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ABSTRACT 

This thesis proposes a novel algorithm for integrated face detection and face tracking 

based on the synthesis of an adaptive particle filtering algorithm and an AdaBoost face detection 

algorithm. A novel Adaptive Particle Filter (APF), based on a new sampling technique, is 

proposed to obtain accurate estimation of the proposal distribution and the posterior distribution 

for accurate tracking in video sequences. The proposed scheme, termed a Boosted Adaptive 

Particle Filter (BAPF), combines the APF with the AdaBoost algorithm. The AdaBoost 

algorithm is used to detect faces in input image frames, while the APF algorithm is designed to 

track faces in video sequences. The proposed BAPF algorithm is employed for face detection, 

face verification, and face tracking in video sequences. Experimental results confirm that the 

proposed BAPF algorithm provides a means for robust face detection and accurate face tracking 

under various tracking scenarios. 
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1.1 Background 

The fast evolution of computer technologies including hardware and software has advanced the 

state of computing machinery in the past two decades to the point where human life has been 

significantly improved by machine intelligence. This trend has resulted in an active development 

in information technology and artificial intelligence, where more friendly and efficient 

approaches for human computer interaction are developed based on new devices. Computer 

vision, which is one aspect of machine intelligence, focuses on duplication/emulation of human 

vision. Traditionally, computer vision systems have been utilized in specific applications such as 

assembly line inspections and quality control in automated manufacturing. The ever decreasing 

cost of computing systems and video image acquisition equipment has resulted in computer 

vision systems advancing towards more generalized vision applications such as face detection 

and face tracking techniques. 

Face detection, which is the first step in any face processing system, attempts to determine 

whether there are any faces in a single image. If any faces exist, the processing system provides 

the image location and extent of each face (Yang et al., 2002). Face detection is important in any 

human face related system, such as any fully automatic face recognition system, warning and 

surveillance system, or face tracking and human tracking system. Face detection algorithms can 

be typically extended to generic object detection and recognition (Zhao et al., 2003), which leads 

to automatic target recognition (ATR). So far, face detection in computer vision is still a 

challenging task, even though it is easy for humans to perform effortlessly (Hjelmås and Low, 

2001). The various face detection related problems include face localization, facial expression 

recognition, face recognition, face authentication, and face tracking. Traditionally, the solutions 

to the problems are based on image segmentation, facial feature extraction, and face verification 
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in the presence of complicated background. The challenges associated with face detection are 

contributed by changes in scale, location, orientation, pose, facial expression, occlusion, and 

illumination.  

Face tracking aims to keep account of face in a video sequence i.e., determine if there are any 

faces in a single frame, and continuously estimate the locations and possibly the orientations of 

the faces in the video sequence in real time (Darrell et al., 2000; Crowley and Berard, 1997; 

Edwards et al., 1998). Face tracking belongs to the larger area of visual object tracking pursued 

by the computer vision community, where the object of interest is the face. Object tracking has 

been studied extensively by researchers in the context of computer vision because of many vision 

applications such as autonomous robots (Davison and Murray, 1998), video surveillance (Borg et 

al., 2005), human eye tracking (Hansen and Hammoud, 2005) and human face tracking 

(Nummiaro et al., 2003). Generally speaking, an image sequence, which is collected in real time, 

does not change rapidly from one frame to the next frame. This results in a large redundancy of 

object information over consecutive frames spanning a certain time interval. This redundancy 

can be utilized to disambiguate the appearances of the visual objects and track the individual 

objects. Since the human visual system may not distinguish a camouflaged object from a 

complicated background, the exploitation of the redundancy in a sequence of images is still 

regarded as a challenging problem in the computer vision community (Isard, 1998).    

 

1.2 Research objectives 

The primary objective of this thesis is to incorporate face detection with face tracking in video 

sequences. This thesis aims to present a new scheme for robust face detection and accurate face 

tracking, where face detection and face tracking can boost each other in real time. This research 
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will take a step in moving the conventional face tracking mechanism towards the boosted hybrid 

face tracking mechanism.  

In order to address the general problems of face detection and face tracking, such as low 

detection rate, variations in lighting conditions, and partial occlusions or complete occlusions, 

we propose a novel scheme for face detection and tracking in this thesis by combining an 

AdaBoost algorithm with a new particle filtering scheme, termed an adaptive particle filter 

(APF). The new APF uses a new sampling technique to obtain much more accurate estimation of 

the proposal distribution and the posterior distribution, which improves the tracking accuracy in 

the video sequences. We define the combination of the AdaBoost algorithm and the APF as a 

boosted adaptive particle filter (BAPF). The AdaBoost algorithm is used to detect faces in the 

input images, while the APF is used to track the faces in the video sequences. The hybrid system 

of BAPF is employed for face detection, face verification, and face tracking in the video 

sequences. Face detection and face tracking will enhance their performance by mutual 

correlation in the procedure. This BAPF can provide robust face detection and accurate face 

tracking under some situations that the objects are severely corrupted by the occlusions. 

 

1.3 Thesis structure 

This thesis is organized into four chapters in manuscript style. Chapter 1 introduces the 

background and the research objectives. Chapter 2 provides a comprehensive review of the 

literature related to face detection and visual object tracking. Chapter 3 proposes a boosted 

adaptive particle filter (BAPF) for face detection and face tracking by combining an AdaBoost 

algorithm with a new adaptive particle filter (APF). Chapter 4 presents discussions and 

conclusions. 
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The entire thesis is structured as follows. 

 Chapter 1: Introduction 

 Chapter 2: Literature Review 

 Chapter 3: Face Detection and Tracking Using a Boosted Adaptive Particle Filter 

 Chapter 4: Conclusions 
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This chapter provides a relatively comprehensive review of the literature related to face detection 

and tracking. It first briefly introduces the evolution of and the body of literature on face 

detection and tracking. Next, this chapter reviews the literature on face detection. This is 

followed by a literature on visual object tracking, which is generalization of face tracking. 

Finally, it ends with a summary of the various approaches. 

 

2.1 Introduction 

The fast evolution of computer technologies including hardware and software has advanced the 

state of computing machinery in the past two decades, to the point where human life has been 

significantly improved by machine intelligence. This trend has resulted in an active development 

in information technology and artificial intelligence, where more friendly and efficient 

approaches for human computer interaction are developed based on new devices. Computer 

vision, which is one aspect of machine intelligence, focuses on duplication/emulation of human 

vision. Traditionally, computer vision systems have been utilized in specific applications such as 

assembly line inspections and quality control in automated manufacturing. The ever decreasing 

cost of computing systems and video image acquisition equipment has resulted in computer 

vision systems advancing towards more generalized vision applications such as face detection 

and face tracking techniques. For example, computer vision systems, which are deployed in 

desktop or embedded systems (Pentland, 2000a; Pentland, 2000b; Pentland and Choudhury, 

2000), can detect and track the face of the user in real time. 

Face detection, which is the first step in any face processing system, attempts to determine 

whether there are any faces in a single image. If any faces exist, the processing system provides 

the image location and extent of each face (Yang et al., 2002). Face detection is important in any 
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human face related system, such as any fully automatic face recognition system, warning and 

surveillance system, and face tracking and human tracking system. The face detection algorithms 

can be typically extended to generic object detection and recognition (Zhao et al., 2003), which 

leads to automatic target recognition (ATR).  

Face detection in computer vision is still a challenging task, even though it is easy for humans 

to perform effortlessly (Hjelmås and Low, 2001). The various face detection related problems 

are face localization, facial expression recognition, face recognition, face authentication, and 

face tracking. Traditionally, the solution to the problems is based on image segmentation, facial 

feature extraction, and face verification in the presence of complicated background. The 

challenges associated with face detection are contributed by changes in scale, location, 

orientation, pose, facial expression, occlusion, and illumination. The various factors affecting the 

images of a human face are described as follows: 

1. Pose. A change in pose relative to the camera viewpoint affects the appearance of the 

face in the image. 

2. Facial expression. The facial expression determines the appearance of the face in the 

image. 

3. Occlusion. In some cases an object may occlude the face partially or completely, thus 

affecting the appearance of the face in the image. 

4. Orientation. A relative rotation about the camera’s optical axis changes the appearance 

of the face in the image. 

5. Lighting conditions. Different illumination conditions, such as the light source 

distribution and the optical and electronic characteristics of a camera, produce different 

face images. 
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Face tracking aims to keep account of face in a video sequence i.e., determine if there are any 

faces in a single frame, and continuously estimate the locations and possibly the orientations of 

the faces in the video sequence in real time (Darrell et al., 2000; Crowley and Berard, 1997; 

Edwards et al., 1998). Face tracking lies within the larger area of visual object tracking pursued 

by the computer vision community, where the object of interest is the face. Object tracking has 

been studied extensively by researchers in the context of computer vision because of many vision 

applications such as autonomous robots (Davison and Murray, 1998), video surveillance (Borg et 

al., 2005), human eye tracking (Hansen and Hammoud, 2005) and human face tracking 

(Nummiaro et al., 2003). Generally speaking, an image sequence, which is collected in real time, 

does not change rapidly from one frame to the next frame. This results in a large redundancy of 

object information over consecutive frames spanning a certain time interval. This redundancy 

can be utilized to disambiguate the appearances of the visual objects and track the individual 

objects. Since the human visual system may not distinguish a camouflaged object from a 

complicated background, the exploitation of the redundancy in a sequence of images is still 

viewed as a challenging problem in the computer vision community (Isard, 1998).   

While the human visual system models accurate object tracking as an information-processing 

problem associated with robust and real-time computation, we are unaware of any current 

solutions using artificial intelligence which fully understand the human solution. The current 

solutions have to make some assumptions to simplify the tracking problem and accept less than 

perfect results to make progress in specific situations. Therefore, we have to segment the images 

of the real world into the meaningful blocks on the basis of predetermined segmentation criteria. 

Many approaches to this segmentation problem are proposed such as “layers” (Baker et al., 

1998), in which the world contains cardboard cutouts, “textures” (Malik et al., 1999), in which 
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the world is composed of objects defined by homogeneous textures, “contours” (Blake and Isard, 

1998; Li et al., 2003; Rathi et al., 2005), in which the world consists of objects defined by shapes 

with known geometric properties, and “templates” (Boccignone et al., 2005; Luo and 

Bhandarkar, 2005), in which the world consists of objects comprising of predefined regions with 

known properties. 

With an aim to present a comprehensive and critical review of face detection and tracking 

methods, this literature survey is organized as follows: In Section 2.2, we provide a detailed 

review of various approaches to detect faces in a single image. Section 2.3 presents a detailed 

survey and discussion of techniques for visual tracking in an image sequence. Finally, the 

summary and discussion are presented in Section 2.4. 

 

2.2 Face Detection 

In this section, we carefully survey existing techniques for face detection in a single image. We 

classify these techniques into three categories based on how they exploit the knowledge of the 

face: feature-based methods, template-based methods, and image-based methods. Since image-

based methods have demonstrated better results recently compared to the other categories, we 

present a more detailed review of the image-based methods in this section. Some face detection 

methods may clearly overlap category boundaries, and hence can be classified into more than 

one category. For example, template-based methods typically use a face template to extract facial 

features, and then utilize these features for face detection (Hori et al., 2004; Govindaraju, 1996; 

Lades et al., 1993); image-based methods also use some specific features to detect a face, such as 

Haar-like features (Viola and Jones, 2001a; 2001b), and Gabor features (Yang et al., 2004; 
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Zhang et al., 2004). The three categories of face detection methods are described in the 

following: 

1. Feature-based methods. These methods make explicit use of the knowledge of the 

human face and extract structural features that remain unchanged while the pose, facial 

expression, or illumination vary. These features can be generated from the results of low-

level analysis, such as edges, gray-levels, or color. The facial features can also be 

obtained from a more global description of the face using information derived from face 

geometry.  

2. Template-based approaches. A set of pre-defined standard face patterns or templates is 

constructed and stored. The templates represent a face as a whole or the facial features 

separately. These methods use the correlations between an input image and the given 

patterns to detect faces.  

3. Image-based methods. These approaches use learning algorithms to detect faces. The 

learning algorithms can capture the inherent variability in facial appearance within a set 

of training images. Unlike the methods in category 1 and 2, the image-based methods 

acquire the knowledge of the human face implicitly through mapping and training 

schemes.  

 

2.2.1 Feature-based methods 

Typically, feature-based face detection methods are proposed to first detect facial features, which 

are invariant over different poses and lighting conditions. These facial features, which include 

the eyes, nose, mouth, eyebrows and so on, are then used to determine the existence of a face. 

Many methods are proposed to extract features for face detection. These methods can be 
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generally divided into broad categories: low-level feature analysis and high-level feature 

analysis. The low level feature analysis is based on the segmentation of facial features using 

pixel properties, such as gray scale, texture, and skin color. However, the features obtained from 

the low level feature analysis are usually ambiguous and sensitive to changing illumination. The 

high level feature analysis employs a global model of the face and facial features that 

incorporates knowledge of face geometry. High level feature analysis can extract better facial 

features than the low level feature analysis. One common problem of feature-based methods is 

that the features can be severely affected due to the variations in lighting conditions. 

 

2.2.1.1 Low level feature analysis 

Herpers et al. (1996) propose a method for facial feature detection and characteristic key-point 

detection using edges and lines. It first uses a first and second derivative of a Gaussian based 

edge detector to detect edges and lines in the underlying facial region. The line and edge 

detection can be performed efficiently at any orientation and scale. Then it uses three basic 

operations to detect the key-points of the face. The first operation searches the edges or lines in a 

predefined region with a predefined orientation and scale. The orientation of an edge or line in a 

given location is determined by the second operation through the evaluation of the maximal 

response of a rotated filter. The third operation tracks an edge or line by a small step in the 

known direction. Song et al. (2002) propose a method to detect objects in an edge color space 

(ECDS) instead of the image space. Their method assumes that the uniform-color objects and 

textured objects have different distribution characteristics in an ECDS. Their method first 

measures the color of each edge point in the edge detection phase, and then transforms the edge 

points into the 3D ECDS by quantizing the image space and the color space. Finally the edge 
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points associated with different objects are segregated spatially in the 3D ECDS rather than 

being detected as overlapping in the 2D image space. However, this method performs poorly in 

situations with significant illumination change. 

Yang and Huang (1994) propose a face detection method in gray scale pyramid images. 

Assuming that the face image becomes approximately uniform at lower resolutions, this method 

searches the uniform regions starting at a lower resolution to obtain face candidates using a set of 

rules. Then these face candidates are further confirmed based on the prominent facial features 

corresponding to local minima at higher resolution. Graf et al. (1995) explore the gray scale 

behavior of faces to locate facial features. Their approach first applies morphological operations 

to enhance regions that have certain shapes. Based on the peak value of the gray scale histogram 

of the processed image, it then applies the adaptive thresholding algorithm to generate two 

binary images. Finally, their approach evaluates the combinations of connected components in 

the binary images to determine the existence of the face. 

Huang and Trivedi (2004) develop a framework for face detection and tracking using skin 

color and elliptical edge contours. It detects skin blobs if the color of the image region is above a 

predefined threshold and obtains the face candidates. In the meantime, it also detects the face 

candidates by comparing the extracted edge contours with a predefined ellipse. The final face 

candidates are generated using a combination of color and edge features. Finally the face 

candidates are verified using a distance metric in a reduced dimensional feature subspace 

computed via principal component analysis (PCA) to remove non-faces. However, most skin 

color models are typically not very robust to significant variations of the lighting conditions. To 

address this problem, McKenna et al. (1998) propose an adaptive color mixture model to track 

faces in varying lighting conditions. Their approach uses a stochastic model to approximate the 
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color distribution of an object and adapts the model to the changes in lighting conditions. 

Naseem and Deriche (2005) present a color-based face detection method that avoids the effect of 

luminance changes. Using the chromatic or pure color space, a Gaussian distribution model for 

the skin colors is developed to obtain a skin color likelihood image. This likelihood image is then 

converted into a binary image using an adaptive thresholding algorithm. Finally, a template 

matching method is used to estimate the regions with the desired facial properties. 

 

2.2.1.2 High level analysis 

Huang et al. (2004) propose a face detection method that combines multiple facial features. Four 

classifiers are designed based on four feature-based representations: intensity, gradient, Gabor 

(Huang et al., 2003), and 2D Haar wavelet (Tokunaga et al., 2002). The intensity features are 

obtained after the preprocessing phase consisting of linear illumination correction and histogram 

equalization. The gradient direction features are extracted from the local images using the Sobel 

operator. Then the gradient vector is decomposed into its components along the eight chain-code 

directions. A 2D Gabor filter is used in the image space and the spatial frequency domain to 

extract the features. Two types of 2D Haar basis functions are used to characterize the changes in 

intensity along the horizontal and vertical directions resulting in the 2D Haar wavelet features. A 

polynomial neural network (PNN) is employed for each representative feature model to assign a 

face likelihood score to each face candidate. The output scores from the four PNNs are averaged 

to get a final score for each face candidate. 

Wang and ertMariani (2000) propose a filter-based method for face detection and facial 

feature localization. Their approach first uses multi-scale filters to obtain the pre-attentive 

features of the objects in the image. Three representative models are employed in this method: a 



15 

  

structure model, a texture model, and a feature model. Using the geometric patterns of the 

underlying facial components, the structure model is used to group the pixels into face 

candidates. The texture and feature models are used to evaluate the face candidates. The texture 

model validates the gray scale or color similarities of face candidates using face models. The 

feature model compares the region features to specific facial features using the eigen-eyes 

method. 

 

2.2.2 Template-based approaches 

Template-based face detection methods use a standard face pattern, which is predefined or 

parameterized by a function. The similarities between the standard patterns and the local image 

regions are estimated for the face candidate and its various components. The decision regarding 

the face candidates are made based upon the values of these similarities. Based on the previous 

work of Lades et al. (1993), Wiskott et al. (1997) propose an elastic bunch graph matching 

(EBGM) method for face recognition. In this method, faces are represented by labeled graphs 

using a Gabor wavelet transform. A set of M individual model graphs is combined into a stack-

like structure, called a face bunch graph (FBG). Once the initial FBG is generated manually, the 

FBG of new images can be generated automatically by the EBGM procedure. A graph similarity 

measure between an image graph and the FBG corresponding to an identical pose is computed to 

match model FBG to a new image. After obtaining model graphs from an image database and 

image graphs from the probe images, recognition is performed by selecting model FRG 

corresponding to the highest similarity value resulting from the comparison of an image graph to 

all the model graphs. 
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Kwon and Lobo (1994) present a face detection method based on snakes and templates. A 

modified n-pixel snake is used to find and remove small curve segments in the image. An ellipse 

is used to approximate each face. A Hough transform on the remaining snakelets is employed to 

search for a predominant ellipse. Each face candidate is evaluated by a method similar to the 

deformable template matching method. The final decision for each face candidate is provided 

based on the number of matching facial features found in the image and their proportions. Gunn 

and Nixon (1996) present a method for face boundary detection using a dual snake configuration 

based on dynamic programming to locate a global energy minimum. This method uses dynamic 

programming to extract the inner face boundary, whereas it uses a conventional surface normal-

driven technique to extract the outer face boundary. Samal and Iyengar (1995) propose a method 

for face localization using silhouettes as templates. Principal component analysis (PCA) of the 

face examples is used to obtain a set of basis face silhouettes. These eigen-silhouettes in 

combination with a Hough transform are then utilized to localize the faces.  

 

2.2.3 Image-based methods 

Image-based face detection methods have demonstrated excellent results recently among all face 

detection methods. Image-based methods typically depend on techniques from machine learning 

and statistical analysis to search for the discriminating characteristics of face and non-face 

images. In general, these characteristics are modeled using known statistical distributions or a 

combination of known discriminant functions, which are then used for face detection. Much 

research has been conducted in image-based methods resulting in well known techniques, such 

as AdaBoost (Viola and Jones, 2001a; Viola and Jones, 2001b; Wang et al., 2004), FloatBoost 

(Li et al., 2002), S-AdaBoost (Jiang and Loe, 2003), neural networks (Rowley et al., 1996; 
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Curran et al. ,2005), Support Vector Machines (SVM) (Osuna et al., 1997; Shih and Liu, 2004), 

Hidden Markov Models (Rabiner and Jung, 1993), and the Bayes classifier (Schneiderman and 

Kanade, 1998; Schneiderman, 2004).  

 

2.2.3.1 Boosting Learning Algorithms 

Based on previous work of Tieu et al. (2000) and Schneiderman (2000), Viola and Jones (2001a; 

2001b) propose a robust face detection algorithm, which can detect faces in a rapid and robust 

manner with a high detection rate. It presents three contributions for face detection: the integral 

image, a strong classifier comprising of weak classifiers based on the AdaBoost learning 

algorithm, and an architecture comprising of a cascade of a number of strong classifiers. The 

system of Viola and Jones (2001a; 2001b) employs an integral image comprising of Haar-like 

features for effective feature extraction from a large feature set. Lienhart and Maydt (2002) 

provide a set of Haar-like features for AdaBoost, as shown in Figure 2.1.  In the boosting 

procedure as shown in Figure 2.2, AdaBoost first learns effective features from a large feature 

set. Second, it constructs a set of weak classifiers, each of which is composed of a feature, a 

threshold and a parity. Third, it generates a strong classifier based on the above weak classifiers, 

as shown in Figure 2.2. Each iteration will generate a weak classifier. After all iterations, it will 

result in T weak classifiers. These T weak classifiers are combined into a strong classifier using a 

weighted linear combination. The system of Viola and Jones (2001a; 2001b) uses a cascade of 

strong classifiers to improve the detection rate with efficient computation, as shown in Figure 

2.3. The idea is to construct smaller and efficient classifiers based on the sub-windows within the 

image. The simpler and faster classifiers will reject the negative sub-windows. A large number of 

negatives are rejected by the initial classifier with minimal processing. Additional negatives are 
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eliminated by subsequent layers while requiring additional computation. The number of sub-

windows is supposed to be reduced rapidly after several stages of processing. 

 

 
Figure 2.1 Haar-like features used in the AdaBoost algorithm (Lienhart and Maydt, 2002) 

 

 
Figure 2.2 The AdaBoost learning algorithm (Viola and Jones, 2001a) 
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Figure 2.3 The cascade structure of Viola and Jones’s system (2001a) 

Li et al. (2002a) propose the FloatBoost algorithm, an improved version of AdaBoost, for 

learning a boosted classifier for obtaining the minimum error rate. It uses a backtracking 

mechanism to improve the detection rate after each iteration of AdaBoost procedure. In the 

boosting procedure, FloatBoost performs deletions of weak classifiers that are ineffective based 

on the error rate. Thus a strong classifier containing a set of weak classifiers is used to improve 

the classification error. But this method needs more training time than AdaBoost since it entails 

an additional search on the current weak classifiers. Li et al. (2002a) also proposed a multi-view 

face detection system, which is illustrated in Figure 2.4. This structure uses the coarse-to-fine 

strategy and generalizes the cascade detection system proposed by Viola and Jones (2001a). It 

consists of three levels. Each level except the top level contains more than one detector. The final 

result is obtained by merging the combination of the detectors at the bottom level. 
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Figure 2.4 The structure of the multi-view face detection system of FloatBoost (Li et al., 2002a) 

Jiang and Loe (2003) propose S-AdaBoost, a variant of AdaBoost for handling outliers in 

pattern detection and classification. S-AdaBoost divides the input space into sub-spaces based on 

the Divide and Conquer Principle. Dedicated classifiers are used to process the sub-spaces. 

Finally, a specific classifier handles the combination of the outputs of the dedicated classifiers. 

Since this method uses different classifiers in different phases, its computation and effectiveness 

are not satisfactory. Zhang et al. (2004b) propose a face detection method based on boosting in 

hierarchical feature spaces. They assume that global features derived from Principal Component 

Analysis can be used in the later stages of boosting to further improve the detection rate. 

However, it needs more computation time for extracting global features. 

Wang et al. (2004) propose a real-time facial expression recognition system with AdaBoost. 

In the face detection phase, this system uses the AdaBoost algorithm proposed by Viola and 

Jones (2001a; 2001b). In the facial expression recognition phase, the expressions are learned 

from the boosting of Haar-like feature-based look-up-table type weak classifiers. Likewise, Wu 

et al. (2004) propose a rotation invariant multi-view face detection method based on real 

AdaBoost. The faces are grouped based on the appearance from different views, and then weak 
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classifiers are learned from the individual groups to construct a confidence-rated look-up-table 

for Haar-like features. This method uses a view-based detector that can deal with facial profiles 

and 360-degree rotated faces. A nested-structured cascade is proposed in this method, as 

illustrated in Figure 2.5. It consists of common weak classifiers of Viola and Jones’s system 

(2001a) and multiple layers of nested weak classifiers. Each layer is a linear network of common 

weak classifiers and outputs a confidence value for further processing in the following layer. 

Yang et al. (2004) provide a face recognition method with AdaBoosted Gabor features. First, 

AdaBoost selects a small set of effective Gabor features from a large database of images. Then a 

strong classifier incorporating a few hundred of weak classifiers with Gabor features can 

distinguish the difference between two face images. Zhang et al. (2004a) also propose a similar 

method as Yang et al. (2004). 

 

Figure 2.5 View-based detector diagram (Wu et al. 2004) 

 

2.2.3.2 Neural Network Learning Algorithms 

Rowley et al. (1996; 1998) has done the most significant research among all face detection 

methods based on neural networks, as shown in Figure 2.6. This method consists of two major 

components: a set of multilayer neural networks and a decision making module. The multilayer 
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neural networks are used to learn the face and non-face patterns from the training sets consisting 

of face and non-face images, and then applied to detect faces. The decision making module is 

used to generate the final decision on the basis of the combination of multiple detection results. 

The first component receives a 20×20 pixel image region and then outputs a score from -1 to 1, 

where -1 denotes non-face and 1 denotes face. Using multi-resolution processing, the neural 

network can detect a face of size larger than 20×20 pixels. The decision making module merges 

the overlapping detection results from the outputs of the multiple networks and makes a final 

determination. One drawback of this method is that only upright frontal faces can be detected. 

Although Rowley further improves the method to detect rotated face images, the result is not 

promising because of its lower detection rate.  

 

Figure 2.6 Face detection using neural networks (Rowley et al.; 1998) 

Curran et al. (2005) extends the work of Rowley et al. (1998) to address the problem of face 

detection under gross variations. Féraud et al. (2001) propose a face detection method based on a 

neural network model, which is called the Constrained Generative Model (CGM). This approach 

computes the distance of the input subwindow to the set of faces to estimate the probability of an 

input subwindow to be a face. The distance is obtained based on a projection of a pixel in the 
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input image space on the set of faces. The face detector based on CGM and Multilayer 

Perceptron (MLP) consists of four stages, where the last filter outputs the final decision. The 

major disadvantage of this method is that it requires non-face samples to model the projection, 

which entails more computation time. 

 

2.2.3.3 Support Vector Machines 

Support Vector Machines (SVMs) use structural risk minimization to minimize the upper bound 

of the expected generalization error (Osuna et al., 1997), while most other learning methods such 

as neural networks and Bayesian networks are based on minimizing the training error. The SVM 

is a linear classifier which computes a separating hyperplane to minimize the expected 

generalization error. The hyperplane is defined by a weighted combination of a small subset of 

support vectors. The optimal hyperplane is approximated by solving a linear constrained 

quadratic programming problem. The major disadvantages of SVMs are its computation time 

and high memory requirement.  

Terrillon et al. (2000) analyze the performance of SVMs in static color images and propose a 

face detection method. Their approach combines the skin color-based image segmentation with 

the application of SVMs to the invariant features derived from a generalization of the Orthogonal 

Fourier and Mellin Moments (OFMMs). Shih and Liu (2004) propose a face detection method 

combining Discriminating Feature Analysis (DFA) and SVMs. This approach uses both temporal 

and skin color information to locate the regions of interest in the input image. An SVM classifier 

and Bayesian analysis are applied to the features extracted by DFA for face detection. 
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2.2.3.4 Other Learning Algorithms 

Hidden Markov Models (HMMs) assume that face and non-face patterns can be characterized as 

a parametric random process. These parameters can be obtained using a well-defined estimation 

procedure (Rabiner and Jung, 1993). The aim of training an HMM is to estimate the appropriate 

parameters in an HMM model to maximize the probability of observing the training data. 

Schneiderman and Kanade (1998) presente a naive Bayes classifier, which exploits the 

estimation of the joint probability of local appearance and position of a face pattern at multiple 

scales. However, the performance of a naive Bayes classifier is poor. To solve this problem, 

Schneiderman (2004) propose a restricted Bayesian network for object detection. This method 

searches the structure of a Bayesian network-based classifier in the large space of possible 

network structures. The final structure is computed via constrained optimization of two cost 

functions where estimates and evaluation are precomputed: a localized error in the log-likelihood 

ratio function for the structure and a global classification error for the final choice of the 

structure. Park et al. (2005) propose a Face Probability Gradient Ascent (FPGA) method to 

evaluate the optimal position, scale, and rotation variants of each face. Based on the probability 

that the partial image corresponds to a face image, the proposed FPFA approach uses a gradient-

based iterative search to determine the objective function to model the underlying probability 

density function. 

 

2.3 Visual Tracking 

Object tracking has been studied extensively in the context of computer vision because of many 

vision applications such as autonomous robots (Davison and Murray, 1998), video surveillance 

(Borg et al., 2005), human eye tracking (Hansen and Hammoud, 2005) and human face tracking 
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(Nummiaro et al., 2003) that use tracking algorithms extensively. Object tracking in complex 

situations needs to deal with uncertainty and error (Intille et al., 1997). Therefore many 

techniques have been developed to solve the problem of object tracking. We classify visual 

object tracking methods into three (possibly overlapping) broad categories. 

1. Image-based tracking. Image-based tracking methods extract the generic features and 

then group them based on high-level scene information. 

2. Contour-based tracking. Contour-based tracking assumes that the object is defined by 

boundaries with some properties. It usually requires shape models (contours), dynamical 

contour models and other image measurements during the tracking process. 

3. Filtering-based tracking. The Kalman filter and the particle filter are investigated in this 

category. Kalman filtering deals with the tracking of shape and location over time in 

linear dynamic systems. Particle filtering, on the other hand, is not restricted to linear 

systems. The basic idea of the particle filter is to approximate the posterior density using 

a recursive Bayesian filter using a set of particles with assigned weights. 

 

2.3.1 Image-based Tracking 

Many techniques have been developed in the last decade for visual object tracking. Image-based 

tracking methods obtain generic features from the images and then combine them based on the 

high-level scene information. Intille et al. (1997) propose a blob-tracker for human tracking in 

real time. The background is subtracted to extract foreground regions. The foreground regions 

are then divided into blobs based on color. These blobs are clustered using proximity and 

velocity into groups such that a single group of blobs belongs to a single person. This approach 

runs fast, but the major disadvantage is that it merges blobs when the objects in the scene 
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approach each other. To address this problem, Huang and Trivedi (2004) develop a framework 

for face detection and tracking using skin color and elliptical edges. This approach detects skin 

blobs if the color of the area is above a threshold in a color space, and detects the face candidates 

by comparing the detected edges with a predefined ellipse. The face candidates are verified using 

a distance measure in a feature space determined via principal component analysis (PCA). A 

continuous density Markov hidden model (CDHMM) (Rabiner, 1989) is used for face tracking, 

in which face orientations are estimated via maximum a posteriori (MAP) computation in real 

time. However, skin color models are not effective in the presence of significant variation in the 

lighting conditions. 

Bhandarkar and Luo (2005) present a multi-color model for background updating in 

surveillance and monitoring systems. It uses multiple color clusters to represent the background 

at the pixel level. The background updating scheme updates the mean and variance of each color 

cluster with currently observed color values. The advantage of this method is that it is robust and 

computationally efficient for real-time monitoring systems. However, this method will give 

wrong results when the background color does not remain constant for a period of time. Gan et 

al. (2005) propose an object tracking method using the level-set method. This approach explores 

both local and global features of the image sequences to obtain better tracking results for objects 

with a non-uniform energy distribution. First, an initial segmentation of the objects is performed 

using a semi-automatic approach. Second, tracking techniques, which are based on level set 

methods or geometric partial differential equations (PDEs), are applied to segment the objects in 

other video sequences. Third, a given image is deformed according to the PDEs, and the desired 

result is deemed to be the steady state solution of this PDE. The process of solving the PDE can 
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be regarded as that of minimizing a predefined energy function. However, this method has the 

limitation of expensive computation. 

Chen and Tiddeman (2005) present a facial feature tracking method using skin color filtering. 

This approach utilizes a 3D facial feature model to estimate the 3D pose of a human head. Skin 

color filtering is first employed to detect a face in the normalized YCbCr color space and the HSI 

color space. The Lucas-Kanade (LK) algorithm (Lucas and Kanade, 1981) is then applied to 

track the feature points. The LK tracking algorithm detects the motion based on the optical flow. 

However, this method only handles frontal face views, since the disappearance of certain 

features in a multi-view face scene makes the tracking fail. Thome and Miguet (2005) propose a 

human tracking method based on the construction of a 2D human appearance model, which 

provides discriminative features that capture both color and shape properties of the different 

limbs. This method, however, performs poorly when faced with significant changes in the 

ambient lighting conditions. 

 

2.3.2 Contour-based Tracking  

Contour-based tracking assumes that the object is defined by boundaries with known properties. 

It relies on shape models (contours), dynamical models and the image measurements. Kass et al. 

(1987) present a tracking technique featured as “Snakes” to perform robust segmentation and 

region tracking by modeling an object using the contour defining the object outline which is 

insensitive to lighting changes, and applying smoothness constraints on the contour curvature 

and the object motion. This tracking mechanism is more general than modeling entire objects, 

and also more clutter-resistant than tracking techniques based on signal-processing or similar low 

level analysis applied to features such as corners or edges. Many researchers (Blake and Isard, 
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1998; MacCormick, 2000) have adopted and extended this idea of active contour modeling in the 

content of tracking.   

Blake and Isard (1998) develop a probabilistic active contour framework for visual tracking 

where objects are represented by B-spline curves in an image sequence. A given object is defined 

by its contour outline modeled as a B-spline. Specifically, suppose the coordinates of the B-

spline control points are ( ) ( ) ( )nn y,x,,y,x,y,x L2211 , then the B-spline is a parameterized curve 

( ) ( )( )Tsy,sx  defined on an interval of the real line: 
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matrix whose entries are polynomials in s, and x , yr  are 1×n  column vectors representing the x- 

and y-coordinates of the control points respectively. Any such B-spline is called a contour. 

Figure 2.7 illustrates an example of a face-like contour with 13 control points. 

 

Figure 2.7 A B-spline contour specified by control points (Isard, 1998) 

In practice, it is desirable to restrict the configuration of the spline to a shape-vector 

determined by the configuration vector X and described by QXW +⋅=⎟⎟
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, where W is the 

dn×2 shape matrix, configuration vector X is a 1×d  column vector, Q is a 1×d  vector called 
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the object template. Generally, the shape space allows affine deformations of the template Q, in a 

space of rigid and non-rigid deformations as shown in Figure 6. Isard and Blake (1998) apply the 

B-spline representation to contours of objects and present the Condensation algorithm. The 

Condensation algorithm uses the affine group parameters as the state vector, learns a dynamical 

model for these parameters, and employs a particle filter to estimate these parameters. However, 

this approach cannot deal with local deformations of the deforming object because it only tracks 

the affine parameters. Following the idea of Blake and Isard (1998), Wu et al. (2003) propose a 

generative model approach for contour tracking in the presence of non-stationary clutter. This 

method uses a proposed dynamic Bayesian network to deal with occlusions via explicit modeling 

and inference. However, this method is computationally very intensive. 

A more recent development in the contour-based tracking is the use of the level set technique 

(Sethian, 1989), which is an implicit representation of contours. To segment a shape using level 

sets, this technique deforms an initial guess of the contour shape until it reaches the minimum of 

an image-based energy functional. Some recent representative research in tracking using level set 

techniques include the works of Yezzi and Soatto (2003), Jackson et al. (2004), and Rathi et al. 

(2005). Yezzi and Soatto (2003) propose a definition for motion and shape deformation for a 

deforming and moving object. A finite dimensional group action, such as a Euclidean or Affine 

group is used to parameterize the motion of the object. The shape deformation is defined by the 

total deformation of the object contour (infinite-dimensional group) modulo the finite-

dimensional motion group. Tracking is then described by a trajectory defined on the finite-

dimensional motion group. This method depends only on the observed images for tracking and 

does not make any use of the prior information on the dynamics of the group action or of the 

deformation. Thus it collapses when there is an outlier observation or when there is occlusion. 
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To solve this problem, Jackson et al. (2004) propose a generic local observer to combine prior 

knowledge of the system dynamics in the tracking framework, where a constant velocity prior is 

imposed on the group action and a zero velocity prior is imposed on the contour. A joint 

minimization of the energy is used to achieve the observed value of the group action and the 

contour. However, this approach has two disadvantages: intensive computation and instability in 

the case of a nonlinear system. A joint minimization over the group action and the contour at 

each time stamp is computationally intensive, and it is hard to choose an observer to guarantee 

stability for nonlinear system. To address these problems, Rathi et al. (2005) formulate 

geometric active contours as a parameterization technique to deal with the deformable objects. 

This approach combines a prior system model with an observation model, uses a particle filter to 

estimate the conditional probability distribution of the group action and the contour at each time 

step. However, this method still has two major problems. Since this method has to include some 

kind of predefined shape information, one problem is the difficulty to track highly deformable 

objects whose shapes are not all predefined. Another problem is the poor performance when the 

tracked object is completely occluded for many frames.  

 

2.3.3 Filtering-based Tracking 

2.3.3.1 Kalman filter-based tracking 

The tracking of object shape and location over time is well handled by the Kalman filter in the 

case of linear dynamic systems (Rehg and Kanade, 1994). The Extended Kalman Filter (EKF) is 

the extension of the Kalman filter to a nonlinear but unimodal process where non-linear behavior 

is approximated by local linearization (Jebara et al., 1998).  Zhao et al. (2004) develop a tracking 

system using an ellipsoidal model for the gross human shape. The shape parameters are tracked 
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using a Kalman filter. This method uses an appearance model. The tracking mask of the model is 

an ellipse rather than a bounding rectangle, however, this model still suffers from the drawback 

of wrong updates. 

Girondel et al. (2004) present a method for tracking multiple persons using Kalman filtering 

and face detection. They use a region-based strategy similar to that of Zhao et al. (2004). Face 

detection restricts the applicability of the method to viewpoints where skin color-based 

segmentation may be performed. This method uses a Kalman filter to overcome the occlusion 

problem. However, only partial Kalman filtering is used because several image measurements 

are likely to result in misses. This approach takes advantage of a Kalman filter only in a 

predictive mode, thus restricting it to a simple motion model. 

Luo and Bhandarkar (2005) propose a multiple object tracking method combining the Kalman 

filter with elastic matching. A region-based model is used to model the objects in a network of 

grids. Each grid encodes the color information and the feature points of the object. The grid 

network contains the contour and the object shape information. This method uses a Kalman filter 

to predict the velocity of the tracked object, and an elastic matching algorithm to localize the 

objects defined by the object model. The proposed tracking model consists of three sub-models: 

the object model, the velocity estimation model, and the velocity measurement model. This 

approach has the advantage of being able to track both rigid and deformable objects. Another 

advantage is that the elastic matching algorithm can provide good tracking when the Kalman 

filter results in wrong prediction. However, this approach is restricted to situations where the 

occlusion is relatively short, especially if the motion model and object model are simple. 
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2.3.3.2 Particle filter-based tracking 

Various particle filter-based approaches have been developed to improve the tracking 

performance. It is widely accepted that the particle filter has tracking performance superior to 

that of Kalman filter (Chang et al., 2005). In this context, particle filtering presents a robust 

object tracking framework without being restricted to linear systems. Particle filters, also known 

as sequential Monte Carlo filters, have been widely used in visual tracking to address limitations 

arising from non-linearity and non-normality of the motion model (Li et al., 2003; Okuma et al., 

2004). The basic idea of the particle filter is to approximate the posterior density using a 

recursive Bayesian filter based on a set of particles with assigned weights. For each frame of an 

image sequence in the visual tracking framework, a particle filter usually consists of three steps: 

sampling, weighting, and selection. A set of particles is drawn from a proposal distribution in the 

sampling step. In the weighting step, each particle is then weighted based on the ratio of its true 

probability to its approximated probability using the proposal distribution. After outputting the 

particle states and weights for the posterior density estimation, the particles are selected (re-

sampled) according to the estimated posterior density to obtain a uniform weight distribution in 

the selection step.  

The Condensation algorithm, a simple particle filter, proposed by Isard (1998) is designed to 

solve the tracking problems arising from non-linearity and non-normality of the motion model. 

In the sampling step, the Condensation algorithm uses a simple proposal distribution to draw a 

set of particles, which defines the conditional distribution on the particle state in the previous 

frame. This proposal distribution does not make use of the information from the current frame. 

The latest observation is only applied in the weighting step rather than in the sampling step. As a 

result, it generates only a very rough estimation of the posterior distribution and also needs a 
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large number of particles to represent the posterior distribution. MacCormick and Isard (2000) 

present a partitioned sampling technique to solve this problem, which requires that the state-

space be sliced. Doucet et al. (2001) present an optimal proposal distribution (OPD) for state 

estimation of jump Markov linear systems, which is used to recursively compute optimal state 

estimates based on the selection of the minimum value of the variance of the weights. However, 

this approach is computationally very intensive. To address the above problems, Li et al. (2003) 

propose a Kalman particle filter (KPF) and an unscented particle filter (UPF) to improve the 

particle sampling in the context of visual contour tracking. This approach makes use of a Kalman 

filter or an unscented Kalman filter to incorporate the current observation. The Kalman filter or 

the unscented Kalman filter can steer the set of particles to regions of high likelihood in the 

search space, and thus reduce the number of particles. This approach also uses the local 

linearization of the OPD with the Gaussian distribution to result in less intensive computation 

compared to the original OPD. However, this approach does not handle the occlusion problem, 

and the Kalman filter and the unscented filter may result in wrong updates due to complicated 

motions of the objects in the scene. 

To address the occlusion problem, Wang and Cheong (2005) propose a particle filter with a 

Markov random field (MRF) based representation of the tracked object within a dynamic 

Bayesian framework. This method transforms the object into a composite of multiple MRF 

regions to improve the modeling accuracy. Each MRF region is able to switch labels between 

foreground or background, thus the occlusion can be accurately modeled by exploiting the 

flexibility of the observation model. However, this approach has two main problems: one is the 

intensive computation involved in the MRF modeling; the other is that it is hard to get the stable 

and compact regions in the MRF implementation. Using the data association techniques, Chang 
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et al. (2005) present a kernel particle filter to improve sampling efficiency for multiple object 

tracking. This scheme invokes kernels to continuously approximate the posterior density, where 

the kernels for object representation and localization are allocated based on the gradient derived 

from the kernel density. Since this method assumes that the objects being tracked are 

indistinguishable from each other in terms of the observation model, it is difficult to handle 

situations in which the motion pattern of objects in one group changes drastically. This is a 

general problem with most data association techniques. Rathi et al. (2005) formulate geometric 

active contours as a parameterization technique to deal with the deformable objects. This 

approach first incorporates a prior system model with an observation model, and then uses a 

particle filter to estimate the conditional probability distribution of the group action and the 

contour at each time step. However, this method performs poorly when the tracked object is 

completely occluded for many frames. 

Isard and MacCormick (2001) propose a Bayesian multiple-blob tracker (BraMBLe), an 

early implementation of a particle filter in which the number of tracked objects can vary during 

tracking. Based on the theory of Bayesian correlation, this approach develops a robust 

observation model that precisely represents the likelihood of differing numbers of objects being 

tracked. However, this approach relies on modeling a fixed background to identify foreground 

objects. To address this problem, Okuma et al. (2004) relax the assumption of a fixed 

background to handle real image sequences, where the background may vary. Based on the work 

of Vermaak et al. (2003), Okuma et al. (2004) propose a boosted particle filter (BPF) for 

multiple object detection and tracking, which interleaves the AdaBoost algorithm with a simple 

particle filter (the Condensation algorithm). This approach uses the AdaBoost algorithm to learn 

models of the objects, and these models are then used to steer the particle filter. The proposal 
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distribution of the particle filter incorporates information from AdaBoost in the current 

observation, which relieves the sampling/estimation problem in the Condensation algorithm. 

However, this mixture method does not present a systematic way of incorporating object models 

to guarantee accurate approximation of the proposal distribution, and also does not address the 

occlusion problem. 

 

2.4 Summary 

We aim to provide a comprehensive review of the literature related to face detection and visual 

tracking, and to categorize the various approaches proposed in over 90 papers. The face detection 

methods are also divided into three major categories, and the visual tracking approaches are also 

divided into three major categories. The face detection methods and the representative research 

works are summarized in Table 2.1. Table 2.2 summarizes the visual tracking approaches and the 

representative research works. However, note that some methods can be classified into more than 

one category. 

From Table 2.1 and the survey on face detection in Section 2.2, we can recognize that 

significant progress has been made in face detection in the last decade. Face detection has 

evolved from methods that use simple features and heuristics to methods that use multiple 

complex features, probability analysis and learning algorithms. Due to the variation in lighting 

conditions, orientation, pose, facial expression, facial hair, and occlusion, face detection is still a 

challenging problem in the computer vision research community. Although visual object tracking 

has made large progress in the last decade as seen in Table 2.2 and the literature review in 

Section 2.3, there is still work to be done to deal with complex motions of scene objects, 

complex backgrounds, deformable shapes, and cases of complete occlusion. Currently many 
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researchers have focused on the statistical analysis of the tracked objects, resulting in statistical 

models for the motion and appearances of the scene objects, to handle the above challenging 

problems. Interestingly, there are only a few works that deal with the interleaving of face 

detection and visual tracking. We can expect that the research on robust face detection and 

tracking will still remain an active research area, since the research addresses several difficult 

problems dealing with general object detection, tracking and recognition. 

To address the problems associated with face detection and visual tracking reviewed in 

Section 2.2 and Section 2.3, we propose a novel scheme for face detection and tracking in this 

thesis by combining the AdaBoost algorithm with a new particle filtering scheme, called an 

adaptive particle filter (APF). The new APF uses a novel sampling technique to obtain much 

more accurate estimation of the proposal distribution and the posterior distribution. We term the 

combination of AdaBoost and APF as a boosted adaptive particle filter (BAPF). First, the 

AdaBoost algorithm is used to detect faces in an input image, and the BAPF algorithm is then 

used for face verification and tracking in real video sequences. The BAPF algorithm can obtain 

good tracking results in situations where the objects are severely occluded. 
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Table 2.1 Face detection methods and their representative works 

Category Characteristics Works 

Facial features with edges and 
lines 

Herpers et al. (1996) 
Song et al. (2002) 

Gray scale Yang and Huang (1994) 
Graf et al. (1995) 

Skin color and elliptical edges Huang and Trivedi (2004) 
McKenna et al. (1998) 
Naseem and Deriche (2005) 

 
 
 
 
Feature-based methods 

Multiple facial features Huang et al. (2004) 
Wang and ertMariani (2000) 

Elastic bunch graph matching Wiskott et al. (1997) 
Snakes and templates Kwon and Lobo (1994) 

Gunn and Nixon (1996) 

 
Template-based methods 

Silhouettes Samal and Iyengar (1995) 
AdaBoost  Viola and Jones (2001a; 2001b) 

Lienhart and Maydt (2002) 
Wang et al. (2004) 

FloatBoost Li et al. (2002a; 2002b) 
S-AdaBoost Jiang and Loe (2003) 
AdaBoost and PCA Zhang et al. (2004b) 
AdaBoost with look-up-table 
type weak classifiers 

Wu et al. (2004) 

 
 
 
 
Boosting 
Learning 

AdaBoost with Gabor features Yang et al. (2004) 
Multilayer neural networks Rowley et al. (1996; 1998) 

Curran et al. (2005) 
 
Neural 
Network (NN) NN and Constrained Generative 

Model 
Féraud et al. (2001) 

SVM with polynomial kernel  Osuna et al. (1997) 
 

SVM with Orthogonal Fourier 
and Mellin Moments (OFMM) 

Terrillon et al. (2000) 

 
Support Vector 
Machines 
(SVM) 

SVM with Discriminating 
Feature Analysis 

Shih and Liu (2004) 

Hidden Markov Model (HMM) Rabiner and Jung (1993) 

Naive Bayes classifier Schneiderman and Kanade 
(1998) 

Restricted Bayesian network Schneiderman (2004) 

 
 
 
 
 
 
 
 
 
 
Image-
based 
methods 

 
 
Other Learning 
Algorithms 

Face Probability Gradient Ascent 
(FPGA) 

Park et al. (2005) 
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Table 2.2 Visual tracking methods and their representative works 

Category Characteristics Works 

Blob-tracker Intille et al. (1997 
Skin color and elliptical edges Huang and Trivedi (2004) 
Continuous density Markov 
hidden model (CDHMM) 

Rabiner (1989) 

Multi-color model Bhandarkar and Luo (2005) 
Level-set method or geometric 
partial differential equations 
(PDE) 

Gan et al. (2005) 

Skin color filtering Chen and Tiddeman (2005) 

 
 
 
 
Image-based tracking 

2D human appearance model Thome and Miguet (2005) 
Snakes Kass et al. (1987) 
Active contour Blake and Isard (1998) 

Isard (1998) 
MacCormick (2000) 

 
 
 
 
Contour-based tracking Level set technique Sethian (1989) 

Yezzi and Soatto (2003) 
Jackson et al. (2004) 
Rathi et al. (2005) 

Kalman filter (KF) Rehg and Kanade (1994) 
Extended Kalman Filter (EKF) Jebara et al. (1998) 
KF with ellipse and color Zhao et al. (2004) 

Girondel et al. (2004) 

 
Kalman 
filter-based 
tracking 

KF with elastic matching Luo and Bhandarkar (2005) 
Condenstaion algorithm Isard (1998) 
PF with partitioned sampling MacCormick and Isard (2000) 
PF with optimal proposal 
distribution (OPD) 

Doucet et al. (2001) 

Kalman particle filter (KPF) and 
unscented particle filter (UPF) 

Li et al. (2003) 

PF with Markov random field 
(MRF) 

Wang and Cheong (2005) 

Kernel particle filter Chang et al. (2005) 
PF with geometric active 
contours 

Rathi et al. (2005) 

Multiple-blob tracker 
(BraMBLe) 

Isard and MacCormick (2001) 

 
 
 
 
 
 
Filtering-
based 
tracking 

 
 
 
 
 
Particle  
filter-based 
tracking 

Boosted particle filter (BPF) Okuma et al. (2004) 
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CHAPTER 3 

FACE DETECTION AND TRACKING USING A BOOSTED ADAPTIVE PARICLE 

FILTER1 

 

 

 

 

                                                 
1 Zheng, W. and S. Bhandarkar. To be submitted to IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 
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Abstract: This paper proposes a novel algorithm for integrated face detection and face tracking 

based on a combination of a novel adaptive particle filtering algorithm and an AdaBoost face 

detection algorithm. The proposed method provides a general framework for detecting and 

tracking faces in video sequences. Using a novel sampling technique, an adaptive particle filter 

(APF) is introduced to obtain accurate estimation of the proposal distribution and the posterior 

distribution for accurate tracking in video sequences. The proposed scheme, termed a Boosted 

Adaptive Particle Filter (BAPF), combines the APF with the AdaBoost algorithm. The AdaBoost 

algorithm is used to detect faces in the input images, while the APF is used to track faces in 

video sequences. The proposed BAPF algorithm is employed for face detection, face 

verification, and face tracking in video sequences. The individual performances of face detection 

and face tracking can be mutually improved in the proposed tracking procedure. The results of 

experiments confirm that the proposed BAPF algorithm provides a means for robust face 

detection and accurate face tracking under various tracking scenarios. 

 

Keywords:  Face detection, face tracking, particle filter, boosted learning 
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3.1 Introduction 
 
 
 

Face detection is important in any human face related system, such as any fully automatic face 

recognition system, a video-based surveillance and warning system, or face tracking and human 

tracking system. Recently, face detection using machine learning and statistical estimation 

methods has demonstrated excellent results among all existing face detection methods. Much 

research has been conducted in the area of face detection techniques, such as AdaBoost (Viola 

and Jones, 2001a; Viola and Jones, 2001b), FloatBoost (Li et al., 2002), S-AdaBoost (Jiang and 

Loe, 2003), neural networks (Rowley et al., 1996; Curran et al., 2005), Support Vector Machines 

(SVM) (Osuna et al., 1997; Shih and Liu, 2004), Hidden Markov Models (Rabiner and Jung, 

1993), and the Bayes classifier (Schneiderman and Kanade, 1998; Schneiderman, 2004). Viola 

and Jones (2001a; 2001b) propose a robust AdaBoost face detection algorithm, which can detect 

faces in a rapid and robust manner with a high detection rate. Li et al. (2002) propose the 

FloatBoost algorithm, an improved version of AdaBoost, for learning a boosted classifier with 

minimum error rate. It uses a backtrack mechanism to improve the detection rate after each 

iteration of the AdaBoost procedure. However this method is computationally more inefficient 

than the AdaBoost algorithm. Jiang and Loe (2003) propose S-AdaBoost, a variant of AdaBoost 

for handling outliers in pattern detection and classification. Since this method uses different 

classifiers in different phases, its computational efficiency and accuracy are not satisfactory. 

Rowley et al. (1996) have done the most significant research among all face detection methods 

based on neural networks. They employ a multilayer neural network to learn the face and 

nonface patterns from the training sets consisting of face and nonface images. One drawback of 

their method is that only upright frontal faces can be detected. Although Rowley et al. further 

improve the method to detect rotated face images, the result is not promising because of low 
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detection rate. Support Vector Machines (SVMs) uses structural risk minimization to minimize 

the upper bound of the expected generalization error (Osuna et al., 1997; Shih and Liu, 2004). 

The major disadvantages of SVMs are intensive computation and high memory requirements. 

Hidden Markov Models (HMMs) assume that face and non-face patterns can be characterized as 

a parametric random process. These parameters can be obtained using a well-defined estimation 

procedure (Rabiner and Jung, 1993). The aim of training an HMM is to estimate the appropriate 

parameters in an HMM model to maximize the probability of observing the training data. 

Schneiderman and Kanade (1998) present a naive Bayes classifier, which exploits the estimation 

of the joint probability of local appearance and position of a face pattern at multiple scales. 

However, the performance of the naive Bayes classifier is poor. To address this problem, 

Schneiderman (2004) proposes a restricted Bayesian network for object detection. This method 

searches the structure of a Bayesian network-based classifier in the large space of possible 

network structures. 

Object tracking has been studied extensively in the context of computer vision because of 

various vision applications such as autonomous robots (Davison and Murray, 1998), video 

surveillance (Borg et al., 2005), human eye tracking (Hansen and Hammoud, 2005) and human 

face tracking (Nummiaro et al., 2003) that use tracking algorithms extensively. Issues of 

uncertainty and error should be considered in object tracking under complex situations (Intille et 

al., 1997). Therefore, many techniques have been developed to solve the problem of object 

tracking. 

Many techniques have been developed in the last decade for visual object tracking. Image-

based tracking methods obtain generic features from the images and then combine them based on 

high-level scene information. Intille et al. (1997) propose a blob-tracker for human tracking in 
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real time. The background is subtracted to extract foreground regions. The foreground regions 

are then divided into blobs based on color. This approach runs fast, but it has a major 

disadvantage in terms of merging blobs when the objects in the scene approach each other. 

Contour-based tracking assumes that the object is defined by boundaries with known properties 

(Blake and Isard, 1998; MacCormick, 2000; Rathi et al., 2005). Contour-based tracking relies on 

shape models (contours), dynamical models and image measurements. The tracking of object 

shape and location over time is well handled by the Kalman filter in the case of linear dynamic 

systems (Rehg and Kanade, 1994). The Extended Kalman Filter (EKF) is an extension of the 

Kalman filter to a nonlinear but unimodal process where non-linear behavior is approximated by 

local linearization (Jebara et al., 1998).  It is widely accepted that the particle filter is superior in 

tracking performance to the Kalman filter (Chang et al., 2005), since the particle filter presents a 

robust object tracking framework without being restricted to linear systems.  

Particle filters, also known as sequential Monte Carlo filters, have been widely used in visual 

tracking to address limitations arising from non-linearity and non-normality of the motion model 

(Li et al., 2003; Okuma et al., 2004). The basic idea of the particle filter is to approximate the 

posterior density using a recursive Bayesian filter based on a set of particles with assigned 

weights. The Condensation algorithm, a simple particle filter, proposed by Isard (1998) is 

designed to solve the tracking problems arising from non-linearity and non-normality of the 

motion model. During the sampling step, the Condensation algorithm uses a simple proposal 

distribution to draw a set of particles, which defines the conditional distribution on the particle 

state in the previous frame. This proposal distribution does not make use of the information from 

the current frame. 
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Various approaches have been developed to improve the tracking performance of a particle 

filter. Li et al. (2003) propose a Kalman particle filter (KPF) and an unscented particle filter 

(UPF) to improve the particle sampling in the context of visual contour tracking. This approach 

makes use of a Kalman filter or an unscented Kalman filter to incorporate the current 

observation. The Kalman filter or the unscented Kalman filter can steer the set of particles to 

regions of high likelihood in the search space, and thus reduce the number of particles. To 

address the occlusion problem, Wang and Cheong (2005) propose a particle filter with a Markov 

random field (MRF) based representation of the tracked object within a dynamic Bayesian 

framework. This method transforms an object into a composite of multiple MRF regions to 

improve the modeling accuracy. Using data association techniques, Chang et al. (2005) present a 

kernel particle filter to improve the sampling efficiency for multiple object tracking. This scheme 

invokes kernels to continuously approximate the posterior density, where the kernels for object 

representation and localization are allocated based on the gradient derived from the kernel 

density. However, this method can not handle situations in which the motion pattern of objects in 

one group changes drastically. Rathi et al. (2005) formulate geometric active contours as a 

parameterization technique to deal with the deformable objects. But the performance of their 

technique is poor when the tracked object is completely occluded over many frames. Isard and 

MacCormick (2001) propose a Bayesian multiple-blob tracker (BraMBLe), an early 

implementation of a particle filter, in which the number of tracked objects can vary during 

tracking. Nonetheless, this approach relies on modeling a fixed background to identify 

foreground objects. To address this problem, Okuma et al. (2004) relax the assumption of a fixed 

background to handle real image sequences, where the background may vary. Okuma et al. 

(2004) propose a boosted particle filter (BPF) for multiple object detection and tracking, which 



45 

  
 

interleaves the AdaBoost algorithm with a simple particle filter (the Condensation algorithm). 

However, this method does not present a systematic way of incorporating object models to 

guarantee accurate approximation of the proposal distribution, and also does not address the 

occlusion problem. 

In this paper, we propose a new particle filtering scheme, which is termed as an adaptive 

particle filter (APF), to enable much more accurate estimation of the proposal distribution and of 

the posterior distribution. Based on the previous work of Isard (1998), Li et al. (2003), Vermaak 

et al. (2003) and Okuma et al. (2004), we also propose a novel scheme for face detection and 

tracking by combining the APF algorithm with the AdaBoost algorithm. We term the 

combination of the APF algorithm and the AdaBoost algorithm as a boosted adaptive particle 

filter (BAPF). The AdaBoost algorithm is used to detect faces in an input image, and the BAPF 

algorithm is designed for face verification and tracking in real video sequences. The BAPF 

algorithm can obtain good tracking results in situations in which the objects are severely 

occluded. Experimental results show that the proposed BAPF method provides robust face 

detection and accurate face tracking under various tracking scenarios. 

 

3.2 Statistical Model  

Mathematical notation: The mathematical notation used in the formulation of the statistical 

model and the particle filtering algorithm is described below: 

x , a state vector for an object contour; 

y , an observation vector; 

( )x|yp , observation likelihood (or termed as observation density); 

T, length of the measurement line; 
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ix , a finite number of sample points on a contour; 

is , normal to the contour (or termed as measurement line); 

m, index of the detected features; 

im , number of the detected features; 

iz , edge feature; 

λ , density for the the Poisson distribution of clutter features on the measurement line; 

( )iT mp , the Poisson distribution of clutter features on the measurement line; 

{ }( )ix xp
i

=v|z , generic likelihood function of the observation at a sample point ( )n,,,ixi L21= ; 

0q , probability of undetected features for an object boundary; 

1q , probability of detected features for an object boundary; 

tx , a state vector for an object at time t; 

{ }tt: ,,, xxxx L211 = , a state vector history up to time t; 

ty , an observation vector at time t; 

{ }tt: ,,, yyyy L211 = , an observation history vector up to time t; 

x , mean value of a state vector; 

tω , Gaussian noise; 

A, matrix describing the deterministic component of the dynamical model;  

B, matrix describing the stochastic component; 

( )1−tt |p xx , dynamical model (or termed as transition prior); 

( )t:t |p 1yx , posterior density; 

( )11 −t:t |p yx , effective prior; 
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( )11 −t:t |p yy , observation prior; 

( )tf x , function of object state vector; 

( )[ ]tfE x , estimate of a function ( )tf x ; 

L, number of iterations of loop l in the adaptive particle filter; 

N, number of particles; 

( )i
tw , particle weight; 

( )i
tx , particle state vector; 

( )t:tt ,|q 11 yxx − , proposal distribution; 

( ))i(
t

)i(
t

ˆ,ˆ PxN , Gaussian distribution; 

)i(
l,tx , particle state vector computed within loop l; 

( )xlu , proposal distribution computed within loop l used in adaptive particle filter; 

( )i
1ξ , ( )i

2ξ , two specific values in domain D 

11 M,m , two specific values of a continuous function in domain D; 

22 M,m , two specific values of a continuous function in domain D; 

Φ , a continuous function in domain D; 

lmax , lmin , two specific values in domain D used to impose bounds on Φ  within loop l; 

lK , a constant within loop l; 

( ) ( )[ ]xx p̂,fE , sampling error at the iteration step l with respect to ( )xf ; 

( )( )tc fE x , estimate of a sampled point on the contour combining the estimation values from the 

APF and the AdaBoost algorithm; 

γ , weight assigned to the Adaboost detection algorithm; 
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η , confidence measure for each detected face in the image; 

d, distance between the center of a detected face and the center of a sampled template contour; 

F, number of the previous frames used for the estimation of an object in the current frame. 

 

3.2.1 Observation Model 

We denote a state vector for an object by x , and an observation vector is denoted by y . It is 

important for contour tracking to obtain accurate estimation of the observation likelihood (or 

termed as observation density) ( )xy |p . Blake et al. (1998), Isard et al. (1998), and MacCormick 

et al. (1998, 2000) introduce statistical models for computing the observation density ( )xy |p . 

These models use a set of normals to a hypothesized contour to collect specific image features. A 

finite number of sample points, called control points, are generated on the hypothesized contour. 

We follow the general direction of these models for modeling the observation process, but in 

particular follow the one proposed by MacCormick (2000). 

Figure 3.1 shows an observed contour and image features extracted along a measurement line. 

We denote a finite number of sample points on a hypothesized contour by a set { }n,,,i,xi L21= , 

and term the normals to the contour as measurement lines, which are denoted by a set 

{ }n,,,i,si L21= . The length of the measurement lines is fixed at a value T. A Canny edge 

detector is applied to the measurement line ( )n,,,isi L21=  in order to obtain the positions of the 

edge features ( ){ }im
i m,,,m,z L21=  (m is the index of the detected features, im  is the number of 

the detected features). Obviously, each feature is jointly generated by the boundary of an object 

and the random clutter presented in the image.  
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Figure 3.1 (a) Observation process: the ellipse is a hypothesized contour in an image. (b) The 

image features on the measurement line. 

Clutter features on the measurement line ( )n,,,isi L21=  are assumed to obey the Poisson 

distribution with densityλ : 

( ) ( ) T

i

m

iT e
m
Tmp

i
λλ −=

!
      (3-1) 

where mi is the number of detected clutter features. A boundary density function is assumed to 

obey a Gaussian distribution, thus the generic likelihood function of the observation at a sample 

point ( )n,,,ixi L21=  can be described by (MacCormick, 2000): 
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where 0q  is the probability of undetected features for an object boundary, and 1q  is the 

probability of detected features for an object boundary. Based on the assumption of independent 
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and identical distribution of all sample points, the overall likelihood function of the observation 

( )x|yp  can be represented by: 

( ) ( ) ( )( )∏ ∏ ∑
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3.2.2 Dynamical Model 

Generally, a particle filter algorithm requires a dynamical model to demonstrate how a tracking 

system evolves over time. An auto-regressive process (ARP) model has been widely used for the 

purpose of dynamic modeling (Lutkepohl, 1993; Black et al., 1995; MacCormick, 2000). Blake 

et al. (1993, 1995) model object dynamics as a second order process. Isard et al. (1998) and Li et 

al. (2003) follow the dynamical model of Blake et al. (1993, 1995) for object tracking. 

Following the previous work of Blake et al. (1993, 1995), Isard et al. (1998) and Li et al. (2003), 

this paper employs a second-order ARP as the dynamical model for face tracking. It is widely 

accepted that the second-order ARP captures various motions of interest for visual tracking 

(MacCormick, 2000). The parameters for the dynamic model in a typical real application can be 

obtained by learning from the input training data. The second-order ARP presents the state tx  at 

time t with a linear combination of the previous two states and additive Gaussian noise. The 

dynamical model can be represented as a second order linear difference equation: 

( ) ttt BωxxAxx +−=− −1       (3-4) 

where tω  is Gaussian noise that is independent of the state-vector tx , and x  denotes the mean 

value of the state vector. A and B are matrices describing the dynamical model with the 

deterministic component and the stochastic component, respectively. The state-vector tx  
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encodes the knowledge of the object contour in the current state and the previous state. It is 

represented by:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

t

t
t X

X
x 1 .           

In most real applications, we set some reasonable default values for the parameters A, B and 

x  of the dynamical model. It is effective and straightforward to approximate them through video 

sequences, in which the object conducts typical motions (Blake et al., 1995; Reynard et al., 

1996). The dynamical model can also be represented by a temporal Markov chain (Isard et al., 

1998): 

( ) ( ) ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−−−⋅= −

−
−

2

1
1

1 2
1 xxAxxBxx tttt expC|p    (3-5) 

where C is a constant, and  | · | denotes the Euclidean norm.  

 

3.3 Face Tracking using Particle Filtering 

3.3.1 The Filtering Distribution 

We denote a state vector for an object at time t by tx , and its history up to time t by  

{ }tt: ,,, xxxx L211 = . Likewise, an observation vector at time t is denoted by ty  and its history 

up to time t is denoted by { }tt: ,,, yyyy L211 = . The standard problem of target tracking in 

statistical pattern recognition terminology is to estimate the state tx  of the objects at time t, using 

a set of observations ty  from a sequence of input images. A posterior density  ( )t:t |p 1yx  

demonstrates all the information about tx  at time t that is deducible from the set of observations 

ty  up to that time.  
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We assume that object dynamics form a temporal Markov process and observations ty  are 

independent. Therefore, the dynamics are determined by a transition prior ( )1−tt |p xx . Given the 

transition prior ( )1−tt |p xx  and the observation density ( )tt |p xy , the posterior density  

( )t:t |p 1yx  can be computed by applying Bayes’ rule (Papoulis et al., 1990) for inferring the 

posterior state density from time-varying observations. The posterior density is estimated 

recursively via Bayesian filtering (Isard et al., 1998; Doucet et al., 2001): 

( ) ( ) ( )
( )

( ) ( )
( )11

11

11

1111
1

−

−

−

−− ==
t:t

t:ttt

t:t

t:tt:tt
t:t |p

|p|p
|p

|p,|p
|p

yy
yxxy

yy
yxyxy

yx    (3-6) 

where 

( ) ( ) ( )∫ −−−−− = 1111111 tt:tttt:t d|p|p|p xyxxxyx      (3-7) 

The posterior density  ( )t:t |p 1yx  is generally evaluated in two steps, namely prediction and 

updating. First, an effective prior ( )11 −t:t |p yx  shown in Eq. (3-7) is predicted from the posterior 

density  ( )111 −− t:t |p yx  via the transition prior ( )1−tt |p xx . Second, the posterior density  

( )t:t |p 1yx  is updated based upon new observation ty  at time t, which is expressed in Eq. (3-6). 

The observation prior ( )11 −t:t |p yy  which is the denominator in Eq. (3-6) can be represented 

by: 

( ) ( ) ( ) ( )∑∑ −−− ==
tt

t:tttt:ttt:t |p|p|,p|p
xx

yxxyyxyyy 111111      (3-8) 

Furthermore, the observation prior ( )11 −t:t |p yy  can be represented by an integration operator: 

( ) ( ) ( )∫ −− = tt:tttt:t d|p|p|p xyxxyyy 1111     (3-9) 

Thus Eq. (3-6) becomes: 
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Based on Eq. (3-7), we substitute the effective prior ( )11 −t:t |p yx  to obtain: 

( )
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Besides the estimate of the posterior density ( )t:t |p 1yx , the estimate of a function ( )tf x  of 

object state vector is also computed under many situations. We can approximate its expected 

value of the function ( )tf x  by: 

( )[ ] ( ) ( )∫= tt:ttt d|pffE xyxxx 1      (3-12) 

Eq. (3-11) and Eq. (3-12) represent an optimal solution to the standard problem of object 

tracking. Obviously, this solution involves high-dimensional integrations, non-linearity and non-

normality of the motion model under many tracking scenarios. High-dimensional integrations 

usually can not be computed easily. Thus a particle filter, also known as a sequential Monte 

Carlo filter, is adopted as a practical solution to the problem of object tracking. 

 

3.3.2 The Standard Particle Filter 

A standard particle filter uses Monte Carlo simulation to obtain the posterior probability 

( )t:t |p 1yx  represented by Eq. (3-11). Particle filtering makes use of random sampling strategies 

in order to model a complex posterior probability ( )t:t |p 1yx . It uses N weighted discrete particles 

to approximate the posterior probability ( )t:t |p 1yx  by the observation of the data. Each particle 

consists of a state vector x and a weight w. The weighted particle set is given by 

( ) ( )( ){ }N,,,i,w, i
t

i
t L21=x . Particle filtering samples the space spanned by tx  with N discrete 
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particles and approximates the distribution with the associated weights of the points sampled by 

the particles. Specifically, we assume that N  particles are used for sampling to obtain the 

posterior probability )|(p t:t 111 −− yx , and that discrete sample points in the space are given by 

N
ttt ,...,, 1

2
1

1
1 −−− xxx  respectively. Thus we have: 

( ) ( )∑
=

−−−−− −=
N

i

i
tt

i
tt:t w|p

1
111111 xxyx δ          (3-13) 

Since it is infeasible to draw samples directly from the posterior distribution, a proposal 

distribution ( )t:tt ,|q 11 yxx −  is used to easily draw the samples for approximation of the posterior 

probabilities. Based on the proposal distribution ( )t:tt ,|q 11 yxx − , a particle filter samples ( )i
tx  

from ( )i
t 1−x  for particle i  ( )N,,,i L21=  and computes the weight for ( )i

tx  using the following 

equation: 
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The posterior distribution ( )t:t |p 1yx  can thus be approximated as: 

( ) ( ) ( )( )∑
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−≈
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The estimate of the function ( )tf x  of the state vector could be computed as: 

( )[ ] ( ) ( )( )∑
=

≈
N

i

i
t

i
tt fwfE

1

xx       (3-16) 

The standard particle filter can be described as consisting of four steps: initialization, 

sampling, estimation, and selection (Li et al., 2003). In the sampling step, a set of particles is 

drawn from the proposal distribution, and each particle is weighted based on the ratio of its true 

probability to its approximated probability using the proposal distribution. In the estimation step, 



55 

  
 

the standard particle filter approximates the posterior density using the output of the sampling 

step, namely the particles’ states and weights. The particles are selected according to the 

estimated posterior density to obtain a uniform weight distribution in the selection step. 

The standard particle filtering algorithm is illustrated in Figure 3.2. 

 

Figure 3.2 The algorithm of a standard particle filter 

 

 

 

1. Initialization 
    Initialize a set of particles from the prior ( )0xp to obtain ( ) ( )( ){ }N,,,i,w, ii L2100 =x . Let t=0. 
2. Sampling step 
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b) Compute the weights of particles 

( )
( )( ) ( ) ( )( )

( ) ( )( )
( )i
t

t:
i

t
i

t

i
t

i
t

i
tti

t w
,|q

|p|p
w 1

11

1
−

−

−=
yxx

xxxy
,  i = 1, 2, … , N 

c) Normalize  
( )

( )

( )∑ =

= N

i
i

t

i
ti

t
w

w
w

1

,  i = 1, 2, …, N 

3. Estimation step 
Obtain a set of particles ( ) ( )( ){ }N,,,i,w, i

t
i

t L21=x . The posterior distribution 

( ) ( ) ( )( )∑
=

−≈
N

i

i
tt

i
tt:t w|p

1
1 xxyx δ  can be approximated using the output set of particles, 

where ( )⋅δ  is the Dirac function. The estimate of ( )tf x  can be computed by: 

      ( )[ ] ( ) ( )( )∑
=

≈
N

i

i
t

i
tt fwfE

1
xx . 

4. Selection step 
Resample particles ( )i

tx  with probability ( )i
tw  to obtain N i.i.d random particles ( )i

tx ,  
approximately distributed with respect to ( )t:t |p 1yx . 

Assign ( )

N
w i

t
1

= ,  i = 1, 2, … , N. 

5. Set t=t+1, go to step 2. 
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3.3.3 The Adaptive Particle Filter 

3.3.3.1 The Adaptive Particle Filter Algorithm 

Recently, one of the active research areas in particle filtering is to generate a good proposal 

distribution ( )t:tt ,|q 11 yxx −  and thus obtain a more accurate estimate of the posterior 

distribution ( )t:t |p 1yx . The aim is to obtain a close approximation to the posterior probability 

distribution. The Condensation (Isard et al., 1998) algorithm makes no use of knowledge 

obtained from the current image frame, which leads to a rough estimate of the posterior 

distribution. Doucet et al. (2001) provide an optimal proposal distribution (OPD) for state 

estimation of jump Markov linear systems, and recursively compute optimal state estimates 

based on the selection of the minimum variance of weights ( )i
tw  (i = 1, 2, … , N ). To overcome 

the problem of inefficient computation of the OPD, Li et al. (2003) propose a Kalman particle 

filter (KPF) and an unscented particle filter (UPF) to drive a set of particles to the regions in the 

search space with high likelihood. Li et al. (2003) employ a local linearization of the OPD to 

estimate the proposal distribution, which is assumed to be a Gaussian distribution. Therefore, the 

proposal distribution can be represented as: 

( ) ( ) ( ))i(
t

)i(
tk:

)i(
t

)i(
tl

ˆ,ˆ,|qu Pxyxxx N== − 11  i = 1, 2, … , N.   (3-17) 

where mean )i(
tx̂  and covariance )i(

tP̂  characterize the Gaussian distribution ( ))i(
t

)i(
t

ˆ,ˆ PxN . 

In this paper, we propose a new particle filtering scheme, termed as an Adaptive Particle 

Filter (APF), to enable much more accurate estimation of the proposal distribution and the 

posterior distribution. Our method extends the Condensation algorithm and the Kalman particle 

filter to obtain an accurate approximation of the proposal distribution and the posterior 

distribution.  
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In the sampling step of the APF algorithm as shown in Figure 3.3, a new sampling strategy is 

used to improve the accuracy of the approximation, which is different from the sampling used in 

other particle filters. The sampling step is the most important step in a particle filtering 

algorithm. For each discrete particle )i(
l,t 1−x , the adaptive particle filter generates a new particle 

)i(
l,tx  based on a proposal distribution ( )xlu . We use the loop controlled by the parameter l in the 

APF algorithm to implement the new sampling technique. L is the fixed number of iterations of 

loop l. L can be adjusted in different real applications. When 1=L , the APF is equivalent to the 

pure standard particle filter. When 1>L , the APF performs more sampling iterations than the 

standard particle filter. We will prove in Section 3.3.3.2 that the additional iterations obtain a 

lower estimation error of the proposal distribution and posterior distribution. 

In order to enable more accurate estimation of the proposal distribution, we iterate the 

sampling procedure with a constraint, which is called the Adaptive Learning Constraint (ALC).  

The ALC is described using the following equation which is detailed in a later section.  

11 −− ⋅⋅≤⋅ llll minKmaxK α       (3-18) 

where     

( ) ( ) ( ) ( ){ }i
l,t

ii
l,t

i

Nil M,Mmaxmax xx −−=
≤≤ 22111

ξξ      

( ) ( ) ( ) ( ){ }i
l,t

ii
l,t

i

Nil m,mminmin 12211111 −−≤≤− −−= xx ξξ    

lK , 1−lK  are constants, 10 << α . 

If the proposed constraint is satisfied, the iteration for generating new particles in the same 

image will continue. The iteration in the sampling step will stop when the proposed constraint is 

not satisfied or the predefined loop threshold is reached. Theoretically and practically, the 

particles with state vector and weights obtained in the latest iteration will present a better 
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approximation of the proposal distribution and the posterior distribution. The theoretical analysis 

and experimental results will be presented in later sections to confirm the superior performance 

of the APF algorithm. 

The other steps of APF are similar to those of other particle filters such as KPF and UPF. The 

initialization step takes advantage of the information from the results of the AdaBoost face 

detection algorithm. The adaptive particle filter algorithm is described in Figure 3.3.
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Figure 3.3 The algorithm of adaptive particle filter 

1. Initialization 
Initialize a set of particles from the prior ( )0xp to get ( ) ( )( ){ }N,,,i,w, ii L2100 =x . Let t=0. 

2. Sampling step 
1) For l = 1, 2, … , L 

a) For i = 1, 2, … , N 
Sample ( )i

l,tx  from ( )i
l,t 1−x  based on the proposal distribution ( )xlu , where 

( ) ( ) ( ))i(
t

)i(
tk:

)i(
t

)i(
tl

ˆ,ˆ,|qu Pxyxxx N== − 11 . Construct ( ) ( ) ( )( )∑
=

−−− −=
N

i

i
l,tt

i
l,tl wp

1
111 xxx δ , 

where ( )⋅δ  is the Dirac function. 
b) If the Adaptive Learning Constraint is satisfied, where 11 −− ⋅⋅≤⋅ llll minKmaxK α : 

i) Compute the weights of particles 
( ) ( )( ) ( ) ( )( ) ( )i

l,t
i

t
i
l,t

i
l,tt

i
l,t w|p|pw 11 −−= xxxy ,    i = 1, 2, … , N 
( ) ( )i

t
i
,t ww 10 −=  when l = 1. 

ii) Normalize  
( )

( )

( )∑ =

= N

i
i
l,t

i
l,ti

l,t
w

w
w

1

,    i = 1, 2, …, N 

iii) Continue the loop l 
b) If the Adaptive Learning Constraint is not met, where 11 −− ⋅⋅>⋅ llll minKmaxK α : 

i) Let ( ) ( )i
l,t

i
t ww 1−= , ( ) ( )i

l,t
i

t 1−= xx ,     
ii) Break the loop l 

      2) Let ( ) ( )i
L,t

i
t ww = , ( ) ( )i

L,t
i

t xx = ,  i = 1, 2, … , N. 

      3) ( )
( )

( )k:
)i(

t
)i(

t

i
ti

t ,|q
w

w
11 yxx −

= ,  i = 1, 2, … , N. 

3. Estimation step 
Obtain a set of particles ( ) ( )( ){ }N,,,i,w, i

t
i

t L21=x . The posterior distribution 

( ) ( ) ( )( )∑
=

−≈
N

i

i
tt

i
tt:t w|p

1
1 xxyx δ can be approximated using the output set of particles. The 

estimate value of ( )tf x  can be computed as: 

      ( )[ ] ( ) ( )( )∑
=

≈
N

i

i
t

i
tt fwfE

1

xx . 

4. Selection step 
Resample particles ( )i

tx  with probability ( )i
tw  to obtain N i.i.d random particles ( )i

tx ,  
approximately distributed with respect to ( )t:t |p 1yx . 

Assign ( )

N
w i

t
1

= ,  i = 1, 2, … , N. 

5. Set t=t+1, go to step 2. 
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3.3.3.2 Modeling The Adaptive Learning Constraint  

A critical step in the adaptive particle filter (APF) is obtaining a good approximation to to the 

sampling proposal distribution ( )xlu , which is shown in the sampling step in Figure 3.3. The 

purpose of choosing the proposal distribution ( )xlu  recursively in a given state is to reduce the 

estimation error, which is a result of approximating the posterior distribution ( )t:t |p 1yx  with a 

finite number of particles. The design of a single iteration of the estimation of the proposal 

distribution ( )xlu  will be presented in the following derivation. The iteration is described by the 

loop l: l = 1, 2, … , L in Figure 3.3, where L is a given default value. The additional iterations of 

loop l in the first loop of step 2 could be used to reduce the estimation error adaptively.  

We make following analysis to prove this point. First, we prove that the iterations result in the 

convergence of the estimate of the proposal distribution. The convergence shows that the 

estimation error of the proposal distribution at loop step l = k+1 is less than that of the proposal 

distribution at loop step l = k, where ( )121 −∈ L,,,k L . This results in better approximation of 

the proposal distribution and the posterior distribution through the iterations of loop l. Thus, we 

can obtain a lower estimation error of the proposal distribution and the posterior distribution. 

Second, we present the Adaptive Learning Constraint in the derivation, which clarifies the APF 

described in Figure 3.3. 

We define the error of a sampling function ( )xp̂  with respect to ( )xf  as: 

( ) ( )[ ] ( ) ( ) ( )( )∫ −= xxxxxx dp̂pfp̂,fE      (3-19) 

where 

 ( ) ( )
( ) ( ) ( )
( ) ( ) ( )∫ ∫

∫
−−−−

−−−−
==

ttt:ttttt

tt:ttttt
t:t

dd|p|p|p

d|p|p|p
|pp

xxyxxxxy

xyxxxxy
yxx

11111

11111
1 , 



61 

  
 

( ) ( ) ( ) ( )( )∑
=

−≈=
N

i

i
tt

i
tt:t w|p̂p̂

1
1 xxyxx δ , and 

| · | denotes the Euclidean norm. 

The propagation of errors between the iterations in the adaptive particle filter can be analyzed 

as follows. Specifically, we consider a single iteration step l: { }L,,,l L21∈ . From the APF 

algorithm shown in Figure 3.3, the estimate of the proposal distribution in the iteration step l is 

given by: 

( ) ( ) ( )( )∑
=

−=
N

i

i
l,tt

i
l,tl wp

1

xxx δ       (3-20) 

Thus, the sampling error ( ) ( )[ ]xx p̂,fE at the iteration step l with respect to ( )xf  is computed as: 

( ) ( )[ ]
( ) ( ) ( )( )∫ −= xxxx

xx

dppf

p̂,fE

l

 

( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )( ) t

N

i

i
l,tt

i
l,t

ttt:ttttt

tt:ttttt
t dw

dd|p|p|p

d|p|p|p
f xxx

xxyxxxxy

xyxxxxy
x ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= ∑

∫ ∫
∫

=−−−−

−−−−

111111

11111
δ     (3-21) 

Based upon Eq. (3-13), we have ( ) ( )∑
=

−−−−− −=
N

i

i
tt

i
tt:t w|p

1
111111 xxyx δ . Substituting 

( )111 −− t:t |p yx  with ( )∑
=

−−− −
N

i

i
tt

i
tw

1
111 xxδ  in Eq. (3-21) and performing the Dirac function 

computation, we obtain the estimation error as: 

( ) ( )[ ]xx lp,fE  

( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )( ) t

N

i

i
l,tt

i
l,t

t

N

i

i
tt

i
ttt

N

i

i
tt

i
ttt

t dw
d|pw|p

|pw|p
f xxx

xxxxy

xxxy
x

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−= ∑
∫ ∑

∑
=

=
−−

=
−−

1

1
11

1
11

δ  
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( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )( ) t

N

i

i
l,tt

i
l,t

t

N

i

i
tt

i
ttt

N

i

i
tt

i
ttt

t dw
d|pw|p

|pw|p
f xxx

xxxxy

xxxy
x

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−= ∑
∑∫

∑
=

=
−−

=
−−

1

1
11

1
11

δ                  (3-22) 

From the APF algorithm shown in Fig. 3-2, we know  

( ) ( )( ) ( ) ( )( ) ( )i
l,t

i
t

i
l,t

i
l,tt

i
l,t w|p|pw 11 −−= xxxy       (3-23) 

( )
( )

( )∑ =

= N

i
i
l,t

i
l,ti

l,t
w

w
w

1

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑
=

−−

−−= N

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

i
t

i
l,t

i
l,tt

w|p|p

w|p|p

1
11

11

xxxy

xxxy
    (3-24) 

After combining Eq. (3-22), Eq. (3-23), and Eq. (3-24), we obtain: 

( ) ( )[ ]xx lp,fE  

( )
( ) ( ) ( )( )

( ) ( ) ( )( )⎜
⎜
⎜
⎜

⎝

⎛

=

∑∫

∑

=
−−

=
−−

t

N

i

i
tt

i
ttt

N

i

i
tt

i
ttt

t

d|pw|p

|pw|p
f

xxxxy

xxxy
x

1
11

1
11 ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) t

N

i

i
l,ttN

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

i
t

i
l,t

i
l,tt d

w|p|p

w|p|p
xxx

xxxy

xxxy

⎟
⎟
⎟
⎟

⎠

⎞

−−∑
∑=

=
−−

−−

1

1
11

11 δ  

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
t

t

N

i

i
tt

i
ttt

N

i

i
tt

i
tttt

d
d|pw|p

|pw|pf
x

xxxxy

xxxyx

∫
∑∫

∑

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

=
−−

=
−−

1
11

1
11

( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑

∑

=
−−

=
−−

− N

i

i
l,t

i
t

i
l,t

i
l,tt

N

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

w|p|p

w|p|pf

1
11

1
11

xxxy

xxxyx
 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
t

i
t

N

i

i
tttt

t
i

t

N

i

i
ttttt

dw|p|p

dw|p|pf

xxxxy

xxxxyx

1
1

1

1
1

1

−
=

−

−
=

−

∑∫

∑∫
=

( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑

∑

=
−−

=
−−

− N

i

i
l,t

i
t

i
l,t

i
l,tt

N

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

w|p|p

w|p|pf

1
11

1
11

xxxy

xxxyx
     (3-25) 

Using the Lagrange theorem, we could obtain specific values ( )i
1ξ  and ( )i

2ξ  in domain D: 

( ) Di ∈1ξ , ( ) Di ∈2ξ , ( )Ni ,,3,2,1 L= such that  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )i
t

i
t

ii
t

i
t

i
t

i
ttttt w|p)|(pfdw|p|pf 1111111 −−−− =∫ xyxxxxyx ξξξ   (3-26) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )i
t

i
t

ii
tt

i
t

i
tttt w|p|pdw|p|p 112211 −−−− =∫ xyxxxxy ξξ     (3-27) 
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Therefore we obtain: 

( ) ( )[ ]xx lp,fE  

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑

∑

=
−−

=
−−

= N

i

i
t

i
t

ii
t

N

i

i
t

i
t

ii
t

i

w|p|p

w|p)|(pf

1
1122

1
11111

xy

xy

ξξ

ξξξ ( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑

∑

=
−−

=
−−

− N

i

i
l,t

i
t

i
l,t

i
l,tt

N

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

w|p|p

w|p|pf

1
11

1
11

xxxy

xxxyx
               

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
∑

∑=

=
−−

−−=
N

i
N

i

i
t

i
t

ii
t

i
t

i
t

ii
t

i

w|p|p

w|p)|(pf
1

1
1122

11111

xy

xy

ξξ

ξξξ ( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑
=

−−

−−− N

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

w|p|p

w|p|pf

1
11

11

xxxy

xxxyx
    (3-28) 

Suppose that ( )xf , ( )tt |p xy , ( )( )i
tt |p 1−xx  are continuous functions on domain D, hence we have 

the following equation:  

RMm ∈∃ 11 , ,  

( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( )i
l,t

i

i
l,t

i
t

i
l,t

i
l,tt

i
l,t

i
t

i
t

ii
t

i

i
l,t

i

M

w|p|pfw|p)|(pf

m

x

xxxyxxy

x

−≤

−≤

−

−−−−

11

1111111

11

ξ

ξξξ

ξ

    (3-29) 

Likewise, we have: 

RMm ∈∃ 22 ,  

( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )i
l,t

i

N

i

i
l,t

i
t

i
l,t

i
l,tt

N

i

i
t

i
t

ii
t

i
l,t

i

M

w|p|pw|p)|(p

m

x

xxxyxy

x

−≤

−≤

−

∑∑
=

−−
=

−−

22

1
11

1
1122

22

ξ

ξξ

ξ

      (3-30) 

Let   

 ( ) ( )( ) ( ) ( ) ( )( ) ( )i
t

i
t

ii
t

ii w|p)|(pfF 111111 −−= xy ξξξ      (3-31) 
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( ) ( ) ( )( ) ( )∑
=

−−=
N

i

i
t

i
t

ii
t w|p)|(pF

1
11222 xy ξξ       (3-32) 

( )iF1∆ = ( )( ) ( )( ) ( ) ( )( ) ( )i
l,t

i
t

i
l,t

i
l,tt

i
l,t w|p|pf 11 −−xxxyx - ( )iF1      (3-33) 

2F∆ = ( )( ) ( ) ( )( ) ( )∑
=

−−

N

i

i
l,t

i
t

i
l,t

i
l,tt w|p|p

1
11xxxy - 2F      (3-34) 

Thus we obtain: 

( ) ( )[ ]xx lp,fE  

( ) ( ) ( )

∑
= ∆+

∆+
−=

N

i

iii

FF
FF

F
F

1 22

11

2

1  

( ) ( ) ( ) ( )( )
( )∑

= ∆+
∆+−∆+

=
N

i

iii

FFF
FFFFFF

1 222

112221  

( ) ( )

( )∑
= ∆+

∆−∆
=

N

i

ii

FFF
FFFF

1 222

1221         

( ) ( )

∑
=

∆−∆
≈

N

i

ii

F
FFFF

1
2

2

1221           (3-35) 

Let  

( ) ( )∑
=

∆−∆=Φ
N

i

ii FFFF
1

1221       (3-36) 

Since ( )xf , ( )tt |p xy , ( )( )i
tt |p 1−xx  are continuous functions defined on domain D, ( )iF1  , 2F , 

( )iF1∆ , 2F∆  are also continuous functions on domain D. Furthermore, Φ  is also a continuous 

function on domain D. Based on the properties of continuous functions, Eq. (3-29) and Eq. (3-

30),Φ  is bounded by two specific values, lmax  and lmin . 

Let   
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( ) ( ) ( ) ( ){ }i
l,t

ii
l,t

i

Nil M,Mmaxmax xx −−=
≤≤ 22111

ξξ     (3-37) 

( ) ( ) ( ) ( ){ }i
l,t

ii
l,t

i

Nil m,mminmin xx −−=
≤≤ 22111

ξξ     (3-38) 

We obtain: 

( ) ( )( ) lllll maxKXp,XfEminK ⋅≤≤⋅ ,   for loop step l   (3-39) 

where lK  is a constant. 

Likewise, we can get the following equation at loop step l-1: 

( ) ( )( ) 11111 −−−−− ⋅≤≤⋅ lllll maxKp,fEminK xx ,  for loop step l-1  (3-40) 

Let  

1
11

<≤
⋅
⋅

−−

α
ll

ll

minK
maxK

,  where 10 << α ,     (3-41) 

thus we obtain:  

( ) ( )( ) ( ) ( )( )XpXfEXpXfE ll 1,, −⋅≤ α ,  10 << α    (3-42) 

If Eq. (3-41) is satisfied, then Eq. (3-42) ensures that the estimation error for the proposal 

distribution and posterior distribution converges during the iterations. Eq. (3-41) is only a 

necessary condition for the convergence of the estimate, which can be learned from the 

computation during the iterations. So we name it as the Adaptive Learning Constraint (ALC). 

Eq. (3-41) can be represented by: 

11 −− ⋅⋅≤⋅ llll minKmaxK α        (3-43) 

Either Eq. (3-41) or Eq. (3-43) is termed as the ALC. 

The ALC can be guaranteed by searching the lmax  and 1min −l  from the N particles in each 

iteration as follows:  



66 

  
 

1. Find ( )i
1ξ  , ( )i

2ξ  , 1M  , 2M , ( )N,,,i L21=  from the N particles in loop l. Determine ( )i
1ξ  

, ( )i
2ξ  , 1M  , 2M , ( )N,,,i L21=  from the N particles in loop l-1. 

2. Search for lmax  and 1min −l  using Eq. (3-37) and Eq. (3-38). 

3. Determine whether or not the ALC is satisfied according to Eq. (3-43). 

Thus, we prove that the iterations of loop l result in the convergence of the estimate of the 

proposal distribution. The convergence demonstrates that the estimation error of the proposal 

distribution at loop step l = k+1 is less than that of the proposal distribution at loop step l = k, 

where ( )121 −∈ L,,,k L . This results in better approximation of the proposal distribution and the 

posterior distribution through the iterations of loop l. As a result, we can obtain a lower 

estimation error of the proposal distribution and the posterior distribution. Therefore, we confirm 

that the APF algorithm with ALC can result in a more accurate estimate of the proposal 

distribution and posterior distribution. Generally, as more frames are processed during tracking, 

general particle filters will result in a monotonically increasing tracking error. However, the 

proposed APF algorithm is designed to improve the estimate of the proposal distribution and the 

posterior distribution as a tracking system evolves over time.  

 

3.4 The Boosted Adaptive Particle Filter 

The boosted adaptive particle filter (BAPF) for face detection and tracking employs two object 

models: the contour-based model used in the adaptive particle filter (APF) and the region-based 

model used in face detection. The object models used in the context of tracking lie in three 

general categories (Luo, 2005): the contour-based models (Li et al., 2003; Koller et al., 1994; 

Terzopoulos et al., 1993), the region-based models (Isard et al.,2001; McKenna et al., 2000; 
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Nummiaro et al., 2003), and the feature point-based models (Rucklidge, 1995; Malik et al., 

2002; Lepetit et al., 2004).  

Since the BAPF algorithm uses two models in face detection and tracking, it has advantages 

over the general particle filter. The incorporation of the AdaBoost algorithm within the APF 

algorithm substantially improves the robustness of the BAPF algorithm.  The AdaBoost 

algorithm presents a mechanism for maintaining the combined representation, which makes the 

BAPF algorithm more powerful than the naïve K-means clustering method of Vermaak et al. 

(2003). The BAPF algorithm also performs better than the mixture representation proposed by 

Okuma et al. (2004) since our approach employs a more effective particle filtering algorithm, 

i.e., the APF algorithm. Specifically, the BAPF algorithm allows us to effectively detect faces 

leaving and entering the regions of interest, and the BAPF algorithm provides robust face 

detection and accurate face tracking under various tracking scenarios. 

 

3.4.1 Face Detection through AdaBoost 

Among the various face detection methods, the boosted learning-based face detection methods 

have demonstrated excellent results. Based on the previous work of Tieu et al. (2000) and 

Schneiderman (2000), Viola and Jones (2001a; 2001b) have proposed a robust face detection 

algorithm, which can detect faces in a rapid and robust manner with a high detection rate. The 

face detection technique in AdaBoost is comprised of three aspects: the integral image, a strong 

classifier comprising of weak classifiers based on the AdaBoost learning algorithm, and an 

architecture comprising of a cascade of a number of strong classifiers. 

The system of Viola and Jones (2001a; 2001b) employs an integral image comprising of 

Haar-like features (Lienhart and Maydt, 2002) for effective feature extraction from a large 
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feature set. In the boosting procedure, AdaBoost first learns effective features from a large 

feature set. Second, it constructs a set of weak classifiers, each of which is composed of a 

feature, a threshold and a parity. Third, it generates a strong classifier based on the above weak 

classifiers. Each iteration in the AdaBoost algorithm generates a weak classifier. After all 

iterations are completed, the result is a set of weak classifiers. These weak classifiers are 

combined into a strong classifier using a weighted linear combination. The system of Viola and 

Jones (2001a; 2001b) uses a cascade of strong classifiers to improve detection rate with efficient 

computation. The idea is to construct smaller and efficient classifiers based on the sub-windows 

within the image. The simpler and faster classifiers will reject the negative sub-windows. A large 

number of negatives are rejected by the initial classifier with minimal processing. Additional 

negatives are eliminated by subsequent layers while requiring additional computation. The 

number of sub-windows to be processed reduces rapidly after several stages of processing. 

We employ the system of Viola and Jones (2001a; 2001b) for face detection. A 25 layer 

cascade of boosted classifiers is trained to detect multiview faces. A set of face and nonface 

(termed as background) sample images are used for training. Each sample image is cropped and 

scaled to a resolution of 20×20 pixels. A set of  6230 multiview face images are collected from 

video sequences with different reflections, illuminations and backgrounds to make face detection 

more robust in different scenarios. Another set of 6598 nonface examples with the size of 

320×240 pixels are collected from video sequences containing no faces. The details of AdaBoost 

training and AdaBoost face detection results are presented in Section 3.5. 
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3.4.2 Integrating Adaptive Particle Filter with AdaBoost 

The proposed face detection and tracking model consists of two submodels: an AdaBoost face 

detection model and an adaptive particle filter face tracking model. The AdaBoost face detection 

model performs multiview face detection based on the trained AdaBoost algorithm. The APF 

model conducts visual contour tracking using the particle filtering algorithm described in Section 

3.3.3. Figure 3.4 shows the structure of the proposed face detection and tracking model. 

 

Figure 3.4 Integrating the APF with AdaBoost within a single feedback control system 

The process for face detection and tracking contains two phases: an initialization phase and a 

tracking phase. In the initialization phase of the APF, the AdaBoost face detection model can 

provide the initial parameters for the APF face tracking model based on the observations of the 

image sequences during a certain time interval. During the tracking phase, the AdaBoost face 

detection model and the APF face tracking model improve the tracking performance via mutual 

interaction. The AdaBoost detection model helps the APF model to find and define new objects, 

and to verify the current states of the objects being tracked. On the other hand, the APF model 

provides focus-of-attention regions within the image to speed up the AdaBoost face detection. 

After applying AdaBoost face detection to one image, we obtain a confidence measure η  for 

each detected face in the image from the detection procedure. From the APF algorithm, the 
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estimate of ( )tf x  in the adaptive particle filter at each sample point along the contour is 

computed as: 

      ( )[ ] ( ) ( )( )∑
=

≈
N

i

i
t

i
tt fwfE

1
xx       (3-44) 

We combine the results of the AdaBoost algorithm and the APF algorithm to obtain new 

position for a sampled point, which is described by: 

( )( ) ( ) ( )( ) dfEfE ttc ⋅⋅+⋅−= ηγγ xx 1      (3-45)  

where cE  represents the estimate of a sampled point in the contour combining the estimation 

values from the APF and the AdaBoost algorithm, the parameterγ  is the weight assigned to the 

Adaboost detection, the parameter η  is a confidence measure for each detected face in the 

image, and d is the distance between the center of a detected face and the center of a sampled 

template contour. The value of ( )( )tc fE x  is fed back to the APF for further processing. 

The parameterγ  can be adjusted without affecting the convergence of the adaptive particle 

filter. When 0=γ , our approach is equivalent to the pure adaptive particle filter. By 

increasingγ , we emphasize the AdaBoost face detection. When 1=γ , our approach is equivalent 

to the pure AdaBoost algorithm. In reality, we could adjust the value of the parameterγ  based on 

different scene conditions determined by clutter, illumination and occlusions. 

 

3.5 Experimental Results 

3.5.1 AdaBoost Face Detection 

The system of Viola and Jones (2001a; 2001b) is used to detect faces in input images. In our 

experiment, we train a 25-layer cascade of strong classifiers to detect multiview faces in video 

sequences. A data set is composed of face and nonface images of size 20×20. A set of  6230 
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multiview face images of 8 persons are collected from video sequences with different reflections, 

illuminations and backgrounds to make face detection more robust in different scenarios. The 

face images are cropped and scaled to a resolution of 20×20 pixels. Another set of 6598 nonface 

examples with the size of 320×240 are collected from video sequences containing no faces. The 

nonface examples use the same size as the one employed by the video camera for real video 

sequence acquisition, but this is not a requirement. Figure 3.5 shows some random face examples 

used for the training, and Figure 3.6 shows some random nonface examples used for training. A 

larger training set of face and nonface examples typically leads to better detection results, 

although failures still exist in regions of overlap and clutter. Some results of face detection using 

our trained AdaBoost are illustrated in Figure 3.7. AdaBoost face detection performs well in 

most cases, but often leads to false positives in complicated sequences consisting of clutter or 

overlaps.  

 

         

         

         

         

         
Figure 3.5 Face examples 
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Figure 3.6 Nonface examples 

 

   

   
Figure 3.7 Results of frontal face detection and multiview face detection 

 

3.5.2 Boosted Adaptive Particle Filter 

The proposed boosted adaptive particle filter (BAPF) is implemented using C++ under the 

Microsoft Visual C++ .NET environment on a Pentium M 1.6 GHz Computer. Video sequences 

are of size 320×240 pixels and are sampled at 30 frames per second. In the beginning, the 

AdaBoost face detection model provides the initial states for the adaptive particle filter (APF) 

face tracking model for observations of the image sequences during a certain time interval. Since 

the contour defines the appearance of the face in the video sequences is roughly circular or 

elliptical, we use a simple parameterized model to represent the contour i.e., 022 =++ CByAx . 
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Of course, our method can also be applied to more complex contours that use B-spline 

representations. The proposed BAPF algorithm has been applied to various tracking scenarios as 

shown in Figure 3.8 through Figure 3.13. The tracking results from three test video sequences 

shown below are captured under various lighting conditions, scales, occlusions, and rotations. 

Two test videos (test video 1 and 3) comprise of one face in the scene, test video 1 is used for 

experiments in different tracking scenarios, and test video 3 is used to compare the BAPF 

algorithm with the Condensation Algorithm. The third test video (test video 2) that comprises 

two faces in the scene is used for multi-face tracking experiments on different scenarios. All 

tracking results are obtained using 1000=N  particles in the APF. 

In Figure 3.8 through Figure 3.13, a yellow ellipse implies the absence of occlusion, whereas 

a red ellipse means that occlusion has occurred. Figure 3.8 presents the snapshots of single face 

tracking in test video 1 while the scale of the face changes. It shows that the proposed BAPF 

tracking algorithm can handle significant scale changes in the object appearance. Figure 3.9 

illustrates the snapshots of single face tracking in test video 1 under changing illumination. It 

demonstrates that the proposed BAPF algorithm is robust to changes in various lighting 

conditions due to the integration of the AdaBoost statistical learning and the robustness of 

adaptive particle filtering. Figure 3.10 describes the snapshots of single face tracking in test 

video 1 under changes in viewpoint and in-plane rotations. It proves that the proposed BAPF 

algorithm can handle multiview face detection and tracking. Figure 3.11 provides the snapshots 

of single face tracking in test video 1 with in-plane rotations. It shows that the proposed BAPF 

algorithm can handle the appearance changes due to object rotations. Figure 3.12 illustrates the 

snapshots of single face tracking in test video 1 where occlusions happen. It confirms that the 

proposed BAPF algorithm performs correctly in the presence of occlusions because of the 



74 

  
 

robustness of adaptive particle filtering. Figure 3.13 presents the snapshots of two-face tracking 

in test video 2 under various tracking scenarios. 

 

   

Figure 3.8 Tracking results with scale changes in test video 1. From left to right, the frame 

numbers are 981, 1043, and 1067. 

 

   

Figure 3.9 Tracking results with illumination changes in test video 1. From left to right, the 

frame numbers are 866, 954, and 969. 
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Figure 3.10 Tracking results with multiviews and rotations in test video 1. Yellow ellipse means 

that no occlusion has occurred, whereas red ellipse means that occlusion has occurred. From top 

left to bottom right, the frame numbers are 515, 519, 524, 530, 533, 544, 566, 573, and 585. 

 

   

Figure 3.11 Tracking results with out-of-plane rotations in test video 1. From left to right, the 

frame numbers are 104, 135, and 152. 
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Figure 3.12 Tracking results with occlusions in test video 1. Yellow ellipse means that no 

occlusion has occurred, while red ellipse means that occlusion has occurred. From top left to 

bottom right, the frame numbers are 356, 359, 362, 366, 382, and 397. 

 

   

   
Figure 3.13 Tracking results of two faces in test video 2. Yellow ellipse means that no occlusion 

has occurred, while red ellipse means occlusion has occurred. From top left to bottom right, the 

frame numbers are 2, 4, 25, 38, 78, and 138. 
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The performance of the BAPF algorithm has been compared to the Condensation algorithm, a 

general particle filter. Both algorithms employ 1000=N  particles for face tracking in the test 

video 3. The experimental results show that tracking accuracy of the BAPF algorithm is superior 

to that of the Condensation algorithm. The BAPF algorithm provides better performance than the 

Condensation filter. However, better performance does not necessarily mean higher 

computational efficiency. The BAPF algorithm actually needs more computing time than the 

Condensation algorithm since the BAPF algorithm performs more computation on account of the 

additional iterations needed to obtain better nonlinear estimations. Some examples of tracking 

results are presented in Figure 3.14 for the BAPF algorithm and Figure 3.15 for the 

Condensation algorithm. 

 

   

   
Figure 3.14 Tracking results with the BAPF at six different times in test video 3. From top left to 

bottom right, the frame numbers are 12, 40, 61, 136, 158, and 180. 
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Figure 3.15 Tracking results with the Condensation algorithm at same times as in Figure 3.14. 

From top left to bottom right, the frame numbers are 12, 40, 61, 136, 158, and 180. 

 

Using tracking accuracy and computation time, we quantitatively analyze the performance of 

the BAPF algorithm, the APF algorithm, and the Condensation in this section. The tracking 

accuracy is defined by the displacement errors between the centroid of a ground truth face and 

the centroid of a tracked face in video sequences. All three algorithms are tested on the test video 

3, and all algorithms employ 1000=N  particles for face tracking. In the following quantitative 

analysis, the performance of the APF algorithm is compared to the Condensation algorithm, the 

performance of the BAPF algorithm is compared to the APF algorithm, the performance of the 

APF algorithm is analyzed with different values of the parameter L, the performance of the 

BAPF algorithm is analyzed with different values of the parameter F, and the performance of the 

BAPF algorithm is analyzed with different values of the parameterγ . 

We compare the performance of the APF algorithm to the Condensation algorithm. Both 

algorithms employ 1000=N  particles for face tracking in the test video 3. In the APF algorithm, 

the number of the iterations of the loop l is 3=L . The experimental results, as shown in Figure 
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3.16 and Table 3.1, demonstrate that tracking accuracy of the APF algorithm is better than that of 

the Condensation algorithm. It can be seen from Table 3.1 that the mean value of the 

displacement error in the APF algorithm is less than that of the displacement error in the 

Condensation algorithm, and the computation time of the APF algorithm is greater than the 

Condensation algorithm. The APF algorithm thus provides better performance than the 

Condensation algorithm. The computation time of the APF algorithm is comparable but greater 

than that of the Condensation algorithm, since the APF algorithm performs more computation on 

account of the additional iterations needed to obtain better estimations of the proposal 

distribution and the posterior distribution.  
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Figure 3.16 Tracking results of the APF algorithm and the Condensation algorithm 
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Table 3.1 Summary of tracking results of the APF and the Condensation algorithm 

 APF Condensation 
Mean displacement error 

(pixels) 16.3 22.4 
Standard deviation (pixels) 7.3 7.3 

Speed (frame/sec) 4.7 6.8 
 

The performance of the BAPF algorithm is compared to the APF algorithm. Both algorithms 

employ 1000=N  particles for face tracking in the test video 3. The number of the iterations of 

the loop l is 3=L  for both algorithms. In the BAPF algorithm, the weight assigned to the 

AdaBoost face detection is 80.=γ , and the parameter F for the number of the previous frames is 

1. The experimental results, as shown in Figure 3.17 and Table 3.2, demonstrate that the tracking 

accuracy of the BAPF algorithm is better than that of the APF algorithm. The BAPF algorithm 

provides better performance than the APF algorithm. It can be seen from Table 3.1 that the mean 

value of the displacement error in the BAPF algorithm is less than that of the displacement error 

in the APF algorithm, and the computation time of the BAPF algorithm is larger than the APF 

algorithm since the BAPF algorithm performs AdaBoost face detection in each frame. 
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Figure 3.17 Tracking results of the BAPF algorithm and the APF algorithm 

 

Table 3.2 Summary of tracking results of the BAPF and the APF 

 BAPF APF 
Mean displacement error 

(pixels) 8.1 16.3 
Standard deviation (pixels) 4.1 7.3 

Speed (frame/sec) 4.1 4.7 
 

The performance of the APF algorithm is analyzed using different values of the parameter L. L 

is the number of iterations of loop l in the APF algorithm. The APF algorithm employs 

1000=N  particles for face tracking in the test video 3. The number of the iterations L changes 

from 1 to 4 in the experiments. The experimental results, as shown in Figure 3.18 and Table 3.3, 

demonstrate that tracking accuracy of the APF algorithm is improved as the number L increases. 
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It can be seen from Table 3.3 that the mean value of the displacement error in the APF algorithm 

with large L is less than that with small L. Thus, the APF algorithm with large L provides better 

performance than with small L.  However, the computation time of the APF algorithm increases 

as the number L increases since the APF algorithm performs additional iteration to estimate the 

posterior distribution. When L is greater than 3, we can see from Figure 3.18 and Table 3.3 that 

the estimation accuracy of the posterior distribution is improved but not significantly, whereas 

the computation time increases significantly. We have to choose a balance between the 

estimation accuracy and the computation time in real applications. In our experiments, we 

choose L = 3 for the APF algorithm and the BAPF algorithm. 
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Figure 3.18 Tracking results of the APF algorithm with different values of the parameter L 
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Table 3.3 Summary of tracking results of the APF with different values of the parameter L 

 L=4 L=3 L=2 L=1 
Mean displacement 

error (pixels) 16.0 16.3 17.2 22.4 
Standard deviation 

(pixels) 8.7 7.3 9.6 7.3 
Speed (frame/sec) 3.2 4.7 5.8 6.8 

 

The performance of the BAPF algorithm is analyzed based on different values of the 

parameter F. In Eq. (3-45), we combine the results of the APF algorithm and the AdaBoost 

algorithm to obtain the current contour of the tracked face in the current frame. The AdaBoost 

face detection is performed for each frame in the video sequences used in our experiments. Using 

AdaBoost face detection, we obtain the estimated position of a detected face based on the results 

of the previous F frames. We define F as the number of the previous frames for the estimation of 

the face in the current frame. For example, F = 3, we average the positions of the detected face 

among the previous 3 frames including the current frame to obtain an estimated position of the 

face in the current frame. Then we use Eq. (3-45) to combine the results of the APF algorithm 

and the AdaBoost algorithm. 

In this experiment, the weight assigned to the result of AdaBoost face detection is 80.=γ  in 

the BAPF algorithm. The number of the previous frames F is varied within a set of values 

consisting of 1, 3, 5, and 10. The number of the iterations is L = 3. The BAPF algorithm employs 

1000=N  particles for face tracking in the test video 3. The experimental results, as shown in 

Figure 3.19 and Table 3.4, show that tracking accuracy of the BAPF algorithm is decreased as 

the number F increases. It can be seen from Table 3.4 that the mean value of the displacement 

error in the BAPF algorithm with large F is greater than that with small F. Thus, the BAPF 

algorithm with small F provides better performance than that with large F.  The computation 
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time of the BAPF algorithm is same for different values of the parameter F. Thus, we choose F = 

1 for the BAPF algorithm in our experiments. 
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Figure 3.19 Tracking results of the BAPF algorithm with different values of the parameter F 

 

Table 3.4 Summary of tracking results of the BAPF with different values of the parameter F 

 F=10 F=5 F=3 F=1 
Mean displacement 

error (pixels) 10.6 8.8 8.4 8.1 
Standard deviation 

(pixels) 4.9 3.8 3.8 4.1 
Speed (frame/sec) 

4.1 4.1 4.1 4.1 
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The performance of the BAPF algorithm is analyzed using different values of the parameterγ  

(termed as gamma in Figure 3.20), whereγ  is a weight assigned to the AdaBoost face detection 

in the BAPF algorithm as shown in Eq. (3-45). The weight γ  is varied within a set of values 

consisting of 0, 0.5, 0.8, and 1.0. When 0=γ , the BAPF algorithm is equivalent to the pure APF 

algorithm. By increasingγ , we emphasize the AdaBoost face detection. When 1=γ , the BAPF 

algorithm is equivalent to the pure AdaBoost algorithm. The parameter F for the number of the 

previous frames considered is 1. The number of the iterations of the loop l is 3=L . The BAPF 

algorithm employs 1000=N  particles for face tracking in the test video 3. The experimental 

results, as shown in Figure 3.20 and Table 3.5, show that tracking accuracy of the APF algorithm 

with different weights γ  varies. It can be seen from Table 3.5 that the mean value of the 

displacement error for the BAPF algorithm with 80.=γ  is the smallest, and the mean value of 

the displacement error for the BAPF algorithm with 0=γ  is the largest. The experimental 

results show that the performance of the pure AdaBoost algorithm is the worst, since the pure 

AdaBoost algorithm detects false faces or misses the tracked face in the video sequences. In the 

BAPF algorithm, the APF algorithm provides regions of interest to the AdaBoost algorithm, and 

the AdaBoost provides the detected face for the combination function in Eq. (3-45). Thus, the 

performance of the BAPF algorithm is better than either the APF algorithm or the AdaBoost 

algorithm used individually. Table 3.5 shows that the computation time of the BAPF algorithm 

with different γ  values is the same since the APF algorithm and the AdaBoost algorithm are 

performed for each frame of video sequences. In our experiments, we choose 80.=γ for the 

BAPF algorithm. 
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Figure 3.20 Tracking results of the BAPF algorithm with different values of the parameter γ 

 

Table 3.5 Summary of tracking results of the BAPF with different values of the parameter γ 

 γ =0 γ =0.5 γ =0.8 γ =1.0 
Mean displacement 

error (pixels) 16.3 10.0 8.1 36.8 
Standard deviation 

(pixels) 7.3 4.7 4.1 32.6 
Speed (frame/sec) 4.1 4.1 4.1 4.1 

 

Tracking is successful throughout except when complete occlusion occurs for long time 

duration, as shown in Figure 3.16. In this case, the occluded face can not be distinguished from 

the foreground or the background. In case of occlusion for short time duration, we can assume 

that the occluded face is located at the same place in the image during the occlusion. However, 

we can not make same assumption for occlusion over a longer time period, since the occluded 
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person may walk out of the scene during the occlusion. When the faces of three people are 

occluded and are aligned with the optical axis of the camera as shown in Figure 16 (b), it is hard 

to detect and track the faces of the two people in the back which results in tracking failure as 

well. From both cases shown in Figure 16, it is clear that from the appearance of the face alone it 

is not possible to reliably determine the locations of the occluded face. For correct tracking, we 

have to exploit more information such as the appearance of the body or the limbs to augment the 

BAPF algorithm to handle cases of complete occlusion over long time duration. However, the 

augmented appearance model for accurate tracking will increase the complexity of a dynamical 

model, which may reduce robustness in other cases. 

 

 

   

   (a)       (b) 

Figure 3.21 (a) Tracking failure in case of occlusion for a long time duration (b) Tracking failure 

in case of three people overlapping 
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3.6 Conclusions 

This paper proposes a novel algorithm for face detection and tracking based on a new adaptive 

particle filtering algorithm and an AdaBoost algorithm. This method provides a general 

framework for detecting and tracking of faces in video sequences. It is also applicable to any 

objects such as deformable and elastic objects if appropriate contour models i.e. B-spline 

representations are used. Based on a new sampling technique, an adaptive particle filter (APF) is 

proposed to obtain accurate estimates of the proposal distribution and the posterior distribution 

for improving the tracking accuracy in the video sequences. The proposed scheme termed as the 

boosted adaptive particle filter (BAPF) combines the APF with the AdaBoost algorithm. The 

AdaBoost algorithm is used to detect faces in the input images, whereas the APF is used to track 

the faces in the video sequences. The proposed BAPF algorithm is employed for face detection, 

face verification, and face tracking in the video sequences. The performance of face detection 

and face tracking can be mutually improved in the tracking procedure.  

The experimental results confirm that the proposed BAPF algorithm provides robust face 

detection and accurate face tracking under various scenarios, such as illumination changes, scale 

changes, occlusions, and rotations. The performance of the BAPF algorithm has been compared 

to the Condensation algorithm, a general particle filter. The experimental results show that the 

tracking accuracy of the BAPF algorithm is superior to that of the Condensation algorithm. The 

BAPF algorithm provides better tracking accuracy than the Condensation algorithm. However, 

the BAPF algorithm is more computationally intensive compared to the Condensation algorithm 

since the BAPF algorithm performs more computations on account of additional iterations 

needed to obtain better nonlinear distribution estimations. The experiments also show that the 

tracking accuracy of the BAPF algorithm is better than that of the APF algorithm, and that the 
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tracking accuracy of the APF algorithm is better than that of the Condensation algorithm. It is 

not surprising that the BAPF algorithm performs better than the linear filtering systems, such as 

the Kalman filter, because the BAPF algorithm overcomes the limitations of the Gaussian 

distribution assumption in linear filtering systems.  

The problem of intensive computation in the BAPF algorithm can be alleviated by reducing 

the number of particles. However, the tracking accuracy becomes worse as the number of 

particles decrease. In a real-time application, we have to choose an appropriate balance between 

tracking performance and computational cost. However, currently there are no analytical results 

describing the mathematical relation between the number of the particles and the tracking 

performance for a given tracking application. In future, we hope to further analyze this tradeoff 

and reduce the computational cost to make the BAPF algorithm more efficient. We also expect to 

improve the tracking performance of the BAPF algorithm by augmenting the APF algorithm to 

deal with occlusions that occur frequently or persist for a long time. 
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This thesis provides a review of the literature related to face detection and visual object tracking. 

In order to address general problems in face detection and tracking, such as low detection rate, 

variations in lighting conditions, and partial occlusions or complete occlusions, we propose a 

novel scheme for face detection and tracking in this thesis bases on a novel adaptive particle 

filter algorithm and the AdaBoost face detection algorithm. We term the combination of the 

AdaBoost algorithm and the APF as a boosted adaptive particle filter (BAPF).  

The proposed BAPF algorithm provides a general framework for detecting and tracking faces 

in video sequences. It is also applicable to any objects such as deformable and elastic objects if 

appropriate contour models i.e. B-spline representations are used. Based on a new sampling 

technique, an adaptive particle filter (APF) is proposed to obtain accurate estimates of the 

proposal distribution and the posterior distribution for improving the tracking accuracy in the 

video sequences. The proposed scheme termed as the boosted adaptive particle filter (BAPF) 

combines the APF with the AdaBoost algorithm. The AdaBoost algorithm is used to detect faces 

in the input images, whereas the APF is used to track the faces in the video sequences. The 

proposed BAPF algorithm is employed for face detection, face verification, and face tracking in 

the video sequences. The performance of face detection and face tracking can be mutually 

improved in the tracking procedure.  

The experimental results confirm that the proposed BAPF algorithm provides robust face 

detection and accurate face tracking under various scenarios, such as illumination changes, scale 

changes, occlusions, and rotations. The performance of the BAPF algorithm has been compared 

to the Condensation algorithm, a general particle filter. The experimental results show that the 

performance of the BAPF algorithm is superior to that of the Condensation algorithm. The BAPF 

algorithm provides better tracking accuracy than the Condensation algorithm. However, the 
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BAPF algorithm is computationally more intensive compared to the Condensation algorithm 

since the BAPF algorithm performs more computations on account of additional iterations 

needed to obtain better nonlinear distribution estimations. The experiments also show that the 

tracking accuracy of the BAPF algorithm is better than that of the APF algorithm, and that the 

tracking accuracy of the APF algorithm is better than that of the Condensation algorithm. It is 

not surprising that the BAPF algorithm performs better than the linear filtering systems, such as 

the Kalman filter, because the BAPF algorithm overcomes the limitations of the Gaussian 

distribution assumption in linear filtering systems.  

The problem of intensive computation in the BAPF algorithm can be alleviated by reducing 

the number of particles. However, the tracking accuracy becomes worse as the number of 

particles decrease. In a real-time application, we have to choose an appropriate balance between 

tracking performance and computational cost. However, currently there are no analytical results 

describing the mathematical relation between the number of the particles and the tracking 

performance for a given tracking application. In future, we hope to further analyze this tradeoff 

and reduce the computational cost to make the BAPF algorithm more efficient. We also expect to 

improve the tracking performance of the BAPF algorithm by augmenting the APF algorithm to 

deal with occlusions that occur frequently or persist for a long time. 
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