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ABSTRACT 

Studies in gene family evolution have revealed invaluable information about the 

evolutionary relationships among genes in a gene family and the underlying gene retention 

mechanisms that help shape the gene family across species. A gene family is formed by gene 

duplication and loss events during the evolutionary history of species. More importantly, gene 

duplication is the major source of novelties (i.e. raw materials) on which evolutionary forces may 

have acted. However, the probabilistic models of gene duplication and loss in the context of 

phylogenetic trees are still limited in the current literature, wherein no model has taken into account 

the effect of gene retention mechanisms such as neofunctionalization and subfunctionalization. 

Thus, it is essential to build a probabilistic frame work to understand gene family evolution.  

In this dissertation, we are focusing on building a Bayesian hierarchical model for gene 

family evolution, in which different gene retention mechanisms are incorporated through the non-

homogeneous birth and death process of gene copies. We first develop a birth-death age model for 

gene family evolution in a single population, in which the loss rates of duplicated genes are 

functions of the ages of genes. From the birth-death age model, we have derived the probability 

density function of a gene family tree given the species tree. The probability distribution can be 

used to estimate model parameters and to simulate gene family data. Moreover, we extend the age-



dependent birth and death model to multiple populations in the context of phylogenetic trees, 

where the joint probability density function of duplication times and number of gene copies at the 

internal nodes are given. Finally, we propose a Bayesian hierarchical model for gene family 

evolution, which involves two stochastic processes -mutation process of DNA sequences and the 

birth and death process of genes. 

INDEX WORDS: Gene Duplication; Phylogenetic Methods; Probabilistic Models; Birth-

Death Processes; Stochastic Processes 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION OF GENE FAMILY EVOLUTION  

A gene family is a set of genes that share essential characteristics. Since genes in a family have 

similar DNA sequences [1-3], the products that guided by these genes would have a similar 

structure or function. There are also occasions that genes with dissimilar sequences are grouped in 

one family since the proteins they yield are working together to perform one function [4]. Thus 

the classification of genes into a gene family can provide researchers with important information 

about the relationship among genes. The fact that there are a large number of genes per family also 

indicates that the newly arisen gene duplicates are possibly major sources of evolutionary novelties 

[5-8]. With the advancement of sequencing techniques, new genes are identified increasingly, for 

which the functional annotations of new genes are always challenging. With clustering of genes 

into gene families, researchers are able to predict the functions of newly identified genes through 

their similarity to known genes. In addition, genes that are related to a specific disease may be 

identified based on information of the related gene families. 

Gene families are formed by multiple duplications of an ancestral gene that occur within a 

lineage or through speciation events [9]. Although a large portion of the duplicate genes may 

become pseudogenes by degenerative mutations or lost due to population dynamics, some are able 

to evolve novel functions that can be preserved in the population permanently [10, 11]. Thus 

estimation of the timing and mode of gene duplications along the evolutionary history of species 
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provide important information about driven mechanisms by which the genomes of organisms 

evolved and the genes with novel functions arose [12]. 

With the availability of “Omics” data, such as genomics and transcriptomics data, phylogenetic 

study has entered the phylogenomics era Pennisi [13]. Especially, gene family evolution is an 

important component in phylogenomics, which integrates evolutionary analysis and genomics 

study to understand the relationships between genes [14]. Many of the phylogenetic approaches 

can be used in analyzing gene families due to the fact that evolutionary information of gene 

duplication and divergence is revealed through the hierarchical aligned genes in gene families[15]. 

Thus we will review major approaches that are related in modeling gene family.  

1.2 LITERATURE REVIEW ON MODELS OF GENE FAMILY EVOLUTION 

Research in modeling gene families has attracted extensive attention due to its importance in 

molecular evolution. Genes in a family evolve within the branches of a species tree through gene 

duplication and speciation. Each gene tree reflects a duplication and divergence process of genes 

inside a species phylogeny, yet often incongruent with it. The presence of incongruence is the 

result of three major biological processes; those are horizontal gene transfer, lineage sorting (deep 

coalescence) and gene duplication and extinction [16, 17]. Thus it is desirable to integrate this 

information in order to provide a better estimation of gene family phylogeny. Extensive literature 

appears which depicts the relationship between gene family tree and species tree by incorporating 

one or some of these factors. Among these methods, parsimony based approach and probabilistic 

framework are two major strategies.  

1.2.1 Parsimony methods 

Parsimony methods attempt to reconcile the relationship between gene tree and species tree by 

minimizing the total number of specific events. Goodman et al. [18, 19] firstly introduced the 
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concept of reconciled tree in the context of discordance between the mammalian haemoglobin 

gene trees and the mammal phylogeny that was accepted previously. In this paper, a parsimony 

strategy was developed to reconcile the gene lineages with the species phylogeny by minimizing 

the total number of nucleotide substitutions, gene duplications and gene expression events. 

However, Page [20, 21] formalized the definition of reconciled tree which combines a species tree 

and its corresponding gene tree into a single summary of the historical association by assuming 

that no horizontal gene transfer occurred. Page and Charleston [19] developed a method to estimate 

unknown species tree from the known gene trees regarding gene duplications and losses, along 

with a heuristic algorithm realizing the method and  a program implementing the algorithm. In a 

subsequent paper, Page [22] applied this technique to the vertebrate phylogenies with nine genes. 

Page and Cotton [23] discussed the development of the software “GENETREE” in accommodation 

with the uncertainty in gene phylogenies through resampling gene families.  

There are methods minimizing different criterion other than nucleotide substitutions, gene 

duplications and gene expression events. It is assumed in [24] that a single duplication episode is 

the causation of the duplications at the internodes of a species tree and thus be minimized to 

establish the gene phylogeny and species phylogeny simultaneously. Another method proposed by 

Simmons, Bailey and Nixon [25] incorporates duplicated and unduplicated genes through uninode 

coding such that the effect of gene duplications is excluded in species tree estimation. 

Since the parsimony criterion being minimized is the number of certain events, it is easy 

to implement and produces a clear interpretation. But it is a difficult job in assigning weights to 

associated events due to their diverged characters [26]. Another problem with parsimony approach 

appears in the generated solutions, in which there is no summary over the large number of possible 

solutions [26].  



	 4	

1.2.2 Probabilistic framework 

The probabilistic models of gene family evolution, though computationally expensive, can 

overcome weaknesses encountered by parsimony methods. It provides a probability distribution 

of a gene family phylogeny within a species tree and the most likely species phylogeny can be 

reconstructed from the known gene trees. In addition, parameters can be defined and incorporated 

into different biological processes under a probabilistic framework and thus reveal the information 

of the underlying evolutionary forces.  

The first probabilistic model of gene evolution within a species phylogeny was proposed 

by Arvestad et al. [27] based on a birth-death process and a tool is developed to perform orthology 

analysis as well as gene tree/species tree reconciliation. Later this model was extended to 

incorporate the sequence evolutionary model and a MCMC algorithm is provided for orthology 

analysis and reconstruction of gene tree and species tree by Arvestadet al. [28]. Akerborg et al. 

[29] further developed a more complicated model incorporating gene evolution, sequence 

evolution, and a substitution rates model which was implemented through a Bayesian analysis tool. 

Sjostrand [30] from the same group developed a phylogenetic program “PrIME-DLRS” in the 

context of gene duplication and loss with a relaxed molecular clock which is applied in the area of 

homologous gene families. Rasmussen and Kellis [31] pointed out the inaccuracies of traditional 

phylogenetic reconstruction methods and improved the accuracy by integrating multiple 

parameters in evolution including gene duplication and loss rates, speciation times, and varied 

substitution rate over both species and loci in a Bayesian framework named “SPIMAP”. These 

works are aiming to estimate gene tree given a fixed species tree with constant gene duplication 

and loss rates and assumption of molecular clock. Advances have been made in a recent model of 

genome scale coestimation of gene and species tree given in Boussau [32]. In gene tree 
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reconciliation, the branch lengths of gene trees  are ignored  and the rates of sequence evolution 

for each gene family are constant for the purpose of fast computation. While the duplication and 

loss rates for each branch are assumed to be different for an improved accuracy of estimation. 

Konrad et al.[33] have established a maximum likelihood framework based on a modified Weibull 

hazard function under different duplicate gene loss/retention mechanisms.  

Next, I will present a general designation of probabilistic framework including the 

establishment of the likelihood function and the implement of the Bayesian estimation methods. 

The first formulation of the likelihood of a given species tree is proposed by Maddison [34] in the 

context of deep coalescence, which is the product of the probability distribution of the sequences 

over all loci given the species tree: 

𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝑡𝑟𝑒𝑒

= 𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠|𝑔𝑒𝑛𝑒	𝑡𝑟𝑒𝑒 𝑃(𝑔𝑒𝑛𝑒	𝑡𝑟𝑒𝑒|𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝑡𝑟𝑒𝑒)
3454	674489:;<

		(1.1) 

The first term in (1.1) is the probability of the observed sequences given the known gene 

phylogeny which comes from the sequence evolutionary model [34-36]. The second term is the 

probability distribution of a gene tree given a species phylogeny, which can be directly obtained 

in coalescent theory. The computation of this likelihood of species tree is expensive because not 

only all possible species trees should be visited but also the potential gene trees should be 

considered. Progresses have been made to the second term in this formulation in the background 

of gene duplication and loss [27-29], [33, 37, 38]. 

The Bayesian method provides an alternative way to do statistical inference that treats 

parameters as random variables with given prior distributions. The prior represents the initial guess 

about the distributions of parameters without the data. The initial guess will be improved by the 

data using Bayes theorem, which is 
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f θ D =
𝑓(𝐷|𝜃)𝑓(𝜃)

𝑓(𝐷) 		(1.2) 

Estimation on the parameter 𝜃 relies on the posterior probability distribution f θ D 	which 

is a product of likelihood function 𝑓 𝐷 𝜃 and prior 𝑓(𝜃). The likelihood function of sequence 

evolution given the species tree is given in Equation 1.1 whereas the selection of a good prior is 

an open question. If the information about parameters is abundant from the data, the priors will 

not influence the posterior too much. In this respect, the Bayesian estimation is similar to the 

maximum likelihood method and a non-informative prior may be chosen if there is no information 

about the prior. When the parameters are correlated, a non-informative prior for one parameter 

may affect the prior for another parameter such that the prior of the second parameter is no longer 

non-informative. In addition, different users may choose different priors. Thus phylogenetic 

software like MrBayes[39] provides great options of priors for users. And the results from different 

priors could be compared to check the sensitivity of the model to the priors.  

Bayesian inference is made through the posterior distribution f θ D . However, the 

normalization constant 𝑓 𝐷 	in the posterior probability distribution is analytically intractable. In 

this case, numerical methods such as Markov Chain Monte Carlo (MCMC) are adopted to estimate 

the posterior distribution of model parameters. It has been shown that the MCMC algorithm 

converges to the posterior distribution of interest under certain regular conditions. But it may take 

a long time for the algorithm to converge as the number of parameters increases. Because the 

MCMC algorithm may converge to a local maximum, it is important to monitor the convergence 

of MCMC. 

1.2.3 Birth and death process (BDP) in gene family evolution 

The process of gene family evolution can be seen as ancestral genes that evolve inside a species 

tree, which is similar to the process of lineage speciation and extinction. In this respect, most 
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methods inferring changes of lineage diversification and gene family evolution over time are based 

on the BDP. The theory of this process was first introduced by Kendall [40], in which each lineage  

divide into two at a duplication rate or dies at a loss rate. Thompson [41] obtained the joint density 

function of the number of lineages and the branching times by investigating the BDP of these 

lineages surviving to the current time. Nee et al. [42] further defined and examined a reconstructed 

evolutionary process (Figure 1.1), in which one of the lineages being investigated survived until 

being sampled. The likelihood function of a reconstructed phylogeny is derived in this paper based 

on the BDP conditional on the survival of at least one lineage. Rannala and Yang [43] developed 

a birth-death phylogenetic model conditional on the number of lineages at sampling time for 

estimating species tree from molecular sequence data. Aldous and Popovic [44] proposed a 

continuous-time critical branching process conditioned on the number of species at present, with 

the assumption that the birth and death rates are identical in macroevolution. Later Gernhard [45, 

46] relaxed previous assumption and allow variable birth and death rates. Stadler [47] derived the 

probability density function of a phylogenetic tree with the assumption of constant birth and death 

rates.  

Recently, researchers become interested in time-dependent BDP which serve as a model 

of performing hypothesis-driven research. Rabosky [48] distinguished rate-variable models of 

diversification from rate-constant models by fitting birth and death models using likelihood 

methods. Hohna [49, 50] and Hallinan [51] studied the reconstructed process with time-dependent 

rates in a more general setting by relaxing the assumptions about the number of species and the 

time of the process.  

Next I will present a brief introduction to the theory of generalized BDP.  
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The BDP is a continuous-time Markov chain that models the number of members in a 

population, where each member can give birth to a new one or die at some time [52]. I will describe 

a general BDP in the context of gene family evolution. Let 𝑛 be the number of genes in a gene 

family at time 𝑡, which is a stochastic variable taking values 1,2, …. 𝑃5(𝑡) is the probability that 

there are 𝑛 genes at time 𝑡 in the population. The birth rate 𝜆6	and death rate 𝜇6 at any given time 

𝑡	per gene is a functions of time 𝑡 for generalized BDP. And let 𝛿 be a small time interval. When 

𝛿	is very small, the probability of an event occurs during (𝑡, 𝑡	 + 𝛿)  is approximately 𝜆6𝛿  or 

𝜇6𝛿.Therefore, the probability of a birth in the interval (𝑡, 𝑡	 + 𝛿) is 𝑃5KL 𝑡 + 𝛿 = 𝜆6𝑛𝛿 + 𝜊(𝛿) 

and the probability of a death in the interval (𝑡, 𝑡	 + 𝛿)  is 𝑃5NL 𝑡 + 𝛿 = 𝜇6𝑛𝛿 + 𝜊(𝛿) . The 

probability of no births or deaths occurring during (𝑡, 𝑡	 + 𝛿)  is 𝑃5 𝑡 + 𝛿 = (1 − 𝜆6𝑛𝛿 −

𝜇6𝑛𝛿) + 𝜊(𝛿). we assume the initial condition of a gene family with one common ancestor, so that 

𝑃L 0 = 1 and 𝑃5 0 = 0, 𝑛 > 1. Letting 𝛿 → 0, the differential equations for 𝑃5 𝑡  is: 

𝑃5S 𝑡 = 𝑛 + 1 𝜇6𝑃5KL 𝑡 + 𝑛 − 1 𝜆6𝑃5NL 𝑡 − 𝑛 𝜆6 + 𝜇6 𝑃5 𝑡 , 𝑛 ≥ 1
𝑃US 𝑡 = 𝜇6𝑃L(𝑡)

	(1.3) 

By solving the above equations through the generating function, the solution for 𝑃5 𝑡  is 

given in Kendall [52], that is 

𝑃U 𝑡 = 1 −
1

1 + 𝑒W U,X 𝜇(𝑥)𝑑𝑥6
U

𝑃5 𝑡 = 1 − 𝑃U 𝑡 1 − 𝑉6 𝑉65NL, 𝑛 ≥ 1
 

ρ tL, t^ = (𝜇 𝑥 − 𝜆(𝑥))𝑑𝑥6_
6`

 and 𝑉6 = 1 − 4a

LK 4a b,c d(X)eXf
b

. 

In addition, the probability of a single lineage at time t does not extinct at a later time T is 

calculated by Kendall[52] 

P t, T = 	
1

1 + 𝑒W 6,X 𝜇(𝑥)𝑑𝑥i
6

	(1.4) 
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For the reconstructed phylogeny, Nee et al. [42] derived the probability mass function of 

the number of reconstructed lineages (ni)	at time T given the number of reconstructed lineage 

(nl) at an earlier time t , P ni = n|nl = 1 , based on the above equations 

P ni = n|nl = 1 = 1 − 𝑢6
𝑃 0, 𝑇
𝑃 0, 𝑡 𝑢6

𝑃 0, 𝑇
𝑃 0, 𝑡

5NL

(1.5) 

where 𝑢6 = 1 − P 0, t ep q,l . 

In a recent literature, Hallinan [51] gave a set of generalized results, in which the 

probability mass function of the number of reconstructed lineages at some time conditional on the 

number of lineages at any other time along the process ( see Hallinan [51] for more details). 

In this dissertation, we develop a probabilistic model for gene family evolution with age-

dependent loss rate, wherein those results in generalized BDP will be adopted and modified 

accordingly.  

1.3 OUTLINE OF THIS DISSERTATION 

In Chapter 2, we consider the gene family evolution in a single population and establish a 

probabilistic model for this process. More specifically, we describe a generalized birth-death 

process for modeling the fates of gene duplication. Starting with a single population corresponding 

to the branch of a species tree and with assumption of a clock that starts ticking for each duplicate 

at its birth, an age-dependent birth and death process is developed by extending the results from 

the time-dependent birth and death process. The implementation of such models in a full 

phylogenetic framework is expected to enable large scale probabilistic analysis of duplicates in 

comparative genomic studies. See chapter 2 for details. 

In Chapter 3, we extend our generalized birth and death process in one population to a 

multi-population scenario. Especially, we develop a probabilistic framework to model gene family 

evolution in the context of species tree, in which three evolutionary mechanisms of gene retention 
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are incorporated. This study is accomplished by developing the joint distribution of the gene counts 

in the internal nodes and duplication times in all branches of the species tree. A simulation study 

is then performed to examine the accuracy of parameter estimation through the Bayesian methods.   

In Chapter 4, we introduce a conceptual hierarchical Bayesian framework of gene family 

evolution. This model involves two stochastic process: a mutation process of sequence data within 

gene family tree and a birth and death process of gene family tree in a species tree. Further, a 

posteriori probabilistic model is constructed and possible applications is discussed.  

Note that each chapter is self-contained in terms of development and assessment of the 

above methods, but we give an overall conclusion for all of the chapters in Chapter five. 
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Figure 1.1 The reconstructed evolutionary process introduced by Nee et al.: 𝑇U is the starting 

time and 𝑇r  denotes present time. The solid black lines are the lineages that can survive to the 

current time and the dashed black lines are the lineages that distinct in the past. 
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ABSTRACT 

Accurately estimating the timing and mode of gene duplications along the evolutionary history 

of species can provide invaluable information about underlying mechanisms by which the 

genomes of organisms evolved and the genes with novel functions arose. Mechanistic models 

have previously been introduced that allow for probabilistic inference of the evolutionary 

mechanism for duplicate gene retention based upon the average rate of loss over time of the 

duplicate. However, there is currently no probabilistic model embedded in a birth-death 

modeling framework that can take into account the effects of different evolutionary mechanisms 

of gene retention when analyzing gene family data. 

 In this study, we describe a generalized birth-death process for modeling the fates of 

gene duplication. Use of mechanistic models in a phylogenetic framework requires an age-

dependent birth-death process. Starting with a single population corresponding to the lineage of a 

phylogenetic tree and with an assumption of a clock that starts ticking for each duplicate at its 

birth, an age-dependent birth-death process is developed by extending the results from the time-

dependent birth-death process. The implementation of such models in a full phylogenetic 

framework is expected to enable large scale probabilistic analysis of duplicates in comparative 

genomic studies. 

We develop an age-dependent birth-death model for understanding the mechanisms of 

gene retention, which allows a gene loss rate dependent on each duplication event. Simulation 

results indicate that different mechanisms of gene retentions produce distinct likelihood 

functions, which can be used with genomic data to quantitatively distinguish those mechanisms. 
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2.1 INTRODUCTION 

A gene family is a group of genes with similar sequences that show evidence of descent from a 

common ancestor [1-3]. This includes orthologs that originate through speciation as well as 

paralogs (modeled here) that can be found within a species or shared between species from an 

older duplication event that predated speciation. The large number of genes per family suggests 

that the newly arisen gene duplicates are potentially major contributors to evolutionary novelties 

[4-7]. Gene duplication can provide raw genetic material for evolutionary forces to act on. 

Although a majority of duplicate genes may be silenced by degenerative mutations or lost due to 

population dynamics, some duplicated genes are able to evolve novel functions permanently 

preserved in the population [8, 9]. Accurately estimating the timing and mode of gene 

duplications along the evolutionary history of species can provide invaluable information about 

underlying mechanisms by which the genomes of organisms evolved and the genes with novel 

functions arose [10].  

Several biological models have been proposed to depict the mechanisms that lead to 

different evolutionary fates of a gene duplicate [11-14]. Nonfunctionalization refers to the 

process in which mutations occur on one of the gene duplicates and produce a non-functional 

protein [11, 15]. The neofunctionalization model [16] assumes that duplication itself does not 

affect fitness. Although a duplicate is most likely to be pseudogenized by degenerative mutation 

(nonfunctionalization) or lost due to population dynamics [9], the redundant copy may 

occasionally acquire a new beneficial function through mutation that will be preferentially 

preserved in the population. While this function may subsequently be optimized and 

accommodated within the genome structure (assuming a coding sequence change) by an 

evolutionary Stokes shift [17], the initial event leading to retention is a single beneficial change. 
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The waiting time for this single change gives rise to a convexly decaying hazard function when 

modeled together with non-functionalizing changes and is referred to as the neofunctionalization 

model (see [15, 18, 19] for a review). The duplication-degeneration-complementation model [20] 

describes a so-called subfunctionalization mechanism in which two gene copies are partially 

damaged by degenerated mutations. Both copies must be maintained in order to perform the 

original function of the gene [21, 22]. This model, called subfunctionalization, involves a waiting 

time for multiple events to occur as deleterious substitutions accumulate in both copies before 

the retaining mutation can occur. This waiting time for multiple changes gives rise to a switch 

from a convex to a concave (sigmoidal) hazard function when modeled together with non-

functionalizing mutations (again, see [15, 18, 19] for a review and engaged discussion). In 

addition to the processes acting on individual genes, large-scale gene duplication events (for 

example, whole genome duplication) may have occurred and produced multiple interacting genes 

together creating an additional retention mechanism. Dosage balance promotes the retention of 

duplicated interaction networks, as loss of interaction stoichiometry can lead to declines in 

fitness. This gives rise to very different retention dynamics compared to neofunctionalization or 

subfunctionalization (see [15, 18, 19] for a review). The models described represent one of many 

conceivable modeling frameworks for duplicate gene retention (see [19] for an enhanced 

discussion). The models here are used within a single population, reflecting a lineage of a 

phylogenetic tree, but the ultimate aim is to extend their use into an interspecific phylogenetic 

framework with the population genetic assumptions that accompany this. Simpler models have 

already been incorporated into a fuller phylogenetic framework of this nature (see for example  

[23]). 
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Accurately reconstructing the evolution of gene families requires informative datasets, 

powerful mathematical models, and efficient computational algorithms. Advanced 

biotechnologies provide a vast amount of genetic data for understanding the evolution of gene 

families [24, 25]. Meanwhile, probabilistic models, describing the process of gene family 

evolution, significantly enhance our ability to extract useful information from genetic data [26-

29]. The birth-death (BD) model [30], which has been broadly applied in analyzing species 

phylogenies [25, 29, 31, 32], could also be adopted in phylogenetic analysis of gene families 

[33]. In 1975, Thompson [34] introduced a phylogenetic model based on the birth-death process 

to understand the evolution of human populations. Under the generalized birth-death model, Nee 

et al. [35] derived a reconstructed evolutionary process [36] to estimate birth and death rates in a 

interspecific phylogenetic framework. Rannala and Yang [37] developed a birth-death 

phylogenetic model for estimating phylogenetic trees from molecular sequence data. Aldous and 

Popovic [38] proposed a continuous-time critical branching process conditioned on the number 

of species in the present, with the assumption that the birth and death rates are identical in 

macroevolution, which was later relaxed by Gernhard [39, 40] to allow variable birth and death 

rates. With the assumption of constant birth and death rates, Stadler [41] derived the probability 

density function of a phylogenetic tree under the birth-death model. Recently, time-dependent 

BD processes have attracted more attention as a mode of performing hypothesis-driven research 

[42-45]. Rabosky [42] distinguished rate-variable models of diversification from rate-constant 

models by fitting BD models using likelihood methods. Hohna [44, 46] and Hallinan [45] studied 

the reconstructed process with time-dependent rates in a more general setting by relaxing the 

assumptions about the number of species and the time of the process. The BD model was first 

adopted in [47] and further extended by other researchers to reconcile gene and species trees 
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(Arvestad et al. [48], Akerborg et al. [23], Rasmussen and Kellis [49] and Sjostrand et al.[50]). 

Recently, Boussau et al. [51] established a BD phylogenetic model for co-estimating gene and 

species trees without the need of estimation of divergence times in species trees and duplication 

and loss rates.  

The current computational methods for analyzing gene family data (including gene 

duplication and loss) suffer a variety of weaknesses that need to be addressed. There is no 

probabilistic model embedded in a birth-death phylogenetic modeling framework that can take 

into account the effects of different evolutionary mechanisms of gene retention when analyzing 

gene family data. It is desirable to build a stochastic model as a good approximation to the real 

biological process of gene duplication and loss. Such probabilistic models can both add 

biological realism to improve the fit of the model to the data as well as enable mechanistic 

inference that is currently not possible. In this study, we integrate several evolutionary 

mechanisms of gene retention into the age-dependent BD model [42-45], in which the loss rate is 

a function of the ages of gene copies. Moreover, we derive the probability density function of 

gene duplication times for each mechanism. The conditional density function of a duplication 

time given the previous duplication time is derived from the reconstructed process under the 

generalized birth-death model [35, 52]. The conditional density function can be utilized to 

calculate the joint density of duplication times, and to efficiently simulate duplication times 

under the generalized BD model. The simulation results suggest that the maximum likelihood 

approach can accurately estimate the parameters in the generalized BD model for different 

mechanisms of gene retention, and the proposed gene-retention model can be used to detect the 

underlying mechanism that drives the evolutionary process of duplicates within a gene family.  
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2.2 MODELING THE GENE FAMILY EVOLUTION 

2.2.1 Modeling the loss rate 

For simplicity, we consider the process of gene duplication/loss in a single population. For a 

single population, we assume that a gene copy may duplicate or die at time t. The homogeneous 

birth-death model assumes that the rate of loss (hazard) of a duplicated gene is constant through 

time [11, 53]. This expectation is consistent with the nonfunctionalization process, but does not 

take into account any of the processes of neofunctionalization and subfunctionalization, which 

can affect the loss rate of gene duplicates. Unlike the homogeneous birth-death model, our model 

includes a time-dependent loss rate and a constant duplication rate λ. The time-dependent loss 

rates will be extended to age-dependent loss rates in the age-dependent birth-death model (see 

section 2.3). The process starts at time 0, and the number of gene copies at time 0 is 2. The 

process of gene duplication and loss occurs under the following postulates [54]: (1) the 

probability that a duplication will occur during an infinitesimal interval (t, t+Δt] is ntλΔt + o(Δt), 

while the probability that no duplication will occur is 1- ntλΔt + o(Δt), and (2) the probability 

that a gene duplicate will be lost during an infinitesimal interval (t, t+Δt] is ntµtΔt + o(Δt), while 

the probability that no loss will occur is 1- ntµt Δt + o(Δt), in which the loss rate µt is a function 

of time t.  

We introduce three formulas for the loss rate µt based on the processes of 

nonfunctionalization, neofunctionalization, and subfunctionalization, with assumptions about 

these processes made in the introduction and also described in [45]. For nonfunctionalization, the 

loss rate µt is constant over time t, i.e., 𝜇" = 𝜇 . The neofunctionalization hazard rate 

(instantaneous rate of duplicate copy loss) declines with time [55]. Averaging across the 

probability of hitting a neofunctionalizing substitution, the nonfunctionalization probability for 



	
	

24	

duplicate genes declines, leading to the overall decline of duplicate loss over long evolutionary 

time periods [19]. This convexly declining loss rate has been described with a Weibull hazard 

function to characterize the average process (the process for a single gene with a known 

neofunctionalization event would be a discrete jump in the hazard rate) [18]. We use an 

exponential function to model the loss rate of neofunctionlization, i.e., 𝜇" = 𝛼𝑒&"'  for 0 < 𝛼 <

1. Further, the subfunctionalization loss rate behavior has been characterized to be concavely 

(sigmoidally) declining based upon theoretical expectations of a waiting time for complementary 

mutations [18, 20]. Konrad [15] introduced an extended exponential hazard function to describe 

the instantaneous rate of loss. We adopt a generalized logistic function for the loss rate 𝜇" of 

subfunctionalization, i.e., 𝜇" =
'+,-.

/0+,-.
 , in which the scale parameter 0 < 𝛼 < 1	and known 

location parameter γ > 0 .  

2.2.2 The time-dependent birth-death model 

We are interested in the probability distribution of duplication times of the reconstructed lineages 

(the lineages that have survived to the present time), because the phylogeny reconstructed from 

the sequences of contemporary species does not include the extinct lineages [35]. The pure birth 

process of the reconstructed lineages can be derived from a generalized birth-death process [34, 

36]. We use the following notations which are defined closely to Nee et al. [35] throughout this 

paper. Let t2 = 0 be the first duplication time at the root of the tree, and T be the present time (we 

are looking forward in time, i.e., T > 0). Let nT be the number of lineages at the present time T. 

Let ni be the number of reconstructed lineages alive at ti that survive to the present. We use {ti | i 

= 2, … , nT} to denote the duplication times of nT lineages at the tips of a phylogenetic tree, and 

t2 < t3 < t4 < … < T. Let P(τ, T) be the probability that one lineage at time τ leaves multiple 

descendants at the present time T, i.e., P(τ, T) = P(nT >0 | nτ =1) [34-36, 44], 
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𝑃 𝜏, 𝑇 = 1 + 𝜇"𝑒9(;,")𝑑𝑡
?
;

&/
 .          (2.1) 

In Equation 2.1, 𝜌 𝜏, 𝑇 = 	 (𝜇A − 𝜆)𝑑𝑠
?
; . Since the integral 𝜇"𝑒9(;,")

?
;  is analytically 

intractable, it is approximated by a Monte Carlo method. We define uij as the probability P(nj > 1 

| ni = 1) that one lineage at time  ti  leaves multiple descendant reconstructed lineages at a later 

time tj. This probability has been derived under the time-dependent BD model, i.e.,  𝑢FG =

𝑃 𝑛G > 1 𝑛F = 1 = 1 − 𝑃(𝑡F, 𝑡G)𝑒9("I,"J) (see Eq. (8) in [45]). Given the number nT of lineages 

at the present time T and the number n0 of lineages at time 0, the probability density function of 

the duplication times t = {ti | i = n0+1, … , nT} is given by [45] 

𝑓 𝑡 𝑛?, 𝑛L, 𝑇 =
F&/ MN "I,? /&O.I-P,.I

I-PQR
ISQTUP

VR&/
VT&/

/&OT,R
QTOT,R

QR-QT
.	(2.2) 

In (2.2), 𝜂FG = 1 − /&YIR
/&YJR

. The conditional probability distribution of duplication time ti (i 

> 2), given its previous duplication time ti-1, T and nT, is given by [45] 

𝑓 𝑡F 𝑡F&/, 𝑛?, 𝑇 =
Z 𝑡F 𝑡F&/ N(VR|V.I,?)

N(VR|V.I-P,?)
  (2.3) 

In Equation 2.3, 𝑓 𝑡F 𝑡F&/ = 𝑖 − 1 𝜆𝑃 𝑡F, 𝑇 1 − 𝜂"I-P,"I
F&/

(See Equations 19 and 23 

in [45]). With the conditional densities 𝑓 𝑡F 𝑡F&/, 𝑛?, 𝑇  of duplication times, the duplication 

events between times 0 and T can be simulated recursively in forward direction. The conditional 

density in (3) differs from the density of duplication times derived by Hohna [44], in which the 

duplication events are treated as a random sample from a common probability distribution.  

2.2.3 The age-dependent birth-death model 

The time-dependent birth-death model described in the previous section starts with a single 

population corresponding to the lineage of a phylogenetic tree and assumes a molecular clock 

that starts ticking for all duplicates at the root. Thus, in the time-dependent birth-death model, the 
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loss rate µt of a gene copy is a function of time t. However, the loss rate µt should be a function 

of the ages of gene copies. In this section, the time-dependent birth-death process is extended to 

the age-dependent process, where the clock for each duplicate starts ticking at its birth. When the 

loss rate is constant (i.e., nonfunctionalization), the age-dependent model is identical with the 

time-dependent model. Thus, we only describe the age-dependent model for neofunctionalization 

and subfunctionalization. In the age-dependent model, the expressions for the loss rates of 

neofunctionalization and subfunctionalization remain unchanged (see section 2.2.1), except that 

time t is replaced with the age t’ of the gene copy, i.e.,𝜇"] = 𝛼𝑒&"]'for neofunctionalization and 

𝜇"] =
'+,-.

]

/0+,-.]
 for subfunctionalization. Moreover, it is assumed that the number of gene copies 

increases or decreases by 1 or remains the same during an infinitesimal interval (t, t+Δt) with 

probabilities described in (2.4a-2.4c) 

𝑃 𝑛"0^" = 𝑛" + 1 = 𝑛"𝜆Δ𝑡 + 𝜊 Δt 																						 2.4𝑎  

𝑃 𝑛"0^" = 𝑛" − 1 = 𝜇"I]Δ𝑡
V.

Fe/

+ 𝜊 Δt 																	 2.4𝑏  

𝑃 𝑛"0^" = 𝑛" = 1 − (𝑛"𝜆 + 𝜇"I]
V.

Fe/

)Δ𝑡 + 𝜊 Δt 			 2.4𝑐  

In (2.4b), 𝜇"I] is the loss rate of gene copy i at the age of 𝑡Fh for i = 1, 2, …, nt. Let 𝑡FL be 

the duplication time of gene copy i. The age 𝑡Fh of gene copy i is a random variable, because it is 

a function of the random duplication time 𝑡FL , i.e., 𝑡Fh = 𝑡 − 𝑡FL. Therefore, (2.4b) and (2.4c) are 

integrated over all possible values of 𝜇"I] with respect to the probability density function 𝑓(𝑡′) of 

the age 𝑡′ of a gene copy. The age-dependent loss rate 𝜇"I] in (2.4b) and (2.4c) is replaced with its 

expectation 𝐸(𝜇"I]). Since all 𝑡Fhs have the same probability distribution, the loss rates of nt gene 
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copies have the same expected values. Let t0 be the most recent duplication time of a gene copy 

that survives to time t. Since t0 is the most recent duplication time, it indicates that no duplication 

or loss events have occurred between t0 and t on the gene copy. It has been shown that the 

number of duplication or loss events follows the Poisson distribution with mean (𝜆 + 𝜇k)𝑑𝑥
"
L . 

The probability of no duplication or loss events occurring within the time interval [0, t] is equal 

to 𝑒& (M0mn)ok
.
T . Thus, the probability density of duplication time t0 is proportional to 

𝐷"T𝑒& (M0mn)ok
.
T  for 0 < 𝑡L < 𝑡, in which 𝐷"T	is the duplication rate at time t0 and 𝑒& (M0mn)ok

.
T  

is the probability that t0 is the most recent duplication time of the gene copy. Given that 

duplication occurs on a specific lineage, 𝐷"T  is equal to the duplication rate λ. Thus, the 

probability density of the most recent duplication time t0 is 

𝑓 𝑡L = +- (qUrn)sn
.
.T

+- (qUrn)sn
.
.T o"T.

T

              (2.5) 

Because the gene age t’ is equal to t – t0, the probability density of age t’ for 0 < 𝑡h < 𝑡 is 

given by  

𝑓 𝑡′ = +- (qUrn)sn
.
.-.]

+- (qUrn)sn
.
.-.] o"h.

T

               (2.6) 

Since the denominator in Equation 2.6 is intractable, it is approximated by Monte Carlo 

simulation. It follows that the mean loss rate at time t is 𝜙" = 𝐸 𝜇"I] = 𝜇"h𝑓(𝑡′)𝑑𝑡′
"
L . The 

exact calculation of mean loss rate is shown in Appendix 1. Thus, the postulates in (2.4b) and 

(2.4c) become 𝑃 𝑛"0^" = 𝑛" − 1 = 𝑛𝜙"Δt + 𝜊 Δt  and 𝑃 𝑛"0^" = 𝑛" = 1 − 𝑛"(𝜆 + 𝜙")Δ𝑡 +

𝜊 Δt . The loss rate in Equation 2.1 is replaced by the mean loss rate 𝜙" accordingly and 𝑃 𝜏, 𝑇  

is modified as 
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𝑃 𝜏, 𝑇 = 1 + 𝜙"𝑒9(;,")𝑑𝑡
?
;

&/
                (2.7) 

Finally, the joint and conditional probability density of duplication times (in Equations 

2.2 and 2.3) for the age dependent model remain unchanged, except that the loss rate 𝜇"  in 

Equations 2.2 and 2.3 is replaced with the mean loss rate 𝜙". 

2.3 APPLICATIONS 

2.3.1 Simulation for the time-dependent model 

To evaluate the performance of the time-dependent birth-death model on simulated data where 

the true values of parameters are known, we generated duplication times of gene copies using the 

rejection-sampling algorithm with the conditional probability density function of duplication 

times in Equation 2.3, We found the maximum likelihood score for the conditional probability 

distribution using an optimization function optim in R. The maximum score was used as the 

upper bound in the rejection-sampling algorithm. Specifically, duplication times were simulated 

from Equation 2.3 with a fixed current time T= 10 and a fixed number of gene copies nT = 32 at 

time T. The first duplication time is set to 0, i.e., t2 = 0; the second one is simulated conditional 

on the first one and so on so that additional 30 duplication times are generated sequentially. 

Duplication events were generated under each of 3 duplication mechanisms 

(nonfunctionalization, neofunctionalization, and subfunctionalization) with different 

parameterizations specified in Table 2.1. We set a constant duplication rate 𝜆 = 0.2	for all 

simulations (Table 2.1). The loss rates were determined by the equations described previously 

for nonfunctionalization, neofunctionalization, and subfunctionalization models with parameters 

shown in Table 2.1. The values of parameters were selected such that three mechanisms have the 

same starting deletion rate.  
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For each mechanism, simulation was repeated 100 times. The mean of simulated 

duplication times for each of three mechanisms are shown in Figure 2.1a. Duplication times 

simulated under different mechanisms show distinct patterns. Given the present time T and the 

number of gene copies nT, the overall duplication times for nonfunctionalization tend to be larger 

than those for neofunctionalization and subfunctionalization, and duplication times for 

neofunctionalization appear to be smaller than subfunctionalization. The curves of duplication 

times for nonfunctionalization, neofunctionalization, and subfunctionalization are well separated 

(Figure 2.1a), even though three mechanisms have the same duplication rate and the same 

starting deletion rate. These results indicate that duplication times can be used to distinguish 

different mechanisms of gene retention, and to make inference about the underlying mechanism 

that generated the observed duplication times given the assumptions of the duplication models 

and their relationship to the underlying biology. These results are consistent with the caveat that 

the time-dependent process uses a tree-dependent clock rather than the more biological situation 

of a duplication-event specific process. The extension to the age-dependent birth-death model 

will be discussed below. The joint probability density function in Equation 2.2 can be used to 

obtain the maximum likelihood estimates (MLE) of parameters in the time-dependent model, 

when duplication times are given as input data. To visualize the divergence of the probability 

density functions of three mechanisms, we plotted the density curves of the first duplication time 

for nonfunctionalization, neofunctionalization, and subfunctionalization (Figure 2.1b) with the 

values of parameters in Table 2.1. Since each mechanism has a unique density curve, this result 

indicates that it is possible to distinguish three mechanisms using the time-dependent birth-death 

model. Moreover, we employed the Akaike Information Criterion (AIC) [56] to evaluate the 

relative quality of the time-dependent models for nonfunctionalization, neofunctionalization, and 
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subfunctionalization. The data sets simulated from the time-dependent model were used as input 

data to calculate AIC for nonfunctionalization, neofunctionalization, and subfunctionalization. 

For each simulated data set, the mechanism with the lowest AIC score was selected and 

compared with the true mechanism from which the data sets were generated. We reported the 

percentage of the simulated data sets successfully identifying the true mechanism (Figure 2.1c). 

The overall average of the percentages of samples recovering the true mechanism is about 80% 

(Figure 2.1c). In addition, subfunctionalization appears to be more difficult than 

neofunctionalization to distinguish from nonfunctionalization in this modeling framework 

(Figure 2.1c). 

To examine the performance of maximum likelihood estimation, we use the simulated 

duplication times as data to estimate model parameters. The sample size (the number of 

duplication times) ranges from 20 to 100. The maximum likelihood estimates of parameters were 

obtained using Metropolis algorithm. The standard errors of the maximum likelihood estimates 

are displayed in Figure 2.2. For nonfunctionalization, the standard errors of the estimates of 𝜇 

and 𝜆  decrease as the number of duplication times increases from 20 to 100. Similarly, the 

standard errors of the estimates of parameters for subfunctionalization and neofunctionalization 

decrease as the number of duplications grows. However, the estimation of parameter 𝛼  for 

neofunctionalization does not improve well with the increased number of gene copies (Figure 

2.2), because duplication times in the simulated data are highly correlated and the auto-

correlation between two adjacent duplication times increases as the number of duplication times 

increases. As a result, when the number of highly correlated duplication times reaches a certain 

number, adding even more duplication times does not contribute more information for accurately 

estimating model parameters, especially for neofunctionalization where the loss rate quickly 
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declines to a very low level. Nevertheless, these results suggest that maximum likelihood 

methods can accurately estimate parameters in the time-dependent birth-death model when the 

sample size is large.  

2.3.2 Simulation for the age-dependent birth-death model 

The simulation for the age-dependent model was conducted with the same parameterization and 

simulation procedure used for the time-dependent model. We generated duplication times from 

the age-dependent models for nonfunctionalization, neofunctionalization, and 

subfunctionalization. The mean duplication times given the current time T and gene copy number 

nT for the age-dependent models (Figure 2.3a) appear to be less diversified among 

nonfunctionalization, neofunctionalization, and subfunctionalization than those for the time-

dependent models (Figure 2.1a). In addition, the density curve for subfunctionalization becomes 

closer to the nonfunctionalization curve under the age-dependent model (Figure 2.3b), compared 

to the curves for the time-dependent model (Figure 2.1b). This is consistent with our expectation, 

because the age of a gene copy is less than the absolute time t. Since the loss rate of 

subfunctionalization is concavely declining, the beginning portion of the loss rate of 

subfunctionalization is similar to the constant rate of nonfunctionalization. In Figure 2.3b, the 

density curve for neofunctionalization is well separated from the density curves for 

nonfunctionalization and subfunctionalization. However, the density curves for 

nonfunctionalization and subfunctionalization are almost identical, indicating that for the age-

dependent model, it could be very difficult to distinguish subfunctionalization and 

nonfunctionalization (Figure 2.3b). The overall percentage of samples identifying the true 

mechanism increases as the number of gene copies grows (Figure 2.3c). The percentages of 

nonfunctionalization and neofunctionalization are significantly higher than the overall 
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percentage. Although the performance of subfunctionalization is below average, the percentage 

of samples successfully identifying the true subfunctionalization increases to 60% when the 

number of gene copies reaches 100. Moreover, the standard errors of the estimates of parameters 

in the age-dependent model appear to decrease as the number of gene copies grows, suggesting 

that maximum likelihood methods can accurately estimate parameters in the age-dependent 

model, when the sample size is large (Figure 2.4).  

2.4 DISCUSSION 

2.4.1 Summary of the gene family evolution model 

We have derived the probability density function for the age-dependent birth-death model, in 

which the loss rate is a function of the ages of gene copies. In addition, the conditional density 

function and a joint density function of duplication times with age-dependent loss rate have been 

developed in above age-dependent model, given the current time T and the number of gene 

copies at the time T. The conditional density function is used to efficiently simulate duplication 

times, and the simulation results suggest that maximum likelihood methods can accurately 

estimate model parameters in both time-dependent and age-dependent models. In addition, the 

relative quality of various birth-death models was assessed with AIC. Both time-dependent and 

age-dependent models can distinguish the three mechanisms (nonfunctionalization, 

neofunctionalization, and subfunctionalization) with high probabilities when the sample size is 

large. These results indicate that the probabilistic models derived from the birth-death process 

with a time-dependent and age-dependent loss rates are useful for understanding the duplication 

and loss mechanisms of gene families that evolve over time in a single population with caveats 

discussed. 
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2.4.2 Limitations and future study 

As duplication times are often not observable, it is desirable to generalize the current model to 

DNA sequence data. We are currently working along this line to build a generalized model that 

includes two stochastic processes. The birth and death process is used to derive the probability 

distribution of a gene family tree, while the mutation process is used to derive the probability 

distribution of DNA sequence data given the gene family tree. With this generalized model, we 

can estimate model parameters (duplication and loss rates) from DNA sequence data.   

One of the limits of the current model is that it considers gene family evolution in a 

single population. This model cannot be applied as currently implemented to understand the 

evolutionary process of gene families from multiple species. To overcome this limit, the current 

model will be extended in the context of species trees, in which duplication process occurs along 

the lineages of species trees. This generalization will certainly involve intensive computation, but 

such a model is quite useful for understanding gene family evolution in the context of the 

evolution of species. Another limitation of the current age-dependent model is that the likelihood 

is conditioned on observed extant duplicate copies and does not consider the full generative 

process including duplicates that were lost before the present. Future work will examine this in 

the context of Approximate Bayesian Computation [57]. Further, the current model exists in the 

classes of interspecific models that treat all observations from a single individual from a species 

as fixed relative to observations from single individuals from other species. Recently, a 

correction for the effects of population dynamics has been introduced and can be considered in 

modeling efforts [9]. Missing data and genome assembly error are also not specifically addressed 

in the modeling framework and their impact on inference also needs to be addressed. 
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The gene loss models and their interpretations (the relationship between the best fit curve 

shape and the underlying biology) make assumptions about the relationship between the 

accumulation of synonymous changes and of non-synonymous changes whereas there is 

information in the evolution of dN/dS vs. dS that can be taken advantage of in alternative 

formulations of the likelihood (see [18]). Lastly, the models can be used to make predictions 

about functional evolution in the absence of actual functional data. While such data does not 

currently exist in large scale, the future may bring data on the expression levels of protein 

duplicates compared to an ancestral state as well as binding and enzyme specificities (and 

enzyme kinetics), all of which can be integrated into a phylogenetic framework. However, even 

with future comparative proteomic data, one still needs models that treat signals associated with 

selective pressures (like the models presented here), as neutral changes in expression and 

functional properties would not lead to changes in retention profiles (the gene loss 

hazard/survival model) and meaningful lineage-specific biology (see [58] for a discussion of the 

interplay between molecular phenotypes and biological function in an evolutionary context).  

The model as currently developed also assumes that all duplicates in a gene family evolve 

under the same process. A future opportunity is in examination of large gene family databases 

like Ensembl [59], HOGENOM [60], or TAED [61], a mixture model of duplicate processes can 

be applied across all gene families and duplication events to enable a posteriori probabilistic 

identification of duplication retention mechanisms for individual gene duplication events. The 

work presented in this manuscript, with a birth-death model in a phylogenetic context, brings this 

scale of modeling one step closer.  
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2.5 CONCLUSIONS 

We develop a generalized birth-death model for probabilistic inference of the evolutionary 

mechanism for duplicate gene retention based upon the average rate of loss over time of the 

duplicate. The time-dependent birth-death model assumes a molecular clock that starts ticking 

for all duplicates at the root. The time-dependent model is then extended to the age-dependent 

model, which allows the gene loss rate dependent of duplication events. Simulation results 

indicate that the mechanisms of gene retentions (nonfunctionalization, neofunctionalization, and 

subfunctionalization) produce distinct likelihood functions, which can be used with comparative 

genomic data to quantitatively distinguish those mechanisms. 

2.6 REFERENCES 

1. Ohta, T., Simulating evolution by gene duplication. Genetics, 1987. 115(1): p. 207-13. 

2. Fortna, A., et al., Lineage-specific gene duplication and loss in human and great ape 

evolution. PLoS Biol, 2004. 2(7): p. E207. 

3. Nei, M. and A.P. Rooney, Concerted and birth-and-death evolution of multigene 

families. Annu Rev Genet, 2005. 39: p. 121-52. 

4. Lynch, M., et al., The probability of preservation of a newly arisen gene duplicate. 

Genetics, 2001. 159(4): p. 1789-804. 

5. Hurles, M., Gene duplication: the genomic trade in spare parts. PLoS Biol, 2004. 2(7): p. 

E206. 

6. Ohta, T., Role of gene duplication in evolution. Genome, 1989. 31(1): p. 304-10. 

7. Zhang, J.Z., Evolution by gene duplication: an update. Trends in Ecology & Evolution, 

2003. 18(6): p. 292-298. 



	
	

36	

8. Lynch, M., Genomics. Gene duplication and evolution. Science, 2002. 297(5583): p. 945-

7. 

9. Teufel, A.I., J. Masel, and D.A. Liberles, What Fraction of Duplicates Observed in 

Recently Sequenced Genomes Is Segregating and Destined to Fail to Fix? Genome Biol 

Evol, 2015. 

10. Hahn, M.W., et al., Estimating the tempo and mode of gene family evolution from 

comparative genomic data. Genome Res, 2005. 15(8): p. 1153-60. 

11. Lynch, M. and J.S. Conery, The evolutionary fate and consequences of duplicate genes. 

Science, 2000. 290(5494): p. 1151-5. 

12. Hughes, A.L. and R. Friedman, Gene duplication and the properties of biological 

networks. J Mol Evol, 2005. 61(6): p. 758-64. 

13. Liberles, D.A. and K. Dittmar, Characterizing gene family evolution. Biol Proced Online, 

2008. 10: p. 66-73. 

14. Innan, H. and F. Kondrashov, The evolution of gene duplications: classifying and 

distinguishing between models. Nat Rev Genet, 2010. 11(2): p. 97-108. 

15. Konrad, A., et al., Toward a general model for the evolutionary dynamics of gene 

duplicates. Genome Biol Evol, 2011. 3: p. 1197-209. 

16. Ohno, S., Evolution by gene duplication. 1970, New York: Springer. 

17. Pollock, D.D., G. Thiltgen, and R.A. Goldstein, Amino acid coevolution induces an 

evolutionary Stokes shift. Proc Natl Acad Sci U S A, 2012. 109(21): p. E1352-9. 

18. Hughes, T. and D.A. Liberles, The pattern of evolution of smaller-scale gene duplicates 

in mammalian genomes is more consistent with neo- than subfunctionalisation. J Mol 

Evol, 2007. 65(5): p. 574-88. 



	
	

37	

19. Teufel, A.I., et al., On Mechanistic Modeling of Gene Content Evolution: Birth-Death 

Models and Mechanisms of Gene Birth and Gene Retention. Computation, 2014. 2(3),. 

20. Force, A., et al., Preservation of duplicate genes by complementary, degenerative 

mutations. Genetics, 1999. 151(4): p. 1531-45. 

21. Rastogi, S. and D.A. Liberles, Subfunctionalization of duplicated genes as a transition 

state to neofunctionalization. BMC Evol Biol, 2005. 5: p. 28. 

22. Khan, A.A., et al., Phylogenetic analysis of kindlins suggests subfunctionalization of an 

ancestral unduplicated kindlin into three paralogs in vertebrates. Evol Bioinform Online, 

2011. 7: p. 7-19. 

23. Akerborg, O., et al., Simultaneous Bayesian gene tree reconstruction and reconciliation 

analysis. Proceedings of the National Academy of Sciences of the United States of 

America, 2009. 106(14): p. 5714-5719. 

24. Basten, C.J. and T. Ohta, Simulation study of a multigene family, with special reference 

to the evolution of compensatory advantageous mutations. Genetics, 1992. 132(1): p. 

247-52. 

25. Hahn, M.W., J.P. Demuth, and S.G. Han, Accelerated rate of gene gain and loss in 

primates. Genetics, 2007. 177(3): p. 1941-9. 

26. Ohta, T., An Extension of a Model for the Evolution of Multigene Families by Unequal 

Crossing over. Genetics, 1979. 91(3): p. 591-607. 

27. Thornton, J.W. and R. DeSalle, Gene family evolution and homology: genomics meets 

phylogenetics. Annu Rev Genomics Hum Genet, 2000. 1: p. 41-73. 



	
	

38	

28. Yanai, I., C.J. Camacho, and C. DeLisi, Predictions of gene family distributions in 

microbial genomes: evolution by gene duplication and modification. Phys Rev Lett, 

2000. 85(12): p. 2641-4. 

29. Karev, G.P., et al., Gene family evolution: an in-depth theoretical and simulation analysis 

of non-linear birth-death-innovation models. BMC Evol Biol, 2004. 4: p. 32. 

30. Bailey, N., The elements of stochastic processes. 1964, New York. 

31. Huynen, M.A. and E. van Nimwegen, The frequency distribution of gene family sizes in 

complete genomes. Mol Biol Evol, 1998. 15(5): p. 583-9. 

32. Csuros, M. and I. Miklos, Streamlining and large ancestral genomes in Archaea inferred 

with a phylogenetic birth-and-death model. Mol Biol Evol, 2009. 26(9): p. 2087-95. 

33. Szollosi, G.J., et al., The inference of gene trees with species trees. Syst Biol, 2015. 

64(1): p. e42-62. 

34. Thompson, The likelihood approach. Human evolutionary trees, 1975. 

35. Nee, S., R.M. May, and P.H. Harvey, The reconstructed evolutionary process. Philos 

Trans R Soc Lond B Biol Sci, 1994. 344(1309): p. 305-11. 

36. Kendall, D.G., On the Generalized Birth-and-Death Process. Annals of Mathematical 

Statistics, 1948. 19(1): p. 1-15. 

37. Rannala, B. and Z. Yang, Probability distribution of molecular evolutionary trees: a new 

method of phylogenetic inference. J Mol Evol, 1996. 43(3): p. 304-11. 

38. Aldous, D. and L. Popovic, A critical branching process model for biodiversity. 

Advances in Applied Probability, 2005. 37(4): p. 1094-1115. 

39. Gernhard, T., The conditioned reconstructed process. Journal of Theoretical Biology, 

2008. 253(4): p. 769-778. 



	
	

39	

40. Gernhard, T., New Analytic Results for Speciation Times in Neutral Models. Bulletin of 

Mathematical Biology, 2008. 70(4): p. 1082-1097. 

41. Stadler, T., Sampling-through-time in birth-death trees. J Theor Biol, 2010. 267(3): p. 

396-404. 

42. Rabosky, D.L., Likelihood methods for detecting temporal shifts in diversification rates. 

Evolution, 2006. 60(6): p. 1152-64. 

43. Morlon, H., T.L. Parsons, and J.B. Plotkin, Reconciling molecular phylogenies with the 

fossil record. Proc Natl Acad Sci U S A, 2011. 108(39): p. 16327-32. 

44. Hohna, S., Fast simulation of reconstructed phylogenies under global time-dependent 

birth-death processes. Bioinformatics, 2013. 29(11): p. 1367-74. 

45. Hallinan, N., The generalized time variable reconstructed birth-death process. J Theor 

Biol, 2012. 300: p. 265-76. 

46. Hohna, S., The time-dependent reconstructed evolutionary process with a key-role for 

mass-extinction events. J Theor Biol, 2015. 380: p. 321-31. 

47. Arvestad, L., et al., Bayesian gene/species tree reconciliation and orthology analysis 

using MCMC. Bioinformatics, 2003. 19 Suppl 1: p. i7-15. 

48. Arvestad, L., J. Lagergren, and B. Sennblad, The gene evolution model and computing its 

associated probabilities. J. ACM, 2009. 56(2): p. 1-44. 

49. Rasmussen, M.D. and M. Kellis, A Bayesian approach for fast and accurate gene tree 

reconstruction. Mol Biol Evol, 2011. 28(1): p. 273-90. 

50. Sjostrand, J., et al., DLRS: gene tree evolution in light of a species tree. Bioinformatics, 

2012. 28(22): p. 2994-5. 



	
	

40	

51. Boussau, B., et al., Genome-scale coestimation of species and gene trees. Genome Res, 

2013. 23(2): p. 323-30. 

52. Liu, L., et al., A Bayesian model for gene family evolution. BMC Bioinformatics, 2011. 

12: p. 426. 

53. Cotton, J.A. and R.D. Page, Rates and patterns of gene duplication and loss in the human 

genome. Proc Biol Sci, 2005. 272(1560): p. 277-83. 

54. Feller, W., An introduction to probability theory and its applications. 1954, New York: 

Wiley. 

55. Zhang, P., W. Min, and W.H. Li, Different age distribution patterns of human, nematode, 

and Arabidopsis duplicate genes. Gene, 2004. 342(2): p. 263-8. 

56. Akaike, H., Information theory and an extension of the maximum likelihood principle. in 

Petrov, B.N.; Csáki, F., 2nd International Symposium on Information Theory, 1973. 

September 2-8(Budapest: Akadémiai Kiadó): p. p. 267-281. 

57. Janzen, T., S. Höhna, and R.S. Etienne, Approximate Bayesian Computation of 

diversification rates from molecular phylogenies: introducing a new efficient summary 

statistic, the nLTT. Methods in Ecology and Evolution, 2015. 6(5). 

58. Graur, D., et al., On the immortality of television sets: "function" in the human genome 

according to the evolution-free gospel of ENCODE. Genome Biol Evol, 2013. 5(3): p. 

578-90. 

59. Flicek, P., et al., Ensembl 2012. Nucleic Acids Res, 2012. 40(Database issue): p. D84-90. 

60. Penel, S., et al., Databases of homologous gene families for comparative genomics. BMC 

Bioinformatics, 2009. 10 Suppl 6: p. S3. 



	
	

41	

61. Roth, C., et al., The Adaptive Evolution Database (TAED): a phylogeny based tool for 

comparative genomics. Nucleic Acids Res, 2005. 33(Database issue): p. D495-7. 

2.7 APPENDICES 

In the following sections, the equation numbers without the prefix, A, correspond to those 

in the main article. 

Appendix. 1 Calculation of mean loss rate under age-dependent model 

With the probability density function of age 𝑡h, which is 

𝑓 𝑡′ = +- (qUrn)sn
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We can calculate the mean loss rate at time 𝑡 using	𝜙" = 𝐸 𝜇"I] = 𝜇"h𝑓(𝑡′)𝑑𝑡′
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Although the integrals in these equations derived above still require a Monte Carlo 

integration, these simplified equations of the mean loss rate can increase the accuracy of the 

overall calculation. 
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Table 2.1: The values of parameters used in simulating duplication times under 
nonfunctionalization, neofunctionalization, and subfunctionalization. 

 λ µ α 
Nonfunctionalization 0.2 0.8  
Neofunctionalization 0.2  0.8 
Subfunctionalization 0.2  0.8 
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Figure 2.1: Simulation results of the time-dependent model: a) the means of duplication times 
simulated with 100 replicates for nonfunctionalization, neofunctionalization, and 

subfuncitonalization are shown; b) the probability density curves of duplication times for 
nonfunctionalization, neofunctionalization, and subfunctionalization under the model are shown; 

c) the percentage of samples identifying the true mechanism with AIC. 
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Figure 2.2: The standard errors of the maximum likelihood estimates of parameters in the age-
dependent models. 
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Figure 2.3: Simulation results of the age-dependent model: a) the means of duplication times 

simulated with 30 replicates for nonfunctionalization, neofunctionalization, and 

subfuncitonalization are shown; b) the probability density curves of duplication times for 

nonfunctionalization, neofunctionalization, and subfunctionalization under the model are shown; 

c) the percentage of samples identifying the true mechanism with AIC 
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Figure 2.4: The standard errors of maximum likelihood estimates of parameters in the age-

dependent models for neofunctionalization and subfunctionalization. 

	



CHAPTER 3 

A GENERALIZED BIRTH AND DEATH PROCESS FOR MODELING THE GENE FAMILY 

EVOLUTION WITHIN SPECIES TREE 1 

1 Zhao, J. and Liu, L. To be submitted.	
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ABSTRACT 

Gene families have been examined through extensive literature due to its importance in 

molecular evolution. Gene duplication and speciation are considered as the major forces to form 

gene families. In this paper, a non-homogeneous birth and death process is adopted to model 

gene family evolution within a species tree, in which the loss rate is a function of the gene age. 

In addition, specific models related to different gene retention mechanisms by incorporating 

distinct loss rate functions have been investigated through simulation study. Results show that 

different gene retention mechanisms could be distinguished by the proposed model.   

3.1 INTRODUCTION 

Gene family evolution is an important component in molecular evolution since it helps reveal the 

relationships among genes. With the acquired knowledge of these relationships, we can further 

explore the underlying driving forces of creation of new genes. Genes in a gene family could be 

paralogs due to gene duplication or orthologs because of divergence of species[1]. Duplication of 

genes is viewed as the dominant mechanism in developing evolutionary novelties[2-5]. Gene 

duplicates could be either fixed or lost in a population, and for those being fixed, it could either 

be silenced or be preserved with novel function from the the original copy[6]. 

Three different mechanisms regarding the fates of individual duplicate gene have been 

proposed, which are nonfunctionalization, neofunctionalization and subfunctionalization. In 

nonfunctionalization process, one of the gene duplicates may become a pseudogene by 

degenerative mutation[7, 8]. Although only a small fraction of the duplicate genes is preserved in 

a population, the extra gene copy may evolve a beneficial function with the original one keeping 

the initial function. This process is referred to as neofunctionalization, wherein the hazard 

function is modeled by a convexly decreasing curve [7, 9-11]. Subfunctionalization depicts a 
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mechanism in which each of the duplicate genes is damaged partially and both of them should be 

retained to perform the original functions[12-14]. The hazard function of this process , along 

with the non-functionalizing mutations, has been modeled by a concavely decreasing curve[7, 9-

11]. Other than the three gene retention mechanisms relating to individual duplicate genes, there 

is an additional mechanism linked with the multiple interacting genes generated by large scale 

gene duplication events. This mechanism, named dosage balance, improves the preservation of 

duplicated interaction networks( see [7, 9, 10] for a detailed discussion).  

The gene retention mechanisms discussed previously can potentially affect the gene 

counts in a gene family and the relationship between the gene tree and species tree. Currently, 

extensive computational approaches have been employed for understanding the impacts of 

underlying evolutionary forces on gene duplication and loss process, of which the reconciliation 

of gene tree with species tree and the probabilistic framework are two major strategies[1]. 

Goodman et al. [15, 16] firstly introduced the concept of reconciled tree in fitting gene tree into 

species tree using parsimony based approach which is still the most popular method in 

reconciliation for its computational efficiency[17]. However, there are two primary limitations of 

this reconciliation method when applied in modeling gene duplication and loss[1]. On one hand, 

the inference about gene duplication and loss would be biased if the gene tree is not estimated 

correctly. On the other hand, the tree reconciliation does not provide a clear interpretation about 

the underlying evolutionary forces since there is no parameter estimation. A second strategy is 

the probabilistic approach[7, 18], in which the birth and death process has been applied due to its 

similar underlying mechanism with gene duplication and loss. Arvestad et al. [19] introduced a 

gene evolution model based on a birth-death process and developed a tool to perform orthology 

analysis as well as gene tree/species tree reconciliation. CAFÉ [20] is a statistical analyzing tool 
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for the evolution of the size of gene families based on an equal rate birth and death process. 

Akerborg et al. [18] has developed a a probabilistic model for gene evolution by integrating gene 

evolution, sequence evolution, and a substitution rates model. Konrad et al.[7] have established a 

maximum likelihood framework based on a modified Weibull hazard function under different 

duplicate gene loss/retention mechanisms. It is more realistic and powerful to apply the 

probabilistic models over parsimony based approaches in gene family evolution. In addition, the 

models are possible to be compared with model assumptions[19]. However, weaknesses also 

exist in the probabilistic models, which are computationally expensive and highly parameterized. 

In this paper, we establish a probabilistic framework to model gene family evolution in 

the context of species tree, in which three evolutionary mechanisms of gene retention are 

incorporated. This study extends the age-dependent birth and death model for gene family in one 

population ( Zhao et al. [11]) into multiple populations by developing the joint distribution of the 

gene counts in the internal nodes and duplication times in all branches of the species tree. A 

simulation study is then performed to examine the accuracy of parameter estimation through the 

Bayesian methods.   

3.2 MODELING GENE FAMILY EVOLUTION WITHIN A SPECIES  

3.2.1 Definitions  

Let 𝑆	denote a rooted binary ultrametric K-taxon species tree with nodes	𝑉$(𝑖 = 1,… ,2𝐾 − 1). 

Especially, 𝑉$(𝑖 = 1,… , 𝐾 − 1) represent the internal nodes and 𝑉$(𝑖 = 𝐾,… ,2𝐾 − 1) denote the 

external nodes. We assume that the topology of the species tree 𝜓	is given. The internal branches 

of the species tree represent ancestral populations, while the external branches represent 

contemporary species.  
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Let 𝑇$  be the divergence time at internal node 𝑉$	(𝑖 = 1,… , 𝐾 − 1) , where 𝑇1	 is the 

divergence time at the root of the species tree. Let 𝑇2  be the present time. We use  𝑇3 = 0 to be 

the starting time of the evolutionary process of a gene family. Let 𝑁3 = 1 be the number of gene 

copies at time 𝑇3 (i.e., the process starts at a single gene copy). Let 𝑁$	(𝑖 = 1,… , 𝐾 − 1) be the 

number of gene copies at internal node 𝑖 of the species tree. Let 𝑁$(𝑖 = 𝐾,… ,2𝐾 − 1)	be the 

number of genes in each comtemporary species at the present time 𝑇2  (i.e., the tips of the species 

tree).  Furthermore, we use 𝑁$6 to denote the number of gene copies at the ancestral node of 𝑉$ 

(𝑖 ≠ 1, i.e., excluding the root node). Let  𝝉𝒊 = (𝒕𝒊,𝑵𝒊<=𝟏, 𝒕𝒊,𝑵𝒊<=𝟐, … , 𝒕𝒊𝑵𝒊) represent the duplication 

times occurred in branch 𝒊.  

We assume that each gene may duplicate or die at any time point.  As discussed in the 

birth and death model for the fates of gene retention [11], the duplication rate 𝜆 is constant 

through time and the loss rate 𝜇B	 is a function of time t.  Specifically, the loss rate for 

nonfunctionalization is a constant, 𝜇B = 𝜇, as defined in Zhao et al. [11]. Two newly defined loss 

rate functions of neofunctionalization and subfunctionalization are introduced to allow more 

flexibility than those defined by Zhao et al. [11]. A transformed exponential function, 𝜇B =

𝛼𝑒EBF  with α ∈ 0,1 	be the starting value and 𝛽 > 0 be the decreasing rate of the curve, is 

adopted here to model loss rate of neofunctionalization. For subfunctionalization, a transformed 

generalized logistic function, 𝜇B =
KLMN(OMP)

1=LMN(OMP)
 with α ∈ 0,1 	be the starting value, 𝛽 > 0 be the 

decreasing rate and 𝛾 > 0 be the time at inflection point of logistic curve, is used to model the 

loss rate. Moreover, we assume that when an ancestral population splits into two descendant 

populations, each of two descendant populations has the same number of gene copies as the 

ancestral population does at the divergence time. 
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Zhao et al. [11] have developed an age-dependent birth and death model for 

understanding the evolutionary process of a gene family in a single population, in which the loss 

rate is dependent of the age of a gene and thus substituted by the mean loss rate. In this paper, we 

will extend the age-dependent model to multiple populations in the context of species trees, in 

which the mean loss rates corresponding to neofunctionalization and subfunctionalization are 

calculated in Appendix 1. 

3.2.2 The probability distribution of a gene family tree within a species tree 

Given the species tree 𝑆 (topology), and the number of gene copies 𝑁$(𝑖	 = 	1, … , 2𝐾 − 1) at 

both internal and external nodes, the duplication processes in the internal and external branches 

are independent of one another. Let 𝑓$  be the conditional density function of the duplication 

times in branch 𝑖 of the species tree 𝑆, conditional on the numbers of gene copies at the two ends 

of the branch. The conditional density function of all duplication times 𝜏 = {𝑡$V, 𝑖 = 1,… ,2𝐾 −

1, 𝑗 = 𝑁$6 + 1,… ,𝑁$}, given the species tree 𝑆 and the number of gene copies at the internal 

nodes and external nodes, is the product of density functions for individual branches, i.e., 

𝑓 𝜏 𝜓, 𝑇1, … , 𝑇ZE1, θ, 𝑁1, … , 𝑁\ZE1 = 𝑓$\ZE1
$]1        (3.1) 

In Equation 3.1, θ denotes the parameters of the age-dependent model, including the 

constant birth rate λ  and the parameters in the death rate µ`  under three gene retention 

mechanisms: θ = (µ, λ) for nonfunctionalization, θ = (α, β, λ) for neofunctionalization, and θ =

(α, β, γ, λ) for subfunctionalization. 

The density 𝑓$	  can be derived from the age-dependent model. Consider an arbitrary 

branch (branch	𝑖) of the species tree. The time points of the two ends of branch	𝑖 are denoted as 

𝑡$cd< and	𝑡$cd. Suppose that 𝑁$′ lineages enter the population 𝑖 from its ancestral population, i.e., 

there are 𝑁$′  lineages at time 𝑡$cd<  in population 𝑖 . Let 𝑁$  be the number of lineages in the 
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population 𝑖  at time 	𝑡$cd . It indicates that 𝑁$ − 𝑁$′  duplication events have occurred in 

population	𝑖. We use 𝜏$ = {𝑡$V, 𝑗 = 𝑁$6 + 1,… ,𝑁$} to denote the duplication times in population 𝑖. 

According to the age-dependent model [11], the joint probability density function of duplication 

times 𝜏$ in branch 𝑖, conditional on the numbers of gene copies at the two ends of the branch, is 

given by 

𝑓$ = 𝑓 𝜏$ 𝑁$6, 𝑁$, 𝑇2 =
𝑗 − 1 𝜆𝑃Bdghi 1 − 𝜂Bd,gMk,Bd,g

lE1cd
V]cd

<=1

cdE1
cd
<E1 1 − 𝜂3,hi

cd
<
𝜂cdEcd<

			(3.2) 

In Equation 3.2, 𝑃Bd,Bg and 𝜂Bd,Bg are defined the same as those in Chapter 2 (Equations 2.1 

and 2.2). 

We then derive the joint mass function for the numbers of gene copies 𝑁$(𝑖 = 1,… , 𝐾 −

1) at the internal nodes of the species tree. Since the reconstructed process is a pure birth 

process, the number 𝑁$ of gene copies at an internal node i must be less than or equal to the 

number 𝑁V of gene copies at its descendant node j, i.e., 𝑁$ ≤ 𝑁V. We use Ω to denote all possible 

values of the numbers of gene copies at the internal nodes that satisfy the constrain 𝑁$ ≤ 𝑁V. 

Note that 𝑁$ ≥ 1	for any 𝑖 ∈ (1, … , 𝐾 − 1), and the number of gene copies at the tips of the 

species tree are given as data.  

Moreover, the number of gene copies at an internal node should be less than the numbers 

of gene copies at the tips of its descendent lineages.  By Equation (16) in Hallinan [21], the 

probability of number of lineages at a time point only depends on the change in the number of 

lineages from an earlier time point to a later time point. Thus, given the number of gene copies at 

the tips of the species tree, the probability mass function of the number of genes 	𝑁1 at the root of 

the species tree is given by  
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𝑃 	𝑁1 𝑁3 = 1,𝑁1r = cksEct
	ckEct

uvt,vkEuvt,vi
1Euvt,vi

	cwEck 1Euvt,vk
1Euvt,vi

cksE	ck
				(3.3) 

In Equation 3.3, 𝑁1r = 𝑚𝑖𝑛{𝑁z, … ,𝑁\zE1}. In general, for any 𝑁$, 𝑖 ∈ 1,… , 𝐾 − 1 , we 

have 

𝑃 	𝑁$ 𝑁$6, 𝑁$r =
𝑁$r − 𝑁$6

	𝑁$ − 𝑁$6
𝜂hdMk,hd − 𝜂hdMk,hi
1 − 𝜂hdMk,hi

	cdEcd
<
1 − 𝜂hdMk,hd
1 − 𝜂hdMk,hi

{|
sE	cd

(3.4) 

In Equation 3.4, 𝑁$r	is the minimum of the numbers of gene copies at the tips of the 

descendant lineages of internal node i. 

The joint mass function of the number 𝑁1,… ,𝑁ZE1  of gene copies at internal nodes, 

conditional on the numbers (𝑁Z,… ,𝑁\ZE1) of gene copies at the tips of the species tree, is given 

by 

𝑃 𝑁1,… ,𝑁ZE1 𝜃, 𝑁3 = 1,𝑁Z,… ,𝑁\ZE1 = 𝑃 	𝑁$ 𝑁$6, 𝑁$r
ZE1

$]1
					(3.5) 

Thus, the joint probability function of gene duplication times 𝜏 and the number of gene 

copies at the internal nodes, given the species tree S, the number of gene copies at the external 

nodes and parameters 𝜃, is equal to the product of Equations 3.1 and 3.5, i.e., 

𝑓 𝜏, 𝑁1, … , 𝑁ZE1 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁Z,… ,𝑁\ZE1 =

	𝑃 𝑁1,… ,𝑁ZE1 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁3 = 1,𝑁Z,… ,𝑁\ZE1 𝑓 𝜏 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁1, … , 𝑁\ZE1 					(

3.6) 

Here the birth rate 𝜆 is constant on the entire tree. However, it may vary across branches 

of the species tree.  

In real data analysis, the input data of the previously proposed model is the gene family 

tree, of which the duplication times of genes and numbers of gene copies at the internal nodes 

can be estimated from sequence data through the substitution model. And the gene family tree is 
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viewed as the “True tree” which does not take into account the estimation error of the 

substitution model. The model parameters, including the divergence times of the species tree and 

other parameters θ, are estimated by the Bayesian method which is further discussed in the 

following section. 

3.2.3 Bayesian estimation of model parameters 

Estimation of the model parameters is based on the joint posterior probability distribution 

𝑓(𝜃, 𝑇1, … , 𝑇ZE1|𝜏, 𝑁1, … , 𝑁\ZE1) of 𝜃 and 𝑇1, … , 𝑇ZE1, i.e., 

𝑓 𝜃, 𝑇1, … , 𝑇ZE1 𝜏, 𝑁1, … , 𝑁\ZE1

=
𝑓 𝜏, 𝑁1, … , 𝑁ZE1 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁Z,… ,𝑁\ZE1 𝑓(𝜃)𝑓(𝑇1, … , 𝑇ZE1)

𝑓 𝜏, 𝑁1, … , 𝑁ZE1 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁Z,… ,𝑁\ZE1 𝑓 𝜃 𝑓 𝑇1, … , 𝑇ZE1 𝑑𝜃𝑑𝑇1 …𝑑𝑇ZE1(�,hk,…,h�Mk)

			(3.7) 

In Equation 3.7, the numerator is composed of the likelihood function of gene family tree 

𝑓 𝜏, 𝑁1, … , 𝑁ZE1 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁Z,… ,𝑁\ZE1  and the prior distribution of model parameters 

{𝜃, 𝑇1, … , 𝑇ZE1}. Specifically, the parameter set, 𝜃, have different components according to the 

three loss rate functions. The details of the prior distribution for each parameter in 𝜃 can be 

found in Appendix 2. In addition, we assume that the prior distribution of each divergence time 

𝑇$, 𝑖 = 1,… , 𝐾 − 1 is Exponential(1).  

Since the integral in the denominator of Equation (3.7) is analytically intractable, the 

Metropolis-Hastings algorithm[22] is adopted here to approximate the posterior distribution 

𝑓 𝜃, 𝑇1, … , 𝑇ZE1 𝜏, 𝑁1, … , 𝑁\ZE1 . The algorithm starts with a set of starting values of parameters 

𝜃 and 𝑇1, … , 𝑇ZE1. At each iteration, each of the parameters in 𝜃 and 𝑇1, … , 𝑇ZE1, taking 𝑇1	as an 

example, is updated. The new value 𝑇1′ is accepted with a probability defined by the Hastings 

ratio 

𝐻 = min	
� 𝜏, 𝑁1, … , 𝑁ZE1 𝜓, 𝑇16, … , 𝑇ZE1, 𝜃, 𝑁Z,… ,𝑁\ZE1 �(�)�(hk<,…,h�Mk)

� 𝜏, 𝑁1, … , 𝑁ZE1 𝜓, 𝑇1, … , 𝑇ZE1, 𝜃, 𝑁Z,… ,𝑁\ZE1 �(�)�(hk,…,h�Mk)
, 1 . 
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The Metropolis-Hastings algorithm converges to the posterior distribution of model 

parameters after the burn-in period. And the convergence of the algorithm is evaluated through 

monitoring the log-likelihood values of a single chain. 

3.3 SIMULATION STUDY 

The simulation study by Zhao et al. [11] indicates that the age-dependent birth and death model 

for a single population can distinguish nonfunctionalization, subfunctionalization, and 

neofunctionalization when gene duplication times are given. In this section, we will demonstrate 

the differences among the likelihood functions of the multispecies age-dependent models for 

nonfunctionalization, subfunctionalization, and neofunctionalization. We will describe the steps 

of simulating duplication times from a multiple taxa species tree under the age-dependent model. 

The Bayesian estimates of model parameters θ and the divergence times are obtained by 

maximizing the posterior probability distribution when the topology of the species tree S is 

given. Finally, the results will be examined through model selection procedure to identify the 

underlying gene retention mechanism. 

3.3.1 Procedure of generating duplication times in a species tree 

The evolutionary process of a gene family is simulated forward in time along a species tree	𝑆. 

All gene copies in a gene family across species are originated from a common ancestor gene. 

The simulation of duplication times of these gene copies proceeds as follows: 

1. The numbers (𝑁1, … , 𝑁ZE1) of gene copies at internal nodes are generated consecutively 

through Equation 3.4.   

2. Then the duplication times of gene copies in any population can be generated using the 

conditional density function 𝑓 𝑡V 𝑡VE1, 𝑁$ , 𝑗 ∈ (𝑁$6 + 1,… ,𝑁$) (see Equation 3 in Zhao et 
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al. [11] ) of duplication time 𝑡$V, 𝑗 ∈ 𝑁$6 + 1,… ,𝑁$ , given its previous duplication time 

𝑡𝒊,𝒋E𝟏, 𝑗 ∈ (𝑁$6 + 1,… ,𝑁$) and the number of gene copies 𝑁$. 

3.3.2 Simple case study 

We consider a two-taxon species tree where the gene family evolves. Specifically, the starting 

time is 𝑇3 = 0, the root of the species tree, which is equal to the first divergent time, is at 𝑇1 = 7, 

and the present time is 𝑇2 = 10. Figure 3.1 describes the process of a gene family within two-

taxon species tree in graph. Each branch in this species tree represents one population. The circle 

means a gene duplication event and the square denotes a speciation event. Population 1 

represents the common ancestral population of species 1 and 2. At time	𝑇1, a speciation event 

happens and all gene copies from population 1 are inherited by the resulting two populations. 

The two species have 𝑁\ and , 𝑁� gene copies at present time respectively. The parameterization 

of the duplication and loss rate under three gene retention mechanisms is shown in Table 3.1, in 

which all the duplication rates are set to be equal and the loss rates are same at the time when 

gene duplication occurs.  

The topology of species tree is assumed to be known. For each mechanism, the 

simulation procedure repeats 30 times. We change the numbers of gene copies at current time 𝑁\ 

and 𝑁� such that the number of simulated data, i.e. the duplication times, varies accordingly. 

Particularly, 𝑁\ ranges from 20 to 100 by 20 and 𝑁� ranges from 30 to 110 by 20. By increasing 

the number of gene copies, the accuracy of parameter estimation is expected to be improved.  

3.3.3 Performances of related probability distribution functions 

Since the generation procedure of duplication times of genes within a species tree depends on the 

probability mass function of the gene copy number at speciation nodes and the conditional 

density function of the duplication times in a single population, it is very important to check the 
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performance of these two functions under three mechanisms before implementing the simulation. 

Therefore, we first visualize these two functions using the simple case we defined in previous 

section. The number of genes in the current two species are given as 𝑁\ = 55 and	𝑁� = 60. 

In Figure 3.2, we compared the cumulative density function curves and probability mass 

function curves of the number of gene copies at first speciation. Specifically, Figure 3.3(a) shows 

that it tends to have more gene copies at the speciation time under neofunctionalization than 

under subfunctionalization and nonfunctionalization and curves in Figure 3.3(b) are consistent 

with those in Figure 3.3(a). Thus we can conclude that the mass functions of gene copies can be 

used to generate samples that are distinguishable under three mechanisms.  

In addition, with Equation 3.3, we are able to calculate the expected number of gene 

copies at the speciation node, of which the numbers are: 8 under nonfunctionalization, 10 under 

subfunctionalization and 16 under neofunctionalization. These results also meet our expectation 

that the birth and death process of a gene family tends to generate more copies under 

neofunctionalization with a convexly decreasing curve of loss rate than under the other two 

processes. The calculation of the expectation is shown in Appendix 4. 

To examine the divergence of the probability density functions of three mechanisms, the 

conditional density curves of the first duplication time is shown in Figure 3.3. It is obvious that 

each of the three mechanisms demonstrate a particular pattern and neofunctionalization tends to 

have the earliest duplication time, followed by subfunctionalization and nonfunctionalization. 

Thus the simulated duplication times could tell the difference among those mechanisms. 

3.3.4 Visualization of simulated data 

By visualizing the distribution of gene copy numbers through time, one can infer what effects of 

these different gene retention mechanisms have on the evolutionary process of gene family. For 
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the studies based on the reconstructed evolutionary process, two approaches have been explored 

in these visualizations. First of all, the average number of lineages through time in the process is 

plotted[23]. Secondly, the divergence times of the lineages for all the simulated trees given a 

certain model are plotted in one graph[24-26]. Each of these approaches has strengths and 

weaknesses. Plotting the average number provides a simple illustration of the process, however, 

with no deviation from fit information. Incorporating all the trees in one plot does not give a 

clear view of the process. Thus in this paper, we draw a side by side box plot for the gene copy 

numbers under different mechanisms through the increased gene copy number at present (Figure 

3.4). In this plot, it is intuitive for one to compare the means of the number of genes at the 

speciation time under different model. It tends to have more genes under neofunctionalization 

than under the other two models, which is consistent to our expectation. In addition, the 

dispersions of the number of genes for each mechanism with increased current gene copy 

number are displayed, from which one can clearly distinguish neofunctionalization from the 

other two mechanisms, whereas subfunctionalization and nonfunctionalization have a higher 

degree of overlap. 

3.3.5 Estimation results 

To access the performance of Bayesian estimation, we use the simulated duplication times as 

input data to estimate model parameters. For nonfunctionalization, the root-mean-square error 

(RMSE) of the estimate of 𝜇  and 𝜆  decrease as the number of current gene copies 𝑁\  and 

𝑁�	increase (Figure 3.1). Additionally, the root-mean-square errors (RMSE) of the estimates of 

parameters for neofunctionalization and subfunctionalization decrease as 𝑁\  and 𝑁�  increase. 

However, the decline pattern in neofunctionalization and subfunctionalization are not so obvious 

as in nonfunctionalization. This is mainly caused by two facts. On one hand, there are more 
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parameters in neofunctionalization and subfunctionalization, of which some are correlated in the 

loss rate function. On the other hand, the duplication times are highly correlated, and the auto-

correlation between two adjacent duplication times increases as the number of the duplication 

time increases. In other words, when the number of duplication times reaches a certain number, it 

appears that adding more duplication times does not contribute more information for accurately 

estimating model parameters. 

3.4 DISCUSSION 

3.4.1 Summary of the gene family evolution model within species tree 

In this paper, we have extended the age-dependent birth and death model in one population [11] 

into the multiple populations scenario, that is, a species tree. In this model, the joint probability 

distribution of gene duplication times 𝜏 and the numbers of gene copies at the internal nodes, 

given the number of gene copies at present and the species tree, is developed such that the model 

parameters could be estimated through likelihood based methods. Noticing that the loss rate 

functions of neofunctionalization and subfunctionalization are further polished to represent more 

flexible curves by incorporating one additional parameter. The results from the simulation study 

show that the proposed model is able to differentiate the three gene retention mechanisms and 

the Bayesian estimates of model parameters demonstrate an increasing accuracy as the sample 

size increases.   

3.4.2 Future study 

The input data in the current model is the duplication times in a gene family tree which are 

assumed to be the truth. However, this kind of data is not observable in reality and need to be 

estimated from the sequence data, through which more estimation errors would be introduced. 

Thus it is necessary to build a hierarchical model that includes a mutation process modeling the 
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sequence given a gene family tree and a birth and death process describing the gene family 

evolution in a species tree.  

It is worth noticing that the neofunctionalization and subfunctionalization mechanisms 

for duplicated genes would place a selection pressure and change the mutation rates 

correspondingly. This would invalidate the existing substitution models whose mutation rates do 

not reflect the effects of neofunctionalization and subfunctionalization. Thus a mutation process 

that integrates different gene retention mechanisms is in need. 
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3.6 APPENDICES 

In the following sections, the equation numbers without the prefix, A, correspond to those 

in the main article. 
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Appendix. 1 Calculation of mean loss rates of the age-dependent model in the context of multiple 

populations.  

According to probability density function of age 𝑡′ derived by Zhao et al. [11] (Equation 

6): 

𝑓 𝑡′ =
𝑒E (�=��)��

O
OMO<

𝑒E (�=��)��
O
OMO< 𝑑𝑡′B

3

 

For neofunctionalization: 𝜇B = 𝛼𝑒EBF and mean loss rate is simplified as 

𝜙B�L� = 𝐸 𝜇B< = 𝜇B<𝑓 𝑡6 𝑑𝑡6
B

3
 

= 𝜇B<
𝑒E �=�� ��O

OMO<

𝑒E �=�� ��O
OMO< 𝑑𝑡6B

3

𝑑𝑡6
B

3
 

=
𝛼𝑒EB<F𝑒E �=KLM�N ��O

OMO< 𝑑𝑡6B
3

𝑒E �=KLM�N ��O
OMO< 𝑑𝑡6B

3

 

=
𝛼𝑒EB<F𝑒E�B

<=KF LMONELM OMO< N
𝑑𝑡6B

3

𝑒E�B
<=KF LMONELM OMO< N

𝑑𝑡6B
3

 

For subfunctionalization: 𝜇B =
KLMN(OMP)

1=LMN(OMP)
 and mean loss rate is simplified as 
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𝜙B��� = 𝐸 𝜇B< = 𝜇B<𝑓 𝑡6 𝑑𝑡6
B

3
= 𝜇B<

𝑒E �=�� ��O
OMO<

𝑒E �=�� ��O
OMO< 𝑑𝑡6B

3

𝑑𝑡6
B

3

=

𝛼𝑒EF(B<E�)
1 + 𝑒EF(B<E�)

𝑒
E �= KLMN(�MP)

1=LMN(�MP)
��O

OMO< 𝑑𝑡6B
3

𝑒
E �= KLMN(�MP)

1=LMN(�MP)
��O

OMO< 𝑑𝑡6B
3

=

𝛼𝑒EF(B<E�)
1 + 𝑒EF(B<E�)

𝑒
E�B<=KF ��

LMNO=LMNP

LMN(OMO<)=LMNP 𝑑𝑡6B
3

𝑒
E�B<=KF ��

LMNO=LMNP

LMN(OMO<)=LMNP 𝑑𝑡6B
3

 

The simplified expressions of 𝜙B�L� and 𝜙B��� have successfully solved one fold integral 

which can definitely improve the accuracy and speed of the mean loss rate calculation. 

Appendix. 2 The prior distributions of each component in 𝜃. 

For nonfunctionalization, the duplication rate and loss rate are constant, so θ = µ, λ . 

Since both 𝜇 and 𝜆 range in 0,1 , we assume that the prior distribution 𝑓 𝜆  of the duplication 

rate and 𝑓(𝜇) of the loss rate are uniform (0,1). 

For neofunctionalization, the duplication rate is constant and loss rate is a function of the 

age of gene, so θ = (α, β, λ). And we know that 𝛼 ∈ 0,1 , 𝛽 > 0	𝑎𝑛𝑑	𝜆 ∈ (0,1), we assume the 

prior distributions of 𝛼 and 𝜆 are uniform(0,1) and the prior of 𝛽 is exponential (1). 

For subfunctionalization, duplication rate is constant and loss rate is a function of gene 

age, thus θ = (α, β, γ, λ) . Both 𝛼  and 𝜆  lie in (0,1)  and 𝛽 > 0	 and 𝛾 > 0 , so the prior 

distributions of 𝛼 and 𝜆 are uniform(0,1) and priors of 𝛽 and 𝛾 are exponential(1). 
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Appendix. 4 Calculation of expectation of gene copies at speciation using Equation (7). 

𝑃 	𝑁$ 𝑁$E1, 𝑁$(𝑖 = 𝐾 + 1,… ,2𝐾)

=
𝑁�r − 𝑁$E1
	𝑁$ − 𝑁$E1

𝜂hdMk,hd − 𝜂hdMk,hi
1 − 𝜂hdMk,hi

	cdEcdMk 1 − 𝜂hdMk,hd
1 − 𝜂hdMk,hi

{�
sE	cd

(𝐴. 7) 

𝐸 𝑁$ 𝑁$E1, 𝑁$ 𝑖 = 𝐾 + 1,… ,2𝐾

= 𝑁l
𝑁�r − 𝑁$E1
	𝑁l − 𝑁$E1

𝜂hdMk,hd − 𝜂hdMk,hi
1 − 𝜂hdMk,hi

	c EcdMk 1 − 𝜂hdMk,hd
1 − 𝜂hdMk,hi

{�
sE	c c¡

s

l]cdMk=1
 

Appendix. 5 The estimation error of parameters  

Table A.1 Estimation errors of parameters for nonfunctionalization 
 N\ = 20 N\ = 40 N\ = 60 N\ = 80 N\ = 100 

µ (0.8) 0.162 0.125 0.094 0.090 0.086 
λ (0.2) 0.047 0.035 0.029 0.022 0.021 

Table A.2 Estimation errors of parameters for neofunctionalization 
 N\ = 20 N\ = 40 N\ = 60 N\ = 80 N\ = 100 

α (0.8) 0.193 0.167 0.145 0.113 0.095 
β (0.3) 0.062 0.051 0.049 0.040 0.034 
λ (0.2) 0.053 0.041 0.033 0.031 0.029 

Table A.3 Estimation errors of parameters for subfunctionalization 
 N\ = 20 N\ = 40 N\ = 60 N\ = 80 N\ = 100 

α (0.8) 0.203 0.201 0.194 0.173 0.152 
β (0.5) 0.170 0.129 0.113 0.095 0.067 
γ (7) 1.538 1.437 1.177 0.995 0.834 
λ (0.2) 0.051 0.040 0.039 0.037 0.033 
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Table 3.1: The values of parameters in defining the duplication and loss rates used in generating 
duplication times under nonfunctionalization, neofunctionalization, and subfunctionalization.  
 

 λ µ α β γ 
Nonfunctionalization 0.2 0.8    
Neofunctionalization 0.2  0.8 0.3  
Subfunctionalization 0.2  0.8 0.5 7 
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Figure 3.1. The evolutionary process of a gene family tree within a species tree is shown.  
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Figure 3.2 Performances of the probability mass function of the gene copy number at divergence 
time: (a) the cumulative density curves for nonfunctionalization, neofunctionalization, and 
subfuncitonalization are shown; (b) the probability mass curves for nonfunctionalization, 

neofunctionalization, and subfuncitonalization are shown. 
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Figure 3.3 The probability density curves of the first duplication times for nonfunctionalization, 
neofunctionalization, and subfunctionalization under the model are shown 
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Figure 3.4 The boxplots of simulated gene copy numbers at the divergence time with increased 
current gene copy numbers in nonfunctionalization, neofunctionalization and 

subfunctionalization. 
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Figure 3.5 The root of mean squared errors (RMSE) of the Bayesian estimates under three gene 
retention mechanisms in the simulation study.  
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CHAPTER 4 

A BAYESIAN HIERARCHICAL MODEL FOR GENE FAMILY EVOLUTION 

In this chapter, a conceptual Bayesian hierarchical model will be developed to explain the 

relationship between the species tree, gene family tree, and the DNA sequences (data).  

4.1 THE PROBABILITY DENSITY FUNCTIONS 

We assume that gene family trees are generated from a duplication/loss process (i.e., a non-

homogeneous birth and death process) occurring along the lineages of the species tree. In addition, 

we assume that DNA sequences evolve on the gene family trees, following a substitution model. 

Thus the Bayesian hierarchical model includes the following probability density functions: 

4.1.1 The probability density function of gene family trees given the species tree  

As gene family trees are conditionally independent given the species tree, we have  

𝑓 𝑮 𝑆, 𝜃 = 𝑓 𝐺( 𝑆, 𝜃)
(*+        (4.1) 

In Equation 4.1,	𝑮 is a vector of multiple gene family trees,	𝐺( denotes the ith gene family 

tree, 𝐾 is the number of gene family trees, 𝑆 represent the topology and branch lengths of the 

species tree, and 𝜃 denotes the parameters related to the age-dependent loss rate and constant 

duplication rate in the age-dependent model discussed in Chapter 3 and 4. 

The probability density function of a gene family tree within a species tree 𝑓 𝐺( 𝑆, 𝜃  could 

be derived from Equation 3.6. In Chapter 3, the gene family tree is estimated from sequence data 

and considered as the input data to estimate parameters of the model, in which the numbers of gene 

copies at the internal nodes are fixed. While the gene family tree is treated as a random variable in 

current Bayesian hierarchical model, wherein the numbers of gene copies at the internal nodes are 
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varied in the space Ω defined in Chapter 3. For this reason, 𝑓 𝐺( 𝑆, 𝜃  is calculated by summing 

over all possible values of the numbers of gene copies at the internal nodes in Equation 3.6 as 

shown below: 

𝑓 𝐺( 𝑆, 𝜃 = 𝑓 𝜏, 𝜓, 𝑇+, … , 𝑇)3+, 𝜃, 𝑁),… ,𝑁5)3+

= 𝑓 𝜏, 𝑁+, … , 𝑁)3+ 𝜓, 𝑇+, … , 𝑇)3+, 𝜃, 𝑁),… ,𝑁5)3+
(78,…,79:8)∈=

			(4.2) 

In Equation 4.2, all the notations are directly inherited from Chapter 3. 

4.1.2 The probability density function of DNA sequences given the gene family tree 

The substitution processes of DNA sequences occur along the branches of a gene family tree. The 

substitution of nucleotide is modeled as a continuous time Markov process conditional on a given 

gene tree topology and a vector of branch lengths. It is assumed that different nucleotide sites 

within a sequence, and different lineages, experience independent substitutions, and no 

recombination occurs. In this way the probabilities of nucleotides observed at different sites can 

be calculated independently.  

The following abbreviations are used here: 𝑫  is sequence data (from multiple gene 

families),	𝐷( is sequence data from one gene family, 𝑮 denotes a vector of gene family trees, and 

ζ denotes the parameters in the substitution model. The probability density function 𝑓(𝐷(|𝐺(, 𝜁)	 

of DNA sequences given a gene family tree is defined by the sequence evolutionary model. This 

model is conditionally independent of the species tree since it only depends on the topology and 

branch lengths of the gene family tree.  

𝑓 𝑫 𝑮, 𝜁 = 𝑓 𝐷( 𝐺(, 𝜁
)

(*+

	(4.3) 

It is worth noticing that the probability density function 𝑓(𝐷(|𝐺(, 𝜁)  is not a simple 

application of the existing substitution model, such as HKY and F81. This is caused by the fact 
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that the selection pressure on sequence evolution is decreased when neofunctionalization or 

subfunctionalization happens. In addition, the mutation rate of single nucleotide, which is 

proportional to the selection pressure, will decrease accordingly. Therefore, a new substitution 

model is desired to be developed in order to incorporate the changes of mutation rate in the context 

of neofunctionalization and subfunctionalization.  

4.2 PRIOR DISTRIBUTIONS OF MODEL PARAMETERS 

The parameters in the hierarchical model include the duplication rate λ, parameters 𝛼, 𝛽	𝑎𝑛𝑑	𝛾 in 

the function of the loss rate, gene family trees, and the species tree. We assume that the topology 

of the species is fixed, while the branch lengths of the species tree will be estimated from data. 

The branch lengths τ in the gene family trees and the species tree are in the mutation units, i.e., τ 

= ηt, where η is the mutation rate. We assume that the birth rate may vary across populations on 

the species tree (we use 𝜆( to denote the birth rate for population i). In addition, we assume the 

loss rate parameter follows the same function on the entire tree. The parameters of a gene family 

tree include not only the topologies, but also the node times (duplication times) of the tree. The 

node times of gene family trees are distributed on the branches of the species tree, which can be 

used to identify duplication events occurring in each population of the species tree. Moreover, the 

estimates of the parameters 𝛼, 𝛽	𝑎𝑛𝑑	𝛾  in the loss function will help identify the evolutionary fates 

of gene duplicates. All the parameters in the hierarchical model have important biological 

implications. 

In addition to the two probability density functions described in last section, we need to 

specify a prior distribution for each parameter in the hierarchical model. The choice of prior 

distributions depends on the nature of the data at hand. Different users may choose different priors 

for the parameters. By default, we assume that the birth rate λ and the starting value 𝛼 of loss rate 
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follow uniform (0, c) distribution. The constant c will be sufficiently large in order to cover 

practically possible realization of λ and 𝛼. We choose exponential distributions as the priors of the 

decreasing rate	𝛽and the time at inflection point of logistic curve 𝛾 in loss rate function. It has been 

suggested that the branch length of a gene family tree follows an exponential distribution. Thus 

the prior of the branch length of a gene family tree is an exponential distribution with mean v (by 

default, v = 10). Similarly, we assume that the branch length of the species tree has an exponential 

distribution with mean 10 by default. We can adjust the values of the hyper parameters c and v.  

4.3 POSTERIOR DISTRIBUTIONS 

Estimation of parameters in the hierarchical model is based on the posterior distribution, which is 

the combination of the probability density function of data and the prior distribution of model 

parameters, 

 

𝑓 𝑆, 𝛼, 𝛽, 𝛾, 𝜆 𝑫 = 	N(𝑫|𝑮,O)×N 𝑮 𝑆, 𝛼, 𝛽, 𝛾, 𝜆 ×N(Q)

N(𝑫|𝑮,O)×N 𝑮 𝑆, 𝛼, 𝛽, 𝛾, 𝜆 ×N Q RQS

      (4.4) 

 

Here 𝜃 denotes all the parameters in the hierarchical model, i.e.	𝜃 = {𝛼, 𝛽, 𝛾, 𝜆, 𝜁, 𝑆}.  

Due to the intractable integral on the denominator of the posterior distribution, we apply 

Markov Chain Monte Carlo (MCMC) algorithm to approximate the posterior distribution. We will 

examine the performance on convergence of this algorithm by generating samples with increased 

sample sizes. If the estimations from these samples converge to the true parameters as sample size 

increases, then we can conclude that the Bayesian inferences on model parameters can be achieved 

using samples generated from the MCMC algorithm. 
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4.4 BAYESIAN INFERENCE OF GENE FAMILY EVOLUTION 

In this section, we will discuss the applications of the Bayesian model in addressing real problems 

regarding gene family evolution. 

4.4.1 Testing the homogeneous birth and death rate model 

As we discussed above, it is of significant interest in the studies of gene family evolution to test 

whether the duplication and loss rates are constant over time. The branches with significantly high 

birth rates may have important biological implications. For instance, it may indicate that whole 

genome duplication may have occurred on those branches of the species tree. The hypothesis of a 

homogeneous birth rate (or death rate) can be tested under the Bayesian model. In addition, the 

heterogeneous death rate may imply the existence of a gene retention mechanism, such as 

neofunctionalization and subfunctionalization. In this study, the hypothesis of a homogeneous 

death rate is of more interest. Thus the null and alternative hypotheses are 

H0: homogeneous death rate vs H1: heterogeneous death rates 

We evaluate the homogeneous death rate model and the heterogeneous death rate model 

under the Bayesian framework and then calculate the Bayes factor for the two models, 𝐵𝐹 =

𝑓	 𝑋	 𝐻+)	/	𝑓	 𝑋	 𝐻[), where f (X | H0) is the marginal likelihood under the null hypothesis and f 

(X | H1) is the marginal likelihood under the alternative hypothesis. The evidence for supporting 

the null hypothesis (H0) against the alternative hypothesis (H1) is based on the Bayes Factor. In 

general, Ln(BF) > 10 is interpreted as strong evidence for supporting the alternative hypothesis.  

4.4.2 Classifying gene families based on their evolutionary fates 

Classification of gene family is the act of grouping genes or proteins into families, which leads to 

a better understanding of the evolutionary forces and functions of genes[1-3]. During last 20 years, 

lots of sequence-based methods have been established for classification of gene family. These 
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methods have been divided into three categories according to Frech and Chen [3], which are 

phylogenetic inference, classification based on sequence signatures, and pairwise comparisons of 

full protein sequences. In this study, we are focusing on the classification of gene families based 

on the Bayesian hierarchical model developed in this dissertation.  

  As described in Chapter 3 and Chapter 4, a specific parameterization of the loss rate 

function corresponds to a unique evolutionary fate of gene duplicates (nonfunctionalization, 

neofunctionalization, or subfunctionalization). The estimation of the parameters in the loss rate 

function can provide information regarding the retention mechanisms of the gene families in the 

data. Gene family data can be obtained from the adaptive evolution database (TAED) [4] or a 

whole genome gene family database (Hobacgen) [5]. Then the families with the same 

parameterization of the loss rate function are grouped. To achieve this goal, additional parameters 

v], 𝑖 = 1,… , 𝐾 	are added to the probabilistic model we described in section 4.3, where v] 

indicates the category that gene family 𝑖 belongs to. There are three categories, i.e.,	ν] 	= 	1, 2, 3. 

Each category represents a particular underlying mechanism that the gene family has undergone, 

i.e., 1:neofunctionalization, 2: nonfunctionalization, and 3: subfunctionalization. The parameters 

v], 𝑖 = 1,… , 𝐾  can be estimated under the Bayesian framework with a uniform prior for v], such 

that P(v] = 1) = P(ν] = 2) = P(ν] = 3) = 1/3. The uniform prior indicates that gene family i 

has an equal probability to fall into any of the three categories. The assignment of gene family i is 

determined by the maximum posterior probability of ν]. 

4.5 DISCUSSION 

A theoretical Bayesian framework has been established to illustrate the relationship among DNA 

sequence data, gene family tree and species tree in this chapter. The probability density function 

of the gene family tree within a species tree is obtained by extending the result in Chapter 3. The 



	 80	

substitution model of sequence data is suggested to be revised to include the effects of 

neofunctionalization and subfunctionalization. Furthermore, the priors of model parameters are 

discussed and a posterior distribution is provided based on the probability density functions and 

the priors. However, without the exact expression of the substitution model, it is impossible to 

implement the simulation study and real data analysis. Nevertheless, the current Bayesian 

hierarchical model still bring a distinct perspective in modeling the sequence data, gene family 

tree and species tree simultaneously in the context of different gene retention mechanisms. Finally, 

two possible empirical applications of the Bayesian hierarchical model have been suggested and 

the implementation processes are given to facilitate future work. 
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CHAPTER 5 

OVERALL CONCLUSIONS 

5.1 SUMMARY 

In this dissertation, we first explored the process of gene family evolution in a single population, 

in which the loss rate of duplicated gene is associated with different gene retention mechanisms. 

Based on the theory of nonhomogeneous birth and death process, we have derived the probability 

density function of the gene family tree given a species tree with an age-dependent loss rate. For 

each of the gene retention mechanisms, we have performed a simulation study, wherein the 

duplication times of genes in a single population are generated in a forward direction. These 

generated duplication times are then used as the input data to estimate model parameters through 

maximum likelihood estimation. It is shown that the established model is able to accurately 

estimate parameters and distinguish gene retention mechanisms.  

We have also extended the age-dependent birth and death model in one population into 

multiple populations, we have once again derived the joint probability density function of 

duplication times and number of gene copies at the internal nodes. Unlike the one population 

scenario, for the multiple populations, we have considered the distribution of the number of gene 

copies at internal nodes of species tree. Once again the simulation study is performed and 

estimation results from Bayesian method are examined to see the validity of the model.   

Finally, a Bayesian hierarchical model is discussed in conceptual level, in which the 

mutation process of DNA sequences and the birth and death process of genes are combined. The 

probability density function of the gene family tree within a species tree is derived based on the 
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age-dependent model. It is also suggested that the substitution model of sequence data should be 

developed to include the effects of neofunctionalization and subfunctionalization. The priors of 

model parameters are discussed and a posterior distribution is provided.  The proposed Bayesian 

hierarchical model leads to a novel viewpoint in modeling the sequence data, gene family tree and 

species tree simultaneously. Furthermore, two applications of the Bayesian hierarchical model 

have been suggested in solving real problems which can benefit future study. 

5.2 LIMITATIONS AND FUTURE STUDY 

Although the age-dependent birth and death process was generalized to sequence data in 

conceptual level, there is still lack of a proper substitution model allowing for effects of different 

gene retention mechanisms. Specifically, the mutation rate of nucleotide in a sequence would 

decrease due to the reduced selection pressure when neofunctionalization and subfunctionalization 

occur. In addition, the current age-dependent model is conditional on observed duplicate copies 

which does not account for the full productive process including duplicates that were lost before 

the present. Thus we plan to examine this in the context of Approximate Bayesian Computation. 

Furthermore, missing data and genome assembly error are not specifically addressed in the 

modeling framework and their impact on inference also needs to be addressed. Lastly, the models 

can be used to make predictions about functional evolution in the absence of actual functional data. 

While such data does not available in large scale, the future may bring expression data of protein 

duplicates that can be integrated into a phylogenetic framework. However, even with comparative 

proteomic data in the future, one still needs models that account for signals related to selective 

pressures (like the models presented here), since neutral changes in expression and functional 

properties would not lead to changes in gene retention profiles and meaningful lineage-specific 
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biology (see [3] for a discussion of the interaction between molecular phenotypes and biological 

function in an evolutionary view).  

The model developed currently made an assumption that all duplicates in a gene family 

evolve under the same process. It is possible to examine large gene family databases like Ensembl 

[4], HOGENOM [5], or TAED [6] and establish a mixture model of duplicate processes applied 

across all gene families to enable a probabilistic identification of gene retention mechanisms for 

individual gene duplication events. The work presented in this dissertation with a birth and death 

model in a phylogenetic context, brings this scale of modeling one step closer.  
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