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Abstract

Single-index models are useful and fundamental tools for handling “curse of dimension-

ality” problems in nonparametric regression. In addition to that, variable selection also

plays an important role in such model building processes when the index vectors are

high-dimensional. Several procedures have been developed for estimation and variable

selection for single-index models when the number of index parameters is fixed.

In many high-dimensional model selection problems, the number of parameters is in-

creasing along with the sample size. In the first part of this work, we consider weakly

dependent data and propose a class of variable selection procedures for single-index

prediction models. We apply polynomial spline basis function expansion and smoothly

clipped absolute deviation penalty to perform estimation and variable selection in the

framework of a diverging number of index parameters. Under stationary and strong

mixing conditions, the proposed variable selection method is shown to have the “oracle”



property when the number of index parameters tends to infinity as the sample size in-

creases. A fast and efficient iterative algorithm is developed to simultaneously estimate

parameters and select significant variables. The finite sample behavior of the proposed

method is evaluated with simulation studies and illustrated by some river flow data from

Iceland.

Most recently, among numerous modern problems in multiple scientific fields, a notewor-

thy characteristic feature is that the dimension of the explanatory variable, p, is large,

and potentially much larger than the sample size, n. For those problems of large scale or

dimensionality, variable selection again plays an important role in the modeling process.

Under the sparsity assumption, a variable screening procedure was proposed by [16] to

reduce the ultra-high dimensionality to a moderate level. However, for practical data

analysis, without any prior knowledge, both the true model and the marginal regression

can be highly non-linear. To address the above issues in the second part of this work,

we investigate ultra-high dimensional penalized single-index models. We further extend

the sure independence screening method into a nonparametric independence screening

procedure. In addition, a data-driven thresholding determination procedure is proposed

to enhance the finite sample performance. New theoretical results are also derived for

oracle parameters. Both the numerical results and the real data application demonstrate

that the proposed procedure works very well, even for moderate sample size and large

dimensionality.
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Chapter 1

Introduction

1.1 Single-Index Models

In Statistics, a linear regression is an approach for modeling the relationship between a

response variable, Y , and one or more explanatory variables denoted as X. The model

can be expressed as

E(Y |X) = XTβ.

Unfortunately, in practice, the relationship between response variable and explanatory

variables is not limit to linearity. The generalized linear model is a flexible generalization

of ordinary linear regression by allowing the linear model to be related to the response

variable via a link function, i.e.,

E(Y |X) = m(XTβ). (1.1.1)
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These models typically assume that m(·) is known up to a finite number of parame-

ters, such as binary logit or probit. When m is unknown, model (1.1.1) can provide a

specification which is more flexible than a purely parametric model, and it can become

a single-index model (SIM) under certain conditions. Single-index models have appli-

cations to a variety of fields. For example, econometric studies use these models as a

compromise between too restrictive parametric models and flexible but hardly estimable

purely non-parametric models.

Another excellent feature of the single-index model is that it is an attractive dimension

reduction method. Single-index models are similar to the first step of projection pursuit

regression, a dimension reduction method, (see [24], [33] and [6]). The basic appeal of

the single-index model is its simplicity: the p-variate function m(x) = m(x1, . . . , xp) is

expressed as a univariate function of xT θ0 =
∑p

j=1 xjθ0,j.

Over the last two decades, much effort has been focused on research into estimation

of the single-index coefficients, as well as into the non-parametric link function, with

concentration on proofs of root-n consistency and demonstrations of efficiency. Examples

can be found in [43], [29], [4], [54] and [30]. Among these methods of estimation, the

most popular are the average derivative estimation method proposed by [29] and [28].

More recently, [55] proposed the minimum average variance estimation (MAVE) for

several index vectors. [52] proposed the polynomial spline estimator for the single-

index prediction model (SIP), which is more robust against deviations from SIMs. [5]

studied the SIMs with heteroscedastic errors and recommended an estimating equation

method in terms of transferring restricted least squares to un-restricted least squares.
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[59] derived inference for the index parameters by the local linear method. [7] suggested

an estimating function method to study the SIMs.

1.2 Variable Selection Techniques

When the dimension of X is high, one unavoidable issue is the “curse of dimension-

ality”, which refers to phenomena that when the dimensionality increases, the volume

of the space increases so fast that the available data become sparse. To circumvent

this difficulty, variable selection techniques play pivotal roles. The statistical literature

contains numerous procedures on variable selection for linear models and other para-

metric models. Akaike’s information criterion (AIC), Mallows’ Cp, and the Bayesian

information criterion (BIC) are several examples of traditional variable selection proce-

dures. They all use a fixed penalty on the size of a model. To replace fixed penalties,

[1] and [45] suggest the use of a data adaptive penalty in the variable selection proce-

dures. However, as pointed out in [15] and [19], all these procedures follow stepwise

or subset selection procedures, which are extremely computationally intensive, hard to

derive sampling properties for, and unstable. On the other hand, most convex penalties,

such as quadratic penalties, often produce shrinkage estimators of parameters that make

trade-offs between bias and variance. To avoid the unnecessary biases and the ineffi-

ciency of traditional variable selection procedures, [15] proposed a unified approach via

non-concave penalized least squares. Such methods can select variables and estimate the

coefficients of variables automatically and simultaneously. There are four fundamental
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good features of this method: (1) it keeps the appealing features of subset selection

and ridge regression; (2) it produces sparse solutions; (3) it ensures continuity of the

selected models, and (4) it has unbiased estimates for large coefficients. All of the above-

mentioned appealing features can be achieved by choosing suitable penalized functions,

such as the smoothly clipped absolute deviation (SCAD) penalty that was proposed by

[12], the Lasso [46], the Dantzig selector [3], the Elastic net (Enet) penalty [65], the

MCP [58] and related methods proposed in [64] and [66].

In Chapter 2, we consider a class of single-index prediction models with diverging number

of index parameters. We propose to use polynomial spline basis function expansion and

SCAD penalty to perform estimation and variable selection.

1.3 Independence Screening Techniques

With rapid improvement of computing power, high-throughput data of unprecedented

size and complexity are frequently collected in many scientific fields. As discussed in the

previous section, to handle these large-scale data, variable selection plays an important

role in high dimensional statistical modeling. However, when the number of variables p

grows much faster than the sample size n, the aforementioned variable selection tech-

niques face the following three tremendous challenges: (1) computational expediency,

(2) statistical accuracy, and (3) algorithmic stability. To tackle these problems, [16]

introduced a sure independence screening (SIS) method to select important variables

in the framework of ultra-high dimensional linear regression via marginal correlation
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learning. Later, [25] extended the SIS method to the generalized correlation ranking.

[21] extended the SIS idea to ultra-high dimensional generalized linear models. In ad-

dition, a useful technical tool for establishing the sure screening results and bounding

false selection rates is derived in the same paper. In 2011, [13] further extended the SIS

method to nonparametric independence screening (NIS) which can be implemented onto

ultra-high dimensional additive models.

In the meantime, several other methods have been developed to handle such ultra-high

dimensional problems, such as the data-tiling method proposed by [26], the marginal

partial likelihood method [57], robust screening methods using rank correlation by [37],

and distance correlation [38]. Inspired by all these previous works, in Chapter 3, we will

focus on variable nonparametric independence screening in single-index models with

non-polynomial (NP) dimensionality.
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Chapter 2

High Dimensional Single-Index

Models 1

2.1 Introduction

For the past two decades, high dimensional problems are becoming increasingly com-

mon in many scientific areas, including biostatistics, medicine, economics and financial

econometric. When the dimension of covariates increases, one unavoidable issue is the

“curse of dimensionality”, which refers to the poor convergence rate. Much effort has

been devoted to tackling of this difficulty. As an attractive dimension reduction method,

single-index models (SIMs) play a useful and fundamental role for handling “curse of

1Wang, G. and Wang, L. (2015). Spline estimation and variable selection for single-index prediction
models with diverging number of index parameters. Journal of Statistical Planning and Inference 162,
1–19. Reprinted here with permission of publisher.
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dimensionality” problems. Various intelligent estimators of the single-index coefficients

have been derived by many researchers. Examples can be found in [43], [29], [4], [54]

and [30]. [55] introduced the minimum average variance estimation (MAVE) for several

index vectors. [52] proposed the polynomial spline estimator for the SIP, which is more

robust against deviations from SIMs. [5] studied the SIMs with heteroscedastic errors

and recommended an estimating equation method in terms of transferring restricted

least squares to un-restricted least squares. [59] derived inference for the index param-

eters by the local linear method. [7] suggested an estimating function method to study

the SIMs.

Along with the SIMs, when the index vectors are high-dimensional, variable selection for

significant predictors is very practical in such model building processes. For example,

in time series modeling, we often need to select significant explanatory lagged variables.

Most traditional variable selection procedures, such as Akaike’s information criterion

(AIC), Mallow’s Cp, and the Bayesian information criterion (BIC), use a fixed penalty

on the size of a model. To overcome the inefficiency of traditional variable selection

procedures, [15] proposed a unified approach via non-concave penalized likelihood and

demonstrated that penalized likelihood estimators are asymptotically as efficient as the

ideal “oracle” estimator for certain penalty functions, such as the smoothly clipped ab-

solute deviation (SCAD) penalty. [19] further extended the method to the situation

with a diverging number of parameters, which substantially enlarges the scope of appli-

cability of the shrinkage methods. We refer to [19], [31] and [53] for more works in the
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high-dimensional framework where the number of covariates increases with the sample

size.

Several procedures have been developed for estimation and variable selection for SIMs

when the number of index parameters is fixed. Examples include the dissected cross-

validation (DCV) method in [36], the profile least squares (PrLS) estimation procedure

in [39], the adaptive lasso with kernel smoothing in [63], the penalized least squares

method in [41], and the lasso with local linear smoothing method in [60]. Unfortunately,

in practice, many variables are sometimes introduced in an effort to reduce possible

modeling biases. In many high-dimensional model selection problems, the number of

introduced variables depends on the sample size, which reflects the instability of the

parametric problem. For example, when running regressions on time-series data, it is

often important to include many lagged values of the dependent variable as predictor

variables. Sometimes, to capture the persistence of a time series, the lag length can be

very long, or even close to the entire length of the time series.

When a diverging number of predictors are involved in SIM, [62] proposed a method

based on slice inverse regression (SIR) to select variables. However, the SIR based

method imposes a strong assumption on the predictors: the distribution of the covariates

must be elliptically symmetric distributions. In time series analysis, the covariates are

typically the lagged values of a time series. As discussed in [55], the elliptical symmetry of

the covariates implies the time series itself is time reversible [47], which is an exceptional

feature in most time series. Therefore, their method will not work for most time series

data; see the discussions in [55] and [41].
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In this work, we consider weakly dependent data, and focus on variable selection and

estimation for single-index prediction models, as in [52]. We apply the SCAD penalty

and polynomial spline basis function expansion to simultaneously perform variable se-

lection and estimation in the framework of a diverging number of index parameters.

Under a mixing condition and some other regularity conditions, the proposed variable

selection method is shown to have the “oracle” property when the number of parame-

ters diverges as the sample size increases. A fast and efficient algorithm is developed

to simultaneously estimate parameters and select significant variables. Our method is

applicable to selecting significant variables when modeling time series data, which may

include endogenous variables (lagged variables) as well as exogenous variables.

The rest of the article is organized as follows. Section 2.2 first provides the background

of the single-index prediction model, then introduces the polynomial spline smoothing

and the penalized SCAD estimators. Section 2.3 shows the main theoretical results

in the framework of a diverging number of index parameters. Section 2.4 presents an

algorithm to implement the proposed method. Section 2.5 reports our findings in three

simulation studies. The proposed method is applied in Section 2.6 to the Iceland river

flow data. All technical proofs are given in Section 2.7.

9



2.2 Methodologies

2.2.1 Single-Index Prediction Model

Let {Xi, Yi}ni=1 be a length n realization of a (d+ 1)-dimensional (strictly) stationary

process with Xi = {Xi,1, · · · , Xi,d} being Rd valued (d ≥ 1) and Yi being real valued.

In particular, Xi may consist of lagged values of Yi, and Xi may also include some

exogenous variables. We assume {Xi, Yi}ni=1 follow the single-index model

Yi = m
(
XT
i θ0

)
+ εi, i = 1, 2, ..., n, (2.2.1)

in which E (εi|Xi) = 0, E (ε2
i |Xi) = σ2

0. Without loss of generality, we assume the

predictors considered in this article are standardized to have mean zero and variance

one. In what follows, let
(
X T ,Y , ε

)
represent the stationary distribution of

(
XT
i , Yi, εi

)
.

In (2.2.1), the unknown parameter θ0 is the single-index coefficient used for simple

interpretation once estimated, and m is a smooth but unknown function used for further

data summary. For model identifiability, we assume the Euclidean norm for θ0, ‖θ0‖ = 1.

2.2.2 Estimation and Variable Selection for Single-Index Model

The dimension d of predictors can be large, and here we consider the case that d increases

as the sample size n, so we write it as dn. The goal of this article is to select a proper
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subset of significant variables {Xi,j, j ∈ s}, s ⊂ {1, ..., dn} while estimating θ0 ∈ Θ =

{(θ1, · · · , θdn)|
∑dn

j=1 θ
2
j = 1, θ1 > 0} and m simultaneously.

For simplicity, given a fixed θ, denote Xθ = X T θ, Xθ,i = XT
i θ, 1 ≤ i ≤ n. Let

mθ (u) = E (Y|Xθ = u) = E{m(Xθ0)|Xθ = u}, (2.2.2)

then θ0 is the minimizer of the following population least squares criterion function

R (θ) =
1

2
E
[
{Y −mθ (Xθ)}2] . (2.2.3)

To select significant variables, we need some nonparametric techniques to estimate the

unknown function m in (2.2.1). We consider the use of polynomial spline smoothing

introduced in [52]. The appeal of polynomial splines is that they often provide good

approximations of smoothing functions with a simple linear combination of spline basis;

see more discussions in [56]. Let N ∈ N be the number of interior knots, and let

a = t0 < t1 < · · · < tN < tN+1 = b

be a knot sequence. Denote by Γ(r−2) = Γ(r−2) [a, b] the polynomial spline space of order

r on [a, b], i.e., the space of all Γ(r−2) [a, b] functions that are polynomials of degree

r − 1 on each interval [tk, tk+1), k = 0, · · · , N . For any given θ, the polynomial spline

estimator of order r for mθ can be obtained from solving the least squares problem over

11



Γ(r−2) [a, b]:

m̂θ (u) = arg min
m(u)∈Γ(r−2)

n∑
i=1

{Yi −m (Xθ,i)}2 . (2.2.4)

Note that Θ is not a compact set, so we consider the minimization problem of (2.2.3)

over all θ ∈ Θc, where

Θc =

{
(θ1, ..., θdn) |

dn∑
j=1

θ2
j = 1, θ1 ≥ c

}
, c ∈ (0, 1).

We define the empirical least squares criterion function of θ as

R̂ (θ) =
1

2n

n∑
i=1

{Yi − m̂θ (Xθ,i)}2 .

In practice, many variables can be introduced to reduce possible modeling biases. To

perform simultaneous selection and estimation for the single-index model, we propose

minimizing the following penalized sum of squares

Q̂ (θ) = R̂ (θ) +
dn∑
j=1

pλn(|θj|)I{|θj| 6= max
1≤k≤dn

(|θk|)}, (2.2.5)

which shrinks small components of estimated functions to zero. Note that the above

minimization in (2.2.5) is for all θ ∈ Θc, so we don’t penalize the largest element of θ.

12



[12] proposed a continuous differentiable penalty function called SCAD penalty, which

is defined in terms of its first derivative by

p′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

}

for some a > 2 and θ > 0. In this article, we consider the SCAD penalty, and use a = 3.7

as suggested in [15].

The penalized estimator of the single-index coefficient θ0 is then defined as follows:

θ̂ = arg min
θ∈Θc

Q̂ (θ) ,

and the polynomial spline estimator of order r for m is m̂θ with θ replaced by θ̂, i.e.

m̂θ (·) = arg min
m(·)∈Γ(r−2)[0,1]

n∑
i=1

{
Yi −m(Xθ̂,i)

}2

.

2.3 Main Results

In this section, we establish the asymptotic properties of the estimators for the penalized

single-index model in the following theorems. We state only the main results here. The

regularity conditions and proofs are given in Section 2.7.

Note that one can always arrange the predictors, Xi,1, · · · , Xi,dn , in a non-increasing

order of |θ0,1|, · · · , |θ0,dn|. Without loss of generality, we assume θ0 belongs to a compact

13



set

Θ̃c =

{
(θ1, ..., θdn) |

dn∑
j=1

θ2
j = 1, |θ1| ≥ |θ2| ≥ · · · ≥ |θdn|, θ1 ≥ c

}
, c ∈ (0, 1).

For θ0 ∈ Θ̃c, let sn be the number of non-zero components of θ0. Write θ0 = (θ0,1, · · · , θ0,dn)T

= (θT01, θ
T
02)T , where θ01 consists of all sn non-zero components of θ0, and θ02 ≡ 0. Fur-

ther we denote θ∗01 = (θ0,2, · · · , θ0,sn)T . Similarly, we define θ∗, θ̂
∗

and θ∗0 as the regular

θ vectors, but without the first element.

Note that for fixed θ ∈ Θc, the least squares criterion function R (θ) depends only on

θ∗, so in the following, with a slight abuse of notation, we use R(θ∗) and R̂(θ∗) instead

of R(θ) and R̂(θ). Similarly, we write Q(θ∗) and Q̂(θ∗) rather than Q(θ) and Q̂(θ)

respectively.

The first theorem provides the existence and consistency of the penalized estimator when

dn diverges.

Theorem 2.1. (Existence of penalized local minimizer). Suppose Conditions (A1)-(A7)

and (P2)-(P4) in Section 2.7 are satisfied. If the number of predictors dn = nδ for some

0 < δ < 1/4(1−3/(2r+1)) (r > 1), then there is a local minimizer θ̂
∗

of Q̂(θ∗) such that

‖θ̂
∗
− θ∗0‖ = OP{d1/2

n (n−1/2N3/2 log(n) +an)}, where an = max1≤j≤sn−1{p′λn(|θ∗0,j|), θ∗0,j 6=

0}.

Remark 1. Note that [19] assume that dn = nδ (δ < 1/4) for linear regression models

with independent data, and our condition of dn for single-index models with weakly de-

pendent data is in parallel with their requirement. Here dn depends on both the sample
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size and the smoothness assumption of the true link function m. If we assume that m

is infinitely differentiable or smooth, i.e., m has infinitely many derivatives, then only

δ < 1/4 is required.

Let the Score function, S(), and Hessian, H(), be defined as:

S (θ∗) =
∂

∂θ∗
R (θ∗) , H (θ∗) =

∂2

∂θ∗∂θ∗T
R (θ∗) ,

and denote S, H and ṁj as the values of S (θ∗), H (θ∗) and ∂
∂θj
mθ evaluated at θ∗ = θ∗0.

We further define

Σλn = diag{p′′λn(|θ∗0,1|), · · · , p′′λn(|θ∗0,sn−1|)}

and

bn = {p′λn(|θ∗0,1|)sgn(θ∗0,1), · · · , p′λn(|θ∗0,sn−1|)sgn(θ∗0,sn−1)}.

Theorem 2.2 below shows that the “oracle” property holds for the penalized estimator

when dn diverges.

Theorem 2.2. Assume Assumptions (A1)-(A8) and (P1)-(P4) in Section 2.7 are sat-

isfied. If dn = nδ for some 0 < δ < 1/5(1 − 3/(r − 1)) (r > 4), λn → 0 and

d
−1/2
n n1/2N−3/2λn → ∞, then, with probability tending to 1, the consistent local min-

imizer

θ̂ =

{(
1− ‖θ̂

∗
1‖2 − ‖θ̂2‖2

)1/2

, θ̂
∗T
1 , θ̂

T

2

}T
in Theorem 2.1 must satisfy:

1. (Sparsity) θ̂2 = 0.
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2. (Asymptotic normality) Let An be a q× (sn−1) matrix such that AnA
T
n converges

to a nonnegative symmetric q × q matrix ΣA. Then

√
nAnΩ

−1/2
{

(θ̂
∗
1 − θ∗01) + (H + Σλn)−1 bn

}
→ N (0,ΣA)

in distribution, where Ω = (H + Σλn)−1Ψ(H + Σλn)−1, Ψ =
{
ψjk
}sn−1

j,k=1
with

ψjk =
∞∑

i=−∞

E
[{(

ṁj − θ∗0,jθ−1
0,1ṁ1

)
(Xθ0,1)

(
ṁk − θ∗0,kθ−1

0,1ṁ1

)
(Xθ0,1+i)

}
ε1ε1+i

]

for any j, k = 1, · · · , sn − 1.

Remark 2. When {Xi, Yi}ni=1 are i.i.d.,

ψjk = E
[{(

ṁj − θ∗0,jθ−1
0,1ṁ1

) (
ṁk − θ∗0,kθ−1

0,1ṁ1

)}
(Xθ0) ε

2
i

]

for any j, k = 1, · · · , sn − 1.

Remark 3. Our condition on the number of index variables dn = nδ for some 0 <

δ < 1/5(1 − 3/(r − 1)) is an analog to the assumption in [19], in which they require

δ < 1/5 for linear regression models when the observations are independent. We require

0 < δ < 1/5(1− 3/(r− 1)) terms because we need to consider the smoothness of the true

link function and the approximation power of polynomial splines.

The results in Theorems 2.1, 2.2 and Lemma 3.1 in Section 2.7 lead to the following

Corollary.
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Corollary 2.1. Assume Assumptions (A1)-(A7) and (P2)-(P4) in the Section 2.7 are

satisfied. If dn = nδ for some 0 < δ < 1/5(1− 3/(r − 1)), then

‖m̂−m‖∞ = O{n−1/2N1/2 log(n) +N−r}.

2.4 Algorithm

In this section, we develop the estimation algorithm for the single-index coefficient as well

as the unknown link function in (2.2.1). As discussed in Section 2.2, polynomial spline

approximations are used to estimate the unknown functions. LetBk,r (u), k = 1−r, ..., N ,

be the spline basis functions of order r, u ∈ [a, b]. For any given θ, the polynomial spline

estimator m̂θ in (2.2.4) can be obtained via

m̂θ (u) = Br(u)
(
BT

θBθ

)−1
BT

θY. (2.4.1)

where Y = (Y1, . . . , Yn)T , Br (u) = {Bk,r(u)}Nk=1−r and Bθ = {Bk,r (Xθ,i)}n, Ni=1,k=−(r−1) for

any fixed θ.

For any ν ≤ r − 2, k = 1 − r, ..., N , let B
(ν)
k,r (u) be the ν-th order derivative of Bk,r (u)

with respect to u, and let B
(ν)
r (u) = {B(ν)

k,r (u)}Nk=1−r. According to B-spline property in
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[8], B
(ν)
r (u) = DT

(ν)Br−ν (u), where D(ν) = D1 · · ·Dν−1Dν , with matrix

Dl = (r − l)



−1
t1−t1−r+l

0 0 · · · 0 0

1
t1−t1−r+l

−1
t2−t2−r+l

0 · · · 0 0

0 1
t2−t2−r+l

−1
t3−t3−r+l

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1
tN+r−l−tN


, 1 ≤ l ≤ ν.

Next, we denote two n × (N + r) matrices Ḃj =
{
B

(1)
r (Xθ,i)Xi,j

}n
i=1

and B̈jj′ ={
B

(2)
r (Xθ,i)Xi,jXi,j′

}n
i=1

. For any fixed θ, let Pθ = Bθ

(
BT

θBθ

)−1
BT

θ be the projec-

tion matrix onto the polynomial spline space Γ
(r−2)
n . For any j, j′ = 1, ..., dn, let Ṗj and

P̈jj′ be the first and second order partial derivatives of Pθ with respect to θj and θj′ .

Simple algebra shows that

Ṗj = (I−Pθ) Ḃj

(
BT
θ Bθ

)−1
BT
θ ,

P̈j,j′ = (I−Pθ) {B̈j,j′ − Ḃj

(
BT
θ Bθ

)−1
BT
θ Ḃj′}

(
BT
θ Bθ

)−1
BT
θ

+{(I−Pθ) Ḃj −Bθ(B
T
θ Bθ)

−1ḂjBθ}
(
BT
θ Bθ

)−1
ḂT
j′(I−Pθ)

−Bθ

(
BT

θBθ

)−1
ḂT
j (I−Pθ) Ḃj′

(
BT
θ Bθ

)−1
BT
θ .

Then, the score vector can be written as

Ŝ (θ∗) =
∂

∂θ∗
R̂ (θ∗) = − 1

n

n∑
i=1

Ŝi(θ
∗) = − 1

n

{
Y T ṖjY − θjθ−1

1 Y T Ṗ1Y
}dn
j=2

,
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and the Hessian matrix is

Ĥ (θ∗) =
∂2

∂θ∗∂θ∗T
R̂ (θ∗) = − 1

n

{
Y T P̈j,j′Y − θ−1

1

(
θj′Y

T P̈j,1Y + θjY
T P̈1,j′Y

)}dn
j,j′=2

+
1

n
{Y T Ṗ1Y (θ−1

1 I + θ−3
1 θ∗θ∗T )− Y T P̈1,1Y (θ−2

1 θ∗θ∗T )}.

In addition, given a tuning penalty parameter λ, we denote

Σλ (θ∗) = diag

{
p′λ (|θ∗1|)
ε+ |θ∗1|

, · · · ,
p′λ
(
|θ∗dn−1|

)
ε+ |θ∗dn−1|

}
, ε is a small number,

which is an approximation of Σλn and

bλ (θ∗) =
{
p′λ (|θ∗1|) sgn (θ∗1) , · · · , p′λ

(∣∣θ∗dn−1

∣∣) sgn
(
θ∗dn−1

)}T
.

We outline our algorithm based on the local quadratic approximation [15] to solve the

penalized least squares problem in (2.2.5). Note that the unpenalized estimator of [52]

is still consistent if spline basis functions are appropriately chosen, thus we use it as the

initial value in our estimating algorithm. To satisfy the assumption θ ∈ Θc, for small

c = 10−6, we first arrange θ̃j and Xi,j, j = 1, ..., dn, according to the non-increasing

order of the absolute values of θ̃j. Then we set θ̂
(0)

= sgn(θ̃1)× θ̃/‖θ̃‖, where sgn(θ̃1) is

the sign of the first parameter in the rearranged θ̃. Using this initial estimator θ̂
(0)

, the

algorithm iterates through the following steps.

1. k ← k + 1.
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2. By the local quadratic approximations for penalty functions, a better approxima-

tion is given by

θ̂
∗(k)

= θ̂
∗(k−1)

−
{

Ĥ(θ̂
∗(k−1)

) + Σλ(θ̂
∗(k−1)

)
}−1 {

Ŝ(θ̂
∗(k−1)

) + bλ(θ̂
∗(k−1)

)
}
.

3. If ‖θ̂
∗(k)
‖ >
√

1− c2, then θ̂
∗(k)

= θ̂
∗(k)

/‖θ̂
∗(k)
‖ ×
√

1− c2.

4. Set the first index parameter θ̂
(k)

1 =

√
1− ‖θ̂

∗(k)
‖2.

5. If θ̂
(k)

j is close to 0, say |θ̂
(k)

j | < δ1, for a small number δ1 (for example, δ1 = 10−3),

then we set θ̂
(k)

j = 0. Rescale θ̂
(k)

= (θ̂
(k)

1 , θ̂
∗(k)T

)T by θ̂
(k)

= θ̂
(k)
/‖θ̂

(k)
‖.

6. Obtain the difference between θ̂
(k)

and θ̂
(k−1)

: diffθ = ‖θ̂
(k)
− θ̂

(k−1)
‖.

7. Arrange θ̂
(k)

and the predictors in a non-increasing order of |θ̂
(k)
| and set θ̂

(k)
=

sgn(θ̂
(k)

1 )× θ̂
(k)

.

8. Repeat Steps 1 and 7 until we have diffθ < δ2, for a small number δ2 (for example,

δ2 = 10−6).

The tuning parameter, λ, plays an important role in the performance of model selection.

It is well known that for a fixed predictor dimension that SCAD estimator can identify

the true model consistently when one chooses the tuning parameter using a BIC-type

criterion. For example, [39] show that BIC can identify the true model consistently for

penalized partially linear single-index models. However, as shown in [48], the traditional

BIC does not work very well for diverging number of parameters because the number of
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candidate models increases rapidly and can easily exceed the sample size. To overcome

this challenge, in this article, we adopt the modified BIC approach proposed by [48] to

select the tuning parameter. Such modified BIC has been proved to be consistent in

model selection, even with a diverging number of parameters.

Let θ̂λ and dλ be the estimator and the effective number of parameters respectively in

the last iteration of the our algorithm above. Then the modified BIC can be defined as

BIC (λ) = log
{
R̂(θ̂λ)

}
+ dλn

−1 log (n)Cn.

In our simulations and application, we choose Cn to be log{log(dn)}, as suggested in

[48].

The spline approximation for the regression function requires an appropriate selection

of the knot sequences. For the ease of computation, we consider equally spaced knots

after conducting the transformation introduced the above. Note that Assumption (A.5)

requires n1/{2(r−1)} � N � min{n1/6 log−2/3(n)d
−5/6
n , n1/8 log−1/2(n)d

−3/8
n } for some in-

teger r > 5. Therefore, we choose r = 6 for the simulations and real data application

in the article. In our numerical studies, we find that the variable selection result is less

sensitive to the choice N compared with the function estimation result, so we suggest

the following simple formula to compute the number of interior knots:

N = [τn1/{2(r−1)} log n],
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for some positive tuning parameter τ . For example, τ ∈ [0.5, 1] usually works very well,

and in our simulations and application below, we choose τ = 0.8.

The standard errors for the estimated parameters can be obtained as follows. Given a

PSIM estimator θ̂
∗
, a good estimator of Ψ is given by

Ψ̂ =
∑

1≤i,i′≤n

(n− |i− i′|)−1Ŝi(θ̂
∗
)ŜTi′ (θ̂

∗
). (2.4.2)

When {Xi, Yi}ni=1 are i.i.d., the above estimator can be reduced to

Ψ̂ =
1

n

n∑
i=1

Ŝi(θ̂
∗
)ŜTi (θ̂

∗
).

Our limited simulation results indicate that this variance estimator performs very well.

2.5 Simulations

In this section, three simulation studies are carried out to illustrate the finite-sample

behavior of our estimation and variable selection method for the single-index models.

All the codes for these simulations are written in R and the computing environment is

x64 PC with Intel Dual Core i5.

22



2.5.1 Example 1

In this example, we compare our method (PSIM) with the penalized least squares (PLS)

method [41] and the penalized slice inverse regression (PSIR) method [62]. We consider

the following single-index model

Yi = sin
(π

4
XT
i θ0

)
+ σ0εi. (2.5.1)

Here, Xi = (Xi,1, · · · , Xi,d)
T , εi’s are independently and identically distributed asN(0, 1),

for all i = 1, · · · , n and σ0 = 0.2. In this simulation, the true parameter is θT0 =

(1, 1, 1, 1, 1, 0, · · · , 0)/
√

5, i.e., the first five elements of θ0 are 1/
√

5 and the remaining

d − 5 elements are zero. We consider the selection and estimation for model (2.5.1)

with d = 25, 50, or 100 which is smaller than or close to the sample size used in this

example. We draw samples of size n = 100 and n = 200 and implement 500 Monte

Carlo experiments.

We consider SCAD penalty for all three methods. We use the five-fold generalized cross

validation to choose the tuning parameter for PLS and PSIR, as suggested in both

[41] and [62]. The results are summarized in Table 2.1. The column labeled “TPN”

presents the average number of zero coefficients estimated from among the d − 5 true

zero coefficients, “FPN” shows the average number of 5 non-zero coefficients erroneously

set to zero, and “C” demonstrates the percentage of runs for which the correct model

has been chosen. The “oracle” (ORACLE) method always identifies the five non-zero

coefficients and d− 5 zero coefficients correctly. The medians of model errors (MMEs),

23



(θ̂−θ0)TE(XTX)(θ̂−θ0), of the “oracle” estimators and our penalized estimators (PSIM)

are used to measure the effectiveness of the methods. In addition, Table 2.1 also provides

the average computing time (“TIME”) in seconds and the average number of iterations

(“ITER”) of our PSIM method. Table 2.2 presents the bias (BIAS), standard error (SD)

and the mean squared error (MSE) of the estimates of θ0. In terms of the computing

time, PSIR method is the fastest, followed by our PSIM method, and the slowest is

the PLS method. However, in terms of the accuracy of selection and estimation, the

behavior of our PSIM method is the closest to that of the “oracle”. Table 2.2 lists the

bias and the mse of various estimators for the five non-zero index parameters. From the

tables, one can see that regardless of sample size and the dimension of the parameter,

the PSIM estimator is superior to the PLS and PSIR estimators.

[Tables 2.1 and 2.2 about here]

We now test the accuracy of the standard error formula in (2.4.2) for the PSIM esti-

mators. Table 2.3 presents the results for the first five coefficients. Similar to [19], the

standard deviations of the estimated index parameters are computed over 500 simula-

tions. These can be regarded as the true standard errors (column labeled “SD”) and

compared with the median of the 500 estimated standard errors calculated using (2.4.2)

(column labeled “SDm”). The column labeled “SDmad” is interquartile range of the 500

estimated standard errors divided by 1.349, which is a robust estimate of the standard

deviation. When n is small and d is large, the variances are a little under-estimated, but
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the estimation becomes better as we increase sample size. For example, when d = 25,

the estimated standard error based on sample size n = 200 is very accurate.

[Table 2.3 about here]

2.5.2 Example 2

We use another simulation study to augment our theoretical results on time series. To

make a fair comparison, we use a similar model to [62] but in a time series setting.

Specifically, we consider the following nonlinear autogressive (NAR) model:

Xi = 2 sin (θ1Xi−1 + θ2Xi−2 + · · ·+ θdnXi−dn) + εi, i = 1, 2, · · · , n, (2.5.2)

where θ1 = 11/4, θ2 = −23/6, θ3 = 37/12, θ4 = −13/9 and θ5 = 4/3, so the standard-

ized θ0 = (0.461,−0.642, 0.517,−0.242, 0.223, 0, · · · , 0)T . The εi’s are white noise with

σ0 = 0.5. In time series modeling, we often must explore many models with various sets

of lagged values to reduce possible modeling biases, so the number of predictors usually

depends on n. In our simulation, the dimension is calculated by dn = [4n1/4]− 5 which

is also used in both [19] and [62].

We generate 500 Monte Carlo time series of length 100, 200, 400 and 800 from model

(2.5.2). In each replication, the first 1000 observations are discarded to make the time

series {Xi}ni=1 behave like a stationary time series. Figure 2.1 is one typical plot of a

simulated time series of length 800 (dn = 16), which shows an evident stationary feature.
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Tables 2.4 and 2.5 present the selection and estimation results of various methods: PSIM,

PLS and PSIR. From the table, one sees that the comparison is even more favorable to

our PSIM method. The PSIM method performs significantly better than the PLS and

PSIR regardless of the dimension and sample size. The models selected by the PSIM is

very close to the true model, and the differences between the MMEs of the PSIM and

“oracle” are small. Note that the PSIR proposed by [62] is not very suitable for time

series data, so it is not surprising that the PSIR does not perform well in this example.

[Figure 2.1 and Tables 2.4 to 2.5 about here]

We now investigate the performance of the variance estimators of the PSIM estimators.

Similar to Example 2, we give the SD, the SDm, and the SDmad of the PSIM estimators;

see Table 2.6. These numerical results suggest that the proposed estimator in (2.4.2)

yields very reasonable standard error estimates.

[Table 2.6 about here]

2.5.3 Example 3

In Examples 1 and 2, the underlying models that the data are generated from are genuine

single-index models. In this example, we want to examine the behavior of our proposed

method when the model is misspecified. We implement the proposed methods under

two different scenarios: one with a genuine single-index function and one without. We
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consider a similar example to Example 1 in [52], and let

Yi = m(Xi) + σ0εi, i = 1, ..., n,

m(x) =
5∑
j=1

xj + exp

−
(

5∑
j=1

xj

)2
+ δ

(
5∑
j=1

x2
j

)1/2

,

where Xi’s are generated from a d-variate standard normal distribution, εi’s are gener-

ated from N(0, 1), and σ0 = 0.5. When δ = 0, the underlying true function m can be

written as

m(x) =
√

5xT θ0 + exp{−5(xT θ0)2},

where θT0 = (1, 1, 1, 1, 1, 0, · · · , 0)/
√

5. It is obvious that m is a genuine single-index in

this case. In contrast, if δ 6= 0, m is not a single-index function.

For both δ = 0 and δ = 1, we draw 500 random samples of size n = 100, 200 with

number of predictors d = 25, 50, 100. The variable selection and estimation results are

summarized in Tables 2.7 and 2.8, respectively. The columns labeled as “TPN”, “FPN”,

“C”, “MME”, “TIME” and “ITER” are similarly defined in Table 2.1. From Tables 2.7

and 2.8, one sees that the proposed method still works very well when the underlying

regression function is not a single-index function.

[Tables 2.7 and 2.8 about here]
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2.6 Application

In this section, we adopt the proposed PSIM method to the river flow data of Jökulsá

Eystri of Iceland [47]. The dataset contains the daily river flow, temperature and precip-

itation observations collected from January 1, 1972 to December 31, 1974. The response

variable in this analysis is the daily river flow {Yt}1096
t=1 , measured in meter cubed per sec-

ond of Jökulsá Eystri River. There are two exogenous variables: temperature {Xt}1096
t=1

in degrees Celsius and daily precipitation {Zt}1096
t=1 in millimeters collected at the mete-

orological station at Hveravellir. See the time series plots in [52].

[52] used the SIP model to forecast the river flow series and discussed the advantages

of SIP over the linear regression model (LM). In our analysis, we are more interested

in finding significant predictors that help to forecast the river flow {Yt}. We pre-select

all the lagged values in the past seven days (one week), i.e., the predictors are these

23 variables: Yt−1, · · · , Yt−7, Xt, Xt−1, · · · , Xt−7, Zt, Zt−1, · · · , Zt−7. Following [52], we

remove the trend by a simple quadratic spline regression and work on the residual series.

All three residual series pass the unit-root test, so we treat them as stationary time series.

We then apply the PSIM method with the SCAD penalty to select significant predictors

and estimate the the index parameters. We compare our PSIM method with the BIC

method (BIC-SIP) proposed in [52].

Table 2.9 lists the variable selection and estimation results for both methods. The PSIM

method selects the following seven explanatory variables: Yt−1, Yt−2, Yt−3, Yt−4, Xt, Zt
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and Zt−1. The BIC-SIP selects nine variables, and seven variables are common to both

methods.

[Table 2.9 about here]

In order to evaluate the prediction performance of different methods, we use the obser-

vations of the first two years to fit the model and compute the out sample forecast error

over the last year:

MSPE =

{
1

365

1096∑
t=732

(Yt − Ŷt)2

}1/2

.

We show in Table 2.8, the MSPEs for PSIM, BIC-SIP, BIC based linear regression model

(“BIC-LM”) and the full SIP model (FULL-SIP) with all the lagged values in the last

seven days. In terms of the MSPEs from Table 2.10, our PSIM produces the best forecast

among all these methods. In addition, Figure 2.2 shows the estimated nonparametric

function for river flow based on the single-index model. The estimated function and

plotted points are for the two years (1972-1973) used in the training set.

[Table 2.10 and Figure 2.2 about here]

2.7 Proof of Theorems

2.7.1 Assumptions

We state our assumptions below.
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(A1) The least squares criterion function R is locally convex at θ∗0, i.e., for any ε > 0,

there exists δ > 0 such that R (θ∗) − R (θ∗0) < δ implies ‖θ∗ − θ∗0‖ < ε. The

Hessian matrix H(θ∗0) defined in Section 2.3 is positive definite and its eigenvalues

are bounded below and above from ∞.

(A2) For any θ1, θ2 ∈ Θc, the joint density function fθ1,θ2(xθ1 , xθ2) of Xθ1 and Xθ2 has

r-th order (r > 5) continuous partial derivatives and is bounded below and above

on [a, b]2. The marginal density function of Xθ, fθ(xθ) ∈ Γ(1)[a, b] and is bounded

below, for any θ ∈ Θc.

(A3) The true link function m ∈ Γ(r)[a, b] for some r > 5.

(A4) There exist positive constants K0 and λ0 such that α (n) ≤ K0e
−λ0n holds for all

n, with the α-mixing coefficient for
{
Zi =

(
XT
i , εi

)}n
i=1

defined as

α (k) = sup
B∈σ{Zs,s≤t},C∈σ{Zs,s≥t+k}

|P (B ∩ C)− P (B)P (C)| , k ≥ 1.

(A5) The number of interior knots N satisfies:

n1/{2(r−1)} � N � min{n1/6 log−2/3(n)d−5/6
n , n1/8 log−1/2(n)d−3/8

n }.

(A6) There is a large enough open subset ωn of Θ̃c which contains the true parameter

point θ0, such that for all θ ∈ ωn and j, k, l = 2, · · · , dn, the third order derivative
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satisfies ∣∣∣∣E { ∂3R(θ)

∂θj∂θk∂θl

}∣∣∣∣ < C3 <∞. (2.7.1)

(A7) Let the values of θ0,1, θ0,2, ..., θ0,sn be nonzero, θ0,sn+1, θ0,sn+2, ..., θ0,dn be zero,

and θ0,1, θ0,2, ..., θ0,sn satisfy min1≤j≤sn θ0,sn/λn →∞ as n→∞.

Remark 4. Assumption (A1)-(A3) are also assumed in [52]. For Assumptions (A2)

and (A3), [52] requires only r = 4. In our article, we consider diverging number of

parameters, which requires the investigation of the third order derivative of R(θ) in order

to derive the “oracle” properties. Therefore, we need to require higher order smoothness

of the underlying regression function. Assumption (A4) is suitable to model time series

data. [42] shows that a geometrically ergodic time series is a strongly mixing sequence.

Assumption (A5) gives the requirement for the number of interior knots, which depends

not only on the smoothness of the underlying regression function but also on the growing

rate of the dimension of covariates. If dn is finite, then we have n1/{2(r−1)} � N �

n1/8 log−1/2(n). This is slightly different from the assumption in [52] because we consider

higher order spline approximation (r > 5) rather than cubic spline approximation (r =

4). Assumptions (A6) and (A7) are similar to Conditions (G) and (H) in [19].

(P1) lim infn→+∞ lim infθ→0+ p
′
λn

(θ)/λn > 0.

(P2) an = max2≤j≤dn{p′λn(|θ0j|), θ0j 6= 0} = O{d1/2
n n−1/2N3/2 log(n)}.

(P3) un = max2≤j≤dn{p′′λn(|θ0j|), θ0j 6= 0} → 0 as n→ +∞.
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(P4) There exists constants C1 and C2 such that, when θ1, θ2 > C1λn, |p′′λn(θ1) −

p′′λn(θ2)| ≤ C2|θ1 − θ2|.

Remark 5. Conditions (P1), (P3) and (P4) are also assumed in [19]. Assumption (P2)

ensures the unbiasedness property for large parameters and the existence of a consistent

penalized estimator.

2.7.2 Preliminary Results

Before we prove all the theorems, we first state several lemmas.

Lemma 2.1 (See page 149 of [8]). There is a positive constant Cr such that for ev-

ery m ∈ Γ(r) [a, b], there exists a function g ∈ Γ(r−2) [a, b] that satisfies ‖g −m‖∞ ≤

Cr
∥∥m(r)

∥∥
∞N

−r.

According to Theorem 7.7.4 in [9], the following lemma holds.

Lemma 2.2. There exists a constant C > 0, such that for 0 ≤ k ≤ 2 and m ∈ Γ(r) [a, b]

∥∥∥(m−QT,r (m))(k)
∥∥∥
∞
≤ C

∥∥m(r)
∥∥
∞N

−(r−k),

where QT,r (m) is the r-th order quasi-interpolant of m corresponding to a sequence of

knots T ; see the definition of QT,r on Page 146 of [9].

The following lemma gives the uniform convergence rate of the r-th order polynomial

spline estimator m̂θ in (2.2.4) to mθ in (2.2.2) as well as its derivative approximation

rate.
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Lemma 2.3. Under Assumptions (A2)-(A4), we have that

sup
θ∈Θc

∥∥∥m̂(k)
θ −m

(k)
θ

∥∥∥
∞

= OP

{
n−1/2N1/2+k log(n) +N−(r−k)

}
, (2.7.2)

for any k = 0, . . . , r − 2.

Proof of Lemma 2.3 is the same as the proof of Proposition A.1 in [52] where we replace

the approximation rate of cubic spline smoothing by the more general polynomial spline

approximation results given in Lemmas 2.1 and 2.2, and is thus omitted.

Lemma 2.4. Under Assumptions (A1)-(A4), we have

sup
θ∈Θc

max
1≤j≤dn−1

∣∣∣∣ ∂∂θ∗j {R̂(θ∗)−R(θ∗)}
∣∣∣∣ = OP

{
n−1/2N3/2 log(n) +N−(r−1)

}
,

sup
θ∈Θc

max
1≤j,k≤dn−1

∣∣∣∣ ∂2

∂θ∗j∂θ
∗
k

{R̂(θ∗)−R(θ∗)}
∣∣∣∣ = OP

{
n−1/2N5/2 log(n) +N−(r−2)

}
,

sup
θ∈Θc

max
1≤j,k,l≤dn−1

∣∣∣∣ ∂3

∂θ∗j∂θ
∗
k∂θ

∗
l

{R̂(θ∗)−R(θ∗)}
∣∣∣∣ = OP

{
n−1/2N7/2 log(n) +N−(r−3)

}

Proof of Lemma 2.4 is the same as the proof of Lemma A.15 in [52] replacing the

approximation rate of cubic spline smoothing by the more general polynomial spline

approximation results, and is thus omitted.

2.7.3 Proof of Theorem 2.1

Proof of Theorem 2.1. Let αn = d
1/2
n n−1/2N3/2 log(n) and set ‖u‖ = C, where C is a

large enough constant. To show the existence of such penalized local minimizer, it is
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equivalent to prove that for any given ε there is a large constant C such that, for large

n we have

P

{
inf
‖u‖=C

Q̂(θ∗0 + αnu) > Q̂(θ∗0)

}
≥ 1− ε.

This implies that with probability tending to 1 there is a local minimizer θ̂
∗

in the ball

{θ∗0 + αnu : ‖u‖ ≤ C} such that ‖θ̂
∗
− θ∗0‖ = OP (αn).

Using pλn(0) = 0, we have

D(u) = Q̂(θ∗0 + αnu)− Q̂(θ∗0)

≥
{
R̂(θ∗0 + αnu)− R̂(θ∗0)

}
+

sn−1∑
j=1

{
pλn
(∣∣θ∗0,j + αnuj

∣∣)− pλn (∣∣θ∗0,j∣∣)}
= D1 (u) +D2 (u) ,

where sn is the number of parameters for which the true values are not 0. Then, by

Taylor’s expansion, we obtain

D1 (u) = R̂(θ∗0 + αnu)− R̂(θ∗0)

= αn

{
∂

∂θ∗
R̂(θ∗0)

}
u+

1

2
α2
nu

T

{
∂2

∂θ∗∂θ∗T
R̂(θ∗0)

}
u

+
1

6
α3
n

∂

∂θ∗

[
uT
{

∂2

∂θ∗∂θ∗T
R̂(θ̄)

}
u

]
u

= αnŜ(θ∗0)u+
1

2
α2
nu

T Ĥ(θ∗0)u+
1

6
α3
n

∂

∂θ∗

[
uT
{

∂2

∂θ∗∂θ∗T
R̂(θ̄)

}
u

]
u

= D11 (u) +D12 (u) +D13 (u) ,

34



where the vector θ lies between θ∗0 and θ∗0 + αnu, and

D2 (u) =
sn−1∑
j=1

{
pλn(θ∗0,j + αnuj|)− pλn(|θ∗0,j|)

}
=

sn−1∑
j=1

[
αnp

′
λn(θ∗0,j)sgn(θ∗0,j)uj + α2

np
′′
λn(θ∗0,j)u

2
j{1 + o(1)}

]
= D21 (u) +D22 (u) .

Note that ∂
∂θ∗
R (θ∗) = 0, by Assumptions (A2)-(A5) and Lemma 2.4 we have

|D11| ≤ αn

∥∥∥∥ ∂

∂θ∗

{
R̂ (θ∗)−R (θ∗)

}∥∥∥∥ ‖u‖
= αn ‖u‖ ×OP

{
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
}

= OP

(
α2
n

)
‖u‖ . (2.7.3)

Next, we consider D12,

D12 =
1

2
uT
{

∂2

∂θ∗∂θ∗T
R̂(θ∗0)− ∂2

∂θ∗∂θ∗T
R(θ∗0)

}
uα2

n +
1

2
uT
{

∂2

∂θ∗∂θ∗T
R(θ∗0)

}
uα2

n

=
1

2
uT
{

Ĥ(θ∗0)−H(θ∗0)
}
uα2

n +
1

2
uTH(θ∗0)uα2

n.

According to Lemma 2.4 and Assumption (A5), we have

|D12| ≤
1

2
uTH(θ∗0)uα2

n +O
{(
n−1/2N5/2 log(n) +N−r+2

)
dn
}
α2
n‖u‖2

=
1

2
uTH(θ∗0)uα2

n + oP (1)× α2
n‖u‖2. (2.7.4)
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By the Cauchy-Schwarz inequality, we have

D13 =
1

6
α3
n

∂

∂θ∗

[
uT
{

∂2

∂θ∗∂θ∗T
R̂(θ∗)

}
u

]
u

≤ 1

6
α3
n

∂

∂θ∗

[
uT

∂2

∂θ∗∂θ∗T

{
R̂(θ∗)−R(θ∗)

}
u

]
u

+
1

6
α3
n

∂

∂θ∗

[
uT
{

∂2

∂θ∗∂θ∗T
R(θ∗)

}
u

]
u.

Using the result in Lemma 2.4 again, together with Assumption (A5), implies that

|D13| ≤ OP

(
d3/2
n αn

)
α2
n‖u‖3 +OP

{(
n−1/2N7/2 log(n) +N−r+3

)
d3/2
n αn

}
α2
n‖u‖3

= oP (1)× α2
n‖u‖2. (2.7.5)

Furthermore, by Assumptions (P2)-(P4), the terms D21 and D22 satisfy the following

|D21| =
sn−1∑
j=1

∣∣αnp′λn (|θ∗0,j|) sgn
(
θ∗0,j
)
uj
∣∣ ≤ √snαnan‖u‖ ≤ α2

n‖u‖, (2.7.6)

and

|D22| =
sn−1∑
j=1

α2
np
′′
λn

(∣∣θ∗0,j∣∣)u2
j {1 + o(1)} ≤ 2 max

1≤j≤sn−1
p′′λn
(∣∣θ∗0,j∣∣)α2

n‖u‖2. (2.7.7)

By equations (2.7.3)-(2.7.7), when ‖u‖ is large enough, all terms D11, D13, D21 and D22

are dominated by a positive term D12. Hence, Theorem 2.1 holds.
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2.7.4 Proof of Sparsity

To prove Theorem 2.2, we first show the sparsity property using Lemma 2.5.

Lemma 2.5. Suppose Assumptions (A1)-(A7) and (P1) are satisfied. If dn = nδ for

some 0 < δ < 1/5(1 − 3/(r − 1)), λn → 0 and λnd
−1/2
n n1/2N−3/2 log−1(n) → ∞ as

n → ∞, then with probability tending to 1, for any given θ∗1 satisfying ‖θ∗1 − θ∗01‖ =

OP{d1/2
n n−1/2N3/2 log(n)} and any constant C, we have

Q̂
{(
θ∗T1 , 0T

)T}
= min
‖θ∗1−θ∗01‖≤Cd

1/2
n n−1/2N3/2 log(n)

Q̂
{(
θ∗T1 , θT2

)T}
.

Proof. Let εn = Cd
1/2
n n−1/2N3/2 log(n), then to prove Lemma 2.5, it is sufficient to

show that with probability tending to 1, as n → ∞, for any θ∗1 satisfying ‖θ∗1 − θ∗01‖ =

OP{d1/2
n n−1/2N3/2 log(n)}, we have, for any j = sn, · · · , dn − 1

∂Q̂(θ∗)

∂θ∗j
< 0, for − εn < θ∗j < 0; (2.7.8)

∂Q̂(θ∗)

∂θ∗j
> 0, for 0 < θ∗j < εn. (2.7.9)
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Using Taylor expansion, we have for any j = sn, . . . , dn

K =
∂Q̂(θ∗)

∂θ∗j
=
∂R̂(θ∗)

∂θ∗j
+ p′λn(|θ∗j |)sgn(θ∗j)

=
∂R̂(θ∗0)

∂θ∗j
+

dn−1∑
k=1

∂2R̂(θ∗0)

∂θ∗j∂θ
∗
k

(
θ∗k − θ∗0,k

)
+

dn−1∑
k,l=1

∂3R̂(θ̄)

∂θ∗j∂θ
∗
k∂θ

∗
l

(
θ∗k − θ∗0,k

) (
θ∗l − θ∗0,l

)
+p′λn(|θ∗j |)sgn(θ∗j)

= K1 +K2 +K3 +K4,

where θ
∗

lies between θ∗ and θ∗0. Next, we consider the terms K1, K2 and K3. Based on

the proof of Theorem 2.1, we have

|K1| =

∣∣∣∣ ∂∂θ∗j
{

(R̂−R)(θ∗0)
}∣∣∣∣+

∣∣∣∣∂R(θ∗0)

∂θ∗j

∣∣∣∣ = OP

{
n−1/2N3/2 log(n) +N−r+1

}
= oP

{
d1/2
n

(
n−1/2N3/2 log(n) +N−r+1

)}
. (2.7.10)

The term K2 can be written as

K2 =
dn−1∑
k=1

∂2R̂(θ∗0)

∂θ∗j∂θ
∗
k

(
θ∗k − θ∗0,k

)
=

dn−1∑
k=1

∂2
{
R̂(θ∗0)−R(θ∗0)

}
∂θ∗j∂θ

∗
k

(
θ∗k − θ∗0,k

)
+

dn−1∑
k=1

∂2R(θ∗0)

∂θ∗j∂θ
∗
k

(
θ∗k − θ∗0,k

)
= K21 +K22.
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Based on the proof of Theorem 2.1, using the Cauchy-Schwarz inequality and ‖θ∗ − θ∗0‖ =

OP{d1/2
n n−1/2N3/2 log(n)}, we have

|K21| ≤
∥∥θ∗k − θ∗0,k∥∥

∣∣∣∣∣∣
dn−1∑
k=1

∂2
{
R̂(θ∗0)−R(θ∗0)

}
∂θ∗j∂θ

∗
k

∣∣∣∣∣∣
= OP

{
dn
(
n−1/2N5/2 log(n) +N−r+2

)}
×OP

{
n−1/2N3/2 log(n) +N−r+1

}
= OP

{
dnn

−1N4 log2(n)
}

= oP
{
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
}
. (2.7.11)

On the other hand, we have

|K22| =

∣∣∣∣∣
dn−1∑
k=1

∂2R(θ∗0)

∂θ∗j∂θ
∗
k

(θ∗k − θ∗0,k)

∣∣∣∣∣
≤ OP

{
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
}
×

∣∣∣∣∣
dn−1∑
k=1

H∗j,k(θ
∗
0)

∣∣∣∣∣
= OP

{
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
}
. (2.7.12)

Next, we consider K3, and we can write it as follows:

K3 =
dn−1∑
k,l=1

{
∂3R̂(θ∗)

∂θ∗j∂θ
∗
k∂θ

∗
l

− ∂3R̂(θ∗)

∂θ∗j∂θ
∗
k∂θ

∗
l

}(
θ∗k − θ∗0,k

) (
θ∗l − θ∗0,l

)
+

dn−1∑
k=1

∂3R̂(θ∗0)

∂θ∗j∂θ
∗
l ∂θ

∗
k

(
θ∗k − θ∗0,k

) (
θ∗l − θ∗0,l

)
= K31 +K32.
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However, by the Cauchy-Schwarz inequality, we have

|K31| ≤

∣∣∣∣∣
dn−1∑
k,l=1

{
∂3R̂(θ∗)

∂θ∗j∂θ
∗
k∂θ

∗
l

− ∂3R(θ∗)

∂θ∗j∂θ
∗
k∂θ

∗
l

}∣∣∣∣∣ ‖θ∗ − θ∗0‖2

= OP

{
dn
(
n−1/2N7/2 log(n) +N−r+3

)}
×OP

{(
d1/2
n n−1/2N3/2 log(n)

)2
}

= OP

{
d2
nn
−3/2N13/2 log3(n)

}
= oP

{
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
}
. (2.7.13)

By Assumption (A5),

|K32| ≤ OP (dn) ‖θ∗n − θ∗0‖2 = OP (dn)×OP

{
dnn

−1N3 log2(n)
}

= oP
{
d1/2
n n−1/2N3/2 log(n)

}
. (2.7.14)

From equations (2.7.10) to (2.7.14), we have

K1 +K2 +K3 = OP

{
d1/2
n n−1/2N3/2 log(n)

}
.

According to Assumptions (A7), (P1) and {d1/2
n n−1/2N3/2 log(n)}λ−1

n → 0, we have

∂R̂(θ∗n)

∂θ∗j
= λn

[
p′λn(|θ∗j |)
λn

sgn(θ∗j) +OP

{(
d1/2
n n−1/2N3/2 log(n)

)
λ−1
n

}]
.

Hence, it is easy to see that the sign of θ∗j completely determines the sign of ∂R̂(θ∗)
∂θ∗j

and

Lemma 2.5 holds.
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2.7.5 Proof of Theorem 2.2

As shown in Theorem 2.1, there is a αn-consistent local minimizer θ̂
∗

of Q̂ (θ∗). By

Lemma 2.5, part (i) of Theorem 2.2 holds, thus, θ̂
∗

has the form
{

(1− ‖θ̂
∗
1‖2)1/2, θ̂

∗T
1 , 0T

}T
.

To prove part (ii) in Theorem 2.2, it is equivalent to show that

(H + Σλn)(θ̂
∗
1 − θ∗01) + bn = Ŝ(θ∗01) + oP

(
n−1/2

)
.

With a slight abuse of notation, let Q̂ (θ∗1) = Q̂
{

((1− ‖θ∗1‖2)1/2)T , θ∗T1 , 0T
}

. As θ̂
∗
1 must

satisfy the penalized equation ∂
∂θ∗1
Q̂(θ̂

∗
1) = 0, using the Taylor expansion on ∂

∂θ∗1
Q̂(θ̂

∗
1) at

point θ∗01 component-wisely, we have

[{
∂2

∂θ∗1∂θ
∗T
1

R̂ (θ∗01) + p′′λn(θ̄1)

}
(θ̂
∗
1 − θ∗01) + p′λn (θ∗01)

]
= − ∂

∂θ∗1
R̂(θ∗01)− 1

2

[
(θ̂
∗
1 − θ∗01)T

∂2

∂θ∗1∂θ
∗T
1

{
∂

∂θ∗j
R̂(¯̄θ∗1)

}
(θ̂
∗
1 − θ∗01)

]sn−1

j=1

,

where θ̄1 and ¯̄θ1 lie between θ̂
∗
1 and θ∗01. Now, we define

U =
∂2

∂θ∗1∂θ
∗T
1

{
R̂ (θ∗01)−R (θ∗01)

}
(θ̂
∗
1 − θ∗01),

T =
1

2

[
(θ̂
∗
1 − θ∗01)T

∂2

∂θ∗1∂θ
∗T
1

{
∂

∂θj
R̂(¯̄θ∗1)

}
(θ̂
∗
1 − θ∗01)

]sn−1

j=1

.
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Similar to the proof of Theorem 2.1 and by the Cauchy-Schwarz inequality, we have

‖T‖ ≤ OP

{(
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
)2
}

×OP

{
d3/2
n n−1/2N7/2 log(n) + d3/2

n N−r+3
}

+OP

{(
d1/2
n n−1/2N3/2 log(n) + d1/2

n N−r+1
)2
}
×OP

(
d3/2
n

)
= OP

{
d5/2
n n−3/2N13/2 log3(n)

}
+OP

{
d5/2
n n−1N3 log2(n)

}
= oP (n−1/2). (2.7.15)

We also have that

|U | = OP

{
d3/2
n n−1N4 log2(n)

}
= oP (n−1/2). (2.7.16)

Finally, from (2.7.15) and (2.7.16), we have

(Ĥ + Σλn)(θ̂
∗
1 − θ∗01) + bn = Ŝ(θ∗01) + oP

(
n−1/2

)
.

Let Ψ =
{
ψjk
}sn
j,k=2

be the asymptotic covariance matrix of
√
nŜ(θ∗01). Following [52],

we have

ψjk =
∞∑

i=−∞

E{(ṁj − θ0,jθ
−1
0,1ṁ1)(Xθ0,1)(ṁk − θ0,kθ

−1
0,1ṁ1)(Xθ0,i+1

)ε1εi+1},

in which ṁj is the value of ∂
∂θj
mθ taking at θ∗ = θ∗0, for any j, k = 2, · · · , sn.
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Let Ω = (H + Σλn)−1Ψ(H + Σλn)−1 and An be a q × (sn − 1) matrix such that AnA
T
n

converges to a nonnegative symmetric q × q matrix ΣA. We now prove the asymptotic

normality of AnΩ
−1/2(H+Σλn)−1

√
nŜ(θ∗01). To achieve such aim, we have to show that

for any vector a = (a1, a2, · · · , aq)T ∈ Rq,

aT{AnΩ
−1/2(H + Σλn)−1

√
nŜ(θ∗01)} → N(0, aTΣAa). (2.7.17)

in distribution.

By the first order derivative approximation result in Lemma 2.4 and Assumption (A5),

we have for any j,

Ŝj(θ
∗
01) =

1

n

n∑
i=1

(ṁj − θ0,jθ
−1
0,1ṁ1)(Xθ0,i)εi

+op{N−(r−1) + n−1N2 log2(n) + (nN)−1/2 log(n)}.

According to Assumptions (A2) and (A3),

Ŝj(θ
∗
01) =

1

n

n∑
i=1

(ṁj − θ0,jθ
−1
0,1ṁ1)(Xθ0,i)εi + op(n

−1/2).

For simplicity, we let Wi = {(ṁj − θ0,jθ
−1
0,1ṁ1)(Xθ0,i)}snj=2 and write

aT{AnΩ
−1/2(H + Σλn)−1

√
nŜ(θ∗01)} =

1√
n

n∑
i=1

aTAnΩ
−1/2(H + Σλn)−1Wiεi + op(1)

=
1√
n

n∑
i=1

Ziεi + op(1),
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where Zi = aTAnΩ
−1/2(H + Σλn)−1Wi. Note that E(Ziεi) = 0, and

Var

(
1√
n

n∑
i=1

Ziεi

)

= aTAnΩ
−1/2(H + Σλn)−1Var

(
1√
n

n∑
i=1

Wiεi

)
(H + Σλn)−1Ω−1/2AT

na

= aTAnΩ
−1/2(H + Σλn)−1Ψ(H + Σλn)−1Ω−1/2AT

na

→ aTΣAa.

Applying Theorem 2.21 in [22], we have

1√
n

n∑
i=1

Wiεi → N(0, aTΣAa)

in distribution. Slutsky’s theorem entails that

√
nAnΩ

−1/2
{

(θ̂
∗
1 − θ∗01) + (H + Σλn)−1 bn

}
→ N (0,ΣA) .

This completes the proof.
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Table 2.1: Selection results for Example 1

n d METHOD TPN FPN C(%)
MME TIME

ITER
(×10−2) (s)

100 25

ORACLE 20.00 0.00 100.0 0.94 0.01 –
PSIM 19.77 0.00 81.4 1.17 1.29 3.56
PLS 17.90 0.00 55.4 2.25 4.33 –
PSIR 15.90 0.00 53.8 2.77 1.05 –

100 50

ORACLE 45.00 0.00 100.0 1.43 0.01 –
PSIM 44.56 0.01 71.8 3.26 3.30 5.78
PLS 33.83 0.00 33.2 10.49 11.44 –
PSIR 35.90 0.00 35.0 8.38 3.20 –

200 25

ORACLE 20.00 0.00 100.0 0.43 0.02 –
PSIM 19.92 0.00 92.0 0.50 2.35 2.50
PLS 18.18 0.00 68.2 0.93 5.48 –
PSIR 17.24 0.00 64.6 1.29 1.16 –

200 50

ORACLE 45.00 0.00 100.0 0.69 0.02 –
PSIM 44.80 0.00 84.4 0.86 6.28 3.78
PLS 41.40 0.00 63.4 3.84 13.33 –
PSIR 37.50 0.01 62.2 5.27 3.13 –

200 100

ORACLE 95.00 0.00 100.0 1.24 0.03 –
PSIM 94.64 0.00 75.8 2.19 17.12 4.80
PLS 80.83 0.00 39.6 13.80 39.30 –
PSIR 83.51 0.00 41.6 11.77 14.23 –
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Table 2.2: Bias and MSE of coefficients of Example 1

n d EST
BIAS MSE

PSIM PLS PSIR PSIM PLS PSIR
θ1 -0.002 -0.010 -0.010 0.003 0.006 0.008
θ2 -0.004 -0.007 -0.010 0.002 0.005 0.008

100 25 θ3 -0.005 -0.010 -0.009 0.002 0.006 0.008
θ4 -0.003 0.010 -0.017 0.002 0.004 0.010
θ5 -0.005 -0.010 -0.011 0.002 0.007 0.008
θ1 -0.019 -0.040 -0.039 0.015 0.028 0.030
θ2 -0.012 -0.036 -0.037 0.016 0.036 0.029

100 50 θ3 -0.019 -0.043 -0.036 0.016 0.028 0.030
θ4 -0.032 0.042 -0.044 0.019 0.032 0.030
θ5 -0.019 -0.038 -0.035 0.017 0.033 0.029
θ1 0.001 -0.005 -0.008 0.001 0.004 0.005
θ2 -0.002 -0.006 -0.008 0.001 0.004 0.006

200 25 θ3 -0.003 -0.004 -0.006 0.001 0.003 0.004
θ4 -0.002 0.006 -0.009 0.001 0.005 0.007
θ5 0.000 -0.005 -0.007 0.001 0.004 0.005
θ1 -0.001 -0.016 -0.012 0.001 0.008 0.008
θ2 -0.003 -0.016 -0.015 0.002 0.008 0.006

200 50 θ3 -0.004 -0.013 -0.019 0.002 0.007 0.008
θ4 -0.002 0.012 -0.010 0.002 0.006 0.004
θ5 -0.007 -0.015 -0.014 0.002 0.007 0.006
θ1 -0.019 -0.060 -0.048 0.013 0.044 0.032
θ2 -0.019 -0.026 -0.046 0.013 0.030 0.035

200 100 θ3 -0.019 -0.123 -0.044 0.013 0.062 0.035
θ4 -0.015 0.042 -0.044 0.012 0.033 0.035
θ5 -0.018 -0.045 -0.042 0.011 0.035 0.035
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Table 2.3: Standard deviations of the estimators for Example 1

n(d)
θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

SD SDm SD SDm SD SDm SD SDm SD SDm

(SDmad) (SDmad) (SDmad) (SDmad) (SDmad)
100 0.050 0.032 0.048 0.031 0.048 0.031 0.050 0.031 0.049 0.032
(25) (0.009) (0.009) (0.009) (0.008) (0.008)
100 0.119 0.036 0.126 0.036 0.126 0.036 0.134 0.036 0.127 0.036
(50) (0.018) (0.018) (0.018) (0.016) (0.016)
200 0.032 0.023 0.031 0.024 0.033 0.023 0.033 0.024 0.033 0.024
(25) (0.005) (0.005) (0.004) (0.004) (0.004)
200 0.039 0.027 0.043 0.027 0.042 0.027 0.044 0.026 0.042 0.026
(50) (0.006) (0.007) (0.006) (0.006) (0.006)
200 0.113 0.033 0.113 0.034 0.114 0.033 0.110 0.033 0.101 0.032

(100) (0.019) (0.021) (0.021) (0.020) (0.018)

Table 2.4: Selection results for Example 2

n d METHOD TPN FPN C(%)
MME TIME

ITER
(×10−2) (s)

100 7

ORACLE 2.00 0.00 100.0 0.65 0.35 –
PSIM 1.84 0.10 75.4 0.82 0.79 2.54
PLS 1.28 0.85 31.6 9.08 2.95 –
PSIR 1.19 1.21 15.0 11.72 0.65 –

200 10

ORACLE 5.00 0.00 100.0 0.25 0.38 –
PSIM 4.89 0.05 91.2 0.27 0.97 2.07
PLS 3.67 0.04 26.8 15.92 10.13 –
PSIR 3.71 0.88 19.4 24.70 0.84 –

400 12

ORACLE 7.00 0.00 100.0 0.11 0.41 –
PSIM 6.95 0.00 94.6 0.12 3.61 1.88
PLS 6.49 0.46 46.8 5.46 13.46 –
PSIR 5.60 0.41 31.0 6.41 1.36 –

800 16

ORACLE 11.00 0.00 100.0 0.08 0.46 –
PSIM 10.98 0.00 98.2 0.09 15.06 1.57
PLS 10.81 0.12 73.6 1.12 43.11 –
PSIR 9.68 0.09 54.8 1.38 3.32 –
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Table 2.5: Bias and MSE for the coefficients in Example 2

n d EST
BIAS MSE

PSIM PLS PSIR PSIM PLS PSIR
θ1 0.005 0.004 0.008 0.0035 0.009 0.010
θ2 -0.010 0.038 -0.078 0.0036 0.012 0.018

100 7 θ3 -0.027 -0.086 -0.159 0.0039 0.036 0.065
θ4 0.019 0.113 0.125 0.0097 0.044 0.045
θ5 -0.034 -0.058 -0.115 0.0086 0.030 0.044
θ1 0.003 0.068 0.020 0.0010 0.012 0.006
θ2 -0.003 -0.056 -0.051 0.0006 0.012 0.011

200 10 θ3 -0.008 -0.114 -0.121 0.0009 0.036 0.042
θ4 0.006 0.182 0.102 0.0027 0.041 0.038
θ5 -0.012 -0.115 -0.191 0.0025 0.038 0.044
θ1 0.001 0.005 0.019 0.0004 0.004 0.005
θ2 -0.001 -0.023 -0.032 0.0002 0.005 0.006

400 12 θ3 -0.002 -0.048 -0.067 0.0002 0.019 0.024
θ4 -0.001 0.067 0.066 0.0005 0.021 0.023
θ5 -0.004 -0.069 -0.067 0.0005 0.022 0.024
θ1 0.003 0.004 0.010 0.0002 0.002 0.005
θ2 0.004 -0.007 -0.010 0.0002 0.003 0.005

800 16 θ3 0.000 -0.014 -0.018 0.0002 0.003 0.006
θ4 -0.002 0.036 0.035 0.0003 0.011 0.012
θ5 0.000 -0.032 -0.033 0.0003 0.011 0.012

Table 2.6: Standard deviations of estimators for Example 2

n(d)
θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

SD SDm SD SDm SD SDm SD SDm SD SDm

(SDmad) (SDmad) (SDmad) (SDmad) (SDmad)
100 0.059 0.037 0.044 0.032 0.057 0.035 0.84 0.046 0.081 0.043
(7) (0.012) (0.013) (0.016) (0.024) (0.014)
200 0.031 0.025 0.024 0.020 0.030 0.021 0.052 0.035 0.048 0.025
(10) (0.005) (0.005) (0.006) (0.009) (0.005)
400 0.019 0.019 0.014 0.014 0.014 0.015 0.026 0.022 0.022 0.018
(13) (0.003) (0.002) (0.003) (0.005) (0.002)
800 0.015 0.013 0.012 0.011 0.012 0.011 0.017 0.017 0.018 0.015
(16) (0.001) (0.001) (0.001) (0.002) (0.001)
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Table 2.7: Selection results for Example 3

n d METHOD δ TPN FPN C(%)
MME TIME

ITER
(×10−2) (s)

100 25
ORACLE

0 20.00 0.00 100.0 0.06 0.03 –
1 20.00 0.00 100.0 0.11 0.03 –

PSIM
0 19.50 0.00 93.8 0.06 1.32 5.80
1 19.40 0.00 93.4 0.12 1.31 5.80

100 50
ORACLE

0 45.00 0.00 100.0 0.05 0.03 –
1 45.00 0.00 100.0 0.11 0.03 –

PSIM
0 42.04 0.01 74.2 0.07 3.88 7.91
1 41.92 0.00 73.8 0.13 3.79 7.49

200 25
ORACLE

0 20.00 0.00 100.0 0.02 0.05 –
1 20.00 0.00 100.0 0.05 0.05 –

PSIM
0 19.97 0.00 99.2 0.02 3.07 4.15
1 19.97 0.00 99.2 0.05 2.94 3.93

200 50
ORACLE

0 45.00 0.00 100.0 0.02 0.05 –
1 45.00 0.00 100.0 0.05 0.05 –

PSIM
0 44.82 0.00 96.8 0.02 9.35 5.28
1 44.82 0.00 96.8 0.05 8.76 5.02

200 100
ORACLE

0 95.00 0.00 100.0 0.02 0.05 –
1 95.00 0.00 100.0 0.05 0.05 –

PSIM
0 93.95 0.00 78.8 0.04 16.92 6.42
1 93.81 0.00 77.4 0.07 17.55 6.58
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Table 2.8: Bias and MSE of coefficients of Example 3

n d EST
BIAS SD MSE

δ = 0 δ = 1 δ = 0 δ = 1 δ = 0 δ = 1
θ1 -0.006 -0.006 0.061 0.066 0.004 0.004
θ2 -0.011 -0.002 0.080 0.060 0.007 0.004

100 25 θ3 -0.006 -0.006 0.073 0.061 0.005 0.004
θ4 -0.003 0.009 0.071 0.074 0.005 0.006
θ5 -0.002 -0.007 0.058 0.075 0.003 0.006
θ1 -0.019 -0.023 0.124 0.132 0.016 0.018
θ2 -0.020 -0.019 0.125 0.131 0.016 0.018

100 50 θ3 -0.039 -0.029 0.140 0.125 0.021 0.016
θ4 -0.021 0.023 0.117 0.124 0.014 0.016
θ5 -0.016 -0.020 0.124 0.120 0.016 0.015
θ1 -0.001 0.000 0.023 0.027 0.001 0.001
θ2 -0.001 -0.001 0.024 0.016 0.001 0.000

200 25 θ3 -0.002 -0.003 0.030 0.037 0.001 0.001
θ4 0.000 0.000 0.013 0.016 0.000 0.000
θ5 0.000 0.000 0.026 0.026 0.001 0.001
θ1 -0.001 -0.002 0.039 0.038 0.002 0.001
θ2 -0.002 0.000 0.043 0.040 0.002 0.002

200 50 θ3 -0.002 -0.004 0.037 0.044 0.001 0.002
θ4 -0.001 0.002 0.029 0.028 0.001 0.001
θ5 -0.004 -0.001 0.043 0.039 0.003 0.001
θ1 -0.022 -0.018 0.144 0.117 0.021 0.014
θ2 -0.021 -0.021 0.136 0.128 0.019 0.017

200 100 θ3 -0.011 -0.019 0.134 0.134 0.018 0.018
θ4 -0.021 0.022 0.139 0.129 0.020 0.017
θ5 -0.021 -0.015 0.138 0.127 0.020 0.016
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Table 2.9: Variable selection and estimation for the river flow dataset

Yt−1 Yt−2 Yt−3 Yt−4 Yt−5 Yt−6 Yt−7

PSIM 0.885 -0.408 0.179 -0.085
BIC-SIP 0.877 -0.382 0.208 -0.125

Xt Xt−1 Xt−2 Xt−3 Xt−4 Xt−5 Xt−6

PSIM 0.043
BIC-SIP 0.046 0.034 -0.004

Zt Zt−1 Zt−2 Zt−3 Zt−4 Zt−5 Zt−6

PSIM 0.096 -0.012
BIC-SIP 0.126 -0.079

Table 2.10: Mean squared prediction errors (MSPEs) for river flow dataset

METHOD PSIM BIC-SIP FULL-SIP BIC-LM
MSPE 49.09 60.52 62.11 81.99
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Figure 2.1: A simulated time series from NAR model (n = 800, d = 16).
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Figure 2.2: Estimated single-index function for river flow (based on 1972-1973).
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Chapter 3

Ultra-High Dimensional

Single-Index Models

3.1 Introduction

Advancements in information technology have enabled scientists to collect data of un-

precedented size as well as complexity. Nowadays, high-dimensional data commonly

arise in such diverse fields as biology, engineering, health sciences, economics and in-

formation technology. Here, the word “high-dimensional” refers to the case where the

number of potential explanatory variables, p, is one or several orders of magnitude larger

than the sample size, n, of the data. The analysis of high-dimensional data gives rise to

many new challenges and opportunities for statistical methodology. Take a simple linear
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model for example. When it has many more unknown parameters than the number of

observations, the least-squares fitting is ill-posed.

To make high dimensional statistical inference possible, it is often useful and reasonable

to assume that the p-dimensional regression parameters are sparse, with many com-

ponents being zero, and this assumption is well known as the “sparsity” assumption.

With sparsity, a widely used class of approaches for analyzing high-dimensional data is

regularized or penalized regression. Methods that have been proposed include Bridge

regression [23], L1 penalized regression or LASSO [46], smoothly clipped absolute de-

viation (SCAD) [15], Dantzig selector [3], and minimax concave penalty (MCP, [58]).

Related to these methods, there has been a great deal of theoretical study as well as

algorithmic development recently, see [10], [11] as well as [49].

Several recent papers have considered variable selection in non-convex penalized high-

dimensional regression. For example, [15] first suggested the use of SCAD penalty for

model selection in the non-convex penalized likelihood with fixed and finite number of

coefficients and covariates p. [19] extended these results by allowing p to diverge slowly

with the sample size n at the rate p = o(n1/5) or p = o(n1/3) in a general likelihood

framework. While all of the above methods focus on the case that n > p, recently

more and more researches target on the scenario of p� n. In the context of the linear

model, [35] proved that the SCAD estimator still has the oracle property on ultrahigh

dimensional problems with p� n, specifically, they have shown that the oracle estimator

itself is a local minimum of SCAD penalized least squares regression, for high dimensional

non-convex penalized regression with p� n.
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Meanwhile, a series of methods based on independent learning has become increasingly

popular. [16] proposed a method of independent learning via a two-stage procedure

for linear model. In the first stage, independence screening is adopted as a fast but

crude method of reducing the dimensionality from ultra-high to a more moderate size

(usually below the sample size); a suitable feature selection technique can be applied

in the second stage. Using a similar idea, later, [21] extended the previous procedure

into a more general framework – generalized linear models. More recently [17] studied

penalized likelihood methods for ultrahigh dimensional variable selection, and in the

context of generalized linear models, they demonstrated the proposed method possesses

model selection consistency with oracle properties for p � n. In [13] and [18], they

proposed a class of nonparametric independence screening for ultra-high-dimensional

additive models and varying coefficient models, respectively.

In practice, without prior knowledge about the relationship between response variable y

and independent variables X, the regression function g(x) = E(y|X = x) often needs to

be modeled in a flexible nonparametric fashion. Therefore, one of our goals is to approx-

imate g(x) by a function having simplifying structure which makes both estimation and

interpretation possible. Due to such concerns, single-index models (SIMs) seem to be

very appealing. Another advantage of SIMs is that they are very useful and fundamental

tools for handling “curse of dimensionality”. Intensive research on estimation in single-

index models has given rise to a large amount of literature; [43], [29], [4], [54] and [30] are

among those frontiers. Later, [55] developed the minimum average variance estimation

method to prevent the under-smoothing of the nonparametric link function. To make
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the estimation more robust against deviations from SIMs, [52] proposed a polynomial

spline estimator for the single-index prediction model. Furthermore, [5] and [7] intro-

duced estimating equation based methods to study SIMs. In the former, [5] transferred

restricted least squares to unrestricted least squares to reduce the limiting variance. In

the latter, [7] further relaxed the constraint that all the index parameters lie in an open

unit ball. Most recently, [40] proposed a robust and efficient estimation procedure based

on local model regression in terms of the sensitivity outliers and heavy tailed error.

As the number of index parameters in SIMs increases, it becomes more and more difficult

to identify the significant explanatory variables efficiently. To conquer such challenge,

several procedures have been developed. [36] proposed the dissected cross-validation

method which outperformed the traditional leave-m-out cross-validation. Later, [63]

implemented the adaptive lasso with kernel smoothing to estimate and select important

predictors without assuming the error term as additive. Furthermore, [41] introduced

the penalized least squares method and [60] proposed the LASSO with local linear

smoothing method. Both methods are able to simultaneously estimate parameters and

select variables.

All the above methods aim at the case of fixed number of index parameters. In practice,

the number of introduced variables typically varies with the sample size. Therefore, [62]

developed a sliced inverse regression (SIR) based method which can handle the case of

a diverging number of index parameters. When the dimension of index variables is high

and even ultra-high, how to find the relationship between the response and the index

variables efficiently becomes a serious scientific endeavor. This motivates us to consider
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feature selection for single-index models in high dimensional, even ultra-high-dimensional

settings, with the goal being to identify the oracle estimator with high probability. To

achieve this, a nonparametric independent screening is developed and a new theoretical

result for the oracle property to hold is derived within this article. The rest of this

chapter is organized as follows. In Section 3.2, we briefly review the single-index models

and the methodology for polynomial spline estimation. In Section 3.3, we introduce a

new nonparametric independence screening algorithm. We establish the properties of

the proposed estimators in Section 3.4. In Section 3.5, we report numerical results from

Monte Carlo simulations and we present a real data example in Section 3.6. The proofs

are given in Section 3.7.

3.2 Single-Index Model and Its Estimation

Suppose we have an i.i.d. random sample, {(Xi, Yi)}ni=1, from the following single-index

model

Yi = g
(
XT
i θ0

)
+ εi, i = 1, . . . , n, (3.2.1)

in which Yi are the response variables and Xi = (Xi1, · · · , Xip)
T are p-dimensional

(p ≥ 1) vectors of covariates. Without loss of generality, we assume the covariates

are standardized to have mean zero and variance one. The function g is some smooth

but unknown univariate link function, and θ0 is a vector of some unknown parameters,

often referred to as the single-index coefficient. Errors εi are i.i.d. random noise with
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E (εi) = 0 and E (ε2
i ) = σ2 < ∞. For model identifiability, we assume that the single-

index coefficients θ0 ∈ Θ = {(θ01, · · · , θ0p)|
∑p

j=1 θ
2
0j = 1, θ01 > 0}.

In the following, we assume that the observed data {(Xi, Yi)}ni=1 are i.i.d. copies of

(X ,Y). Before describing the estimation method of the single-index parameters, we

define the following notations for simplicity. Given a fixed θ, denote Xθ = X T θ and

Xθ,i = XT
i θ for any i = 1, . . . , n. Let

gθ(z) = E(Y|Xθ = z) = E{g(X T θ0)|Xθ = z}

then θ0 is the minimizer of the following population least squares criterion function

R(θ) =
1

2
E[{Y − gθ(Xθ)}2] =

1

2
E[{g(X T θ0)− gθ(Xθ)}2] +

1

2
σ2. (3.2.2)

Since Θ is not a compact set, we consider the minimization problem in (3.2.2) over all

θ ∈ Θc, where Θc = {(θ1, · · · , θp)|
∑p

j=1 θ
2
j = 1, θ1 ≥ c} for some c ∈ (0, 1).

In the following we discuss the estimation method for the single-index coefficient θ0 ∈ Θc

and the unknown function g in (3.2.1). To estimate the unknown functional parameters,

we use spline basis approximations. In principle, any basis functions can be used, but

in this article we consider the polynomial splines to estimate the unknown function

gθ for any given θ. The appeal of polynomial splines is that they often provide good

approximations of smoothing functions with a simple linear combination of spline bases;

see more discussions in [56].
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For any given θ, suppose gθ(z) can be approximated by
∑N

k=1−r Bk,r(z), where N is the

number of interior knots, and Bk,r(z), k = 1− r, ..., N , are the B-spline basis functions

of order r; see [8]. Denote next the (N + r)-dimensional space G(r−2) of spline basis

functions as the linear space spanned by {Bk,r (z) , k = 1 − r, . . . , N}. Then, for any

given θ, the polynomial spline estimator of order r for gθ is defined as

ĝθ(·) = arg min
g(·)∈G(r−2)

n∑
i=1

{Yi − g(Xθ,i)}2.

Let Y = (Y1, . . . , Yn)T be the response vector. For any fixed θ, denote Br(z) =

{Bk,r(z)}Nk=1−r, and Bθ = {Bk,r (Xθ,i)}n, Ni=1,k=−(r−1). Then one can obtain the spline

estimator of gθ(z) by

ĝθ(z) = Br(xθ)(B
T
θBθ)−1BT

θY.

Then, the single-index parameters θ0 can be estimated by minimizing

R̂(θ) =
1

2n

n∑
i=1

{Yi − ĝθ(z)}2. (3.2.3)

Now suppose some of the variables are not relevant in the single-index, i.e., the corre-

sponding single-index coefficients are zero. In the following we introduce a regularization

penalty to (3.2.3). Since the potential number of explanatory variables increases at an

exponential rate of the sample size n, we denote it as pn. To perform simultaneous
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selection and estimation, we propose minimizing the following penalized sum of squares

Q̂ (θ) = R̂ (θ) +

pn∑
j=1

pλn(|θj|)I{|θj| 6= max
1≤k≤pn

(|θk|)}, (3.2.4)

which shrinks small components of estimated functions to zero. Note that the above

minimization in (3.2.4) is for all θ ∈ Θc, so we don’t penalize the largest element of θ.

There are various of ways to specify the penalty function pλ. Here we use the SCAD

penalty function of [15], defined as

pλ(θ) =


λθ, if 0 ≤ θ ≤ λ

− (θ2−2aλθ+λ2)
2(a−1)

, if λ < θ < aλ

(a+1)λ2

2
, if θ > aλ

for some tuning parameter a, and a = 3.7 is used in all the simulation examples as well

as in the real data application.

3.3 Asymptotic Properties of the Estimator

In this section, we study the asymptotic properties of the PSIM estimator. Without loss

of generality, we assume that the first qn single-index coefficients are nonzero and the

remaining pn− qn index coefficients are 0. For any i = 1, . . . , n, let XT
i = (XT

i(1), X
T
i(2))

T ,

where XT
i(1) are the first qn non-zero variables and XT

i(2) are the pn − qn zero variables.

Similarly we write θT0 = (θT0(1), θ
T
0(2)) with θT0(2) = (0, . . . , 0)T . Define the oracle estimator
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θ̂
oT

= (θ̂
oT

(1), 0
T )T , where

θ̂
o

(1) = arg min
θ(1)∈{(θ1,··· ,θqn )|

∑qn
j=1 θ

2
j=1,θ1≥c}

R̂o(θ(1)) (3.3.1)

= arg min
θ(1)∈{(θ1,··· ,θqn )|

∑qn
j=1 θ

2
j=1,θ1≥c}

1

2n

n∑
i=1

{
Yi − ĝθ(1)(X

T
i(1)θ(1))

}2

.

The following two theorems demonstrate that the oracle estimator θ̂
o

asymptotically

becomes a local minimum under the SCAD penalty. Such a property is widely known

as the oracle property [15, 35] . This result implies that we can find a good estimator

among the local minima using the PSIM method proposed in Section 3.4, assuming we

use the SCAD penalty.

Theorem 3.1. Suppose Assumptions (A1)–(A6) stated in Section 3.7 hold and assume

that E(εi)
2k <∞ for an integer k > 0. Let An(λn) be the set of local minima of (3.2.4)

with the SCAD penalty and a regularization parameter λn, we have

Pr{θ̂
o
∈ An(λn)} → 1

as n→∞ provided that λn = o{n−(1−(α2−α1))/2} and pn/(
√
nλn)2k → 0.

The above theorem demonstrates that when εi has the all moments, the oracle property

holds when pn = O(nα) for any α > 0, as E(εi)
2k <∞ for all k > 0.
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For Gaussian errors, the following theorem proves that the oracle property holds when

pn = O{exp(α3n)} for some α3 > 0, that is, the dimension of covariates is allowed to

grow exponentially fast.

Theorem 3.2. Suppose Assumptions (A1)–(A6) stated in Section 3.7 hold and assume

that the εi’s are i.i.d. Gaussian random variables. Then

Pr{θ̂
o
∈ A(λn)} → 1,

as n → ∞, provided that pn = O{exp(α3n)} and λn = O(n−(1−α4)/2), where 0 < α3 <

α4 < α2 − α1.

3.4 Nonparametric Independence Screening

3.4.1 Nonparametric Independence Screening Procedure

The dimension p of the index parameter in model (3.2.1) can be very large, and here

we consider the case that p increases much faster than the sample size n, especially

by non-polynomial dimensionality or simply NP-dimensionality, i.e., log p = O(na) for

some a ∈ (0, 1/2). Therefore, we write the dimension as pn. Let M0 = {1 ≤ j ≤

pn : θ0,j 6= 0} be the true sparse model with non-sparsity size qn = |M0|. The other

pn − qn variables can also be correlated with the response variable via linkage to the

predictors contained in the model. To expeditiously identify important variables in
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model (3.2.1), without facing the “curse of dimensionality”, [16] first proposed sure

independent screening (SIS) method to reduce the space of explanatory variables from a

NP-dimensionality to moderate size. Later, [13] and [18] extended the SIS procedure into

a class of nonparametric independence screening (NIS) models. Similarly, we consider

the following pn nonparametric marginal models. In this article, we refer to marginal

models as fitting model with componentwise covariates:

θ̂
NIS

j = arg min
1

2n

n∑
i=1

{Yi − gj(Xi,jθj)}2, j = 1, · · · , pn, (3.4.1)

where the function gj can be approximated by some smoothing methods such as the

polynomial spline smoothing method mentioned above. We rank the utility of covariates

in model (3.4.1) according to, for example, magnitude of the absolute value of coefficients,

or the sum of residuals, and then select a small group of covariates by thresholding. For

example, we sort the pn componentwise magnitudes of the |θ̂
NIS

j | in a decreasing order

and define a submodel as

M̂γn = {1 ≤ j ≤ pn : |θ̂
NIS

j | ≥ γn}

where γn is a pre-defined threshold value. Such an independence learning ranks the

importance of features according to their magnitude of marginal regression coefficients.

Another screening approach is to rank according to the descent order of the residual

sum of squares of the componentwise nonparametric regressions, where we select a set
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of variables:

N̂νn = {1 ≤ j ≤ pn : uj ≤ νn},

where uj = 1
2n

∑n
i=1{Yi − ĝj(Xi,j θ̂j)}2 represents the residual sum of squares of the

marginal fit, while νn is another pre-defined threshold value. Such an independent

screening ranks the importance according to the descent order of the residual sum of

squares of the componentwise nonparametric regressions. This screening also can be

viewed as ranking by the magnitude of the correlation of the marginal nonparametric

estimate ĝj(Xij θ̂j)
n
i=1 with the response {Yi}ni=1. In both of these senses, the proposed

NIS procedure is related to the correlation learning proposed by [16].

With such NIS procedure, we dramatically decrease the dimension of the parameter

space from pn to a much smaller number with model size |M̂γn| or |N̂νn|. Thus, the

computational burden is much more feasible. According to [21], although the interpre-

tations and implications of the marginal models are biased from the joint model, the

non-sparse information about the joint model can be passed along to the marginal model

under a mild condition.

After variable screening, the next step is naturally to select the variables using more

refined techniques in the single-index model. For example, the dissected cross-validation

(DCV) method in [36], the profile least squares (PrLS) estimation procedure in [39], the

adaptive LASSO with kernel smoothing in [63], the slice inverse regression based method

in [62] and penalized single-index prediction models (PSIM) proposed by [50].
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3.4.2 Data-Driven Thresholding Determination

To determine a data-driven threshold for the nonparametric independence screening

method, we adopt a similar random permutation idea of [13]. We use random per-

mutation to decouple Xi and Yi in order to make the resulting data (Xπ(i), Yi) follow

a null model. Here π(1), · · · , π(n) are a random permutation of the index 1, · · · , n.

Specifically, the permutation algorithm works as follows:

1. For every j ∈ {1, · · · , pn}, find the local minimum in (3.4.1). Randomly permute

the rows of X, yielding X∗. Let ω(q) be the q-th quantile of {ũj, j = 1, · · · , pn},

where

θ̃j = arg min
1

2n

n∑
i=1

{Yi − g̃j(X∗i,jθj)}2 and ũj =
1

2n

n∑
i=1

{Yi − g̃j(X∗i,j θ̃j)}2.

Then the NIS selects the following variables:

N1 = {1 ≤ j ≤ pn : uj ≤ ω(q)}.

As suggested by [13], in this work, we use q = 1 which means to take the maximum

value of the empirical norm of the permuted estimates.

2. Apply PSIM [50] on the set N1 to select a subset A1. Inside the PSIM algorithm,

the tuning parameter is selected by high-dimensional BIC proposed by [48].
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In Step 2, we use PSIM method. In fact, any variable selection method for single-index

models mentioned previously would work once one has reduced from pn to dn via the

NIS screening step in 1.

3.5 Simulation Studies

It has been shown in [16] and [20] that independent screening is a fast but crude method

for reducing the dimensionality. Some extension of independent screening method in-

clude iterative SIS and multi-stage procedures, such as SIS-SCAD and SIS-LASSO.

These methods can be applied to perform the final variable selection and estimation

simultaneously. In this section, we present one simulation example with several dif-

ferent scenarios to evaluate the performance of NIS procedure for single-index models

(NIS-PSIM).

We vary the sample size from 100 to 200 for different scenarios to gauge the difficulties

of the simulation models. The following configurations with p = 1000 and 5000 are

considered for generating the covariates X = (X1, · · · , Xp)
T . We consider a similar

regression model as in [52],

Yi = sin
(π

4
XT
i θ0

)
+ εi

where εi’s are independently and identically distributed asN(0, 0.22), for all i = 1, · · · , n.

In this example, the true parameter is θT0 = (1, 1, 1, 1, 1, 0, · · · , 0)/
√

5, i.e.; the first five

elements of θ0 are non-zero while the remaining pn − 5 elements are zero. Table 3.1
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summarizes the variable selection results based on 200 replications under each of the

settings with partial combinations of sample size n = 100, 200 and p = 1000, 5000.

With these setting, we aim to illustrate the behaviors of the NIS procedure under differ-

ent combinations of sample size and number of parameters. In this example, we compare

our method (NIS-PSIM) with the method (HD-SCAD) proposed by [35], the sure inde-

pendence screening plus penalized least square regression (SIS-SCAD) proposed by [16]

as well as the oracle estimators which are obtained using the method proposed by [52].

In Table 3.1, the column labeled “TPN” presents the average number of zeroes, restricted

only to the true zero coefficients, while column “FPN” shows the average number of

the q = 5 true zero coefficients erroneously set to zero. The column labeled as “C”

represents the percentage for which the correct model has been chosen among those 200

Monte Carlo replications. The root mean squared prediction error (RMSPE) is reported

in the fourth column, and it is calculated by:

MSPE =

{
1

n

n∑
i=1

E
{
ĝ
(
XT
i θ̂
)}1/2

− Yi

}2

.

Note that the “oracle” method always identifies the five non-zero coefficients and p− 5

zero coefficients correctly. The last column, “TIME”, reports the running time per

iteration in seconds using a desktop with Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz

and 8.00GB RAM.

In addition, Table 3.2 demonstrates the variable estimation results based on three mea-

surements, including bias (BIAS), standard error (SD) and root mean squared error
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(RMSE), which is calculated using RMSE(θj) =

{
1

200

∑200
i=1

(
θ̂j − θ0,j

)2
}1/2

. To make

it more comparable, in Table 3.2, we compare our NIS-PSIM estimator to the oracle

estimator. From this table, one can see that as the sample size increases, the NIS-PSIM

estimator becomes closer to the oracle estimator.

Summarizing Table 3.1, our proposed NIS-PSIM outperforms the other two competitive

methods (HD-SCAD and SIS-SCAD), in terms of correctly identifying the correct model.

Both HD-SCAD and SIS-SCAD methods penalize much too harshly and thus set too

many values to zero. On the other hand, as the sample size increases, the performances

of NIS-PSIM is getting closer to the oracle estimator and in terms of RMSPE, the NIS-

PSIM is more comparable with the oracle estimator. From Table 3.1, one can also see

that the NIS-PSIM estimator provides much smaller RMSPE compared with the other

two methods. The results on both variable selection and estimation confirm that the

NIS-PSIM method outperforms the other two methods.

[Tables 3.1 and 3.2 about here.]

3.6 Application

In this section, we implement our NIS-PSIM method to solve a high-dimensional gene

microarray problems. The data set we used was reported by [44]. In this data set,

120 twelve-week-old male F2 rats were selected for tissue harvesting from the eyes and

underwent microarray analysis. Such microarrays contains 31,042 different probes. The
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intensity values were normalized using the RMA (robust multi-chi averaging) and repre-

sented gene expression levels. Since gene TRIM 32 is widely known to cause Bardet-Biedl

syndrome, the primary goal of this analysis is to identify the genes whose expression lev-

els are most closely are related to gene TRIM32.

There are 31,042 probes in the data-set, with one of them recording the gene expression

levels in each of the 120 rats for the TRIM32 gene. The question is what linear com-

bination of the (presumably few) among the other 31,041 probes yields a single-index

within a fitted spline that predicts the TRIM32 gene’s expression levels well. One must

remember that the entire microarray procedure is a ‘kitchen sink’ approach, where all

genes in the complete mouse genome are examined, even though relatively few have any-

thing to do with the eye network, and even fewer of those are likely to be involved in the

process that causes Bardet-Biedl syndrome. More traditional biological analyses would

avoid this complication entirely by simply excluding the genes (probes) that couldn’t

possibly be related to the factor of interest. In microarrays, that can usually be done

relatively simply in an indirect way. In this case, the first step is to normalize across the

chips (n=120 rats), by dividing the expression levels, E(i, j) for probe i of chip j by the

median expression level for the chip and taking the log2-transform. That is:

W (i, j) = log2

E(i, j)

M(j)
,

where M(j) is the median of the gene expression levels of chip j. This yields normalized

expression levels that have a median of zero for each array. Such distributions tend to
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be fairly symmetric, although there are occasional outliers which must be handled by

methods such as those given in [2] and [34]. Once this has been done, the probes are

roughly comparable across chips (rats). Non-interesting probes would be those that have

very low expression levels across all rats or which show too little variation across the

rats. To eliminate the former, [44] declared gene i to be ‘insufficiently expressed’ if the

maximum of the 120 W (i, j) values was less than the 25th percentile of all W (i, j) scores.

Similarly, they declared gene i to be ‘insufficiently variable’ if the difference between the

largest and smallest W (i, j) values for fixed i was less than one. This is equivalent to a

less than two-fold change, since the W (i, j) values are in log2 scale. For the rat data-set,

employing these two criteria reduced the number of candidate probes from the original

value of 31,041 to 18,795.

While the above screening procedure produces a 40% reduction in candidate probes, the

number remaining far exceeds the number of rats (n=120), so more reduction must be

made before employing most of the model selection procedures. The high-dimensional

SCAD procedure of [35], in theory, can be made to work for very large numbers of probes,

but it may be too slow to be practical. They proposed reducing the 18,795 to 3,000

(before beginning their HD-SCAD procedure) by simply choosing the 3,000 probes which

displayed the largest variance across the 120 rats. For our PSIM procedure, whether we

begin with 18,795 or 3,000 probes is a secondary concern – before we can apply PSIM,

we must first reduce the number of candidate probes to some value k such that k < n.

(This step of going from p > n to k < n probes is what most in the field call ‘statistical

screening’, as opposed to some of the steps above which could more appropriately be
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called ‘biological screening’, as they tend to eliminate probes which really should never

have been included in the experiment, if it had been designed more rigorously.) To

achieve k < n, we could simply begin with the 119 probes which have the highest

correlation with the probe of interest, but this is very inefficient. Instead, we used an idea

based on the Sure Independence Screening procedure of [16]. We use two enhancements

of their method. First, we use nonparametric independent screening (NIS) rather that

the parametric SIS method which they initially introduced, to select those genes which

yield small errors when the nonparametric splines are fit to model the TRIM32 gene.

To determine how many (k) of these best-fitting genes to use before applying PSIM,

we use the permutation adaptation of SIS discussed in [21] to select the genes that

achieve the permutation threshold. For most microarrays, the SIS-permutation (or NIS-

permutation) procedure will yield a number of potential probes, k, which is much less

than n. In this example, we found k = 20 while n = 120. Once we attain this small set

(k = 20) of genes which seem best able to predict the TRIM32 gene, we can then employ

our PSIM method to find the best linear combination to yield the single index best fit

by the nonparametric spline. In this example, the result was a set of q = 12 probes

whose linear combination best estimated the single-index for the spline that predicted

the TRIM32 gene.

The value of q = 12 probes that we identified is less than the q = 24 or q = 19 probes

found by [32] using unrestricted and adaptive LASSO, respectively, but more than the

q = 6 probes found by [16]. Since this is a real data-set, we don’t know what the

true answer is. One way to compare the accuracy of the procedures is to fit them
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on a sample of size n0 = 80 of the rats, with validation occurring on the remaining

n − n0 = 120 − 80 = 40 rats. This process (80-40 partitioning and validation) was

repeated 100 times, comparing our (NIS-PSIM) method’s results with those of [35]’s

HD-SCAD and [16]’s SIS-SCAD. The mean model size (MS) and prediction error (PE)

and their standard deviations based on these 100 replications are summarized in Table

3.3. The two rows in the table reflect whether the process began with the biological-

screening population size of 18,795 candidate probes or the reduced set of 3,000 candidate

probes. Overall, the NIS-PSIM method appears quite robust.

[Table 3.3 about here]

3.7 Proof of Theorems

In the following, let X = (Xij)
n, pn
i=1,j=1 = (X(1),X(2)) be the predictor matrix, where X(1)

is the first n× q submatrix and X(2) is the last n× (pn − qn) submatrix of X.

3.7.1 Assumptions

In this subsection, we state our assumptions below.

(A1) There exist positive constants M1 and M2 such that E|Xij|4 ≤ M1, for any 1 ≤

i ≤ n and 1 ≤ j ≤ pn, and supuTu=1 u
TXT

(1)X(1)u ≥M2.
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(A2) For any θ1, θ2 ∈ Θc, the joint density function fθ1,θ2(xθ1 , xθ2) of Xθ1 and Xθ2 has

r-th order (r ≥ 5) continuous partial derivatives and is bounded below and above

on [a, b]2. The marginal density function of Xθ, fθ(xθ) ∈ C(1)[a, b], and is bounded

below, for any θ ∈ Θc.

(A3) The true link function g ∈ C(r)[a, b] for some r ≥ 5.

(A4) The number of interior knots N satisfies:

n1/{2(r−1)} � N � min{n1/7 log (n)−1/7, n1/3q−4/3
n log (n)−1/3}.

(A5) Let the values of θ0,1, θ0,2, · · · , θ0,qn be nonzero, θ0,qn+1, θ0,qn+2, · · · , θ0,pn be zero,

and qn = O(nα1) for some 0 < α1 < 1/4− 3/(8(r − 1)).

(A6) There exist positive constants α2 and M3 such that α1 < α2 < 1 and

n(1−α2)/2 min
j=1,...,qn

|θ0,j| ≥M3.

Remark 6. Assumptions (A2) and (A3) are typical in the nonparametric smoothing

literature; see for instance, [52] and [51]. Assumption (A1) is similar to Condition (A1)

and (A2) in [35]. Assumption (A4) specifies the requirement of the number of knots in

spline approximation. Assumptions (A5) and (A6) are in parallel with the requirements

stated in Conditions (A3) and (A4) in [35]. Note that the order of qn not only depends

on the sample size n, but also depends on the degree of smoothness r of the link function

g. If we assume that g is infinitely differentiable or smooth, i.e., g has infinitely many
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derivatives, then only α1 < 1/4 is required. If the link function is less smooth, the bound

is even tighter.

3.7.2 Preliminary Results

Before we prove the theorem, we first state the following lemma.

Lemma 3.1. If Assumptions (A2) and (A3) hold, one has that

sup
θ∈Θc

∥∥∥ĝ(k)
θ − g

(k)
θ

∥∥∥
∞

= OP

{
n−1/2N1/2+k(log n)1/2 +N−(r−k)

}
(3.7.1)

for any k = 0, . . . , r − 2.

Proof of Lemma 3.1 is similar to the proof of Proposition A.1 in [52], but replacing the

approximation rate of cubic spline smoothing by the more general polynomial spline

approximation results, and thus is omitted.

In the following, we define

Ŝ(θ) =
{
Ŝj(θ)

}pn
j=2

=

{
∂

∂θj
R̂(θ)

}pn
j=2

=

[
n−1

n∑
i=1

{ĝθ (Xθ,i)− Yi} ĝ′θ (Xθ,i) X̃ij(θ)

]pn
j=2

,

(3.7.2)

where R̂(θ) is given in (3.2.3), and

X̃ij(θ) = Xij − θjθ−1
1 Xi1, (3.7.3)
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for any 1 ≤ i ≤ n and 2 ≤ j ≤ pn. Next let

S̃(θ) =
{
S̃j(θ)

}pn
j=2

=

[
1

n

n∑
i=1

{gθ (Xθ,i)− Yi} g′θ (Xθ,i) X̃ij(θ)

]pn
j=2

. (3.7.4)

The following result provides the order of uniform difference between Ŝ(θ) and S̃(θ).

Lemma 3.2. Under Assumptions (A1)–(A4), one has

sup
θ∈Θc

max
2≤j≤pn

∣∣∣Ŝj(θ)− S̃j(θ)∣∣∣ = oP (n−1/2). (3.7.5)

Proof. By the definitions of Ŝj(θ) and S̃j(θ) in (3.7.2) and (3.7.4), one has for any

j = 2, 3, . . . , pn

Ŝj(θ) = S̃j(θ) +K1,θ,j +K2,θ,j +K3,θ,j,

where X̃ij(θ) is in (3.7.3) and

K1,θ,j = n−1

n∑
i=1

(ĝθ − gθ) (Xθ,i) (ĝ′θ − g′θ) (Xθ,i) X̃ij(θ),

K2,θ,j = n−1

n∑
i=1

{gθ (Xθ,i)− Yi} (ĝ′θ − g′θ) (Xθ,i) X̃ij(θ),

K3,θ,j = n−1

n∑
i=1

(ĝθ − gθ) (Xθ,i) g
′
θ (Xθ,i) X̃ij(θ).
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Using Lemma 3.1 and similar arguments in Lemma A.11 in the Supplement of [52], one

obtains the following:

sup
θ∈Θc

max
2≤j≤pn

|K1,θ,j| = OP

{
n−1N2 log n+N1−2r + n−1/2N3/2−r(log n)1/2

}
,

sup
θ∈Θc

max
2≤j≤pn

|K2,θ,j| = OP

{
N1−r + n−1N log n

}
,

sup
θ∈Θc

max
2≤j≤pn

|K3,θ,j| = OP

{
N−r + n−1 log n+ n−1/2N−1/2(log n)1/2

}
.

Therefore,

sup
θ∈Θc

max
2≤j≤pn

∣∣∣Ŝj(θ)− S̃j(θ)∣∣∣ = oP{N−(r−1) + n−1N2 log n+ (nN)−1/2(log n)1/2}.

Thus, (3.7.5) is established by Assumption (A4).

Let

Ĥ(θ) =
{
Ĥj,j′(θ)

}pn
j,j′=2

=

{
∂2

∂θj∂θj′
R̂(θ)

}pn
j,j′=2

(3.7.6)

be the Hessian matrix of R̂(θ), then

Ĥj,j′(θ) =
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ){ĝ′θ(XT
i θ)}2 (3.7.7)

+
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ)
{
ĝθ(X

T
i θ)− Yi

}
ĝ′′θ (XT

i θ)

− 1

n

n∑
i=1

Xi1

{
ĝθ(X

T
i θ)− Yi

}
ĝ′θ(X

T
i θ)δj,j′(θ)
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with X̃ij(θ) in (3.7.3) and

δj,j′(θ) = θ−3
1

{
(θ2
j + θ2

1)1(j=j′) + θjθj′1(j 6=j′)
}
. (3.7.8)

Substituting ĝθ and its derivatives by gθ and its corresponding derivatives, we define

H̃(θ) =
{
H̃j,j′(θ)

}pn
j,j′=2

, where

H̃j,j′(θ) =
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ){g′θ(XT
i θ)}2 (3.7.9)

+
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ)
{
gθ(X

T
i θ)− Yi

}
g′′θ (XT

i θ)

− 1

n

n∑
i=1

Xi1

{
gθ(X

T
i θ)− Yi

}
g′θ(X

T
i θ)δj,j′(θ).

Lemma 3.3. Under Assumptions (A1)–(A4), one has

sup
θ∈Θc

max
2≤j,j′≤pn

∣∣∣Ĥj,j′(θ)− H̃j,j′(θ)
∣∣∣ = oP (1). (3.7.10)
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Proof. Note that for any j, j′, we decompose the difference Ĥj,j′(θ)− H̃j,j′(θ) as follows:

Ĥj,j′(θ)− H̃j,j′(θ)

=
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ){(ĝ′θ(Xθ,i))
2 − (g′θ(Xθ,i))

2}

+
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ)[(ĝθ(Xθ,i)− Yi)ĝ′′θ (Xθ,i)− (gθ(Xθ,i)− Yi)(g′′θ (Xθ,i)]

− 1

n

n∑
i=1

Xi1 [{ĝθ(Xθ,i)− Yi}ĝ′θ(Xθ,i)− {gθ(Xθ,i)− Yi}g′θ(Xθ,i)] δj,j′(θ)

= A1,θ,jj′ + A2,θ,jj′ + A3,θ,jj′ , (3.7.11)

where δj,j′(θ) is given in (3.7.8), and

A1,θ,jj′ =
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ){(ĝ′θ − g′θ)(Xθ,i)}2

+
2

n

n∑
i=1

X̃ij(θ)X̃ij′(θ)(ĝ
′
θ − g′θ)(Xθ,i)g

′
θ(Xθ,i)

= A11,θ,jj′ + A12,θ,jj′ ,

A2,θ,jj′ =
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ)(ĝθ − gθ)(Xθ,i)(ĝ
′′
θ − g′′θ )(Xθ,i)

+
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ){gθ(Xθ,i)− Yi}(ĝ′′θ − g′′θ )(Xθ,i)

+
1

n

n∑
i=1

X̃ij(θ)X̃ij′(θ)(ĝθ − gθ)(Xθ,i)g
′′
θ (Xθ,i)

= A21,θ,jj′ + A22,θ,jj′ + A23,θ,jj′ ,
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and

A3,θ,jj′ =
1

n

n∑
i=1

Xi1(ĝθ − gθ)(Xθ,i)(ĝ
′
θ − g′θ)(Xθ,i)δj,j′(θ)

+
1

n

n∑
i=1

Xi1{gθ(Xθ,i)− Yi}(ĝ′θ − g′θ)(Xθ,i)δj,j′(θ)

+
1

n

n∑
i=1

Xi1(ĝθ − gθ)(Xθ,i)g
′
θ(Xθ,i)δj,j′(θ)

= A31,θ,jj′ + A32,θ,jj′ + A33,θ,jj′ .

Note that

(E|X̃ij(θ)|2)1/2 = (E|Xij − θjθ−1
1 Xi1|2)1/2 ≤ (E|Xij|2)1/2 + |θjθ−1

1 |(E|Xi1|2)1/2.

According to Assumptions (A1)–(A3), there exist positive constant c1, c2, and c3 such

that for any 2 ≤ j, j′ ≤ pn,

sup
θ∈Θc

E|X̃ij(θ)X̃ij′(θ)| ≤ {E|X̃ij(θ)|2E|X̃ij′(θ)|2}1/2 ≤ c1,

sup
θ∈Θc

E|X̃ij(θ)X̃ij′(θ)|4 ≤ {E|X̃ij(θ)|4E|X̃ij′(θ)|4}1/2 ≤ c2,

{E|gθ(Xθ,i)− Yi|2}1/2 ≤ {E|gθ(Xθ,i)− g(Xθ0,i)|2}1/2 + {E|εi|2}1/2 ≤ c3.

In addition, one has supθ∈Θc ‖g′θ‖∞ ≤ c4 and supθ∈Θc ‖g′′θ‖∞ ≤ c5 for some positive

constants c4 and c5.
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By Lemma 3.1, one has for J11,θ,jj′ and J12,θ,jj′ ,

sup
θ∈Θc

|A11,θ,jj′ | ≤ (c1 + oP (1)) sup
θ∈Θc

‖ĝ′θ − g′θ‖2
∞ = oP (1),

sup
θ∈Θc

|A12,θ,jj′| ≤ 2(c1 + oP (1))c4 sup
θ∈Θc

‖ĝ′θ − g′θ‖∞ = oP (1).

Therefore, supθ∈Θc |A1,θ,jj′| = oP (1). For A21,θ,jj′ and A23,θ,jj′ , one has

sup
θ∈Θc

|A21,θ,jj′ | ≤ (c1 + oP (1)) sup
θ∈Θc

‖ĝ′θ − g′θ‖∞ = oP (1),

sup
θ∈Θc

|A23,θ,jj′ | ≤ (c1 + oP (1))c5 sup
θ∈Θc

‖ĝθ − gθ‖∞ = oP (1).

For A22,θ,jj′ , one has

sup
θ∈Θc

|A22,θ,jj′| ≤ sup
θ∈Θc

‖ĝ′′θ − g′′θ‖∞ × sup
θ∈Θc

{
1

n

n∑
i=1

|X̃ij(θ)X̃ij(θ)|2
}1/2

× sup
θ∈Θc

{
1

n

n∑
i=1

|gθ(Xθ,i)− Yi|2
}1/2

≤ oP (1)× (c2 + oP (1))× (c3 + oP (1)) = oP (1).
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Therefore, supθ∈Θc |A2,θ,jj′ | = oP (1). Note that supθ∈Θc |λj,j′(θ)| < c6 for some positive

constant c6. Similarly, for A31,θ,jj′ , A32,θ,jj′ and A33,θ,jj′ , one has

sup
θ∈Θc

|A31,θ,jj′| ≤ (c1 + oP (1))c6 sup
θ∈Θc

‖ĝ′θ − g′θ‖∞ = oP (1),

sup
θ∈Θc

|A32,θ,jj′| ≤ sup
θ∈Θc

1

n

n∑
i=1

|Xi1{gθ(Xθ,i)− g(Xθ0,i)− εi}|

× sup
θ∈Θc

‖ĝ′′θ − g′′θ‖∞ × c6 = oP (1),

sup
θ∈Θc

|A33,θ,jj′ | ≤ (c1 + oP (1))c4 sup
θ∈Θc

‖ĝθ − gθ‖∞ = oP (1).

Hence supθ∈Θc |A3,θ,jj′ | = oP (1). The desired results follows from (3.7.11)

In the following for θ = (θ1, θ2, · · · , θpn)T , let θ∗ = (θ2, · · · , θpn)T be a (pn − 1)-

dimensional vector after removing the first component in θ. Similarly, we denote θ0,

θ̂
o∗

, θ∗0(1) and θ̂
o∗
(1) as their corresponding vectors but without the first element. Define a

Jacobian matrix of θ with respect to θ∗

J(θ∗) =

 J(1)(θ
∗)

J(2)(θ
∗)

 = −(1− ‖θ∗‖2)−1/2θ∗. (3.7.12)

Next let X = {Xij}n pn
i=1,j=1 and

X̃(θ) ≡
(
X̃i,j(θ)

)n, pn
i=1,j=2

= X

 JT (θ∗)

I(pn−1)

 , (3.7.13)

where X̃i,j(θ) are defined in (3.7.3). Let X̃ = X̃(θ0) =
(
X̃(1),X(2)

)
.
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Further we denote g = diag{gθ0(Xθ0,i), i = 1, . . . , n}, ġ = diag{g′θ0(Xθ0,i), i = 1, . . . , n},

g̈ = diag{g′′θ0(Xθ0,i), i = 1, . . . , n}, ε = (ε1, · · · , εn)T , and ε = diag(ε1, · · · , εn).

Substituting in the true parameter θ0 into (3.7.4) and (3.7.9), one has

S̃(θ0) =
{
S̃j(θ0)

}pn
j=2

=

 S̃(1)(θ0)

S̃(2)(θ0)

 =

 1
n
X̃T

(1)ġε

1
n
XT

(2)ġε

 , (3.7.14)

H̃(θ0) =
1

n

(
J(θ∗0), I(pn−1)

) {
XT (ġ2 + εg̈)X + (θ−1

0,11TεġX1)Ipn
}

(J(θ∗0), I(pn−1))
T

=
1

n
X̃T (ġ2 + εg̈)X̃ +

1

n

(
J(θ∗0), I(pn−1)

)
(θ−1

0,11TεġX1)Ipn(J(θ∗0), I(pn−1))
T .

Applying the Law of Large Numbers, one has

H̃(θ0) = H(θ0) + oP (1),

where

H(θ0) =
1

n
X̃T ġ2X̃ =

 H(1,1)(θ0) H(1,2)(θ0)

H(2,1)(θ0) H(2,2)(θ0)

 , (3.7.15)

with

H(1,1)(θ0) =
1

n
X̃T

(1)ġ
2X̃(1), H(1,2)(θ0) =

1

n
X̃T

(1)ġ
2X(2),

H(2,1)(θ0) =
1

n
XT

(2)ġ
2X̃(1), H(2,2)(θ0) =

1

n
XT

(2)ġ
2X(2).
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3.7.3 Asymptotic Properties of the Oracle Estimator

Note that function R(θ) depends only on θ∗, thus, we use R(θ∗) and R̂(θ∗) instead of

R(θ) and R̂(θ) in the following proof and define

Ro(θ∗(1)) =
1

2n

n∑
i=1

{Yi − g(XT
i(1)θ(1))}

2
,

and

R̂o(θ∗(1)) =
1

2n

n∑
i=1

{Yi − ĝθ(1)(X
T
i(1)θ(1))}

2
. (3.7.16)

Similarly, we can represent the score and Hessian matrices in (3.7.2) and (3.7.7) using

θ∗ as:

Ŝ(θ∗) =
{
Ŝj(θ

∗)
}pn
j=2

=

 Ŝ(1)(θ
∗)

Ŝ(2)(θ
∗)

 , Ĥ(θ∗) =

 Ĥ(1,1)(θ
∗) Ĥ(1,2)(θ

∗)

Ĥ(2,1)(θ
∗) Ĥ(2,2)(θ

∗)

 .

Lemma 3.4. If Conditions (A1)–(A5) are satisfied, then there is a local minimizer θ̂
o∗
(1)

of R̂o(θ∗(1)) such that ‖θ̂
o∗
(1) − θ∗0(1)‖ = OP{(n−1qnN

3 log n)1/2}.

Proof of Lemma 3.4. Let αn = q
1/2
n n−1/2N3/2 and set ‖u‖ = C, where C is a large

enough constant. To show the existence of such an oracle minimizer, it is equivalent to

prove that for any given ε there is a large constant C such that, for large n we have

P

{
inf
‖u‖=C

R̂o(θ∗0(1) + αnu) > R̂o(θ∗0(1))

}
≥ 1− ε.
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This implies that with probability tending to 1 there is an oracle minimizer θ̂
o∗
(1) in the

ball {θ∗0(1) + αnu : ‖u‖ ≤ C} such that ‖θ̂
o∗
(1) − θ∗0(1)‖ = OP (αn).

By Taylor’s expansion, we obtain

L (u) = R̂o(θ∗0(1) + αnu)− R̂o(θ∗0(1))

= αn

{
∂

∂θ∗(1)

R̂o(θ∗0(1))

}
u+

1

2
α2
nu

T

{
∂2

∂θ∗(1)∂θ
∗T
(1)

R̂o(θ∗0(1))

}
u

+
1

6
α3
n

∂

∂θ∗(1)

[
uT

{
∂2

∂θ∗(1)∂θ
∗T
(1)

R̂o(θ̄)

}
u

]
u

= αnŜ(1)(θ
∗
0)u+

1

2
α2
nu

T Ĥ(1,1)(θ
∗
0)u+

1

6
α3
n

∂

∂θ∗(1)

[
uT

{
∂2

∂θ∗(1)∂θ
∗T
(1)

R̂o(θ̄)

}
u

]
u

= L1 (u) + L2 (u) + L3 (u) ,

where the vector θ lies between θ∗0(1) and θ∗0(1) + αnu. Note that ∂
∂θ∗(1)

Ro(θ∗(1)) = 0 at

θ∗(1) = θ∗0(1), by Assumptions (A1)–(A4) and Lemma 3.1 we have

|L1| ≤ αn

∥∥∥∥∥ ∂

∂θ∗(1)

{
R̂o
(
θ∗0(1)

)
−Ro

(
θ∗0(1)

)}∥∥∥∥∥ ‖u‖
= αn ‖u‖ ×OP

{
(n−1qnN

3 log n)1/2 + q1/2
n N−r+1

}
= OP

(
α2
n

)
‖u‖ . (3.7.17)

Next, we consider L2,

L2 =
1

2
uT

{
∂2

∂θ∗(1)∂θ
∗T
(1)

R̂o(θ∗0(1))−
∂2

∂θ∗(1)∂θ
∗T
(1)

Ro(θ∗0(1))

}
uα2

n +
1

2
uT

{
∂2

∂θ∗(1)∂θ
∗T
(1)

Ro(θ∗0(1))

}
uα2

n

=
1

2
uT
{

Ĥ(1,1)(θ
∗
0)−H(1,1)(θ

∗
0)
}
uα2

n +
1

2
uTH(1,1)(θ

∗
0)uα2

n.
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According to Lemma 3.1 and Assumption (A4), we have

|L2| ≤
1

2
uTH(1,1)(θ

∗
0)uα2

n +O
{{

(n−1N5 log n)1/2 +N−r+2
}
qn
}
α2
n‖u‖2

=
1

2
uTH(1,1)(θ

∗
0)uα2

n + oP (1)× α2
n‖u‖2. (3.7.18)

By the Cauchy-Schwarz inequality, we have

L3 =
1

6
α3
n

∂

∂θ∗(1)

[
uT

{
∂2

∂θ∗(1)∂θ
∗T
(1)

R̂o(θ∗(1))

}
u

]
u

≤ 1

6
α3
n

∂

∂θ∗(1)

[
uT

∂2

∂θ∗(1)∂θ
∗T
(1)

{
R̂o(θ∗(1))−Ro(θ∗(1))

}
u

]
u

+
1

6
α3
n

∂

∂θ∗(1)

[
uT

{
∂2

∂θ∗(1)∂θ
∗T
(1)

Ro(θ∗(1))

}
u

]
u.

Using the result in Lemma 3.1 again, together with Assumption (A4), implies that

|L3| ≤ OP

(
q3/2
n αn

)
α2
n‖u‖3 +OP

{(
(n−1N7 log n)1/2 +N−r+3

)
q3/2
n αn

}
α2
n‖u‖3

= oP (1)× α2
n‖u‖2. (3.7.19)

By equations (3.7.17)-(3.7.19), when ‖u‖ is large enough, all terms L1 and L3 are dom-

inated by a positive term L2. Hence, Lemma 3.4 holds.
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3.7.4 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1. By the second-order sufficiency of the Karush-Kuhn-Tucker con-

dition in Bertsekas (1999), any θ satisfying

(C.1) Ŝj(θ
∗) = 0 and |θ∗j | ≥ aλ for j = 1, . . . , qn − 1,

(C.2) |Ŝj(θ∗)| ≤ λ and |θ∗j | < λ for j = qn, . . . , pn − 1,

is an element of A(λ). Thus, it suffices to show that the oracle estimator θ̂
o∗

= (θ̂
o∗T
(1) , 0

T )

defined in (3.3.1) satisfies (C.1) and (C.2) with λ = λn.

Now, we consider the first condition in (C.1). By (3.3.1), θ̂
∗o
(1) is the minimizer of

(3.7.16) over all θ(1) ∈ {(θ1, · · · , θqn)|
∑qn

j=1 θ
2
j = 1, θ1 > c}, which implies that Ŝoj (θ̂

o∗
) =

∂
∂θj
R̂o(θ∗(1)) = 0 for any j = 1, . . . , qn − 1. Denote that Ṗj = (I−Pθ) Ḃj

(
BT
θ Bθ

)−1
BT
θ ,

then, we have for any j = 1, . . . , qn − 1

Ŝj(θ̂
o∗

) = − 1

n

{
Y T Ṗθ̂

o
,jY − θ̂

o

j θ̂
o−1

1 Y T Ṗθ̂
o
,1Y
}

= Ŝoj (θ̂
o∗

) = 0.

As a result, the first condition in (C.1) holds.

For the second condition in (C.1), so it suffices to show that as n→∞,

Pr(|θ̂
o∗
j | ≥ aλn, for j = 1, . . . , qn − 1)→ 1.
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Note that |θ̂
o∗
j | ≥ |θ∗0,j|−|θ̂

o∗
j −θ∗0,j|. According to Assumption (A6), minj=1,...,qn−1 |θ∗0,j| =

o(n−(1−α2)/2) and λn = o(n−(1+α1−α2)/2), it suffices to show that

max
j=1,··· ,qn−1

|θ̂
o∗
j − θ∗0,j| = oP (n−(1−α2)/2). (3.7.20)

Let ξj =
√
n(θ̂

o∗
j − θ∗0,j), then it is equivalent to show that

max
j=1,...,qn−1

|ξj| = oP (nα2/2).

Let ξ = (ξ1, ξ2, · · · , ξqn−1)T , then ξ = −
√
nĤ−1

(1,1)(θ̄
∗
)Ŝ(1)(θ

∗
0), where θ̄

∗
= (θ̄

∗T
(1), 0

T )T and

θ̄
∗
(1) is between θ∗0(1) and θ̂

o∗
(1). By Lemmas 3.2 and 3.3,

ξ = −
√
nĤ−1

(1,1)(θ̄
∗
)
{
S̃(1)(θ0) + oP (n−1/2)

}
= −

√
n{H̃(1,1)(θ̄

∗
) + oP (1)}−1

{
S̃(1)(θ0) + o(n−1/2)

}
.

According to Lemma 3.4, ‖θ̂
o∗
(1) − θ∗0(1)‖ = OP{(n−1qnN

3 log n)1/2}. Let

Cθ∗ = {θ∗ = (θ∗T(1), 0
T )T : ‖θ∗(1) − θ∗0(1)‖ = O{(n−1qnN

3 log n)1/2}}.

Note that for any 1 ≤ j, j′ ≤ qn − 1,

sup
θ∗∈Cθ∗

|H̃j,j′(θ
∗)− H̃j,j′(θ

∗
0)| = oP (1),
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so H̃(1,1)(θ
∗) = H̃(1,1)(θ

∗
0) + oP (1). Thus,

ξ = −
√
n{H̃(1,1)(θ

∗
0) + oP (1)}−1

{
S̃(1)(θ

∗
0) + o(n−1/2)

}
= −

√
n{H(1,1)(θ

∗
0) + oP (1)}−1

{
S̃(1)(θ

∗
0) + o(n−1/2)

}
.

Using the notations in (3.7.14) and (3.7.15), one has

ξ = − 1√
n

(n−1X̃T
(1)ġ

2X̃(1))
−1X̃T

(1)ġε+ oP (1)

= DT
(1)ε+ oP (1),

where DT
(1) ≡ (D(1),1, · · · , D(1),qn−1)T = −

√
n(X̃T

(1)ġ
2X̃(1))

−1X̃T
(1)ġ. Note that

n−1DT
(1)D(1) = (X̃T

(1)ġ
2X̃(1))

−1X̃T
(1)ġ

2X̃(1)(X̃
T
(1)ġ

2X̃(1))
−1 = (X̃T

(1)ġ
2X̃(1))

−1.

By Assumption (A1), one has ‖D(1),j‖2
2 ≤ M−1

2 for all j = 1, . . . , qn − 1. Hence,

E{
√
nŜj(θ̂

o
)}2k < ∞ and E(ξj)

2k < ∞ for all j = 1, . . . , qn − 1 because E(εi)
2k < ∞.

Thus,

Pr(|ξj| > t) = O(t−2k). (3.7.21)
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Therefore, for any δ > 0, we can write

Pr
(
|ξj| > δnα2/2 for some j = 1, . . . , qn − 1

)
≤

qn−1∑
j=1

Pr(|ξj| > δnα2/2) ≤
qn−1∑
j=1

δ−1n−α2k

< δ−1qnn
−α2k ≤ δ−1n−(α2−α1)k → 0.

Hence, condition (C.1) holds for the oracle estimator.

We now proceed to show that the oracle estimator θ̂
o∗

also satisfies Condition (C.2). For

the second part of (C.2), by the definition of θ̂
o∗
j = 0 for j = qn, · · · , pn − 1, we have

|θ̂
o∗
j | ≤ λn.

For the first part, it suffices to show that

Pr
{
|Ŝj(θ̂

o∗
)| > λn for some j = qn, · · · , pn − 1

}
→ 0.

According to (3.7.20) and Assumptions (A4) and (A5), one has

√
n‖θ̂

o∗
(1) − θ∗0(1)‖2 = OP (n−1/2qnN

3 log n) = oP (1).
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In addition, by Lemma 3.2 and (3.7.4)

√
nŜ(2)(θ̂

o∗
) =
√
nS̃(2)(θ̂

o∗
) + oP (1)

=
1√
n

XT
(2)ġε−

[
1√
n

n∑
i=1

Xij

{
g′
θ̂
o(XT

i θ̂
o
)− g′(XT

i θ0)
}
εi

]pn
j=qn+1

+

[
1√
n

n∑
i=1

Xij

{
gθ̂o(X

T
i θ̂

o
)− g(XT

i θ0)
}{

g′
θ̂
o(XT

i θ̂
o
)− g′(XT

i θ0)
}]pn

j=qn+1

+

[
1√
n

n∑
i=1

Xij

{
gθ̂o(X

T
i θ̂

o
)− g(XT

i θ0)
}
g′(XT

i θ0)

]pn
j=qn+1

+ oP (1)

=
1√
n

XT
(2)ġε+

[
1√
n

n∑
i=1

Xij

{
gθ̂o(X

T
i θ̂

o
)− g(XT

i θ0)
}
g′(XT

i θ0)

]pn
j=qn+1

+ oP (1).

Note that

gθ̂o(X
T
i θ̂

o
)− g(XT

i θ0) = g′(XT
i θ0)XT

i(1)

(
J(1)(θ

∗
0), I(qn−1)

)T
(θ̂
o

(1) − θ0(1))

+
1

2
g′′θ̄ (XT

i θ̄)(θ̂
o

(1) − θ0(1))
T
(
J(1)(θ

∗
0), I(qn−1)

)
Xi(1)

×XT
i(1)

(
J(1)(θ

∗
0), I(qn−1)

)T
(θ̂
o

(1) − θ0(1))

for some θ̄ = (θ̄
T
(1), 0

T )T , where θ̄(1) is between θ̂
o

(1) and θ0(1). Thus,

1√
n

n∑
i=1

Xijg
′(XT

i θ0)
{
gθ̂o(X

T
i θ̂

o
)− g(XT

i θ0)
}

=
1√
n

n∑
i=1

Xij{g′(XT
i θ0)}2XT

i(1)

(
J(1)(θ

∗
0), I(qn−1)

)T
(θ̂
o

(1) − θ0(1)) + oP (1)
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Using similar arguments as in the proof of (C.1), one has

√
n(θ̂

o

(1) − θ0(1)) = −
√
nH−1

(1,1)(θ0)S̃(1)(θ0) + oP (1).

Thus,

1√
n

n∑
i=1

Xijg
′(XT

i θ0)
{
gθ̂o(X

T
i θ̂

o
)− g(XT

i θ0)
}

= − 1√
n

n∑
i=1

Xij{g′(XT
i θ0)}2XT

i(1)

(
J(1)(θ

∗
0), I(qn−1)

)T
H−1

(1,1)(θ0)S̃(1)(θ0) + oP (1).

Therefore, one has

√
nŜ(2)(θ̂

o
) =

1√
n

XT
(2)ġε−

[
1√
n

n∑
i=1

Xij{g′(XT
i θ0)}2XT

i(1)

(
J(1)(θ

∗
0), I(qn−1)

)T]pn
j=qn+1

×H−1
(1,1)(θ0)S̃(1)(θ0) + oP (1)

=
1√
n

XT
(2)ġε−

1√
n

XT
(2)ġ

2X̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġε+ oP (1)

=
1√
n

XT
(2)ġ

[
I− ġX̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġ

]
ε+ oP (1).

Next we write

Ŝj(θ̂
o
) = DT

(2),jε, for j = qn + 1, · · · , pn,

with DT
(2),j being the j-th column of DT

(2), where

DT
(2) =

1√
n

XT
(2)ġ

[
I− ġX̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġ

]
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Note that

DT
(2)D(2) =

1

n
XT

(2)ġ

[
I− ġX̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġ

]
×
[
I− ġX̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġ

]
ġX(2).

If we let W = ġX̃T
(1), it is trivial to see that all of the eigenvalues of ġX̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġ =

W(WTW)−1WT and I−ġX̃(1)

{
X̃T

(1)ġ
2X̃(1)

}−1

X̃T
(1)ġ = I−W(WTW)−1WT are either

0 or 1. Thus one has ‖D(2),j‖2
2 ≤M2 for all j = qn+1, · · · , pn. Hence, E{

√
nŜj(θ̂

o
)}2k <

∞ and

Pr(|
√
nŜj(θ̂

o
)| > t) = O(t−2k). (3.7.22)

Therefore,

Pr(|Ŝj(θ̂
o
)| > λn for some j = qn + 1, · · · , pn)

= Pr(|
√
nŜj(θ̂

o
)| >
√
nλn for some j = qn + 1, · · · , pn)

≤
pn∑
j=qn

Pr(|
√
nŜj(θ̂

o
)| >
√
nλn)

= (pn − qn)O{(
√
nλn)−2k} = O{pn(

√
nλn)−2k} → 0.

Thus, this completes the proof.

Proof of Theorem 3.2. For a Gaussian random variable Z with mean 0 and variance σ2,

we have

P (|Z| > t) <

√
2

π
exp

(
− t2

2σ2

)
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for t ≥ σ. Similar to [35], Theorem 3.2 can be simply proved by replacing the tail bounds

of (3.7.21) and (3.7.22) with the above exponential bounds.

Table 3.1: Selection results for Example 1

n pn METHOD TPN FPN C (%) RMSPE TIME (s)

100 1000

ORACLE 995.00 0.00 100.0 0.07 0.4
NIS-PSIM 994.36 0.00 82.0 0.08 119.5
SIS-SCAD 993.01 4.99 0.0 0.20 5.3
HD-SCAD 994.99 4.98 0.0 0.21 975.7

200 1000

ORACLE 995.00 0.00 100.0 0.06 0.9
NIS-PSIM 995.00 0.00 100.0 0.06 303.0
SIS-SCAD 994.00 4.00 0.0 0.19 4.2
HD-SCAD 995.00 3.91 0.0 0.21 3536.3

200 5000

ORACLE 4995.00 0.00 100.0 0.06 1.0
NIS-PSIM 4994.91 0.00 65.0 0.06 1837.3
SIS-SCAD 4992.97 5.00 0.0 0.18 250.2
HD-SCAD – – – – –
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Table 3.2: Estimation results for Example 1

Est. n pn
ORACLE NIS-PSIM

BIAS SD RMSE BIAS SD RMSE
θ1 -0.0014 0.009 0.009 -0.0265 0.111 0.114
θ2 -0.0126 0.009 0.015 -0.0200 0.110 0.110
θ3 100 1000 0.0092 0.008 0.012 -0.0136 0.117 0.118
θ4 -0.0057 0.009 0.011 -0.0211 0.101 0.105
θ5 0.0061 0.009 0.011 -0.0054 0.092 0.095
θ1 0.0001 0.006 0.006 -0.0024 0.006 0.006
θ2 -0.0007 0.006 0.006 0.0024 0.008 0.008
θ3 200 1000 0.0004 0.007 0.007 -0.0013 0.006 0.006
θ4 0.0003 0.006 0.006 0.0001 0.006 0.005
θ5 -0.0004 0.006 0.006 0.0009 0.006 0.005
θ1 -0.0004 0.006 0.006 -0.0312 0.016 0.035
θ2 -0.0001 0.006 0.006 -0.0138 0.014 0.019
θ3 200 5000 -0.0002 0.006 0.006 -0.0270 0.015 0.031
θ4 0.0005 0.006 0.006 -0.0379 0.016 0.041
θ5 -0.0003 0.006 0.006 -0.0281 0.015 0.032

Table 3.3: Performance results of 100 random partitions of the data

p
NIS-PSIM HD-SCAD SIS-SCAD

MS PE MS PE MS PE
3,000 11.22(.231) .393(.011) 15.70(.417) .471(.010) 2.00(.000) .423(.009)
18,976 11.28(.282) .396(.018) —∗ —∗ 2.00(.000) .615(.010)

∗ We don’t have results here because the computing time is more than 600 hours on a
PC with Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz and 8.00GB RAM.
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Chapter 4

Conclusion

In Chapter 2, we consider the model selection for high-dimensional single-index predic-

tion models for weakly dependent data. We apply the SCAD penalty and polynomial

spline basis function expansion to perform variable selection and estimation simultane-

ously. We provide new statistical theory in the framework of a slowly diverging number

of index parameters where the divergence rate is similar to that of parametric models

in [19]. The proposed method has the following advantages and properties: (1) un-

der regularity conditions, the proposed method is shown to have the “oracle” property

when the number of parameters tends to infinity as the sample size increases; (2) both

the variable selection and estimation are robust against deviations from the genuine

single-index models; (3) the implemented algorithm is fast and efficient because it takes

advantage of global spline smoothing as well as the iterative method; (4) our method is
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useful for selection of significant predictors not only for independent data but also for

weakly dependent time series data.

In Chapter 3, we have developed a fast and efficient variable selection process for ultra-

high dimensional single-index models. We also have proved the new theoretical result

for the oracle estimators of the single-index coefficients. The numerical results given

in Section 3.5 show that the proposed NIS-PSIM estimator is comparable to the oracle

estimator in terms of MPE. In addition, in this dissertation, we have considered not only

the situation where p is not very large, but also p � n under the sparsity assumption.

In the big data era, both the sample size and the dimensionality could be extremely

large. An important direction of future research is to develop a efficient way to analyze

such new “big data” sets.
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