
Generalized Quasi-Likelihood Ratio Test for Semiparametric Analysis of

Covariance Models in Longitudinal Data

by

Jin Tang

(Under the direction of Yehua Li)

Abstract

Semiparametric regression models have been wildly applied into the longitudinal data.

In this dissertation, we model generalized longitudinal data from multiple treatment groups

by a class of semiparametric analysis of covariance models, which take into account the

parametric effects of time dependent covariates and the nonparametric time effects. In these

models, the treatment effects are represented by nonparametric functions of time and we

propose a generalized quasi-likelihood ratio (GQLR) test procedure to test if these functions

are the same. We first consider an estimation approach for our semiparametric regression

model based on profile estimation equations combined with local linear smoothers. Next, we

describe the proposed GQLR test procedure and study the asymptotic null distribution of

test statistic. We find that the much celebrated Wilks phenomenon which is well established

for independent data still holds for longitudinal data if variance is estimated consistently,

even though the working correlation structure is misspecifed. However, this property does not



hold in general, especially when the wrong working variance function is assumed. As for the

power of the proposed GQLR test, our empirical study shows that incorporating correlation

into the GQLR test does not necessarily improve the power of the test. A more extensive

simulation study is conducted in which the Wilks Phenomenon is investigated under both

Gaussian and Non-Gaussian longitudinal data and a wider variety of scenarios. The proposed

methods are also illustrated with two real applications from AIDS clinical trial and opioid

agonist treatment.

Index words: Generalized quasi-likelihood ratio test, Semiparametric regression,
Longitudinal data, Kernel smoothing, Bootstrap, Hypothesis testing,
Analysis of variance, Functional data.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

In many longitudinal studies, the response variable is repeatedly measured during the follow-

up and the treatment effects are represented as functions over time. The responses within

the same subject are usually strongly correlated, while the variation between subjects, even

within the same treatment group, is large. One example in our research is from an AIDS

clinical trial study. This data involved 1309 AIDS patients with CD4 counts of less than

or equal to 50 cells/mm3. They were randomized to into four treatment groups and their

CD4 counts were measured at baseline and at 8-week intervals during the 40 weeks of follow-

up. The measurement times are unbalanced and irregular. We can describe the treatment

effects as smooth functions over time. Therefore, it is desirable to model the time effect

nonparametrically, while modeling all other covariate effects parametrically.

In our study, we consider a marginal semiparametric model that consists of q treat-

ment groups, and the kth group comprises nk independent clusters (subjects) with the ith

cluster consisting mk,i repeated measures over a time interval T . All subjects are indepen-

dent, but the observations within a subject are correlated. Let Yk,ij and (XXXk,ij, Tk,ij) be

the response variable and covariates for the jth visit of the ith subject in the kth group,

where XXXk,ij is a p-dim covariate vector whose effect is modeled parametrically and Tk,ij is

1
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a scalar covariate (e.g. the visiting time) whose effect is modeled nonparametrically. Denote

YYY k,i = (Yk,i1, . . . , Yk,imk,i)
T, XXXk,i = (XXXk,i1, . . . ,XXXk,imk,i)

T and TTT k,i = (Tk,i1, . . . , Tk,imk,i)
T, and

let the conditional mean and variance of the response be E(Yk,ij|XXXk,ij, Tk,ij) = µk,ij and

var(Yk,ij|XXXk,ij, Tk,ij) = σ2(µk,ij), where σ2(·) is a conditional variance function. Given that

the subject belongs to the kth treatment group, the relationship between Y and (XXX,T ) is

modeled by

g(µµµk,i) = XXXk,iβββ + θk(TTT k,i), k = 1, . . . , q, i = 1, . . . , nk, (1.1)

where g(·) is a known link function, βββ is a p-dim regression coefficient vector, and θk(·)’s are

nonparametric functions.

The covariate vector XXX often contains the baseline information about the subjects (e.g.

age and gender) which need to be controlled in order to have a fair comparison of the treat-

ment effects, and therefore its effect is of less interest for our particular problem. Moreover, it

is well known that, in a semiparametric model like (1.1), the parametric component βββ can be

estimated with a root-n convergence rate and the estimator is asymptotically normal. One

can easily construct Wald type of tests for various hypotheses regarding βββ. It is of primary

interest to us to test the treatment effects, which are represented by θk(t)’s. Specifically the

hypotheses of interest are

H0 : θ1 = · · · = θq vs. H1 : not all θk’s are the same. (1.2)

Since the treatment effects are represented by nonparametric functions, model (1.1) can

be considered as a class of functional ANOVA model. Some related literature includes, Brum-

back and Rice (1998), Morris and Carroll (2006) and more recently Zhou et al. (2011). A

common approach in these papers is to express each trajectory as a linear combination of
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some basis functions and adapt the coefficients into a linear mixed model. Such hierarchical

models usually require a relatively large number of repeated measures in each cluster and

many random effects to capture the features of each longitudinal trajectory. In contrast,

our method does not require a large number of repeated measures and is applicable to the

so-called sparse functional data (Yao, Muller and Wang, 2005). More importantly, these

conditional methods provide pointwise confidence intervals for θk’s, which can not replace a

rigorous test as we are about to propose.

1.2 Literature review

1.2.1 Estimation of marginal semiparametric regression models

There is a vast volume of work on semiparametric models for longitudinal data. Suppose

that Yij and (XXX ij, Tij) are the response variable and covariates of the jth observation of ith

subject. Consider a marginal semiparametric generalized partially linear model

g(µij) = XXXT
ijβββ + θ(Tij),

where µij = E(Yij|XXX ij, Tij), g(·) is a link function, βββ is a p×1 vector of regression coefficients

and θ(t) is a smooth function. This model is a special case of our model (1.1) with only one

treatment group.

Zeger and Diggle (1994) considered this semiparametric model in the Gaussian case. They

estimated θ(t) by local polynomial kernel smoothing ignoring the within-cluster correlation,

and estimated βββ by a weighted least square accounting for the within-cluster correlations.

Severini and Staniswalis (1994) proposed an approach based on profile-kernel Generalized



4

Estimating Equations (GEEs). Lin and Carroll (2001) considered another class of profile-

kernel estimating equations allowing different working correlation matrices in estimating βββ

and θ(t) and using local linear kernel estimating equations for θ(t) instead of local average

kernel equations. They showed that the estimator β̂ββ is
√
n-consistent when the correlation

structure is ignored completely or the nonparametric component θ(t) is undersmoothed. In

fact, such an estimator of βββ is not semiparametric efficient if one accounts for correlations.

More efficient kernel estimators were proposed by Wang et al. (2003, 2005). They estimated

θ(t) by solving a kernel estimating equation accounting for within-subject correlations, and

estimated βββ by solving a profile-type equation, which requires an iterative procedure.

Here we briefly describe the method proposed by Lin and Carroll (2001) since our esti-

mation procedure is based on it. Denote Kh(t) = h−1K(t/h), where K(·) is a symmetric

probability density function and h is the bandwidth. Denote Ui(t) = (Ui1(t), . . . ,Uimi(t))
T

with Uij(t) = {1, (Tij − t)/h}T , µij(XXX ij, t) = g−1{XXXT
ijβββ + UT

ij(t)ααα} with ααα = (α0, α1)T, and

∆i(XXX i, t) = diag{µ(1)
ij }

mi
j=1, where µ

(1)
ij is the first derivative of µ(·) = g−1(·) evaluated at

XXXT
ijβββ + UT

ij(t)ααα. To get estimators of the finite-dimensional parameter βββ and the infinite-

dimensional parameter θ(t), two estimating equations need to be solved.

Given βββ, let α̂αα(t) = (α̂0, α̂1)T be the solution of

n∑
i=1

Ui(t)
T∆i(XXX i, t)K

1/2
h (TTT i − t)V−1

1i K
1/2
h (TTT i − t){YYY i − µµµi(XXX i, t)} = 0, (1.3)

where Kh(TTT i − t) = diag{Kh(Tij − t)}mij=1, µµµi = {µij}mij=1, and V1i is a working covariance.

The kernel GEE estimator of θ(t) is θ̂(t;βββ) = α̂0.

Next, we can estimate βββ by solving the following profile estimating equation

n∑
i=1

∂µµµ{XXX iβββ + θ̂θθ(TTT i;βββ)}T

∂βββ
V−1

2i [YYY i − µµµ{XXX iβββ + θ̂θθ(TTT i;βββ)}] = 0, (1.4)
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where V2i is another working covariance matrix, which can be different from V1i.

Lin and Carroll (2001) derived the asymptotic properties of the estimators described

in equations (1.3) and (1.4). In our study, we are interested in extending these results to

model (1.1) with multiple treatment groups and testing if the nonparametric functions from

different treatment groups are the same.

1.2.2 Generalized likelihood ratio tests on nonparametric models

The generalized likelihood ratio (GLR) test was proposed by Fan et al. (2001) and Fan and

Jiang (2005), who showed that it is a general methodology for testing various nonparametric

hypotheses in many useful models, including nonparametric regression models, varying coef-

ficient models and additive models. We briefly review the local linear approach proposed by

Fan et al. (2001) to construct a GLR test statistic in varying-coefficient models.

Suppose that {Yi, Xi, Ti}ni=1 are a random sample from the model

Yi = A(Ti)Xi + εi, i = 1, · · · , n,

where {εi} are i.i.d. random variables from N(0, σ2). For simplicity, suppose that Xi is a

1-dim covariate, and A(·) is an unspecified smooth function.

First, we construct the estimators of the nonparametric component A(t) and the variance

σ2. Denote ααα(t) = {α0(t), α1(t)}T, and Ui = {Xi, Xi(Ti− t)/h}T. For each given t, the local

maximum likelihood estimator α̂αα(t) can be obtained by maximizing the local log-likelihood

`(ααα) = −nlog(
√

2πσ)− 1

2σ2

n∑
i=1

(Yi −αααTUi)
2Kh(Ti − t)
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with respect to ααα. The local linear kernel estimator of A(t) is Â(t) = α̂0(t). The estimated

variance σ̂2 maximizes

` = −nlog(
√

2πσ)−
∑

i{Yi − Â(Ti)Xi}2

2σ2

with respect to σ2.

Consider the hypothesis testing problem:

H0 : A = A0, H1 : A 6= A0,

where A0 is a known function. Define sums of squares RSS0 =
∑

i{Yi − A0(Ti)Xi}2 and

RSS1 =
∑

i{Yi − Â(Ti)Xi}2, the maximum log-likelihoods under the null and alternative

hypotheses are

`n(H0) = −(n/2)log(2π/n)− (n/2)log(RSS0)− n/2,

and

`n(H1) = −(n/2)log(2π/n)− (n/2)log(RSS1)− n/2.

Taking the difference between `n(H0) and `n(H1) leads to the generalized likelihood ratio

test statistic

λn(A0) = `n(H1)− `n(H0) =
n

2
log

RSS0

RSS1

≈ n

2

RSS0 −RSS1

RSS1

.

Fan et al. (2001) showed that the asymptotic distribution of λn(A0) is a χ2 distribution

independent of the unknown parameter A(t). This allows us to easily obtain critical values

for the GLR tests using either the asymptotic chi-square distribution or a bootstrap method.

In general, the above approach can be extended to various composite hypothesis tests, such

as testing linearity of the coefficient functions (Fan et al., 2001) and testing the significance

of variables in additive models (Fan et al., 2005).
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1.2.3 Semiparametric generalized likelihood ratio test for variable selec-

tion

Variable selection is fundamental in statistical modeling. A variety of variable selection pro-

cedures for parametric models have been studied, including bridge regression (Frank and

Friedman, 1993), LASSO (Tibshirani, 1996) and nonconcave penalized likelihood (Fan and

Li, 2001). For semiparametric regression models, a key challenge of variable selection is that

it includes selection of significant variables in both parametric and nonparametric compo-

nents. Li and Liang (2008) considered a generalized varying-coefficient partially linear model.

They adopted a penalized likelihood approach to select the parametric components and used

generalized likelihood ratio tests to select the nonparametric components, thus extended the

generarlized likelihood ratio test from fully nonparametric models to semiparametric models

for variable selection.

Let Y be a response variable and {XXX,Z, T} be the covariates. The generalized varying-

coefficient partially linear model based on n i.i.d. samples is given by

g{µ(Ti,XXX i,Zi)} = XXXT
i βββ + ZT

i θθθ(Ti), i = 1, · · · , n,

where µ = E(Y |XXX,Z, T ), g(·) is a link function, βββ is a q × 1 unknown coefficient vector and

θθθ(Ti) is a p× 1 vector of unspecified smooth functions.

To estimate βββ and θθθ(t), Li and Liang(2008) proposed the following procedure:

• Step I. Denote aaa = (a1, · · · , ap)T and bbb = (b1, · · · , bp)T, then the initial local estimators

(β̂ββ
T
, âaaT, b̂bb

T
)T maximize

∑
i

Q[g−1{aaaTZi + bbbTZi(Ti − t) +XXXT
i βββ}, Yi]Kh(Ti − t), (1.5)
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where Q(·) is a quasi-likelihood function (McCullagh, 1983). The local linear estimator

is θ̂θθ(t) = âaa.

• Step II. The initial estimator of βββ was estimated locally, hence not efficient. In this

step, we update β̂ββ by maximizing the global penalized likelihood

n∑
i=1

Q[g−1{ZT
i θ̂θθ(Ti) +XXXT

i βββ}, Yi]− n
q∑
j=1

Pλj(|βj|) (1.6)

with respect to βββ, where θ̂θθ(Ti) is the initial estimator obtained from step I, and Pλj(·) is

a prespecified penalty function with a regularization parameter λj chosen by generalized

cross validation (GCV).

• Step III. Replacing βββ in (1.5) by estimator β̂ββ, we can update θ̂θθ(t) by maximizing the

local likelihood function (1.5) again.

Now, we consider the following hypotheses:

H0 : θ1(t) = · · · = θp(t) = 0, vs. H1 : not all θk’s are 0.

Define β̂ββF and θ̂θθF (t) as the estimators under the alternative hypothesis, and β̂ββR as the

estimator under the null hypothesis. Denote K ∗K as the convolution of the kernel function

K, so that K ∗ K(t) =
∫∞
−∞K(s)K(t − s)ds. The generalized quasi-likelihood ratio test

statistic can be expressed as

TGLR = rk{`(H1)− `(H0)},

where

rk =

{
K(0)− 1

2

∫
K2(t)dt

}{∫
{K(t)− 1

2
K ∗K(t)}dt

}−1

,
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`(H0) =
∑
i

Q{g−1(XXXT
i β̂ββR), Yi},

`(H1) =
∑
i

Q{g−1(θ̂θθ
T

F (Ti)Zi +XXXT
i β̂ββF ), Yi}.

The penalized quasi likelihood (1.6) selects the non-zero components in βββ by forcing the

insignificant components to be 0. The nonparametric test has the same theoretical properties

as in Fan et al. (2001). The nonparametric tests in Fan et al. (2001, 2005) and Li and

Liang (2008) were proposed for independent data. Extensions of these results to longitudinal

data have not been studied and we want to investigate the effect of correlation on the null

distribution and power of the generalized quasi-likelihood ratio tests.

1.3 Outline of the dissertation

As discussed above, the development of GLR tests has provided us general and powerful tools

to address various nonparametric testing problems. The contributions in this dissertation is

to develop a generalized quasi-likelihood ratio (GQLR) test to detect the treatment effects

for longitudinal data with multiple treatment groups.

In Chapter 2, we propose profile-kernel equation methods to estimate the parameters in

model (1.1) under both the null and alternative hypotheses in (1.2), and study the asymptotic

properties of the proposed estimators. Under some regularity conditions, the proposed esti-

mators of parametric parameters are
√
n-consistent and asymptotically normal. The asymp-

totic expansions of the nonparametric components are derived as well.

In Chapter 3, we propose a new GQLR test and study its null distribution. Our theoretical

results indicate that the Wilks phenomenon proved by Fan et al. (2001) for independent data

continues to hold in our hypothesis testing if the variance function is correctly specified and
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consistently estimated, while the within-cluster correlation can be completely misspecified.

However, the Wilks phenomenon does not hold in general. In addition, we derive the local

power of the GQLR test and show that the proposed test achieves the minimax power

rate. We also describe the estimating algorithm for our semiparametric model and bootstrap

procedures to estimate the p-value of the test.

In Chapter 4, we conduct three simulations to demonstrate the null distribution and

the power of the proposed GQLR tests. The three scenarios in our simulation studies are

Gaussian data with homogenous variance, Gaussian data with heterogeneous variance and

binary data. Our numerical results provide strong evidence that corroborates our asymptotic

theory.

In Chapter 5, we present two applications in AIDS clinical trial and opioid agonist treat-

ment. In both applications, the proposed GQLR test detect significant differences among

treatment groups.



Chapter 2

Estimation of the Semiparametric Analysis of Covariance Model

In this chapter, we will describe the estimation procedure for model (1.1) using a profile-

kernel method similar to the one proposed by Lin and Carroll (2001). We use a working

independence (WI) estimator because it is still one of the most widely used estimators in

longitudinal and functional data analysis, see Fan and Li (2004), Yao et al. (2005), Hall et

al. (2006, 2008). It is therefore of practical value to study the nonparametric test procedures

based on the working independence estimators.

2.1 Estimation under both null and alternative models

We refer to the model under the null hypothesis as the reduced model and that under the

alternative hypothesis as the full model. We denote β̂ββR and θ̂R(t) as the estimators under the

reduced model and β̂ββF and θ̂F,k(t), k = 1, . . . , q, as the estimators under the full model. Our

estimation procedures under both models are based on profile-kernel estimating equations.

We first consider estimation under the reduced model, where the treatment effects are

all the same. Based on the Taylor’s expansion, for any Tk,ij in a neighborhood h of t, θ(Tk,ij)

can be approximated locally by a linear polynomial

θ(Tk,ij) ≈ θ(t) + θ′(t)(Tk,ij − t) = α0 + α1(Tk,ij − t)/h.

11
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For a given βββ, θ̂R(t) can be obtained by solving the following local linear kernel estimating

equation regarding ααα = (α0, α1)T,

q∑
k=1

nk∑
i=1

Uk,i(t)
T∆k,i(XXXk,i, t)W−1

k,iKh(TTT k,i − t){YYY k,i − µµµk,i(XXXk,i, t)} = 0, (2.1)

where Kh(TTT k,i − t),Uk,i(t),∆k,i(XXXk,i, t),µµµk,i(XXXk,i, t) are the same as those in (1.3) and (1.4)

and Wk,i is a diagonal weight matrix set to be Wk,i ≡ W(TTT k,i) = diag{ω(µk,ij)}
mk,i
j=1 and ω(·)

is a working variance function. The kernel estimator is given by θ̂R(t;βββ) = α̂0, where (α̂0, α̂1)

is the solution of (2.1). Then β̂ββR is obtained by solving

q∑
k=1

nk∑
i=1

{XXXT
k,i +

∂θ̂θθR(TTT k,i;βββ)

∂βββ
}∆k,i(XXXk,i,TTT k,i)W−1

k,i {YYY k,i − µµµk,i(XXXk,i,TTT k,i)} = 0, (2.2)

where µµµk,i(XXXk,i,TTT k,i) = g−1{XXXk,iβββ + θ̂θθR(TTT k,i;βββ)}. In real life, the weight matrix need to be

estimated and the estimation of W will be discussed in Section 3.3.2.

Next, we consider estimation under the full model, where we need to estimate θk(·) using

the kth treatment group only. Given βββ, θ̂F,k(t,βββ) = α̂0, where α̂αα = (α0, α1)T is the solution

of

nk∑
i=1

Uk,i(t)
T∆k,i(XXXk,i, t)W−1

k,iKh(TTT k,i − t){YYY k,i − µµµk,i(XXXk,i, t)} = 0. (2.3)

To obtain β̂ββF , we will again solve an estimating equation by pooling all treatment groups

together

q∑
k=1

nk∑
i=1

{XXXT
k,i +

∂θ̂θθF,k(TTT k,i;βββ)

∂βββ
}∆k,iW−1

k,i {YYY k,i − µµµk,i(XXXk,i,TTT k,i)} = 0. (2.4)

The nonparametric components are then updated as θ̂F,k(t) = θ̂F,k(t, β̂ββF ), for k = 1, . . . , q.
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2.2 Assumptions and asymptotic properties

In this section, we investigate the asymptotic properties of the profile-kernel estimators of

βββ and θ(t) under both the full and reduced models. Denote the true parameters as βββ0 and

θk0(t), k = 1, . . . , q. Under the reduced model, θ10 = · · · = θq0 ≡ θ0. For ease of exposition, we

assume the number of observations per subject is a constant in our theoretical derivations, i.e.

mk,i = m <∞ for all k and i. For the situations where the number of repeated measurements

are unequal, a common practice is to model mk,i as independent realizations of a positive

random variable m, and essentially the same results can be derived. We assume that the

observation times Tk,ij are independent random variables on a compact interval T = [a, b],

with a density f(t) and allow the covariate XXX to be time dependent.

What makes our problem fundamentally differently from those in the GLR test literature

is the existence of within-cluster correlation. Define the errors as εk,ij = Yk,ij−g−1{XXXT
k,ijβββ0 +

θk0(Tk,ij)}. It is helpful to consider XXXk,ij and εk,ij as discrete observations on continuous

longitudinal processes XXX(t) and ε(t), t ∈ T . Define the conditional variance and correlation

functions of the error process as

σ2(µ) = var

[
ε(t)

∣∣∣∣g−1{XXXT(t)βββ + θ(t)} = µ

]
, R(s, t;τττ) = corr{ε(s), ε(t) | τττ}, (2.5)

where τττ is a vector of unknown correlation parameters. Note that many authors model the

variance function σ2(·) as a nonparametric function while model the correlation function

R(s, t;τττ) as a member of a parametric family, such as the AR or ARMA correlations (see

Fan et al., 2007 and Fan and Wu, 2008). The within-cluster covariance matrix is

Σk,i = SSSk,iRk,i(τττ)SSSk,i, (2.6)
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where SSSk,i = diag{σ(µµµk,i)} and Rk,i(τττ) = {R(Tk,ij, Tk,ij′ ;τττ)}mk,ij,j′=1. We allow the covariance

to depend on the mean and the parameters βββ and θ(·), since this is usually the case for

generalized longitudinal data, e.g. binary data.

We first collect all the key assumptions for the asymptotic theory.

(C.1) Let the total number of clusters be n =
∑q

k=1 nk, and we assume that there exist

constants 0 < ρ1, . . . , ρq < 1 such that
∑q

k=1 ρk = 1 and nk/n− ρk = o(n−1/2).

(C.2) Let T be a generic copy of the random observation time with a continuous density f(t)

so that f(t) > 0 for all t ∈ T .

(C.3) We assume XXX and ε are stochastic processes. Let XXX be a generic copy of XXX(T ) and

Σk = (σ2
k,jj′)

m
j,j′=1 be a generic copy of the true within-subject covariance matrix, which

might depend on the mean parameter θk0.

(C.4) Assume that the true mean functions θk0(·), k = 1, . . . , q, are smooth and twice continu-

ously differentiable. Using the shorthand notation µk(XXX,T ) = g−1{XXXT(T )βββ0 +θk0(T )},

ωk(XXX,T ) = ω{µk(XXX,T )} and µ
(1)
k (XXX,T ) = µ(1){XXXT(T )βββ0 + θk0(T )}, we define

B1k(t) = E[{µ(1)
k (XXX,T )}2ω−1

k (XXX,T )|T = t]f(t), B1(t) =

q∑
k=1

ρkB1k(t),

µµµX,k(t) = E[{µ(1)
k (XXX,T )}2ω−1

k (XXX,T )XXX(T )|T = t]f(t)/B1k(t),

µµµX(t) = B−1
1 (t)

q∑
k=1

ρkE[{µ(1)
k (XXX,T )}2ω−1

k (XXX,T )X(T ) | T = t]f(t).

Assume all functions defined above are Lipschitz continuous.

(C.5) The kernel density function K(·) is a symmetric continuous function with mean 0 and

unit variance, i.e.
∫
tK(t)dt = 0 and

∫
t2K(t)dt = 1.



15

(C.6) Assume that h→ 0 as n→∞, nh2 →∞, nh8 → 0.

Proposition 1. Suppose the null hypothesis in (1.2) is true and conditions (C.1)-(C.6)

hold. Let W−1 = diag(ωjj)mj=1 and ∆ = diag(∆``)
m
`=1 be generic copies of W−1

k,i and ∆k,i, and

let X̃XX be a m× p matrix with the jth row being X̃XXj = XXX(Tj)−µµµX(Tj). Then the parametric

estimator has the following asymptotic expansion

β̂ββR − βββ0 = DDD−1En + op(n
−1/2), (2.7)

where DDD = E(X̃XX
T

∆W−1∆X̃XX) and En = n−1
∑q

k=1

∑nk
i=1 X̃XX

T

k,i∆k,iW−1
k,i εεεk,i.

The nonparametric estimator has the following asymptotic expansion

θ̂R(t)− θ0(t) =
1

2
θ

(2)
0 (t)h2 + UR(t)− µµµT

X(t)(β̂ββR − βββ0) + op(n
−1/2), (2.8)

where UR(t) = {nmB1(t)}−1
∑q

k=1

∑nk
i=1

∑m
j=1 µ

(1)
k,ijω

jj
k,iKh(Tk,ij− t)εk,ij, and µ

(1)
k,ij and ωjjk,i are

shorthands for µ(1){XXXT
k,ijβββ0 + θk0(Tk,ij)} and ω−1(µk,ij).

The asymptotic results in Proposition 1 are standard for generalized partially linear

models (Lin and Carroll, 2001, Fan and Li, 2004, and Wang et al., 2005). Note that under the

null hypothesis, B1(t) and µµµX(t) can be simplified as B1(t) = E[{µ(1)(XXX,T )}2ω−1(XXX,T )|T =

t]f(t) and µµµX(t) = B−1
1 (t)E[{µ(1)(XXX,T )}2ω−1(XXX,T )X(T )|T = t]f(t). The proof is given in

Appendix 2.3. With similar arguments, one can easily show the following results regarding

the estimators under the full model.

Proposition 2. Under the full model (1.1) and suppose conditions (C.1)-(C.6) hold,

β̂ββF − βββ0 = DDD−1
∗ En∗ + op(n

−1/2), (2.9)
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where DDD∗ =
∑q

k=1 ρkE{X̃XX
T

k ∆kW−1
k ∆kX̃XXk}, En∗ = n−1

∑q
k=1

∑nk
i=1 X̃XX

T

k,i∆k,iW−1
k,i εεεk,i, X̃XXk =

{(XXX −µµµX,k)(T`)}m`=1 is a m× p matrix containing the centered covariate vectors in a generic

cluster in group k, and ∆k and W−1
k are similarly defined as in Proposition 1 by replacing

θ0 with θk0.

The nonparametric estimator θ̂F,k(t) has the following asymptotic expansion,

θ̂F,k(t)− θk0(t) =
θ

(2)
k0 (t)h2

2
+ UF,k(t)− µµµT

X,k(t)(β̂ββF − βββ0) + op(n
−1/2
k ), (2.10)

for k = 1, . . . , q, where UF,k(t) = {nkmB1k(t)}−1
∑nk

i=1

∑m
j=1 µ

(1)
k,ijω

jj
k,iKh(Tk,ij − t)εk,ij.

The asymptotic results in Proposition 2 are derived in a broader setting. When the null

hypothesis in (1.2) holds, one can easily see that the first order expansions of β̂ββR and β̂ββF are

identical, and hence β̂ββR − β̂ββF = op(n
−1/2).

2.3 Appendix: Technical Proofs

Proof of Proporsition 1

Define βββ0 and θ0(t) are the true values of the parameter βββ and θk(t) under the null

hypothesis and ααα = {θ0(t), hθ
(1)
0 (t)}T. Let XXX and TTT be generic copies of XXXk,i and TTT k,i,

similarly, let ∆ = diag(∆jj)
m
j=1 and W = diag(ωjj)mj=1 be generic copies of ∆k,i and W−1

k,i .

Following Lin and Carroll (2001), given a fixed βββ, a linear Taylor expansion of (2.1) gives

α̂αα(t,βββ)−ααα(t) = B−1
n An + op(1),

where

Bn = n−1{
q∑

k=1

nk∑
i=1

Uk,i(t)
T∆k,i(XXXk,i, t)W−1

k,iKh(TTT k,i − t)∆k,i(XXXk,i, t)Uk,i(t)}
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An = n−1

q∑
k=1

nk∑
i=1

Uk,i(t)
T∆k,i(XXXk,i, t)W−1

k,iKh(TTT k,i − t)[YYY k,i − g−1{XXXk,iβββ + UT
k,iααα(t)}]

Let εk,ij = Yk,ij − g−1{XXXT
k,ijβββ0 + θ0(Tk,ij)} under the null hypothesis, some calculations

show that:

θ̂R(t,βββ)− θ0(t) = {nmB1(t)}−1

q∑
k=1

nk∑
i=1

m∑
j=1

µ
(1)
k,ijω

jj
k,iKh(Tk,ij − t)

[
εk,ij + µ

(1)
k,ijXXX

T
k,ij(βββ0 − βββ)

+ µ
(1)
k,ij{θ0(Tk,ij)− θ0(t)}

]
+ op(n

−1/2)

= {nmB1(t)}−1

q∑
k=1

nk∑
i=1

m∑
j=1

µ
(1)
k,ijω

jj
k,iKh(Tk,ij − t)εk,ij − µµµT

X(t)(βββ − βββ0)

+
θ

(2)
0 (t)h2

2
+ op(n

−1/2)

where B1(t) = E[{µ(1)(XXX,T )}2ω−1(XXX,T )|T = t]f(t) and µµµX(t) = B−1
1 (t)E[{µ(1)(XXX,T )}2ω−1

(XXX,T )X(T )|T = t]f(t).

To study the asymptotic distribution of β̂ββR, define that X̃XX
T

k,i = XXXT
k,i + ∂θ̂θθR(TTT k,i;βββ)/∂βββ =

XXXT
k,i − µµµT

X(TTT k,i), a linear Taylor expansion of the profile estimating equation (2.2) gives

β̂ββR − βββ0 = DDD−1
n CCCn + op(1),

where

DDDn =
1

n

∑
k

∑
i

X̃XX
T

k,i∆k,iW−1
k,i ∆k,iX̃XXk,i,

and

CCCn =
1

n

∑
k

∑
i

X̃XX
T

k,i∆k,iW−1
k,i

[
YYY k,i − g−1{XXXk,iβββ0 + θ̂θθR(TTT k,i)}

]
.

We can rewriteDDDn asDDDn = DDD+op(1), whereDDD = E(X̃XX
T

k,i∆k,iW−1
k,i ∆k,iX̃XXk,i). Furthermore,

CCCn can be expressed as

CCCn =
1

n

∑
k

∑
i

X̃XX
T

k,i∆k,iW−1
k,i

[
εεεk,i −∆k,i{θ̂θθR(TTT k,i;βββ)− θθθ0(TTT k,i)}

]
+ op(1)
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Note that

1

n

∑
k

∑
i

X̃XX
T

k,i∆k,iW−1
k,i ∆k,i{θ̂θθR(TTT k,i;βββ)− θθθ0(TTT k,i)}

=
1

n

∑
k,i,j

X̃XXk,ij∆k,ijW−1
k,ij∆k,ij

[
1

nmB1(Tk,ij)

∑
k′,i′,j′

µ
(1)
k′,i′j′ω

j′j′

k′,i′Kh(Tk′,i′j′ − Tk,ij)εk′,i′j′

− µµµT
X(Tk,ij)(βββ − βββ0) +

θ
(2)
0 (Tk,ij)h

2

2

]
+ op(n

−1/2)

=
1

n

∑
k,i,j

1

B1(Tk,ij)
µ

(1)
k,ijω

jj
k,iεk,ij

1

m

m∑
l

E(X̃l∆
2
llω

ll|Tl = Tk,ij)f(Tk,ij)

−E{X̃XX
T

∆W−1∆µµµX(TTT )}(βββ − βββ0) +
h2

2
E{X̃XX

T
∆W−1∆θθθ

(2)
0 (TTT )}+ op(n

−1/2)

Under the assumption that the marginal density of (XXXk,il, Tk,il) is the same for all k, i

and l, we have

E(X̃l∆
2
llω

ll|Tl = t) = E[{Xl − µµµX(Tl)}∆2
llω

ll|Tl = t]

= E

[
{Xl −B−1

1 (Tl)E(∆2
jjω

jjXj|Tj = Tl)}∆2
llω

ll|Tl = t

]
(2.11)

It is obvious to see that E(X̃l∆
2
llω

ll|Tl = t)=0. Similar calculation shows that E{X̃XX
T

∆W−1

∆µµµX(TTT )} = 0 and E{X̃XX
T

∆W−1∆θθθ
(2)
0 (TTT )} = 0.

Finally, we have the asymptotic distribution of β̂ββ

β̂ββR − βββ0 = DDD−1En + op(n
−1/2).

where En = 1
n

∑
k

∑
i X̃XX

T

k,i∆k,iW−1
k,i εεεk,i. Equivalently,

√
n(β̂ββR − βββ0)→ N(0,Vβββ)

where Vβββ = DDD−1E(X̃XX
T

∆W−1ΣW−1∆X̃XX)DDD−1.

Proposition 2 can be shown using similar arguments.



Chapter 3

Generalized Quasi-Likelihood Ratio Test

3.1 Quasi-likelihood function in longitudinal data

The quasi-likelihood function is an important extension of the likelihood function used for

estimation in generalized linear model. As we know, to define a likelihood, we need to specify

the form of distribution of the data. However, to define a quasi-likelihood function, we need

only to specify the model structures in the mean and the variance. It requires a much

weaker assumption for estimation in various models. Hence, the quasi-likelihood function is

widely used for the situations where there is insufficient information to construct a likelihood

function.

Wedderburn (1974) and McCullagh (1983, 1989) proposed the quasi-likelihood function in

the case where the response variables are independent. Let Yi, i = 1, · · · , n, be independent

variables with mean µi and variance var(Yi) ∝ V(µi), where V(·) is a specific variance

function. The quasi-likelihood Q, considered as a function of µi, is given by the system of

partial differential equations

∂Q(µi;Yi)

∂µi
= V−1(µi)(Yi − µi). (3.1)

Liang and Zeger (1986) extended the quasi-likelihood function from independent data to

longitudinal data by taking the within-subject correlation into account. Their generalized

19
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estimating equation method for parametric models is an important approach in longitudinal

data analysis. Consider the longitudinal data {YYY i,XXX i}ni=1 with YYY i = (Yi1, · · · , Yini)T and

XXX i = (XXXT
i1, · · · ,XXX

T
ini

)T. The marginal mean of YYY i is µµµi which depends on the covariates

XXX i through a known link function g(·), i.e., g(µµµi) = XXX iβββ. The variance function in (3.1)

is defined as V−1
i = SiR(τττ)Si, where Si = diag{

√
var(Yi1), · · · ,

√
var(Yini)} and R(τττ) is a

correlation structure. By taking the derivative of quasi-likelihood function Q with respect to

βββ, we can get the GEEs

n∑
i=1

DT
i V

−1
i εεεi = 0,

where Di = ∂µi/∂βββ and εεεi = YYY i − µµµi. Besides GEEs, semiparametric regression modeling

is also useful for longitudinal data analysis. See, for example, Lin and Carroll (2001, 2006),

He, Zhu, and Fuang (2002), Fan and Li (2004), Wang et al. (2005) and He Fung, and Zhu

(2005).

Since the variance function is an essential element of the quasi-likelihood function, mod-

eling and estimating the variance and correlation structures become important issues in the

quasi-likelihood approach. Nonparametric approaches have gained popularity in estimating

the covariance structure. Wu and Pourahmadi (2003) adopted Fan and zhang’s (2000) two-

step estimation procedure of functional linear models and proposed nonparametric estima-

tiors of large covariance matrices. Hall et al. (2006) considered a bivariate smoothing to esti-

mated the covariance function. Huang, Liu, Pourahmadi, and Liu (2006) introduced a penal-

ized likelihood method to estimate a covariance matrix. Fan, Huang and Li (2007) proposed

a kernel estimator of the nonparametric variance function and introduced a quasi-likelihood
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method and a minimum generalized variance method to estimate correlation parameters. We

will describe Fan, Huang and Li’s (2007) estimating procedure in details in section 3.3.2.

3.2 Test procedure and null distribution

We now direct our focus back to testing the hypotheses in (1.2). In this section, we introduce

our test procedure which is based on a quasi-likelihood function, and study the asymptotic

distribution of the test statistic under the null hypothesis.

The quasi-likelihood function Q satisfies

∂Q(µµµ,YYY )

∂µµµ
= V (µµµ)−1(YYY − µµµ), (3.2)

where µµµ and YYY are m-vectors for the conditional mean and response within a cluster, µµµ =

g−1{XXXβββ + θθθ(TTT )} and V(µµµ) is a working covariance matrix not necessarily the same as the

true covariance Σ(µµµ). Define the quasi-likelihood function for the data as

`(θθθ,βββ) =

q∑
k=1

nk∑
i=1

Q[g−1{XXXk,iβββ + θθθk(TTT k,i)},YYY k,i], (3.3)

and the generalized quasi-likelihood test statistics is by taking the difference of the quasi-

likelihoods under the full and reduced models

λn(H0) =

q∑
k=1

nk∑
i=1

Q[g−1{XXXk,iβ̂ββF + θ̂θθF,k(TTT k,i)},YYY k,i]−Q[g−1{XXXk,iβ̂ββR + θ̂θθR(TTT k,i)},YYY k,i]. (3.4)

Let Σ and V be generic copies of Σk,i and Vk,i, and denote σj` and νj` as the (j, `)th

entry of Σ and V−1 respectively. Denote νK =
∫
K2(t)dt, and

B2(t) =
1

m

m∑
j=1

E(∆2
jjν

jj|Tj = t)f(t), B3(t) =
1

m

m∑
j=1

E{σjj∆2
jj(ω

jj)2|Tj = t}f(t),

B4(t) =
1

m

m∑
j1=1

E

{ m∑
j2=1

m∑
j3=1

νj1j2σj2j3ν
j3j1∆2

j1j1

∣∣∣∣Tj1 = t

}
f(t),
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B5(t) =
1

m

m∑
j1=1

E

{
1

m

m∑
j=1

σjj1ν
jj1∆2

j1j1
ωj1j1

∣∣∣∣Tj1 = t

}
f(t). (3.5)

Theorem 1. Suppose conditions (C.1)- (C.6) hold, B2(t)- B5(t) defined in (3.5) exist and

are Lipschitz continuous in t. Under the null hypothesis in (1.2)

σ−1
n (λn(H0)− µn − d1n)

d−→ N(0, 1),

where d1n = op(h
−1/2),

µn =
q − 1

h
E

{
K(0)

B5(T )

B1(T )f(T )
− νK

2

B2(T )B3(T )

B2
1(T )f(T )

}
+Op(1),

σ2
n =

q − 1

h

[
E

{
B3(T )B4(T ) +B2

5(T )

B2
1(T )f(T )

∫
K2(t)dt+

B2
2(T )B2

3(T )

2B4
1(T )f(T )

∫
(K ∗K)2(t)dt

−2
B2(T )B3(T )B5(T )

B3
1(T )f(T )

∫
K(t)K ∗K(t)dt

]
+Op(1).

Remark: For nonparametric hypothesis testing in independent data, Fan et al. (2001) estab-

lished a nice property called the Wilks phenomenon for the generalized likelihood ratio

test, i.e. the asymptotic distribution of the test statistic under the null hypothesis does not

depend on the unknown true parameters. Indeed, when the likelihood function is used and

correctly specified, this property holds for a wide range of problems. However, for general-

ized longitudinal data, working covariance matrices, generalized estimating equations and

quasi-likelihoods are commonly used, and in many situations these models does not need

to be correctly specified. When the variance (covariance) of ε depends on the mean, and if

V, W and Σ are different, B1(t) - B5(t) and thus the asymptotic distribution of λn(H0) in

Theorem 1 depend on the true parameters βββ0 and θ0(t). In this case, the Wilks phenomena

does not hold in general for the test in (3.4).

The following Corollaries provide special cases of Theorem 1, where the asymptotic dis-

tribution of λn(H0) does not depend on the true parameters βββ0 and θ0(t). Recall that the
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true covariance matrix Σ has the structure as in (2.6) and denote Σd = SSS2 as the diagonal

variance matrix. We now investigate the situation that the variance function is correctly

specified for both estimation and test, but the working correlation for test can be misspeci-

fied. In other words, we assumeW = Σd and V = SSSC(τττ)SSS, where C(τττ) is working correlation

matrix depending on an unknown parameter vector τττ and not necessarily equals to the true

correlation matrix R(τττ). Under this circumstance, one can show Bj(t) = Bj†(t)B1(t) for

j = 2, . . . , 5, where

B2†(t) =
1

m

m∑
j=1

E[{C−1(τττ)}jj|Tj = t], B3†(t) = 1,

B4†(t) =
1

m

m∑
j=1

E

[
{C−1(τττ)R(τττ)C−1(τττ)}jj|Tj = t

]
,

B5†(t) =
1

m

m∑
j=1

E

[
{R(τττ)C−1(τττ)}jj

∣∣∣∣Tj = t

]
. (3.6)

Corollary 1. Let W = Σd, V = SC(τττ)S and Σ = SR(τττ)S, then under conditions (C.1)

- (C.6) and the null hypothesis in (1.2)

σ−1
n† {λn(H0)− µn† − dn†}

d−→ Normal(0, 1),

where dn† = op(h
−1/2),

µn† =
q − 1

h
E

[
{K(0)B5†(T )− νK

2
B2†(T )}/f(T )

]
+Op(1),

σ2
n† =

q − 1

h
E

{
B4†(T ) +B2

5†(T )

f(T )

∫
K2(t)dt+

B2
2†(T )

2f(T )

∫
(K ∗K)2(t)dt

−2
B2†(T )B5†(T )

f(T )

∫
K(t)K ∗K(t)dt

}
+Op(1).

Since Bj†(t), j = 2, . . . , 5 do not depend on βββ0 and θ0, it follows that the asymptotic

distribution of λn(H0) does not depend on the true value of these parameters when the
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variance is correctly specified but the correlation is misspecified. However, since the asymp-

totic distribution of λn(H0) depends on the true correlation function R(τττ) which is generally

unknown, it is difficult to simulate the asymptotic distribution in Corollary 1.

We now consider another important special case where working independence is assumed

for both estimation and test.

Corollary 2. Under the setting of Theorem 1, if V =W = Σd, the asymptotic distribution

λn(H0) can be simplified to

σ−1
n∗ {λn(H0)− µn∗ − d1n∗}

d−→ Normal(0, 1),

where d1n∗ = op(h
−1/2), µn∗ = (q − 1)|T |h−1{K(0)− νK/2}, σ2

n∗ = 2(q − 1)|T |h−1
∫
{K(t)−

1
2
K ∗K(t)}2dt, and |T | is the length of the time domain. This result implies rKλn(H0) ∼a

χ2
rKµ∗n

where

rK =
K(0)− νK/2∫

{K(t)− 1
2
K ∗K(t)}2dt

.

Corollary 2 implies that, if working independence covariance is used in both estimation

and hypothesis testing and if the variance function is correctly specified, the asymptotic

distribution of λn(H0) does not depend on βββ0, θ0(t) and the true correlation structure R(τττ).

This Wilks result makes it easy to assess the distribution of λn(H0) using bootstrap. In

practice, a bootstrap method usually provides a better estimate of the critical value than

using the asymptotic null distribution because the asymptotic distribution only describes

behavior of the leading term in the test statistic.
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3.2.1 Power of the generalized quasi-likelihood ratio test

To study the local power of the generalized quasi-likelihood ratio test, we consider a con-

tiguous alternative hypothesis

H1n : θk(t) = θ0(t) +Gkn(t), k = 1, . . . , q, with

q∑
k=1

ρkGkn(t) = 0, (3.7)

where Gkn(t) are twice continuously differentiable smooth functions with supt∈T Gkn(t)→ 0

as n→∞.

Consider the test statistic in (3.4), and call it λ(H1n) instead. The following theorem

gives the asymptotic distribution of the test statistic under the local alternative (3.7).

Theorem 2. Suppose that assumptions (C.1) – (C.6) and the local alternative (3.7) hold,

nh5 → 0, and the functions Gkn(t)’s are twice continuously differentiable. Denote µ1n =

1
2

∑q
k=1

∑nk
i=1EG

T
kn(TTT k,i)∆k,iV

−1
k,i∆k,iGkn(TTT k,i) and we assume there exists a constant CG

such that

hµ1n → CG <∞. (3.8)

Then the test statistic has the following limiting distribution

σ−1
n‡ (λn(H1n)− µn − µ1n)

d−→ N(0, 1),

where σ2
n‡ = σ2

n+d2n, d2n =
∑q

k=1

∑nk
i=1 EG

T
kn(TTT k,i)∆k,iV

−1
k,iΣk,iV

−1
k,i∆k,iGkn(TTT k,i) and µn and

σ2
n are as defined in Theorem 1.

An approximate level-α test based on the setting of Corollary 2 is φh = I(λn(H1n)−µn∗ >

zασn∗), where zα is the upper α100% percentile of N(0, 1), and we reject the null hypothesis
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if φh = 1. Let Φ(·) be the cumulative distribution function of N(0, 1), the type II error of the

test is

β(α,GGGn) = P (λn(H1n)− µn < zασn) ≈ Φ(σ−1
n‡ σnzα − σ

−1
n‡ µ1n), (3.9)

where GGGn = (G1n, . . . , Gqn)T. Define the class of functions

Gn(%) = {GGGn = (G1n, . . . , Gqn)T;
∑q

k=1ρkEG
T
kn(TTT k)∆kV

−1
k ∆kGkn(TTT k) ≥ %2},

and the maximum probability of type II errors as

β(α, %) = sup
GGGn∈Gn(%)

β(α,GGGn).

Following Ingster (1993) and Fan et al. (2001), define the minimax rate of test as %n such

that

(a) for any % > %n, α > 0, and β > 0, there exists a constant c such that β(α, c%) ≤ β+o(1);

(b) for any sequence %∗n = o(%n), there exist α > 0 and β > 0 such that for any c > 0

P (φ = 1|H0) = α + o(1) and lim infn→∞ β(α, c%∗n) > β.

The following theorem provides the minimax rate for the test procedure.

Theorem 3. Under conditions (C.1) - (C.6), the minimax rate of the GQLR test is %n(h) =

n−4/9 with h = c∗n2/9.

The proof of Theorem 3 is provided in the Appendix 3.4. Theorem 3 shows that the GQLR

test based on working independence covariance matrices achieves the minimax optimal rate

of Ingster (1993).
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3.3 Implementation of the Method

3.3.1 Estimation algorithm

We now describe the procedure of computing the estimates of model (1.1) under the null

hypothesis. We consider an iterative algorithm to solve the profile-kernel estimating equations

(2.1) and (2.2).

1. To obtain an initial values of βββ and θ(t), assume a parametric form for θ(t) such as

θ(t) = α0 + α1t, and fit a generalized linear model g(µk,ij) = XXXT
k,ijβββ + α0 + α1Tk,ij.

2. Fix the value of βββ and let α̂ααpre be the value of ααα from the previous iteration, we update

α̂αα by

α̂ααcurr = α̂ααpre +

{∑
k,i

Uk,i(t)
T∆k,i(XXXk,i, t)W−1

k,iKh(TTT k,i − t)∆k,i(XXXk,i, t)Uk,i(t)

}−1

[∑
k,i

Uk,i(t)
T∆k,i(XXXk,i, t)W−1

k,iKh(TTT k,i − t){YYY k,i − µµµk,i(XXXk,i, t)}
]
,

where µµµk,i(XXXk,i, t) = g−1(XXXk,iβββ + θ̂θθpre(t)). When g(·) is a logistic link, µµµk,i(XXXk,i, t) =

{1 + exp(−XXXk,iβββ − θ̂θθpre(t))}−1, and the first derivative of µµµ(·) is µµµ(·)× {1− µµµ(·)}.

3. Let βββpre be the value of βββ from the previous iteration and θ̂curr(t) be the updated

nonparametric estimator, we updated β̂ββ by

β̂ββcurr = β̂ββpre +

{∑
k,i

X̃XX
T

k,i∆k,iW−1
k,i ∆k,iX̃XXk,i

}−1[∑
k,i

X̃XX
T

k,i∆k,iW−1
k,i {YYY k,i − µµµk,i}

]
,

where µµµk,i = g−1{XXXk,iβ̂ββpre + θ̂θθcurr(TTT k,i)} and X̃XXk,i = XXXk,i − µµµX(TTT k,i). A consistent

estimator of µµµX(t) is[∑
k,i

{µ(1)
k,ij}

2ωjjk,iKh(Tk,ij − t)XXXk,ij

][∑
k,i

{µ(1)
k,ij}

2ωjjk,iKh(Tk,ij − t)
]−1

.
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4. Iterate between steps 3 and 4 until convergence.

The estimation procedure under the full model is similar to that described above except

using only the kth treatment group to estimate θk(t), k = 1, · · · , q.

For the special case where the link function is identity, we can build a noniterative

algorithm to obtain the estimators directly. Let’s first consider estimation under the null

hypothesis. For any value t, define U(t) = (U1,1(t)T, · · · ,Uq,nq(t)
T)T, and YYY and XXX be the

vector and matrix by stacking all YYY k,i’s and XXXk,i’s together, where Uk,i(t), YYY k,i and XXXk,i are

the same as those in (2.1). The estimator of βββ can be obtained by:

β̂ββR =

(
X̃XX

T
W−1X̃XX

)−1(
X̃XX

T
W−1ỸYY

)
, (3.10)

where X̃XX = {I − S(TTT )}XXX, ỸYY = {I − S(TTT )}YYY , S(t) = eT{U(t)TW−1Kh(TTT − t)U(t)}−1

U(t)TW−1Kh(TTT − t)}, e = (1, 0)T, Kh(TTT − t) = diag{Kh(TTT 1,1 − t), · · · ,Kh(TTT q,nq − t)} and

W−1 = diag(W−1
1,1 , · · · ,W−1

q,nq).

The estimator of θ(t) is given by

θ̂R(t) = S(t)(YYY −XXXβ̂ββ).

For the full model, the estimators β̂ββF and θ̂F,k(t) are

β̂ββF =

(∑
k

X̃XX
T

kW−1
k X̃XXk

)−1(∑
k

X̃XX
T

kW−1
k ỸYY k

)
,

and

θ̂F,k(t) = Sk(t)(YYY k −XXXkβ̂ββ),

where X̃XXk = {I − Sk(TTT k)}XXXk, ỸYY k = {I − Sk(TTT k)}YYY k, and Sk(t) = eT{Uk(t)
TW−1

k Kh(TTT k −

t)Uk(t)}−1Uk(t)
TW−1

k Kh(TTT k − t)}.
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3.3.2 Estimation of the covariance function

As pointed out in the remarks on Theorem 1 and Corollary 2, in order for the GQLT proce-

dure to enjoy the much celebrated Wilks property, one need to correctly specify the variance

and correlation function. Even if working independence is assumed in both estimation and

test, we still need to correctly specify the variance function. In real life, both the variance

and the correlation functions are unknown and need to be estimated from the data.

When the error process ε(t) is heteroscedastic, one popular approach in recent literature

on longitudinal data analysis and functional data analysis is to model the variance as a

nonparametric function of observation time or the mean value (Yao et al., 2005; Fan et al.,

2007; Li 2011). In what follows, we assume the variance is a smooth function of the mean

value, denoted as σ2(µ), and estimate this function using a local linear smoother

σ̂2(µ) = [1, 0]

{∑
k,i

DDDk,i(µ)TKk,ih(µ)DDDk,i(µ)

}−1{∑
k,i

DDDk,i(µ)TKk,ih(µ)ε̃εε2
k,i

}
, (3.11)

where DDDk,i(µ) = {DDDk,i1(µ), · · · ,DDDk,imk,i(µ)}T with DDDk,ij(µ) = (1, (µ̂k,ij − µ)/h)T, Kk,ih(µ) =

diag{Kh(µ̂k,ij − µ)}mk,ij=1 , and ε̃εεk,i are the residuals from a pilot estimation of the full model

by setting Wk,i to be identity matrices.

Fan et al. (2007) proposed to model the correlation function as a member of a known

parametric family, i.e. corr{ε(s), ε(t)} = ρ(s, t, τττ), where τττ is an unknown parameter vector

independent of βββ and θ0. Examples of such correlation families include the AR and ARMA

correlations. They also proposed to estimate the correlation parameter vector τττ by maxi-

mizing the following quasi-likelihood

−1

2

∑
k

∑
i

{
log|Ck,i(τττ)|+ ε̃εεT

k,iŜSS
−1

k,iC−1
k,i (τττ)ŜSS

−1

k,i ε̃εεk,i

}
, (3.12)
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where ŜSSk,i = diag{σ̂(µk,ij)}
mk,i
j=1 and Ck,i(τττ) is the correlation matrix for the (k, i)th cluster

under the correlation function ρ.

Li (2011) showed that the local linear variance estimator is uniformly consistent, one

can use the estimated variance function to further improve the estimation efficiency, and the

refined estimator is as efficient as when the true variance function is known. Using similar

arguments, we can show that plugging the estimated variance (and correlation) in the test

statistic only incurs an asymptotically negligible error. The asymptotic distribution of λn(H0)

is the same as if σ2(µ) is known.

3.3.3 Bootstrap procedure for models with an identity link function

As suggested by Fan et al. (2001) and Fan and Jiang (2005), it is preferable to evaluate the

null distribution of the test statistic by bootstrap, since the asymptotic distribution only

capture the randomness in the leading term of λn(H0). For Gaussian longitudinal data, Li

(2011) proposed a stratified conditional bootstrap procedure by taking the residuals of the

full model and resampling the clusters within each treatment group. Here we describe a

stratified conditional bootstrap procedure for models with an identity link function, which

is similar to the bootstrap method proposed by Li (2011).

1. Estimate βββ and θk(t) under both the reduced and full models and calculate the GQLR

test statistic λn(H0).

2. Compute Y ∗k,ij = Yk,ij − θ̂F,k(Tk,ij) + θ̂R(Tk,ij), draw with replacement nk subjects from

the kth group to form a bootstrap sample.
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3. Calculate the generalized likelihood ratio test statistic λ∗n(H0) for the bootstrap sample,

using the same bandwidth as for the real data.

4. Repeat step 2 and 3 a large number of times to obtain the bootstrap replicates λ∗n(H0),

and the estimated p-value is the percentage of λ∗n(H0) that are greater than λn(H0).

3.3.4 Bootstrap procedure for models with non-identity link functions

As we can see, the bootstrap procedure described in section 3.3.3 is only useful for Gaussian

longitudinal data, since the residuals of binary or count data are not binary or count any

more. In this section, we proposed a stratified parametric bootstrap procedure for models

with non-identity link functions, e.g. logistic models.

1. Fix the bandwidth, obtain estimates β̂ββ and θ̂k(t) under both the reduced and full

semiparametric models from the original data, and estimate the working covariance

structure C(τττ) from the full model.

2. Compute the GQLR test statistic λn(H0).

3. Draw with replacement nk subjects from the kth group to form a bootstrap sample

{XXX∗k,i,TTT
∗
k,i}, and calculate µµµ∗k,i = g−1{XXX∗k,iβ̂ββR + θ̂θθR(TTT ∗k,i)}, where β̂ββR and θ̂θθR(TTT k,i) are

the estimates under the reduced model in step 1. Use the correlation C∗k,i(τ̂ττ) and the

conditional mean µµµ∗k,i to generate the correlated binary data YYY ∗k,i.

4. Calculate the generalized likelihood ratio test statistic λ∗n(H0) from the bootstrap

sample {Y ∗k,i,XXX
∗
k,i,TTT

∗
k,i}.
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5. Repeat steps 3 and 4 a large number of times to obtain the bootstrap replicates λ∗n(H0),

the estimated p-value is the percentage of λ∗n(H0) that are greater than λn(H0).

Generating a non-Gaussian random vector is often challenging. There are various methods

based on marginal models, which require only specification of the marginal means and

within-subject correlation structures. For example, Emrich and Piedmonte (1991) proposed

a method based on the multivariate probit model in which they generate correlated stan-

dard normal variables and then dichotomize each coordinate. Park, Park and Shin (1996)

proposed a simple algorithm for generating non-negatively correlated binary variables based

on the sums of correlated Poisson variables. However, most existing methods are subject to

general restrictions on {µ,R(τττ)}(e.g. the correlation should be positive definite; the corre-

lation ρjk must satisfy some pairwise bounds and is not free over [-1, 1].) These restrictions

could be violated during the process of generating the response vectors for different clus-

ters. It is also a time consuming process to generate binary data with large cluster size.

Therefore, conducting the GQLR test by using the bootstrap method may leave users a lot

of computational issues. One alternative approach is to assume working independence for

both estimation and test as described in Corollary 2. By setting C∗k,i = I for all k and i, we

can generate Yk,ij as if they are independent, and Corollary 2 insures that the asymptotic

distribution of λn(H0) based on independent bootstrap samples is the equivalent to the one

based on the real data.
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3.4 Appendix: Technical Proofs

3.4.1 Proof of null distribution

For any m-vectors xxx and yyy, the first two partial derivatives of Q{g−1(xxx), yyy} regarding xxx are

∂Q
∂xxx
{g−1(xxx), yyy} = ∆(xxx)V−1{g−1(xxx)}{yyy − g−1(xxx)},

∂2Q
∂xxx∂xxxT

{g−1(xxx), yyy} = −∆(xxx)V−1{g−1(xxx)}∆(xxx) +
m∑
j=1

{yj − g−1(xj)}Dj(xxx),

where ∆(xxx) = diag{dg−1

dx
(xj)}mj=1, Dj = ∂(Vj•∆)/∂xxx, and Vj• is the j-th row of V−1. Denote

ηηη0k,i = XXXk,iβββ0+θθθ0(TTT k,i), µµµ0k,i = g(ηηη0k,i) and εεεk,i = YYY k,i−µµµ0k,i. By taking a Taylor’s expansion

at ηηη0k,i, we have

Q[g−1{XXXk,iβ̂ββ + θ̂(TTT k,i)},YYY k,i] = Q[g−1{XXXk,iβββ0 + θ0(TTT k,i)},YYY k,i]

+εεεTk,iV
−1
k,i∆k,i{XXXk,i(β̂ββ − βββ0) + θ̂(TTT k,i)− θ0(TTT k,i)}

+
1

2
{XXXk,i(β̂ββ − βββ0) + θ̂(TTT k,i)− θ0(TTT k,i)}T{

m∑
j=1

εk,ijDk,ij −∆k,iV
−1
k,i∆k,i}

×{XXXk,i(β̂ββ − βββ0) + θ̂(TTT k,i)− θ0(TTT k,i)}+O{(n−1/2 + h2 + n−1/2h−1/2)3}.

For any vector aaa and a symmetric matrix AAA, define ‖aaa‖2
AAA = aaaTAAAaaa. Denote XXXk =

(XXXT
k,1, . . . ,XXX

T
k,nk

)T, ∆k = diag(∆k,1, . . . ,∆k,nk), and εεεk = (εεεTk,1, . . . , εεε
T
k,nk

)T. By straight for-

ward calculations,

λn(H0) = J1 + J2 + J3 + J4 + J5 + J6 + op(1), (3.13)

where

J1 =
∑
k

εεεTkV
−1
k ∆k{θ̂F,k(TTT k)− θ̂R(TTT k)}, J2 =

∑
k

εεεTkV
−1
k ∆kXXXk(β̂ββF − β̂ββR),

J3 =
∑
k

(β̂ββR − βββ0)TXXXT
k ∆kV

−1
K ∆k{θ̂R(TTT k)− θ0(TTT k)}
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−(β̂ββF − βββ0)TXXXT
k ∆kV

−1
K ∆k{θ̂F,k(TTT k)− θ0(TTT k)},

J4 =
1

2

∑
k

‖θ̂R(TTT k)− θ0(TTT k)‖2
∆kV

−1
K ∆k

− ‖θ̂F,k(TTT k)− θ0(TTT k)‖2
∆kV

−1
K ∆k

,

J5 =
1

2

∑
k

‖β̂ββc/R− βββ0‖2
XXXT
k∆kV

−1
k ∆kXXXk

− ‖β̂ββF − βββ0‖2
XXXT
k∆kV

−1
k ∆kXXXk

,

J6 =
1

2

∑
k

nk∑
i=1

‖XXXk,i(β̂ββF − βββ0) + θ̂F,k(TTT k,i)− θ0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij

−‖XXXk,i(β̂ββR − βββ0) + θ̂R(TTT k,i)− θ0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij

.

By Lemma 4, d1n = J2+J3+J5+J6 = op(h
−1/2). Theorem follows the asymptotic distribution

of J1 + J4 given in Lemma 5.

Lemma 4. Under the null hypothesis in (1.2) and all assumptions in Theorem 1, J2 = op(1),

J3 = op(h
−1/2), J5 = op(1) and J6 = Op(n

1/2h4 + n−1h−2).

Proof: (i) By the asymptotic expansions in Propositions 1 and 2, (β̂ββF − β̂ββR) = op(n
−1/2).

Therefore J2 = (
∑

k εεε
T
kV

−1
k ∆kXXXk)(β̂ββF − β̂ββR) = Op(n

1/2)× op(n−1/2) = op(1). Similarly,

J5 =
∑
k

(β̂ββR − βββ0)XXXT
k ∆kV

−1
k ∆kXXXk(β̂ββR − β̂ββF ) + (β̂ββR − β̂ββF )XXXT

k ∆kV
−1
k ∆kXXXk(β̂ββF − βββ0) = op(1).

(ii) Next, we derive the order for J3. Using similar arguments as in page 1054 of Lin and

Carroll (2001), the first term in J3 is

(β̂ββR − βββ0)T

q∑
k=1

nk∑
i=1

XXXT
k,i∆k,iV

−1
k,i∆k,i{θ̂R(TTT k,i)− θ0(TTT k,i)} = Op(1 + n1/2h2) = op(h

−1/2).

Similarly, the second term and hence J3 itself are of order op(h
−1/2).

(iii) We decompose J6 into three parts,

J61 =
1

2

∑
k

nk∑
i=1

‖XXXk,i(β̂ββF − βββ0)‖2∑m
j=1 εk,ijDk,ij

− ‖XXXk,i(β̂ββR − βββ0)‖2∑m
j=1 εk,ijDk,ij

J62 =
1

2

∑
k

nk∑
i=1

‖θ̂F,k(TTT k,i)− θ0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij

− ‖θ̂R(TTT k,i)− θ0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij
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J63 =
∑
k

nk∑
i=1

(β̂ββF − βββ0)TXXXT
k,i(

m∑
j=1

εk,ijDk,ij){θ̂F,k(TTT k,i)− θ0(TTT k,i)}

−(β̂ββR − βββ0)TXXXT
k,i(

m∑
j=1

εk,ijDk,ij){θ̂R(TTT k,i)− θ0(TTT k,i)}

It can easily show that J61 = Op(n
−1/2). Now, we need to proof that J62 = Op(n

1/2h4 + h+

n−1h−2). Recall that by Proposition 1, θ̂R(t) − θ0(t) = Op(h
2 + n−1/2h−1/2). Under the null

hypothesis, Proposition 2 provides the same convergence rate for θ̂F,k(t) − θ0(t). Since the

error εεεk,i is independent in our model, the correlation corr(εk,ij, εk′,i′j′) 6= 0 only if k = k′ and

i = i′, by tedious calculation, the first part of J62 can be written as

∑
k

∑
i=1

‖θ̂R(TTT k,i)− θ0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij

=
∑
k,i

‖θ
(2)
0 (TTT k,i)h

2

2
+ UR(TTT k,i)− µµµT

0X(TTT k,i)(β̂ββR − βββ0)‖2∑m
j=1 εk,ijDk,ij

+ op(1)

= Op(n
1/2h4 + n−1h−2)

The second term and J62 itself are of order Op(n
1/2h4 + n−1h−2). By using the similar

argument for J3, we find J63 = Op(h
2 + n−1/2h−1). Combining all three parts, we have

J6 = Op(n
1/2h4 + n−1h−2) = op(1) by Condition (C.6) . ♦

We now consider the asymptotic null distribution of the generalized quasi-likelihood test

statistics. The following notation will be used in the proof of the lemmas and theorems.

Denote
∑q

k=1

∑nk
i=1 as

∑
k,i, and let νjl and σjl be the (j, l)th elements of V−1 and Σ.

Lemma 5. Suppose all assumptions in Theorem 1 hold, then

σ−1
n (J1 + J4 − µn)

d−→ Normal(0, 1),

where µn and σ2
n are defined as in Theorem 1.
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Proof: It is easy to see that

J1 =
∑
k

∑
i

∑
j

∑
`

εk,ijν
j`
k,iµ

(1)
k,i`{θ̂F,k(Tk,i`)− θ̂R(Tk,i`)}.

Using the asymptotic expansions of θ̂R(t) and θ̂F,k(t) in Propositions 1 and 2, we have

J1 = (R1 +R2 +R3)× {1 + op(1)} where

R1 =

q∑
k=1

nk∑
i=1

m∑
j,j′,`=1

(
1

nk
− 1

n
)εk,ijεk,ij′ν

jl
k,iµ

(1)
k,il

µ
(1)
k,ij′ω

j′j′

k,i

mB1(Tk,il)
Kh(Tk,ij′ − Tk,il),

R2 =

q∑
k=1

nk∑
i=1

∑
i′ 6=i

m∑
j,j′,`=1

(
1

nk
− 1

n
)εk,ijεk,i′j′ν

jl
k,iµ

(1)
k,il

µ
(1)
k,i′j′ω

j′j′

k,i′

mB1(Tk,il)
Kh(Tk,i′j′ − Tk,il),

R3 = −
∑
k

∑
k′ 6=k

nk∑
i=1

nk′∑
i′=1

m∑
j,j′,`=1

1

nm
εk,ijεk′,i′j′ν

jl
k,iµ

(1)
k,il

µ
(1)
k′,i′j′ω

j′j′

k′,i′

B1(Tk,il)
Kh(Tk′,i′j′ − Tk,il).

By straightforward calculation,

R1 =
∑
k

(1− ρk)E
{ m∑
j,j′,`=1

σjj′ν
jl
k,iµ

(1)
k,il

µ
(1)
k,ij′ω

j′j′

k,i

mB1(Tk,il)
Kh(Tk,ij′ − Tk,il)

}
× {1 +Op(n

−1/2)}

=
q − 1

mh
K(0)

∑
j,l

E{σjlνjl∆2
llω

llB−1
1 (Tl)}+Op(1).

It can also easily to see that the terms R2 and R3 have mean zero and only contribute to

the variance.

By similar calculations,

J4 =
1

2

∑
k

∑
i

{
(θ̂R − θ0)T(TTT k,i)∆k,iV

−1
k,i∆k,i(θ̂R − θ0)(TTT k,i)

−(θ̂F,k − θ̂0)T(TTT k,i)∆k,iV
−1
k,i∆k,i(θ̂F,k − θ0)(TTT k,i)

}
=

1

2

∑
k

∑
i

m∑
j,l

µ
(1)
k,ijν

jl
k,iµ

(1)
k,il

{
θ

(2)
0 (Tk,ij)h

2

2
− µµµT

X(Tk,ij)(β̂ββR − βββ0)

+
1

nmB1(Tk,ij)

q∑
k′

nk′∑
i′

m∑
j′

µ
(1)
k′,i′j′ω

j′j′

k′,i′Kh(Tk′,i′j′ − Tk,ij)εk′,i′j′
}

×
{
θ

(2)
0 (Tk,il)h

2

2
− µµµT

X(Tk,ij)(β̂ββR − βββ0)
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+
1

nmB1(Tk,il)

q∑
k1

nk1∑
i1

m∑
j1

µ
(1)
k1,i1j1

ωj1j1k1,i1
Kh(Tk1,i1j1 − Tk,il)εk1,i1j1

}

−1

2

∑
k

∑
i

m∑
j,l

µ
(1)
k,ijν

jl
k,iµ

(1)
k,il

{
θ

(2)
0 (Tk,ij)h

2

2
− µµµT

X(Tk,ij)(β̂ββF − βββ0)

+
1

nkmB1(Tk,ij)

nk∑
i′

m∑
j′

µ
(1)
k,i′j′ω

j′j′

k,i′Kh(Tk,i′j′ − Tk,ij)εk,i′j′
}

×
{
θ

(2)
0 (Tk,il)h

2

2
− µµµT

X(Tk,ij)(β̂ββF − βββ0)

+
1

nkmB1(Tk,il)

nk∑
i1

m∑
j1

µ
(1)
k,i1j1

ωj1j1k,i1
Kh(Tk,i1j1 − Tk,il)εk,i1j1

}
+ op(h

−1/2).

A more detailed calculation shows that J4 = R4 +R5 +R6 + op(h
−1/2) with

R4 =
1

2

∑
k

∑
i

m∑
j,j′

εk,ijεk,ij′µ
(1)
k,ijω

jj
k,iµ

(1)
k,ij′ω

j′j′

k,i

[∑
k1

{
1

n2
I(k1 6= k) + (

1

n2
− 1

n2
k

)I(k1 = k)

}
∑
i1

m∑
j1,l

µ
(1)
k1,i1j1

νj1lk1,i1
µ

(1)
k1,i1l

m2B1(Tk1,i1j1)B1(Tk1,i1l)
Kh(Tk,ij − Tk1,i1j1)Kh(Tk,ij′ − Tk1,i1l)

]

R5 =
1

2

∑
k

∑
i

∑
i′ 6=i

m∑
j,j′

εk,ijεk,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k,i′j′ω

j′j′

k,i′

∑
k1

{
I(k1 = k)(

1

n2
− 1

n2
k

)

+I(k1 6= k)
1

n2

}∑
i1

m∑
j1,l

1

m2

µ
(1)
k1,i1j1

νj1lk1,i1
µ

(1)
k1,i1l

B1(Tk1,i1j1)B1(Tk1,i1l)

×Kh(Tk,ij − Tk1,i1j1)Kh(Tk,i′j′ − Tk1,i1l)

R6 =
1

2n2

∑
k

∑
k′ 6=k

∑
i,i′

m∑
j,j′

εk,ijεk′,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k′,i′j′ω

j′j′

k′,i′

∑
k1

∑
i1

m∑
j1,l

1

m2

µ
(1)
k1,i1j1

νj1lk1,i1
µ

(1)
k1,i1l

B1(Tk1,i1j1)B1(Tk1,i1l)

× Kh(Tk,ij − Tk1,i1j1)Kh(Tk′,i′j′ − Tk1,i1l)

Next, we need to simplify R4 - R6 further. First consider R4, we use the following decompo-

sition R4 = R41 +R42 with

R41 =
∑
k,i

m∑
j,j′

n− nk
2n2

εk,ijεk,ij′µ
(1)
k,ijω

jj
k,iµ

(1)
k,ij′ω

j′j′

k,i

{
1

mh

B2(Tk,ij)

B2
1(Tk,ij)

K ∗K(
Tk,ij − Tk,ij′

h
)

+
1

m2
E(

m∑
j1

∑
l 6=j1

∆j1j1ν
j1l∆ll|Tj1 = Tk,ij, Tl = Tk,ij′)
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× f(Tk,ij)f(Tk,ij′)

B1(Tk,ij)B1(Tk,ij′)

}
× {1 + op(1)}

=
1

2h

∑
k

(ρk − ρ2
k)

1

m
E

{ m∑
j

σjj∆
2
jj(ω

jj)2B2(Tj)

B2
1(Tj)

}∫
K2(t)dt+Op(1)

=
1

2h

∑
k

(ρk − ρ2
k)νKE{B3(T )B2(T )B−2

1 (T )f−1(T )}+Op(1) (3.14)

and

R42 =
∑
k,i,j,j′

1

2m2
(

1

n2
k

− 1

n2
)εk,ijεk,ij′µ

(1)
k,ijω

jj
k,iµ

(1)
k,ij′ω

j′j′

k,i

{∑
i1 6=i

∑
j1,l

µ
(1)
k,i1j1

νj1lk,i1
µ

(1)
k,i1l

B1(Tk,i1j1)B1(Tk,i1l)

× Kh(Tk,ij − Tk,i1j1)Kh(Tk,ij′ − Tk,i1l) +
∑
j1,l

µ
(1)
k,ij1

νj1lk,iµ
(1)
k,il

B1(Tk,ij1)B1(Tk,il)

× Kh(Tk,ij − Tk,ij1)Kh(Tk,ij′ − Tk,il)
}

=
1

2h

∑
k

(1− ρ2
k)νKE{B3(T )B2(T )B−2

1 (T )f−1(T )}+Op(1 +
1

nh2
) (3.15)

Combining (3.14) and (3.15), we have

R4 = R41 +R42 =
1− q

2h
νKE{B3(T )B2(T )B−2

1 (T )f−1(T )}+Op(1).

Similarly, the second term R5 can be decomposed into R51 and R52 with

R51 =
∑
k,i

∑
i′ 6=i

∑
j,j′

(
1

n2
− 1

n2
k

)εk,ijεk,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k,i′j′ω

j′j′

k,i′

{ ∑
i1 6=i,i′

∑
j1,l

1

2m2

µ
(1)
k,i1j1

νj1lk,i1
µ

(1)
k,i1l

B1(Tk,i1j1)B1(Tk,i1l)

×Kh(Tk,ij − Tk,i1j1)Kh(Tk,i′j′ − Tk,i1l) +
∑
j1,l

1

m2

µ
(1)
k,ij1

νj1lk,iµ
(1)
k,il

B1(Tk,ij1)B1(Tk,il)

×Kh(Tk,ij − Tk,ij1)Kh(Tk,i′j′ − Tk,il)
}

=
1

2mh

∑
k,i

nk(
1

n2
− 1

n2
k

)
∑
i′ 6=i

∑
j,j′

εk,ijεk,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k,i′j′ω

j′j′

k,i′
B2(Tk,ij)

B2
1(Tk,ij)

×K ∗K(
Tk,ij − Tk,i′j′

h
) +Op(1 +

1

nh3/2
) (3.16)

R52 =
∑
k,i

n− nk
2n2

∑
i′ 6=i

m∑
j,j′

εk,ijεk,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k,i′j′ω

j′j′

k,i′

{
B2(Tk,ij)

mhB1(Tk,ij)
K ∗K(

Tk,ij − Tk,i′j′
h

)
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+
f(Tk,ij)f(Tk,i′j′)

m2B1(Tk,ij)B1(Tk,i′j′)
E(

m∑
j1

∑
l 6=j1

∆j1j1ν
j1l∆ll|Tj1 = Tk,ij, Tl = Tk,i′j′)

}
×{1 + op(1)} (3.17)

Combining (3.16) and (3.17) together, we get

R5 =
1

2mh

∑
k

(ρk − 1)
1

nk

∑
i

∑
i′ 6=i

m∑
j,j′

εk,ijεk,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k,i′j′ω

j′j′

k,i′
B2(Tk,ij)

B2
1(Tk,ij)

×K ∗K(
Tk,ij − Tk,i′j′

h
) +Op(1)

Finally, for the third term R6,

R6 =
1

2n2

∑
k

∑
k′ 6=k

∑
i,i′

m∑
j,j′

εk,ijεk′,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k′,i′j′ω

j′j′

k′,i′

∑
k1

{
I(k1 6= k & k1 6= k′)

+I(k1 = k) + I(k1 = k′)

}∑
i1

m∑
j1,l

1

m2

µ
(1)
k1,i1j1

νj1lk1,i1
µ

(1)
k1,i1l

B1(Tk1,i1j1)B1(Tk1,i1l)

× Kh(Tk,ij − Tk1,i1j1)Kh(Tk′,i′j′ − Tk1,i1l)

=
1

2nmh

q∑
k=1

∑
k′ 6=k

nk∑
i=1

nk′∑
i′=1

∑
j,j′

εk,ijεk′,i′j′µ
(1)
k,ijω

jj
k,iµ

(1)
k′,i′j′ω

j′j′

k′,i′
B2(Tk,ij)

B2
1(Tk,ij)

×K ∗K(
Tk,ij − Tk′,i′j′

h
) +Op(1)

where B1(t) is as defined in Condition (C.4) and B2(t) and B3(t) are defined in (3.5).

Similar as the decomposition of J1, we find that R4 is the leading term in the mean of

J4, and the terms R5 and R6 have mean zero and only contribute to the variance of J4. We

now collect the mean components in J1 + J4 as

µn = R1 +R4 =
q − 1

mh
E

{
K(0)

∑
j

∑
l

σjlν
jl∆2

llω
llB−1

1 (Tl)

−νK
2

m∑
j=1

∆2
jj(ω

jj)2σjjB2(Tj)B
−2
1 (Tj)

}
+Op(1)

=
q − 1

h
E

{
K(0)

B5(T )

B1(T )f(T )
− νK

2

B2(T )B3(T )

B2
1(T )f(T )

}
+Op(1). (3.18)
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Next, we collect the leading terms that contribute to the variance as R2 + R3 + R5 + R6 =

Wn +Op(1) where

Wn =

q∑
k=1

(1− ρk)
1

nkm

∑
i

∑
i′ 6=i

∑
j

∑
j′

εk,ijεk,i′j′

{∑
l

νjlk,iµ
(1)
k,il

B1(Tk,il)
µ

(1)
k,i′j′ω

j′j′

k,i′Kh(Tk,i′j′ − Tk,il)

− 1

2h
µ

(1)
k,ijω

jj
k,iµ

(1)
k,i′j′ω

j′j′

k,i′
B2(Tk,ij)

B2
1(Tk,ij)

K ∗K(
Tk,ij − Tk,i′j′

h
)

}
−
∑
k

∑
k′ 6=k

1

nm

∑
i

∑
i′

∑
j

∑
j′

εk,ijεk′,i′j′

{∑
l

νjlk,iµ
(1)
k,il

B1(Tk,il)
µ

(1)
k′,i′j′ω

j′j′

k′,i′Kh(Tk′,i′j′ − Tk,il)

−1

2
µ

(1)
k,ijω

jj
k,iµ

(1)
k′,i′j′ω

j′j′

k′,i′
B2(Tk,ij)

B2
1(Tk,ij)

K ∗K(
Tk,ij − Tk′,i′j′

h
)

}
.

We can see that

var(Wn) =

{∑
k1

(1− ρk1)2Vw +
∑
k1

∑
k2 6=k1

ρk1ρk2Vw

}
× {1 + o(1)}

= (q − 1)Vw × {1 + o(1)},

where

Vw = E

[
1

m2

m∑
j1=1

m∑
j2=1

m∑
j3=1

m∑
j4=1

εi1j1εi2j2εi1j3εi2j4

{ m∑
`1=1

νj1l1i1
µ

(1)
i1l1

µ
(1)
i2j2
ωj2j2i2

B1(Ti1l1)
Kh(Ti2j2 − Ti1l1)

−1

2
µ

(1)
i1j1
ωj1j1i1

µ
(1)
i2j2
ωj2j2i2

B2(Ti2j2)

B2
1(Ti2j2)

Kh ∗Kh(Ti1j1 − Ti2j2)
}

×
{ m∑
`2=1

νj3l2i1
µ

(1)
i1l2

µ
(1)
i2j4
ωj4j4i2

B1(Ti1l2)
Kh(Ti2j4 − Ti1l2)

−1

2
µ

(1)
i1j3
ωj3j3i1

µ
(1)
i2j4
ωj4j4i2

B2(Ti2j4)

B2
1(Ti2j4)

Kh ∗Kh(Ti1j3 − Ti2j4)
}]

+E

[
1

m2

m∑
j1=1

m∑
j2=1

m∑
j3=1

m∑
j4=1

εi1j1εi2j2εi2j3εi1j4

{ m∑
`1=1

νj1l1i1
µ

(1)
i1l1

µ
(1)
i2j2
ωj2j2i2

B1(Ti1l1)
Kh(Ti2j2 − Ti1l1)

−1

2
µ

(1)
i1j1
ωj1j1i1

µ
(1)
i2j2
ωj2j2i2

B2(Ti2j2)

B2
1(Ti2j2)

Kh ∗Kh(Ti1j1 − Ti2j2)
}

×
{ m∑
`2=1

νj3l2i2
µ

(1)
i2l2

µ
(1)
i1j4
ωj4j4i1

B1(Ti2l2)
Kh(Ti1j4 − Ti2l2)

−1

2
µ

(1)
i2j3
ωj3j3i2

µ
(1)
i1j4
ωj4j4i1

B2(Ti1j4)

B2
1(Ti1j4)

Kh ∗Kh(Ti2j3 − Ti1j4)
}]
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= E

{
B3(T )B4(T ) +B2

5(T )

B2
1(T )f(T )

∫
K2(t)dt+

B2
2(T )B2

3(T )

2B4
1(T )f(T )

∫
(K ∗K)2(t)dt

−2
B2(T )B3(T )B5(T )

B3
1(T )f(T )

∫
K(t)K ∗K(t)dt

}
+O(1).

Hence, var(Wn) = σ2
n +O(1). Since J1 + J4 = µn +Wn +Op(1), the asymptotic distribution

in the lemma follows directly from Proposition 3.2 in de Jong (1987). ♦

3.4.2 Proof of Corolary 1

Under the null hypothesis, recall that B1(t) = 1
m

∑m
j=1 E(∆2

jjω
jj|Tj = t)f(t) and B2(t) =

1
m

∑m
j=1 E(∆2

jjν
jj|Tj = t)f(t), we can easily show that νjj = {C−1(τττ)}jjωjj, where C(τττ) is the

working correlation matrix depending on an unknown parameter vector τττ . Since both ∆jj

and ωjj are functions of only var(µjj), which means that var(µjj|XXXj, Tj, Tk) = var(µjj|XXXj, Tj)

for all jandk, we can get

B2(t) =
1

m

m∑
j=1

E

[
{S−1C−1(τττ)S−1}jj∆2

jj|Tj = t

]

=
1

m

m∑
j=1

E

[
{C−1(τττ)}jj∆2

jjω
jj|Tj = t

]

=
1

m

m∑
j=1

E

[
{C−1(τττ)}jj|Tj = t

]
E(∆2

jjω
jj|Tj = t)

= B2†(t)B1(t)

Next, we need to simplify B3(t), B4(t) and B5(t). According to the Corollary 1, W =

Σd = S2, a straightforward calculation shows that

B3(t) =
1

m

m∑
j=1

E{σjj∆2
jj(ω

jj)2|Tj = t}f(t)

=
1

m

m∑
j=1

E{σjjωjj|Tj = t}E{∆2
jjω

jj|Tj = t}f(t) = B1(t)
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B4(t) =
1

m

m∑
j1=1

E

{ m∑
j2=1

m∑
j3=1

νj1j2σj2j3ν
j3j1∆2

j1j1

∣∣∣∣Tj1 = t

}
f(t)

=
1

m

m∑
j=1

E

[
{S−1C−1(τττ)RC−1(τττ)S−1}jj∆2

jj|Tj = t

]
f(t)

=
1

m

m∑
j=1

E

[
{C−1(τττ)RC−1(τττ)}jj∆2

jjω
jj|Tj = t

]
f(t)

=
1

m

m∑
j=1

E

[
{C−1(τττ)RC−1(τττ)}jj|Tj = t

]
B1(t)

= B4†(t)B1(t)

B5(t) =
1

m

m∑
j1=1

E

{ m∑
j=1

σjj1ν
jj1∆2

j1j1
ωj1j1

∣∣∣∣Tj1 = t

}
f(t).

=
1

m

m∑
j=1

E

[
{SRC−1(τττ)S−1}jj∆2

jjω
jj

∣∣∣∣Tj = t

]
f(t)

=
1

m

m∑
j=1

E

[
{RC−1(τττ)}jj

∣∣∣∣Tj = t

]
B1(t)

= B5†(t)B1(t)

where B2†(t) - B5†(t) are defined in (3.6).

By pluging B1(t) - B5(t) into the asymptotic distribution of λn(H0) in Theorem 1, λn(H0)

follows an asymptotic normality given in Corollary 1. ♦

3.4.3 Proof of Theorem 2

Lemma 6. Suppose assumptions (C.1) – (C.6) and the local alternative described in (3.7)

and (3.8) hold, β̂ββR is still root-n consistent to βββ0, and β̂ββF − β̂ββR = op(n
−1/2). The nonpara-

metric estimator θ̂R(t) has the same asymptotic expansion as in (2.8).
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Proof: For a fixed βββ, we derive the asymptotic expansion of profile kernel estimator θ̂R(t;βββ)

using standard derivations (Lin and Carroll, 2001) and get

θ̂R(t;βββ)− θ0(t) =
1

nmB1(t)

q∑
k=1

nk∑
i=1

m∑
j=1

µ
(1)
k,ijω

jj
k,iKh(Tk,ij − t)

[
εk,ij + µ

(1)
k,ijXXX

T
k,ij(βββ0 − βββ)

+ µ
(1)
k,ij{θk0(Tk,ij)− θ0(t)}

]
+ op(n

−1/2)

=
1

mnB1(t)

q∑
k=1

nk∑
i=1

m∑
j=1

µ
(1)
k,ijω

jj
k,iKh(Tk,ij − t){εk,ij + µ

(1)
k,ijGkn(Tk,ij)}

+
h2

2
θ

(2)
0 (t)− µµµT

X(βββ − βββ0) + op(n
−1/2 + ‖βββ − βββ0‖). (3.19)

Since
∑

k ρkGkn(t) = 0 for all t andGkn(T ) = Op(n
−1/2h−1/2), B1k(t) = B1(t)+O(n−1/2h−1/2)

and

1

mn

q∑
k=1

nk∑
i=1

m∑
j=1

(µ
(1)
k,ij)

2ωjjk,iKh(Tk,ij − t)Gkn(Tk,ij)

=

q∑
k=1

ρkB1k(t)Gkn(t) +Op{(nh)−1/2 × (h2 + n−1/2h−1/2)} = op(n
−1/2).

Finally, we get

θ̂R(t;βββ)− θ0(t) =
h2

2
θ

(2)
0 (t) + UR(t)− µµµT

X(βββ − βββ0) + op(n
−1/2 + ‖βββ − βββ0‖). (3.20)

Therefore, if β̂ββR−βββ0 = Op(n
−1/2), the expansion of θ̂R(t) follows directly from (3.20) and

the leading terms are identical to those in (2.8).

We next derive the asymptotic expansion of β̂ββR. By standard profile estimator arguments,

β̂ββR − βββ0 = DDD−1
† En† + op(n

1/2),

where DDD† =
∑

k ρkE{X̃XX
T

k†∆kW−1
k ∆kX̃XXk†}, En† = n−1

∑q
k=1

∑nk
i=1 X̃XX

T

k,i†∆k,iW−1
k,i εεεk,i, X̃XXk† =

{(XXX − µµµX)(T`)}m`=1. Therefore, β̂ββR is still root-n consistent to βββ0.



44

By the assumption that Gkn(T ) = Op{(nh)−1/2}, k = 1, . . . , q, we can see that D∗−D† =

o(1), and En∗ − En† = o(n−1/2), and hence β̂ββR − β̂ββF = op(n
−1/2).

♦

Proof of Theorem 2: The test statistic has a similar decomposition as (3.13)

λ1n(H0) = J†1 + J†2 + J†3 + J†4 + J†5 + J†6 + op(1),

where

J†1 =
∑
k

εεεTkV
−1
k ∆k{θ̂F,k(TTT k)− θ̂R(TTT k)}, J†2 =

∑
k

εεεTkV
−1
k ∆kXXXk(β̂ββF − β̂ββR),

J†3 =
∑
k

(β̂ββR − βββ)TXXXT
k ∆kV

−1
K ∆k{θ̂R(TTT k)− θk0(TTT k)}

−(β̂ββF − βββ)TXXXT
k ∆kV

−1
K ∆k{θ̂F,k(TTT k)− θk0(TTT k)},

J†4 =
1

2

∑
k

‖θ̂R(TTT k)− θk0(TTT k)‖2
∆kV

−1
K ∆k

− ‖θ̂F,k(TTT k)− θk0(TTT k)‖2
∆kV

−1
K ∆k

,

J†5 =
1

2

∑
k

‖β̂ββR − βββ0‖2
XXXT
k∆kV

−1
k ∆kXXXk

− ‖β̂ββF − βββ0‖2
XXXT
k∆kV

−1
k ∆kXXXk

,

J†6 =
1

2

∑
k

nk∑
i=1

‖XXXk,i(β̂ββF − βββ0) + θ̂F,k(TTT k,i)− θk0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij

−‖XXXk,i(β̂ββR − βββ0) + θ̂R(TTT k,i)− θk0(TTT k,i)‖2∑m
j=1 εk,ijDk,ij

.

By similar derivations as in Lemma 4, we can show that J†2 + J†3 + J†5 + J†6 = op(h
−1/2) and

hence the dominant terms in λ1n(H0) are J†1 and J†4 .

Under the local alternative, Gkn(T ) = Op{(nh)−1/2}, one can show µµµX,k(t) − µµµk(t) =

O{(nh)−1/2}. By Proposition 2 and Lemma 6,

θ̂F,k(t)− θ̂R(t) = Gkn(t) +
1

2
G

(2)
kn (t)h2 + UF,k(t)− UR(t) + µµµT

X(t)(β̂ββR − βββ0)

−µµµT
X,k(t)(β̂ββF − βββ0) + op(n

−1/2)

= Gkn(t) + UF,k(t)− UR(t) + op(n
−1/2).
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By straightforward calculations, J†1 = J1 + R†1 + op(h
−1/2) and J†4 = J4 + R†2 + R†3 + R†4 +

op(h
−1/2), where

R†1 =

q∑
k=1

nk∑
i=1

εεεT
k,iV

−1
k,i∆k,iGkn(TTT k,i),

R†2 =
1

2

q∑
k=1

nk∑
i=1

GT
kn(TTT k,i)∆k,iV

−1
k,i∆k,iGkn(TTT k,i),

R†3 = −
q∑

k=1

nk∑
i=1

GT
kn(TTT k,i)∆k,iV

−1
k,i∆k,iUR(TTT k,i),

R†4 =

q∑
k=1

nk∑
i=1

GT
kn(TTT k,i)∆k,iV

−1
k,i∆k,iµµµX(TTT k,i)(β̂ββR − βββ0).

More detailed calculation shows

R†3 = −
q∑

k=1

nk∑
i=1

m∑
j=1

m∑
`=1

Gkn(Tk,ij)ν
j`
k,iµ

(1)
k,ijµ

(1)
k,i`

×
{

1

nmB1(Tk,i`)

q∑
k′=1

nk′∑
i′=1

m∑
j′=1

µ
(1)
k′,i′j′ω

j′j′

k′,i′Kh(Tk′,i′j′ − Tk,i`)εk′,i′j′
}

= −
q∑

k′=1

nk′∑
i′=1

m∑
j′=1

µ
(1)
k′,i′j′ω

j′j′

k′,i′εk′,i′j′

× 1

nm

{ q∑
k=1

nk∑
i=1

m∑
j=1

m∑
`=1

Gkn(Tk,ij)ν
j`
k,iµ

(1)
k,ijµ

(1)
k,i`B

−1
1 (Tk,i`)Kh(Tk′,i′j′ − Tk,i`)

}

= −
q∑

k′=1

nk′∑
i′=1

m∑
j′=1

µ
(1)
k′,i′j′ω

j′j′

k′,i′εk′,i′j′ [BG(Tk′,i′j′) +Op{n−1/2h3/2 + (nh)−1}],

where BG(t) =
∑q

k=1 ρkE{
∑m

j=1Gkn(Tj)ν
j1
k µ

(1)
k,1jµ

(1)
k,11|T1 = t}/B1(t). Since

∑
k ρkGkn(t) =

0 and Gkn(t) = Op{(nh)−1/2}, we have νj1k = νj11 + Op{(nh)−1/2} and µ
(1)
k,1j = µ

(1)
1,1j +

Op{(nh)−1/2} for k = 2, . . . , q. Consequently, BG(t) = O{(nh)−1} and R†3 = Op(n
−1/2h−1 +

h3/2) = op(h
−1/2). Similarly,

R†4 = n(β̂ββR − βββ0)T

[ q∑
k=1

ρkE

{ m∑
j=1

m∑
`=1

Gkn(Tj)ν
j`
k,1µ

(1)
k,1jµ

(1)
k,1`

}
+Op(n

−1h−1/2)

]
= Op(n

−1/2h−1) = op(h
−1/2).
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Therefore λn(H1n) = µn + Wn + R†1 + R†2 + op(h
−1/2), where µn and Wn are as defined

in Theorem 1. By the assumption in (3.8), R†2 = µ1n + Op(n
−1/2h−1) = µ1n + op(h

−1/2).

Since R†1 is a linear combination of εk,ij and Wn only consists of quadratic terms, it is easy

to see that R†1 and Wn are uncorrelated and hence asymptotically independent. Therefore,

E{λn(H1n)} = µn +µ1n + op(h
−1/2) and var{λn(H1n)} = var(Wn) + var(R†1) + op(h

−1) = σ2
n‡.

The asymptotic normality of λn(H1n) follows from those of Wn and R†1. ♦

3.4.4 Proof of Theorem 3

Following the proof of Theorem 2, the probability of type II error under the local alternative

is

β(α,GGGn) = Φ{(σ2
n + d2n)−1/2(zασn − µ1n)},

where µ1n and d2n are defined as in Theorem 2. With a slight abuse of notation, define the

squared norm of the functional vectorGGGn as %2(GGGn) =
∑q

k=1 ρkE{GT
kn(TTT k)∆kV

−1
d,k∆kGkn(TTT k)}.

With h = c∗n−2/9, we have σ2
n = C1n

2/9 + O(1), d2n = C2n%
2(GGGn) × {1 + Op(n

−1/2)} for

some constants 0 < C1, C2 <∞, and µ1n = n%2(GGGn)× {1 +Op(n
−1/2)}.

For any %(GGGn) = cn−4/9, we have β(α,GGGn) = Φ{(C1n
2/9 + C2c

2n1/9)−1/2(zαC
1/2
1 n1/9 −

c2n1/9)}+ o(1) = Φ{zα− c2C
−1/2
1 }+ o(1). For any β > 0, we can choose c to be large enough

so that β(α,GGGn) < β. Therefore, β(α, cn−4/9) < β + o(1).

For any %n∗ = o(n−4/9) and any GGGn satisfying %(GGGn) = c%n∗ for some c > 0, we have

β(α,GGGn) = Φ{(C1n
2/9 +C2c

2nρ2
n∗)
−1/2(zαC

1/2
1 n1/9−c2n%2

n∗)}+o(1) = 1−α+o(1). Therefore

there exists β < 1− α so that β(α,GGGn) > β and hence lim infn β(α, c%n∗) > β. We have now

verified that %n(h) = n−4/9 satisfies both conditions for the minimax rate. ♦



Chapter 4

Simulation Studies

To investigate the performance of our proposed GQLR test, we consider three simulation

settings: Gaussian longitudinal data with homogeneous variance, Gaussian longitudinal data

with heterogenous variance and binary longitudinal data. Throughout the simulation studies,

we first fit the full model to obtain initial estimates of βββ and θk(t), and then estimate the

variance function σ2(µµµ) and the working correlation structure C(τττ) by applying the methods

described in Section 3.3.2. The weight is the inverse of the estimated variance function for

both the reduced and full models.

4.1 Simulation 1: Gaussian data with homogenous variance

In this simulation, consider the following model

Yk,ij = Xk,ijβ + θk(Tk,ij) + εk,ij, k = 1, 2, i = 1, · · · , 100, j = 1, · · · , 4, (4.1)

where Tk,ij are generated as i.i.d. random variables from a uniform distribution on [0, 1],

εk,ij are i.i.d. N(0, 1) random variables and the time dependent covariate Xk,ij = Tk,ij +

U(−1, 1). This setting implies that the marginal density of (Xj, Tj) is the same for any j

and E(Xj|Tj, Tl) = E(Xj|Tj) for j 6= l. Let the true correlation structure within a cluster to

be ARMA(1,1) , i.e. corr{ε(s), ε(t)} = 1 for s = t and γ exp(−|s − t|/ν) for s 6= t. We set

γ = 0.6 and ν = 1.

47
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To examine the Wilks phenomenon of the GQLR test, we assume the null hypothesis is

true that θ1(t) = θ2(t) = θ0(t), and generate 400 datasets from each of the following three

different scenarios,

Scenario I : β = 1, θ0(t) = 2 sin(2t)2;

Scenario II : β = −0.5, θ0(t) = 2 sin(2t)2;

Scenario III : β = 1, θ0(t) = sin(2πt).

For the local linear estimator, we adopt the Epanechnikov kernel

K(t/h) =
3

4
{1− (t/h)2}1{|t/h|61}, (4.2)

where h is the bandwidth set to be 0.12 and is fixed for both reduced and full models

across all simulations to eliminate the variation in λn(H0) caused by bandwidth selection.

We calculate the the initial estimates of β and θk(t) in the full model setting Wk,i’s to be

identity matrices. To construct the GQLR test statistic, we use a Gaussian quasi-likelihood

Q(µµµ,YYY ) = (YYY − µµµ)TV(µµµ)−1(YYY − µµµ), (4.3)

where V(µµµ) = S(µµµ)C(τττ)S(µµµ), S(µµµ) = diag{σ̂(µj)}mj=1 and C(τττ) is a working correlation

matrix.

Asymptotic distribution of rkλn(H0) under working independence: Figure 4.1 shows the

estimated kernel density of rkλn(H0) (solid line) from scenario I, when the working correlation

structure C(τττ) is set to be identity. The dashed curve is the density of a χ2 distribution with

the degree of freedom set to be the empirical mean of rkλn(H0). Both curves are estimated

by using the ’density’ function in R. The fact that the distribution of the test statistic is

closely approximated by a χ2 density corroborates our theory in Corollary 2.



49

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 4.1: Simulation 1: the estimated kernel density function of rKλn(H0) (solid line) under
Scenario I and the χ2 distribution with the degree freedom matching the sample mean of rKλn(H0)
(dashed line). The working correlation matrix C(τττ) is set to be identity.

Wilks Phenomenon under misspecified correlation structure: To confirm that the asymp-

totic null distribution of λn(H0) is independent of the parameters β and θ(t), we consider

both a mis-specified AR(1) working correlation structure (i.e. ρ(s, t; τ) = exp(−|s− t|/ν) if

s 6= t and 1 if s = t ) and working independence. We examine the empirical distributions of

λn(H0) under the three different scenarios when using each correlation structure respectively.

Compared to scenario I, scenario II has the same smoothing function θ(t) but a different coef-

ficient β; scenario III has the same coefficient β but a different smoothing function θ(t). The

three null distributions of λn(H0) under scenarios I - III are depicted in Figure 4.2 under

a misspecified AR(1) correlation and Figure 4.3 under WI. The solid, dashed and dotted
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curves correspond to the senarios I, II and III. Both Figures demonstrate that the null den-

sities are almost the same either β or θ varies, which confirms our theoretical results that,

when the variance function is correctly specified, the asymptotic distribution of λn(H0) does

not depends on the value of β and θ0(t). By comparing the curves between the Figures, we

find the distribution of λn(H0) depends on the working correlation structure C(τττ).
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0.
10

0.
15

Figure 4.2: Simulation 1: the empirical distribution of λn(H0) with a misspecified AR(1) correlation
structure when the variance function is consistently estimated. (solid line: scenario I; dashed line:
scenario II; dotted line: scenario III).

Power of the GQLR tests: For the power assessment, we focuse on scenario I, fixing

θ1(t) at θ0(t), while changing θ2(t) to θ2,φ(t) where

θ2,φ(t) = 2 sin(2t)2 + φ sin(t), 0 < φ < 1.

We set φ=0, 0.2, 0.4, 0.6, and 0.8, respectively. As φ increases, the model deviates further

away from H0. The discrepancy among the smooth functions is displayed in Figure 4.4.
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Figure 4.3: Simulation 1: the empirical distribution of λn(H0) with WI working covariance when the
variance function is consistently estimated. (solid line: scenario I; dashed line: scenario II; dotted
line: scenario III).

For each value of φ, we generate 500 datasets from model (4.1). The true within-cluster

correlation is ARMA(1,1) as described before, but we perform the GQLR test based on

working independence. We set the significance level at α = 0.05, use the distribution of λn

under φ = 0 to decide the critical values, and calculate the rejection frequencies for the other

φ values. The results are depicted in Figure 4.5. The rejection rate of H0 gets higher as φ

increases.
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Figure 4.4: Simulation 1: plot of θ2,φ(t): — φ = 0, +++ : φ = 0.2, ××× : φ = 0.4, ��� : φ = 0.6,
· · · : φ = 0.8.
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Figure 4.5: Simulation 1: power curve of the GQLR test where the significance level is α = 0.05.
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4.2 Simulation 2: Gaussian data with heterogeneous variance

As Corollary 1 shows, the Wilks phenomenon holds as long as the variance is estimated cor-

rectly, even though the correlation structure is misspecified. We here considere two particular

cases where the variance structure is specified correctly and incorrectly. Consider simulation

setups similar to the three scenarios in Section 4.1, except that the variance of Yk,ij depends

on the mean such that

Var(Yk,ij|Xk,ij, Tk,ij) = 0.3 ∗ µ2
k,ij + 0.3,

where µk,ij = Xk,ijβ + θk(Tk,ij).

Wilks phenomenon when the variance function is consistently estimated: We estimate

the conditional variance function by a local linear estimator described in Section 3.3.2, and

plug the estimated variance into the GQLR test statistic. To demonstrate the Wilks phe-

nomenon, we compare the null distributions of λn(H0) under scenarios I, II and III based on

300 simulations. An exchangeable (i.e. ρ(s, t; τ) = τ for some −m−1 < τ < 1 if s 6= t) and

working independence correlation structures are used.

The empirical distributions of λn(H0) under different settings are shown in Figure 4.6.

Panel (a) shows the distributions of λn(H0) when an exchangeable correlation structure is

used; Panel (b) shows the same distributions when working independence is adopted. In

each panel, the three estimated density functions correspond to the three scenarios. These

three density functions in the same panel are almost the same when β and θ0(t) change. By

comparing the density curves between the two panels, the distribution of λn(H0) depends

on the working correlation structure.
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Working Correlation Exchangeable Working Independence
Working Variance Nonpara. Est. Nonpara. Est. constant

Mean SE Mean SE Mean SE
Scenario I 3.38 2.34 5.03 2.47 5.27 3.03
Scenario II 3.47 2.15 5.17 2.43 5.24 2.66
Scenario III 3.45 2.17 5.10 2.29 5.30 2.42

Table 4.1: Simulation 2: Mean and Standard Errors of λn(H0) for Gaussian data with hetero-
geneous variance. The working variance used in the test is either a nonparametric estimator
using local polynomial or misspecified as a constant. The working correlation used in the
test is either a mis-specified exchangeable correlation structure or working independence.

Table 4.1 presents the mean and standard error (SE) of λn(H0) under different working

correlations. To verify that the distributions in each panel are indeed the same, we conduct

the two-sample t-tests and the F-tests to examine the equality of means and variances of

λn(H0) among different scenarios under the same working correlation structure. For example,

when an exchangeable correlation is applied, the p-values are 0.624 and 0.144 for scenario I

versus II, 0.704 and 0.193 for scenario I versus III, and 0.910 and 0.873 for scenario II versus

III. These results confirm that the null distribution of λn(H0) is independent of parameters

β and θ(t). Similar test results can be obtained when working independence is used.

Wilks phenomenon under variance misspecification: To better understand how the null

distributions change when the variance is misspecified, we consider the same simulations as

above but misspecify the variance as a constant. That is, the assumed working variance is

σ2(µ) = σ2 and the estimator is the mean squared error of the residuals. Figure 4.7 dis-

plays the empirical distributions of the GQLR test statistics under the three scenarios using

constant variance estimators and working independence correlations. We can clearly see the

differences between these distributions, which indicates the failure of the Wilks phenomenon.
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Figure 4.6: Simulation 2: The empirical distributions of λn(H0) when the variance function is con-
sistently estimated using a local linear estimator. Panel (a): an exchangeable correlation structure is
assumed for the test, where the correlation parameter is estimated by the quasi maximum likelihood
method described in Section . Panel (b): working independence is assumed for both estimation and
test. (solid line: scenario I; dashed line: scenario II; dotted line: scenario III).
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The last two columns in Table 4.1 summarize the mean and SE of λn(H0) under a mis-

specified constant variance when the working correlation C(τττ) is identity. Again, we conduct

the two-sample t-tests and the F-tests to check the significant differences between the three

scenarios. The p-values for the t-tests are 0.897 for scenario I versus II, 0.893 for I versus

III and 0.773 for II versus III. For the F-tests, the p-values are 0.02 for scenario I versus II,

0.0001 for I versus III and 0.1 for II versus III. These results confirm our theory that when the

variance function is misspecified, the Wilks phenomenon does not hold in general.
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Figure 4.7: Simulation 2: The empirical distribution of λn(H0) when the variance function is
misspecified as a constant and the correlation is working independence. (solid line: scenario I;
dashed line: scenario II; dotted line: scenario III)

Power of the GQLR tests: To access the power of the GQLR test, we focus on the simu-

lation setting described in scenario I and consider local alternatives with θ1(t) = θ0(t) −

φG(t) and θ2(t) = θ0(t) + φG(t). We consider two cases: 1): G(t) = sin(t) with φ =

0, 0.1, 0.2, 0.3, 0.4; and 2): G(t) = sin(3πt) with φ = 0, 0.05, 0.1, 0.15, 0.2.
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For each value of φ, we generate 500 datasets from the full model and use local variance

estimator as the working variance for both estimation and test. The true correlation is

ARMA (1,1) as described before. We conduct the GQLR test under three different working

correlation: working independence and true correlation, and set the significant level at α =

0.5.

The power curves of the GQLR tests under the two settings of G(t) and three correlation

structures are depicted in the two panels of Figure 4.8. As we can see, the power of the GQLR

tests gets higher as φ increases in all simulations. Interestingly, the simulation results suggest

that using the true covariance does not always increase the power. When G(t) = sin(t), the

proposed GQLR test based on working independence are more powerful than that using the

true correlation, which is illustrated by panel (a) of Figure 4.8. On the other hand, from

panel (b) of Figure 4.8, we show that using the true correlation results in a more powerful

test than using working independence when G(t) = sin(3πt). These results demonstrate the

power of our proposed GQLR test does depend on a complicated interaction between G(t)

and the correlation structure.

To validate this finding using our theoretical results, we also calculate the theoretical

power of the test given in (3.9). The value of σn, d2n, µn and µ1n are estimated by replacing

expectations with sample means. These estimated theoretical power curves under different

choices of G(t) and different working correlation structures are presented in panels (c) and

(d) of Figure 4.8. The theoretical power curves are similar to the empirical ones and confirm

that using the true correlation structure in the test does not necessarily increase the power

of the GQLR test.
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(a) Empirical power, G(t) = sin(t). (b)Empirical power, G(t) = sin(3πt).
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(c) Theoretical power, G(t) = sin(t). (d) Theoretical power, G(t) = sin(3πt).

Figure 4.8: Simulation 1: power of the GQLR test under the local alternative θ1(t) = θ0(t)−
φG(t) and θ2(t) = θ0(t) + φG(t). The theoretical powers are calculated using equation (3.9).
In each panel, the solid curve is the power under working independence and the dotted curve
is the power when the true correlation is used.
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4.3 Simulation 3: Binary longitudinal data

In this simulation, we will illustrate the performance of the GQLR test for non-Gaussian

data. We consider a binary longitudinal data with k = 2 treatment groups, each group has

nk = 150 subjects with m = 4 observations per subject. The response variable Yk,ij follows

a marginal distribution of Binomial (1, pk,ij) where

logit(pk,ij) = XXXT
k,ijβ + θk(Tk,ij). (4.4)

We generate Tk,ij as a random variable from a uniform distribution on [0, 1] and time

dependent covariate Xk,ij as the sums of Tk,ij and a normal [0, 0.3] random variable, and

assume an exchangeable within-subject correlation structure such that corr(Yk,ij, Yk,ij′) =

ρj,j′ = 0.3 for j 6= j′. To generate binary responses with the desired mean and correlation

structure, we use a truncated Bahadur representation (Bahadur, 1961) ignoring expansions

of order three and higher. Specifically, YYY k,i is generated from the following joint distribution

f(y1, . . . , ym) =

{ m∏
j=1

p
yj
j (1− pj)1−yj

}{
1 +

∑
1≤j<j′≤m

ρjj′ ỹj ỹj′

}
,

where pj is the probability that Yj is equal to 1 and ỹj = (yj − pj)/
√
pj(1− pj) is a stan-

dardized version of yj.

To verify the Wilks results, we study the empirical distribution of the test statistic under

the null hypothesis. We generate 300 datasets from each of the following three scenarios

Scenario IV : β = 0.5, θ0(t) =
1

2
sin(

3

4
πt),

Scenario V : β = −1, θ0(t) =
1

2
sin(

3

4
πt),

Scenario VI : β = 0.5, θ0(t) = sin(πt)− 0.5.
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For each simulated dataset, we estimate the variance by p̂k,ij(1 − p̂k,ij), where p̂k,ij is

estimated as exp{XXXT
k,ijβ̂F + θ̂k(Tk,ij)}/[1 + exp{XXXT

k,ijβ̂F + θ̂k(Tk,ij)}]. Epanechnikov kernel

with a bandwidth h = 0.1 is used. For binary responses, it is natural to use a binary quasi-

likelihood for the test

Qbinary(µµµ,YYY ) =
m∑
j=1

Yjlog{µj/(1− µj)}+ log(1− µj). (4.5)

In such a quasi-likelihood, it is difficult to incorporate within-cluster correlation. More impor-

tantly, some empirical evidence from our previous simulation shows, when working indepen-

dence estimator is used, incorporating correlation into test does not always increase the

power. Therefore, we focus on a working independence GQLR test using the quasi-likelihood

in (4.5).
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Figure 4.9: Simulation 3: the empirical distribution of rKλn(H0) (solid line) from scenario
V under working independence and a density of the χ2 distribution with the degree freedom
equaling the sample mean of rKλn(H0) (dashed line).



61

Asymptotic distribution of rkλn(H0) under working independence: Figure 4.9 demon-

strates the estimated density function of rKλn(H0) from scenario IV under working indepen-

dence assumption. As expected, it looks like the density of a χ2 distribution (dashed line)

with the degrees of freedom equal to the sample mean of rkλn(H0).

GQLR tests on correlated and independent bootstrap samples under WI assumption: As

our theory shows, when the working independence used for both estimation and hypoth-

esis test, the distribution of λn(H0) does not depend on the correlation structure, hence is

identical to the case when the data are independent. Based on this result, we can simplify

our bootstrap method in section 3.3.4 by simulating independent responses. To support this

claim, we also compare the empirical distribution of λn(H0) to a case where the responses

are truely independent. We generate 300 datasets from scenario VI with independent Yk,ij.

The empirical distribution of λn(H0) under Scenarios IV - VI with correlated responses

and that under Scenario VI with independent responses are shown in Figure 4.10. As we can

see, the four distributions are almost identical. The means and standard errors of λn(H0)

under different scenarios are displayed in Table 4.3. We performed the two-sample t-tests and

F-tests to detect the differences for the correlated responses among the different scenarios.

The p-values of t-tests and F-test are 0.558 and 0.37 for scenario IV vs V, 0.353 and 0.37 for

scenario IV vs VI and 0.12 and 0.994 for scenario V vs VI. We also compared the distributions

of λn(H0) under the correlated and independent responses for scenario VI. The p-values of

t-tests and F-test are 0.585 and 0.731. We conclude that these four distributions are almost

the same, which also corroborates our theory and the proposed bootstrap procedure.
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Table 4.2: Simulation 3: means and standard error (SE) of λn(H0) for binary longitudinal
data under scenario IV - VI and those of λn(H0) under scenario VI and independent response.

Correlated data Indepadent data
Scenario IV Scenario V Scenario VI Senario VI

Mean 5.87 5.99 5.68 5.57
SE 2.57 2.442 2.441 2.49
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Figure 4.10: Simulation 3: empirical distributions of λn(H0) for correlated datasets (scenario
IV: solid line; scenario V: dotted line; scenario VI: dashed line) and independent datasets
(scenario VI: dotdash line) using binary likelihood function under WI assumption.

Wilks Phenomenon under misspecified correlation structure: We now examine the null

distributions of λn(H0) using a misspecified AR(1) correlation under three different scenarios.

Note that, the quasi-likelihood equation in (4.5) can not be used when taking the within-

subject correlation into account. Since the quasi-likelihood used in the test statistic does

not have to be a real likelihood, we use a Gaussian quasi-likelihood in (4.3) on binary

longitudinal data. Simulation results are presented in Table 4.3, which are similar to those
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in the Gaussian cases. With the working correlation being AR(1), there are only small

differences in both means and variances of λn(H0) among the three scenarios. We also conduct

the t-tests and F-tests to determine if these differences are significant. It turns out that

no significant differences are detected based on the p-values. Figure 4.11 also displays the

empirical distributions of λn(H0) under the three scenarios.

Table 4.3: Simulation 3: means and standard error of λn(H0) for binary longitudinal data
under scenario IV - VI with the working correlation being AR(1)

Working correlation AR(1)
Scenario IV Scenario V Scenario VI

Mean 4.92 4.65 4.73
SE 2.54 2.41 2.33

SE stand for standerd error.
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Figure 4.11: Simulation 3: the estimated kernel density functions of λn(H0) using the Gaus-
sian quasi-likelihood and a misspecified AR(1) correlation (solid line: scenario IV; dashed
line: scenario V; dotted line: scenario VI).
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Power of the GQLR tests: As in the previous simulations, we focused on scenario IV,

fixing θ1(t) at θ0(t) and changing θ2(t) to θ2,φ(t) where

θ2,φ(t) =
1

2
sin(

3

4
πt) + φexp(

t

2
), φ = 0.1, 0.2, 0.3, 0.4, 0.5.

According to our discussion above, the GQLR test under woking independence is easy

to conduct in practice, and avoids computational issues in generating longitudinal binary

data. Therefore, for each value of φ, we generated 500 datasets from the model and ignore

the within-subject correlation in both estimation and hypothesis test. The power is 0.068

for φ = 0.1, 0.128 for φ = 0.2, 0.385 for φ = 0.3, 0.557 for φ = 0.4 and 0.593 for φ = 0.5,

as shown in Figure 4.13. This is not surprising, the results confirms that the GQLR test is

more powerful as φ increases.
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Figure 4.12: Simulation 3: plot of θ2,φ(t): — φ = 0, +++ : φ = 0.1, ××× : φ = 0.2, ��� : φ = 0.3,
. . . : φ = 0.4, · · · : φ = 0.5.
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Figure 4.13: Simulation 3: power of the GQLR tests for binary datasets, significance level is α =
0.05.



Chapter 5

Real Data Analysis

5.1 Application to CD4 count data

In this section, we perform the quasi-likelihood ratio test on repeated CD4 (cluster of dif-

ferentiation 4) count data from AIDS Clinical Trial Group 193A Study Team. This data set

is from a randomized, double-blind study of AIDS patients with advanced immune suppres-

sion. The patients in this study had CD4 counts less than or equal to 50 cells/mm3, and

were randomized to one of four daily regimens containing 600mg of zidovudine: treatment

1 is zidovudine alternating monthly with 400mg didanosine; treatment 2 is zidovudine plus

2.25mg of zalcitabine; treatment 3 is zidovudine plus 400mg of didanosine; treatment 4 is

zidovudine plus 400mg of didanosine and 400mg of nevirapine.

Measurements of CD4 counts were scheduled to be collected at baseline and at 8-week

intervals during 40 weeks of follow-up. The number of measurements of CD4 counts varied

from 1 to 9, with a median of 4. There are totally 1309 patients enrolled in this study,

including 162 females and 1147 males. After eliminating 122 patients who dropped out

immediately after the baseline measurement, 1044 males and 143 females are used for our

analysis. The response variable is the log transformed CD4 counts, log(CD4 counts + 1), and

the covariates are age(years), gender (1=M, 0=F) and measurement time (weeks). Figure

5.1 shows the scatter plot of log CD4 count versus observation times.

66
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Figure 5.1: Log CD4 count over time

To apply the semiparametric model (1.1), denote Yk,ij as the log CD4 count for the jth

visit of the ith patient in the kth treatment group, and XXXk,ij as the 2-dimentional covariate

vector consisting of age and gender. The time variable Tk,ij is a scaler, and θk(t) is the

treatment effect for the kth group. Assume that the within-subject covariance structure is

the same for all subjects, the variance is a smooth function of time T , and the working

correlation is ARMA(1,1). We chose the bandwidth h by the generalized cross-validation

criterion. Figure 5.2 shows the estimated smooth functions θk(t) for the four treatment

groups. It is obvious to see the differences between treatment groups. All treatment groups

have almost the same mean CD4 count at the baseline. As time goes on in the follow up,
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Figure 5.2: The estimated time effects θk(t): treatment 1 (solid line); treatment 2 (dotted line);
treatment 3(dashed line); treatment 4 (dot dash line)

the CD4 count drops monotonically for treatment 1, while it increases during first 12 weeks

and drops thereafter for treatment 4.

Consider the nonparametric hypothesis test:

H0 : θ1(t) = · · · = θ4(t) vs. H1 : not all θ′ks are the same, (5.1)

The log-likelihood function for this data is

`(β, θ) = −n
2

log2π− 1

2

∑
k

log|Vk| −
1

2

∑
k

{YYY k −XXXkβββ − θk(TTT k)}TV−1
k {YYY k −XXXkβββ − θk(TTT k)},

where YYY k, XXXk and Vk are the response vector and covariate matrix and working covariance

matrix in the kth treatment group. Denote the maximum log-likelihood under H0 and H1
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as ̂̀R and ̂̀F respectively. Then, the generalized likelihood ratio statistic is

λn(H0) = ̂̀
F − ̂̀R

=
1

2

q∑
k=1

{YYY k −XXXkβ̂ββR − θ̂R(TTT k)}TV−1
k {YYY k −XXXkβ̂ββR − θ̂R(TTT k)}

−1

2

q∑
k=1

{YYY k −XXXkβ̂ββF − θ̂F,k(TTT k)}TV−1
k {YYY k −XXXkβ̂ββF − θ̂F,k(TTT k)}. (5.2)

We calculate the p value of GQLR test based on the bootstrap procedure described in section

3.3, and the p value based on 500 bootstrap samples is < 0.002. Therefore, we conclude that

there are significant differences among four treatment groups.

5.2 Application to Opioid Agonist Treatment data

We now illustrate the application of our proposed GQLR test to a data set on opioid agonist

treatment. The data involved 140 patients who received primary care-based buprenorphine,

which is a commonly prescribed medication for treating opioid dependence, at the Primary

Care Center of Yale-New Haven Hospital. Each patient first went through a two-week induc-

tion and stabilization period and then was prescribed with daily medication of buprenorphine

for 24 weeks. Prior research has shown that adding counseling to buprenorphine can help

increase opioid abstinence rate (Amato et al., 2011). The main objective of the study was to

investigate the impact of adding cognitive behavioral therapy, which is a counseling inter-

vention with demonstrated efficacy for a variety of psychiatric conditions and substance use

disorders (Crits-Christoph et al., 1999; Beck, 2005; Butler et al., 2006; McHugh et al., 2010),

to the efficacy of primary case-based buprenorphine to treat opioid dependence. The patients

were randomly assigned to receive one of two treatments: physician management (PM) or

physician management and cognitive behavioral therapy (PMCBT). Physician management
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was provided in the form of 15- to 20-minute sessions by internal medicine physicians who

had experience with providing buprenorphine but had no training in cognitive behavioral

therapy. These sessions were given weekly for the first two weeks, every two weeks for the

next four weeks, and then monthly afterward. Patients in the PMCBT group were offered the

additional opportunity to participate in up to twelve fifty-minute weekly cognitive behav-

ioral therapy sessions during the first twelve weeks of treatment. All counseling sessions were

given by well-trained masters and doctoral-level clinicians. The main components of coun-

seling focused on developing behavioral skills such as promoting behavioral activation and

identifying and coping with opioid craving.

Illicit opioid use was measured weekly by both self-reported frequency of opioid use

and urine toxicology testing. The latter was conducted with the use of a semiquantitative

homogeneous enzyme immunoassay for opioids and other substances such as cocaine and

oxycodone. The accuracy of self-reported opioid use can be questionable. As a result, we

considered only the urine data. The time points when the urine testings were done were

unbalanced and irregular, because the patients did not provide urine samples on a strict

weekly basis. Some of these subjects also had follow-up measurements going up to 195

days. The number of observations per patient is between 1 and 27, with a median of 24.

The covariates we use include age, gender (1=female / 0=male) and the highest level of

education completed (1= High School or Higher and 0= otherwise); the time variable is day

with the range from day 0 to day 195. The response variable is urine toxicology testing result

(1=positive / 0= negative).
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Table 5.1: Summary statistics of covariates in Opioid Agonist Treatment data

Covariates Mean SE Median Min Max
age 33.90 9.54 33.44 18.11 62.57

Gender Frequency Percent Education Frequency Percent
1 37 0.264 1 118 0.843
0 103 0.736 0 22 0.157

A total of 140 patients are involved in our analysis, 69 patients are in PM group and 71

in PMCBT group. We analyze the dataset via the following logistic model

logit{Pr(Yk,ij = 1)} = XXXT
k,ijβββ + θk(Tk,ij), (5.3)

where θk(Tk,ij) is a smooth function of the time variable for the kth group.

We first employ a K-fold cross-validation method to select the bandwidth. We randomly

partition the original data into ι = 6 groups. For the ιth group of data denoted as Gι,

ι = 1, · · · , 6, we fit the model (5.3) to the remaining 5 groups and compute the fitted value

of YYY i (i ∈ Gι) defined as µ̂−ι(XXX i,TTT i). This leads to the cross-validation criterion

CV (h) =
∑
ι

∑
i∈Gι

{Yi − µ̂−ι(XXX i,TTT i)}2, (5.4)

where µ̂−ι(XXX i,TTT i) = logit−1{XXX iβ̂ββ−ι + θ̂θθ−ι(TTT i)}, and β̂ββ−ι and θ̂θθ−ι(TTT i) are the estimates

obtained without including data from Gι.

The covariance of β̂ββ is estimated using the sandwich formula

cov(β̂ββ) =

{ q∑
k

X̃XX
T

k ∆kW−1
k ∆kX̃XXk

}−1{ q∑
k=1

X̃XX
T

k ∆kW−1
k (YYY k − µµµk)(YYY k − µµµk)T

×W−1
k ∆kX̃XXk

}{ q∑
k

X̃XX
T

k ∆kW−1
k ∆kX̃XXk

}−1

,
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where µµµk = logit−1{XXXkβ̂ββF + θ̂θθF,k(TTT k)} and X̃XXk = XXXk − µµµX,k(TTT k). To calculate the X̃XXk, we

need to estimate µµµX,k(t). A consistent estimator of µµµX,k(t) is

[∑
i

{µ(1)
k,ij}

2ωjjk,iKh(Tk,ij − t)XXXk,ij

][∑
i

{µ(1)
k,ij}

2ωjjk,iKh(Tk,ij − t)
]−1

.

Table 5.2: Regression coefficient estimates in analysis of Opioid Agonist Treatment data.

Parameter Estimate Standard error P-value
Age -0.022 0.014 0.116

Gender 0.345 0.270 0.201
Education 0.791 0.350 0.024
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Figure 5.3: The estimated time effect θk(t): PMCBT treatment (solid line); PM treatment:
(dotted line)
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Table 5.2 presents the estimates and standard errors of the regression coefficients βββ

under the full model. The variable education has the smallest p-value of less than 0.05,

which indicates education makes a significant contribution to our model. Furthermore, The

estimated mean curves for the two treatment groups are presented in Figure 5.3. At the

beginning of the treatment, the estimated curves of the two groups are almost the same.

After about 70 days, patients in the PMCBT group have a lower probability of opioid use.

Near the end of treatment, both groups have increased opioid use rate, but patients with

additional cognitive behavioral therapy seemed to have lower overall rate of use. In addition,

the spaghetti plots of the estimated probability of opioid positive urines versus times for PM

treatment and PMCBT treatment are illustrated in Figure 5.4.

Our primary interest is to evaluate the impact of adding cognitive behavioral therapy to

physician management. In other words, our interest is to test the nonparametric hypothesis

H0 : θ1(t) = θ2(t) vs. H1 : θ1(t) 6= θ2(t). (5.5)

We apply the proposed GQLR test based on working independence correlation and quasi-

likelihood function

Q =
∑
k,i

∑
j

log[1 + exp{XXXk,ijβββ + θk(Tk,ij)}] + Yk,ij{XXXk,ijβββ + θk(Tk,ij)}. (5.6)

The p-value of the test is 0.023 based on 1000 bootstrap replicates. We therefore conclude

that there is a significant difference between the two treatment groups. In particular, Figure

5.3 suggests that cognitive behavioral therapy improved the opioid abstinence over time.

Fiellin et al. (2013) analyzed the same data, using self-reported frequency of opioid use and

the maximum number of consecutive weeks of abstinence from illicit opioids in the two 12-

week periods as the primary outcome measures, but did not find any evidence supporting
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Figure 5.4: The estimated probability of opioid positive urines versus observation time (in
days) for each patient
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the benefit of adding cognitive behavioral therapy. Their outcome measures are aggregated

and capture only certain features of the data. In contrast, our analysis is based on the entire

longitudinal trajectory and hence more powerful in detecting the difference between the two

treatments.



Chapter 6

Summary

We investigate a class of semiparametric analysis of covariance models for generalized lon-

gitudinal data, where the treatment effects are represented as nonparametric functions over

time and covariates are incorporated to account for the variability caused by confounders. We

propose to test the treatment effects using a generalized quasi-likelihood ratio test. Our the-

oretical study reveals that when the variance structure is correctly specified, the asymptotic

distribution of GQLR test statistic does not depends on the parameters, but does depend on

the true and working correlation structures. When the variance is mis-specified, the Wilks

phenomenon might completely fail in that the distribution of the test statistic depends on

all nuisance parameters. In particular, when working independence is assumed in both esti-

mation and test and when the variance structure is correctly specified, the much celebrated

Wilks phenomenon known to hold for independent data also holds for longitudinal data.

Replacing the true variance with a consistent estimator, such as the nonparametric esti-

mator based on local polynomial, only causes an asymptotically negligible error to the test.

We have also shown that GQLR test assuming working independence yields the minimax

optimal power rate.

It is a common practice to evaluate the null distribution by bootstrap. For Gaussian

data, one can take residuals of the full model and resample the entire clusters within each

76
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treatment group. Such a procedure can preserve the correlation structure of the real data.

However, such a procedure can not be used for non-Gaussian data, such as binary data,

since the residuals are not the same type of data any more. A parametric bootstrap is

also difficult to implement since generating non-Gaussian longitudinal data with the same

correlation structure as the real data is challenging. For non-Gaussian data, the GQLR test

assuming working independence is particularly appealing, since the asymptotic distribution

of the test statistic does not depend on the correlation structure and one can simulate the

null distribution using independent samples.

Our procedure is based on the working independence estimators of Lin and Carroll (2001),

and it is easy to implement. More complicated but also more efficient estimators were pro-

posed in Wang et al. (2005) and Lin and Carroll (2006). Tests based on those estimators

might improve the power of our test by a fraction, but can not improve the rate of the power.

However, how to incorporate correlation into the test statistics and how to implement boot-

strap for non-Gaussian correlated data remains unclear and calls for future research.



Chapter 7
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