGCCTTTTAA

GC 

CTCTTCTGTGCCATGAA

A 

(Okada et al., 2010a) 
SWW298

4 

ACTGAATCATTCGTCTT

TTGA 

AATGGAGTAAGAGCGA

GAGAG 

(Okada et al., 2010a) 
SWW279

2 

AAAACCAAGGCGTGTG

GA 

GCTGTCCGGGTT (Okada et al., 2010a) 
SWW277

9 

TTGAAAATGCACGCCAA

A 

CACGAAGCCCCAACAGT (Okada et al., 2010a) 
SWW271 TTGCACAGCCAACCAAT

AAA 

CTTGGCTTGAGGCTCTG

GTCATA 

(Okada et al., 2010a) 
SWW256 CAAATCGCAGTTCGGTA

TCA 

CTTTGCAGCAAGCAAGA

ACTAGG 

(Okada et al., 2010a) 
SWW240 CAACTAATCGCCACCTC

ACC 

CTTGGGAGCGGAAGAG

TAAACAA 

(Okada et al., 2010a) 
SWW170 TGGCCTTAGTTTCAGGT

TCG 

CTTTGGGCTATGTGTGG

TTCGTA 

(Okada et al., 2010a) 
SWW141

4 

AACCAAACCTATGCACA

CACC 

GATCAAGGACAAGTGC

CAGAA 

(Okada et al., 2010a) 
SWW114 GAGAAGAACGCTCTCCC

TGA 

CTTTTCTGATGGTTATTC

AGTGCTCA 

(Okada et al., 2010a) 
SWW106

8 

ACCTACGGCCCCATCAG

C 

GGCCGTTGATCAGGATG

C 

(Okada et al., 2010a) 
SWW127

6 

CTCCCCTACCGCCTCCG

ATG 

ACTCGGGATGGTGATGA

TGTA 

(Okada et al., 2010a) 
UGSW37

6 

GTTTGCTCCTTTTCTCCC

TC                               

TACTCCCCTCATTCTCAT

CG                               

(Serba et al., 2013) 
UGSW33

4 

CCAAACACTCACCCTCA

TTC                               

CGGTGGTTTACTGGTGA

TTC                               

(Serba et al., 2013) 
UGSW31

7 

AAACCCTGGGCTATTCA

TTC                               

GGCTGTTAACACAGGCA

TCT                               

(Serba et al., 2013) 
UGSW29

1 

AGAGAAGGAGGGAGTG

GAGA                               

GTACTTGTAACCCACGG

CAC                               

(Serba et al., 2013) 
UGSW25

2 

TTAAAAACCTCCCCGAA

ATC                               

GAAAGAAAGGCAGTTG

CTTG                               

(Serba et al., 2013) 
UGSW17

9 

CAGGTCCTGGAAGCTCA

TC                                

ACAAAAGTTAATTGCCG

CCT                               

(Serba et al., 2013) 
UGSW13

0 

ACGTTCGCCATCATCAA

C                                 

CACCTCAAGCTACCTAC

CGA                               

(Serba et al., 2013) 
UGSWP6

4 

CGTGCTGCTCTGTTTTCT

C                                

TTGTCTTTATCGACCCG

AAG                               

(Serba et al., 2013) 
UGSWP4

9 

GACTTAGCTGTCTCTCG

TCCC                              

GTGTAGGGGTGGCGTTG                                  (Serba et al., 2013) 
UGSWP2

5 

GTCCCTTTTCAACACAC

GTC                               

AAGGTGGCGGGTTATAT

AGG                               

(Serba et al., 2013) 
UGSW26

6 

AACCGTGGCAAATCAA

GTAA                               

TGAAATTTTAACTCCGC

CAC                               

(Serba et al., 2013) 
NFSG387 AAGGAATCATTGCTCGC

TTTA 

GCAGCCTTATATTTGAT

GCCA 

(Serba et al., 2013) 
NFSG377 GTATCTCTTGCTGCCCA

ACTG 

AATATTGCGACCAAGAT

GACG 

(Serba et al., 2013) 
NFSG293 CAAGCCGCCAAGACAG

TAT 

ACGGAGTTCTAGAAGCC

AAGC 

(Serba et al., 2013) 
NFSG274 TCCTCTCCCATCTTCCTT

CAC 

ATCAAGAGGGTTTGGAT

CCTG 

(Serba et al., 2013) 
NFSG252 TTCACACTCACAAGGAT

GCAA 

CATGTGATGTTGCTCTT

GGC 

(Serba et al., 2013) 
NFSG137 CGTACACCTGATCCAAA

ACTCA 

CTTGTCCATTGCTTCATC

CAT 

(Serba et al., 2013) 
NFSG107 ATTCCCTCCCTCTACTC

GTCA 

TTGTACGGAAGGGCGA

AAG 

(Serba et al., 2013) 
NFSG050 CCCTTCTCATAAAAGAA

TCAGCA 

ACCAGGATTGTCTTTCT

CGGT 

(Serba et al., 2013) 
NFSG026 CCTTCATAGTCAAATTG

AGGTCC 

TGTACCACTATTGAGGC

CAGG 

(Serba et al., 2013) 
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Table 2.3: List of chloroplast indelmarkers and their source used in the study 

 

Marker Forward Reverse Allele Size
1
 Source 

trnL-UAA CGAAATCGGTAGACGCTACG GGGGATAGAGGGACTTGAAC 575,619,580 Missaoui, 2005 

Rps16-psbk ACAGATCGAGATCGTTTTTGC TGAGACCTATCCCTTTATGATCG 277,301,252 Young, 2012 

 rpoC2 GGGGTTCAGGAATTGTGAAAT CCTATGTTCATTCTCTGTGCTCTC 146,163,128,133, 

140,191,221 

Young, 2012 

rps4-ndhJ-a TGCAGAGACTCAATGGAAGC TCCTCGTTCGATTAATCCACTT 345,366 Young, 2012 

rps4-ndhJ-b GAAAAGGGCTAAAATCTCTGGTT GTACCGCGCGGATTACTTAG 166,187, 144,208,229 Young, 2012 

ndhC-atpE TGAACCGACTGTTTGTCAGG CCACAAAAGAAGCCCCATTA 298,348 Young, 2012 

rbcL-psaI GCGATGAGAATGGGAAAAGA TTGCAATTGCCGGAAATACT 386,360,391 Young, 2012 

psbE-petL TTCCGTAAAAGATGGGATCG GGGGTTCTATTGATGCCTTG 276,301,252 Young, 2012 

ndhF-rpl32 AATAAAGGAGCTCTCTTGTTTCGT TGGGGGATAAGCCTCCATA 289,308,303,310 Young, 2012 

 

1 
The first and second allele size were lowland and upland type identified in the source papers 
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Table 2.4: Mean separation of morphological traits based on genetic cluster 

 

Group Ecotype Flowering time Plant Height Stem Diameter 

  Mean 

(Julian 

Days) 

Group Mean (cm) Group Mean 

(cm) 

Group 

1 Upland 160.87 c 62.93 c 2.48 d 

2 Lowland A 185.33 a 63.26 c 3.17 c 

3 Lowland B 183.11 a 122.42 a 5.12 a 

4 Mixed 177.30 b 85.34 b 3.83 b 
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Fig2.1. The accessions used for this study and their origin. The colors represent their 

membership to the group after the SNP analysis. Green represents southern Lowland A, light 

green represents Lowland B, and blue represents Upland.  
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(a) 

 

 
(b) 

 

Fig 2.2. The plot probability of likelihood with subgroups (K) of switchgrass accessions as 

depicted from structure analysis. a) raw likelihood b) change as described by Evanno et al. The 

best number of cluster seems to be 2, 5 or 7.   
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a 

 
b 

Fig 2.3. The graphical representation of 372 switchgrass genotypes from structure analysis with 

k=2 a) with SNP b) with SSR. Red color represents upland population origin and blue color 

represents lowland origin. The genotypes are in same order. 

  



 

58 

 
 

Fig 2.4. The neighbor joining tree of the genotypes used with shared allele genetic distance with 

SNP markers. Blue represents southern Great Plains lowland (Lowland A), green represents Gulf 

Coast lowland (Lowland B),  and red represents Upland. Black colored were hybrids of Upland 

and Lowland B. The first set of labels (second column from right) represent the grouping from a 

previous study (Zhang et al., 2011) and rightmost labels represent our classification.  

  



 

59 

 

 
(a) 

 

 
(b) 

Fig 2.5. The graphical representation of 372 switchgrass genotypes from structure analysis with 

nuclear SNP. Numbers in the x-axis represent the accessions as in Table 1. a) k=2 and Red color 

represents upland population origin and green color represents lowland origin. b) when k=3, the 

lowland type is further divided into two lowland subgroups blue (Lowland A) and green 

(Lowland B).  
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(a) 
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(b) 

 

Fig 2.6. Distribution of individuals from 36 accessions with relation to phenotype. a) height in y-

axis and stem diameter on x-axis grouped by genetic group. Red: Upland, Blue: Lowland A, 

Green: Lowland B and Grey: hybrids of any two groups. b) height in y-axis and flowering time 

on x-axis grouped by genetic group. Red: Upland, Blue: Lowland A, Green: Lowland B and 

Grey: hybrids of any two groups. 
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CHAPTER 3 

GENOME WIDE ASSOCIATION ANALYSIS OF BIOMASS YIELD IN SWITCHGRASS 

(PANICUM VIRGATUM L.) 
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Abstract 

Biomass yield is one of the most important traits for an energy crop such as switchgrass 

(Panicum virgatum L.). Understanding the genetic architecture of biomass yield and yield 

components, such as plant height, stem diameter, or flowering time, could accelerate breeding 

progress. Genome-wide association mapping studies (GWAS) are one of the methods to identify 

genetic markers associated with complex traits. In this study, we identified over 65,000 SNPs 

from genotyping-by-sequencing in a population of 352 diverse switchgrass genotypes. We used a 

subset of 3,196 SNPs that could be genotyped in at least 80% of the populations examined and 

another subset of about 20,000 SNPs to identify marker-trait associations for biomass yield, plant 

height, stem thickness, and days to flower, based on phenotypic data generated in Georgia and 

Oklahoma over three years.  The repeatability estimates were 0.72 for yield, 0.88 for height, 0.90 

for stem diameter, and 0.68 for days to flower. We used a mixed model to account for both 

structure and kinship in our population. After correction for false discovery, we identified more 

than 50 SNPs associated with the four investigated traits. Some SNPs showed the association 

only one of the locations or years suggesting genotype-by-environment interaction. Using the 

larger SNP dataset, which included more missing data, we were able to identify all the 

associations that were identified with the smaller dataset as well as additional marker-trait 

associations. Some of the loci we identified as associated with these traits showed similarity to 

genes linked to similar traits identified in other related species. This is the first association study 

in switchgrass, and although the number of environments examined was limited, it offers a 

starting point for the application of markers to switchgrass breeding programs. 
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Introduction 

Dedicated bioenergy feedstock will contribute a renewable energy source to help meet 

the world’s increasing demand for energy in an environmentally sensible manner. The Bioenergy 

Feedstock Development Program (BFDP) in the U.S. Department of Energy began evaluating a 

wide variety of potential feedstock in 1978 (McLaughlin and Adams Kszos, 2005). Among 

herbaceous feedstock, switchgrass (Panicum virgatum L.) was identified as the most promising 

target to develop as a bioenergy crop (Wright, 1994). Switchgrass has many characteristics of a 

desirable biofuel feedstock because it is perennial, has high productivity is adapted to a wide 

variety of sites, including to poor soil conditions (Sanderson et al., 2006) and is familiar to 

farmers as it has been developed as forage species for a long time. In addition, switchgrass is a 

native grass of North America.  

A successful crop improvement program requires genetic variation. Genetic diversity 

within switchgrass germplasm varies depending on the populations studied (Cortese et al., 2010; 

Gunter et al., 1996; Narasimhamoorthy et al., 2008; Zhang et al., 2011). In our previous study 

(Acharya et al., previous chapter), there is more variation within population than among which is 

also true for the above mentioned studies. All of these studies have identified distinct clusters of 

upland and lowland ecotypes with variation within populations higher than the variation among 

populations. However we identified two distinct groups within lowland ecotypes too. With high 

number of markers, apart from three groups (two lowlands and one upland), the accessions were 

divided in respect to geographical origin. Such a clustering of accessions helps in the plant 

breeding. The parents of breeding program can be diversified to include the gene pool of 

different groups. Or in the contrary, for a breeding program focused in a geo-ecological region, 

the accession adapted in that region can be selected as a start of a selection program. 
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The true value of this diversity lies in being able to identify important alleles for key 

traits in the germplasm and then using them effectively in the breeding program. Identifying 

quantitative trait loci (QTL) for important traits will enable breeders to manipulate specific 

chromosome segments during the breeding process. Traditionally, QTL were identified using 

genetic linkage maps constructed in bi-parental populations. In recent years, association mapping 

(also known as linkage disequilibrium (LD) mapping) has been done using diverse germplasm or 

breeding populations (Gupta et al., 2005; Honsdorf et al., 2010). Association mapping enables 

mapping QTL with high resolution because of the higher amount of historical recombination that 

has occurred in these populations compared to an F1 or F2 bi-parental population (Ewens and 

Spielman, 2001; Jannink et al., 2001). The key to successful LD mapping is having a high 

density of genetic markers to adequately cover the genome. With the accessibility of large 

amounts of DNA sequence from multiple individuals within a species, single nucleotide 

polymorphisms (SNP) are easily identified and can be developed into high-throughput marker 

assays. Genotyping-by-sequencing further enables the detection of SNPs without pre-

identification and development of assay (Poland and Rife, 2012). With their high resolution, low 

mutation rate, and suitability for high-throughput systems (Zhu et al., 2008), SNP are the marker 

of choice for most mapping applications.  

Association mapping is typically conducted using a mixed model statistical analysis to 

associate phenotypes and genotypes (Stich et al., 2008;Yu et al., 2006). The structure of the 

population due to the presence of subpopulations and the kinship of the individuals being 

assayed need to be controlled in the analysis to avoid false positive associations (Yu et al., 

2006). Association mapping in a highly structured population will probably limit the detection of 
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rare variants fixed within subpopulations (Breseghello and Sorrells, 2006) and misses some true 

positives where the real association is nested within the structure (Brachi et al., 2011).  

Yield is one of the major traits of any biomass breeding program. Switchgrass shows a 

high variation in yield especially between ecotypes (Cassida et al., 2005; Lemus et al., 2002; 

Boe and Lee, 2007). Tulbare et al. (2012) estimated the genetics being 5
th

 most important 

variable contributing to the yield after nitrogen fertilizer, age, climate and soil types. Within the 

genetic contribution, the contribution due to cytotype (or ecotype as they are correlated), is larger 

than the accession within a cytotype. Similar result was found in the study by Wullschleger et al. 

(2010), where the yield between ecotypes was significant with lowland yielding higher. The 

accessions within each groups also showed the significant variation. In both lowlands and 

uplands, the distribution of yield was skewed to left with a long tail. Understanding the genetic 

architecture of quantitative traits like yield will have a huge impact in marker assisted selection 

and genomic selection. The heritability estimates of yield are varied from very low to moderately 

high (Bhandari et al., 2010, Rose et al., 2008). For a low heritable trait, selection based on 

secondary trait has been successful (Hansen et al., 2005). Several traits affecting the biomass 

yield in switchgrass has been identified both in spaced plant nurseries (Boe and Deck, 2008; Das 

et al., 2004) and swards (Price and Casler, 2014).  Few morphological traits directly affecting the 

biomass (or yield) are plant height, tiller diameter and tiller density and the length of vegetative 

growth period with height showing the highest correlation in all studies.  Elongated leaf height 

and canopy height explained >91% and >82% of variation in switchgrass biomass (Schmer et al., 

2010). Bhandari et al. (Bhandari et al., 2011; Bhandari et al., 2010) also reported the high 

positive correlation of biomass yield with plant height, tiller diameter and days to flowering. All 

of which showed higher heritability than biomass yield itself. The objective of this study is to 
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identify QTLs associated with dry biomass yield and related vegetative traits (plant height, stem 

diameter and days to flowering time of switchgrass 

 

Materials and Methods 

Plant materials:  

The germplasm we analyzed in this experiment largely derived from the southern half of 

the US, with a few exceptions (Table 3.1). We included 29 accessions from the National Plant 

Germplasm System (NPGS), seven populations we collected from Florida, Georgia and South 

Carolina, six populations recently collected from Florida by the NPGS, and two genotypes that 

are the parents of a genetic mapping population (Missaoui et al., 2005), AP13 derived from 

‘Alamo’ and VS16 derived from ‘Summer’. The populations included both upland and lowland 

ecotypes and some accessions with intermediate phenotypes. Each accession was represented by 

between one and 16 plants (i.e., each having a distinct genotype) for a total of 511 genotypes 

evaluated in at least one field location. Of the 511 genotypes, 413 were included at both 

locations, 67 only in Athens and 67, including 31 newly collected genotypes, only in Ardmore. A 

subset of these genotypes was ultimately used for association analysis because SNP data were 

only available for 352 individuals (see below). 

Field planting and phenotype data collection: 

Genotypes were clonally propagated from individual ramets in the greenhouse. Field 

plots were established at the University of Georgia Plant Sciences Farm near Watkinsville, GA 

in July 2009 and at the Noble Foundation Research Park Farm near Ardmore, OK in May 2011. 

At each location, a 16 × 30 α-lattice design with 3 replications was planted. Each replication 

consisted of 16 genotypes in each of 30 incomplete blocks for a total of 480 genotypes at each 
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location. In Ardmore, we divided the genotypes into two sets based on the height data from 

Watkinsville, and planted a sets within reps design. The clones were separated by 90 cm within 

and between rows. Each genotype was represented by a single clone in each replication, for a 

total of 1440 plants (plots) at each location. At Watkinsville, weeds were controlled by spraying 

Atrazine at 4.6 liters/hectare in February and voluntary switchgrass in following years were 

removed by manually hoeing the plot area. Nitrogen was applied at 56 kg/hectare in April of 

each year. At Ardmore, Prowl H2O at10.2 liters/hectare, Charger Max at 1.5 liters/hectare and 

2,4 D amine at 4.6 liters/hectare was applied to control weeds and voluntary switchgrass in 

following years were removed by manually hoeing. Nitrogen was applied at 112 kg/hectare for 

each year and phosphorus was applied at 168 kg/hectare on first year.  

No data were taken during the first year to allow the plants to fully establish. At the end 

of the establishment year, when plants had fully senesced, we removed all above ground biomass 

at a height of 10 cm. Beginning in the second year, we measured biomass yield on each plant 

after all plants in the experiment had fully senesced and/or been killed by freezing temperatures. 

We harvested each plant at 10 cm from the soil surface using a sickle bar harvester, measured the 

fresh weight of the entire plant in field, and subsampled two to three entire tillers from each 

plant. Subsamples were weighed immediately after harvest, dried for a week at 50 °C, and 

weighed dry. The dry weight of each plant in the field was computed based on the dry matter 

percentage of the sample. Biomass was harvested in Watkinsville on Feb 10, 2011; Feb 7, 2012 

and Dec 20, 2012 and in Ardmore on Jan 7, 2013.  The height was measured after full maturity 

and before harvest each year. Stem diameter was measured after full maturity and before harvest 

at Watkinsville location in 2011 and 2012.  Height was measured on three tillers per plant from 

the ground to the uppermost node of a flowering stem. Stem diameter was measured on three 
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tillers 5 cm from the ground. For flowering date, we recorded the date when at least three tillers 

showed emergence of the inflorescence.  

Genotyping: 

We obtained SNP data from 352 of the genotypes grown in the field as described 

previously (Acharya et al., Chapter 2). Briefly, we extracted the DNA from young leaves of 

switchgrass using the CTAB method (Doyle and Doyle, 1990) and quantified the concentration 

using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., 

(http://www.nanodrop.com). DNA concentrations for all samples were normalized to 20 ng/ul 

and concentrations confirmed with PicoGreen. Single nucleotide polymoprhisms (SNP) were 

identified using the two-enzyme Genotyping-by-Sequencing (GBS) method described by Poland 

et al. (Poland et al., 2012) except that we used FseI instead of PstI to reduce the number of 

fragments generated. Following digestion, sample barcodes, FseI adaptors, and the common 

adapter were ligated prior to sequencing on an Illumina HiSeq 2000 sequencer at the University 

of Texas, Austin sequencing facility (http://www.icmb.utexas.edu/core/DNA/), with 48 

genotypes multiplexed per sequencer lane. Sequencing resulted in an average of about four 

million raw sequencing reads per genotype.  

We first analyzed the sequence data using the STACKS software (Catchen et al., 2013; 

Catchen et al., 2011) as described previously (Acharya et al., 2014). We identified 65,328 SNP 

across all genotypes using the STACKS pipeline. Using the SNP identified in this overall 

analysis, we then developed the marker dataset used for association analysis. We truncated the 

total set of SNP by requiring at least six sequencing reads within a given individual in order to 

call a genotype, and further required that heterozygotes include at least two reads of each allele. 

By requiring six reads per locus (assuming bi-allelic loci), we could be 95% sure of identifying 
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at least one read of each allele in a heterozygote (Sedcole, 1977). For this analysis, we assumed 

that we are not detecting homoeologous loci with a given sequence, and thus, each locus resides 

within a single genome and is effectively diploid (Liu and Wu, 2012; Lu et al., 2013). We then 

required that at least 80% of genotypes in the population could be assigned a genotype – that is, 

not more than 20% of the genotypes were missing data for any given locus due to few or no 

sequencing reads. Loci with an allelic ratio less than 0.01 within a given genotype were corrected 

to be homozygous and the loci with allelic ratio between 0.01 and 0.1 were discarded from the 

analysis because of the uncertainty of genotype calls. We removed SNPs with a minor allele 

frequency (MAF) less than 3% from further analysis. The custom scripts used for filtering the 

datasets along with parameters used to run both pipelines and to filter genotype calls are 

available in supplementary data and online at https://gist.github.com/anantaacharya. 

Because this is our first analysis using GBS in switchgrass, in addition to the procedure 

outlined above, we also developed additional SNP datasets under different conditions. The main 

issue to be managed with GBS is the amount of missing data present in the dataset (Poland and 

Rife, 2012). More markers can be identified if the amount of missing data that can be accepted is 

increased. So, we developed SNP marker datasets across a range of missing values and using 

different stringencies to call genotypes in order to determine whether more markers with more 

missing data are better than fewer markers with less missing values. We varied the number of 

individuals with missing data for a given locus, and developed SNP marker datasets considering 

that up to 10, 50, and 90% of the population had missing data for that locus. For each of these 

datasets we made the same requirements as our core set in terms of read numbers in order to call 

a genotype. We also developed SNP marker datasets using the same four levels of missing data 

but only requiring a single sequence read to call a genotype.  

https://gist.github.com/anantaacharya
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In addition, we also developed a similar set of SNP datasets using the UNEAK pipeline 

(Lu et al., 2013). With the UNEAK pipeline, we identified 25,341 SNPs among all genotypes. 

However UNEAK missed those SNPs with 2 or more SNPS within the same fragment, which 

describes the fewer number of SNPs. However, 91.8% of all those SNPs were also identified by 

STACKS. The remaining SNPs could not be identified with STACKS because of the read depth 

requirement. For simplicity, we refer to the different datasets using a code of U or S for UNEAK 

or STACKS, respectively, a number between 0 and 100 to indicate the percentage of plants in the 

population for which a genotype could be assigned, and a number indicating the number of 

sequencing reads required in order to make a genotype call. For example, S80-6 represents the 

SNPs identified using the STACKS pipeline for which 80% of genotypes were identified based 

on at least six sequencing reads. This particular dataset is the one we use for most of our 

subsequent analyses and serves as the comparator for other datasets we created.  

If we could not assign a genotype for a given locus to a given individual due to 

inadequate (or no) sequencing reads, then we imputed a genotype using the random forest 

procedure implemented in MissForest (Stekhoven and Buhlmann, 2012) package in R. We used 

the imputed dataset, which had no missing values, for further analysis. The out-of-bag (OOB) 

accuracy reported by program, which is the measure of accuracy based on averaging the 

accuracy when a sample was left out in particular run was noted.  

The names of SNP markers were prefixed with S (STACKS) or U (UNEAK) denoting 

pipeline that was used. The alphabet was followed by catalog number and position of SNP within 

that catalog separated by underscore; i.e S1000_10. For UNEAK pipeline SNP, there is no 

position within 64 basepair as it only reports a single SNP per tagpair (catalog). The SNP 

markers were aligned with the Panicum virgatum reference genome 1.1 (available at ftp://ftp.jgi-

ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/
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psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/) by using a custom 

BLAST (Altschul et al., 1990). Based on the alignment, the position of SNP was determined by 

adding the position of that SNP in that catalog to the start of alignment.   

Linkage Disequilibrium: 

We calculated linkage disequilibrium (LD) between the markers with TASSEL v4 

(Bradbury et al., 2007) and also with the LDcorSV software package (Mangin et al., 2012) 

implemented in R, which corrects the bias due to population structure.  

Statistical analysis of morphological traits: 

We evaluated yield, plant height and flowering time in 2010, 2011, and 2012 at 

Watkinsville, GA and in 2012 at Ardmore, OK. We evaluated stem diameter in 2010 and 2011 at 

Watkinsville. For each trait, we performed an analysis of variance with R package “lme4” with 

genotype as a fixed effect and replication within year by location, location, year, genotype × 

location interaction and genotype × year interaction as random effects. We estimated the Best 

Linear Unbiased Predictor (BLUP) of each genotype for each trait across all environments. 

Depending upon the result of genotype × location interaction and genotype × year interaction, we 

estimated additional BLUPs for each location and/or each year and subsequently used for 

association analysis. We calculated repeatability of each trait across all environments as the ratio 

of genotypic variance to the sum of the variance components of genotype, genotype × location 

interaction, genotype × year interaction and error (residual). We calculated the phenotypic 

correlations among all traits based on mean values for individual genotypes in each environment. 

We assessed statistical significance as the 5% probability level, unless stated otherwise. 

 

 

ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/early_release/Pvirgatum_v1.1/
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Association Analysis: 

We conducted association mapping using single marker regression to identify SNP 

markers associated with biomass yield, plant height, stem diameter, and flowering time. First, we 

analyzed the data using the GLM procedure implemented in TASSEL v4 (Bradbury et al., 2007) 

based on a naïve model that did not correct for either population structure or for the relationships 

among individuals. We next computed principal components (PC) of the genotypic data in order 

to correct for population structure, and reanalyzed the trait data for associations. Next, we 

estimated kinship using the Identity-by-State (IBS) allele sharing matrix implemented in the 

EMMA package in R (Kang et al., 2008) and used this matrix in a mixed linear model (MLM) to 

account for kinship (Yu et al., 2006) in the association analysis. Finally, we evaluated a fourth 

model that controlled both population structure and kinship. The significance probabilities (P-

values) for association between markers and traits were corrected to reduce the false discovery 

rate (at P=0.05) with the Benjamini & Hochberg algorithm (Benjamini and Hochberg, 1995) and 

with the Bonferroni correction (Bland and Altman, 1995) using the R statistical package.  For 

traits where no significant markers were identified after correction, results using raw P-values 

were reported. Quantile-Quantile (QQ) plots were used to visualize the distribution of P-values 

against the null hypothesis expectation of no association of markers with traits.   

 

Results 

Trait analysis: 

The analysis of variance showed significant effects for genotype, year, location, genotype 

× year interaction and genotype × location interaction on biomass yield. The proportion of 

variance explained by genotype was larger than for any other component, ranging from 0.29 for 
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days to flower to 0.68 for plant height (Table 3.2). Across traits, the genotype × location 

interaction effect explained more of the variation than genotype × year interaction, but none of 

these effects was larger than 0.16 for any trait (Table 3.2). The repeatability estimates were high 

for all traits, ranging from 0.68 for days to flowering to 0.90 for stem diameter (Table 3.2). For 

the association analysis, we estimated BLUPs of each genotype across locations and years. In 

addition, we estimated BLUPs for each location for biomass yield and for each year and location 

for days to flowering because the genotype × location interaction effect and, in the case of 

flowering, the genotype × year interaction effect accounted for more than 10% of the trait 

variance.   

All traits varied substantially among genotypes, among years, and between locations 

(Table 3.3). Yield was higher in Ardmore in 2012 than in any year in Watkinsville; yield 

increased every year in Watkinsville (Table 3.3). Plant height differed each year in Watkinsville; 

however, the average height in Ardmore was not different from 2010 and 2012 in Watkinsville. 

Stem diameter was different between years. The start of flowering ranged across 80 days in 

Watkinsville, but was about 118 days in Ardmore.  

Biomass yield was positively correlated with plant height (r=0.86), stem diameter 

(r=0.81), and flowering time (r=0.49). Similarly, height was positively correlated with stem 

diameter (r=0.86) and flowering time (r=0.61). The correlation between stem diameter and 

flowering time was also positive (r=0.43). The correlations within one environment were similar 

to the overall correlations (Table 3.4).  

SNP polymorphism: 

Out of the total 65,328 SNP loci identified with STACKS, 59,288 were able to be 

assigned a genotype in at least 10% of the population based on the requirement of at least six 
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sequence reads to call the genotype. We designated this dataset with the name S10-6, based on 

the percentage of individuals genotyped and the number of reads required to assign a genotype. 

Other datasets were named in an analogous fashion. A total of 20,233 SNP were genotyped in at 

least 50% of the population (S50-6), 3,194 in at least 80% (S80-6), and only 457 in at least 90% 

of genotypes in the population (S90-6). Out of the total 25,341 SNP loci identified by UNEAK, 

4,947 were present in at least 10% of the population (U10-6), 1471 in at least 50% (U50-6), 820 

in at least 80% (U80-6), and only 280 (~1%) in at least 90% of genotypes in the population 

(U90-6). If we simply required a single read per individual, then 1931 SNP loci could be scored 

in at least 80% of the population (U80-1) or 3601 SNPs in at least 50% of the population (U50-

1). Because STACKS requires at least two identical reads to identify a locus, genotyping based 

on a single read is not possible, and hence we did not create datasets with this criterion for 

STACKS.  For all datasets, we imputed missing data for each locus using random forest 

imputation with imputation accuracy of 0.72 for the S80-6 dataset and 0.64 for the S50-6 dataset. 

For most of the analysis described below, we focus on the S80-6 SNP dataset, and make 

comparisons to other datasets as warranted. 

For S80-6, 62.6% (1999) of SNPs aligned to the 18 pseudomolecules of the reference 

sequence (Fig 3.1), 35.3% (1134) aligned to the other contigs of the reference that have not yet 

been assembled, and only 2.1% (61) did not align to the reference sequence. The number was 

similar for all other datasets from either pipeline, with a range of 58 to 64% of SNP loci aligning 

to the 18 pseudomolecules.  

Linkage Disequilibrium: 

We calculated LD between markers aligned to the 18 pseudomolecules of the reference 

sequence. Because our previous analysis (Chapter 2) indicated that our population had 
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significant substructure – separated into upland and lowland clusters, with the lowland cluster 

further divided into two subclusters – as well as kinship among individual genotypes, we 

evaluated LD accounting for both structure and kinship. After adjustment, only 0.37% of SNP 

pairs had LD greater than 0.1 (Fig 3.2). The structure and kinship corrected LD coefficient was 

0.13 for loci within 10kbp, 0.09 for loci within 100kbp, 0.03 for loci within 1Mbp, and 0.008 for 

loci within 10mbp.  

Association Mapping: 

We performed the single marker association analysis using four models: (1) a naïve 

model without correction for population structure or relatedness among individuals, (2) a linear 

model with structure (P) correction, (3) a mixed model with kinship (K) correction, and (4) a 

mixed model correcting for both P and K. We compared the distribution of P-values for the four 

models to the expected distribution under the null hypothesis of no association using a QQ plot. 

The naïve model showed substantial deviation from expectations; correcting for population 

structure, kinship, and both improved the distribution. In particular, models including kinship 

showed little deviation from the expected P-value distribution (Fig 3.3). In the discussion below, 

we only report SNP loci associated with traits after raw P-values have been corrected for 

multiple testing.  

Under the naïve model, we identified 2,527 loci out of 3194 controlling average biomass 

yield across years and locations. Correcting for population structure reduced this to 370 loci, and 

correction for kinship only resulted in identification of four loci. Adjusting for both structure and 

kinship, we identified eight loci, including the four identified from a kinship-only correction. 

Five of the eight loci were in the assembled part of the 18 pseudomolecules and three were in 

unidentified locations (Table 3.5). The variance explained by individual marker loci was small, 

ranging from 5-7%. For several markers, the minor allele frequency was less than 10%, but for 
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one marker, the minor allele frequency of 0.41 (Table 3.5). The sum of the variance explained by 

all eight SNPs was 0.45, but this is an over-estimate based only on single marker analysis. 

We performed an association analysis using yield BLUPs from Watkinsville only (WAT) 

and Ardmore only (ARD). Based on the P+K model, only one locus (S170007_27) on 

pseudomolecule 14 was identified in common between locations and also in the overall analysis 

(Table 3.4); this locus also had the highest marker R
2
 (0.07) in the combined analysis. Several 

additional QTL were detected in only one of the locations (Table 3.5). The variance explained by 

markers ranged from 0.05 to 0.08. The combined variance was 0.59 (10 SNPs) for Watkinsville 

and 0.43 (6 SNPs) for Ardmore. The two SNPs that were 21 base pairs apart in the same 64 bp 

tag in pseudomolecule 18 both showed significant associations with yield for Watkinsville. Both 

of them explained the same amount of variation and also had same minor allele frequency. Out 

of the remaining seven loci, three did not have other SNPs in the same tag but four had other 

SNP in the same tag, which did not have the same likelihood of association. In those cases, the 

other SNP had a different minor allele frequency.  

In addition to the S80-6 dataset, for which we required at least six sequencing reads to 

call a genotype and no more than 20% of genotypes with missing data, we also evaluated several 

other SNP datasets, including S50-6 with up to 50% missing genotypes for a given locus and 

those derived from the conservative SNP-calling model UNEAK.  

Using the S50-6 SNP dataset with the P+K model, we identified 100 loci associated with 

biomass yield, compared to eight with S80-6 (Supplemental Table 3.1). Thus, a 6.4 fold increase 

in SNP markers resulted in a 12.5 fold increase in loci associated with yield. We identified all the 

loci, except one, that were identified using S80-6; the missing locus was on pseudomolecule 17 

and had a P-value of 0.0001, just above the threshold for false discovery rate correction. Some 
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loci that were identified with S80-6 had nearby loci in S50-6. For example, Locus S18231_10 

was within 8 bp of locus S96112_6, which was identified with both S50-6 and S80-6. The locus 

S63822_57 was within 100kbp of S170007_2, which was, again, identified by both datasets. All 

the loci from Watkinsville previously identified with S80-6 were identified with S50-6 and all 

except one for Ardmore. The locus that was missed had other marker loci with significant 

associations within 10kbp.  

We also analyzed the association with the SNPs identified using UNEAK. For 

comparison purposes, we used four datasets described earlier. U80-6 was the database directly 

comparable to S80-6 with same number of read depth and same percentage of individuals for 

which a genotypic call had to be imputed. From this data set, we identified only two loci as 

compared to eight for S80-6, perhaps not surprisingly since this dataset consisted of only 802 

SNPs as compared to 3,196 SNPs from S80-6.  One locus was in pseudomolecule 15 and had 

nearby loci identified with S80-6 and the other locus was in the unmapped region. When 

comparing among the datasets from UNEAK, both the SNPs identified with U80-6 were also 

identified with U50-6 and two additional loci were identified by the latter. No loci associated 

with biomass yield were identified using U80-1, but seven were found using U50-1. Out of four 

loci identified by U50-6, two were also identified with U50-1 (data not shown). The variance 

explained by a single marker was up to 14%, but most were in the range of 5-8%. To better 

visualize the results of associated SNPs from these different combinations of datasets (S80-6, 

S50-6, U80-6, U50-6, U80-1, U80-6), locations (Both, WAT, ARD) along with other criteria 

(such as population structure and kinship derived from different metrics, not discussed here), we 

have implemented a web application (available at 

http://spark.rstudio.com/antu/GLMMLM_yield).  

http://spark.rstudio.com/antu/GLMMLM_yield
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Some SNP markers from S80-6 that were associated with yield were in potential 

candidate genes (Table 3.6). Candidate genes based on SNP markers associated with yield from 

S50-6 are provided as supplemental file. SNP S17790_25 was in pseudomolecule 14, which has 

a similarity to G2-like transcription factors, which are important to chloroplast development 

(Fitter et al., 2002). This marker had a minor allele frequency of 0.04, with five homozygous 

individuals and 18 heterozygotes carrying the “G” allele, which had a positive yield effect. These 

genotypes were high yielding genotypes of accessions PI 414065 and PI 414070, both of which 

are lowland ecotypes. This SNP was also identified by all models, all datasets and in all 

environments. SNP S145171_59 showed similarity to nec1 gene of barley (Rostoks et al. 2006).  

We are only presenting results from the P+K mixed model using the S80-6 and S50-6 

datasets for other morphological traits. For plant height, no markers were associated with plant 

height when using the FDR correction at p = 0.05 with either dataset. Therefore, in order to 

identify loci potentially involved with the trait, we identified markers associated with height 

having a raw P-value < 0.001. We identified 60 SNPs in the S50-6 dataset and 17 in the S80-6 

dataset as having an association with height. All the SNPs identified with S80-6 (Table 3.7, Fig 

3.5) were also identified with S50-6 (Supplemental Table 3.2, Supplemental Fig. 3.1). Three of 

17 SNPs were associated with both height and yield (S17790_25 on pseudomolecule 14 and 

S145171_38, S145171_59 on pseudomolecule 18). Because of high repeatability and little 

evidence for genotype × year or genotype × location interaction effects, we only reported the 

analysis from combined phenotype.  

Six SNP markers were associated with stem diameter (Fig 3.6), including the two 

markers on pseudomolecule 18 that were associated with both biomass yield and height (Table 
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3.8). We identified 20 SNPs associated with stem diameter with the S50-6 dataset (Supplemental 

Table 3.3, Supplemental Fig 3.2).  

Because both genotype × year and genotype × location interaction effects were relatively 

large for days to flower, we analyzed the marker trait association for all four environments 

individually as well as across all four environments. Nine SNP markers were associated with 

days to flower but none were in common between environments and only one was identified in 

the combined data, which was also identified in Ardmore (Table 3.9, Fig 3.7). Using the S50-6 

dataset, 26 SNP markers, including those found with S80-6, were associated with days to flower 

across different environments (Supplemental Table 3.4; Supplemental Fig 3.3). SNP S172069 

showed sequence similarity to an anthocyanidin 5,3-O-glucosyltransferase-like gene affecting 

flower color. For all the traits, candidate SNPs from S50-6 are not discussed here but sequences 

are provided as supplemental file.  

 Three of the SNPs associated with plant height were also associated with biomass yield 

(Fig 3.8). Similarly, one of six SNPs from stem diameter was also identified for yield. However, 

none of the SNPs that was associated with flowering time was also associated with yield. For the 

dataset S50-6, eighteen of the SNPs associated with plant height were also associated with 

biomass yield (Fig 3.8). Similarly, nine out of 21 SNPs from stem diameter was also identified 

for yield. However, only one of the SNP that was associated with flowering time was also 

associated with yield (Supplemental Tables 3.1, 3.2, 3.3, 3.4). Six height QTL that were not the 

same as yield QTLs, however, were within 1 kbp of other yield QTLs.  All QTL associated with 

stem diameter, except one, that were not directly associated with yield QTL were within 1kbp of 

yield QTL.  About one quarter of the QTLs associated with flowering time were near loci 

associated with yield. 
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Discussion 

The phenotypic data were robust for all four traits being analyzed, with a larger 

percentage of phenotypic variance as due to variance among genotypes than to any other factor. 

In general, the variance due to the interactions of genotypes with years or locations was 

relatively small. As a consequence, repeatability for all traits was high. Stem diameter showed 

the highest repeatability, which may be due to use of data from only one location. Surprisingly, 

for flowering time, more phenotypic variance was explained by genotype × year and genotype × 

location interactions than for the other traits. Although temperature and rainfall affect flowering 

time, photoperiod plays the major role (Parrish and Fike, 2005). The photoperiod was not only 

invariant year-to-year, but also nearly identical between Watkinsville, GA and Ardmore, OK.  

Genotyping-by-sequencing (Elshire et al., 2011) has led to rapid and inexpensive marker 

discovery provided sufficient bioinformatics support and computing resources are available to 

process the data into meaningful genotypic information. A fully automated bioinformatics 

pipeline is not yet in place for GBS, but several methods can be applied to GBS data, including 

STACKS (Catchen et al., 2011; Catchen et al., 2013) and UNEAK (Lu et al., 2013), which work 

well in the absence of a robust reference genome. Various parameters can be modulated in these 

programs, which alter the ultimate number of SNP markers that are identified. Generally, 

genotypes cannot be called for all individuals for a given locus, making missing data a concern 

with GBS (Poland and Rife, 2012). Using STACKS, we only used about 10% of the potential 

SNPs identified across the entire population after filtering for lower read depth and allowing for 

up to 50% missing genotype calls for any individual. We only used 1.5% of potential SNPs when 

restricting missing data to 20% of the population for a given locus. Increasing the number of 

sequencing reads per genotype and/or reducing the number of sites in the genome generated by 
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the restriction enzymes could minimize missing data. However, imputation methods can be used 

to predict the genotype of given individual at a given locus. Of the various methods, random 

forest showed generally high imputation accuracy in an experiment comparing different datasets 

and imputation algorithms (Rutkoski et al., 2013). Ultimately, the question for breeders is 

whether the amount of marker data that is generated for a given cost fulfills the breeding goal, 

not how much of the data generated is discarded. 

Switchgrass is an open pollinating species, and consequently, we showed that linkage 

disequilibrium quickly decays as expected. Assuming that the switchgrass genome is 1.3 Gbp 

(www.phytozome.org), we expected to see approximately 115,000 restriction enzyme cut sites 

throughout the genome, based on an in silico computation using the initial switchgrass genome 

assembly (www.phytozome.org). Each enzyme cut site generates potentially two tags, so the 

expected genome coverage was about two tags per 113kbp.  In our SNP dataset S50-6, we 

identified 20,000 SNP, which would correspond to one SNP per 65kbp, assuming even coverage 

across the genome. We know that a number of those SNP occur in the same 64bp tag. However, 

for the primary dataset S80-6, we identified 3,196 SNP, which is equivalent to one SNP per 

406kbp. The FseI enzyme is methylation sensitive and has a GC rich recognition site; therefore, 

it will preferentially cut in genic regions rather than regions with repetitive DNA elements. The 

distribution of SNPs in this experiment shows fewer SNPs in centromeric regions, which consist 

of highly repetitive DNA sequences. Therefore, the average distance between SNP is unrealistic, 

and given that we are skewing our sequenced sites toward genic regions suggests that our 

effective genome coverage is better than we may otherwise expect. Nevertheless, in a population 

where linkage disequilibrium decayed within 170 bp on average, the number of SNPs we 
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identified is very small and an increased number of markers would help identify more marker-

trait associations. 

The two SNP detection methods we used here – STACKS and UNEAK – identified very 

different numbers of SNP for a given set of criteria. UNEAK algorithm utilizes only those 

reciprocal fragments with one mismatch per tag to call the SNPs but with STACKs, it can be 

customized and we allowed up to two mismatches within genotype and one additional mismatch 

among genotypes. Because most of the SNPs identified using UNEAK were also identified using 

STACKS, we suggest using STACKS because it generates more markers. For a given pipeline, 

multiple SNP datasets can be generated by altering the amount of missing data accepted, the 

number of reads required to call genotypes, and so on, and each dataset can produce different 

QTL results due to the correction for multiple testing. This can help explain why a few QTL 

associated with yield based on UNEAK were not identified with STACKS.  

We previously (Chapter 2) reported that this population of genotypes had a strong 

population substructure, which was evident from analysis with either SSR or SNP markers. For 

this experiment, we used a GWAS model that accounted for both population structure and 

kinship to help avoid false QTL detection (Yu et al., 2006, Bradbury et al., 2011; Korte and 

Farlow, 2013).  

Although most studies remove the markers below a MAF threshold of 5 to 10%, false 

discovery of marker-trait associations because of low MAF (5%) was not significantly different 

from that seen with a higher MAF threshold (Moskvina et al., 2006). Thus, removing minor 

alleles because of fear of false discovery is not recommended (Tabangin et al., 2009). Our 

inclusion of markers above 3% MAF ensured that at least ten genotypes, carried the minor 

alleles. This number is approximately the number of individuals within a given accession, so 
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inclusion of this level of minor alleles ensures that one accession within our diverse set of 

populations is not discarded from analysis. Other experiments that included few individuals from 

many diverse populations also included low MAF (Eckert et al., 2012). Based on this literature, 

we believe that although power was decreased using low MAF, the false discovery rate was not 

significantly different from those SNPs with higher MAF.  

 Several of the identified SNP markers were in tags that had sequence similarity to 

annotated genes from related species. Two tags containing candidate SNPs showed similarity to 

a G2-like MYB transcription factor. Because these transcription factors are responsible for a 

variety of plant growth responses, like development, metabolism, and biotic and abiotic stress 

response in Arabidopsis (Dubos et al., 2010), they could be involved in biomass yield of 

switchgrass. Another candidate SNP showed sequence similarity to the necrogenic phenotype 

(nec1) gene conferring the resistance to biotic stress (Keisa, 2011), and it may have played role 

in increasing the biomass of switchgrass through improved disease resistance (Shavannor Smith, 

pers. comm.). Markers associated with plant height showed sequence similarity to an ADP/ATP 

carrier-like protein, a zinc finger-like protein and a NAC domain containing protein. The 

capacity to import ATP is related to plant growth (Reiser et al., 2004), and the NAC domain 

containing protein affects plant meristem growth (Wang and Li, 2008), which could relate to the 

role of this SNP in plant height. The anthocyanidin 5,3-O-glucosyltransferase-like gene showing 

sequence similarity to one of our flowering time SNP markers, has a role in flower color, but is 

not known to be directly related to flowering time in other species.  Of course, other genes likely 

exist within the vicinity of the SNP markers, even with rapid LD decay, and these other genes 

may be the true candidate locus controlling the trait. 
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This is the first genome wide association mapping experiment in switchgrass. Because 

biomass yield is a key characteristic necessary for economical biofuel production, identifying 

loci putatively associated with yield could accelerate breeding new cultivars by using marker 

assisted selection. In this experiment, we identified 19 QTL associated with biomass yield across 

multiple environments. These loci could form the basis of a switchgrass marker-assisted 

breeding program to increase biomass yield. Components of yield, including the other three traits 

used in this experiment of stem diameter, plant height, and flowering time may be under less 

complex genetic control and more amenable to marker-based selection. Improving them could 

indirectly improve yield. These correlations between linked SNP genes and traits find some 

interesting cases, but there are thousands of genes that might be logically associated with yield.  

And we have not enriched for such genes in our SNP correlations.  Several of the QTL we 

identified for yield were also important for these traits.  

Some genotypes and or populations in this experiment showed superior phenotypes and 

desirable marker profiles at useful QTL. These individuals can be used in breeding programs, 

and QTL can be selected based on marker alleles identified here after the validation. The markers 

can be used to both the selection of desirable genotypes and to discard of inferior material before 

taking it to the field. The use of markers can continue with the marker assisted selection or 

marker-assisted backcrossing to increase QTL allele frequency and to stack QTL for a given 

trait. Further research is needed to determine if the markers identified here are associated with 

these traits in other genetic backgrounds including breeding programs and in other environments. 

More fully saturating this population with additional markers is underway using exome capture. 

The improved resolution will undoubtedly assist us in identifying other QTL for these and other 
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biofuel-related traits. Additional QTL experiments using other populations will help validate the 

results here. 
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Table 3.1: Switchgrass accessions used in this experiment and their geographic origin with 

putative ecotype classification. 

Accession Geographic Origin Ecotype  No of genotypes 

per accession 

    

PI 315723 Hoffman, NC L 7 

PI 315724 Ellsworth, KS U 9 

PI 315725 Coffeeville, MS L 2 

PI 315727 Apex, NC L 12 

PI 315728 Scotland County, NC (donated by 

Maryland) 

I 

6 

PI 337553 Rafaela Experiment Station, Argentina U 12 

PI 414065 Pangburn, AR L 12 

PI 414066 Grenville, NM U 5 

PI 414067 Soil Conservation Service, NC U 7 

PI 414068 Soil Conservation Service, KS U 10 

PI 414070 Soil Conservation Service, KS L 12 

PI 421138 Moore County, NC U 8 

PI 421520 Kay County, OK U 7 

PI 421521 Wetumka, OK (developed in KS) L 8 

PI 421999 Pangburn, AR L 10 

PI 422001 Stuart, Martin County, FL L 10 

PI 422003 FL L 8 

PI 422006 George West, TX L 14 

NA
†
 NA U 12 

PI 422016 FL L 9 

PI 431575 Raleigh County, WV (from KY) U 12 

PI 476290 Wilmington, NC L 7 

PI 476291 MD I 15 

PI 476292 Franklin County, AR U 8 

PI 476293 Heislerville, NJ I 9 

PI 476294 Eads, CO U 7 

PI 476295 Colorado Springs, CO U 13 

PI 476296 MD U 6 

PI 642190 NM U 8 

PI 642191 SD U 6 

Citrus Co-FL Citrus County, FL L 15 

HSP-FL Hillsborough River State Park, FL L 12 

OSSP-FL Oscar Scherer State Park, FL L 12 

Pasco Co-FL Pasco County, FL I 13 

SNF Sumter National Forest, SC L 13 

SPBluff Sprewell Bluff, GA I 7 

SWFWMD-FL Southwest Florida Water Management L 7 
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District, FL 

GRIF16964 FL L 1 

GRIF16967 FL L 1 

GRIF16968 FL L 1 

GRIF16969 FL L 2 

GRIF16982 FL L 1 

GRIF16991 FL L 1 

AP13 Derived from PI 422006 L 1 

VS16 Derived from PI 642191 U 1 
†
These populations were thought to be Alamo (PI 422006), but genetically and phenotypically 

they are very different.  

Ecotypes were designated based on population structure analysis with nuclear SNP markers 
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Table 3.2. Variance components for sources of variation derived from an analysis of variance for 

four morphological traits of switchgrass.  

 

Source Yield Height Flowering time Stem diameter 

 Variance Proportion Variance Proportion Variance Proportion Variance Proportion 

Genotype 208*** 0.43 835.1*** 0.68 175.0*** 0.29 15.7*** 0.67 

Replication 0 0.00 0.4 0.00 0.3 0.00 0.0 0.00 

Year 30*** 0.06 14.7*** 0.01 39.7*** 0.07 1.2*** 0.05 

Location 12*** 0.02 0.8* 0.00 171.3*** 0.28   

Genotype × 

Year 

23*** 0.05 25.0*** 0.02 71.7*** 0.12 0.3 0.01 

Genotype × 

Location 

79*** 0.16 63.5*** 0.05 90.0*** 0.15   

Residual 132 0.27 290.2 0.24 58.8 0.10 6.4 0.27 

Repeatability 0.72  0.88  0.68  0.90  

 

*
,
 **

,
***

 Significant at 0.05, 0.01, <0.001 level 
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Table 3.3. Means, standard deviations, and ranges of biomass yield, plant height, flowering time, and stem diameter of switchgrass 

genotypes grown in Athens, GA and Ardmore, OK across three years.  

 
 Yield Height Flowering time Stem Diameter 

     
 Mean 

-gm- 

St. Dev. 

-gm- 

Min 

-gm- 

Max 

-gm- 

Mean 

-cm- 

St. Dev. 

-cm- 

Min 

-cm- 

Max 

-cm- 

Mean 

-days- 

St. Dev. 

-days- 

Min 

-days- 

Max 

-days- 

Mean 

-mm- 

St. Dev. 

-mm- 

Min 

-mm- 

Max 

-mm- 

 

Athens                 

2010 327d
†
 340 1 3417 84b 32 5 179 170d 14 141 218     

2011 581c 541 1 3085 79c 30 8 166 181b 18 152 234 38a 13 6 89 

2012 702b 733 1 3807 87a 39 5 187 173c 23 144 212 33b 16 2 90 

Ardmore                 

2012 859a 806 3 5498 86ab 33 3 182 187a 21 149 267     

 

†
Means within columns followed by different letters were significantly different at p<0.05.



 

99 

Table 3.4: Correlation among switchgrass traits over years and location. The overall correlation 

was calculated by averaging the traits over all year and location for each genotype.  

Trait Location Year Height 

Stem 

diameter 

Flowering 

time 

Yield Watkinsville 2010 0.77 NA 0.43 

 

Watkinsville 2011 0.80 0.75 0.40 

 

Watkinsville 2012 0.82 0.81 0.49 

 

Ardmore 2012 0.81 NA 0.45 

 

Overall 

 

0.86 0.81 0.49 

Height Watkinsville 2010 

 

NA 0.48 

 

Watkinsville 2011 

 

0.73 0.25 

 

Watkinsville 2012 

 

0.88 0.39 

 

Ardmore 2012 

 

NA 0.39 

 

Overall 

  

0.86 0.41 

Stem 

diameter Watkinsville 2010 

  

NA 

 

Watkinsville 2011 

  

0.56 

 

Watkinsville 2012 

  

0.46 

 

Ardmore 2012 

  

NA 

 

Overall 

   

0.63 
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Table 3.5: The SNP markers associated with biomass yield in switchgrass (p<0.05) after false 

discovery rate correction, the minor allele frequency at the marker locus, the likely genomic 

location based on switchgrass reference sequence 1.0, and the amount of phenotypic variation 

explained by the marker. 

 

Marker Pseudomolecule Position MAF
†
 Marker R

2
 

 
   

Both Ardmore Watkinsville 

174224_36 1 28,145,266 0.09   0.07 

75170_33 2 26,561,693 0.15  0.08  

55919_34 5 16,459,056 0.15 0.06  0.05 

163375_6 10 8,736,442 0.12  0.07  

17790_25 14 33,296,072 0.04 0.07 0.08 0.06 

96112_6 14 49,512,709 0.08 0.06   

170007_27 15 724,329 0.19 0.05 0.06  

169502_6 15 9,111,853 0.03   0.06 

168152_38 16 45,925,147 0.05  0.06  

91480_8 17 16,277,093 0.41 0.05   

145171_38 18 14,796,918 0.04   0.05 

145171_59 18 14,796,939 0.04   0.05 

46741_51 18 22,729,999 0.07   0.07 

45124_26 Contig 
 

0.18  0.08  

129676_24 Contig 
 

0.14 0.05   

133630_61 Contig   0.06   0.06 

17689_32 Contig   0.4 0.05   

171069_7 Contig  0.06 0.06   

162119_44 Contig  0.08   0.07 
†
MAF=Minor Allele Frequency 
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Table 3.6: The SNPs significantly associated with traits and their similarity to annotated gene in 

other species.  

 

SNP Associated trait Annotation 

S17790  yield, height G2-like trascription factor 

S145171 yield, height, stem diameter Necrotic (nec1) gene 

S91480 yield G2-like trascription factor 

S172069 flowering time Anthocyanidin 5,3-O-glucosyltransferase-like  

S46074 height ADP/ATP CARRIER 3 family protein 

S48579 height  Zinc finger protein 1-like 

S92451 height  NAC domain-containing protein 18-like 
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Table 3.7: The SNP markers associated with plant height in switchgrass (p<0.0001) after false 

discovery rate correction, the minor allele frequency at the marker locus, the likely genomic 

location based on switchgrass reference sequence 1.0, and the amount of phenotypic variation 

explained by the marker. 

Marker MAF
†
 Pseudomolecule Position Marker R

2
 

85177_12 0.03 1 70,949,740 0.05 

46074_20 0.03 3 2,986,042 0.04 

98731_42 0.04 3 25,723,483 0.04 

48579_35 0.04 3 77,933,511 0.04 

157075_52 0.26 9 20,250,257 0.04 

92451_34 0.04 14 2,832,983 0.05 

17790_25 0.04 14 33,296,072 0.04 

180053_9 0.06 15 25,523,375 0.04 

145171_38 0.04 18 14,796,897 0.04 

145171_59 0.04 18 14,796,918 0.04 

158887_22 0.5 Contig 
 

0.04 

158887_26 0.5 Contig 
 

0.04 

41690_18 0.05 Contig 
 

0.04 

19931_32 0.17 Contig 
 

0.04 

208454_14 0.31  
 

0.04 

208454_9 0.32  
 

0.05 

 
†
MAF=Minor Allele Frequency 
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Table 3.8: The SNP markers associated with stem diameter in switchgrass (p<0.05) after false 

discovery rate correction, the minor allele frequency at the marker locus, the likely genomic 

location based on switchgrass reference sequence 1.0, and the amount of phenotypic variation 

explained by the marker. 

 

SNP MAF
†
 Pseudomolecule Position 

Marker 

R
2
  

152890_33 0.09 4 40,221,596 0.06 

138040_10 0.08 6 71,235,845 0.06 

145171_38 0.04 18 14,796,897 0.06 

145171_59 0.04 18 14,796,918 0.06 

46741_51 0.07 18 22,729,999 0.07 

18831_12 0.03 Contig 
 

0.06 
†
MAF=Minor Allele Frequency 
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Table 3.9: The SNP markers associated with flowering time in switchgrass (p<0.0001), the 

minor allele frequency at the marker locus, the likely genomic location based on switchgrass 

reference sequence 1.0, and the amount of phenotypic variation explained by the marker. 

 

Marker Pseudom

olecule 

Position MAF
†
  

 

Both 

Marker R
2
 

 

Watkinsville 

 

 

Ardmore 

     2010 2011 2012 2012 

25104_57 1 15,537,383 0.04 NA 0.06 NA NA NA 

113324_54 6 3,426,581 0.07 0.06 NA NA NA 0.11 

172069_30 18 12,363,103 0.05 NA NA 0.09 NA NA 

172437_17 18 48,991,459 0.04 NA NA NA NA 0.08 

172437_45 18 48,991,487 0.04 NA NA NA NA 0.08 

78475_49 Contig  0.46 NA NA NA 0.07 NA 

93553_33   0.05 NA NA NA 0.06 NA 

93553_53   0.05 NA NA NA 0.06 NA 

96836_48   0.05 NA NA NA 0.06 NA 
†
MAF=Minor Allele Frequency 
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Fig 3.1: Distribution of SNPs in 18 pseudomolecules of AP13 reference genome grouped with 18 

pseudomolecules. The bars are count per 1Mbp. Red color up to 20% missing genotype call 

(S80-6) and blue up to 50% missing genotype call (S50-6).  
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Fig 3.2. Linkage disequilibrium coefficients (r
2
) plotted against the distance between the SNP 

pairs. a) without correcting for structure or population. b) after correcting for kinship c) after 

correcting for structure and d) after correcting for both structure and kinship. Note the high 

number of SNP pairs in LD across long distances that is likely due to population structure 

corrected later by the correction measures. 
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Fig 3.3. Distribution of P values for different models. Here x-axis represents the negative log10 of 

expected P values assuming no association of marker and trait and y-axis represents the 

observed. The black line represents the null expectation.  
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a) 
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b) 

Fig 3.4. Manhattan plot of association mapping of biomass yield with mixed model with 

principal component and kinship (P+K). The X axis are 18 pseudomolecules, the 19th position 

denotes SNPs aligned to contigs that were not assembled in any pseudomolecules and SNPs in 

last position with orange color are SNPs not aligned to switchgrass reference genome. Y axis is 

negative log10 of P values. Red line is cutoff using conservative Bonferroni FDR correction at 

0.05 and blue line is Benjamini & Hochberg FDR correction at 0.05. a) With the dataset where 

each individual had at least 80% SNPs genotyped (S80-6) b) at least 50% SNPs genotyped (S50-

6) 
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Fig 3.5. Manhattan plot of association mapping plant height with mixed model with principal 

component and kinship (P+K). The X axis are 18 pseudomolecules, the 19th position denotes 

SNPs aligned to contigs that were not assembled in any pseudomolecules and SNPs in last 

position with orange color are SNPs not aligned to switchgrass reference genome. Y axis is 

negative log10 of P values. Red line is cutoff using conservative Bonferroni FDR correction at 

0.05. Blue line is cutoff of P = 0.001.In this dataset each individual had at least 80% SNPs 

genotyped (S80-6) 
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Fig 3.6. Manhattan plot of association mapping stem diameter with mixed model with principal 

component and kinship (P+K). The X axis are 18 pseudomolecules, the 19th position denotes 

SNPs aligned to contigs that were not assembled in any pseudomolecules and SNPs in last 

position with orange color are SNPs not aligned to switchgrass reference genome. Y axis is 

negative log10 of P values. Blue line is Benjamini & Hochberg FDR correction at 0.05. All were 

with the dataset where each individual had at least at least 80% SNPs genotyped (S80-6) 
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Fig 3.7. Manhattan plot of association mapping flowering time with mixed model with principal 

component and kinship (P+K). The X axis are 18 pseudomolecules, the 19th position denotes 

SNPs aligned to contigs that were not assembled in any pseudomolecules and SNPs in last 

position with orange color are SNPs not aligned to switchgrass reference genome. Y axis is 

negative log10 of P values. Red line is cutoff using conservative Bonferroni FDR correction at 

0.05 and blue line is Benjamini & Hochberg FDR correction at 0.05. All were with the dataset 

where each individual had at least at least 80% SNPs genotyped (S80-6) 
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Fig 3.8. All the loci associated with any of the traits (biomass yield, plant height, stem diameter 

and flowering time) to show the relative position of QTLs. Eighteen boxes represent eighteen 

pseudomolecules when aligned to switchgrass reference genome. All were with the dataset 

where each individual had at least at least 80% SNPs genotyped (S80-6) 
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CONCLUSIONS 

Progress from plant breeding depends on the existence of genetic variation, on the 

accurate identification and selection of superior genotypes, and on the generation of new 

segregants through recombination. Understanding the extent of genetic diversity within crop 

germplasm and the way that diversity is structured among and within populations can assist a 

plant breeding program in using germplasm most effectively. Using genetic markers, plant 

breeders can theoretically manipulate genes controlling important traits more precisely than 

previously possible using conventional breeding technologies, thereby accessing previously 

untapped genetic variants to aid cultivar development. 

In the research described in this dissertation, we investigated switchgrass germplasm, 

both to assess genetic diversity and to identify loci for biomass yield and associated biofuel 

traits. We developed SNP markers using Genotyping-by-Sequencing (GBS) in order to conduct 

the major segment of the research.  

First, we developed a GBS protocol based on previous methods but with the use of novel 

enzymes suitable for the switchgrass genome and to improve data quality. We prepared several 

different SNP datasets based on the read depth and the missing genotype calls at a given locus 

and used two different software packages to identify SNP markers. We imputed the missing 

genotypic data.  

Second, we used the SNP markers together with SSR and plastid markers to classify 

switchgrass germplasm largely derived from the southern USA. In agreement with other 

experiments, we identified the clear split between upland and lowland ecotypes, but in addition, 
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we showed that the lowland group can be distinctly divided into two subgroups. Generally, 

upland plants are shorter, have thinner stems, and flower earlier than lowland ecotypes.  

However, one of our two main lowland groups had similar height as upland accessions, had stem 

diameter intermediate between upland and the other lowland group, but was still late flowering 

like other lowland accessions. Some accessions appeared to be hybrids in which each individual 

was composed of two or three sub populations, depending on the hybrid. In general, these 

hybrids showed morphological characteristics in between the groups they were composed of. 

Similarly, some accessions were mixtures of different subgroups, where each individual showed 

membership to one or another group. The morphological characteristics of these individuals were 

similar to the group to which they belonged. Apart from the major groups, the accessions could 

be classified based on their geographic region of origin. The identification of different 

germplasm pools could guide a plant breeding program to select suitable germplasm. A plant 

breeder can potentially exploit heterosis by using different subgroups, which are could indicate 

different heterotic group.  

Third, we collected data for important biofuel traits of switchgrass and used the 

previously identified SNP markers to identify QTL associated with those traits. The repeatability 

estimates of biomass yield, stem diameter, plant height and flowering time all were very high. 

There was significant genotype  × location interaction and genotype  × year interaction for the 

yield, height and flowering time. The stem diameter did not have significant interaction, which 

may also be due to the fact that the data were from fewer environments than for the other traits. 

We applied genome wide association mapping to these traits with the SNP identified earlier. We 

identified several QTL associated with yield, height, stem diameter and flowering time. The 

number of QTL increased when using a larger marker dataset even though these SNP had a 
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larger proportion of missed genotype calls. However, QTL identified by the smaller set were 

included among those identified with the larger set. A few QTL were identified for multiple 

traits, especially for biomass yield, height and/or stem diameter. The SNP markers associated 

with these QTL showed sequence similarity to annotated genes from other organisms, some of 

which may be potential candidate genes. Along with those QTL with known annotation, we 

identified several novel loci associated with the traits.  

This study has two major limitations. First, the genotypes used in this study were very 

diverse, so that very limited linkage disequilibrium was present. The numbers of markers we 

developed was not sufficient to saturate the genome and consequently, we undoubtedly did not 

detect important QTL that were segregating in the population. Second, the population we used 

showed strong population structure, potentially fixing the SNP and/or QTL between 

subpopulations, which would prevent their detection.  However, we identified some QTL and the 

SNP associated with them should be close to or even at the gene controlling the trait. We expect 

to link the findings of this study to future QTL identifying studies such as that using a nested 

association mapping population, and to further saturate the genome of this population using other 

methods, including exome capture.  

The results from this study can be used for future switchgrass improvement programs. 

The two different components of this study; a) identification of population structure b) 

identification of QTL associated with traits of breeding interest; both contribute to a plant 

breeding program differently. The population structure helps identifying the germplasm 

resources for breeding cultivars. A local germplasm pool already adapted to a certain geographic 

reason is more suitable for breeding program in that locale. The use of genetic markers to 

identify the genomic group helps evaluate new germplasm. The different heterotic groups, as 
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assessed by genetic markers, can be used to exploit the heterosis and develop a superior cultivar. 

The identification of QTL associated with several traits of interest helps a breeding program to 

select or discard the plant materials. The markers can be utilized in early selection and removal 

of plant materials. These markers, assuming their validity, can be utilized in a marker assisted 

selection program for mass screening of progenies and using only the individuals with desired 

marker signal for further evaluation. These markers are especially useful in early generations 

when there are higher numbers of progenies to be screened. In addition to the screening, these 

markers can be utilized in introgression of a single QTL or stacking multiple QTL through a 

backcrossing procedure.  

This study used a diverse population set, with some individuals and populations 

exhibiting superior phenotypes and desired alleles from the identified QTL. Not only the markers 

identified in this study were associated with QTL of desired traits, but also the plant material 

itself can be a useful resource for future breeding programs. The individuals that had desirable 

traits can also be used as a parental source. Using the parents with different QTL for the same 

traits will increase richness of desired alleles.  

This is a first study in switchgrass identifying QTL from a diverse population set; 

especially within the Southern germplasm. We believe that the results of this study will be useful 

in the switchgrass community to exploit its potential as a biofuel crop.  

 


