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Abstract

In this paper, a reduced-form approach is adopted to price Adjustable Rate Mort-
gages subject to prepayment and default. The reduced-form approach to valuation
facilitates the utilization of real life data in asset pricing. A given ARM is priced
using the risk-neutral pricing principle, incorporating both default and prepayment
risks. In the process, the default and prepayment risks are assumed to be exogenous
and empirically estimated. The key feature of the model in this paper is the way the
default and prepayment risks are modelled. Going beyond the conventional way of
treating prepayment and default risks as deterministic, we assume a particular type
of stochastic data generating process which will better capture the dynamic nature
of the default and prepayment behaviors. Pricing of a given ARM proceeds in sev-
eral stages. At stage one, under a Cox proportional hazard framework, the effects
on prepayment and default risks of an individual borrower underlying a mortgage
are captured in a multiplicative way, while the baseline prepayment and default haz-
ards are allowed to be independent of the idiosyncrasies of the individual borrowers.
The effects of the individuals are thus estimated using observed histories on a large
number of comparable mortgages. At stage two, the baseline hazards are assumed to
come from stochastic data generating processes that can be modelled as CIR-type
diffusion processes. The diffusion processes are estimated using a particle filtering
technique in a state space framework where the underlying state variables can only
be observed indirectly through measurement equations. At stage three, after a two-
factor CIR model for the term structure of interest rate is assumed and estimated
using a particle filtering technique, we calibrate the default and prepayment hazard
processes so that the model would produce a price of a given mortgage that was
consistent with what was observed in the marketplace. Finally, we conduct tests on
the out-of-sample pricing performance and demonstrate the application of the model
in mortgage pricing strategy.

Index words: Asset Pricing, ARM, Mortgage, Reduced-Form Pricing,
Particle Filtering, Term Structure of Interest Rate
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Chapter 1

Introduction

Many financial obligations that are contractual in nature are exposed to default risk

when one party fails to honor a promise to another party. A residential mortgage is

an example of financial obligations that face default risk on the part of borrowers.

In this case, the borrower might, at some point of time into the contract, fail to

continue the payment as required by the mortgage contract.

Essentially, the default risk consists of default timing risk and default payoff

risk. The default timing refers to the probability of the default over the time interval

from the origination date to any given future date. Default payoff is the payoff to be

received in the event of default at any given future date.

There are generally two types of approaches to the valuation of financial instru-

ments subject to default risk. The first, termed “the structural approach” is based

upon the option-pricing theory developed by Black and Scholes [26] and was formal-

ized by Merton [149] and extended by Black and Cox [27] and Geske [95]. In this

framework, the underlying firm value process is modeled directly. A financial instru-

ment subject to default is valued as a contingent claim on the value of the underlying

firm. The default is triggered the first time the value of the underlying firm crosses

a default boundary. In one variant of this approach, the default boundary as well as

default payoff are determined endogenously.

Kau et al. [129, 131, 124] started out to apply the structural approach to price

residential mortgages subject to default risk. A lender, the holder of a mortgage,

1
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has a contingent claim on the value of a house subject to default on the part of

the borrower. The value of the mortgage is measured based upon two stochastic

processes: the value of a house and the short-term interest rate. Default occurs the

first time the value of the house falls below the value of the mortgage and the payoff

upon default is the difference between the house value and the unpaid mortgage

balance. Default in this framework is a predictable stopping time with respect to

the reference filtration that represents the information flow available. This means

that the random time of default is announced by an increasing sequence of stopping

times. Intuitively, given the value of the house is falling down and approaching a

threshold, the default is becoming more and more inevitable.

The advantage of the structural approach in general is intuitive: the model of an

underlying asset process has a very clear economic interpretation and the event of

default is defined clearly in terms of market fundamentals. In addition, the deriva-

tion of hedging strategies for defaultable claims is straightforward. However, this

approach is very difficult to implement in practice due to the un-observability of the

underlying asset process in general. In some cases, it may be inconvenient to obtain

information on the individual components of the firm’s balance sheet. In other cases,

it may be unrealistic to assume that default is equivalent to a situation in which

the market value of assets is reduced to or below that of liabilities. For example,

default may arise from illiquidity associated with credit restrictions or imperfect

information. In general, default could occur well before or after the time at which

the market value of assets falls below that of liabilities (Dufffie [73]). Furthermore,

as the resulting random time is predictable with respect to the underlying filtration,

it is the source of the observed discrepancy between the credit spreads for short

maturities predicted by structural models and the market data.

In the case of mortgage, houses usually are not so often traded in the market. As a

result, the parameters of the structural model can not be estimated accurately based
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upon sporadic transaction prices. In addition, the structural approach implicitly

assumes that the default is the result only of a financial optimization process and

that other non-financial factors do not play a role behind the default behaviors.

People derive more than functional utilities (i.e. the need to have a place to live)

from buying houses. While A deciding factor in most cases, financial consideration

alone does not make a whole picture here. The motivation behind default, therefore,

can not be fully explained by financial consideration only.

Unlike the structural approach, the “reduced form” approach treats default as an

exogenous, totally unpredictable surprise. The default timing is modeled as the first

jump time of an exogenously defined stochastic point process. The jump intensity,

which determines the default probability, can be allowed to depend on time and

state variables to reflect changes in economic environments (e.g. Lando [138, 139],

Madan and Unal [144]). The payoff upon default is also determined exogenously by

a recovery rate, which may be deterministic or stochastic (Das and Tufano [62]).

Choice of a specific treatment of recovery in the models often involves a trade-

off between computational burden and conceptual appeal. Under RMV (Recovery

of market value) assumption adopted by Duffie and Singleton [82], the recovery of

the contingent claim upon default is a fraction of pre-default market value of the

claim. Duffie and Singleton [82] then showed that the price of a defaultable claim

could be expressed as the present value of the promised payoff, treated as if it were

default-free, discounted by the default-adjusted short-term interest rate. The appeal

of this treatment, even though not so closely reflecting reality as other treatments,

is that once the risk-free discount rate is default-adjusted, the conventional term

structure models can be used to handle defaultable contingent claims as if they were

default-free. The RFV (Recovery of Face Value) assumption studied by Duffie [75]

stipulates that bonds of the same issuers, seniority, and face value will have the same
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recovery at default, regardless of remaining maturity. This assumption is a result of

a strict legal interpretation of recovery that is preferred by industry researchers.

In the case of mortgage, in this framework, the default on a mortgage can be the

result of either a financial optimization process or a non-financial decision process

while under the structural framework, only default that is related to a financial

optimization is considered and non-financial motivation is left unaccounted for. One

particular advantage is that the default frequency is easily observed over time, which

allows us to link the default to some underlying state variables that describe the

economic environment where the default occurs.

The objective of this dissertation is to price residential ARMs subject to both

default risk and prepayment risk utilizing observed historical data on default and

prepayment in a reduced-form framework.

The attributes of ARMs that have major influences on default and prepay-

ment behaviors are first identified through proportional hazard models. Then a

stochastic element is introduced into the specification of the baseline hazard func-

tion by treating each of stratum-based hazard functions as one random draw from

a stochastic data generating process. The two stochastic processes are estimated

independently assuming that they are following square-root mean-reverting diffu-

sion processes. The estimation of the processes is achieved using a particle filtering

scheme to address the issue of the nonlinear and non-normal nature of the underlying

distributions. A two-factor CIR model of term structure of interest rate is estimated

and serves as the data generating process upon which the coupon rate of an ARM

is built. Finally, calibration is made to estimate risk-adjustment factors needed to

convert two processes to risk-neutral processes.

The dissertation is organized as follows. Chapter 2 provides a brief review of

the existing literature about valuation of mortgage in general, with special focus

on the valuation of ARMs. Chapter 3 discusses the general theoretical foundation
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of risk-neutral pricing of mortgage subject to default and prepayment. Chapter 4

discusses the technical details about the estimation of a non-linear, non-normal diffu-

sion process using particle filtering method. In chapter 5, a Cox proportional hazard

model is employed to study factors that influence the termination of ARMs based

on observed historical data on default and prepayment. In Chapter 6 and 7, the

particle filtering scheme is applied to the estimation of stochastic processes for pre-

payment hazard rate, default hazard rate and the term structure of interest rates.

Chapter 8 deals with the calibration of prepayment and default hazard rate processes

using Monte Carlo simulation, so that the predicted values of a subset of ARMs are

consistent with the their corresponding observed values.



Chapter 2

Literature review on valuation of ARM

2.1 The Characteristics of ARMs

Adjustable rate mortgage gained popularity during 1980s, reaching dominant status

in 1984, accounting for two-thirds of all mortgages originated at the time. The basic

ARM contract has the following features:

• Index: The coupon rate changes at each reset date based on the underlying

index to which the rate is tied. Common indexes include one-year constant

maturity Treasury yield, one-year LIBOR, the federal Housing Finance Board

(FHFB) national average contract interest rate,11th District Federal Home

Loan Bank cost of funds (EDCOFI).

• Margin: points added to the reference indices to determine the coupon rate for

the next period.

• Coupon rate: on any adjustment date the rate is determined by adding a

margin plus the prevailing level of the underlying index, subject to certain

caps. It is usually constant and ranges typically from 100 to 300 basis points.

• Teaser rate: it is common for the initial coupon rate to be lower than the fully

indexed rate by a teaser rate.

• Annual interest rate cap or payment caps: the interest caps limit the rise (or

fall) in the contract rate on any adjustment date and are absolute in the sense

6
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that if market rates rise above the cap, the lost interest to the investor is not

recoverable. Typical interest rate caps are 1 or 2 percentage point above or

below the prior period’s coupon rate. Payment caps also directly limit the rise

in monthly payments, but the lost interest from a binding cap is usually recov-

erable through negative amortization. Typical payment caps are 7.5 percent

per year with negative amortization limited to 125 percent of the original loan

balance.

• Lifetime caps: the lifetime caps set the maximum level of interest rate an ARM

can ever reach during its lifetime and typically is 5 percentage points above

the initial contract rate.

• Reset frequency: the coupon rate on an ARM contract is adjusted at pre-

specified intervals, which usually are every 6 month or one year.

2.2 The Valuation of ARMs

2.2.1 Valuation principle

Several facts cause lots of difficulties in the valuation of an ARM. First of all, the

interest rate used to discount the future cash flows is uncertain. (This also applies

to fixed rate mortgage.) Secondly, the coupon payments that are tied up with the

prevailing interest rate at future time are also uncertain. The coupon rate changes on

each adjustment date according to the level of index interest rate at the time. (This

is unique to ARM only.) Lastly, the timing of payback of the mortgage is uncertain.

Few ARMs have ever been paid strictly according to the pre-determined schedule.

The borrower may at some point of time in the future refinance an ARM into a

FRM or another ARM; he may be forced to sell the house and use the proceeds to

pay back the mortgage and to satisfy the personal obligation; finally, he may pay
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more than pre-determined amount to speed up the time of paying down the debt. In

any event, the mortgage will likely be paid back prematurely by the borrower. The

uncertainty in timing of payments affects the value of the mortgage because of the

reinvestment risk on the fund paid back prematurely. When the mortgage is prepaid

when the interest rate is low, which usually is the case when the reason for the

pre-mature payback is refinancing, the lender will have to reinvest the fund at lower

rate than before. As a result, a static valuation model such as the discounted cash

flow model is not adequate in addressing various forms of uncertainties associated

with ARMs valuation.

The contingent claims model, developed by Black and Scholes [26] and Cox,

Ingersoll and Ross [57], provides the foundation for the valuation of mortgage under

uncertainty of the interest rate and timing of payments. Under contingent claims

framework, the value of a mortgage is the expected present value of all the future

cash flows with respect to all the possible interest rates and timings of payments.

Applications of contingent claims framework in the valuation of ARMs come in

different forms depending on the way the uncertainty of timing of the payments is

treated.

2.2.2 Types of models

Endogenous Pricing Model

The first type of pricing models assumes that the uncertainty in timing of payments

is due to prepayment behavior on the part of the borrower and that the prepayment

decision is made purely from financial standpoint, i.e. the borrower will make pre-

payment whenever he finds it financially optimal. Under this framework, prepayment

takes only two forms: one is refinancing, the other is default.
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1. Prepayment only - Kau et al. [128] consider the valuation of ARMs subject

to rational refinancing only. The type of ARMs considered floats off the one-

year default-free pure discount bond yield. In this context, all the uncertainties

are associated and determined by the uncertainty of the interest rate. Once

the evolution of the interest rate is specified, the valuation of an ARM in a

contingent claims framework is equivalent to solving a fundamental partial dif-

ferential equation subject to certain boundary conditions. Optimal refinancing

decision is determined on each payment date by comparing the mortgage bal-

ance to the value of the remaining payment stream which is dependent on the

path of future interest rates. The PDE is therefore has to be solved backward

starting on the next to the last payment date of the mortgage. Because the

coupon is dependent on the path of past interest rates and is not available

when the PDE is solved backwards, an auxiliary state variable is introduced

that holds the value for the coupon rate in the previous period, and the usual

backward algorithm can then be applied. Richard Stanton and Nancy Wal-

lace [179] consider the valuation of a particular ARM that is indexed to the

Eleventh District Cost of Funds (EDCOFI). The driving factor for uncertainty

is again the interest rate, which as done in Kau et al [128], evolves according a

square-root mean-reversion diffusion process. Because of special features asso-

ciated with the index, they model explicitly the relationship between the index

and the term structure of interest rate and point out the importance of lags

in the index in influencing the value of the ARM. The optimal prepayment

strategy is again endogenously determined.

2. Prepayment and default - By introducing another factor that governs the

uncertainty of the value of the house underlying the mortgage, Kau et al.

[129] are able to consider uncertainties due to both optimal refinancing and
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optimal default. Upon default, the lender will receive either payment from

mortgage insurance company if the mortgage is insured or proceeds from the

selling of the house. In any event, the consequence is similar to a refinancing.

The optimal default decision is made on each payment date by comparing the

value of the remaining payment stream to the value of the underlying house.

As a result, default occurs whenever the value of the underlying house is below

the value of the remaining payment stream.

Exogenous Pricing Model

All the endogenous pricing models of ARMs suffer on several fronts. First of all,

the predictions from those models are not consistent with the observed prepayment

and default frequencies: borrowers seem to refinance more slowly and default more

scarcely than predicted (Quigley and Van Order [162]). One possible explanation

is the costs associated with refinancing and default. While some of those costs are

quantifiable, such as transactions costs relevant to the refinancing and default, other

costs are more intangible, such as loss of reputation and deterioration of credit status,

emotional attachment to the house etc, and thus are more difficult to quantify.

Secondly, empirical implementation of the endogenous pricing model requires

the data about the value of the underlying house when default is to be considered.

However, given illiquidity of the housing market, it is nearly impossible for one to

observe a series of values associated with one particular house over time. Therefore,

endogenous pricing models have serious limitations in real applications.

Second type of pricing models is developed based on the recognition that people

are not ruthless in their decision regarding the prepayment. On one hand, they may

prepay the mortgages for reasons other than financial considerations even at times

when it is not financially optimal to do so, such as relocation due to job changes,

divorce etc. On the other hand, they may be reluctant to default even when it
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is financially optimal to do so because of personal attachment to the house, and

concerns about reputation, credit status etc. Instead of considering the prepayment

endogenously, this type of models treats prepayment exogenously.

This type of models assumes that at each point in time during the mortgage

contract period, the mortgage has a certain probability of termination, conditional

on the survival of the mortgage. It incorporates a set of time-varying covariates that

are deemed to have influences on the mortgage prepayment and default behaviors

that would be considered suboptimal under a pure contingent claim framework.

1. Prepayment only - Jonathan Berk and Richard Roll [19] model the interest rate

as a lognormal random walk and specify the prepayment function empirically.

Mcconnell and Singh [148] estimate a prepayment function empirically for

Freddie Mac ARM-based securities and then incorporate it into a two-factor

model of term structure of interest rate to develop an ARM-backed securities

valuation model.

2. Prepayment and default - So far no study has incorporated both prepayment

and default in the valuation of ARMs. However, lots of studies exist of pre-

payment and default for fixed rate mortgages. Kau et al.([132]) treat both

prepayment and default exogenously for FRMs in a reduced form framework

for valuation of mortgages. Deng [65] adopts a competing risk approach in the

studying the termination of FRMs.



Chapter 3

Risk-neutral pricing of an ARM subject to prepayment and default

3.1 The General Set-up

Consider the pricing of ARM subject to prepayment and default risk. The termina-

tion time of an ARM is not known beforehand and is often conveniently modeled

as a stopping time τ . When an ARM is facing both prepayment and default risk,

the termination time is either the prepayment time or default time. Assume that

the prepayment time and default time are modeled as two stopping times, τp and

τd, then τ = min(τp, τd)

The stopping time can be characterized by their corresponding intensities of

arrivals. In a reduced-form framework, the prepayment and default intensities

are assumed to be driven by exogenously-determined stochastic baseline intensity

processes and the realized prepayment and default hazards are the function of the

baseline intensities. Various specifications can be used in principle. However, in this

paper, we have adopted a variant of the square-root mean-reverting processes for

prepayment and default to ensure non-negativity of the baseline intensities.

dλp0 = κp[θpt − λp0]dt+ σp
√
λp0dz

p (3.1)

dλd0 = κd[θdt − λd0]dt+ σd
√
λd0dz

d (3.2)

λp = eβpX
′
p(t)λp0 (3.3)

λd = eβdX
′
d(t)λd0 (3.4)

12
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where dzp and dzd are assumed to be independent and the θt is time-varying

function representing the long term mean-reverting level. The X ′(t)s represent the

vector of exogenous variables that are assumed to have an impact on the termination,

and β′s are the corresponding coefficients. One important assumption here is that the

exogenous variables are assumed to influence the hazard in a multiplicative manner.

While the baseline intensities are evolving in continuous time, the actual pre-

payment and default will only occur at the payment dates. Therefore, the intensity

processes here are interpreted as aggregated hazard processes Λ(t) =
∑

ti≤t(1− λi)
The processes above are regulated by a real probability measure. To obtain a

risk-neutral price of an ARM, the processes have to be represented in a risk-neutral

probability measure. Assuming that the necessary conditions for the existence of

such risk-neutral probability measure are satisfied and that the risk adjustments

have the following specifications, we have:

dzQ = dzR − υtdt (3.5)

dΛQ = µtdΛR (3.6)

where dzR refers the real probability measure and dzQ refers the equivalent martin-

gale measure.

We have made further assumptions in this paper to ensure the tractability of the

model. Specifically, we assume that the additive risk adjustment has the following

particular form:

υt = υ
√
λ0(t)/σ (3.7)

µt = µ (3.8)

Under such specifications, the affine structure of the processes will be preserved

in the risk-neutral measure.
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3.2 The Valuation Formula

As mentioned above, the termination of an ARM can be characterized by a stopping

time τ = min(τp, τd). The associated risk-neutral hazard process is defined as

Λ(t) = Λp(t) + Λd(t) =
∑
ti≤t

(λpi + λdi ) (3.9)

According to the risk-neutral pricing principle, the arbitrage-free price of an

ARM subject to prepayment and default risk is an expected all discounted future

cash-flows with respect to the risk-neutral probability measure. Mathematically, the

arbitrage-free value of an ARM can be determined by the following formula:

V (t0) = EQ[
360∑
i=1

P(τ > ti−1)PV (ti)] (3.10)

P(τ > ti−1) =
i−1∏
j=1

(1− λpj − λpj) (3.11)

PV (ti) = e
R ti
t0
r̂(s)dsCF (ti) (3.12)

r̂(s) = (1− τF )r(s) + l (3.13)

CF (ti) = P(τ = τd)W (ti) + P(τ = τp)A(ti) + P(τ > ti)M (3.14)

where CF (ti) is the cash-flow at time ti, PV (ti) is the present value of the cash-flow

at time ti, and τF and l are the federal tax rate and liquid premium respectively.

Conditional on an ARM surviving past time ti−1, the cash-flow at time ti is one of

three payments: the scheduled monthly payment, M ; the payment due to prepay-

ment, A(ti); or the payment due to default, W (ti). The probability of prepayment,

default and continuation are P(τ = τp), P(τ = τd), and P(τ > ti), respectively.
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The instantaneous interest rate is adjusted to account for two factors before it

is used in the discounting process. The first factor is that the interest portion of

the scheduled payment is tax-deductable at federal level; the second factor is the

liquidity premium associated with an ARM.

The specifications for the stochastic processes and the valuation formula dis-

cussed here are the theoretical foundation for the empirical study that is covered in

the following chapters.



Chapter 4

Estimation of diffusion processes using particle filters

Stochastic differential equations (SDE) have been widely recognized as a very pow-

erful method to model the dynamics of economic and financial variables, such as

interest rates, stock prices etc. In many applications, the stochastic differential equa-

tions are preferred due to the tractability they offer. However, the actual data are

usually observed discretely, either yearly, monthly or daily. As a result, the estima-

tion of the parameters of the SDE can be quite a challenge in many settings where

a closed-form solution to the SDE is not available. Naive discretization of diffusion

processes can be subject to discretization bias.

A number of methods have been proposed to estimate diffusion parameters. One

approach is quasi-maximum likelihood or moment-based estimators based on a Euler

discretization of the process [42]. An alternative strategy relies on various forms of

approximations to the likelihood function [177, 22, 7]. A third approach is nonpara-

metric methods as proposed by Ait-Sahalia, Y. [5, 6], Jiang [118] and Stanton [178].

For any parametric model, maximum likelihood is the method of choice because

of its superior statistical properties compared to others methods. However, the exact

likelihood is usually not available in the continuous-time diffusion setting and certain

forms of approximations are often used in the applications. When the variables of

interest can be observed directly at certain frequency, simulated-based approach [74,

94] can be quite useful because it is applicable to quite general diffusion processes.

In many applications, however, the variables of interest are driven by some latent

16
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variables which are not directly accessible. This is the case when a two-factor interest

rate model has to be constructed. What we can observe in each month are series of

yields on Treasury bill with different maturities. The underling factors can only be

inferred but not directly observable.

In general, in a class of state space models, there is a state equation that governs

the transition of the underlying state variables over time and there is a measurement

equation that links the observed variables to the underlying state variables. The

estimation of the parameters for a state space model when the transition equation

is a continuous-time diffusion equation thus has to consider both the discretization

bias and the hidden variable problem. In order to make the estimation feasible in

actual applications, we have to also consider the computational time needed for

the implementation of the program. In this chapter, a particle filtering technique is

adopted in the estimation of the parameters for a general continuous-time diffusion

equation with unobserved variables. The following material is based on Michael. K.

Pitt [157], Neil Gordon etc [101].

4.1 Likelihood evaluation for state space models

In a state space model, the evolution of the hidden variables is specified via a state

(transition) equation

xt = g(xt−1, vt−1|θ1), (4.1)

where g : Rnx×Rnv → Rnx is a possibly non-linear function of the state xt−1,{vt−1, t ∈
N} is an i.i.d process noise sequence, Nx, Nv are dimensions of the state and process

noise vectors, respectively, and the θ1 is the parameter vector. The observed variables

are related to the hidden variables via an observation (measurement) equation

yt = f(xt, wt|θ2), (4.2)
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where f : RNx × RNw → RNy is a possibly non-linear function of the state xt,

{wt, t ∈ N} is an i.i.d measurement noise sequence, and nx, nw are dimensions of

the measurement and measurement noise vectors, respectively. Note that θ2 is the

parameter vector.

Let θ = (θ1, θ2) be the fixed parameter vector and assume that the transition

pdf is available and the observation equation can be evaluated explicitly. Given a

time series {yt, t = 1, . . . , n}, the usual maximum likelihood estimation calls for an

evaluation of the following log-likelihood

logL(θ) = logf(y1, . . . , yn|θ)

=
n∑
i=1

logf(yt|θ;Ft−1), (4.3)

where Ft = {y1, . . . , yt} are information streams up to time t and f(yt|θ;Ft−1) is the

transition pdf. Conceptually, this likelihood can be evaluated using the following:

f(yt|Ft−1) =

∫
f(yt|xt)f(xt|Ft−1)dxt. (4.4)

It is clear that the above evaluation hinges on the tractability of the pdf f(xt|Ft−1).

Suppose that the pdf f(xt−1|Ft−1) is available at time t. Then in theory, f(xt|θ;Ft−1)

can be evaluated recursively using the following set of equations based on the appli-

cation of the Chapman-Kolmogorov theorem and Bayes’ rule,

f(xt|θ;Ft−1) =

∫
f(xt|xt−1)f(xt−1|Ft−1)dxt−1 (4.5)

f(xt|θ;Ft) =
f(yt|xt)f(xt|Ft−1)

f(yt|Ft−1)
. (4.6)

Using (4.5) and (4.6) recurrently, we will be able to evaluate the likelihood function

(4.3) for the whole time series. The problem is that in most of cases, (4.5) and (4.6)

are not tractable. That is, they can not be determined analytically. Therefore, the

feasibility of evaluating the likelihood depends on our ability to approximate the

posterior pdf f(xt|θ;Ft) for any time t.
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4.2 Particle filtering algorithms

In several special cases where the transition equation and the measurement equation

have special forms that are conducive to an analytic solution, there exits an optimal

algorithm that will provide the best estimate of the likelihood using the (4.5) and

(4.6). For example, under the following conditions:

• vt−1 and wt have Gaussian distributions

• g(xt−1, vt−1) is known and is a linear function of xt−1 and vt−1

• f(xt, wt) is known and is a linear function of xt and wt

the Kalman filter has been proved to provide the optimal solution to the problem

of estimating the posterior distribution of f(xt|Ft). If the state space is discrete and

consists of a finite number of states, then grid-based methods has been shown to

provide the optimal recursion of the filtered density, f(xt|Ft).
When those conditions do not hold, approximations are necessary. Three

approaches have been developed along this line. The basic idea underlying the

extended Kalman filter is to approximate a non-linear function using local lineariza-

tion technique and to apply the usual Kalman filter to the linearized version of the

system. Approximate grid-based methods rely on the decomposing a continuous

state space into N ’cells’, {xik : i = 1, . . . , N} and then apply the grid-based method

as usual. Instead of approximating the transition function or decomposing the state

space, particle filtering methods attempt to represent the posterior density function

by a set of random samples with associated weights and to compute estimates based

these samples and weights. When the number of samples gets larger, this random

sample representation of the distribution will become equivalent to usual functional

representation of the same distribution. As a result, any computation involving the

pdf can be equivalently done using the random samples.
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4.2.1 The foundation of particle filtering technique

Assume the distribution density p(x) from which we want to sample is not directly

accessible. However, if p(x) ∼ π(x) and π(x) can be evaluated, then sampling from

p(x) can be accomplished via the following two steps. First, draw a sample xi from

an alternative proposal density q(x) for which it is easy to draw a sample and then

attach a weight to xi using the following formula.

wi ∝ π(xi)

q(xi)
(4.7)

Now, the density p(x) can be approximated by

p(x) ≈
N∑
i=1

wiδ(x− xi) (4.8)

This is the principle of importance sampling.

Let {xi0:t, w
i
t}Ni=1 denote a random measure that characterizes a pdf p(x0:t), where

{xi0:t, i = 0, . . . , N} is a set of supporting points with associated masses {wit, i =

1, . . . , N} and x0:t = {xj, j = 0, . . . , t} is the set of all states up to time t. The masses

are normalized such that
∑

iw
i
t = 1. Then, applying the principle of importance

sampling, the density at time t can be approximated as

p(x0:t) ≈
N∑
i=1

witδ(x0:t − xi0:t) (4.9)

where the weights are determined using the following:

wit ∝
p(xi0:t)

q(xi0:t)
(4.10)

and xi0:t ∼ q(x), are random samples from the density that is easy to draw from.

If q(xt|x0:t−1, y1:t) = q(xt|xt−1, yt), then the importance density depends only on

xt−1 and yt. Then, the weight simplifies to

wit ∝ wit−1

p(yt|xit)p(xit|xit−1)

q(xit|xit−1, yt)
(4.11)
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and the posterior filtered density p(xt|y1:t) can be approximated as

p(xt|y1:t) ≈
N∑
i=1

witδ(xt − xit) (4.12)

The SIS algorithm consists of recursive propagation of the weights and mass

points as each observation is made sequentially. The algorithm is described in the

following pseudo-code:

Algorithm 1: Sequential Importance Sampling

• For i = 1, N

– Draw xit ∼ q(xt|xit−1, yt)

– Attach a weight to xit according to (4.11)

• End for

In actual applications, however, the SIS algorithm suffers from so-called degen-

eracy phenomenon where after a few iterations, all but one mass point will have

negligible weight. It has been shown this problem is impossible to avoid. One mea-

surement of the severity of the problem can be obtained by

Neff =
1∑N

i=1(wit)
2

(4.13)

where wit is the normalized weight obtained by (4.11). Small Neff indicates severe

degeneracy.

One method proposed to reduce the degeneracy problem is to use re-sampling

whenever a significant degeneracy is observed, as measured by (4.13). A common

criteria is to use re-sample when Neff < N/3, where N is the sample size. Re-

sampling eliminates mass points that have small weights and concentrates on mass

points with large weights. It works by drawing N samples with replacement at the
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probability of Pr(xit
∗

= x
j
t) = wjt . The algorithm is described in the flowing pseudo-

code:

Algorithm 2: Re-sampling

• initialize the CDF: c1 = 0

• For i = 2, N

– Construct CDF: ci = ci−1 + wit

• End for

• Start at the bottom of the CDF: i = 1

• Draw a starting point: u1 ∼ U[0, N−1]

• For j=1,N

– Move along the CDF: uj = u1 +N−1(j − 1)

– Where uj > ci

∗ i = i+ 1

– End where

– Assign sample: xjt
∗

= xit

– Assign weight: wjt = N−1

• End for

Incorporating the re-sampling technique into the sequential importance sampling

produces the following generic particle filter algorithm:

Algorithm 3: Generic Particle Filter

• For i = 1, N
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– Draw xit ∼ q(xt|xit−1, yt)

– Assign a weight, wit, according to (4.11)

• End for

• Calculate the total weights: w sum = SUM[{wit}Ni=1]

• Normalize weights:wit = wit/w sum

• Determine the degeneracy according to (4.13)

• If Neff < NT

– Re-sample using algorithm 2:

∗ [{xit∗, wit}Ni=1]=Resample[{xit, wit}Ni=1]

• End if

While the re-sampling technique helps to reduce the degeneracy problem, there

are several implications of its use in evaluating likelihood. First, as the re-sample

process relies on sampling with replacement, the points with large weights will be

sampled more often than points with smaller weights. As a result, the i.i.d sam-

ples from the discrete approximation to the continuous pdf contains many repeated

points and diversity of points is lost. This problem which is known as sample impov-

erishment, is particularly serious in the case of very small noise where all points will

collapse to a single point within a few iterations. Second, the gradient-based max-

imum likelihood will no longer be possible as the estimated likelihood will be very

rough and the estimated gradient will bear no resemblance to the true gradient.
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4.2.2 Efficient and smooth likelihood estimation

Given samples from a filtering density at time t, according to (4.4), the likelihood

can be estimated as

f̂(yt|θ;Ft−1) =

∫
f(yt|xt)

{
1

N

N∑
i=1

f(xt|xit−1)

}
dxt (4.14)

The above evaluation still involves an integral that in general can not be evalu-

ated directly. However, the filtering method we discussed previously provides a good

foundation for estimating the integral.

Theorem 4.2.1 Let the importance density be q(xt) = f(xt|xt−1) and assume

{xt}Ni=1 ∼ q(xt), {wit}Ni=1 are determined according to (4.11).

Then the (4.14) can be approximated using the following:

f̂(yt|θ;Ft−1) =
1

N

N∑
i=1

wit (4.15)

The estimation of the likelihood by (4.15) is, however, not necessarily continuous

with respect to the parameter vector θ. The problem lies in the discrete represen-

tation of pdf f(xt|Ft) by the probabilities wit proportional to f(yt|xit). This will

make the application of the usual gradient-based maximization routine problematic.

One technique that will mitigate the magnitude of the roughness is to use the same

random seed for each set of parameters. That is, we will use the same random number

sequences to evaluate the likelihood under different values of the parameters θ. This

will reduce the variance resulting from using different random number sequences.

To ensure the likelihood function continuous w.r.t. to the parameters, the samples

from f(xt|Ft) also are required to be smooth as a function of the parameters θ.

The basic idea is that instead of sampling from the discrete representation of the

distribution, we draw samples from the continuous version of the distribution. The

problem then boils down to how to make a continuous version of distribution out of

a given discrete representation of a distribution.
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Case 1: State variables of one dimension

For state variables with one dimension, Michael, K. Pitt [157] proposed a piecewise

linear smoothing scheme. Suppose {xi, πi}Ni=1 is the discrete representation of a dis-

tribution of a random variable and {xi}Ni=1 is sorted in ascending order. Define a

region Si where the associated probability Pi follows:

Si = [xi, xi+1], i = 1, . . . , N − 1 (4.16)

Pi =





1
2
(πi + πi+1), i = 2, . . . , N − 2

1
2
(2π1 + π2), i = 1

1
2
(πN−1 + 2πN), i = N − 1

(4.17)

Within each region Si, the conditional densities G(x|i) are defined as follows:

G(x|i) =





1
xi+1−xi , x ∈ Si, i = 2, . . . , N − 2

π1

2π1+π2
, x = x1

( 1
x2−x1 ) π1+π2

2π1+π2
, x ∈ S1

πN
πN−1+2πN

, x = xN

( 1
xN−xN−1 ) πN−1+πN

πN−1+2πN
, x ∈ SN−1

(4.18)

Denoting the continuous cdf by F̃ (x), the discrete cdf by F̂ (x) and the true cdf by

F (x) , it can be proved that as N →∞, F̃ (x)→ F̂ (x)→ F (x) (Smith and Gelfand

[176])

To draw samples from the continuous version of the cdf, first we generate N

samples of ordered uniform via the following:

u ∼ U[0, 1], uniform distribution (4.19)

uj =
j − 1

N
+
u

N
, where j = 1, . . . , N (4.20)
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Given the sorted uniform samples, the ordered samples from the continuous version

of the cdf can be obtained through the following algorithm.

Algorithm 4: Smooth Re-sampling in the univariate case

• Set s = 0, j = 1

• For i = 1, N − 1

– s = s+ Pi

– While (uj ≤ s and j ≤ N)

∗ rj=i;

∗ u∗j = (uj − (s− Pi))/Pi
∗ j = j + 1

– End while

• End for

• For j = 1, N

– yj = (xrj+1 − xrj)× u∗j + xrj for rj = 2, . . . , N − 2

– Invert the cdf, for rj = 1 and rj = N − 1

• End for

Case 2: State variables of two dimensions

For state variables with two dimensions, a multivariate kernel smoothing technique

as discussed in [175] can be employed to get a continuous pdf. The discussions below

are based on Smith [176].
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Let K be a probability density function on Rn. Then the two-dimension kernel

density estimator is defined as

f̂(X) =
1

nh2

n∑
i=1

K

{
1

h
(X −Xi)

}
(4.21)

Common choices of kernel functions include the standard multivariate normal density

function

K(X) = (2π)d/2exp(−1

2
XTX) (4.22)

and the multivariate Epanechnikov kernel

Ke(X) =





1
2
c−1
d (d+ 2)(1−XTX), if XTX < 1

0, otherwise

(4.23)

where d is the dimension of the X and cd is the volume of the unit d-dimensional

sphere: c1 = 2, c2 = π, c3 = 4π/3.

The key to successful kernel smoothing of an empirical density is the choice

of window width h. In general, the bias of the density estimation depends on the

window width h: a larger h will reduce the random variance at the expense of intro-

ducing large bias into the estimation. That is, it over-smooths the density. A smaller

h, on the other hand, will result in larger integrated variance and the density will be

less smooth. The optimal window width is the one that will minimize the approx-

imate mean integrated square error. If the distribution underlying the samples is

a standard one, then there is a closed-form formula for the determination of the

optimal window width. For example, the optimal window width for the smoothing

of normally distributed data with unit variance is given by

hopt = A(K)n−1/(d+4) (4.24)

with the constant

A(K) =

[
dβα−2

{∫
(∇2φ)2

}−1]1/(d+4)

(4.25)
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and

α =

∫
t2K(t)dt; β =

∫
K(t)2dt

In cases of two dimensions, where d = 2, the values of A(K) are given as follows:

A(K) =





0.96 for 2-dimension normal kernel

1.77 for 2-dimesion Epanechnikov kernel

(4.26)

In the general cases where the underlying densities are unknown, we approximate

the densities using the above optimal window width, assuming either Gaussian or

Epanechnikov kernel. As sampling from a Gaussian is usually less time-consuming, in

the later applications, we will use a Gaussian kernel with a covariance matrix equal

to the empirical covariance matrix of the samples. To accommodate the possible

multi-modal densities, the actual window width is chosen to be h = hopt/2.

Sampling from a kernel-smoothed density can proceed as follows:

Algorithm 5: Smooth Re-sampling in the bivariate case

• Calculate the empirical covariance matrix S

• Compute D such that DDT = S

• Re-sample using algorithm 2:

– [{xi∗, wi}Ni=1]=Resample[{xi, wi}Ni=1]

• For j = 1, N

– Draw εj ∼ K, where K is the kernel density

– x∗∗j = xj + hoptD εj

• End for
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4.3 Estimation of discretely sampled diffusion processes using par-

ticle filtering

The application of the particle filtering technique in evaluating a likelihood has two

requirements: First, we should be able to sample from a transition density. Secondly,

we should be able to evaluate the likelihood of having the actual observations.

In most cases, the diffusion processes to be estimated do not have closed-form

transition densities. Instead, we have to rely on certain discretization scheme to

approximate the transition density. The common discretization scheme is the Euler

scheme, which gives the first order approximation to the underlying stochastic differ-

ential equations. Higher order approximations are also available with increased com-

plexities. In the following two applications, we have chosen to use the Euler scheme

for its easy implementation without much loss in the precision of the approximation.

The first case is a typical example of state-space models with a diffusion state

process where the observation is taken under the influence of measurement errors.

The second case is special in that the observation is the result of a random draw from

a distribution of a random variable. The measurement errors are indirectly reflected

in the randomness of the underlying random variable itself.

Case 1: A two-factor CIR term structure model of the interest rate

Under a two-factor CIR model, the instantaneous interest rate is assumed to be

determined by two unobserved independent factors, each evolving according to a

diffusion process:

rt = x1
t + x2

t (4.27)

dx1
t = κ1(θ1 − x1

t )dt+ σ1

√
x1
tdw

1
t (4.28)

dx2
t = κ2(θ2 − x2

t )dt+ σ2

√
x2
tdw

2
t (4.29)
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The above stochastic differential equations have closed-form transition densities:

p(xit, t;x
i
s, s) = cie

−ui−vi(viui)qi/2Iq(2
√
uivi), i = 1, 2. (4.30)

where ∆ = t − s > 0, ci = 2κi/[σ
2
i (1 − e−κi∆)], ui = cix

i
se
−κi∆, vi = cix

i
t, qi =

2κiθi/σ
2
i − 1, and Iq(.) is the modified Bessel function of the first kind of order q.

Let yit = 2cix
i
t, then yt|ys is distributed in a noncentral chi-squared manner with

4κiθi/σ
2
i degrees of freedom and noncentrality parameter yise

−κi∆. To draw samples

from these transition densities, two methods as mentioned in Chen and Scott [45]

can be used.

The first method is based on the following property of the distribution:

χ̂2
v(δ) = χ̂2

1(δ) + χ2
v−1

χ̂2
1(δ) = (Z +

√
δ)2

where χ̂2
v(δ) is a noncentral χ2 distribution with v degrees of freedom and noncen-

trality parameter δ, χ2
v−1 is a central χ2 distribution with v − 1 degree of freedom,

and Z is a standard normal. The samples from the distribution can then be drawn

by letting v = 4κiθi/σ
2
i and δ = 2cix

i
se
−κ∆. This method cannot be used when the

degrees of freedom is less than one.

The second method is based on the observation that the non-central χ2 dis-

tribution can be expressed as a mixture of central χ2 distribution with degrees of

freedom proportional to random variates from a Poisson distribution. Specifically,

to draw a sample from the distribution, we first draw j from a Poisson distribution

with mean µ = cix
i
se
−κi∆ and calculate the degrees of freedom of the central χ2 as

df = 2qi + 2 + 2j. Then draw a sample from the central χ2 distribution with df

degrees of freedom. This method can be used even when the degrees of freedom is

less than one.

The specification of the underlying factors yields a closed-form pricing formula for

a pure discount bond. At each point of time t, a series of yields {yit}4
i=1 with different
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maturities are observed and they are assumed to deviate from the theoretical yields

by some observation errors.

yit = − 1

τi
log[P i

t (x
1
t , x

2
t , τi)] + εi, i = 1, . . . , 4 (4.31)

where P i
t is the price of a pure discount bond with maturity {τi} = {3/12, 6/12, 5, 10}

at time t and is given by the following formulae:

Pt = A1(t, τ)A2(t, τ)e−B1(t,τ)x1
t−B2(t,τ)x2

t

Ai(t, τ) =

[
2γie

1
2

(κi+λi−γi)τ

2γie−γiτ + (κi + λi + γi)(1− e−γiτ )
]2κiθi/σ

2
i

Bi(t, τ) =
2(1− e−γiτ )

2γie−γiτ + (κi + λi + γi)(1− e−γiτ )
γi =

√
(κi + λi)2 + 2σ2

i , i = 1, 2

The observation errors are assumed to be normally distributed with zero mean and

constant variance: εi ∼ N(0, σ2)

Case 2: Stochastic hazard processes for prepayment and default

Assume that the baseline hazard rates for prepayment and default in the context

of mortgages termination can be described by two square root diffusion processes:

λp0(t) = x1
t , λd0(t) = x2

t (4.32)

dx1
t = k1[θ1(t)− x1

t ]dt+ σ1

√
x1
tdw

1
t (4.33)

dx2
t = k2[θ2(t)− x2

t ]dt+ σ2

√
x2
tdw

2
t (4.34)

The individual prepayment and default hazard rates are assumed to be related to

the baseline hazard rates in a multiplicative manner:

λpt = λp0 e
X′pβp , λdt = λd0 e

X′dβd (4.35)

where Xp and Xd are sets of mortgage specific variables deemed to reflect the

mortgage-specific impact on top of the baseline hazard rates while βp and βd are

parameters associated with corresponding variables.
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At each point of time, we can observe the number of mortgages that are prepaid

or defaulted. The observed numbers are assumed to follow Poisson distribution with

means equal to the hazard rates.

Pr(Np = k) = e−λ
p
t
(λpt )

k

k !
(4.36)

Pr(Nd = k) = e−λ
d
t
(λdt )

k

k !
(4.37)

where Np and Nd are the number of the prepayments and defaults respectively.

There are no closed-form transition densities in this case because of the time-

varying mean reverting levels. However, utilizing a discretization scheme, we can get

an approximation to the underlying transition densities. Specifically, given X(s), to

get X(t), we first partition the interval [s, t] into N subintervals [sj, sj+1], where

sj = s+ ∆ ∗ j, ∆ =
t− s
N

, j = 0, . . . , N

ui0 = xi(s), uij = xi(sj), i = 1, 2

Then apply the Euler scheme to each sub-interval [sj, sj+1],

uij+1 = uij + κi[θi(sj)− uij]∆ + σi

√
uij∆ zij (4.38)

zij ∼ N(0, 1), i.i.d. j = 0, . . . , N − 1 (4.39)

xi(t) = uiN (4.40)



Chapter 5

A proportional hazard model of ARM termination

5.1 Background

As specified in the previous chapter, we have assumed that there are two underlying

stochastic processes which determine the baseline prepayment and default hazards

at any time. The idiosyncrasy of any given ARM is assumed to have a multiplicative

impact on top of the baseline hazards. This chapter aims to identify and estimate

those idiosyncrasies with respect to an ARM, using a proportional hazard model.

Several considerations that are particular to this paper make the application of

proportional hazard models differ from their usual use. First, a different implicit

assumption about the underlying baseline hazards is made in the process. In the

usual application of proportional hazard models, the baseline hazard function is left

unspecified. That is, no parametric structure is imposed upon it. Instead, the baseline

hazards are estimated non-parametrically from the data and are used in later predi-

cation. Nonetheless, the baseline hazards are implicitly assumed to be deterministic.

The implicit assumption made in this paper, instead, is that the underlying baseline

hazards are governed by stochastic processes. As a result, the resultant baseline haz-

ards are stochastic instead of deterministic. The seemingly inconsistency between

the two assumptions about the baseline hazards are reconciled through the use of

stratification in the models. Specifically, the data are stratified by the time of origi-

nation measured in quarters. All mortgages with same vintage are then assumed to

33
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share the same realization of the baseline hazards. The baseline hazards for mort-

gages with different vintages are assumed to the result of different realizations of the

same processes over time.

Another important consideration is that we intend to use the result here to

facilitate pricing of an ARM using only loan specific information. As a result, we

seek to extract only the impact that is due to the idiosyncrasy of an ARM. In other

words, anything exogenous to the loan will not be considered in the model even

though the conventional wisdom may suggest that they are important in predicating

termination behaviors of an ARM. Examples include home sales, macro-economic

indicators other than the interest rates, etc.

Usually, the observation window for prepayment and default is a month. That

is, the number of events is grouped into an interval of a month. As a result, there

are often lots of ties in a month, which violates one of the fundamental assumptions

underlying a Cox proportional hazard model. The Cox framework is built on a con-

tinuous process assuming no tie. Therefore, we employed a variant of a standard Cox

model, specifying hazards of termination as discrete processes instead of continuous

processes. It has been shown in Prentice and Kalbfleisch [120] that the conventional

Breslow estimator of covariate effects is still consistent, though the standard errors

have to be adjusted.

5.2 Data

The data used in the analysis are from Bank of America and include various types

of ARMs originated between 1980s and 2000s. There are ARMs that differ in the

indices used and hybrid ARMs that act like fixed rate mortgages for certain years

and become ARMs thereafter. Since the emphasis here is to study the termination

behavior of a typical ARM, only three types of ARMs are included in the study.
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They differ only in the re-set frequencies and the reference indices used to determine

the coupon rates.

One type of ARM, labeled CD, uses the 6-month CD rate as the benchmark

index and is reset semi-annually. The second type of ARM, labeled TRA, uses the

6-month average of the 1-year CMT rate as its benchmark index and is also reset

semi-annually. The third type of ARM, labeled TRS, uses the 1-year CMT spot rate

as its benchmark index and is reset annually.

There are 203,016 loans in total for the study. Table 5.1a provides an overview of

the basic characteristics of the data universe. As the table shows, the distribution of

three types of ARMs is 44.8% for CD type, 33.0% for TRA type and 22.2% for TRS

type. Other than the re-set frequencies, these three types of ARMs are pretty similar

in key loan attributes, such as LTV, margin, ceiling, original coupon rates, etc. For

this reason, they are treated as homogenous in the model and only the differences

in the re-set frequency are isolated, using a dummy variable.

Table 5.1b compares the basic loan characteristics between prepaid vs non-

prepaid loans and defaulted vs non-defaulted loans. Prepaid loans tend to have

large loan amounts and lower points, while defaulted loans tend to have small

loan amounts and higher points. These preliminary observations are consistent with

common wisdoms. That is, larger loans benefit more from prepayment and higher

points discourage prepayment. If the loan size is a proxy for the financial status,

people with small loans are more vulnerable to any shock, particularly to an interest

rate shock, and thus are more likely to default.

Table 5.2a and Table 5.2b report the distributions of prepayment and default

by years of origination, termination and observation. Out of 203,016 loans, roughly

90% of them are observed to be prepaid sometime during the period, while 1.2% of

them eventually defaulted. In the study by Kau et al. [132], 37.7% of 917,703 fixed

rate mortgages are observed to be prepaid sometime during their lives while 0.5%
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are observed to be defaulted. The percentages of prepayment and default for ARMs

is more than double those for FRMs.

5.3 Model Specification

Lots of studies have been done on the causes of ARM termination (Roll et al.[16],

Sanyal [168], Ambrose et al. [10], Davis [63]). Basically, the causes fall into four

categories:

1. Natural housing turnover

2. Refinancing

3. Defaults

4. Curtailment

People terminate the ARMs prematurely when they have to sell their houses either

because of job relocation or court judgement in a divorce settlement etc. By self-

selection, ARM borrowers are more mobile than fixed-rate mortgage borrowers.

There are two types of refinancing facing ARM mortgagors: refinancing into another

ARM or refinancing into an FRM. The majority of ARM borrowers choose to refi-

nance into fixed-rate mortgages. One explanation for a relative higher ARM default

rate is the payment shock that ARM mortgagors experience when ARM coupons

are adjusted upward. Curtailment occurs when an ARM is partially prepaid. Pre-

vious studies indicate that housing turnover and refinancing are the major drivers

of termination, while defaults and curtailments play less important roles.

It is a well-known fact that ARMs are more sensitive to the level of interest rates.

Therefore, we have paid particular attention to capturing the impact from the level

of interest rates in the model. Specifically, the relative spread between the coupon

rate and the 1-year Treasury bill yield is used to measure the impact of refinancing
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into another ARM. The relative spread between the coupon rate and the 10-year

Treasury bond yield is used to measure the impact of refinancing into an FRM. The

relative spread is defined as (yield/coupon - 1). To capture the nonlinearity of the

impacts, polynomials of the relative spreads up to order 4 are used in the model.

A low 1-year Treasury bill yield relative to current coupon rate of an ARM will

induce the mortgagor to refinance into another ARM with a lower coupon rate. As

a result, the prepayment hazard will increase; A narrowed spread between the 10-

year Treasury bond yield and current coupon rate will provide an incentive for the

mortgagor to lock into a fixed rate by refinancing into a FRM, resulting a spike in

prepayment. The relative spreads are lagged by two-month in the model to reflect

the time necessary to complete the refinancing process.

Other things being equal, the mortgagors will benefit more from refinancing on

a larger mortgage balance. The inflation adjusted mortgage balance is used in the

model as a proxy for the refinancing benefit.

While prepayment may not necessarily hurt the lenders, financially-savvy mort-

gagors often benefit from prepayment at the expense of the lenders. To protect

themselves from prepayment risk, the lenders have come up some schemes to miti-

gate and/or control the prepayment risk. One scheme is the provision of prepayment

penalty. The other is the points charged up-front. Both schemes have the effect of

increasing the costs of refinancing and decreasing the gains. It is quite natural to see

prepayment hazards for ARMs with such attachments compressed a bit compared

to ARMs without such attachments.

Other variables that are considered in the model include rate-cap, ceiling, LTV,

and margin. Rate-cap is a ratio of the original coupon rate to the annual cap. If the

original coupon rate is small relative to the cap, the magnitude of upward adjust-

ment will be large. Therefore, it will pay for the mortgagor to refinance either into

a FRM or into another ARM. Likewise, a higher ceiling will impose greater upward
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adjustment risk on the mortgagor, making prepayment more beneficial, increasing

prepayment hazards. A higher LTV will make default more valuable and prepayment

more costly because of the well-known substitution effect between prepayment and

default, lowering the prepayment hazard. Other things being equal, the more fre-

quently the coupon rate is re-set, the greater the interest rate risk to the mortgagor

and the more beneficial the prepayment. Thus, semi-annually adjusted ARMs tend

to have higher prepayment hazards than do annually-adjusted ARMs.

The major determinants for default are LTV and payment shock. To capture the

nonlinearity of the impact of LTV on the default, a quadratic function of LTV is used

in the model. The proxy for measurement of a payment shock is the relative spread

between the current coupon rate and the 1-year treasury bill rate, the benchmark

index that the coupon rate is pegged upon. A widened relative spread indicates

potential large payment shock on the reset date, increasing the probability of default.

5.4 Results

The estimation of the models is implemented in SAS using proc PHREG routine.

Table 5.3 summarizes the estimated coefficients for the variables just discussed. 1

Table 5.3a and Table 5.3b summarizes effects of covariates on the prepayment and

default hazard rate respectively. The estimates of the prepayment model for the most

part are consistent with previous discussion. In particular, loan balance, LTV, points

and prepayment penalty all have correct signs and are significant. As for impact of

interest rates, the narrowed relative spreads all increase prepayment hazards. As

expected, LTV and relative spread between coupon rate and 1-year Treasury bill

rate have correct signs and are significant. Overall, the results are consistent with

those in previous studies.

1The adjusted standard errors are reported in the parentheses next to the normal
standard errors.
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Look at Figure 5.1a that shows the Kaplan-Meier non-parametric estimate of pre-

payment hazard. The monthly prepayment hazard makes two big jumps in the 12th

and 36th months, corresponding to the 1st and the 3rd reset dates. It then slowly

creeps upward and peaks in the 120th month. After the 10th year, the monthly

hazard declines steadily in the later part of maturity. Towards the end of an ARM’s

life, there is a burst of prepayment activities due to the nuisance effect: the mort-

gagors pay out all the remaining mortgage balance because of its relative insignifi-

cance in saving compared to hassle of making several payments.

Figure 5.1b indicates that 50% of ARMs will be prepaid by the 45th month

and another 25% will be prepaid in the next 30 months. By the 108th month, only

10% of ARMs remain active. Even though the ARMs under study all have 30-year

maturities, they actually look more like a 10-year loan because less than 5% of them

are around after the 10th year.

Figure 5.2a shows that the monthly default hazard increases at an increasing

speed and reaches the peak in about 72th month. It then deceases from the 6th year

through 10th year. The monthly default hazard becomes very erratic beyond the

10th year with lots of zeros accompanied by lots of big spikes. As less than 5% of

ARMs will ever survive beyond the 10th year, by which time the payment shock

periods have already passed, one possible explanation for the erratic behavior of the

hazard is that in the later part of an ARM’s life, the unobserved heterogeneity of the

mortgagors plays a dominant role. When the sample base is small, the point estimate

of the hazard can be very sensitive to outliers. By outliers we mean those ARMs

whose behaviors are not adequately captured by the factors considered in the model.

It may well be that some unobserved factors that are left out of the consideration in

the model are responsible for the seemingly erratic behavior. Given the limitation

of the data, we have no way to know for sure what those factors are.
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The Kaplan-Meier estimate is a non-parametric estimate that treats each inci-

dence of prepayment or default equally. That is, any prepayment or default event

will be counted as one event regardless of the difference in the underlying loans. To

adjust for the impact of loan characteristics, we also calculated the predicated pre-

payment and default hazard based on the variables valued at the mean at each point

of time. Figure 5.3a indicates that the adjustment for prepayment hazard causes the

whole hazard curve to shift downward a little. 2 As a result, the Figure 5.3b shows

that the overall survival rate increases a little. It seems that the prepayment hazard

rate is not influenced as much by loan’s characteristics as by the general economic

environment. 3

The impact of the loan characteristics on the default hazard is more noticeable.

Figure 5.4b shows that the Kaplan-Meier estimate has overestimated the cumulative

default rate by 4 percentage point. Figure 5.4a indicates that default hazard is

driven more by the idiosyncrasies of the mortgagors than by the general economic

environment as represented by the baseline hazard.

5.5 Stratification Test

Notice that we have estimated two proportional hazard models based on quar-

terly stratification. The same models could be estimated without any stratification

or based on annually or semi-annually stratification. As mentioned earlier in this

2In Figure 5.3a and Figure 5.4a, the dot line represents the simple Kaplan-Meier esti-
mates of the hazard rates treating each event equally. That is, without taking into consid-
eration each loan’s characteristics. Each prepayment(default) is counted as one incidence
whether it is a high LTV loan or low LTV or large loan amount or small loan amount. The
solid line represents the estimates of the hazard rates taking loan’s attributes into account.
Basically the incidence of each prepayment(default) is weighted by the loan’s attributes
based on the estimated coefficients from the Cox proportional hazard models.

3In Figure 5.3b and Figure 5.4b, the thick line represents the cumulative hazard rate
based on simple Kaplan-Meier estimates of the hazard rates while the thin line represents
the estimates of the same hazard rates taking into account the loan’s characteristics.
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chapter, stratification scheme is employed here to convert static baseline hazards to

stochastic ones so that they can be later modeled as diffusion processes. One implicit

assumption here is that there exists stratum-specific effects. To test the validity of

this assumption, a clustering statistic developed by Ridder and Tunali [165] is used

that utilizes the information from both the stratified partial likelihood estimation

and the unstratified partial likelihood estimation. The null hypothesis is that there

is no strata-specific effect. The test statistic takes the following form

C = (β̂s − β̂u)′V (β̂s − β̂u)−1(β̂s − β̂u) (5.1)

where β̂s and β̂u are vectors of coefficient estimates from a stratified model and an

unstratified model respectively. The test statistic C has a chi-square distribution

with p degree of freedom, where p is the number of covariates in the model. Table

5.4 reports the test results and indicates that the null hypothesis is rejected in favor

of stratification.

Under the regularity conditions specified in Anderson and Gill [12], β̂s − β̂u is

asymptotically normal with variance given by

V (β̂s − β̂u) = V (β̂s)− V (β̂u) (5.2)

where V (β̂s) and V (β̂u) are inverted Hessians for the respective log-likelihoods eval-

uated at their maximum.

Up to this point, we have just adopted the usual way of modeling the termination

of ARMs and the results indicated that the ARMs under current study conform to

the general pattern revealed in similar studies completed by other researchers. As

indicated in previous discussion, the purpose of this section is to isolate the loan

idiosyncratic impact from the baseline hazard. Once the loan specific impact has

been identified, the dynamics of the residual baseline hazards can then be attributed
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to the dynamics of economic environment, which can be modeled via some stochastic

processes. And that will the subject of the next chapter.
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Table 5.1a

Descriptive Statistics For Entire Sample

Variable N Mean Median Std Dev. Minimum Maximum

LTV 203,016       74.01% 78.00% 16.68% 0.49% 124.30%

OriginalAmount 203,016       $223,275 $171,000 $188,386 $5,000 $2,850,000

Orig_Rate 203,016       5.43% 5.38% 1.36% 2.75% 18.38%

Points 203,016       0.02% 0.00% 1.07% -7.00% 4.50%

Margin 203,016       2.67% 2.50% 0.90% 0.03% 10.00%
Ceiling 203,016       11.50% 11.75% 1.18% 3.88% 28.00%

Descriptive Statistics By Type of ARM
Product=CD

Variable N Mean Median Std Dev. Minimum Maximum

LTV 91,112         71.67% 75.00% 17.42% 4.00% 124.13%

OriginalAmount 91,112         $194,766 $162,000 $138,641 $12,000 $2,815,000

Orig_Rate 91,112         4.75% 4.38% 1.16% 2.75% 10.00%

Points 91,112         0.28% 0.00% 1.00% -6.00% 3.50%

Margin 91,112         2.61% 2.50% 1.01% 0.25% 10.00%
Ceiling 91,112         11.14% 10.88% 1.18% 4.25% 22.50%

Product=TRA

Variable N Mean Median Std Dev. Minimum Maximum

LTV 67,078         76.97% 80.00% 16.02% 5.00% 124.30%

OriginalAmount 67,078         $236,210 $172,000 $207,515 $5,000 $2,850,000

Orig_Rate 67,078         5.91% 5.75% 1.02% 3.13% 10.63%

Points 67,078         -0.29% 0.00% 1.13% -7.00% 4.50%

Margin 67,078         2.68% 2.63% 0.83% 0.03% 10.00%
Ceiling 67,078         11.72% 11.88% 0.84% 7.63% 21.63%

Product=TRS

Variable N Mean Median Std Dev. Minimum Maximum

LTV 44,826         74.34% 78.00% 15.33% 0.49% 123.07%

OriginalAmount 44,826         $261,865 $203,000 $232,020 $11,700 $2,800,000

Orig_Rate 44,826         6.09% 5.75% 1.54% 3.00% 18.38%

Points 44,826         -0.04% 0.00% 0.97% -5.00% 4.50%

Margin 44,826         2.79% 2.75% 0.75% 0.03% 10.00%
Ceiling 44,826         11.89% 11.88% 1.38% 3.88% 28.00%
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Table 5.1b

Descriptive Statistics By Prepayment
Not Prepaid Loans

Variable N Mean Median Std Dev. Minimum Maximum

LTV 20,670         75.12% 80.00% 17.22% 0.53% 122.66%

OriginalAmount 20,670         $167,268 $130,000 $157,014 $10,450 $2,661,100

Orig_Rate 20,670         5.78% 5.38% 1.73% 2.88% 17.25%

Points 20,670         0.10% 0.00% 1.09% -6.00% 3.50%

Margin 20,670         2.78% 2.50% 1.33% 0.25% 10.00%
Ceiling 20,670         11.74% 11.88% 1.43% 6.25% 21.50%

Prepaid Loans

Variable N Mean Median Std Dev. Minimum Maximum

LTV 182,346       73.89% 78.00% 16.61% 0.49% 124.30%

OriginalAmount 182,346       $229,623 $177,600 $190,583 $5,000 $2,850,000

Orig_Rate 182,346       5.39% 5.38% 1.31% 2.75% 18.38%

Points 182,346       0.01% 0.00% 1.06% -7.00% 4.50%

Margin 182,346       2.66% 2.50% 0.84% 0.03% 10.00%
Ceiling 182,346       11.47% 11.63% 1.14% 3.88% 28.00%

Descriptive Statistics By Default
Not Defaulted Loans

Variable N Mean Median Std Dev. Minimum Maximum

LTV 200,540       73.87% 78.00% 16.70% 0.49% 124.30%

OriginalAmount 200,540       $224,125 $172,000 $189,040 $5,000 $2,850,000

Orig_Rate 200,540       5.42% 5.38% 1.36% 2.75% 18.38%

Points 200,540       0.02% 0.00% 1.07% -7.00% 4.50%

Margin 200,540       2.67% 2.50% 0.90% 0.03% 10.00%
Ceiling 200,540       11.49% 11.75% 1.18% 3.88% 28.00%

Defaulted Loans

Variable N Mean Median Std Dev. Minimum Maximum

LTV 2,476           85.51% 90.00% 9.39% 28.00% 122.66%

OriginalAmount 2,476           $154,403 $135,000 $103,522 $10,450 $1,435,000

Orig_Rate 2,476           5.73% 5.50% 1.45% 3.00% 14.63%

Points 2,476           0.22% 0.00% 1.15% -6.00% 3.50%

Margin 2,476           2.71% 2.63% 0.84% 1.25% 10.00%
Ceiling 2,476           11.91% 11.88% 1.18% 8.50% 19.63%
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Table 5.2a

Loan Origination,Default and Prepayment by Year of Origination

Year # Originated # Prepaid # Defaulted % Prepaid % Default

1977 1                     1                     -                  100.00            -                  

1978 2                     1                     -                  50.00              -                  

1979 6                     5                     -                  83.33              -                  

1980 9                     3                     -                  33.33              -                  

1981 11                   4                     1                     36.36              9.09                

1982 25                   13                   -                  52.00              -                  

1983 181                 88                   3                     48.62              1.66                

1984 927                 523                 13                   56.42              1.40                

1985 909                 525                 18                   57.76              1.98                

1986 464                 299                 11                   64.44              2.37                

1987 484                 291                 8                     60.12              1.65                

1988 457                 305                 6                     66.74              1.31                

1989 304                 202                 6                     66.45              1.97                

1990 3,659              3,111              78                   85.02              2.13                

1991 17,584            15,786            324                 89.77              1.84                

1992 33,330            29,074            787                 87.23              2.36                

1993 39,262            35,977            355                 91.63              0.90                

1994 42,911            38,674            484                 90.13              1.13                

1995 13,753            12,303            238                 89.46              1.73                

1996 13,912            13,230            85                   95.10              0.61                

1997 11,663            11,168            26                   95.76              0.22                

1998 13,930            13,055            13                   93.72              0.09                

1999 5,767              5,049              10                   87.55              0.17                

2000 3,272              2,489              9                     76.07              0.28                

2001 186                 163                 1                     87.63              0.54                

2002 7                     7                     -                  100.00            -                  

Total 203,016          182,346          2,476             89.82            1.22

Loan Termination,Default and Prepayment by Year of Termination

Year # Terminated # Prepaid # Defaulted % Prepaid % Default

1992 1                     1 0 100.00            -                  

1993 4,130              4125 4 99.88              0.10                

1994 10,513            10451 23 99.41              0.22                

1995 12,055            11957 78 99.19              0.65                

1996 17,844            14366 211 80.51              1.18                

1997 26,651            26010 611 97.59              2.29                

1998 42,119            39346 566 93.42              1.34                

1999 23,951            23375 523 97.60              2.18                

2000 12,582            12354 214 98.19              1.70                

2001 18,616            18264 110 98.11              0.59                

2002 11,506            11266 68 97.91              0.59                

2003 7,884              7815 43 99.12              0.55                

2004 15,164            3016 25 19.89              0.16                

Total 203,016          182,346          2,476             89.82            1.22
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Table 5.2b

Active Loans Observed, Default and Prepayment by Year of Observation

Beg_Y

Year # Observed # Prepaid # Defaulted % Prepaid % Default

1989 13                   10 0 76.92              -                  

1990 3,390              2920 72 86.14              2.12                

1991 17,325            15606 324 90.08              1.87                

1992 32,786            28659 779 87.41              2.38                

1993 39,108            35899 348 91.79              0.89                

1994 41,814            37897 452 90.63              1.08                

1995 12,888            11648 212 90.38              1.64                

1996 13,174            12677 61 96.23              0.46                

1997 11,688            11227 21 96.06              0.18                

1998 13,889            13021 13 93.75              0.09                

1999 13,464            10113 184 75.11              1.37                

2000 3,274              2491 9 76.08              0.27                

2001 196                 171 1 87.24              0.51                

2002 7                     7 0 100.00            -                  

Total 203,016          182,346          2,476             89.82            1.22

Active Loans Observed, Default and Prepayment by Year of Observation

End_Y

Year # Observed # Prepaid # Defaulted % Prepaid % Default

1993 5,216              5,212              4                     99.92              0.08                

1994 9,943              9,884              25                   99.41              0.25                

1995 12,867            11,435            76                   88.87              0.59                

1996 18,037            15,833            276                 87.78              1.53                

1997 27,553            26,942            577                 97.78              2.09                

1998 41,790            39,014            572                 93.36              1.37                

1999 22,663            22,113            501                 97.57              2.21                

2000 12,752            12,528            212                 98.24              1.66                

2001 19,097            18,750            105                 98.18              0.55                

2002 10,787            10,541            68                   97.72              0.63                

2003 7,409              7,334              37                   98.99              0.50                

2004 14,902            2,760              23                   18.52              0.15                

Total 203,016          182,346          2,476             89.82            1.22
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Table 5.3

Coefficients Estimates for Proportional Hazard Model

with Competing Risks of Default and Prepayment

(Stratified)

Prepayment Model

Parameter Standard Hazard

Variable DF Estimate Error Chi-Square Pr>ChiSq Ratio

ln_begbal 1 3.9103E-01 0.0038            (0.0037) 10,828.48       <.0001 1.48          

LTV 1 -3.1400E-03 0.0001            (0.0001) 467.19            <.0001 1.00          

Points 1 -9.0180E-02 0.0031            (0.0031) 824.52            <.0001 0.91          

Margin 1 -6.0670E-02 0.0027            (0.0026) 504.38            <.0001 0.94          

Ceiling 1 8.3780E-02 0.0058            (0.0057) 208.02            <.0001 1.09          

Rate_cap 1 -9.2190E-02 0.0048            (0.0047) 365.37            <.0001 0.91          

i_Penalty 1 -5.1134E-01 0.0068            (0.0066) 5,699.07         <.0001 0.60          

spd_short1 1 -1.7000E-02 0.0014            (0.0013) 156.57            <.0001 0.98          

spd_short2 1 -3.2720E-04 0.0000            (0.0000) 172.20            <.0001 1.00          

spd_short3 1 1.0214E-07 0.0000            (0.0000) 0.40                0.5258 1.00          

spd_short4 1 1.3569E-08 0.0000            (0.0000) 108.90            <.0001 1.00          

spd_long1 1 -1.3530E-02 0.0010            (0.0009) 195.90            <.0001 0.99          

spd_long2 1 2.4070E-04 0.0000            (0.0000) 422.21            <.0001 1.00          

spd_long3 1 -1.6765E-06 0.0000            (0.0000) 78.15              <.0001 1.00          

spd_long4 1 3.7640E-09 0.0000            (0.0000) 22.53              <.0001 1.00          

i_AdjFrq 1 -1.8720E-01 0.0149           (0.0141) 158.36          <.0001 0.83

Default Model

Parameter Standard Hazard

Variable DF Estimate Error Chi-Square Pr>ChiSq Ratio

ln_begbal 1 -1.7701E-01 0.0401            (0.0393) 19.49              <.0001 0.84          

LTV 1 1.1490E-01 0.0217            (0.0212) 28.15              <.0001 1.12          

LTV_sq 1 -3.0950E-04 0.0001            (0.0001) 5.25                0.0219 1.00          

Points 1 -4.4310E-02 0.0288            (0.0282) 2.37                0.1234 0.96          

Margin 1 -1.3678E-01 0.0208            (0.0204) 43.12              <.0001 0.87          

Ceiling 1 7.1390E-02 0.0458            (0.0449) 2.43                0.1193 1.07          

Rate_cap 1 1.4996E-01 0.0380            (0.0372) 15.57              <.0001 1.16          

i_Penalty 1 -1.6478E-01 0.0663            (0.0650) 6.18                0.013 0.85          

spd_short1 1 -1.3700E-02 0.0037            (0.0036) 14.00              0.0002 0.99          

spd_short2 1 3.5270E-04 0.0000            (0.0000) 133.70            <.0001 1.00          

i_AdjFrq 1 6.8978E-01 0.1211           (0.1187) 32.43            <.0001 1.99

Note:

spd_short1:   (t1y_L2/cpn_lag2-1)*100

spd_long1:   (t10y_L2/cpn_lag2-1)*100

ln_begbal   log(begbal/cmphi)

Rate_cap:   Orig_rate/year_cap

i_Penalty:   1, if prepay penalty applies; 0, o.w.

i_AdjFrq:   1, if reset annually; 0, o.w.
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Figure 5.0a Effects of Covariates on Prepayment Hazard
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Figure 5.0b Effects of Covariates on Default Hazard
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Figure 5.1a: Kaplan-Meier Estimate of Monthly Prepay Hazard

- Stratified Model -
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Figure 5.1b: Kaplan-Meier Estimate of Cumulative Prepay Hazard
- Stratifed Model -
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Figure 5.2a: Kaplan-Meier Estimate of Monthly Default Hazard
- Stratified Model -
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Figure 5.2b: Kaplan-Meier Estimate of Cumulative Default Hazard
- Stratified Model -
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Figure 5.3a: Predicted Monthly Prepay Hazard

(valued at mean covaraites)

- Stratified Model -
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Figure 5.3b: Predicted Cumulative Prepay Hazard
(valued at mean covariates)

- Stratifed Model -

0.0%

25.0%

50.0%

75.0%

100.0%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

Duration (Month)

C
u

m
u

la
ti

ve
 H

az
ar

d

cum_pre_kaplan

cum_pre_avexb



53

Figure 5.4a: Predicted Default Hazard

(valued at mean covariates)

- Stratified Model -
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Figure 5.4b: Predicted Cumulative Default Hazard

(valued at mean covariates)

- Stratified Model -
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Table 5.4

Test for the Presence of Stratification

Sample Size: N=203,016

Degree of Freedom: p=26

Stratification C-Statistic P-Value

Quarterly vs None 2552.17 0.0000

Quarterly vs Annually 646.04 0.0000
Quarterly vs Semi-annually 211.48 0.0000

Note:

- The null hypothesis is that there is no stratum-specific effect.

- The C-statistic is a clustering statistic that has a chi-square distribution with p degree of freedom under the null 

hypothesis.



Chapter 6

Estimation of diffusion processes for prepayment and default

hazard

A Cox proportional hazard model is often used to model the termination of mort-

gages whether it is a FRM or ARM. The advantage of the model is its ability to allow

us to study the impact of loan idiosyncrasy on the termination of a loan, without

imposing an explicit assumption on the baseline function. The baseline function is

determined by the data under study non-parametrically. Most of the previous studies

also use non-parametric estimates of the baseline function in predications of the ter-

mination hazard. The implicit assumption those researchers makes, though, is that

the baseline function is deterministic. That is, the baseline hazard rate is always

the same for a given duration regardless the general economic environment. This

implicit assumption is probably the result of a belief that all the economic impacts

are supposed to be captured by the covariates, a very strong assumption unlikely to

be true in the reality. As a result, the resultant prediction is static and not conducive

to the risk-neutral pricing of loans.

Kau et al. [132] make the first attempt to reconcile the inconsistency between

the assumption of a Cox proportional model and the economic reality. They propose

a scheme that incorporates the dynamic nature of the general environment into a

baseline hazard function. The advantage of a dynamic baseline hazard function is

its flexibility to capture the residual impact left by the covariate terms. One side-

effect of the scheme, though, is the possibility of model mis-specification due to

55
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the assumptions made explicitly on the stochastic processes. In this chapter, we

will discuss the details of implementing the scheme proposed by Kau et al. [132] in

studying the dynamics of baseline hazards for ARMs.

6.1 The State-space Models of Baseline Prepayment and Default

Generally speaking, in a state-space framework, state variables that are inaccessible

directly evolve through time according to certain stochastic laws that have represen-

tations as stochastic diffusion processes. At each point of time, the state variables

can be measured or observed indirectly via a measurement mechanism. In the case

of ARMs, two state-space models can be constructed as follows.

First, the state variables are baseline prepayment and default hazards. We have

assumed that their dynamics can be well represented by two independent square-root

diffusion processes with mean reversion. One reason for this particular specification

is the non-negativity of a square-root diffusion process, reflecting the fact that the

baseline hazard is non-negative at any time.

λp0(t) = x1
t λd0(t) = x2

t (6.1)

dx1
t = k1[θ1(t)− x1

t ]dt+ σ1

√
x1
tdw

1
t (6.2)

dx2
t = k2[θ2(t)− x2

t ]dt+ σ2

√
x2
tdw

2
t (6.3)

where θ1(t) and θ2(t) are time-varying mean reverting level functions for baseline

prepayment and default hazards respectively. In the discussion that follows, we will

elaborate on the specifications of these two functions because they are critical in

state-space modeling.

At any given point of time, we cannot observe the baseline prepayment and

default hazards but only the fact that a number of ARMs have prepaid or defaulted.

We further assume that the prepayment and default hazards are related to the
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corresponding baseline hazards in a multiplicative manner.

λpt = λp0(t) eX
′
p(t)βp , λdt = λd0(t) eX

′
d(t)βd (6.4)

where Xp and Xd are sets of mortgage specific variables deemed to reflect the mort-

gage specific impact on top of the baseline hazard rates, and βp and βd are parameters

associated with corresponding variables.

The number of prepayments or defaults can then be approximated using Poisson

distributions with means equal to the hazard rates. Assuming that each individual

mortgage is terminated independently, the number of prepayments or defaults at

any given time is then binomially distributed with the probability equal to the

hazard rate. When the probability of an event occurring is very small relative to the

number of trials, the Poisson distribution will provide a very good approximation to

the binomial distribution, so

Pr(Np = k) = e−λ
p
t

(λpt )k

k !
(6.5)

Pr(Nd = k) = e−λ
d
t

(λdt )k

k !
(6.6)

where Np and Nd are the number of prepayment and default respectively.
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A complete state-space model of baseline prepayment and default hazards is as

follows:

The State (Transition) Equation:

dx1
t = κ1[θ1(t)− x1

t ]dt+ σ1

√
x1
tdw

1
t

dx2
t = κ2[θ2(t)− x2

t ]dt+ σ2

√
x2
tdw

2
t

λp0(t) = x1
t , λd0(t) = x2

t

The Observation (Measurement) Equation:

Pr(Np = k) = e−λ
p
t
(λpt )

k

k !

Pr(Nd = k) = e−λ
d
t
(λdt )

k

k !

λpt = λp0(t) eX
′
p(t)βp , λdt = λd0(t) eX

′
d(t)βd

where dw1
t and dw2

t are independent diffusion processes.

6.2 Implementation Scheme

In the previous chapter, a Cox proportional model was utilized with stratification

based on the origination quarter of an ARM. According to the scheme proposed by

Kau et al. [132], ARMs in the same stratum are assumed to share one realization of

baseline hazards from the underlying diffusion processes. ARMs in different strata

are assumed to follow different realizations of the baseline hazards from the same

diffusion processes. At any given time t, the observed number of prepayments and

defaults within a given stratum is related to one realization of the underlying base-

line hazards. Thus K different strata are related to K different underlying baseline

hazards at time t. The log-likelihood of observing Np(t, k) prepayments and Nd(t, k)

defaults at time t among stratum k can be represented as logfp(N
p
t,k) and logfd(N

d
t,k)

respectively. The total log-likelihood of observing different numbers of prepayments



59

and default during the life of ARMs can then be formalized as the following:

logfp =
K∑

k=1

Tk∑
t=1

logfp(N
p
t,k) (6.7)

logfd =
K∑

k=1

Tk∑
t=1

logfd(N
d
t,k) (6.8)

where Tk is the max duration in months for stratum k.

The ARMs in this study are pooled into 73 strata by month of origination.

1 For each stratum, the number of prepayments and defaults at time t and the

corresponding covariate terms are defined as follows.

Np
t,k ,

M(t,k)∑
i=1

Ip(i|t, k) (6.9)

Nd
t,k ,

M(t,k)∑
i=1

Id(i|t, k) (6.10)

eX
′
p(t,k)βp ,

M(t,k)∑
i=1

eX
′
p(i|t,k)βp (6.11)

eX
′
d(t,k)βd ,

M(t,k)∑
i=1

eX
′
d(i|t,k)βd (6.12)

where Ip, Id are indicator functions of whether there is a prepayment or default and

Xp, Xd, βp, βd are from previous Cox proportional hazard models.

Essentially, the original loan-based data is transformed into panel-style data

where the cross sectional dimension is the strata and the time series dimension is the

duration of the loans. The transformation produced 7, 273 panel-style observations

out of 203, 016 ARMs.

1There are total 93 strata in the original data. 20 strata, most of which are those loans
originated in early 80’s, do not have many observations, fewer than 10 or so. Therefore,
the hazard rates can be greatly distorted by one or two prepaid or defaulted loans, which
caused problems in the estimation of the processes. As a result, they are not used in the
estimation.
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The mean-reverting functions in the state-space models are not yet specified

because they have to be developed based on the investigation of the empirical esti-

mates of the baseline hazards. In the process of transforming the original data into

panel-style data, we estimated times series of the empirical baseline hazards for pre-

payment and default respectively for the whole duration of ARMs. The estimates

at time t are basically the average baseline hazards with respect to all strata that

are still active at time t. The estimation method is based on the idea elaborated

before. That is, the underlying baseline hazard at time t will be randomly distrib-

uted according to some probability law and the empirical estimate of the baseline

hazard based on one stratum corresponds to one observation of the baseline hazard.

The mean baseline hazard estimated at time t can then be used as an approximation

of the mean-reverting level at that time. By fitting to these time series, we identified

the specification of the mean-reverting level functions for prepayment and default

respectively. Figure 6.1 and Figure 6.2 show the empirical estimates of the baseline

hazard for prepayment and default respectively. We then developed two function

specifications best fitted to the empirical curves: a polynomial of 7th order for the

baseline prepayment hazard and an un-normalized gamma function for the baseline

default hazard. The empirical baseline hazards for prepayment and default are scaled

upward by a factor of 103 and 108 respectively to avoid numerical problems. The

coefficients will serve as the initial values in the optimization process:

θp(t) =
7∑
i=0

αit
i (6.13)

θd(t) =
β

Γ(ρ)rρ
tρ−1e−t/r (6.14)
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The set of parameters to be optimized are:

Prepayment hazard: {k1, σ1, α0, . . . , α7}

Default hazard: {k2, σ2, β, ρ, r}

With the models for baseline prepayment and default hazards fully specified, the

estimation technique that has been discussed in chapter 4 can be used to estimate

the coefficients of the diffusion processes by maximizing the log-likelihood of 6.7

and 6.8. The number of intermediate steps used in the optimization is 30 for both

prepayment and default. The number of particles used to simulate the distribution

is 1000 with the number of re-samples equal to 1300.2

6.3 Results and Specification Test

The estimated coefficients are listed in Table 6.1 and Table 6.2. By standard mea-

sures, all the estimates are significant.

Table 6.3 and Table 6.4 provide comparisons between the specification and alter-

native ones. All the specifications differ only in the specification of the trend function.

For the prepayment process, we have experimented with constant trends, polynomial

trends of different orders, gamma trends, etc. Given the apparent spikes around the

1st year and the 3rd year, we also tried a hybrid function that consists of a 3rd order

polynomial plus two normal spike functions. The two spike functions were fixed at

the 1st and 3rd years respectively with two parameters associated with each spike

2The particle filter technique is computationally intensive. Trade-off has to be made
between more accurate estimation of parameters and feasible computing time. Normally,
for short time series, a large number of particles (40,000 to 50,000) will be needed in the
estimation of the likelihood. In our case, the time series is long (up to 240 months for some
stratum) and we found there was no major difference in the estimated likelihood using
1000 particles vs 2500 particles. The estimated likelihoods usually have same first 3 to 4
digits to the left of the decimal and only differ on the last couple of digits to the right of
the decimal.
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function. One parameter measured the variance and the other measured the height

of the spike.

For the default process, we have also experimented with constant trends, poly-

nomial trends of different orders, chi-square and gamma trends etc.

Figure 6.5 and Figure 6.6 provide an overview of MLE estimates of trend func-

tions relative to their stratum-based empirical counterparts. Clearly, there is lots

of volatility in both processes across strata. The baseline default hazard process

exhibits a clearer pattern than does the prepayment process. A gamma trend func-

tion captured well the overall profile across strata and the mean-reversion is relatively

strong.

The baseline prepayment hazard process is more volatile and the mean-reverting

tendency is weak. None of the trend specifications did a decent job in capturing the

overall pattern, which remains murky for the most part.

The determination of the final specification for the trend functions is based on

the AIC (Akaike Information Criterion) and SBC (Bayesian Information Criterion),

two usual criteria for model selection.

A standard measure of goodness of fit for count data is the Pearson statistic (see

Cameron and Trivedi [39], p151 ∼ 152).

P =
n∑
i=1

(yi − µ̂i)2

ω̂i
(6.15)

E

n∑
i=1

(yi − µi)2

ωi
= n (6.16)

where µ̂i and ω̂i are estimates of µi and ωi. If the mean and variance are correctly

specified, then Eq (6.16) will hold. The P is then compared to (n − k), where k is

a degree of freedom correction term. For a Poisson model, ωi = µi. The judgement

rule is that P > n − k indicates over-dispersion while P < n − k indicates under-

dispersion. Over-dispersion means the true variance exceeds the mean.
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Several specification tests are conducted and reported in Figure 6.3 and Figure

6.4. The Pearson statistics for both models indicate an evidence of under-dispersion,

where the true variance smaller than the mean. Because the Pearson statistic is

based on an assumption that is only true in a special case, not assumed to apply

here, its diagnostic power of model mis-specification is somewhat limited.

To formally test whether the model specifications are correct, we also have con-

ducted the Conditional Moment test as discussed in Cameron and Trivedi ([39], p

47 ∼ 51). The results indicate that the default model cannot be rejected while the

prepayment model is rejected. Rejection is often interpreted as indication of model

misspecification, although it is not always immediately apparent in what direction

the model is misspecified. One possible cause of the rejection of the prepayment

model is that the baseline prepayment hazard apparently has some jumps in early

periods as indicated in the empirical estimate of the baseline prepayment hazard. As

a result, a diffusion process that is only capable of representing small and continuous

movement cannot capture such jump dynamics. While a jump-diffusion processes

have been used in the some theoretical research, the application of the process using

real data is still in its infancy. The major hurdle is the difficulty in estimating the

jump-related parameters. The current study is meant to explore ways of incorpo-

rating observable prepayment and default information into a risk-neutral pricing

framework. The major consideration here is the trade-off between the tractability of

the model and correct specification.



64

Figure 6.1: Estimated Mean Baseline Prepay Hazard
(Scale: 10E+3)
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Figure 6.2: Estimated Mean Baseline Default Hazard
(Scale: 10E+8)
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Table 6.1: Maximum Loglikelihood Estimation the Diffusion Process

- the Baseline Prepayment Hazard -

Sample Size: N=7,273

Numver of Mass Particles: M=1000

Numver of Resample Particles: R=1300

Discretization Scheme: Euler

Monthly Time Subintervals: 30

Scale factor: 10
3

Coefficients Estimate Std Err

k1 0.1270        0.0301          

1 1.4719        0.0057          

0 -0.4571       0.2812          

1 18.6780      3.9179          

2 -28.1040     11.0260        

3 58.5880      19.4920        

4 -81.9270     29.4970        

5 59.5290      20.7340        

6 -22.0140     9.2148          

7 3.5197        2.2630          

Log-Likelihood -19,610.58

Table 6.2: Maximum Loglikelihood Estimation the Diffusion Process

- the Baseline Default Hazard -

Sample Size: N=7,273

Numver of Mass Particles: M=1000

Numver of Resample Particles: R=1300

Discretization Scheme: Euler

Monthly Time Subintervals: 30

Scale factor: 10
8

Coefficients Estimate Std Err

k2 0.4736        0.0874          

2 3.6314        0.2221          

51.1110      8.2747          

4.6544        1.1046          

r 1.1266        0.3246          

Log-Likelihood -3,364.33
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Figure 6.3: Specification Test for Prepayment Hazard Process

Prepayment Model

Predicted vs Actual Probabilities

Counts Actual Predicted |diff|

0 24.8% 24.1% 0.0076                  

1-10 29.6% 30.4% 0.0072                  

11-20 11.5% 11.8% 0.0030                  

21-30 8.1% 8.2% 0.0008                  

31-40 6.0% 6.2% 0.0016                  

41-50 4.5% 3.8% 0.0068                  

51-60 3.5% 2.9% 0.0062                  

61-70 2.7% 2.2% 0.0046                  

71-80 1.8% 1.7% 0.0006                  

81-90 1.2% 1.4% 0.0013                  

91-100 0.9% 1.1% 0.0020                  

>100 5.3% 6.3% 0.0097

100.0% 100.0%

Pearson_statistic: 6,262                    

Degrees of Freedom: 7,190

Conditional Moment Test

Degrees of Freedom: Q=12

Covariance Used Test Statistic P-Value

OPG 299.06 <0.05
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Figure 6.4: Specification Test for Default Hazard Process

Default Model

Predicted vs Actual Probabilities

Counts Actual Predicted |diff|

0 82.9% 82.3% 0.0062                  

1 9.1% 9.9% 0.0071                  

2 3.7% 3.8% 0.0014                  

3 1.8% 1.9% 0.0004                  

4 1.2% 1.0% 0.0018                  

5 0.6% 0.5% 0.0010                  

6 0.4% 0.3% 0.0005                  

7 0.1% 0.2% 0.0002                  

8 0.1% 0.1% 0.0001                  

9 0.0% 0.1% 0.0002                  

>=10 0.0% 0.1% 0.0002

100.0% 100.0%

Pearson_statistic= 5,946                    

Degrees of Freedom: 7,195

Conditional Moment Test

Degrees of Freedom: Q=11

Covariance Used Test Statistic P-Value

OPG 10.96                    >0.05
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Table 6.3: Comparison MLEs of Alternative Model Specifications

- the Baseline Prepayment Hazard -

Sample Size: N=7,273

Numver of Mass Particles: M=1000

Numver of Resample Particles: R=1300

Discretization Scheme: Euler

Monthly Time Subintervals: 30

Scale factor: 10
3

Coefficients Constant Polynomial   Polynomial   Polynomial Gamma

(5th Order) (7th Order) (3rd Order)

& Normal Spikes

k1 0.0146                  0.2029                  0.1270                  0.3839                  0.1531                  

1 1.4874                  1.4918                  1.4719                  1.4821                  1.4895                  

0 9.7933                  -0.3666                 -0.4571                 -0.2919                 

1 9.5550                  18.6780                7.6790                  

2 -1.0312                 -28.1040               -7.1967                 

3 -2.2401                 58.5880                2.5453                  

4 -2.5013                 -81.9270               

5 1.8914                  59.5290                

6 -22.0140               

7 3.5197                  

195.7900              

3.2725                  

r 6.0145                  

0.0205                  

11 0.2452                  

8.5908                  

12 0.1868                  

Log-Likelihood -20,660.85            -20,506.17            -19,610.58          -20,600.46          -20,598.55            

K 3 8 10 10 5

N 7273 7273 7273 7273 7273

AIC 41,327.70             41,028.35             39,241.15             41,220.92             41,207.10             

SBC 41,348.38             41,083.48             39,310.07             41,289.84             41,241.56             
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Table 6.4: Comparison MLEs of Alternative Model Specifications

- the Baseline Default Hazard -

Sample Size: N=7,273

Numver of Mass Particles: M=1000

Numver of Resample Particles: R=1300

Discretization Scheme: Euler

Monthly Time Subintervals: 30

Scale factor: 10
8

Coefficients Constant Polynomial   Chi-Square Gamma

(5th Order)

k1 0.3758                  0.1816                  0.5133                  0.4736                  

1 3.8168                  3.7759                  3.9043                  3.6314                  

0 3.6304                  -1.7805                 

1 37.1960                

2 -3.4583                 

3 -17.5780               

4 -12.9140               

5 10.0240                

6

7

65.4550                51.1110                

6.6217                  4.6544                  

r 1.1266                  

11

12

Log-Likelihood -3,419.28              -3,420.25              -3,381.55            -3,364.33              

K 3 8 4 5

N 7273 7273 7273 7273

AIC 6,844.55               6,856.50               6,771.09               6,738.66               

SBC 6,865.23               6,911.64               6,798.66               6,773.12               
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Figure 6.5 The Trend for Prepayment Hazard Process

(Particle Filter Estimate vs Stratified Empirical Estimate)
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Figure 6.6 The Trend for Default Hazard Process

(Particle Filter Estimate vs Stratified Empirical Estimate)
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Chapter 7

Estimation of a two-factor CIR affine term structure model of

interest rate

The coupon rate for an ARM with annual reset is adjusted every year based on a

specified reference index such as the 1-year Treasury bill rate. As a result, an ARM

is path-dependent on the interest rate process. The valuation of the cash-flows for

an ARM also calls for the specification of the instantaneous interest rate.

Previous research (Chen and Scott [45], [46], [47]) indicate that at least two

factors are needed for a model to adequately capture the dynamics of interest rates.

In this chapter, we will specify and estimate a two-factor CIR-type interest rate

model using a state-space framework. As the focus of this research is not on the

interest rate model per-se, we will not elaborate on the characteristics of our model

as compared to other similar models other than present the estimation methodology

and the major results.

7.1 A State-space model of the interest rate with two independent

factors

Under a two-factor CIR model, the instantaneous interest rate is assumed to be

determined by two unobserved independent factors, each evolving according to a

72
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diffusion process.

The State (Transition) Equation

rt = x1
t + x2

t (7.1)

dx1
t = κ1(θ1 − x1

t )dt+ σ1

√
x1
tdw

1
t (7.2)

dx2
t = κ2(θ2 − x2

t )dt+ σ2

√
x2
tdw

2
t (7.3)

The specification of the underlying factors yields a closed-form pricing formula for

a pure discount bond. At each point of time t, a series of yields {yit}Ni=1 with different

maturities are observed and they are assumed to deviate from the theoretical yields

by some observation errors.

The Observation (Measurement) Equation

yit = − 1

τi
log[Pt(τi, x

1
t , x

2
t )] + εi, i = 1, . . . , N (7.4)

Pt(τ, x
1
t , x

2
t ) = A1(t, τ)A2(t, τ)e−B1(t,τ)x1

t−B2(t,τ)x2
t (7.5)

Ai(t, τ) =

[
2γie

1
2

(κi+λi−γi)τ

2γie−γiτ + (κi + λi + γi)(1− e−γiτ )
]2κiθi/σ

2
i

(7.6)

Bi(t, τ) =
2(1− e−γiτ )

2γie−γiτ + (κi + λi + γi)(1− e−γiτ ) (7.7)

γi =
√

(κi + λi)2 + 2σ2
i , i = 1, 2 (7.8)

where {λi} are risk premia for the underlying factors and εi are observation errors,

normally distributed with zero mean and constant variance: εi ∼ N(0, σ2).

With the state-space model fully specified, the particle filter technique for the

bivariate case as discussed in chapter 4 can be used to evaluate the likelihood and

estimate the parameters.

7.2 Data and Results

The data used for the estimation of a two-factor CIR model are obtained using the

Bliss-Nelson-Siegel method. Using an extensive data set on Treasury securities, Bliss
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[28] demonstrated that this method provided best overall results compared to other

traditional methods of obtaining rates of zero-coupon discount bonds such as the

unsmoothed Fama-Bliss method, the smoothed Fama-Bliss method, the McCulloch

cubic spline method, and the Fisher method et al.

Four yield series of different maturities are used in the estimation: 3-month,6-

month,1-year and 10-year yields, covering the period of 1990:01 to 2000:12, the same

period during which ARMs under study are observed. In the proportional hazard

models of ARMs termination, we have identified 1-year and 10-year rate as the

major determinants for refinancing into ARM and FRM respectively. We therefore

put more weights on the model’s ability to capture the dynamics of the yields in

these two maturities. On the other hand, a good fit of the model to the short end of

the term structure of the interest rate is necessary for discounting cash-flows of an

ARM in deriving its risk-neutral value.

Figure 7.1 provides an overview of the yields movement for 3-month, 1-year and

10-year maturities.

The estimates of the model coefficients are presented in Table 7.1. The standard

interpretation in the literature is that one factor represents a “general level” of

interest rates that is closely related to the yield with the longest maturity and

behaves almost like a random walk. This factor is identified here as the factor with

κ2 and σ2. It has weak mean reversion (κ2 = 0.014) and low volatility (σ2 = 0.0595).

The second factor is related to the spread between the yields with the shortest

and longest maturity. It is identified here as the one with κ1 and σ1. It has strong

mean reversion (κ1 = 0.6615) and a large volatility (σ1 = 0.1055).

The mean reversion parameter under the risk-neutral measure is positive for

factor one, κ1 + λ1, but negative for factor two, κ2 + λ2 . This does not pose any

problem. As Jamsshidian [112] shows, in the context of one-factor CIR model, if

κ+ λ < 0, the forward rate volatility curve is upward sloping.



75

Overall, the results are consistent with previous work, both in terms of mag-

nitude and in terms of interpretation. In addition, by utilizing multiple maturities

in the yield curve, the current model is able to capture the dynamics on both the

short, middle and long ends of the term structure and provides a good evaluation

environment for pricing ARMs.
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Figure 7.1: Observed Monthly Treasury Rates
- 1990 to 2000 -
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Table 7.1

Maximum Likelihood Estimation of a Two-factor Model of Interest Rate

Observation Period: January 1990 - December 2000

Sample size: 132

Maturities: 3-motnh, 6-moth, 1-year and 10-year

Number of Mass Particles: 20,000

Number of Mass Particles: 24,000

Number of Subintervals Per Month: 30

Coefficient Estimate Std Err Coefficient Estimate Std Err

0.6615            0.0141            0.0140            0.0065            

0.0417            0.0281            0.0179            0.0094            

0.1055            0.0760            0.0595            0.0231            

-0.0608           0.0353            -0.0540           0.0105            

0.0012            0.0032            

Likelihood 2,451.22         



Chapter 8

Calibration of prepayment and default hazard processes

8.1 Arbitrage Free Condition

In a simplified world where transaction costs are neglected, to avoid arbitrage, an

ARM has to be constructed in such a way that its value at origination has to satisfy

the following condition.

V (t0) = L(1− δ) (8.1)

where V (t0) is the value of the mortgage, L is the loan amount, and δ represents

the points charged upfront. In the real world, the value of a mortgage can deviate

a little bit from the above condition as a result of transaction costs associated with

the arbitrage.

Give a specification of an ARM, its risk-neutral value can be computed using the

valuation formula, as discussed in chapter 3.

V (t0) = EQ[
360∑
i=1

P(τ > ti−1)PV (ti)] (8.2)

P(τ > ti−1) =
i−1∏
j=1

(1− λpj − λpj) (8.3)

PV (ti) = e
R ti
t0
r̂(s)dsCF (ti) (8.4)

r̂(s) = (1− τF )r(s) + l (8.5)

CF (ti) = P{τ = τd}W (ti) + P{τ = τp}A(ti) + P{τ > ti}M(ti) (8.6)

where CF (ti) is the cash-flow at time ti, PV (ti) is the present value of the cash-flow

at time ti, and τF and l are the federal tax rate and liquid premium respectively.
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Eq (8.2) indicates that the valuation of an ARM is the expected conditional

present values of cash streams with respect to a risk-neutral probability measure.

The random variable whose expectation is to be computed is a function of two

underlying random variables: τ , the stopping time, and r, the instantaneous interest

rate. The joint distribution of the stopping time and the instantaneous interest

rate does not have closed-form representation and thus is very difficult to evaluate

directly.

Monte Carlo simulation is widely used in computing expectation of random vari-

ables whose distribution are not tractable, that is, whose expectation is not easy to

compute numerically. In current case, we use Monte Carlo methods to simulate the

stopping time and the instantaneous rate separately and compute the expectation

based on the simulated realization of the two random variables.

8.2 Implementation Scheme

8.2.1 Simulating the stopping time of an ARM

As we mentioned in the previous chapter 3, the stopping time of an ARM is the

function of a stopping time for prepayment and a stopping time for default. τ =

min(τp, τd). Therefore, we can simulate the stopping time for an ARM by simulating

two stopping times: one for prepayment the other for default.

The stopping time for prepayment and default are determined completely by their

respective hazard processes. In chapter 6, we have specified and estimated the base-

line prepayment and baseline default processes based on the historical information

about prepayments and defaults for 203, 016 ARMs. The resultant representation

of the processes are therefore described in the real probability measure. By making

explicit assumptions about the multiplicative and additive risk adjustments, we can
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get the representation of the two processes in the risk-neutral probability measure.

Hazard Diffusion Processes in Real Probability Measure

λp = eβpX
′
p(t)λp0 (8.7)

λd = eβdX
′
d(t)λd0 (8.8)

dλp0 = κp[θpt − λp0]dt+ σp
√
λp0dz

p
P (8.9)

dλd0 = κd[θdt − λd0]dt+ σd
√
λd0dz

d
P (8.10)

Hazard Diffusion Processes in Risk-neutral Probability Measure

λp = eβpX
′
p(t)λp0 (8.11)

λd = eβdX
′
d(t)λd0 (8.12)

dλp0 = µp[κpθpt − (κp + νp)λp0]dt+ µpσp
√
λp0dz

p
Q (8.13)

dλd0 = µd[κdθdt − (κ+ νd)λd0]dt+ µdσd
√
λd0dz

d
Q (8.14)

where µp, µd are multiplicative risk adjustment factors and νp, νd are additive risk

adjustment factors.

With the stochastic processes fully specified in the risk-neutral measure, using

the Euler discretization scheme, we can simulate the evolution of the prepayment

and default hazards and calculate the conditional probabilities of prepayment and

default at any time t. The starting values for both processes are set to values that

are close to zero.

8.2.2 Simulating the instantaneous interest rate

The simulation of the instantaneous interest rate is done via the diffusion process

we have estimated in chapter 7. Since the estimation of a two-factor CIR interest

rate model was based on market data, the process is represented in a risk-neutral
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measure and no further transformation is needed here.

Diffusion Processes for the Instantaneous Interest Rate

r = x1 + x2 (8.15)

dx1 = [κ1θ1 − (κ1 + λ1)x1]dt+ σ1

√
x1dz

1
Q (8.16)

dx2 = [κ2θ2 − (κ2 + λ2)x1]dt+ σ2

√
x2dz

2
Q (8.17)

The discretization scheme is the Euler scheme. The starting values of the two

latent factors at time t are the values that generate the best predicated yields for 4

maturities: 3-month, 6-month, 1-year and 1-year against the actual yields as observed

at time t.

8.2.3 Simulating the cash flows

The cash flow at any given month can be any of three types of payments: M(t),

the scheduled payment, A(t), the payment from prepayment, W (t), the recovery

payment from default.

The scheduled payment M(t) is the monthly payment calculated using the

on-going coupon rate ct, the on-going outstanding mortgage balance Lt and the

remaining term to maturity nt is.

M(t) = Lt
ct/12

1− 1
(1+ct/12)nt

(8.18)

The payoff from a prepayment consists of the outstanding mortgage balance at

time t:

A(t) = Lt (8.19)

Because the coupon rate is re-set every year against the reference index, the 1-year

Treasury bill rate, the on-going outstanding mortgage balance Lt has to be calculated

sequentially using the time-varying coupon rate for each month.
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The recovery payment upon default depends first on whether the loan is insured.

It is assumed here that all loans with LTV > 80% have insurance. It also depends

on the assumption about the basis of recovery. One assumption known as “recovery

of face value” stipulates that the recovery is a function of the outstanding mortgage

balance at the time of default. Assume that the loss rate ω is a stochastic variable

that is proportional to the on-going loan-to-value ratio and independent of the other

stochastic state variables, then the expected recovery payment W (t) can be proved

to have the following representation (see Schönbucher [170])

ω = κLt/H0 (8.20)

W (t) = (φ+ 1− E[ω])

= (1 + φ− κeLt/H0)Lt (8.21)

where φ is the percent insured, κe is the expected value of a random variable κ, H0

is the original house value and the expectation operator is taken with respect to the

risk-neutral measure.

The expected cash-flow at time t CF (t) can then be simulated as follows.

CF (ti) = P{τ = τp}A(ti) + P{τ = τd}W (ti) + P{τ > ti}M(ti) (8.22)

P{τ = τp} = λp (8.23)

P{τ = τd} = λd (8.24)

P{τ > ti} = 1− λp − λd (8.25)

According to Eq(8.2), the risk-neutral value of an ARM can be approximated as

the average value over all the simulated stopping times, instantaneous interest rates

and cash-flows. 1000 simulations have been used with 30 time increments per month

over a 30-year life span of an ARM.

In the estimation of prepayment and default processes in real measure, we have

utilized all three different types of ARMs. Here we focus only on TRS type of ARM
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that is reset annually and uses one year CMT as reference index. The procedure can

be easily applied to other types of ARMs.

Similar to Kau et al. [132], we have assumed that the tax rate is 28% at the

Federal level and 4.32% at the state level. The parameters to be optimized then

include µp, νp, µd, νd, l, κ
e, where l is a liquid premium and κe is the expected loss rate

on default. These parameters will be calibrated through the arbitrage free condition

(8.1)

Specifically, the calibration process amounts to a multi-variable minimization

problem:

min

N∑
n=1

[Vn(t0|Θ)/Ln − (1− δn)]2 (8.26)

Θ = {µp, νp, µd, νd, l, κe}

In the actual calibration, we have used the root mean square error (RMSE)

as the objective function and tried to find a set of parameters that minimizes the

objective function. One implicit assumption associated with using a simple RMSE in

the calibration of a model is that the parameters of interest can be identified in this

way. This assumption is often violated in the practice, due to either data problems

or the misspecification of a model. One usual solution to the problem is to impose

additional restrictions on the parameters or to introduce certain penalty functions

in the objective function using prior knowledge.

It turned out that naive calibration of prepayment and default processes using

RMSE as defined above will not work. Through investigation, we found that the

objective function was a monotonic function of some parameters associated with the

prepayment and default processes.

In particular, as we decrease the additive prepayment risk premium νp into neg-

ative territory, the RMSE will decrease forever, albeit gradually. Likewise, as we

increase the multiplicative prepayment risk premium µp, the RMSE will also decrease
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forever. Furthermore we found that there was a substitution relationship between

the additive prepayment risk premium νp and the multiplicative prepayment risk

premium µp. A given RMSE can be obtained through a high additive risk premium

(in absolute sense) and low multiplicative risk premium, or a low additive risk pre-

mium (in absolute sense) and high multiplicative risk premium. Another key insight

we got from the investigation is that for the same RMSEs, the value decomposition

can be quite different and some of the them definitely are not of interest to us.

The implication is that there will be no optimal solution to the calibration of pre-

payment and default processes using simple RMSE without imposing some restric-

tion on the underlying parameters.1

Therefore, we have adopted a two-stage calibration scheme with certain explicit

constrains on the parameters to be calibrated. Specifically, at stage one, we first

calibrate the prepayment risk parameters using loans with very low LTV ≤ 40%

such that the default impact will be trivial. In addition, we only use loans having

points. At stage two, we then calibrate the default risk parameters using only loans

with high LTV ≥ 90%, holding the prepayment risk parameters fixed. Table 8.1

provide an overview of the loans used in each of the two stages.

We further impose the conditions such that both prepayment and default

processes will remain mean-reverting in the risk-neutral measure. To further narrow

the search for the set of parameters that will render not only small RMSE but also

meaningful value decomposition of a given loan, we also check the value decom-

position associated with each set of parameters returned from the optimization

algorithm. 2

1Given additive and multiplicative risk premium for prepayment and default processes,
we found the RMSE often attains its minimum around a liquid premium equal to 90 bp.

2The procedure employed here differs from conventional way of optimization and is more
like a hybrid of grid search and gradient-based optimization because certain constraints
can not be built into the search process explicitly. The procedure differs from a typical grid
search is that the search direction is still determined by gradient. Without such constraints,
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Jarrow, Lando, and Yu [114] have formally demonstrated that, with sufficient

diversification, the multiplicative risk parameter for default should approach one.

The specification of our model and the rich information afforded by the data provide

an opportunity for us to test their hypothesis.

8.3 Results

The results in Table 8.2 indicate that the multiplicative default risk parameter is not

far from one. While this result is very much dependent on the specification of the

model, at least we can conclude that, in the current setting, it is necessary to only

consider the additive default risk premium and not the multiplicative default risk,

which is likely driven more by idiosyncrasies of the borrowers and can be diversified

away with a large pool.

The multiplicative prepayment risk parameter,3 however, is greater than one,

indicating that its risk can not be diversified away by any means.

Both additive risk adjustments are negative, indicating the lenders’ aversion to

both prepayment and default risk components.

8.4 Pricing Performance

To test the pricing performance, we use another set of 100 loans that were not

used in the calibration and randomly selected from the pool of ARMs with annual

reset, indexed off the one-year CMT rate, to estimate their values and compare

we found the search can be led to wrong direction based on the gradient alone. This may
has something to do with approximation errors of the gradient. See appendix C for the
detailed description of the process.

3The RMSE in the first stage is 2.53% and the mean error is 2.178%



85

them against the true value.4 Table 8.3 shows the profiles of the loans and Table 8.4

provides the overall pricing statistics.

Overall, the performance is satisfactory as far as the RMSE (root mean square

error) is concerned. 5

Our model affords us a unique opportunity to decompose the value into three

parts: value due to scheduled payment, value due to prepayment and value due to

default. For this purpose, we have selected three typical loans with negative, zero

and positive points and computed the value decomposition for each of them. The

results are presented in Table 8.5.

Across the board, the prepayment portion accounts for more than 80% of the

total value while the default portion accounts for less than 1%.

Finally we have investigated the value of prepayment and default options. The

results are presented in Table 8.5. The value of combined option is less than the sum

of the value of prepay option and the value of default option because exercising one

option will preclude exercising the other option.

8.5 Alternative Calibration Implementation Scheme

As we stated earlier, there are problems using simple RMSE as the objective func-

tion and the gradient-based optimization technique to calibrate the prepayment and

default processes in risk-neutral measure. We got over these problems by imposing

certain restrictions on the parameters, some of which are implemented in an ad-hoc,

4The selection criteria used include LTV between 80% to 85%, originated after 1995,
with no prepayment penalty.

5One reason for out-of-sample pricing error being smaller than the in-sample pricing
error is that the out-of-sample is more normal in terms of LTV ratio (80% ≤ LTV ≤ 85%),
compared to the sample used in calibration (LTV ≥ 90%). Using loans with higher than
normal LTV makes it easier to calibrate the default process because the objective function
is then more responsive to the change in the default process.
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non-systematic way. To formalize the process and check the robustness of the para-

meters calibrated for the resultant out-of-sample pricing performance, we approach

the same problem using a different route, one that is based on re-parametrization of

the two processes and a grid search optimization technique.

The re-parametrization allows us to look beyond current model specification

which may be the cause of the problem due to mis-specification. A grid search

technique will avoid errors introduced in the estimation of gradient of the objective

function. While the estimation accuracy of the parameters using a grid search may be

compromised, it will guarantee that the resultant parameters will be in the vicinity

of the true optimal values if they do exist.

The prepayment and default processes still have the same specifications in the

real measure as before.

Hazard Diffusion Processes in Real Probability Measure

λp = eβpX
′
p(t)λp0 (8.27)

λd = eβdX
′
d(t)λd0 (8.28)

dλp0 = κp[θpt − λp0]dt+ σp
√
λp0dz

p
P (8.29)

dλd0 = κd[θdt − λd0]dt+ σd
√
λd0dz

d
P (8.30)
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The specifications of the two processes in risk-neutral measure are generalized to

be the following.

Hazard Diffusion Processes in Risk-neutral Probability Measure

λp = eβpX
′
p(t)λp∗ (8.31)

λd = eβdX
′
d(t)λd∗ (8.32)

log(λp∗) = ap0 + ap1log(λp0) (8.33)

log(λd∗) = ad0 + ad1log(λd0) (8.34)

dλp0 = [(κpθpt − dp0σp)− (κp + dp1σ
p)λp0]dt+ σp

√
λp0dz

p
Q (8.35)

dλd0 = [(κdθdt − dd0σd)− (κd + dd1σ
d)λd0]dt+ σd

√
λd0dz

d
Q (8.36)

Compared to previous specifications, there are two noticeable features with the

current generalized version. The first feature is that the market price of risk follows

the specification proposed by Jun Pan etc [152]. This extended version will allow the

risk premium to change sign over time while the sign of risk premium in the standard

version remains fixed. The second feature, which is due to Antje Berndt etc [20], is

that the multiplicative risk premium is not necessarily a constant function but can

be a function of the baseline hazard rates depending on the coefficient of ap1, a
d
1.

The previous specifications are nested in the generalized version with dp0 = 0, ap1 =

1, dd0 = 0, ad1 = 1 and µp = ea
p
0 , νp = dp1σ

p, µd = ea
d
0 , νd = dd1σ

d.

Adding liquid premium, liqp and loss rate on default, loss , the set of parameters

to be optimized is dp0, d
p
1, a

p
0, a

p
1, d

d
0, d

d
1, a

d
0, a

d
1, loss, liqp.

The optimization of the parameters using a grid search proceeds in two stages. At

stage one, we examine how the objective function changes in response to a change

in one parameter. The aim is to understand the overall behavior of the objective

function so that some of the insights can help us in determining the search direction

and feasible domain for each parameter. The search stride is set large enough so
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that the trend of the objective function can be clearly assessed. In determining the

feasibility of a value for a parameter, we consider not only the objective function but

also the implication on decomposition of the loans. Values that may result in trivial

loan decomposition are considered not feasible for a parameter and are excluded

from the search domain.

At stage two, we narrow the search domain for each parameter and use a relatively

small stride. In the process, we first look for a set of parameters that will produce the

smallest RMSE. When two RMSEs only differ in non-significant digits, we then look

for smallest average error (in an absolute sense). Along the way, we also check the

implication for stationarity of the processes.6 Other things being equal or close, we

choose a stationary process over a non-stationary one. Within the same stationary

process, we choose a small multiplicative risk premium over a large one.

The grid search optimization is not very efficient when a large number of parame-

ters are involved. Therefore, at stage two, we calibrate the parameters for prepayment

process first using a set of loans that have very low LTV (≤ 40%) and high points,

rendering the probability of any default trivial. Since the default process is no longer

at work, we can focus on the calibration of the prepayment process only. Once the

prepayment process is calibrated, we then use another set of loans with high LTV

(≥ 90%) to calibrate the default process. The value of a mortgage with high LTV

is more responsive to the default process than a mortgage with modest or low LTV,

which will make it easier for us to find the optimal parameters for the default process.

After both processes have been calibrated, we use a third set of loans with normal

LTVs (between 80% to 85%) for out-of-sample pricing performance evaluation.

6In current context, a process is considered to be stationary if it is mean-reverting.
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The results are presented in Table 8.2a. 7 For easy comparison, the parameters

have been converted to their equivalency using the previous notation.

Compared to results in Table 8.2, the alternative calibration scheme produced a

set of optimal parameters with similar magnitude. Conclusions that are consistent

with previous findings can also be drawn. The multiplicative default risk parameter is

not far from one, indicating the idiosyncrasies of the default event can be diversified

away. The multiplicative risk premium for prepayment is greater than one, indicating

that the event has more to do with overall economic environment and less to do

with the idiosyncrasies of the borrowers. 8 When mortgages are affected by common

factors, a diversification strategy will no longer work.

Table 8.4a reports the out-of-sample pricing performance using the optimal para-

meters obtained from the alternative calibration scheme. Notice that we have used

the very same set of loans for performance testing as is used previously, so that the

testing results are comparable. The pricing performance is about as good as the

previous one. 9

Table 8.5a reports the decomposition of value for three loans selected from the

set of loans used in pricing performance test. They differ mainly in points charged

upfront. The first loan has negative points, the second loan has no points, and the

third loan has positive points. They are the same loans used in the previous value

decompositions and thus the decomposition of the values are comparable to one

other.

7To facilitate comparison between two calibration schemes, we have used the same set
of loans for both calibrations whenever applicable. The RMSE in the first stage is 1.976%
and the mean error is 1.589%

8These findings are also consistent with results in Chapter 5 that accounting for the
idiosyncrasies of the borrowers in estimating the hazard rate does not yield much improve-
ment over a simple Kaplan-Meier estimate treating everyone equal.

9The set of loans used in performance test are mainly those originated during 1998.
We also tested the pricing performance on another two set of loans. One consists of loans
originated between 1995 to 1996. The RMSE is 1.2246%, with mean error of 0.05%. Another
consists of loans originated in 2000. The RMSE is 0.8467% with mean error of −0.33%
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In all cases, prepayment accounts for more than 80% of the total value while

the default accounts for less than 1% of the total value. The decompositions, while

different from previous results, have similar magnitude as before so similar and

consistent conclusions can still be drawn. The same point can be made regarding

the values of the options.

If the focus is on explanation rather than prediction and trading, then we have

demonstrated here that our calibration process is quite robust and can serve this

purpose reasonably well.

8.6 Application

After the calibration is completed, we can use the model to analyze how the value

of a given loan will change with respect to the major components of the loan. This

type of analysis will help lenders to customize their loan offering to different people

while maximizing the value of the loan.

We select one loan from the sample and vary the values for major loan com-

ponents such as coupon rate, LTV, margin, ceiling and points. Using the original

setting as the base case, for each of those components except for LTV, we change

the values by ±100 basis points from the base and then estimate the corresponding

values using the model.

The detailed results of the analysis are summarized in Table 8.6. The analysis

shows that the two most important value drivers for a loan are the margin and

coupon rate. LTV comes next as an important driver of mortgage.

8.7 Conclusions

ARMs are more vulnerable to prepayment and default risk than FRMs, as indicated

by their higher prepayment and default frequency. Understanding the dynamics of



91

prepayment and default is therefore very important to lenders of ARMs, and to

a larger extent, the general investors who have exposure to ARMs. Due to their

complexity, the existing research on prepayment and default for ARMs has adopted

a static, simplified approach to the problem. The work we have completed here is

an attempt to improve our understanding on how prepayment and default affect

the value of an ARM and on how the risk premiums are factored into the total

value. Given that the market for ARMs is highly illiquid compared to FRMs, this

understanding will better facilitate risk management on the part of lenders.

Utilizing the rich historical information about the prepayment and default from a

substantial number of ARMs, we have built a unified model that takes into considera-

tion loan idiosyncrasies, general economic environment and interest rate uncertainty.

The approach lends itself to lots of future practical applications since the information

that is used in the model is readily available and observable. Our effort is consistent

with the current trend in the academic community that more and more academic

researches should have a real world orientation.

However, the work we have just completed is far from perfect. For simplicity, we

have assumed independence between prepayment and default when we estimated

stochastic processes for prepayment and default. This independence is not consis-

tent with the competing nature of the risks. We made an attempt to incorporate

explicit correlation between prepayment and default processes using particle filter

technique without much success. The major hurdle is that estimating the likelihood

of a joint distribution using particle filter technique often encounters numerical prob-

lems whenever the covariance matrix becomes singular. The particle filter technique

is very sensitive to outliers and is not suitable for non-diffusion processes. Some

of the prepayments and defaults obviously cannot be accounted for using diffusion

processes.
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As far as valuation is concerned, prepayment is clearly the dominant factor,

while default is less an issue. Given the limited information available to us, it is very

difficult to come up with a satisfactory specification for prepayment. The current

specification of the model fails to capture apparent prepayment jumps observed

during the first couple of years of a typical ARM. Adding a spike function to the

mean-reverting function did not help a lot as long as we continued using diffusion

process for prepayment. The very notion of mean-reverting for prepayment may be

questionable in the first place.

Another important factor that is not accounted for in our study is the borrowers’

idiosyncrasies, due to lack of relevant information. For that matter, no single model

can ever capture those behaviors that may not be explained using conventional

assumption of a rational economic agent.
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Table 8.1

Loans Used in Two-stage Calibration

Loan Profile for Calibrating Prepyament Risk Parameters

Original Loan Amount Initial Coupon Rate LTV Margin Ceiling Points

Ave $145,505 5.87                            30.88             3.57        12.29   1.70

Median $91,500 5.63                            32.00             2.75        12.50   1.69

Max $1,000,000 8.88                            40.00             10.00      14.13   2.50

Min $25,000 3.75                           12.00           1.75      9.88   1.50

Loan Profile for Calibrating Default Risk Parameters

Original Loan Amount Initial Coupon Rate LTV Margin Ceiling Points

Ave $126,571 4.92                            94.64             3.20        11.11   0.99

Median $130,565 5.00                            95.00             2.75        10.88   1.00

Max $298,000 6.63                            100.00           10.00      12.50   2.00

Min $19,250 3.25                           91.00           2.13      9.88   -2.00

Table 8.2

Monte Carlo Calibration Results

Number of Loans Used: 100

Number of Simulations: 1000

Disretization Scheme: Euler

Monthly Time Intervals: 30

Coefficient Estimate

_p 2.2341

_p -0.1091

_d 1.1096

_d -0.1225

Loss Rate 38.7%

Liquidity 0.93%

RMSE(%) 1.5107
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Table 8.3

Loans Used for Pricing Performance Test

Original Loan Amount Initial Coupon Rate LTV Margin Ceiling Points

Ave $462,411 5.74                            80.27    2.63        11.02   -0.70

Median $396,400 5.75                            80.00    2.50        10.88   -1.00

Max $2,800,000 6.75                            85.00    3.00        11.88   1.25

Min $91,200 4.88                           80.00  2.13      9.88   -1.25

Table 8.4

Pricing Performance Statistics

RMSE 0.77%

Mean Pricing Error -0.22%

STD of Pricing Error 0.74%
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Table 8.5

Value Decomposition

Loan Profile

1 2 3

Original Loan Amount $127,500 $255,000 $271,920

Initial Coupon Rate 5.63                5.75                4.88                

LTV(%) 84.00              80.00              80.00              

Margin 2.75                2.50                2.50                

Ceiling 10.88              10.88              10.88              

Points(%) -0.38               -                  1.25                

Actual Value $127,978 $255,000 $268,521

Estimated Value $127,944 $256,494 $271,018

Relative Error -0.03% 0.59% 0.93%

Decomposition

From scheduled payment $24,175 18.9% $44,220 17.2% $47,744 17.6%

From prepayment $102,850 80.4% $211,314 82.4% $222,355 82.0%

From default $918 0.7% $960 0.4% $919 0.3%

Total $127,943 $256,494 $271,018

Value of Options

No Risk $134,201 $266,591 $281,054

Prepay Risk Only $128,164 $256,908 $271,412

Default Risk Only $131,977 $263,426 $278,159

Both Risks $127,944 $256,494 $271,018

Value of Prepay Option $6,037 $9,683 $9,642

Value of Default Option $2,224 $3,165 $2,895

Value of Combined Option $6,257 $10,097 $10,036



96

Table 8.1a

Loans Used in Two-stage Calibration

Loan Profile for Calibrating Prepyament Risk Parameters

Original Loan Amount Initila Coupon Rate LTV Margin Ceiling Points

Ave $145,505 5.87                            30.88             3.57        12.29   1.70

Median $91,500 5.63                            32.00             2.75        12.50   1.69

Max $1,000,000 8.88                            40.00             10.00      14.13   2.50

Min $25,000 3.75                           12.00           1.75      9.88   1.50

Loan Profile for Calibrating Default Risk Parameters

Original Loan Amount Initila Coupon Rate LTV Margin Ceiling Points

Ave $126,571 4.92                            94.64             3.20        11.11   0.99

Median $130,565 5.00                            95.00             2.75        10.88   1.00

Max $298,000 6.63                            100.00           10.00      12.50   2.00

Min $19,250 3.25                           91.00           2.13      9.88   -2.00

Table 8.2a

Monte Carlo Calibration Results

Number of Loans Used: 100

Number of Simulations: 1000

Disretization Scheme: Euler

Monthly Time Intervals: 30

Coefficient Estimate Coefficient Estimate

d0_p 0.0000

d1_p -0.0660 _p -0.0972

a0_p 1.2000 _p 3.3201

a1_p 1.0000

d0_d 0.0000

d1_d -0.0330 _d -0.1209

a0_d 0.2500 _d 1.2840

a1_d 1.0000                        

Loss Rate 40.0% 40.0%

Liquidity 0.92% 0.92%

RMSE(%) 1.4055                       1.4055



97

Table 8.3a

Loans Used for Pricing Performance Test

Original Loan Amount Initial Coupon Rate LTV Margin Ceiling Points

Ave $462,411 5.74                            80.27    2.63        11.02   -0.70

Median $396,400 5.75                            80.00    2.50        10.88   -1.00

Max $2,800,000 6.75                            85.00    3.00        11.88   1.25

Min $91,200 4.88                           80.00  2.13      9.88   -1.25

Table 8.4a

Pricing Performance Statistics

RMSE 0.87%

Mean Pricing Error -0.50%

STD of Pricing Error 0.72%
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Table 8.5a

Value Decomposition

Loan Profile

1 2 3

Original Loan Amount $127,500 $255,000 $271,920

Initial Coupon Rate 5.63                5.75                4.88                

LTV(%) 84.00              80.00              80.00              

Margin 2.75                2.50                2.50                

Ceiling 10.88              10.88              10.88              

Points(%) -0.38               -                  1.25                

Actual Value $127,978 $255,000 $268,521

Estimated Value $127,699 $256,117 $270,648

Relative Error -0.22% 0.44% 0.79%

Decomposition

From scheduled payment $21,131 16.5% $38,692 15.1% $41,766 15.4%

From prepayment $105,804 82.9% $216,640 84.6% $228,126 84.3%

From default $765 0.6% $785 0.3% $756 0.3%

Total $127,699 $256,117 $270,648

Value of Options

No Risk $134,720 $267,363 $281,976

Prepay Risk Only $127,889 $256,472 $270,988

Default Risk Only $132,146 $263,753 $278,663

Both Risks $127,699 $256,117 $270,648

Value of Prepay Option $6,831 $10,891 $10,988

Value of Default Option $2,574 $3,610 $3,313

Value of Combined Option $7,021 $11,246 $11,328
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Table 8.6 Application
 ~ Sensitity Analysis of Mortgage Value ~

Loan Profile

Origination Year 1999

Origination Month 5

Loan Size $114,300

Coupon Rate (%) 5.25

LTV (%) 84.04

Teaser (%) 1.94

Annual Cap (%) 2

Margin (%) 2.5

Ceiling (%) 10.875

Points (%) 2.125

Acutal Value $111,871

Estimated Value $113,567

Pricing Error 1.52%

Sensitivity Analysis

Loan Components Value Decomposition ($) Value Decomposition (%)

Value Payment Prepay Default PCHG Payment Prepay Default

Coupon Rate (%)

4.25 $112,030 $25,569 $85,796 $665 -1.35% 22.8% 76.6% 0.6%

5.25 $113,567 $26,345 $86,467 $755 0.00% 23.2% 76.1% 0.7%

6.25 $114,770 $27,160 $86,761 $849 1.06% 23.7% 75.6% 0.7%

LTV (%)

74 $113,615 $26,145 $87,121 $349 0.04% 23.0% 76.7% 0.3%

84.4 $113,567 $26,345 $86,467 $755 0.00% 23.2% 76.1% 0.7%

94 $113,505 $26,504 $85,542 $1,460 -0.05% 23.4% 75.4% 1.3%

Margin (%)

1.5 $111,730 $26,467 $84,558 $704 -1.62% 23.7% 75.7% 0.6%

2.5 $113,567 $26,345 $86,467 $755 0.00% 23.2% 76.1% 0.7%

3.5 $114,882 $26,406 $87,682 $794 1.16% 23.0% 76.3% 0.7%

Ceiling (%)

9.875 $113,592 $27,050 $85,806 $736 0.02% 23.8% 75.5% 0.6%

10.875 $113,567 $26,345 $86,467 $755 0.00% 23.2% 76.1% 0.7%

11.875 $113,543 $25,660 $87,110 $773 -0.02% 22.6% 76.7% 0.7%

Points (%)

1.125 $113,547 $25,612 $87,185 $750 -0.02% 22.6% 76.8% 0.7%

2.125 $113,567 $26,345 $86,467 $755 0.00% 23.2% 76.1% 0.7%
3.125 $113,587 $27,100 $85,728 $759 0.02% 23.9% 75.5% 0.7%
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Appendix A

Proof of theorem (4.2.1)

f̂(yt|θ;Ft−1) =
∫
f(yt|xt) 1

N
{
N∑

i=1

f(xt|xit−1)dxt}

=
1
N

N∑

i=1

{
∫
f(yt|xt)f(xt|xit−1)dxt}

=
1
N

N∑

i=1

{
∫
witf(xt|xit−1)dxt}

=
1
N

N∑

i=1

wit QED
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Appendix B

Algorithm: Maximum Likelihood Estimation Using Particle Filter

Module 1: Evaluate the Likelihood of Total Observations f(θ)

• Convert the parameter vector θ into parameters as they exists in the models

• Set the random seed

• For i = 1, N (filtering through the time series stratum: {Y i
tj})

– Initialize the state vector Xt0

– For j = 1, Ni (filtering through the observation within the strata)

∗ Calculate the likelihood logfij and estimate state vector Xtj for [tj−1, tj ]

· Evaluate the likelihood of a single period: logfij = f(Xtj−1, Xtj , Y
i
tj )

– Set Xtj−1 = Xtj

– End for (j loop)

• End for (i loop)

• Return f(θ) =
∑N

i=1

∑Ni
j=1 logfij
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Module 2: Evaluate the Likelihood of a Single Period f(Xt−1, Xt, Yt)

• For i = 1,M (the number of particles)

– Propagate through the transition equation: xit ∼ p(Xt|xit−1)

– Attache a weight to each particle based on the observation equation: wi ∼
f(Yt|xit)

• End for (i loop)

• Calculate the mean of the weights: w̄ = 1
M

∑M
i=1wi

• If w̄ ≤ vsmall (vsmall is a machine dependent parameter)

– logft = log(vsamll)

– Issue a warning: all weights are too samll

– Xt = Xt−1 or re-initialize the state vector

– Return f(Xt−1, Xt, Yt) = logft

• Else

– logft = log(w̄)

• End if

• Normalize w∗i = wiPM
i=1 wi

• For i = 1,M

– Smooth re-sampling:{x∗it}Mi=1 = RESAMPLE[xit, w
∗
i ]
M
i=1




Do piecewise-smoothing re-sampling if univariate

Do Normal-Kernel-smoothing re-sampling if bivariate

• End for

• Xt = {x∗it}Mi=1

• Return f(Xt−1, Xt, Yt) = logf



Appendix C

Calibration Process

The calibration proceeds in three steps:

Step 1: using low LTV loans and high points, we first calibrate the prepayment process

and liquidity premium. Based on intermediate output from the minimization routine, we

can see how the routine goes about searching for the optimal set of values. To minimize

the pricing error, without any further constraints, the routine tends to increase the pre-

payment speed first by increasing the values for additive risk premium and multiplicative

risk premium. After several iteration, the additive risk premium reaches a point that the

risk-neutral process is no longer mean-reverting in the risk-neutral measure. While the

objective function still decreases, the pace of decreasing is very slow and the decomposi-

tion of the loan approaches more and more to a trivial case where most payments come

from prepayment. Since there is no easy way to explicitly incorporate all those constraints

of economic significance into the minimization process, we have adopted an trial and error

approach to stop the minimization routine for the prepayment process.

Step 2: given the parameters for prepayment process from step one, we then calibrate

the default process using loans with high LTVs, loss rate and liquidity premium, applying

the same principle as we do at step one. If we find that a given set of parameters for the

prepayment process can not lead to a meaningful convergence in step two, we go back to

step one and select another set of parameters. We find that a proper selection of parameters

for the prepayment process will determine a proper convergence for the default process.

Step 3: We test the pricing performance using loans with normal LTVs and points.

If the pricing performance is not within reasonable range or the decomposition of the

values do not have any economic significance, we go back to step one and start the process
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all over again. To avoid the minimization routine to search in the invalid domain of the

parameters, parameters for speed of adjustment, diffusion,loss rate, liquidity premium are

log-transformed to ensure positivity of the parameters prior to being used in the routine.




