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ABSTRACT 

We examined how spatial variation in long-term precipitation patterns and site 

productivity potential directly and indirectly predicted foliar C:N, caterpillar biomass, 

and abundance of 11 songbird species in the southern Appalachian Mountains. Our 

results suggested that variation in abundance was best explained by elevation. In order to 

understand the potential driver of elevation or mean annual precipitation at a larger scale, 

we compared occupancy models using land cover and elevation only to models that 

included finer scale climate data for trailing-edge populations of the Black-throated Blue 

Warbler (Setophaga caerulescens, BTBW). Models that included local mean annual 

precipitation, integrated moisture index, and heat load index predicted 4,800 - 44,776 

fewer acres than models using land cover and elevation.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Introduction and literature review  

Global climate change 

Earth's surface temperatures are changing due to anthropogenic emissions of 

greenhouse gases, and such changes in temperature are expected to affect global and 

regional precipitation regimes. Model projections of global climate change show 

continued warming trends for the southeastern United States, with annual temperatures 

expected to increase from -15.3 to -11.9° C by 2080 (Karl et al. 2009). Rising 

temperature has caused significant changes to temperature and precipitation patterns in 

the southeastern United States (Groisman et al. 2004). Since 1970 the southeastern U.S. 

annual average temperature has risen -17°C (Karl et al. 2009), and there have been 

increases in precipitation variability (Karl and Knight 1998, Groisman et al. 2004) 

including more frequent and prolonged periods between rainfall events and increasing 

frequency and intensity of drought (Karl and Knight 1998, Groisman et al. 2004). If 

trends continue, future drought patterns are expected to reduce the productivity of forest 

ecosystems (Elliott et al. 2015).  

Productivity and songbird abundance    

Vegetation composition is a known driver of local songbird abundance and 

community composition (MacArthur 1964, Rotenberry and Wiens 1980, Cody 1981). 

Vegetation composition and structure often serve to benefit songbird species by 
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providing appropriate breeding habitat (Block and Brennan 1993). For breeding 

songbirds, the primary factor determining habitat suitability is availability of nesting 

habitat Thus, within the landscape songbird species will select areas that fulfill their 

structural habitat requirements. However, one hypothesis for songbird habitat selection 

states that, once songbird habitat becomes optimal for a species, in terms of vegetative 

structure, slight differences in structure may no longer control total species composition; 

this is referred to as a structural saturation point. At a structural saturation point, one or 

more additional factors may influence microhabitat selection of avian species (Wiens and 

Rotenberry 1981).  

Within optimal vegetative structure for breeding, songbirds use a hierarchical 

selection process based on most critical to least critical resources for survival and growth 

during the breeding season (Steele 1993, Matsuoka et al. 1997). For breeding songbirds, 

the most critical resource is food for chicks (Arcese and Smith 1988, Marshall et al. 

2002). For example, Black-throated Blue Warblers (Setophaga caerulescens) undergo a 

hierarchical selection process; choosing first appropriate nesting habitat and then, within 

that breeding habitat, choosing territories based on prey availability (Steele 1993, 

Matsuoka et al. 1997).  

Prey availability is likely to be directly related to ecosystem productivity (Cody 

1981); which can be limited by precipitation, soil moisture, and/or available sunlight 

(White 1958, Churkina and Running 1998, Lieth and Whittaker 2012, Nayak et al. 2013). 

When soils are dry, the uptake of nitrogen and other nutrients is reduced, resulting in 

lower foliar nutrient concentrations and reduced photosynthetic activity (Shure  et al. 

2003, Rustad  et al. 2003, He and Dijkstra 2014). Foliar nitrogen availability has direct 
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impacts on insect community structure and abundance (Prestidge and McNeill 1983, 

Dohmen et al. 1984, Kytö et al. 1996) and nitrogen is the considered the most limiting 

micronutrient for herbivorous insects such as caterpillars (Mattson 1980, White 1993, 

McClure et al. 2013). Because of the relationship between songbird prey availability and 

precipitation and soil moisture, these two climatic variables are likely to be an important 

determinant of migratory insectivore bird distributions. Indeed, several studies have 

found that the abundance of breeding birds is positively correlated with precipitation 

(Odum 1950, Bertin 1977, Smith 1977). 

In addition to variation in precipitation, slope and aspect can create steep climate 

gradients and heterogeneous microclimates that affect insect abundance in montane 

ecosystems (Rosenberg et al. 1983, Desta et al. 2004). For example, humidity can 

strongly affect terrestrial arthropod development, growth, and metabolic activity (Neville 

1975, Horn 1976, Edney 1977); and, there are greater abundances of forest insects when 

humidity is higher (Whittaker 1952). It has been shown that soil moisture is a significant 

predictor of habitat use by some insectivorous songbirds (Kendeigh and Fawver 1981), 

likely because moist soils are often associated with higher prey availability. 

Trailing edge populations 

Populations located at the edge of their bioclimatic range play a crucial role 

during climate driven range shifts because, by their very nature, range shifts occur at the 

edges of species’ ranges. Currently, range expansion and contraction are not occurring at 

similar rates for most species.  Evidence suggests that the rate of range contraction is 

occurring at twice the rate of range expansion for some species (Brommer et al. 2012). 

The effects of climate-induced range shifts on trailing and leading edge populations is 
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expected to be markedly different for trailing edge populations at contracting portions of 

a species’ range because those species are likely to be increasingly dependent on more 

specific and fragmented habitat requirements (Thuiller et al. 2008, Anderson et al. 2009).  

Trailing edge (i.e., the contracting or retreating edge) populations are valuable for 

conservation and preserving places that harbor such species should be a conservation 

priority. Trailing edge populations often exhibit high degrees of local adaptation and 

often contain unique genotypes. Such genotypes are of extreme importance for species 

persistence under current and future climatic change (Hylander et al. 2015). 

Theoretically, trailing edge populations should occur in areas that historically provided a 

wider range of suitable climatic conditions for the species and in landscapes of high 

environmental heterogeneity where historic climate refugia are likely to persist (Tzedakis 

et al. 2002). For example, the topography of mountainous regions create steep gradients 

of temperature and precipitation that allow many species to find suitable bioclimatic 

conditions across relatively short elevational shifts, on north or south facing aspects 

(Loarie et al. 2008), or between ridge and cove sites represented by unique or uncommon 

vegetation types (Lenoir et al. 2013). In these kinds of regions, trailing edge populations 

are typically restricted to habitat islands (microclimatic refugia) within a matrix of 

unsuitable climate or habitat (Hampe et al. 2005, Rull 2009, Ashcroft 2010, Hylander et 

al. 2015).  The more fragmented nature of habitat in trailing edge landscapes affects 

population demography and can create strong selection for novel or compensatory traits 

in trailing edge populations (Hoffmann and Blows 1994, Parmesan et al. 1999, Hampe et 

al. 2005, Bridle and Vines 2007, Gillingham et al. 2012, Sunday et al. 2014, Varner and 

Dearing 2014). As a consequence, montane ecological communities are often more 



 

5 

diverse and contain more endemic species that surrounding lowland environments 

(Rahbek and Graves 2001).   

Research Needs  

Mountainous systems are also some of the most vulnerable to climate change 

(Nogués-Bravo et al. 2007). These areas are of conservation concern in the face of 

warming temperatures and changing precipitation patterns that stand to alter current 

microclimates and the availability of microrefugia. Understanding how local climate 

drivers influence the ecology of trailing edge populations is important for forecasting 

biodiversity responses to climate change and to inform conservation planning.  In the 

context of avian ecology, few studies address the potential effects of climate change on 

species distribution and abundance via the effects of climate on prey availability (Sillett 

et al. 2000, Bale et al. 2002, Staley et al. 2007). Needed are robust models that link local 

climate to primary production, resource quality, insect abundance, and bird population 

ecology. 

Southern Appalachia is the southern-most breeding range for several 

insectivorous passerine species. Evidence of range shifts is already apparent in several 

passerine (Parmesan et al. 1999, Parmesan and Yohe 2003, Parmesan 2006), and further 

shifts are expected as shifts often lag environmental changes (Svenning et al. 2008).  As 

microclimate refugia become more limited and fragmented, range shifts should be 

proceeded by local changes in demographic rates and abundance (Fang and Lechowicz 

2006). Therefore, quantifying the relationships between climate, productivity, and 

insectivorous songbird ecology among trailing edge populations is needed. 
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Suitable habitat and species distribution models (SDMs) are tools that allow 

researchers and managers to use ecological or correlational relationships to map potential 

distributions of suitable habitat or species occupancy or abundance (Elith and Leathwick 

2009). Generally, SDM models relate coarse scale climate or land cover features to 

presence or abundance data. Current SDMs or suitable habitat models are used to set 

regional conservation priorities and to facilitate the application of this information to land 

management activities (U.S.G.S. Gap Analysis Program. 2011), are correlative to 

expected occupancy habitat types and elevational range thresholds (U.S.G.S. Gap 

Analysis Program. 2011). Often these models rely on data from presence locals largely 

within the core of a species range. Habitat-occupancy correlations within the core of a 

species range are likely to over-predict available habitat or the distribution of a species, 

particularly when modeling areas of trailing edge populations that may have more 

specialized habitat requirements. The use of models that incorporate more local site 

variables and regional patterns and processes are needed to better forecast and manage 

the responses of trailing edge populations.  

Study overview 

The purpose of my research was to examine whether local climate and resource 

productivity and quality metrics could be used to model local variation in breeding 

songbird abundance. I used precipitation, integrative moisture index (an index of site 

productivity potential), vegetation structure, and caterpillar biomass to model the 

abundance of 11 songbird species including several trailing edge species.  I then used the 

relationships I established for one trailing edge species, the Black-Throated Blue Warbler 
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(Setophaga caerulescens) to compare different model estimates of habitat availability and 

fragmentation across Macon County, North Carolina, USA. 

Macon County, NC is a rural yet rapidly exurbanizing landscape in close 

proximity to several major metropolitan areas (Atlanta, GA; Charlotte, NC; Asheville, 

NC; and Knoxville, TN) (Gragson and Bolstad 2006). Historically, the region had 

extensive valley bottom agriculture, but much of the mid and upper elevations remained 

forested. Over a half million acres of high elevation forests occur within the Nantahala 

National Forest, particularly in the eastern half of the county. Over the last one to two 

decades, there has been a rapid increase in development of higher elevation forests into 

residential, second home and vacation communities (Wear and Bolstad 1998, Gragson 

and Bolstad 2006).  As the region continues to develop high elevation forests, 

conservation efforts to protect the rich diversity of plants and animals including 

migratory songbirds will depend on rigorous habitat and population models.  

Study objectives  

In chapter two, I tested whether mean annual precipitation and integrated moisture 

index were direct predictors of foliar C:N and indirect predictors of caterpillar biomass 

and the abundance of 11 songbird species.  I used structured equation modeling of point 

count data from 68 sites over two years to test the predictions that: (1) that sites with 

higher mean annual precipitation and integrated moisture would be negatively correlated 

with foliar C:N; (2) mean annual precipitation and integrated moisture would be 

positively correlated with caterpillar biomass, and foliar C:N would be negatively 

correlated with caterpillar biomass; (3) mean annual precipitation, integrated moisture 

index would be positively correlated with songbird abundance (Figure 2.1). I also 
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investigated the relationship between mean annual precipitation, integrated moisture 

index, vegetation structure, and songbird abundance. 

In chapter three, I compared models of Black-Throated Blue Warbler occupancy 

that did or did not include local climate measures in addition to traditional land cover and 

elevation data. I determined the degree to which models with additional local climate 

variables differed in predicted warbler occupancy across the county.  I compared the 

extent to which more refined models predicted the abundance, distribution, and 

fragmentation (isolation) of occupied habitats.  I used three recent data sets that provided 

good coverage of Macon County, North Carolina, USA (Figure 1.2). 

Study Area 

This study took place in the Coweeta Basin (CWT), a 1,626 hectare (ha) 

watershed of the USDA Forest Service Coweeta Hydrologic Laboratory and the Coweeta 

Long-Term Ecological Research (LTER) project that has been subject to whole-

watershed manipulations since the 1930’s (Day et al. 1988, Douglass and Hoover 1988) 

(Figure 1.1). Within the basin, elevation ranges from 677 m to 1600 m. CWT topography 

including steep slopes with north and south facing aspects results in steep gradients in 

precipitation and soil moisture over a relatively short distance (Figure 2.2 and see Daly et 

al. 2017). CWT is located in Macon County which is located within the eastern deciduous 

forest of the Blue Ridge Physiographic Province of the southern Appalachian Mountains 

and contains approximately 240,634 acres of forest, most of which is located within The 

Nantahala National Forest. Forest types within The Nantahala National Forest consist of 

oak-hickory, oak-pine, and northern hardwoods. Annual precipitation varies significantly 

in this region, from 178 cm at lower elevations to over 250 cm at higher elevations (Kohl 
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1990). Mean July temperatures average 21.6 °C. Most low elevation areas (lower than 

700m) in Macon County are developed for residential, commercial, or agricultural use, 

and development of higher elevation areas has increased (Wear and Bolstad 1998, 

Gragson and Bolstad 2006) 
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Figure 1.1. Chapter two study area, Coweeta Basin, which is located in Macon County, 

North Carolina across a mean annual precipitation gradient.  
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Figure 1. 2. Chapter three study area, which consists of most of Macon County, North 

Carolina across a mean annual precipitation gradient. 
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CHAPTER 2 

RELATIONSHIPS BETWEEN FINE-SCALE SITE PRODUCTIVITY 

METRICS AND THE ABUNDANCE OF INSECTIVOROUS SONGBIRDS IN THE 

SOUTHERN APPALACHIAN MOUNTAINS1 
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ABSTRACT 

We examined how spatial variation in long-term precipitation patterns and site 

productivity potential (integrated moisture index) directly and indirectly predicted foliar 

C:N, caterpillar biomass, and abundance of eleven songbird species in the southern 

Appalachian Mountains. We found that mean annual precipitation and IMI were 

significant local predictors of bird abundance; however, only four of eleven species 

showed a positive relationship between mean annual precipitation and abundance. 

Consistent with our predictions, mean annual precipitation was positively correlated with 

lower foliar C:N; however, foliar C:N was not a significant predictor of caterpillar 

biomass. We also did not observe any significant direct relationship between mean 

annual precipitation or IMI and caterpillar biomass. Our results suggest that variation in 

songbird abundance was best explained by elevation, which was highly positively 

correlated with mean annual precipitation.  

 

INDEX WORDS: Abundance, distribution, N-mixture model, precipitation, 

integrated moisture index, elevation, insectivorous songbirds, 

caterpillars, foliar nitrogen, southern Appalachian Mountains 
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INTRODUCTION 

Animal distributions and abundances are driven by a variety of hierarchical 

influences. At larger spatial scales, organisms’ range limits and regional patterns of 

abundance are limited by physiological tolerances, which is determined by climate 

(Johnson 1980, Kaspari et al. 2000a, Kaspari et al. 2000b, Porter et al. 2000, Kaspari 

2001, Brown and Ernest 2002). Within that physiologically suitable climate, individuals 

select habitat based on features that results in local non-random distributions of 

individuals (Fretwell and Lucas 1970, Johnson 1980). Identifying the hierarchical nature 

of features related to finer-scale species abundances is important for identifying the 

proximate influences driving habitat selection, and for developing finer-resolution habitat 

suitability models to inform management. 

For some species, the proximate variables generating local patterns of abundance 

are not known; however, it is generally assumed that the availability of food, suitable 

refugia or nesting sites, or predator abundance are important factors. Despite recognition 

of their importance, these biological factors are challenging to quantify and, therefore, 

usually excluded from models used by managers and planners (e.g. U.S. Geological 

Survey Gap Analysis Program 2011). Moreover, prey and predator abundance are likely 

temporally variable, therefore snapshot measurements of those factors are likely poor 

predictors of local abundance. A potential solution to this challenge is the identification 

of indirect measures of resource availability or predator abundance. In many ecosystems, 

high food availability is often associated with high primary productivity and resource 

quality (Perner et al. 2005). Therefore, local measures of primary productivity and 

resource quality may serve as better, finer-scale predictors of consumer abundance. In 
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montane forest ecosystems, a suite of local drivers including local rainfall, slope, and 

aspect produce local variation in soil moisture and humidity that drive local variation in 

primary productivity, foliar nitrogen, and insect abundance (Rosenberg et al. 1983, Desta 

et al. 2004).  

The goal of our research was to determine whether local estimates of climate and 

productivity were related to prey biomass and insectivorous songbird abundance in the 

southern Appalachian Mountains. Insect abundance, especially caterpillar abundance, is a 

critical resource for migratory songbirds attempting to raise chicks (Graber and Graber 

1983, Graber et al. 1985, Arcese and Smith 1988, Holmes and Schultz 1988, Marshall et 

al. 2002, Nagy and Holmes 2005). Using field data collected in 2015 and 2016 we used 

structural equation modeling (SEM) to examine the relationships among mean annual 

precipitation, integrated moisture index, foliar nutrient quality of leaves, caterpillar 

biomass, and abundance of insectivorous breeding songbird, in the Coweeta Basin in 

western North Carolina. Further, we expected our measures of caterpillar biomass may be 

difficult to relate to bird abundance because caterpillar larvae is highly heterogeneous in 

time and space, surveying at a landscape level may be problematic (Gutiérrez et al. 

1999). Instead we used foliar nitrogen (foliar N) as a proxy for caterpillar abundance. As 

a result we also examined the relationship among mean annual precipitation, integrated 

moisture index, foliar nutrient quality of leaves, and abundance of insectivorous breeding 

songbird in our study area.  

We predicted a hierarchical relationship among songbird abundance and our 

predictor variables. Specifically, we predicted: (1) that sites with higher mean annual 

precipitation and integrated moisture would be negatively correlated with foliar C:N; (2) 
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mean annual precipitation and integrated moisture would be positively correlated with 

caterpillar biomass, and foliar C:N would be negatively correlated with caterpillar 

biomass; (3) mean annual precipitation, integrated moisture index would be positively 

correlated with songbird abundance (Figure 2.1). Further, we predicted similar 

relationships but removed caterpillar biomass; specifically we predicted: (1) that sites 

with higher mean annual precipitation and integrated moisture would be negatively 

correlated with foliar C:N; (2) foliar C:N would be negatively correlated with songbird 

abundance; (3) mean annual precipitation, integrated moisture index would be positively 

correlated with songbird abundance (Figure 2.2). Because habitat structure influences 

songbird nesting (MacArthur 1964, Johnson 1980, Rotenberry and Wiens 1980, Cody 

1981), we also investigated the relationship between mean annual precipitation, 

integrated moisture index, vegetation structure, and songbird abundance.  

METHODS 

Study Site 

Our study site was the Coweeta Basin (CWT), a 1,626 hectare (ha) watershed in 

the Nantahala National Forest of western North Carolina and site of the USDA Forest 

Service Coweeta Hydrologic Laboratory. CWT is located within the Blue Ridge 

Physiographic Province and is predominantly eastern deciduous forest. Mean July 

temperatures average 21.6 °C. Annual precipitation varies significantly in this region, 

from 178 cm at lower elevations to over 250 cm at higher elevations (Kohl 1990). Within 

the basin, elevation ranges from 677 m to 1600 m.  Forest types within the watershed 

consist of oak-hickory, oak-pine, northern hardwoods, and cove hardwoods and areas 

have been subject to site and whole-watershed manipulations since the 1930’s (Day et al. 
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1988, Douglass and Hoover 1988). CWT topography including steep slopes with north 

and south facing aspects results in steep gradients in precipitation and soil moisture over 

a relatively short distance (Figure 2.3 and see Daly et al. 2017). 

Plot selection 

We chose 68 sampling locations at least 200 m apart and stratified among eight 

sub-watersheds and north and south facing aspects. Plots ranged in elevation between 

900-1200 m and spanned the gradient of mean annual precipitation gradient between 150-

260 mm (Figure 2.2). Mean annual precipitation was determined using 30-year, daily 

precipitation estimates at 1-km2 resolution (Thornton 2016). elevation of sites was 

determined using 10 m DEM in ArcMap 10.X (U.S. Geological Survey 2016), in 

ArcMap 10.X (ESRI 2011). For each site we calculated an integrated moisture index 

(IMI) derived from hillshade, flow accumulation of water downslope, curvature of the 

landscape, and soil depth (Iverson et al. 1997).  

Estimating Breeding Bird Abundance 

We conducted two, single observer, 10 minute, 100 m radius point count surveys 

(Hamel et al. 1996) between May 3 and July 10, 2015 and 2016. The first sample 

occurred during the early portion of the breeding season and the second sample date 

occurred during the middle to latter portion of the breeding season. Because songbird 

activity declines as the day progresses (Robbins 1981), we conducted all surveys before 

noon. We visited multiple sites each day, and we varied the order of site visits each time 

to avoid bias. Before each count we recorded variables that might affect a songbird 

detection such as wind and noise. We assigned noise levels to one of five categories: “no 

background noise (e.g., from a stream or road traffic)”, “some noise”, “more noise”, 
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“even more”, and “heavy noise limiting ability to hear nearby birds”. We assigned wind 

levels to one of five categories: “no wind”, “leaves and twigs moving”, “small branches 

moving”, “small trees and/or branches moving”, and “strong wind”. We did not conduct 

counts during rain or when wind was strong enough to cause large trees to sway (Hamel 

et al. 1996). Our focal species were insectivorous songbirds (Table 2.1) but we recorded 

all songbirds detected.  

Estimating Caterpillar Biomass 

We conducted surveys of caterpillars within 50 m of each point count location 

every two-weeks between May 1st and July 9th. The repeated samples were to 

accommodate emergence of different caterpillar families. At each location, we selected at 

least two saplings of six focal tree species: Castanea dentata, Acer rubrum, Quercus 

rubra, Acer pensylvanicum, Betula alleghaniensis, Amelanchier spp. We systematically 

searched 50 leaves on each sapling and counted, identified to family, and their lengths 

measured (leaves and supporting petioles). We estimated each caterpillar’s wet mass 

using the length to mass regression equation of Rodenhouse (Rodenhouse 1986):  

caterpillar wet mass = 0.004*(caterpillar length in cm)2.64 

We summed biomass across the entire season for both years.  

Estimating Vegetation Structure 

We conducted vegetation surveys in a 10 m radius circular plot at the center of 

each point count location. We recorded diameter at breast height (DBH) for all woody 

species present that were ≥ 7.5 cm DBH and counted all woody saplings that were taller 

than one meter. From these data, we calculated mean and variance of DBH per plot. We 

also calculated shrub and deciduous sapling ( < 7.5 cm) stem density per plot. To reduce 
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the number of vegetation structure variables in our subsequent models, we took these four 

measures of structure and used a principal components analysis (Jolliffe 2002) as a data 

reduction technique to obtain two composite measures of habitat structure.  

Estimating Foliar C:N 

To estimate mean foliar C:N, we sampled leaves from two common species, Q. 

rubra and A. rubrum, which are known to exhibit variation in foliar C:N in response to 

variation in precipitation (Shure et al. 2003). Sampling occurred in July of 2016, late in 

the growing. From each species, we randomly sampled five leaves. For A. rubrum, we 

were able to sample individuals in three size classes (< 2.5 cm diameter at breast height 

(DBH), ≥ 2.5 cm to < 10 cm DBH, and ≥ 10 cm DBH) within each site. For Q. rubra we 

were only able to sample saplings (< 2.5 cm DBH). To sample leaves on larger trees, we 

used extension pole clippers to remove two small branches before selecting leaves from 

those branches. We stored leaves from each tree in individual, sterile, marked bags and 

placed each bag in a cooler with ice. In the lab, we stored samples in a standard freezer. 

For analysis, we dried leaves in a forced-air drying oven at 112°F (44.4°C), milled via a 

Wiley mill, and homogenized all samples by species and sample location. We measured 

total nitrogen and carbon using an Elemental Analyzer (Thermo-Fisher Scientific Flash 

2000, P/N 31712052) at the Water and Soil Laboratory for Environmental Analysis at the 

University of Georgia. For each sample, we calculated the molar ratio of C:N as follows:  

C/N = %C / %N * 1.17. 

We estimated a “mean plot foliar C:N” as the average C:N of Q. rubra and A. rubrum 

weighted by their basal area, estimated for each site.  
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 Statistical Analysis 

 We first examined correlation among our explanatory variables using correlation 

matrices and principal component analysis. We used this to eliminate any highly 

redundant variables and to guide inferences from our structured equation model. We used 

a general linear model to test the effects of mean annual precipitation and integrated 

moisture on A. rubrum and Q rubra foliar C:N. 

We used gdistsamp, a hierarchical likelihood-based model (Chandler et al. 2011) 

in the R package Unmarked (Fiske and Chandler 2011) to examine the effects of 

environmental noise, observer, and time of day and of year on our ability to sample 

songbirds during our study; we were interested in these variables because they ultimately 

have the ability to impact estimated songbird abundance. Availability is the probability 

that a songbird would be singing at the sampling location during the 10 minute sampling 

period; we examined how the effects of day of year and time of survey impacted songbird 

availability. Detection is the probability we would be able to detect a songbird by song at 

the sampling location during the sampling period; we examined the effects of observer, 

wind, and noise on songbird detection.  

For models of availability we held detection and abundance constant across sites 

(MacKenzie et al. 2005). We compared four availability models: (1) availability was 

constant, (2) availability varied among survey periods based on time of the survey, (3) 

availability varied among survey periods based on date of year, (4) and availability varied 

among survey periods based on time of survey and day of year. We used model selection 

(Burnham and Anderson 2002) to compare these models for each species. 
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We modeled detection probability for each species assuming constant abundance 

and availability across sites (MacKenzie et al. 2005). We compared five detection 

models: (1) probability of detection was constant, (2) probability of detection varied by 

observer, (3) probability of detection varied by noise, (4) probability of detection varied 

by wind, (5) and probability of detection varied by observer, noise, and wind. We used 

model selection (Burnham and Anderson 2002) to compare these models for each 

species. We included covariates that affected availability and detection in our subsequent 

structured equation model to account for imperfect availability and detection.  

  We used the lavvan package (Rosseel 2012) in R 3.2.2 (R Core Team 2015) to 

conduct structured equation modeling of vegetation, precipitation, and integrated soil 

moisture effects on foliar C:N, caterpillar biomass, and bird abundance (Figures 

2.1)(Grace 2006). Because we expected our measures of caterpillar biomass may be 

difficult to relate to bird abundance (Gutiérrez et al. 1999), we also created a SEM 

without caterpillar biomass, as a proximate factor to bird abundance (Figure 2.3). We 

standardized all variables prior to analysis. We tested models with different covariate 

combinations and concluded that models with coefficients < | 0.05 | were effectively zero 

and, thus, chose to incorporate covariates that had estimates > | 0.05 | to minimize over-

parameterization. We tested the fit of each SEM using several methods. First, we tested 

the absolute fit of the model to observed data versus a null model using a chi-squared 

test, and by checking the value of the standardized root mean square residual (SRMR), 

where a value of ≤ 0.08 indicates good fit (MacCallum et al. 1996). We also checked the 

root mean square error of approximation (RMSEA), which takes model parsimony into 

consideration, and where a value of 0.06 or below indicates good fit. In addition, we 
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checked the comparative fit index (CFI), which compares model fit to a nested baseline 

model, and the Tucker–Lewis index (TFI), which is similar to the CFI but takes model 

parsimony into account. In both of these indices, a value of 0.95 or larger indicates good 

model fit (Brown 2006). 

 RESULTS 

We conducted a total of 272 point counts among the 68 plots between 2015 and 

2016. We detected a total of 64 species and 4,294 individual birds. In both years, we 

conducted 680 caterpillar surveys of 34,000 leaves and detected 625 individual 

caterpillars representing six families. In 2015 we conducted vegetation surveys of 68 

plots and identified 4,237 individual shrubs and trees to 54 species. In 2016 we collected 

1,020 leaves from A. rubrum and 340 leaves from Q. rubra.  

Mean annual precipitation was highly positively correlated with elevation among 

our sites (R2=68%, p < 0.001). Thus, we did not include elevation in any subsequent 

analysis. Based on our principal component analysis of our remaining environmental 

variables (Figure 2.4, Table 2.2) mean annual precipitation was positively correlated with 

the basal area of Q. rubra and variation in tree DBH, and negatively correlated with 

shrub stem density. Mean annual precipitation was also negatively correlated with foliar 

C:N of Q. rubra and A. rubrum. Average DBH was positively correlated with basal area 

of A. rubrum and negatively correlated with deciduous stem density. There was no 

significance difference in mean foliar C:N between Q. rubra and A. rubrum (Table 2.3). 

Mean annual precipitation and IMI were both negatively correlated with mean foliar C:N. 

There were no significant interactions between tree species and mean annual precipitation 

or IMI on mean foliar C:N (Table 2.3).  
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The first two principal components from our PCA of vegetation structure explain 

74% of the variation among our four variables (Figure 2.5, Table 2.4). The first PC 

explained 42% of the variation and was driven predominantly by variation in mean DBH, 

DBH variance, and deciduous sapling density. Thus, the first PC largely separated forest 

plots with older and more variable tree size structure from younger, more homogenous 

forest plots. The second PC explained 32% of the variation and was determined largely 

by shrub stem density, deciduous sapling stem density, and variance in DBH.  Therefore, 

the second PC separated plots with more shrub midstory versus plots with more 

deciduous midstory.  

Mean annual precipitation was significantly correlated with estimated plot-level 

mean foliar C:N (Table 2.5). Mean annual precipitation was negatively correlated with 

habitat structure principal component one and IMI was positively correlated. For mean 

annual precipitation, this indicated a positive relationship between mean annual 

precipitation and deciduous average DBH and a negative relationship between historic 

precipitation and deciduous stem density, primarily driven by saplings (Table 2.5). 

However, for IMI, this indicated a negative relationship between IMI and average DBH, 

and a positive relationship between and variation in DBH deciduous stem density, 

primarily driven by saplings (Table 2.5). Principal component two was significantly 

negatively correlated with mean annual precipitation and significantly positively 

correlated with IMI. This indicated a negative relationship between mean annual 

precipitation and shrub stem density and a positive relationship between IMI and shrub 

stem density (Table 2.5). Caterpillar biomass was not significantly related to any 

variables (Table 2.5). 
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The effects of day of year and time of day on availability and the effects of wind 

and noise on detection varied among species (Tables A.1). Day of year affected 

availability of two of 11 species and time of survey affected availability for three of the 

11 species (Table A.1). Noise affected detection for one of 11 species, wind affected four 

of 11 species, and observer affected three species (Table A.2). Some species detection 

models would not coverage and thus are not accounted for and as a result delta AIC has 

not been calculated for such models (Table A.2)  

SEM models of bird abundance that included latent variables generally had model 

fit outside generally accepted thresholds. SEM models of bird abundance with latent 

variables excluded had substantially improved model fit. Parameters estimates were 

similar in models with and without latent variables (Tables 2.6 and 2.7). Therefore, we 

proceeded with models that did not include latent variables for detection and availability 

(Tables 2.6 and 2.7). 

For SEM models that included caterpillar biomass, the effects of vegetation 

structure (PC1 and PC2), precipitation, IMI, foliar C:N, and estimated caterpillar biomass 

on bird abundance varied by species (Table 2.6). Abundance differed between years for 

six of 11 species. One species showed a significant direct, negative correlation between 

caterpillar biomass and abundance. Mean annual precipitation was significantly directly 

correlated with abundance for ten of 11 species. Mean annual precipitation was directly, 

significantly positively correlated with abundance for four of 11 species and significantly 

negatively correlated with abundance for six. IMI was directly, significantly positively 

correlated with abundance for four species and directly, significantly negatively 

correlated with two species. Vegetation structure PC1 and PC2 were significantly 
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correlated with abundance of three and two species, respectively. Relationships between 

these parameters and bird abundance did not differ substantially for models where mean 

plot foliar C:N was substituted for caterpillar biomass (Table 2.9).  

DISCUSSION 

Our results showed that mean annual precipitation and IMI were significant local 

predictors of bird abundance. However, abundance of only two of 11 species showed a 

positive relationship with mean annual precipitation and IMI, as we had predicted. For 

three of the 11 species, the relationships were negative. We expected that the indirect, 

proximate mechanism linking mean annual precipitation and IMI to bird abundance 

would be the effects of moisture on foliar quality and subsequent effects on caterpillar 

biomass. Consistent with our predictions, mean annual precipitation was significantly 

positively correlated with lower foliar C:N for both A. rubrum and Q. rubra; however, 

foliar C:N was not a significant predictor of caterpillar biomass. We also did not observe 

any significant direct relationship between mean annual precipitation or IMI and 

caterpillar biomass. One potential explanation for why we had strong but, inconsistent 

relationship between mean annual precipitation and songbird abundance, was that mean 

annual precipitation was strongly correlation with elevation; therefore, songbird 

abundance was likely responding more to temperature gradients facilitated by elevation 

rather than historic precipitation. Consistent with this trend, the four species that showed 

positive relationships with mean annual precipitation, Blue-headed Vireo (Vireo 

solitaries), Black-throated Blue Warbler (Setophaga caerulescens), Canada Warbler 

(Cardellina canadensis), and Rose-breasted Grosbeak (Pheucticus ludovicianus), are all 

species known associated to be associated with high elevation habitat in the southern 
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Appalachian Mountains. The five species that showed negative relationships are species 

that are more widely distributed across the southeast U.S. and known to occur at low 

elevations in the southern Appalachian Mountains. Therefore, among the 11 songbirds 

we studied it appears more likely that temperature, driven by elevation, is the primary 

factor driving local abundances of songbirds. For those four species that were more 

abundant at higher elevation, it is not clear whether they are responding directly to the 

higher mean annual precipitation or whether some other factors associated with elevation 

are driving local abundance. However, there is evidence to suggest that one species is 

responding to higher mean annual precipitation. In a subsequent study, looking at the 

distribution of Black-throated Blue Warbler we found that models using precipitation 

were better than models that contained elevation (Chapter 3, Abernathy 2017).  

There are many potential reasons why we failed to find a relationship between 

caterpillar biomass, foliar quality, and songbird abundance. One possibility is that our 

methods for estimate caterpillar biomass maybe too imprecise or stochastic to represent 

true prey availability. In our search of 34,000 leaves we only found 625 caterpillars, 

suggesting that caterpillar density, or detection is very low. This would suggest that 

significantly more sampling effort would be require to generate more reliable estimates of 

caterpillar biomass. Nonetheless, a number have other studies, using similar caterpillar 

survey methods to ours, have found positive relationships between estimated caterpillar 

biomass and nesting attempts, number of fledging per nest, nestling growth rates and 

survival (Rodenhouse and Holmes 1992, Nagy and Holmes 2004, Nagy and Holmes 

2005). A second reason why we found no relationship could be that, while caterpillars are 

important resource, the songbird sampled in this study exhibit prey switching and we did 
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not account for other insects present at a site. A third reason, may be that songbirds can 

compensate for local variation in caterpillar abundance by expanding their search area 

when feeding nestlings; this is because territory size is inversely related to food 

abundance (Stenger 1958, Pitelka 1959, Moss 1969, Clarke 1970, Holmes 1970, Watson 

and Moss 1970, Stimson 1973, Slaney and Northcote 1974, Gill and Wolf 1975, Simon 

1975, Gass et al. 1976, Salomonson and Balda 1977, Maher and Lott 1995, Anderson et 

al. 2009). So it may be that caterpillar biomass would be better predicted if it was 

integrated across a larger sample area. Therefore, in sites with lower caterpillar biomass, 

songbirds could compensate for local variation in prey, by (1) expanding their diet breath 

or (2) expanding their search area. Further efforts might be improved by having more 

robust ways of estimated caterpillars or other insects at larger spatial extents. It should be 

noted that failing to find a relationship between caterpillar biomass, foliar quality, and 

songbird abundance need not be limited to the outlined reasons above; other factors such 

as stochastic biological processes and songbird competition could also play a role in 

trophic relationships.   

As expected we also found evidence that habitat structure influenced the 

abundance of some bird species. Black-throated Blue Warbler, Canada Warbler, and 

Northern Parula (Setophaga americana) were positively associated with sites with higher 

mean DBH and greater variation in DBH. This indicates that they were distributed among 

older, more uneven forest stands. Paradoxically, Black-throated Blue Warbler abundance 

was negatively associated with shrub stem density. It is well known that Black-throated 

Blue Warbler, in their southern range, preferentially nest in shrubs (Steele 1993, Holmes 

1994), and have been known to nest in Rhododendron species (Holmes 2005). Our 
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measure of shrub stem density did not distinguish Rhododendron species from other 

shrub species, notably K. latifolia. While Black-throated Blue Warbler have shown to 

nest in K. latifolia in the southern Appalachian Mountains (Burdett and Niemi 2003), K. 

latifolia are typically found in xeric southern-facing slopes (Gleason and Cronquist 1963, 

Lorenz et al. 1991, McNab and Browning 1993, Blankenship and Arthur 1999, Radford 

et al. 2010). Therefore, we hypothesize that the negative relationship between shrub stem 

density and Black-throated Blue Warbler reflects the high number of mountain laurel we 

observed at our sites, and ultimately a negative relationship with Black-throated Blue 

Warbler and xeric sites. Given that Black-throated Blue Warbler have a positive 

relationship with mean annual historic precipitation and IMI, the negative relationship 

between Black-throated Blue Warbler and xeric sites is consistent with our findings. We 

note that Rhododendron species density is typically higher on sites with higher mean 

annual precipitation (Oosting and Bourdeau 1955, Whittaker 1962, Gleason and 

Cronquist 1963, Strausbaugh and Core 1978, Seymour 1982, Wofford 1989, Little 2002, 

Radford et al. 2010) and ideal habitat for this species is within coves (Nilsen 1986, Nilsen 

et al. 1987, Plocher and Carvell 1987) and on north-facing slopes (Spencer 1932, 

Lipscomb and Nilsen 1990, Dobbs and Parker 2004), both of which have high IMI 

(Iverson et al. 1997). This may be an important proximate mechanism linking high mean 

annual precipitation to Black-throated Blue Warbler abundance.  

Our study did find evidence that local climatic variables were good predictors of 

variation in breeding songbird abundance. We did not find any evidence that those 

climatic variables serve as good indirect prey availability. Caterpillar biomass were not a 

significant predictor of bird abundance and foliar C:N was not a significant predictor of 
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bird abundance.  Instead, our results suggest for some species local climate variables may 

be a driver of vegetation structure which could affect nest site availability. The strong 

relationship with most species and elevation may also indicate that factors we have not 

considered in this study are important determinates of local songbird abundance.  

One such factor could be the unique habitat associations of trailing edge 

populations. Within stable trailing-edge populations selection tends to favor local 

adaption as opposed to vagility and generalism (Dynesius and Jansson 2000); in 

combination with reduced gene flow from core populations this can yield individuals 

with unique and distinct ecotypes (Hampe and Bairlein 2000, Castric and Bernatchez 

2003, Pérez-Tris et al. 2004). For example, within the age structure of Juniperus 

communis L. classes shifted from that of young dominated in the northern range to young 

dominated in the southern range due to lack of water availability (Garcı́a et al. 1999). 

Thus, future studies should more rigorously consider the habitat associations of southern 

trailing edge insectivores may be unique compared to core populations and could explain 

local songbird abundance in this area. 
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TABLE 2.1. This table lists the alpha code, preferred breeding food source, foraging 

behavior, and indicates is a species is at the southern limit of its breeding range 

(Rodewald 2015). Caterpillars are in boldface.  

Bird 
Preferred food Behavior 

Edge 

species 

BHVI 
Caterpillars, stink bugs, beetles, wasps, bees, ants, 

moths, tree crickets, and many others; also spiders. 

foliage 

gleaner 
yes 

BTBW Caterpillars, moths, and crane flies, also spiders. 
foliage 

gleaner 
yes 

BTNW 

Non-hairy caterpillars during summer, as well as 

beetles, true bugs, gnats, aphids, and others, also 

spiders. 

foliage 

gleaner 
yes 

CAWA 
Beetles, mosquitoes, flies, moths, and smooth 

caterpillars 

foliage 

gleaner 
yes 

HOWA 

Wide variety of insects, including caterpillars, moths, 

grasshoppers, beetles, flies, and many others; also eats 

many small spiders 

foliage 

gleaner 
no 

NOPA 

Small beetles, flies, moths, caterpillars, egg clusters, 

true bugs, ants, bees, wasps, and other insects, also 

spiders. 

foliage 

gleaner 
no 

RBGR 

About half of annual diet may be insects, including 

beetles, caterpillars, grasshoppers, true bugs, and 

others, also spiders and snails. Eats many seeds, 

including those of trees such as elms, and sometimes 

eats buds and flowers. 

foliage 

gleaner 
yes 

REVI 

Caterpillars, moths, beetles, wasps, bees, ants, bugs, 

flies, walking sticks, cicadas, treehoppers, scale 

insects; also some snails and spiders. Also eats many 

berries 

foliage 

gleaner 
no 

SCTA 

Caterpillars, moths, beetles, wasps, bees, aphids, and 

many others; also some spiders, snails, worms, 

millipedes. Also eats wild fruits and berries 

foliage 

gleaner 
no 

TUTI 

Insects make up close to two-thirds of annual diet, 

with caterpillars the most important prey in summer; 

also eats wasps, bees, sawfly larvae, beetles, true bugs, 

scale insects, and many others, including many insect 

eggs and pupae. 

foliage 

gleaner 
no 

WEWA 

Eats smooth caterpillars, small grasshoppers, bugs, 

ants, bees, walking sticks, beetles, sawfly larvae, and 

spiders. 

foliage 

gleaner 
no 
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TABLE 2.2. Summary of the results of our principal component analysis of abiotic 

variables used in our structured equation models.  

Variables  PC1 PC2 PC3 PC4 PC5 PC6 

Percentage 

explained 
2.0425 1.7881 1.4728 1.0413 0.90694 0.83607 

       

Average DBH -0.40012 1.3163 -0.1079 0.070785 -0.35537 0.12268 

Stem density 

shrubs 0.79767 0.5756 -0.5375 0.586177 0.65638 
0.02099 

DBH variation -1.05981 0.68572 0.4317 0.172022 -0.31995 0.5477 

Stem density 

deciduous 0.13132 -0.94204 0.7842 -0.2309 0.33228 
0.7259 

Mean annual 

precipitation -0.89362 -0.54922 -0.4267 0.049009 0.06086 
0.08677 

IMI -0.41671 0.11308 -0.9892 -0.00799 0.72084 0.73127 

CN molar ratio 

RM 0.94459 -0.09773 -0.2039 0.255317 -0.78539 
0.86033 

CN molar ratio 

NRO 0.49241 0.28526 0.9404 0.93193 0.36032 
0.03921 

Total basal area 

of NRO -1.11466 -0.39984 0.2743 0.812911 0.10407 
-0.0648 

Total basal area 

of RM -0.02438 0.80094 0.7406 -0.81665 0.54482 
0.18309 

 

TABLE 2.3. Generalized linear model output from examining the relationship between 

mean annual precipitation or integrated moisture and tree species (Q. rubra and A. 

rubrum).  

Variable Estimate (CI) Pr(>|t|) 

Intercept 193 (101, 370) 0.000 

Mean annual precipitation 0.996 (0.994, 1) 0.038 

Species (A. rubrum and Q. rubra) 0.72 (0.30, 1.73) 0.462 

IMI 0.99 (0.988, 1) 0.047 

Mean annual precipitation *Species (A. rubrum and Q. 

rubra) 
1 (0.998, 1.005) 0.469 

Species (A. rubrum and Q. rubra)*IMI 1 (0.997, 1.013) 0.223 
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TABLE 2.4. Summary of the results of our principal component analysis of our 

vegetation metrics which will serve as habitat structure in our structured equation model.  

Variables  PC1 PC2 PC3 PC4 

Percentage explained 41.7 31.9 16.6 0.98 

     

Average DBH 1.7909 -0.05828 0.2937 0.8921 

Shrub stem density 0.3204 1.69651 1.0073 -0.3118 

Variation in DBH 1.2745 -1.26968 0.5641 -0.7334 

Deciduous stem density -1.3764 -0.85657 1.1389 0.409 
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TABLE 2.5. Effects of historic mean annual precipitation and integrated moisture index 

(IMI) on principal components of forest vegetation structure (PC1 and PC2), foliar C:N, 

and caterpillar biomass. Statistically significant associations, where the 95% confidence 

intervals do not overlap with zero, are marked with boldface. CFI =1.0, RMSEA =0.00, 

SRMR =0.01. 

 

X Variable ~ Y Variable (s) Estimate Standard Error P(>|z|) 

PC1 ~    

Mean annual precipitation  -0.003 0.09 0.97 

Integrated moisture index 0.14 0.09 0.11 

PC2  ~    

Integrated moisture index 0.18 0.08 0.03 

30-year annual average precipitation -0.24 0.08 0.01 

Molar foliar C:N ~    

Integrated moisture index  -0.13 0.08 0.13 

30-year annual average precipitation -0.24 0.08 0.004 

PC1 -0.05 0.08 0.55 

Estimated caterpillar biomass ~    

Molar foliar C:N 0.02 0.09 0.84 

Year -0.20 0.17 0.23 

PC1 -0.05 0.09 0.59 

PC2 -0.05 0.09 0.59 
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TABLE 2.6. Parameter estimates, latent variables, and fit statistics of the SEM 1 for each bird species. Bold parameter 

estimates are significant. Species with asterisks and their corresponding parameters estimates are models that have accounted 

for the respective species most significant variables that impact that species detection and availability.   

Species 

Mean 

annual 

Precipitatio

n 

IMI  PC1 PC2 

Caterpilla

r 

Biomass 

Year Date Time  Wind Noise Observer CFI 
SR

MR 

RM

SEA 

BHVI 0.49 0.09 -0.09 -0.14 -0.12 1.18 - - - - - 1 0.01 0 

BTBW* 1.19 0.42 0.32 -0.36 0.12 0.49     0.09 0.85 0.07 0.10 

BTBW 1.20 0.44 0.34 -0.36 0.12 0.61 - - - - - 1  0.01 0 

BTNW* -0.59 0.07 -0.19 -0.21 -0.12 -0.50 - - -0.22 - - 0.56 0.09 0.12 

BTNW -0.74 0.06 -0.15 -0.21 -0.11 -0.15 - - - - - 1 0.01 0 

CAWA* 0.64 0.24 0.17 - - -0.22 - - - - -0.19 0.84 0.07 0.09 

CAWA 0.63 0.21 0.15 - - -0.47 - - - - - 0.74 0.08 0.11 

HOWA* -0.30 0.28 - 0.16 -0.10 -0.15  - -0.24 - - 0.64 0.09 0.12 

HOWA -0.46 0.27 - 0.15 -0.09 0.23 - - - - - 1 0.01 0 

NOPA* - 0.07 0.10 - - -0.09  0.03    1.0 0.05 0 

NOPA - 0.07 0.10 - - -0.07 - - - - - 1 0.02 0 

RBGR* 0.35 -0.24 -0.20 0.09 -0.06 -0.18 - - -  0.03 0.76 0.07 0.10 

RBGR 0.35 -0.24 -0.20 0.09 -0.05 -0.14 - - - - - 1 0.03 0 

REVI* -0.30 0.08 -0.17 -0.13 -0.21 -0.79 0.03 - - - -0.03 0.45 0.09 0.12 

REVI -0.36 0.07 -0.17 -0.12 -0.21 -0.85 - - - - - 1 0.02 0 

SCTA* -0.26 -0.10 0.08 -0.05 0.20 0.03 -0.03 -0.40 -0.18 -0.14 0.07 0.55 0.11 0.13 

SCTA -0.46 -0.16 0.06 -0.05 0.10 0.11 - - - - - 1 0.02 0 

TUTI* -0.17 -0.14 - 0.14 - 0.79 - -0.02 - - -0.07 0.66 0.08 0.09 

TUTI -0.18 -0.15 - 0.14 - 0.70 - - - -  1 0.02 0 

WEWA* -0.23 -0.08 - - -0.05 -0.34 - -0.11 - - - 1 0.05 0 

WEWA -0.25 -0.08 - - -0.06 -0.38 - - - -   1 0.06 0 

 



 

53 

TABLE 2.7. Results for each bird species of the structured equation model 2 that uses foliar nitrogen as a proxy for caterpillar 

biomass. Bold parameter estimates are significant. Species with asterisks and their corresponding parameters estimates are 

models that have accounted for imperfect detection and availability variables in the structured equation model. 

Species 

Mean 

annual 

precipitatio

n 

IMI PC1 PC2 
Mola

r C:N  
Year Date Time  Wind Noise Observer CFI SRMR 

RMS

EA 

BHVI 0.50 0.11 -0.08 -0.13 - 1.2 - - - - - 1 0 0 

BTBW* 1.15 0.39 0.32 -0.33 -0.12 0.45 - - - - 0.10 0.83 0.08 0.12 

BTBW 1.16 0.41 0.33 -0.34 -0.10 0.59 - - - - - 1 0 0 

BTNW* -0.60 - -0.18 -0.19 -0.10 -0.48 - - -0.22 - - 0.48 0.10 0.13 

BTNW -0.74 - -0.15 -0.19 -0.07 -0.13 - - - - - 0.84 0.06 0.06 

CAWA* 0.64 0.22 0.18 - - -0.22 - - - - -0.18 0.79 0.08 0.13 

CAWA 0.61 0.18 0.15 - -0.06 -0.47 - - - - - 1 0.01 0 

HOWA* -0.24 0.25 - 0.21 0.09 -0.26 0.03 - -0.22 - - 0.56 0.12 0.15 

HOWA -0.45 0.32 - 0.17 0.11 -0.25 - - - - - 1 0 0 

NOPA* - 0.08 0.10 - - -0.09 - 0.03 - - - 1 0.05 0.01 

NOPA - 0.08 0.10 - - -0.07 - - - - - 1 0.01 0 

RBGR* 0.38 -0.24 -0.19 0.08 0.05 -0.16 - - - - 0.02 0.78 0.08 0.12 

RBGR 0.38 -0.23 -0.19 0.08 0.1 -0.12 - - - - - 1 0.01 0 

REVI* -0.33 - -0.17 -0.08 -0.13 -0.90 0.03 - - - -0.03 0.44 0.10 0.15 

REVI -0.39 0.05 -0.17 -0.11 -0.14 -0.81 - - - - - 1 0 0 

SCTA* -0.26 -0.08 0.07 -0.07 0.10 - -0.03 -0.36 -0.17 -0.12 0.06 0.75 0.09 0.10 

SCTA -0.43 -0.13 0.07 -0.06 0.17 0.09 - - - - - 1 0 0 

TUTI* -0.17 -0.07 - 0.12 0.12 0.86 - 0.01 - - -0.08 0.52 0.11 0.15 

TUTI -0.16 -0.11 - 0.13 0.10 0.69 - - - - - 1 0.01 0 

WEWA* -0.22 - - - 0.07 -0.33 - -0.11 - - - 0.59 0.05 0 

WEWA -0.24 - - - 0.08 -0.37 - - - -  - 1 0.01 0 



 

54 

 

FIGURE 2.1. The structural equation model used to estimate the indirect and direct of 

mean annual precipitation and integrated moisture index vegetation structure, foliar C:N, 

caterpillar biomass, and songbird abundance. Arrows between boxes represent assumed 

causal associations between the mean-standardized traits, dashed lines represent indirect 

relationship, and solid lines represent direct relationships.  
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FIGURE 2.2.  The structural equation model used to estimate the indirect and direct of 

mean annual precipitation and integrated moisture index vegetation structure, foliar C:N, 

and songbird abundance. Arrows between boxes represent assumed causal associations 

between the mean-standardized traits, dashed lines represent indirect relationship, and solid 

lines represent direct relationships. 
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FIGURE 2.3. Coweeta Basin, Macon County, NC displayed over respective spatial data 

from left to right: historic precipitation, aerial imagery, and integrated moisture index.  
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FIGURE 2.4. A 2-D representation of the principal component analysis which was used 

to examine the correlations between abiotic variables used in the structured equation 

models.  
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FIGURE 2.5. A 2-D representation of the principal component analysis used to reduce 

vegetation survey data into two variables, which represent most of the variation within our 

vegetation data.  
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CHAPTER 3 

INCORPORATING FINE SCALE ABIOTIC VARIABLES TO BUILD BETTER 

DISTRIBUTION MODELS FOR TRAILING EDGE SPECIES1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Heather Abernathy, John Maerz, and Jeffrey Hepinstall-Cymerman. To be submitted to 

Journal for Nature Conservation 
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Abstract 

Identifying areas of suitable habitat is a fundamental management need. We 

compared occupancy models using land cover and elevation only to models that included 

finer scale climate data to compare estimates of habitat availability, distribution, and 

fragmentation for trailing-edge populations of the Black-throated Blue Warbler 

(Setophaga caerulescens, BTBW) in western North Carolina. Models that included local 

mean annual precipitation, integrated moisture index, and heat load index predicted 4,800 

- 44,776 fewer acres of suitable habitat than models using land cover and elevation. 

Further, the configuration and connectivity of Black-throated Blue Warbler trailing edge 

population distributions is likely more fragmented and isolated than is currently 

represented by widely accessible SDMs for this species. SDMs for trailing-edge 

populations in the southern Appalachians should re-examine habitat and occupancy 

correlations for such populations; this reconsideration will reduce over-predictions, 

enhance targeted management, and decreases the likelihood of unnecessary conflict 

between other land uses and habitat protection for priority management species. 

 

INDEX WORDS: Occupancy, species distribution, N-mixture model, precipitation, 

integrated moisture index, elevation, Black-throated Blue Warbler, 

trailing edge populations, southern Appalachian Mountains 
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Introduction 

Species Distribution Models (SDMs) are used in a variety of ways to explore 

ecological concepts and inform conservation and management decisions (Austin 1992, 

Beerling et al. 1995, Leathwick et al. 1996, Leathwick 1998, Pearce and Lindenmayer 

1998, Guisan and Theurillat 2000, Anderson et al. 2002, Elith and Burgman 2002, Ferrier 

2002, Vetaas 2002, Peterson 2003, Raxworthy et al. 2003, Araújo et al. 2004, Engler et 

al. 2004, Graham et al. 2004, Thomas et al. 2004, Thuiller 2004). SDMs are empirical 

models that relate field observations to environmental predictor variables to generate 

response surfaces (Guisan and Zimmermann 2000). In order for SDMs to produce robust 

predictions, sound ecological principles and mechanistic relationships should be used in a 

systematic manner to justify decisions made during the modeling process (Austin 2002, 

Huston 2002, Wiens and Scott 2002). This is particularly true when applying SDMs in 

marginal portions of species’ ranges.  Most SDMs are developed using range-wide 

occurrence data and species-habitat relationships that are heavily influenced by data on 

populations within the core of a species’ range.  Populations at range margins may have 

unique ecological relationships which may not be represented by the habitat associations 

of core populations. As a result, SDMs should attempt to integrate more local factors 

associated with occupancy patterns in range margins (Austin and Van Niel 2011).  

The National GAP Analysis Program (GAP) is a program which aims to create 

habitat suitability models for many species to highlight areas of conservation and 

management. Many of the habitat suitability models that GAP creates are fundamental in 

conservation planning, forecasting (e.g., climate change), and research because, in most 
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cases, such models are the most readily available and cover large spatial extents (U.S. 

Geological Survey Gap Analysis Program 2011).  Rather than predict species probability 

of occupancy, GAP models predict areas of suitable habitat through the use rule-based 

models of species-habitat association. In GAP models and others, habitat suitability 

evaluates an area's suitability for a particular species. While GAP provides baseline 

estimates of potential habitat, these models are derived from habitat relationships for 

populations located predominantly within the species core range and elevational 

thresholds (U.S. Geological Survey Gap Analysis Program 2011). As a result, models of 

suitable habitat, particularly at range margins, are likely too generalized and coarse for 

targeted management (e.g., habitat protection), and may increase the likelihood of 

unnecessary conflict between other land uses and habitat protection for priority 

management species. 

The need to consider finer resolution habitat characteristics may be particularly 

acute for management of trailing-edge populations. Trailing-edge populations are more 

likely to depend on specific bioclimatic refugia that buffer exposure to unsuitable 

climates (Parmesan et al. 1999, Hampe et al. 2005, Rull 2009, Ashcroft 2010, Gillingham 

et al. 2012, Sunday et al. 2014, Varner and Dearing 2014, Hylander et al. 2015). 

Interrupted gene flow between trailing edge and core populations can result in the 

evolution of unique and distinct ecotypes within trailing edge populations (Hampe and 

Bairlein 2000, Castric and Bernatchez 2003, Pérez-Tris et al. 2004) and adaptations, such 

as more specific habitat selection behaviors (Holt 1987, Hoffmann and Blows 1994, 

Bridle and Vines 2007). Therefore, it may not be appropriate to apply habitat attributes 
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derived from core populations when predicting local distributions of trailing edge 

populations (Austin and Van Niel 2011).  

For temperate species, montane landscapes often provide bioclimatic refugia for 

trailing-edge, populations at warmer latitudes. This is because montane landscape provide 

steeply varying elevation (Gollan et al. 2014), dramatic shifts in slope and aspect (Loarie 

et al. 2008), or unique vegetation types (Lenoir et al. 2013). To predict and manage 

changes in the distribution of trailing edge populations, models to forecast the specific 

locations of suitable, montane refugia should be a priority (Keppel et al. 2012, Staudinger 

et al. 2013, Seabrook et al. 2014, Hylander et al. 2015, Jones et al. 2016, Morelli et al. 

2016).  

The objectives of this study were to: (1) develop local occupancy models using 

local bioclimatic factors for a trailing edge species in the southern Appalachian 

Mountains (2) and to compare these models to a coarser model using only land cover and 

elevation (sensu GAP). We compared the predicted amounts, distributions, and degree of 

fragmentation and isolation of predicted occupied habitats. The southern Appalachian 

Mountains contain a high diversity of species at the southern limits of their range.  The 

steep topography creates a diversity of habitats and steep climate gradients creating 

significant habitat heterogeneity (Thornthwaite 1953, Weiss et al. 1988, Brown 1991, 

Coughlan and Running 1997). The Black-throated Blue Warbler (Setophaga 

caerulescens, BTBW) is an example of a species with trailing-edge breeding populations 

located in the southern Appalachian Mountains. Within the region, the species is 

restricted to high elevation fully-forested sites (Hamel 1992); and recent evidence 
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suggests that individuals preferentially select breeding habitat that receive more mean 

annual precipitation  (Abernathy 2017, chapter 2), suggesting Black-throated Blue 

Warbler may have unique habitat associations in the southern Appalachian Mountains 

compared to the core of their range. We predicted that models that included relationships 

between occupancy and local bioclimatic variables would predict significantly less 

Black-throated Blue Warbler occupied habitat.  

We also predicted that models that included relationships between occupancy and 

local bioclimatic variables would predict significantly more Black-throated Blue Warbler 

habitat fragmentation. To examine how fragmentation changed between models, we 

examined varying thresholds of predicted probability occupancy with regard to fringe 

versus core habitat. We predicted that occupancy of core habitat would be less 

fragmented in the land cover and elevation model and have lower amounts of fringe 

habitat at all thresholds. Further, in both models we expected total amount of both core 

and fringe habitat to decrease with higher thresholds of predicted portability occupancy.  

Methods 

Study Site  

Our study area was Macon County, North Carolina, USA (Figure 3.1). Macon 

County is located within the eastern deciduous forest of the Blue Ridge Physiographic 

Province of the southern Appalachian Mountains and contains portions of The Nantahala 

National Forest. The Nantahala National Forest within our study area consisted of oak-

hickory, oak-pine, northern hardwoods, and cove hardwoods (Day et al. 1988). Mean 

July temperatures average 21.6 °C. Annual precipitation varies significantly in this 
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region, from 178 cm at lower elevations to over 250 cm at higher elevations (Kohl 1990). 

Most low elevation areas (lower than 700m) in Macon County are either developed for 

residential, commercial, or agricultural use. Much of the higher-elevation area lies within 

the Nantahala National Forest and is covered by relatively contiguous second-growth 

hardwood forest (Day and Monk 1974). Over the last few decades, remnant privately-

owned, high elevation areas have recently become vulnerable to exurban development 

(Wear and Bolstad 1998, Gragson and Bolstad 2006).  

Songbird Data 

We combined three point count datasets collected between 2010 and 2016 that 

covered large portions of the county (Table 3.1). The surveys differed in the number of 

times visited to each site, the number of observers at each point, and the time spent at 

each point count (Table 3.1). The surveys were similar in that they all: had a sampling 

area of 100 m, assumed sampling independence, occurred during the breeding season, 

occurred approximately at the same time of day, and were visited multiple times. All 

point count locations were minimally 200 m apart to increase sample independence. In 

order to create a prediction surface for our distribution maps, we created a minimum 

convex polygon around all point count locations. Additionally, we added a 100 m buffer 

around the polygon to account for points on the periphery. All surveys took place from 

May 4th to July 7th day of year (Table 3.1); this time period falls within the breeding 

season of most songbirds in the region (Hall 1964), and because of that, we assumed 

population closure within each season. The first sampling date occurred early in each 

season and the second sampling date occurred during the middle/later portion of the 
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breeding season. The daily sampling window for the three surveys occurred between 

6:00-11:15AM, as songbird activity declines as the day progresses (Robbins 1981). 

Multiple sites were visited each day, varying the order of site visit for each round of 

counts to account for potential changes in activity throughout the morning.  

GIS Data  

For each point, we created 100 m buffers and calculated the mean integrated 

moisture (IMI) (Iverson et al. 1997), heat load index (HLI) (McCune and Keon 2002), 

30-year average annual precipitation (Thornton et al. 2016), elevation (U.S. Geological 

Survey 2016), and 2011 land cover (Homer 2015) within each buffer.  

IMI was derived from hillshade, flow accumulation of water downslope, 

curvature of the landscape, and soil depth (Iverson et al. 1997). It represents the change in 

soil moisture potential across a topographically variable landscape and is a robust 

indicator of site productivity (Iverson et al. 1996) and available soil nitrogen (Morris and 

Boerner 1998). The HLI integrates both direct incident solar radiation and temperature 

(McCune and Keon 2002, Evans et al. 2014). The HLI was created using the ArcGIS 

Geomorphometry & Gradient Metrics in ArcMap 10.X (McCune and Keon 2002, ESRI 

2011, Evans et al. 2014). We derived our historic precipitation data from DAYMET, 

which uses thousands of weather stations to generate daily 1-km2 maps of temperature, 

precipitation, humidity, and radiation over large regions of complex terrain (Thornton 

2016).  

We used land cover classification of preferred Black-throated Blue Warbler 

habitat used by GAP (U.S. Geological Survey Gap Analysis Program 2011). GAPs land 
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cover data that was acquired in 1991 and 1992 using Landsat TM satellite imagery. First 

we obtained land cover classification from GAP. We followed the vegetation 

classification protocol as GAP; specifically, we reclassified land cover into habitat and 

not-habitat based on preferred habitat of Black-throated Blue Warbler used by GAP, 

derived from the literature (see U.S.G.S. Gap Analysis Program, 2011, for supporting 

literature). We calculated the percentage of habitat for Black-throated Blue Warbler 

within a 100 m buffer around each point. All rasters were resampled to 30 m x 30 m pixel 

size in order to be comparable to commonly used GAP distribution models.   

Statistical Analysis  

We transformed the count data to presence absence data. In order to estimate 

detection probability and occupancy of Black-throated Blue Warbler we used a 

hierarchical likelihood-based approach presented by Mackenzie et al. (2002) using the 

package Unmarked (Fiske and Chandler 2011). Specifically, our detection model was: 

 

logit(pi) = α0 + α1 * covariatei1 + α2 * covariatei2 + ... + αx * covariateiX 

 

We first modeled detection probability assuming constant occupancy across sites 

(MacKenzie et al. 2005). Because the songbird data was collected using three survey 

methods, we included survey type in our detection model. We compared three detection 

models: one assuming probability of detection was constant, the second assuming 

probability of detection varied by survey type, and the third assuming probability of 

detection varied by day within the season and survey type. Survey type was coded as a 
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factor and day within the season was coded as an integer. Day of season was standardized 

(to mean of zero and standard deviation of one) to improve stability (Kéry 2010). We 

used Akaike’s Information Criterion to compare detection models (Burnham and 

Anderson 2002), and used the best-approximating detection model in our occupancy 

models. Once we selected our top model, we calculated a probability of detection across 

all our sites.  

Our occupancy model was: 

 

logit(ψi) = B0 + B1 * covariatei1 + B2 * covariatei2 + ... + Bx * covariateiX 

 

In our occupancy model all variables were continuous, and thus, standardized (to 

mean of zero and standard deviation of one) to improve stability (Kéry 2010). Our null 

model assumed that occupancy was constant across sites (MacKenzie et al. 2005). For 

our competing models, we considered combinations of the following variables: land 

cover, mean elevation, mean HLI, mean historic precipitation, and mean IMI. From those 

variables, we constructed a set of 19 candidate models to calculate occupancy (Table 

3.2). It should be noted that elevation, land cover, historic precipitation were highly, 

positively correlated (Table 3.3). We selected the best-supported model structure, as 

indicated by Akaike’s Information Criterion (Burnham and Anderson 2002). 

Using the parameter estimates from our top model we used the Raster package 

(Hijmans & van Etten 2012) to predict occurrence probability across our study area. The 

probability of occurrence was predicted for each 30 x 30 m pixel in our convex polygon 
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around all survey points with a 100 m buffer that served as our study area boundary. All 

statistical analysis was conducted in program R 3.2.2 (R Core Team 2015). 

GIS Modeling for Distribution Maps 

To compare our top model to our land cover and elevation model we needed to 

convert occupancy values to a binary “suitable” or “unsuitable” classification. In order to 

evaluate how fragmentation changed between models, we examined varying thresholds 

of predicted probability occupancy with regard to fringe versus core habitat.  

We tested the effects of occupancy thresholds ranging between 0.50 and 0.90, by 

0.10 unit increments to code as unoccupied or occupied, on our results. We also 

compared the absolute value of the pixel-by-pixel difference in probability of occupancy 

between our top competing and our land cover and elevation only model. We finally 

calculated the difference in probability of occupancy on National Forest and non-

National Forest lands.  

Landscape Pattern Analysis  

To evaluate the pattern of occupancy in our study area at different thresholds of  

suitable habitat, we used FRAGSTATS 4.2 (McGarigal et al. 2002) to estimate landscape 

structure metrics. We used six class (i.e., suitable) metrics that represent isolation and 

fragmentation of suitable habitat: total area (ha), percentage of landscape, area-weighted 

mean patch size, patch area coefficient of variation, area-weighted Euclidean nearest 

neighbor distance, and mean proximity index within a 100 m radius. Total area and 

percentage of landscape are critical measures of landscape composition because such 
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variables quantify how much landscape is of a particular type; such measure were used to 

quantity total amount and percentage at each threshold of both models.  

Mean patch size is the function of the number of patches in a class and total area 

and represents the average size of patches. Further, this metric and the associated second 

order statistics, provide a measure of habitat fragmentation because progressive reduction 

in the size of habitat patches is a key component of habitat fragmentation. Area weighted 

mean patch size provides a landscape-centric perspective of patch size across the extent 

of the landscape because such a measure returns the average condition of a pixel chosen 

at random, and is therefore at better measure than unweighted-mean patch size. This 

variable is best used in conjunction with the variation of patch size, as focusing on first-

order statistics only can loss information such as uniformity of patches across the 

landscape. Area-weighted Euclidean nearest neighbor distance quantifies the distance 

between patches and assigned more weight to larger patches. Mean proximity index 

measures both the degree of patch isolation and the degree of fragmentation of the 

probability of predicted occupancy, within 100 m of the focal patch.  

Results 

Collectively, 1,433 surveys were conducted among the three data sets. We 

detected a total of 315 Black-throated Blue Warbler across all sites. We examined the 

linear correlation between our occupancy model covariates and found that land cover was 

moderately linearly correlated with elevation (r = 0.73) and that elevation and 

precipitation were strongly correlated (r = 0.81) (Table 3.3). 
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For our detection model, survey type was our top model (Table 3.4). Mean 

detection probability across all sites was 0.52. For our occupancy model, our top model 

that included local bioclimatic variables yielded a positive relationships with percent land 

cover and IMI, and mean annual precipitation, and a negative relationship with the 

interaction of HLI and mean annual precipitation (Table 3.5). Percent land cover, mean 

annual precipitation, and the interaction between mean annual precipitation and HLI were 

statistically significant and had confidence intervals that did not overlap zero (Table 3.5). 

Our land cover and elevation model and our land cover, IMI, mean annual 

precipitation, and HLI yielded probability of occupancy across our buffered minimum 

convex polygon (Figure 3.2). Our land cover and elevation model predicted occupancy 

for 86,882 acres at our 50% threshold, 80,188 acres at our 60% threshold, 73,711 acres at 

our 70% threshold, 65,443 acres at our 80% threshold, and 48,965 acres at our 90% 

threshold (Figure 3.3). Our land cover, IMI, mean annual precipitation, and HLI 

occupancy model predicted 58% less acres at our 50% threshold, 64% less acres at our 

60% threshold, 65% less acres at our 70% threshold, 50% less acres at our 80% 

threshold, and 62% more acres at our 90% threshold when compared to our land cover 

and elevation model (Figure 3.4). On U.S. Forest Service property, our land cover and 

elevation model predicted 77,075 acres at our 50% threshold, 52,496 acres at our 60% 

threshold, 27,398 acres at our 70% threshold, 9,655 acres at our 80% threshold, and 922 

acres at our 90% threshold. Our land cover, IMI, mean annual precipitation, and HLI 

occupancy model predicted 52% less acres at our 50% threshold, 59% less acres at our 

60% threshold, 62% less acres at our 70% threshold, 48% less acres at our 80% 
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threshold, and 64% more acres at our 90% threshold when compared to our land cover 

and elevation model property (Figure 3.4). 

In addition, the landscape configuration of suitable habitat changed at different 

thresholds of suitability and between our two main models. For our land cover and 

elevation model, area-weighted mean Euclidian nearest neighbor distance increased with 

increasingly stringent definitions of suitable (Table 3.6). For our land cover, 

precipitation, IMI, and HLI model, area-weighted mean Euclidean nearest neighbor 

distance remained relatively constant, whereas area-weighted mean patch area, patch area 

coefficient of variation, and mean proximity index all decreased (Table 3.6 and 3.7).  

Discussion 

The objective of this study was to estimate the difference in projected suitable 

Black-throated Blue Warbler habitat as predicted by models that integrate finer-resolution 

bioclimatic data to model occupancy of trailing edge species and compare that model to 

land cover and elevation models based on core range, species-habitat relationships. The 

latter approach is currently used in regional conservation and management decisions. The 

occupancy model that included the additional local factors of IMI, HLI, and mean annual 

precipitation out-performed the land cover and elevation model. The coarser nature of the 

land cover and elevation model predicted between 4,803 and 44,776 more occupied acres 

by Black-throated Blue Warbler across Macon Co. within the thresholds of 50 to 80% 

than models that included local bioclimatic variables; however, the land cover and 

elevation model predicted 1,528 less acres occupied acres by Black-throated Blue 

Warbler. Further, habitat loss, as measured by total area and/or percentage of predicted 
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distribution across the landscape, was more severe in the model that incorporates local 

bioclimatic variables in all but the 90% threshold. Approximately half of over-predicted 

occupied habitat was on private land, which would be important for management and 

planning in this area as this area becomes more developed.  

Our results suggest that Black-throated Blue Warbler in the southern Appalachian 

Mountains are selecting sites with specific local climates. Our top model showed that 

Black-throated Blue Warbler occupancy has a negative relationship to the interaction of 

HLI and mean annual precipitation. HLI represents temperature based on solar radiation. 

Though Black-throated Blue Warbler occupancy was higher on sites with high mean 

annual precipitation, occupancy declined in areas with southwest facing slopes with that 

receive high annual mean precipitation, likely because those areas were too warm. 

Further, IMI was significantly positively correlated with Black-throated Blue Warbler 

occupancy. IMI integrates precipitation, slope, and aspect, and is considered an index of 

local site productivity (Iverson et al. 1997) and has been shown to predict nitrogen 

availability (Morris and Boerner 1998). Areas of high productivity may be related to prey 

availability and vegetation structure such as midstory shrubs that serve as critical nesting 

habitat.  Several studies have found that the abundance of breeding birds is positively 

correlated with precipitation (Odum 1950, Bertin 1977, Smith 1977). These studies 

propose songbird relationship with precipitation is indirect and that the direct relationship 

is with food resources. Black-throated Blue Warbler have been found to cluster in areas 

that meet their habitat structural requirements and within those areas select habitat with 

the highest food resources (Steele 1993). Black-throated Blue Warbler, in their southern 
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range, preferentially nest in shrubs (Steele 1993, Holmes 1994), and have been known to 

nest in Rhododendron species (Holmes 2005). Rhododendron spp. density is typically 

higher on sites with higher mean annual precipitation (Oosting and Bourdeau 1955, 

Whittaker 1962, Gleason and Cronquist 1963, Strausbaugh and Core 1978, Seymour 

1982, Wofford 1989, Little 2002, Radford et al. 2010) and ideal habitat for this species is 

within coves (Nilsen 1986, Nilsen et al. 1987, Plocher and Carvell 1987) and on north-

facing slopes (Spencer 1932, Lipscomb and Nilsen 1990, Dobbs and Parker 2004), both 

of which have high IMI (Iverson et al. 1997). The presence of Rhododendron spp., and 

consequently more nesting substrate, may be another important proximate mechanism 

linking high mean annual precipitation and IMI to Black-throated Blue Warbler 

occupancy.   

Across our study site optimal land cover types, precipitation, and elevation were 

moderately to highly correlated. Within our study site, most high elevation areas have not 

been developed compared to the valleys, and thus, it is likely high elevation forest hold 

the only optimal habitat conditions for Black-throated Blue Warbler within our study 

area. It is unclear the degree to which the importance of elevation represents an important 

thermal refuge or is a proxy for other factors including precipitation and site productivity 

for Black-throated Blue Warbler. Our study occurred in montane forest where there is 

high orographic precipitation and elevation are tightly correlated.  Elevation is considered 

a habitat requirement for Black-throated Blue Warbler populations located in the 

southern Appalachians (Hamel 1992); however, elevation only emerged in one of three of 

our top competing occupancy models that included local bioclimatic factors. This likely 
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means that elevation itself is not a habitat requirement, but rather that elevation serves as 

a reasonable proxy for precipitation, temperature, and habitat structure. Our more refined 

model does identify occupied habitats below the current elevational threshold for Black-

throated Blue Warbler when suitable climate exists, and discriminates among high 

elevation sites with suitable land cover that are more or less likely to be occupied based 

on local climate patterns. 

In addition to differences in the amount of predicted occupied habitat, the 

configuration of the predicted occupied habitat changed with the inclusion of bioclimatic 

variables. The land cover and elevation only model and the land cover, precipitation, IMI, 

and HLI model had similar trends with most landscape pattern metrics with area 

predicted as suitable decreasing and measures of fragmentation increasing with higher 

thresholds of predicted probability of occupancy. An indicator of habitat fragmentation is 

habitat loss and progressive reduction in the size of habitat fragments (i.e.  area-weighted 

mean patch size) is a key component of habitat loss and fragmentation. However, 

between the models, more fragmentation is predicted by the land cover, precipitation, 

IMI, and HLI model as is evidenced by overall less total area, percentage of landscape, 

and area-weighted mean patch size in the majority of thresholds. These variables being 

both lower in comparison to the land cover and elevation model, and also decreasing as 

the threshold becomes higher, indicate fragmentation is occurring within the predicted 

occupancy distribution. In addition, land cover, precipitation, IMI, and HLI model also 

shows less uniformity in distribution of predicted occupancy, as evidenced by higher 

levels of variation. Thus, not only is patch size decreasing, it is become less uniform 
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across the landscape. Less uniformity could be related to inherent landscape processes 

driving the land cover, precipitation, IMI, and HLI such as the interaction of variables in 

our top model across the landscape. In our study area precipitation is orographic, and as a 

result the precipitation gradient across Macon County has a lot of variation due to the 

variability in topography. Thus, areas of suitable habitat may be more clustered in the 

landscape that is currently represented by land cover and elevation models; such a 

distinction has important implications for land management and land acquisition for 

conservation.  

Our land cover and elevation only model and our land cover, precipitation, IMI, 

and HLI model had similar trends in isolation, specifically, as the threshold increased, 

isolation between occupied landscape increased; however, it appeared that more isolation 

is occurring in the land cover and elevation model when examining the mean proximity 

index and the area-weighted mean Euclidean nearest neighbor distance. This is likely 

related to smaller patches of suitable habitat retained in the land cover and elevation 

model, and in the land cover, precipitation, IMI, and HLI model those smaller patches are 

likely lost; the loss of more total area and percentage of landscape and less uniformity in 

distribution of predicted occupancy in the land cover, precipitation, IMI, and HLI model 

support this notion. In summary, there was more isolation in the land cover and elevation 

model and less total habitat in the land cover, precipitation, IMI, and HLI model. 

However, habitat loss and fragmentation are intertwined which makes it a complicated 

matter to rank the importance of such variables in relation to habitat isolation with 



 

77 

regards the impacts on a species occupancy (Fahrig 2002, Lee et al. 2002, Neel et al. 

2004, Fahrig 2013).  

Based on our occupancy models, we suggest that Black-throated Blue Warbler are 

selecting areas with favorable microclimates and higher productivity within larger areas 

of suitable land cover. This is consistent with expectations for trailing edge populations 

Black-throated Blue Warbler, which often face increased environmental selective 

pressure to choose more specific habitat (Holt 1987, Hoffmann and Blows 1994, Bridle 

and Vines 2007, Sexton et al. 2009). The result being that trailing-edge populations are 

restricted to “islands” of suitability habitat within a matrix landscape of unsuitable habitat 

(Hampe et al. 2005), potentially resulting in more fragmented distributions not 

observable with coarser distribution models. Our findings for Black-throated Blue 

Warbler are consistent with this pattern. It is likely that selection for suitable refugia and 

high productivity sites may mitigate some of the environmental selective pressure these 

species make at their range margins. Increased fragmentation of suitable habitat has been 

shown to cause reduction in pairing and fecundity. Pairing success is impacted by 

lowering chances of attracting a potential mate (Gibbs and Faaborg 1990, Villard et al. 

1993, Van Horn et al. 1995, Burke and Nol 1998). This in turn lowers songbird fecundity 

(Böhning‐Gaese et al. 1993, Donovan et al. 1995, Robinson et al. 1995). Which 

ultimately leads to populations declines via a reduction in recruitment of individuals into 

the breeding population (Donovan et al. 1995). 

Our findings suggest that habitat associations for trailing edge Black-throated 

Blue Warbler populations differ from those located in core populations. Thus, SDMs for 
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Black-throated Blue Warbler trailing populations need to re-evaluate the ecological 

assumptions and habitat relationships of such models. Species distribution maps, 

especially those produced by GAP and similar programs, are valuable for planners, 

managers, and researchers. However, if the underlying relationships between species 

occupancy or abundance and local habitat factors are not incorporated, models are likely 

to over-predict occupied habitat.  This may lead to erroneous conclusions about 

population dynamics and the status of trailing edge populations, and could create 

unnecessary conflicts in conservation planning. Habitat relationships for trailing edge 

populations may not be known or available to conservation managers or planners. If the 

objectives of programs such as GAP or similar programs is to conduct regional 

assessments of the conservation status of native terrestrial vertebrate species to inform 

regional land management activities (U.S. Geological Survey Gap Analysis Program 

2011), then there will be a need to complementary local models that incorporate local 

species-habitat relationships to guide more effective planning.   
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TABLE 3.1. Table outlining the major differences in survey methods used in this study. 

Author Times 

visited 

per year 

# of 

observers 

Duration of 

survey 

Number 

of points 

Years 

surveyed 

Survey 

start/end 

day of year 

Barlow, 

Paige 

3 2 8 minutes 265 2010, 

2011 

5/9 – 7/7 

Beasley, 

Camille 

3 2 6 minutes 73 2011, 

2012 

5/22 - 6/29 

Abernathy, 

Heather 

2 1 10 minutes 92 2015, 

2016 

5/4 – 7/2 

 

TABLE 3.2. Set of 19 models used to estimate occupancy of Black-throated Blue 

Warbler. 

Model  Parameters 

1 Percent optimal land cover + Elevation 

2 Percent optimal land cover 

3 HLI*Mean annual precipitation 

4 Elevation 

5 Percent optimal land cover + Elevation + IMI 

6 Percent optimal land cover + IMI + Mean annual precipitation 

7 Percent optimal land cover *IMI 

8 Percent optimal land cover + IMI* Mean annual precipitation 

9 Percent optimal land cover + IMI*Elevation 

10 Percent optimal land cover + IMI + HLI + Mean annual precipitation 

11 Percent optimal land cover + IMI + HLI* Mean annual precipitation 

12 Percent optimal land cover + IMI*HLI + Mean annual precipitation 

13 Percent optimal land cover + Elevation*HLI + IMI 

14 Percent optimal land cover *HLI + IMI + Mean annual precipitation 

15 Percent optimal land cover + Elevation + IMI + HLI 

16 Percent optimal land cover + Elevation + IMI*HLI 

17 Percent optimal land cover *HLI + Elevation + IMI 

18 Percent optimal land cover + HLI* Mean annual precipitation 

19 Percent optimal land cover + Elevation + HLI*Mean annual precipitation 
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TABLE 3.3. Pearson’s correlation coefficient (r) table of all variables used in the model displaying an r = 0.60 or higher.  

  Elevation mean IMI mean HLI mean 
Percent optimal land 

cover 

Mean annual 

precipitation 
      

Elevation mean 1.00 - - 0.73 0.81 

IMI mean - 1.00 - - - 

HLI mean - - 1.00 - - 

Percent optimal land cover 0.73 - - 1.00 0.69 

Mean annual precipitation 0.81 - - 0.69 1.00 

 

TABLE 3.4. Top competing models to account for imperfect Black-throated Blue Warbler detection with associated 

parameters estimates and confidence intervals. Significant parameters estimates are in bold-face. 

 

 

Competing Models Survey Type 1 Survey Type 2 Survey Type 3 Date 
Δ 

AIC 

logit(ψi) = α0 - - - - 4.40 

logit(ψi) = α0 + α1 * Survey 

Type 
1.31 (0.91, 1.88) 1.43 (0.92, 2.25) 0.26 (0.11, 0.63) - 0.00 

logit(ψi) = α0 + α1 * Date - - - 0.88 (0.75, 1.08) 3.36 

logit(ψi) = α0 + α1 * Survey 

Type + α2 * Date 
1.33 (0.93, 1.92) 1.37 (0.78, 2.15) 0.26 (0.17, 0.66) 0.94 (0.78, 1.11) 1.31 
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TABLE 3.5. Top competing refugia occupancy models chosen based on a delta AIC below 2. Significant parameters estimates 

are in bold-face 

 

 

 

 

Competing 

Models 
% Habitat IMI HLI Elevation Precipitation HLI*Precipitation HLI* % habitat Δ AIC 

logit(ψi) = B0 + 

B1*Percent habitat 

+ B2*IMI + 

B3*HLI*Mean 

annual 

precipitation 

1.66 

(1.21, 

2.28) 

1.40 

(1.05, 

1.86) 

1.11 

(0.79, 

1.56) 
 

3.57 (2.51, 

5.07) 
0.71 (0.51, 0.98)  0.00 

         

logit(ψi) = B0 + 

B1*Percent habitat 

+ B2*Elevation + 

B3* Mean annual 

precipitation*HLI 

1.45 

(1.04, 

2.02) 

 
0.92 

(0.68,1.2

4) 

1.70 

(1.07, 

2.71) 

2.39 (1.54, 

3.71) 
- 

0.68 (0.49, 

0.95) 
0.44 

         

logit(ψi) = B0 + 

B1*Percent habitat 

+ B2*IMI + 

B3*Mean annual 

precipitation 

1.68 

(1.22, 

2.32) 

1.38 

(1.07, 

1.78) 

-  
3.73 (2.66, 

5.25) 
- - 0.76 
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Table 3.6. FRAGSTATS 4.2 output for land cover and elevation occupancy model.  

 Threshold 

Landscape Metric 0.50 0.60 0.70 0.80 0.90 

Total area 31190.94 21244.50 11087.46 3907.17 373.32 

Percentage of landscape 19.85 13.52 7.06 2.49 0.24 

Area-weighted mean patch area 8361.51 5893.90 2097.85 708.58 140.47 

Coefficient of variation of patch area 683.50 677.39 502.99 284.04 224.06 

Area-weighted mean of Euclidean nearest neighbor 

distance 69.74 105.06 111.14 228.01 779.38 

Mean proximity index 9418.66 5016.47 830.67 45.70 4.69 

 

Table 3.7. FRAGSTATS 4.2 output for land cover, precipitation, IMI, and HLI occupancy model.  

 Threshold 

Landscape Metrics 0.50 0.60 0.70 0.80 0.90 

Total area 13070.97 7637.58 3940.02 1963.71 991.62 

Percentage of landscape 8.32 4.86 2.51 1.25 0.63 

Area-weighted mean patch area 1673.93 1265.46 1367.12 969.80 405.06 

Coefficient of variation of patch area 2009.51 1991.82 1868.39 1576.07 898.31 

Area-weighted mean of Euclidean nearest neighbor 

distance 62.66 64.01 66.97 68.67 66.35 

Mean proximity index 587.51 431.12 263.80 330.63 105.19 



 

96 

 

Figure 3.1. Map of our study area located in Macon County, NC. Points are differentiated with 

different colors and symbols and indicate survey locations.  
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Figure 3.2. Predicted probability occupancy mapped over our study area, Macon County, NC. The left map displays the prediction of 

our land cover and elevation model and the right map displays the prediction of our top refugia model. Lighter colors represent a 

higher predicted probability of occupancy.  
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Threshold Land cover and elevation model Top refugia model 

50% 

  

60% 

  

70% 

  

80% 

  

90% 

  
Figure 3.3. Suitable habitat mapped over our study area, Macon County, NC, at varying 

thresholds of predicted probability occupancy. The first column represents respective threshold 

of the probability of predicted occupancy. The middle and far right column contain predicted 

probability occupancy maps for the land cover and elevation and the land cover, precipitation, 

IMI, and HLI model at varying thresholds respectively.
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Figure 3.4. The difference in acres between land cover and elevation only and land cover, precipitation, IMI, and HLI model suitable 

habitat at varying thresholds of predicted probability occupancy. The graph on the left represents all property-types and the graph on 

the right is difference of acres on U.S.F.S. property only.
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

Summary and conclusions  

The purpose of my research was to examine whether local climate, resource 

productivity, and quality metrics could be used to model local variation in breeding 

songbird abundance. I used precipitation, integrative moisture index (an index of site 

productivity potential), vegetation structure, and caterpillar biomass to model the 

abundance of 11 songbird species including several trailing edge species.  I then used the 

relationships I established for one trailing edge species, the Black-Throated Blue Warbler 

(Setophaga caerulescens, BTBW) to compare different model estimates of habitat 

availability and fragmentation across Macon County, North Carolina, USA. 

In chapter two, I tested whether mean annual precipitation and integrated moisture 

index were direct predictors of foliar C:N and indirect predictors of caterpillar biomass 

and the abundance of 11 songbird species.  I used structured equation modeling of point 

count data from 68 sites over two years to test the hypotheses that: (1) that sites with 

higher mean annual precipitation and integrated moisture would be negatively correlated 

with foliar C:N; (2) mean annual precipitation and integrated moisture would be 

positively correlated with caterpillar biomass, and foliar C:N would be negatively 

correlated with caterpillar biomass; (3) mean annual precipitation, integrated moisture 

index would be positively correlated with songbird abundance (Figure 2.1). I also 
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investigated the relationship between mean annual precipitation, integrated moisture 

index, vegetation structure, and songbird abundance.  

My results showed that mean annual precipitation and IMI were significant local 

predictors of bird abundance. However, only for four of 11 species showed a relationship 

between mean annual precipitation and IMI a positive relationship with abundance. For 

four of the 11 species, the relationships were negative. I expected that the indirect, 

proximate mechanism linking mean annual precipitation and IMI to bird abundance 

would be the effects of moisture on foliar quality and subsequent effects on caterpillar 

biomass. Consistent with my predictions, mean annual precipitation was positively 

correlated with lower foliar C:N although foliar C:N was not a significant predictor of 

caterpillar biomass. I also did not observe any significant direct relationship between 

mean annual precipitation or IMI and caterpillar biomass. One potential explanation for 

why I had strong but, inconsistent relationship between mean annual precipitation and 

songbird abundance, was that since mean annual precipitation was strongly correlated 

with elevation birds are responding to elevation, and ultimately temperature differences. 

For those four species that were more abundant at higher elevation, it is not clear whether 

they are responding directly to the higher mean annual precipitation or whether some 

other factors associated with elevation are driving local abundance. In chapter three, 

looking at the distribution of  Black-throated Blue Warbler, I found that models using 

precipitation were better than models that contained elevation (Chapter 3, Abernathy 

2017). Additionally, as expected, I also found evidence that habitat structure influenced 

the abundance of some bird species.  
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There are several potential reasons why I failed to find a relationship between 

caterpillar biomass, foliar quality, and songbird abundance. One possibility is that my 

methods for estimate caterpillar biomass maybe too imprecise or stochastic to represent 

true prey availability. A second reason why I found no relationship could be that while 

caterpillars are important resource, the songbird sampled in this study exhibit prey 

switching, and I did not account for other insects present at a site. A third reason, may be 

that songbirds can compensate for local variation in caterpillar abundance by expanding 

their search area when feeding nestlings. 

In summary, my study did find evidence that local climatic variables were good 

predictors of variation in breeding songbird abundance, but I did not find any evidence 

that those climatic variables serve as good indirect prey availability. Caterpillar biomass 

was not a significant predictor of bird abundance and foliar C:N was not a significant 

predictor of bird abundance. Instead it may be that, for some species, local climate 

variables may be a driver of vegetation structure, which could affect nest site availability. 

The strong relationship with most species and elevation may also indicate that factors I 

have not considered in this study are important determinates of local songbird abundance.  

In chapter three, I compared models occupancy models for Black-throated Blue 

Warbler included land cover and elevation only (senu GAP) to models that included land 

cover and additional abiotic variables that represent refugia. I determined the degree to 

which models with additional local climate variables differed in predicted warbler 

occupancy across the county. I compared the extent to which more refined models 

predicted the abundance, distribution, and fragmentation of occupied habitats.  My 

hypothesis was that SDMs, which only consider habitat associations of core populations, 
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would over-predict more acreage than SDMs that were built with abiotic variables, 

associated with refugia, for trailing edge populations. I found that occupancy models that 

included the additional factors of IMI, HLI, and mean annual precipitation, out-

performed the habitat-only model that only included suitable land cover and elevation. 

My land cover and elevation only model predicted 4,803 and 44,776 more occupied acres 

by Black-throated Blue Warbler across Macon Co my top competing model that included 

additional bioclimatic variables. In addition, my top competing model yielded a 

distribution map that is more fragmented and isolated than is currently represented with 

publicly accessible distribution maps. About half of over-predicted land was on private 

land; this information is particularly important for management and planning in this area 

as this area becomes more developed.  

My results suggest that Black-throated Blue Warbler in the southern Appalachian 

Mountains are selecting sites with specific local climates. Though Black-throated Blue 

Warbler occupancy was higher on sites with high mean annual precipitation, occupancy 

declined in areas with southwest facing slopes that received high annual mean 

precipitation; this is likely because those areas were too warm. Further, IMI was 

significantly positively correlated with Black-throated Blue Warbler occupancy. Areas of 

high IMI (productivity (Iverson et al. 1997)) may be related to prey availability and 

vegetation structure such as midstory shrubs that serve as critical nesting habitat.  

Based on our occupancy models, we suggest that Black-throated Blue Warbler are 

selecting areas with favorable microclimates and higher net-primary productivity, via 

relatively more precipitation, within larger areas of suitable land cover.  This is consistent 

with expectations for trailing edge populations Black-throated Blue Warbler, which often 
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face increased environmental selective pressure to choose more specific habitat (Holt 

1987, Hoffmann and Blows 1994, Bridle and Vines 2007, Sexton et al. 2009). It is likely 

that selection for suitable refugia and high productivity sites may mitigate some of the 

environmental selective pressure these species make at their range margins. 

Across our study site, optimal habitat, precipitation, and elevation were 

moderately to highly correlated. Within our study site, most high elevation areas have not 

been developed compared to the valleys, and thus, it is likely high elevation forest hold 

the only optimal habitat conditions for Black-throated Blue Warbler. In addition to 

differences in the amount of predicted occupied habitat, the configuration of the predicted 

occupied habitat changed with the inclusion of bioclimatic variables. At the lowest 

suitability threshold, it appears there was little effect of including bioclimatic variables on 

the spatial pattern of predicted occupancy. Compared to the land cover and elevation-

only model, we found that our top model with additional bioclimatic variables lost small 

patches of habitat throughout predicted distribution. Increased isolation and 

fragmentation of suitable habitat has been shown to cause reduction in pairing and 

fecundity. This could indicate that populations will decline in the coming years due to a 

reduction in recruitment of individuals into the breeding population (Donovan et al. 

1995). 

Our findings suggest that habitat associations for trailing edge Black-throated 

Blue Warbler populations differ from those located in core populations. Thus, SDMs for 

Black-throated Blue Warbler trailing edge populations need to reevaluate the ecological 

assumptions and habitat relationships of such models. Habitat relationships for trailing 

edge populations may not be known or available to conservation managers or planners. If 
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the objectives of programs, such as GAP, is to conduct regional assessments of the 

conservation status of native terrestrial vertebrate species to inform regional land 

management activities (U.S. Geological Survey Gap Analysis Program 2011), then there 

will be a need to complement local models that incorporate local species-habitat 

relationships in order to guide more effective planning.   

Overall, I found that mean annual precipitation was highly correlated with 

elevation and likely drove the variation in breeding songbird abundance; further, 

microrefugia and potentially productivity drove occupancy at the Black-throated Blue 

Warbler trailing edge populations sampled. This study was largely a pilot study which 

tried to get behind the mechanism driving insectivore songbird abundance across the 

landscape; because of the study’s pilot-like nature, there are certainly areas of exploration 

in this study area. Future studies should focus on improving the methodology of Chapter 

2. My findings suggest that caterpillar detection and/or abundance was very low across 

the landscape. This would suggest that significantly more sampling effort would be 

required to generate more reliable estimates of caterpillar biomass. Further, efforts might 

be improved by having more robust ways of estimated caterpillars or other insects at 

larger spatial extents. I would also suggest that researchers examine other food resources 

available to songbirds at a site. This is because the songbird being studied can exhibit 

prey switching and thus, only sampling caterpillar biomass may be insufficient to fully 

capture the prey available at a site. Furthermore, a wider gradient of precipitation should 

be examined, specifically a gradient that incorporated more high elevation dry sites. The 

study in chapter three can be expanded upon by modeling occupancy for other trailing 

edge populations in the southern Appalachian Mountains or elsewhere. 
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Despite possibilities for improvement, I still think the findings from this study can 

contribute to the field, especially the findings of chapter three. Chapter two elucidates 

that songbirds are responding to precipitation and those that have positive relationships 

could be responding to available nesting substrate. Chapter three shows the flaws with 

widely accessible SDMs used by managers and planners. Further because knowledge of 

such ecological relationships are not widely available or known to managers or planners, 

such information has not assisted in past and current land management. The consequence 

of such will likely lead to further fragmentation and population decline for the species if 

optimal habitat has been or is currently being reduced. This study elucidated the need for 

conservation planners to be aware that, because of increased environmental selective 

pressure, trailing edge populations are likely dependent on areas of high productivity and 

refugia. More broadly, researchers and managers should reconsider unique biological 

relationships for species on range margins. This consideration will aid in more refined 

distribution maps and reduce over-predictions and ultimately help in preservation of 

trailing edge populations in the southeast.  
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APPENDIX A: ENVIRONMENTAL VARIABLES THAT IMPACTED DETECTION 

AND AVAILABILITY IN SONGBIRDS 

Appendix A contains tables of observational covariates that impacted songbird detection 

and availability used in the structural equation model for Chapter 1.  
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Table A.1 A table of each species availability model. Model covariates that are in boldface are the covariates corresponding to 

species specific estimate, confidence interval, and AIC value in each respective row. Asterisks denotes significance. 

Availability Model BHVI Estimate BHVI Δ AIC 

logit(ϕs,k) = B0 0.04* (0.14, 0.01) 0.0 

logit(ϕs,k) = B0 + B1 * Survey Time 0.97* (1.14, 0.83) 1.88 

logit(ϕs,k) = B0 + B1 * Julian Date 1.02* (1.20, 0.88) 1.90 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 1.02 (0.88, 1.19), 0.97(1.14, 0.83) 3.79 

Availability Model BTBW Estimate BTBW Δ AIC 

logit(ϕs,k) = B0 0.73 (0.07, 7.53) 0.0 

logit(ϕs,k) = B0 + B1 * Survey Time 1.09 (0.85, 1.41) 1.44 

logit(ϕs,k) = B0 + B1 * Julian Date 0.94 (0.77, 1.14) 1.58 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 0.93 (0.76, 1.15), 1.09 (0.85, 1.42) 3.02 

Availability Model BTNW Estimate BTNW Δ AIC 

logit(ϕs,k) = B0 0.09 (0.03, 0.26) 0.0 

logit(ϕs,k) = B0 + B1 * Julian Date 1.06 (0.90, 1.25) 1.52 

logit(ϕs,k) = B0 + B1 * Survey Time 0.97 (0.80, 1.19) 1.93 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 1.06 (0.89, 1.25), 0.98 (0.81, 1.20) 3.49 

Availability Model CAWA Estimate CAWA Δ AIC 

logit(ϕs,k) = B0 0.54 (0.03, 8.37) 0.0 

logit(ϕs,k) = B0 + B1 * Julian Date 0.82 (0.59, 1.15) 0.54 

logit(ϕs,k) = B0 + B1 * Survey Time 0.84 (0.57, 1.24) 0.95 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 0.82 (0.58, 1.15), 0.84 (0.57, 1.22) 1.49 
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Availability Model HOWA Estimate HOWA Δ AIC 

logit(ϕs,k) = B0 1.04 (0.10, 10.5) 14.4 

logit(ϕs,k) = B0 + B1 * Julian Date 14.6* (2.82, 75.1) 0.00 

logit(ϕs,k) = B0 + B1 * Survey Time 0.28* (0.08, 1.00) 3.66 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 10.1 (1.26, 84.0), 0.67 (0.38, 1.18) 0.03 

Availability Model NOPA Estimate NOPA Δ AIC 

logit(ϕs,k) = B0 0.01 (0, 0.27) 1.71 

logit(ϕs,k) = B0 + B1 * Julian Date 0.87 (0.51, 1.48) 3.42 

logit(ϕs,k) = B0 + B1 * Survey Time 0.61 (0.35, 1.05) 0.0 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 0.85 (0.49, 1.48), 0.61 (0.35, 1.05) 1.61 

Availability Model RBGR Estimate RBGR Δ AIC 

logit(ϕs,k) = B0 0.06 (4.72E-05, 68.9) 0.00 

logit(ϕs,k) = B0 + B1 * Julian Date 0.99 (0.70, 1.41) 2.00 

logit(ϕs,k) = B0 + B1 * Survey Time 0.98 (0.70, 1.37) 1.99 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 0.99 (0.70, 1.41), 0.98 (0.70, 1.37) 3.99 

Availability Model REVI Estimate REVI Δ AIC 

logit(ϕs,k) = B0 0.07 (0.05, 1.07) 4.36 

logit(ϕs,k) = B0 + B1 * Julian Date 1.35 (0.90, 2.01) 0.0 

logit(ϕs,k) = B0 + B1 * Survey Time 0.95 (0.79, 1.13) 5.96 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 1.34 (0.91, 1.97), 0.95 (0.77, 1.18) 1.79 

Availability Model SCTA Estimate SCTA Δ AIC 

logit(ϕs,k) = B0 0.53 (0.16, 1.74) 14.0 
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logit(ϕs,k) = B0 + B1 * Julian Date 0.89 (0.68, 1.15) 15.2 

logit(ϕs,k) = B0 + B1 * Survey Time 0.60* (0.42, 0.86) 0.50 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 
0.76 (0.50, 1.16), 0.53* (0.50, 

1.16) 
0.0 

Availability Model TUTI Estimate TUTI Δ AIC 

logit(ϕs,k) = B0 0.01 (0.00, 0.05) 2.70 

logit(ϕs,k) = B0 + B1 * Julian Date 0.89 (0.70, 1.15) 3.86 

logit(ϕs,k) = B0 + B1 * Survey Time 0.78* (0.62, 0.98) 0.0 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 
0.89 (0.69, 1.14), 0.77* (0.61, 

0.98) 
1.04 

Availability Model WEWA Estimate WEWA Δ AIC 

logit(ϕs,k) = B0 0.04 (0.01, 0.17) 3.48 

logit(ϕs,k) = B0 + B1 * Julian Date 0.87 (0.64, 1.19) 4.68 

logit(ϕs,k) = B0 + B1 * Survey Time 0.71* (0.52, 0.95) 0.0 

logit(ϕs,k) = B0 + B1 * Julian Date + B2 * Survey Time 0.84 (0.60, 1.16), 0.70 (0.51, 0.94) 0.74 
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Table A.2. A table of each species detection model. Model covariates that are in boldface are the covariates corresponding to 

species specific estimate, confidence interval, and AIC value in each respective row. Significant values are denoted with an 

asterisk. 

Detection Model  
BHVI Estimate -

1 

BHVI Estimate - 

2 

BHVI Estimate - 

3 

BHVI Estimate - 

4 
Δ AIC 

log(σs,k) = B0  0.68 (50.8, 90.4)    0 

log(σs,k) = B0 + B1 

*  wind 

2.60E+04 

(4.43E+03, 

1.53E05) 

6.60E-01 (0.46, 

0.95) 

9.78E-01 (0.63, 

1.52) 

122 (1.22E-58, 

1.22E+62) 
13.4 

log(σs,k) = B0 + B1 

* noise 

8.10E+03 (0.06, 

1.07E+05) 

9.43E-01 (0.50, 

1.73)  

4.88E-01 (0.02, 

1.0) 

2.98E+03 (1.46E-

50, 6.09E+56) 
39.7 

log(σs,k) = B0 + B1 

* observer 

2.11E-01(4.11E-

32, 1.08E+30) 

3.38E-01(9.31E-

20, 1.23E+18) 

1.66 (3.82E-54, 

7.23E+53) 

10.8 (3.79E-04, 

3.08E+05) 
50.5 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

1.5E+03 (9.1E-

10, 2.4E+15), 
1.10 (4.3E-11, 

1.2E+14), 1.2 

(0.72E-01, 1.84) 

0.93 (0.63, 1.37), 
1.03 (0.71, 1.49), 

1.15 (0.72, 1.84)  

0.56 (0.19, 1.70), 
0.71 (4.3E-11, 

1.2E+14), 0.52 

(1.25, 1.38) 

0.02 (1.7E-158 

2.3E+160), 
4.3E+03 (2.6E-

09, 7.0E+15), 

0.52 (2.2E-11, 

1.2E+14) 

64.6 

Detection Model 
Null / BTBW 

Estimate -1 

BTBW Estimate 

- 2 

BTBW Estimate 

- 3 

BTBW Estimate - 

4 
Δ AIC 

log(σs,k) = B0  
41.56 (37.8, 

45.7) 
   

6 

log(σs,k) = B0 + B1 

*  wind 
1.09 (0.94, 1.27) 1.02 (0.87, 1.21) 1.13 (0.92, 1.39) 0.97 (0.67, 1.41) 

10 

log(σs,k) = B0 + B1 

* noise 

2.72 (9.6E-18, 

7.7E+17) 

2.72 (6.6E-26 

1.1E+26) 

7.39 (7.6E-16 

7.2E+16) 

7.39 (6.4E-87 

8.5E+87) 

144 
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log(σs,k) = B0 + B1 

* observer 
1.05 (0.74, 1.11) 1.29 (0.89, 1.20) 1.29 (1.10, 1.51) 0.99 (0.81, 1.21) 

0 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

2.72 (2.6E-18, 

2.8E+18), 1.03 

(3.1E-11, 

1.6E+12), 2.71 

(1.2E-60, 

6.0E+60)  

2.71 (2.2E-12, 

3.3E+12), 1.0 

(1.6E-10, 

6.2E+09), 

2.71(1.1E-116 

8.8E+115) 

7.39 (3.0E-11, 

1.8E+12), 1.00 

(4.7E-26, 

2.1E+25), 1.0 

(5.2E-75, 

1.9E+74) 

7.39 (3.1E-11, 

1.7E+12), 1.0 

(3.2E-57, 

3.1E+56), 1.0 

(1.7E-77, 

6.0E+76) 

157 

Detection Model 
Null / BTNW 

Estimate -1 

BTNW Estimate 

- 2 

BTNW Estimate 

- 3 

BTNW Estimate - 

4 
Δ AIC 

log(σs,k) = B0  57.9 (47.5, 70.6)    1.22 

log(σs,k) = B0 + B1 

*  wind 
1.27 (0.84, 1.51) 0.83 (0.58, 1.17) 

0.58* (0.41, 

0.83) 
0.86 (0.43, 1.75) 0 

log(σs,k) = B0 + B1 

* noise 

8.12E+03* 

(10.3, 6.40E+06) 
2.18 (0.55, 1.19) 

0.38* (0.18, 

0.83) 

2.98e+03 (8.07E-

218, 1.10E+224) 
48.91 

log(σs,k) = B0 + B1 

* observer 

3.97E+05 (1.86, 

8.46E+10) 

18.1 (8.42E-05, 

3.87E+06) 

2.71 (3.80E-05, 

1.94E+05) 

7.38 (1.14E-05, 

4.78E+06) 
33.16 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

2.72 (3.35E-64, 

2.2E+64), 1.36 

(0, inf), 1.00 

(1.59E-231, 

6.27E+230) 

2.72 (4.12E-16,  
1.80E+16), 2.72 

(0, inf), 2.72 ( 

8.58E-199, 

8.62E+198) 

2.27 (3.06E-39,  

2.41E+39),  0.10 

(1.87E-92  

5.33E+91), 2.27 

(0, inf) 

2.72 (0, inf), 7.39 

(3.33E-101 

1.64E+102), 2.72 

(0, inf) 

48.91 

Detection Model 
Null / CAWA 

Estimate -1 

CAWA Estimate 

- 2 

CAWA Estimate 

- 3 

CAWA Estimate 

- 4 
Δ AIC 

log(σs,k) = B0  47.0 (38.4, 57.4)    0.75 

log(σs,k) = B0 + B1 

*  wind 
1.37 (1.0, 1.88) 1.33 (0.94, 1.90) 1.49 (0.99, 2.26) 0.74 (0.39, 1.40) 15.93 

log(σs,k) = B0 + B1 

* noise 

7.39 (2.37E-72, 

2.03E+80) 

7.39 (1.19E-72, 

4.59E+73) 

7.39 (2.97E-60, 

1.84E+61) 
7.39 (0, inf) 51.81 
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log(σs,k) = B0 + B1 

* observer 

0.60* (0.49, 

0.87) 

0.68* (0.51, 

0.92) 

0.51* (0.37, 

0.70) 
0.67 (0.43, 1.05) 0 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

2.71 (1.49E-04, 

4.97E+04), 5.42 

(0, inf), 2.72 

(0.01, 1.13E+03) 

7.51 (8.98E-03, 

6.29E+03), 7.42 

(0, inf), 2.72 

(2.62E-04, 

2.82E+04) 

20.3 (0.01, 

2.91E+04), 2.77 

(0.10, 75.9), 20.6 

(0.15, 2.93E+03) 

7.39 (1.23E-16 

4.44E+17), 1.00 

(1.53E-05, 

6.54E+04), 20.1 

(2.68E-07 

1.51E+09) 

65.71 

Detection Model 
Null / HOWA 

Estimate -1 

HOWA Estimate 

- 2 

HOWA Estimate 

- 3 

HOWA Estimate 

- 4 
Δ AIC 

log(σs,k) = B0  41.1 (36.1, 46.7)    16.58 

log(σs,k) = B0 + B1 

*  wind 
0.96 (0.80, 1.18) 

0.73* (0.57, 

0.93) 

0.51* (0.36, 

0.72) 
1.57 (0.66, 3.72) 0 

log(σs,k) = B0 + B1 

* noise 

19.5 (0.06, 

6.93E+03) 

17.8 (0.05, 

6.76E+03) 

20.3 (0.08, 

5.39E+03) 

54.6 (9.58E-03, 

3.13E+05) 
96 

log(σs,k) = B0 + B1 

* observer 
0.95 (0.77, 1.15) 

0.89* (0.72, 

1.09) 
1.25 (1.02, 1.53) 0.79 (0.55, 1.14) 12.58 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

19.0 (6.16E-06 

5.87E+07), 9.6 

(1.97, 56.4), 7.60 

(2.44, 23.7) 

8.03 (2.62E-06 

2.46E+07), 

7.43* (1.12, 

49.4) , 2.7 2* 

(0.20, 38.0) 

55.4 (1.71E-05 

1.80E+08), 21.0 

(0.73 605), 7.47* 

(1.31 42.5) 

20.1 (4.52E-06 

8.92E+07), 20.0* 

(1.09, 364), 7.35* 

(1.86 29.0) 

109.78 

Detection Model 
Null / NOPA 

Estimate -1 

NOPA Estimate 

- 2 

NOPA Estimate 

- 3 

NOPA Estimate - 

4 
Δ AIC 

log(σs,k) = B0  46.2 (31.7, 67.5)    0 

log(σs,k) = B0 + B1 

*  wind 
0.10 (0.52, 1.89) 0.83 (0.40, 1.70) 1.26 (0.49, 3.22) 

1.10E+03 (1.00E-

189 1.20E+195) 

8.83 

log(σs,k) = B0 + B1 

* noise 
- - - - 

N/A 
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log(σs,k) = B0 + B1 

* observer 

4.07E+02 

(1.37E-35, 

1.45E+39) 

4.03E+02 

(1.41E-31  

1.15E+36) 

4.04E+02 

(7.99E-43  

2.04E+47) 

4.35 (8.64E-291 

1.88E+295) 

13.62 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

- - - - 
N/A 

Detection Model 
Null / RBGR 

Estimate -1 

RBGR Estimate 

- 2 

RBGR  Estimate 

- 3 

RBGR  Estimate - 

4 
Δ AIC 

log(σs,k) = B0  60.3 (40.2, 90.5)    9.7 

log(σs,k) = B0 + B1 

*  wind 

20.08 (4.49E-

160, 8.98E+161) 

20.1 (6.12E-160, 

6.59E+161) 

20.1 (4.36E-160, 

9.24E+161) 

20.1 (1.37E-108, 

2.94E+110) 
23.7 

log(σs,k) = B0 + B1 

* noise 

7.39 (1.32E-27, 

4.14E+28) 

7.39 (1.07E-93, 

5.42E+94) 

20.1 (6.16E-51, 

6.55E+52) 
7.39 (0, INF) 23.83 

log(σs,k) = B0 + B1 

* observer 
1.30 (0.70, 1.76) 1.24 (0.62, 2.52) 

0.48* (0.26, 

0.83) 
0.31* (0.12, 0.82) 0 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

7.42 (7.07E-18, 

7.79E+18), 2.95 

(0.79, 80), 7.30 

(2.03E-17, 

2.63E+18) 

7.30 (3.79E-18, 

1.41E+19), 2.70 

(0.03, 210), 7.51 

(2.07E-17, 

2.73E+18) 

18.6 (1.76E-17, 

1.98E+19), 2.50 

(0.14, 44.7), 18.2 

(4.75E-17, 

6.98E+18) 

7.35 (8.61E-18, 

6.26E+18), 2.79* 

(1.50, 5.22), 20.2 

(5.18E-17, 

7.87E+18) 

37.7 

Detection Model 
Null / REVI 

Estimate -1 

REVI Estimate - 

2 

REVI  Estimate - 

3 

REVI  Estimate - 

4 
Δ AIC 

log(σs,k) = B0  
47.18 (41.2, 

54.0) 
   11.17 

log(σs,k) = B0 + B1 

*  wind 
1.15 (0.93, 1.43) 1.60 (0.90, 1.50) 

0.77* (0.60, 

0.99) 
0.79 (0.49, 1.28) 

8.17 

log(σs,k) = B0 + B1 

* noise 
1.26 (1.03, 1.54) 1.29 (0.99, 1.68) 0.92 (0.56, 1.50) 

1.10E+03 (2.24E-

252, 5.36E+257) 

13.92 
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log(σs,k) = B0 + B1 

* observer 
0.95 (0.48, 1.07) 

0.72* (0.59, 

0.88) 
0.83 (0.67, 1.03) 0.57* (0.41, 0.80) 

0 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

- - - -  N/A 

Detection Model 
Null / SCTA 

Estimate -1 

SCTA Estimate - 

2 

SCTA  Estimate 

- 3 

SCTA  Estimate - 

4 
Δ AIC 

log(σs,k) = B0  51.9 (44.2, 61.0)    7.22 

log(σs,k) = B0 + B1 

*  wind 
0.87 (0.69, 1.11) 

0.68* (0.52, 

0.88) 
0.77 (0.58, 1.01) 0.91 (0.50, 1.67) 4.02 

log(σs,k) = B0 + B1 

* noise 
0.98 (0.79, 1.23) 0.74 (0.58, 0.95) 0.64 (0.40, 1.02) 

392.79 (3.87E-

165, 3.99E+169) 
5.12 

log(σs,k) = B0 + B1 

* observer 
0.91 (0.76, 1.23) 

0.80* (0.65, 

0.99) 
1.22 (0.94, 1.59) 1.15 (0.76, 1.73) 3.18 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

0.96 (0.75, 1.24), 

0.83 (0.60, 1.05), 

0.86 (0.65, 

1.137) 

0.81 (0.61, 1.08), 

0.70 (0.55, 0.91), 

0.68* (0.50, 

0.93) 

0.64 (0.38, 1.09), 

1.06 (0.82, 1.38), 

0.76 (0.56, 1.03) 

58.9* (1.21E-35, 

2.86E+38), 1.07 

(0.71, 1.62), 0.92 

(0.51, 1.67)  

0 

Detection Model 
Null / TUTI 

Estimate -1 

TUTI Estimate - 

2 

TUTI  Estimate - 

3 

TUTI  Estimate - 

4 
Δ AIC 

log(σs,k) = B0  
263 (0.99, 

7.04E+04) 
   57.83 

log(σs,k) = B0 + B1 

*  wind 

7.39 (5.33E-69, 

1.02E+70) 

20.1 (6.91E-50, 

5.84E+51) 

7.39 (8.34E-51, 

6.549E+51) 

7.39 (2.84E-72, 

1.92E+73) 

65.33 

log(σs,k) = B0 + B1 

* noise 

7.38 (3.35E-23, 

1.63e+24) 

20.1 (8.13E-29 

4.96E+30) 

7.39 (1.55E-95, 

3.51E+96) 
7.39 (0, INF) 

65.89 

log(σs,k) = B0 + B1 

* observer 
12.3 (8, 340) 7.01 (0.18, 280) 

506 (1.19E-47, 

2.16E+52) 
0.79 (0.40, 1.52) 

0 
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log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind 

- - - - N/A 

Detection Model 
Null / WEWA 

Estimate -1 

WEWA Estimate 

- 2 

WEWA Estimate 

- 3 

WEWA Estimate 

- 4 
Δ AIC 

log(σs,k) = B0  40.5 (33.9, 48.8) - - - 
5.07 

log(σs,k) = B0 + B1 

*  wind 
1.19 (0.88, 1.62) 0.72 (0.50, 1.05) 0.92 (0.65, 1.30) 0.81 (0.37, 1.76) 

1.07 

log(σs,k) = B0 + B1 

* noise  
- - - - 

N/A 

log(σs,k) = B0 + B1 

* observer 
0.78 (0.56, 1.50) 0.63 (0.46, 0.85) 0.81 (0.61, 1.10) 0.62 (0.36, 1.05) 

0 

log(σs,k) = B0 + B1 

* noise + B2 * 

observer + B3 * 

wind  

- - - - N/A 

 


