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ABSTRACT 

Blueberry (Vaccinium corymbosum) of the family Ericuceae is reported to have high 

antioxidant activity compared to other fruits and vegetables. This is highly correlated 

with the anthocyanins and total polyphenolic content. Blueberries are often converted to 

extracts such as juice or juice concentrate for subsequent use in beverages, syrups and 

other food products. Phenolic compounds are highly unstable and may be lost during 

processing, particularly when heat treatment is involved. Blueberry extract was prepared 

and stored at different temperatures (-20±1, 6±1, 23±1, and 35±1 oC) in glass bottles. 

Changes were observed in total polyphenols (TPP), total anthocyanin (TACY), Trolox-

equivalent antioxidant capacity (TEAC), phenolic acids, individual anthocyanins, and cell 

proliferation during storage. Two Georgia-grown cultivars, Tifblue and Powderblue were 

chosen for the study. Recovery of TPP, TACY and TEAC in blueberry extract after 

pressing and heating were ~25, ~29, and ~69%, respectively, for both cultivars. Recovery 

of gallic acid, catechin and quercetin was ~25% in final extract. Ferulic acid was not 



  

detected in the final extract in both Tifblue and Powderblue cultivars. Recovery of 

peonidin, malvidin and cyanidin was ~20% in final extract in both the cultivars. These 

results suggest that most of the phenolic compounds were lost during removal of residue 

and during heating. Losses due to storage were less when compared with initial loss due 

to processing. There was no statistically significant loss (P < 0.05) of TPP, TACY and 

TEAC observed up to 30 days at -20±1 oC. At 6 ºC storage, a significant loss of TPP, 

TACY and TEAC was observed from 15 to 30 days. Similar results were obtained at 23 

ºC and 35 ºC (P < 0.05). A linear relationship was observed between TEAC values and 

total polyphenols and total anthocyanins. There was retention of more than 40% of 

ellagic acid and quercetin after 60 days at 35±1 oC. Anthocyanins were not detected after 

60 days of storage at 35±1 oC. Significant retention (P < 0.05) was obtained for malvidin 

(42.8 and 25.8%) and peonidin (74.0 and 79.5%) after 60 days storage at 23±1oC in glass 

bottles for Tifblue and Powderblue, respectively. Cell viability assay was performed 

using HT-29 cancer cell line and anthocyanins extracted from 30, 60, and 90 days stored 

extract at 6±1 and 23±1 oC. Significant cell proliferation inhibition percentage was 

observed in 30 days, although this was reduced significantly after 30-90 days. These 

results suggest that initial preparatory steps like washing, removal of residue mainly skin, 

heating and storage conditions were significantly affecting the phenolic compounds and 

their biological activity.  

Anthocyanin fractions from four cultivars of Georgia-grown blueberries namely 

Tifblue, Powderblue, Brightblue, and Brightwell were used for apoptosis study. 

Apoptosis was confirmed using two different methods: DNA fragmentation and caspase-

3 activity. The effect of anthocyanins on the activity of detoxifying enzymes glutathione-



  

S-transferase (GST) and quinone reductase (QR) were also determined. Cells were 

treated with 50, 100, and 150 µg/mL of anthocyanin fraction. Low concentration of 

anthocyanin from all cultivars showed DNA fragmentation. There was a significant 

difference in the caspase-3 activity (P < 0.05) between the control cells and the cells 

treated with anthocyanins from all the cultivars. A positive dose-response relationship 

was found in all the cultivars. Highest activity (1.4 fold increase over control) was 

observed in cells treated with 150 µg/mL anthocyanin fraction from the Brightwell 

cultivar. QR activity was lower in all treated cells than in control cells (0.25 µM/mg 

protein); A positive dose-response relationship was found in all the cultivars except 

Brightblue, where activity was the same for all three concentrations. GST activity was 

statistically higher (P < 0.05) in control cells than in cells treated with anthocyanin 

fractions from all the cultivars and at all levels of concentration. These results indicated 

that anthocyanins were not highly active in induction of detoxifying enzymes; however, 

apoptosis was confirmed in HT-29 cancer cells when treated with anthocyanins 

consisting predominantly of malvidin. 

 

INDEX WORDS:  Anthocyanins, blueberries, blueberry extract, caspase-3, cell 

proliferation, cultivars, detoxifying enzymes, DNA fragmentation, DNA ladder, 

flavonoids, glutathione-S-transferase, phase-II enzymes, phenolic compounds, quinone 

reductase,storage,TEAC. 
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CHAPTER 1 

INTRODUCTION 

 
Blueberries (Vaccinium corymbosum) commonly called highbush cultivated 

blueberries are native to North America and have been commercially produced for many 

years. Blueberries members of the family Ericaceae gained attention in recent years due 

to its high antioxidant activity compared to other fruits and vegetables (1-2). This is 

highly correlated to their anthocyanins and total polyphenolic content (3). 

Blueberries are often converted to water soluble extracts such as juice or juice 

concentrate which are subsequently used in beverages, syrups and other food products. 

Polyphenolic compounds including anthocyanins are not completely stable (4). They are 

readily oxidized because of their antioxidant properties and thus prone to degradation. 

Native enzyme, polyphenol oxidase (PPO) present in blueberry is responsible for 

oxidation of polyphenolics to quinones, which produce brown pigments (5-7), thus 

affecting the color of the extracts, and similar products like juice or concentrates. Heating 

was shown to inhibit PPO activity (5). The significant deterioration of phenolic 

compounds in highbush blueberries when converted to juice has already been discussed 

in several reports (8-9). However reports describing changes in antioxidant capacity, 

antiproliferation activity due to storage are rarely found. 

Anthocyanins belong to a widespread class of phenolic compounds collectively 

named flavonoids, and are present in high concentrations in blueberries (10). The 

difference between individual anthocyanins is related to the number of hydroxyl groups, 
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the nature and number of sugars, and the position of these attachments (11). 

In recent years considerable attention has been paid to anthocyanins due to their 

abilities to inhibit oxidative stress, cell carcinogenesis, and to induce apoptosis in 

malignant cells (11-16). Apoptosis is a major form of cell death, characterized chromatin 

condensation, cytoplasmic blebbing, and DNA fragmentation (17-19). This plays a 

significant role in the elimination of seriously damaged cells or tumor cells by 

chemopreventive agents (20-21). Caspases, a family of cystein proteases are said to be 

involved in this process of apoptosis (22). Activation of caspases during apoptosis results 

in the cleavage of critical cellular substrates, including poly (ADP-ribose) polymerase 

and lamins, so precipitating the dramatic morphological changes in apoptosis (23). 

Several studies have shown a link between intake of specific flavonoids, including 

anthocyanins, and a reduction in colon cancer risk (24-26). There are several mechanisms 

that could contribute to this association. A well characterized defense mechanism 

involves the induction of detoxification enzymes. Phase-I enzymes, members of 

cytochrome P450 superfamily, metabolically oxidize many xenochemicals thereby 

forming electrophilic intermediates (27-29). These electrophilic intermediates have 

ability to induce DNA damage and mutations, and are responsible for carcinogenic 

activity of many chemicals (30). Phase-II detoxification enzymes are responsible for 

metabolizing products of Phase-I metabolic reactions, degrade these reactive 

intermediates by conjugation or reduction reactions, thereby protecting cells from 

oxidative DNA damage. The most common conjugation reactions are catalyzed by 

glutathione-S-transferase (GST) (31), whereas reduction reactions are catalyzed by 

quinone reductase (QR) (32). GSTs detoxify carcinogens and promote their excretion by 
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promoting the conjugation of electrophilic compounds with glutathione. QR, another 

Phase II enzyme, works by catalyzing two-electron reductions on free radicals and toxic 

oxygen metabolites, which deactivates them and protects the surrounding tissues from 

mutagenesis and carcinogenesis. Many studies show that flavonoids such as anthocyanins 

can stimulate GST and QR (33-34). 

The present thesis includes five chapters. The first chapter is introduction. The 

second chapter presents a literature review of topics related to blueberry, phenolic acids, 

anthocyanins and their health effects, apoptosis, role of caspase-3, detoxifying enzymes, 

glutathione-S-transferase and quinone reductase. 

Third chapter presents effect of storage conditions on biological activity of 

phenolic compounds of blueberry extract packed in glass bottles. Extract was stored at 

different temperatures (-20±1, 6±1, 23±1, and 35±1 oC). Two cultivars, Tifblue and 

Powderblue were chosen for the study. These are the most commonly used berries by 

food industries, and Tifblue (Rabbiteye) is gaining attention due to its high anthocyanin 

content. Anthocyanin fraction was separated from extracts stored at 6±1, 23±1 oC and 

their effect on cell proliferation activity using HT-29 colon cancer cell line was 

evaluated. 

The forth chapter presents effect of anthocyanin fractions from Georgia grown 

cultivars of blueberries (Tifblue, Powderblue, Brightblue, and Brightwell) on apoptosis 

and phase II enzymes: glutathione-S-transferase and quinone reductase as a measure of 

chemopreventive properties and mechanisms. Two different methods were chosen to 

confirm the apoptosis, namely DNA fragmentation and caspase-3 activity. 

Chapter 5 summarizes chapters 3 and 4 and presents general conclusions.  
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The objectives of the present study are: (1) to study the effect of storage on 

phenolic compounds and their antioxidant activity in blueberry extract, (2) to separate 

anthocyanin fractions from blueberry extract stored under different temperature 

conditions and evaluate their effect on cell proliferation activity using HT-29 cancer cell 

line, and 3) to study the effect of anthocyanins from selected cultivars grown in Georgia 

on apoptosis and phase-II enzymes. 
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CHAPTER 2 

LITERATURE REVIEW  

BLUEBERRY 

Blueberries (Vaccinium corymbosum) commonly called highbush cultivated 

blueberries are native to North America. Blueberries are members of the Ericaceae 

family, which also includes cranberry, huckleberry, and genus Vaccinium. The genus 

Vaccinium comes from the Latin "vacca" for cow since cows love them, a fact first noted 

by Captain James Cook in the late 1700s (1). In the 1930s, horticulturist Stanley Johnston 

established the first successful cultivated blueberry plantings in the world (2). Although 

indigenous to North America, blueberries are among the most recently cultivated fruit 

crops. Domestication began in the late 19th century when selections of wild blueberries 

were transplanted to gardens and fields in New Jersey and Michigan.  

Blueberries are classified as: (1) highbush, the major type cultivated in North 

America, used in commercial planting in cooler climate, (2) rabbiteye, cultivated in the 

southeastern United States, and (3) lowbush, harvested from managed wild stands. 

Highbush and rabbiteye are cultivated in rows. In contrast, lowbush grow naturally as 

transition vegetation between the open field and forest (3). Blueberries are shallow-rooted 

plants and require l-2 inches of rainfall per week during the growing season (4). Most 

northern highbush varieties need at least 30-40 days of temperatures below 45°F, 

temperatures below -15°F to -20°F damage flower buds and reduce yields. The mature 

cultivated highbush are less than 10 feet (3-6). Rabbiteye blueberry cultivars have 
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tolerance of wide range of temperatures, drought resistance, and require low chilling 

time. Those native to Georgia and northern Florida, require only one-third to one-half as 

many chilling hours as highbush blueberry cultivars. Georgia is currently the largest 

producer of rabbiteye with 6000 acres in the southeastern part of the state (7). They have 

a fibrous root system that penetrates more deeply than does the highbush root system. 

Rabbiteye can reach heights of 33 feet, but are pruned to manageable heights in 

commercial plantings (3-4, 8). Lowbush blueberry, as the name suggests, are creeping 

shrubs, about 1 ft tall or less, and fruits are smaller and lighter blue than other species (9). 

The harvest of blueberries usually begins in mid-April in Florida, early May in 

North Carolina, early June in New Jersey, and early July in Michigan, Oregon, and 

Washington. Maine's harvest begins in August. Harvest usually ends last in Washington 

and Michigan. Early maturing blueberries are generally handpicked for the fresh market 

whereas later berries are mechanically harvested and used for processing. Sugar content 

of fruit will increase during maturation to about 15 percent when fruit is ripe. Fruit size 

continues to increase after fruit turns blue, due mainly to water uptake. Accumulation of 

sugars during ripening increases sweetness. Sugar content does not increase after harvest, 

but acids are broken down during ripening, thus decreasing tartness. Fruit flavor, much of 

it associated with the skin, increases during ripening, but not after harvest. Postharvest 

shelf life of blueberry fruit is increased by rapidly cooling fruit after harvest (7).  

Most blueberries are processed, only 30 percent is used fresh. Generally 

blueberries are used in jams, jellies, syrups, muffin mixes, pies, yogurt bases, canned fruit 

fillings, bakery products, preserves, juice concentrates, and juice drinks (2). In addition, 
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individually quick frozen (IQF) blueberries are a retail product. The largest quantity of 

processed (frozen) blueberries is used by food service establishments and bakeries (4). 

 PHENOLIC COMPOUNDS 

Phenolic compounds are secondary metabolites produced in the plants via 

shikimate or phenylpropanoid pathway. The biosynthesis of phenylpropanoid compounds 

is activated in response to environmental stresses such as by wounding, pathogen 

infection, and/or UV irradiation. Phenolic compounds, as lignin form an integral part of 

cell-wall structure, and are the second most abundant organic structures on the earth after 

cellulose (10, 11). Phenylpropanoids play a significant role in the structure and protection 

of the plant, affects plant qualities such as texture, flavor, color, and processing 

characteristics (12), and also plays a significant role in pollination and seed dispersal. 

Phenylalanine is a common precursor for most phenolic compounds in higher 

plants (11, 13). All phenylpropanoids are derived from cinnamic acid, which is formed 

from phenylalanine by the action of phenylalanine ammonia-lyase (PAL), the branch 

point enzyme between primary (14) and secondary (phenylpropanoid) metabolism (15-

18). Several simple phenylpropanoids (with the basic C6-C3 carbon skeleton of 

phenylalanine) are produced from cinnamate via a series of hydroxylation, methylation, 

and dehydration reactions; these include p-coumaric, caffeic, ferulic, and sinapic acids 

and simple coumarins. 

Most of the major classes of plant polyphenol are listed in Table 2.1 according to 

the number of carbon atoms of the basic skeleton. The structure of natural polyphenols 

varies from simple molecules, such as phenolic acids, to highly polymerized compounds, 

such as condensed tannins (15). Phenolic compounds contain at least one phenol group. 
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Flavonoids usually have at least two rings while tannins are polymers of flavonoid units. 

Flavonoids are perhaps the most common in plant-based foods such as fruits, vegetables, 

nuts and cocoa. They can be subdivided into five classes: flavones, flavonones, 

isoflavones, flavonols (kaempferol, quercetin), and anthocyanins (19).  

Flavonoids represent the most common and widely distributed group of plant 

phenolics and consist of two aromatic rings linked through three carbons that usually 

form an oxygenated heterocycle. Their common structure is that of diphenylpropanes 

(C6-C3-C6) (15, 20-21). Figure 2.1 shows the basic structure and the system used for the 

carbon numbering of the flavonoid nucleus. Structural variations within the rings 

subdivide the flavonoids into several families: flavonols, flavones, flavanols, isoflavones, 

anthocyanidins and others. These flavonoids often occur as glycosides, rendering the 

molecule more water-soluble and less reactive toward free radicals. The flavonoid 

variants are all related by a common biosynthetic pathway, incorporating precursors from 

both the shikimate and the acetate-malonate pathways shown in Figure 2.2. Chalcone 

synthase (CHS) is the first step in the branch of the pathway that produces the flavonoids 

including isoflavones, flavones, flavonols and anthocyanins (22). 

Anthocyanins are the largest group of flavonoids. They are water soluble, 

glycosylated and/or acylated flavonoid derivatives that are the source of most red, pink, 

purple, and blue colors in plant parts. The nonglycosylated form or aglycone is called 

anthocyanidin. There are 6 commonly occurring anthocyanidins in higher plants: 

pelargonidin, cyanidin, peonidin, delphinidin, malvidin and petunidin (Figure 2.3) (23). 

Among them, cyanidin is most abundant and malvidin is least (24). Sugars are present 

most commonly at the C-3 position, second at C-5 position, and very rarely at C-7 
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position. Sugars provide additional sites for modification as they may be acylated with 

acids such as p-coumaric, caffeic, ferulic, sinapic, acetic, malonic or p-hydroxybenzoic 

acid. Because of the diversity of glycosylation and acylation, there are at least 240 

naturally occurring anthocyanins (23). 

Stability of anthocyanin is important for bioactive functions and color for food 

products. This is dependent on many factors, including structure, pH, temperature, light 

intensity and quality, presence of co-pigments, metallic ions, enzymes, oxygen, ascorbic 

acid, sugars and their degradation products (25-27). The pH is one of the key factors 

affecting stability of anthocyanin structure. In acidic media four anthocyanins structures 

exist in equilibrium: flavilium cation, quinoidal base, carbinol pseudobase and chalcone. 

The relative amount of these structures at equilibrium varies with pH and anthocyanin 

structure, the red flavylium cation and the colorless carbinol base (25). The flavylium 

cation has a positive charge associated with it, while the carbinol base is a hydrated form 

of the anthocyanin (Figure 2.4) (28). Anthocyanins are most stable and highly colored at 

low pH values but as the pH is increased they gradually lose the color. At pH 4 to 5, the 

anthocyanins are almost colorless. This color loss is reversible, and the red hue will 

return upon acidification (29-31). In aqueous media, anthocyanins appear as flavylium 

cation (red) at acidic pH 0.0-2.0, and as a colourless pseudobase with a small amount of 

colourless or slightly yellow chalcone structures between pH values 2–6 (30). Thus pH is 

one of the key factors affecting anthocyanin structure. This behaviour of anthocyanins 

limits its applications as colorant in food industries. Heat and light treatment also 

degrades anthocyanins and increase the polymerization of monomeric anthocyanins (25).  
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Tannins are polymerized flavonoids, with ability to precipitate proteins at neutral 

pH. There are two major classes of tannins: condensed and hydrolyzable. The 

hydrolyzable tannins are esters of gallic or ellagic acid and the condensed tannins 

(proanthocyanidins) are polymers of flavonoids. Hydrolyzable tannins are generally 

considered antinutritional (32). 

Phenolic compounds in blueberries 

Blueberry fruit ranks high in antioxidant activity among fresh fruits (33). This is 

highly correlated with polyphenol content (34). Phenolic acids generally reported in 

different cultivars of blueberry are gallic acid, p-hydroxybenzoic acid, caffeic acid, p-

coumaric acid, ferulic acid, and ellagic acid (35). Major flavonoids are catechin, 

myricetin (36) kaempferol, and quercetin (37). Figure 2.5 shows the structures of 

phenolic compounds present in blueberries. Major anthocyanidins in blueberries are 

delphinidin, cyanidin, petunidin, peonidin, and malvidin (38). Malvidin and delphinidin 

are major anthocyanidins present in blueberries (37, 39). There are various factors that 

affect the antioxidant activity which includes maturity at harvest, season at maturity, 

genetic differences, preharvest environmental conditions, and processing (40). Late 

harvest of tifblue and brightwell were reported to possess high antioxidant activity than 

early harvest (36). Storage at 20 ºC increased anthocyanin content by 20% in V. 

corymbosum L (41). 

Absorption and metabolism of phenolic compounds 
 

Many phenolic aglycons are hydrophobic and can passively diffuse through 

biological membrane (42). Sugar attachment increases the water solubility and limits the 

passive diffusion (42). Most flavonoids are present in the diet as β-glycosides except 
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catechin. The first stage of metabolism is deglycosylation. The β-glycosidase present in 

human small intestine and liver can hydrolyze various phenolic glycosides (43). Once 

absorbed, phenolics may be metabolized by phase-I enzymes responsible for 

hydroxylation and demethylation, and phase-II enzymes responsible for the removal of 

xenobiotics by conjugation of phenolics with glucuronide or sulphate. Conjugation is a 

common detoxification reaction which increases solubility and molecular mass (44).  

Phenolics glycosides that are not absorbed in small intestine pass into the colon. 

Microorganisms present in colon hydrolyze phenolic sugar glycosidic or ester linkages by 

the action of β-glycosidase or esterases (45-46). The metabolic pathway of quercetin is 

summarized in Figure 2.6 (42). 

Stability of phenolic compounds during processing of blueberries 

Polyphenolic compounds including anthocyanins are not completely stable (47). After 

harvest these compounds undergo change on processing and storage (48-49), which may 

alter their biological activity. Anthocyanins and polyphenolics are readily oxidized 

because of their antioxidant properties and thus prone to degradation. Primary steps of 

processing (thawing, crushing, depectinization, and pressing) results in considerable 

losses of anthocyanins (50). Native enzyme, polyphenol oxidase (PPO) present in 

blueberry is responsible for oxidation of polyphenolics to quinones, which produce 

brown pigments (50-52), thus affecting the color of the extract. Heating was shown to 

inhibit PPO activity (51). The significant deterioration of phenolic compounds in 

highbush blueberries when converted to juice has already been discussed in several 

reports (53-54). Oxygen, pH, and various storage conditions are shown to have marked 

effects on anthocyanins stability (52).  
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Blueberries and cancer 

Lowbush blueberry fruit extract was found active against the initiation and 

promotion stages of carcinogenesis (55). Highbush blueberry extract reduced cancer 

proliferation in cervical and breast cancel cell lines (56). The physiological and 

pharmacological functions of blueberry originate from their antioxidant properties. The 

antioxidant properties are related to the structures of phenolic compounds (19). 

Anthocyanins extracted from bilberry such as delphinidin glycosides and cyanidin 

glycosides induce apoptosis in HL-60, HCT-116 cells (57). Anthocyanins protect against 

DNA damage by oxidative agents (58). Flavonoids have been classified as “blocking 

agents” because they are believed to act before the mutagenic step of carcinogenesis, 

preventing the initiation of cancer. Other dietary compounds, such as retinoid, indoles, 

and carotenoids, are referred to as “suppressing agents,” which act after the mutation 

occurs to prevent further progression of cancer (59-60). 

Carcinogenesis has three stages: intiation, the first stage, which begins when a 

reactive intermediate alters the genetic make-up of the cell and produces a mutation by 

modifying oncogenes, tumor suppressor genes, and DNA-repair genes. In the absence of 

successful repair, the mutated cell enters the stage of promotion, which is characterized 

by rapid proliferation to convert the initiated cells into a population of cancer cells. This 

stage is reversible by the same mechanisms as the initiation stage: cell repair or death. 

Carcinogenesis initiation is a complicated process, which includes altered genetic 

changes, damage to DNA, activation of intracellular signaling agents, abnormal cell 

growth by evading apoptosis and sustained angiogenesis (61). One of the main 

characteristics of cancer cells is uncontrolled cell proliferation. There are several different 
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mechanisms to inhibit the cell growth. Activator protein-1(AP-1) is a transcriptional 

factor that promotes carcinogenesis (62-63). Delphinidin, cyanidin, and petunidin are 

reported to inhibit TPA-induced AP-1 transcriptional activity and cell transformation in 

JB6 cells (64). Kamei et al. (65) reported blocking of S, G2, and M phases of the cell 

cycle in the cells treated with anthocyanins. 

Recent studies have suggested that the transcription factor AP-1 plays an 

important role in promoting carcinogenesis (62-63). AP-1 is a dimeric protein typically 

composed of the products of the jun and fos oncogene families (66). AP-1 dimers bind to 

the promoter regions on DNA that contain 12-O-tetradecanoylphorbol-13-acetate (TPA) 

response elements (TRE) to activate the transcription of genes involved in cell 

proliferation (63), transformation (66-67), and apoptosis (68). A variety of stimuli, such 

as phorbol esters (66-67, 69), UV radiation (70), growth factors (71) and oxidative agents 

(72), can stimulate AP-1 activity by activating mitogen-activated protein kinases 

(MAPK), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase 

(JNK) or stress-activated protein kinase (SAPK) and p38 kinase. Increased AP-1 activity 

has been shown to be involved in the tumor promotion and progression of various types 

of cancers, such as skin (70-71), lung (72) and breast cancer (73). In vivo mouse data also 

demonstrate that AP-1 activity is required for tumor promotion (74-75). Anthocyanidins 

with ortho-dihydroxyphenyl structure on the B-ring of aglycon suppressed TPA-induced 

cell transformation and AP-1 transactivation. The potent anthocyanidins, having an ortho-

dihydroxy phenyl structure on B-ring of aglycon may block TPA-induced ERK and JNK 

signaling cascades leading to activation of AP-1 (76). 

Oxidative reactions produce large amounts of reactive oxygen radicals, peroxy 
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and other free radicals. In normal physiological conditions antioxidant defense system 

composed of enzymatic (superoxide dismutase, catalase, glutathione peroxidase and 

peroxyredoxins) and low molecular-mass scavengers (such as glutathione) (77), in body 

keeps the balance between oxidation and oxidation scavenging. When an imbalance 

between free radical generation and body defense mechanisms occurs, oxidative damage 

will spread over all the cell targets (DNA, lipids, and proteins). Free radicals are 

constantly produced in the body firstly by environmental agents such as the ultraviolet 

(UV) component of sunlight, ionizing radiation, products of normal cellular metabolism, 

secondly by products of normal cellular metabolism that include reactive oxygen species 

(superoxide anions, hydroxyl radicals and hydrogen peroxide) derived from oxidative 

respiration and products of lipid peroxidation (78). The oxidative damage is widely 

accepted as one of the major causes of carcinogenesis (79). 

 The radical-scavenging activity of flavonoids depends on the molecular structure 

and the substitution pattern of hydroxyl groups, i.e., on the availability of phenolic 

hydrogens and on the possibility of stabilization of the resulting phenoxyl radicals via 

hydrogen bonding or by expanded electron delocalization (80-81). Structural requirement 

considered essential for the effective scavenging activity are: a) the presence of a 3’,4’-

dihydroxy, i.e., a o-dihydroxy group (catechol structure) in the B ring, possessing 

electron donating properties and being a radical target, b) 3-OH moiety of the C ring (82), 

c) C2-C3 double bond conjugated with a 4-keto group, which is responsible for electron 

delocalization from the B ring, and d) presence of both 3-OH and 5-OH groups in 

combination with a 4-carbonyl function and C2-C3 double bond (80-87). Figure 2.7 

summarizes the structural criteria that modulate the free radical scavenging activity of 
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flavonoids (88-89). 

Several investigators have reported that flavonoids including anthocyanins can 

protect the DNA damage via protecting DNA from oxidation (90-91). Delphinidin and 

cyanidin are shown to inhibit the protein tyrosine kinase (PTK) activity of the epidermal 

growth-factor receptor (EGFR) (92).  

Apoptosis  

Apoptosis is one of the major mechanisms of cancer suppression (92-93). 

Apoptosis or programmed cell death is a highly regulated process of selective cell 

deletion for anticancer drug-induced cell death (94). It is characterized by distinct 

morphological changes such as membrane blebbing, nuclear condensation and 

disorganization, and DNA fragmentation (95). These cells are easily recognized by 

macrophages before cell lysis, and then can be removed without inducing inflammation 

(96-97). Therefore apoptosis inducing agents are expected to be ideal anticancer drugs. 

Cytochrome C is an electron transporting protein that resides within the 

intermembrane space of the mitochondria, where it plays a critical role in the process of 

oxidative phosphorylation and production of cellular ATP. Following exposure to 

apoptotic stimuli, the mitochondrial membrane potential is changed. Then, cytochrome C 

is rapidly released from the mitochondria into the cytosol (98) and activates caspase 9 

(99). Caspase 9 can initiate the caspase cascade involving the downstream executioner 

caspases, such as caspase 3, 6 and 7 (100). Upon activation caspase 3, cleaves poly 

(ADP-ribose) polymerase (PARP) and D4-GDI proteins and generates apoptotic 

fragments in coordination with DNA fragmentation (101). Induction of apoptosis in 

tumor cells has been shown to be the most common anti-cancer mechanism conjoint by 
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many cancer therapies, and thus finding potential therapeutic anti-tumor drugs with 

potent and selective apoptotic effects would be valuable (102). 

Delphinidin, cyanidin, and petunidin induced apoptosis of HL-60 cells detected 

by morphological changes and by DNA fragmentation, whereas pelargonidin, peonidin, 

and malvidin showed no induction of apoptosis (103). The anthocyanidin glycosides 

(anthocyanins) extracted from bilberry such as delphinidin glycosides and cyanidin 

glycosides also induced apoptosis in HL-60 cells (57). 

Structure-activity studies indicated that the potency of apoptosis induction of 

anthocyanidins is associated with the number of hydroxyl groups at the B-ring, and the 

ortho-dihydroxyphenyl structure at the B-ring appears essential for apoptosis actions 

(103). It is noteworthy that anthocyanidins increased the levels of hydrogen peroxide in 

HL-60 cells with a structure-activity relationship that depends on the number of hydroxyl 

groups at the B-ring (103) and appears in the order of delphinidin > cyanidin, petunidin 

> pelargonidin, peonidin, and malvidin. 

The mechanistic analysis indicates that the apoptosis induction by delphinidin 

may involve an oxidation/JNKmediated caspase pathway. Delphinidin treatment 

increased the levels of intracellular reactive oxygen species (ROS), which may be a 

sensor to activate JNK. Concomitant with the apoptosis, JNK pathway activation such as 

JNK phosphorylation, c-jun gene expression, and caspase-3 activation was observed in 

delphinidin-treated cells (103). Thus, delphinidin may trigger an apoptotic death program 

in HL-60 cells through an oxidative stress mediated JNK signaling cascades (Figure 2.8). 

Accumulated results on structure-activity studies have shown that the biological 

activities of anthocyanins appear to increase with a decreasing number of sugar units 
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and/or with an increasing number of hydroxyl groups at their aglycons (104). The ortho 

dihydroxyphenyl structure on the B ring appears to be essential for anticarcinogenesis, 

anti-inflammation, and apoptosis induction and the activities of aglycons such as 

delphinidin and cyanidin are stronger than that of their glycosides (78, 103). 

Detoxification enzymes 

Xenobiotics are molecules which are introduced into the body from the 

environment and subsequently metabolized by the body. These can be man-made (drugs, 

industrial chemicals) or natural (alkaloids, toxins from plants and animals). Continuous 

exposure to these cytotoxic chemicals may lead to many diseases including cancer (105). 

Since most xenobiotics occur in a hydrophobic form in nature, they have to transform 

into hydrophilic compounds which are readily excreted via bile and urine (106). This 

process is called biotransformation and is catalyzed by enzymes mainly in the liver of 

higher organisms but a number of other organs have ability to process xenobiotics such as 

kidneys, gut and lungs.  

Biotransformation reactions are usually classified as Phase I and Phase II 

reactions, and enzymes involved in the process are called phase-I and phase-II enzymes. 

Phase I reactions modify the chemical by adding a functional group thereby forming 

electrophilic intermediates (107-109). A xenobiotic that has undergone a Phase I reaction 

is now a new intermediate metabolite that contains a reactive chemical group, e.g., 

hydroxyl (-OH), amino (-NH2), and carboxyl (-COOH). These reactive molecules are 

more toxic than parent molecule. If they are not further metabolized by Phase II 

conjugation, they may cause damage to proteins, RNA, and DNA within the cell (110). 

Cytochrome P450 superfamily enzymes are members of Phase-I enzymes. 
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 Phase-II detoxification enzymes are responsible for metabolizing the products of 

Phase-I metabolic reactions, degrade these reactive intermediates by conjugations or 

reductions reactions and thus preventing oxidative DNA damage. The conjugated 

products are larger molecules than the substrate and generally polar in nature (water-

soluble). Thus, they can be readily excreted from the body. Conjugated compounds also 

have poor ability to cross cell membranes. The most common conjugation reactions are 

catalyzed by glutathione-S-transferase (GST) (111), uridine 5’diphosphoglucuronosyl 

transferases (112) and reduction reactions catalyzed by epoxide hydrolase (113) and 

quinone reductase (QR) (114). Induction of the detoxification enzymes QR and GST is a 

well-characterized defense mechanism against carcinogens (115-116). 

Glutathione S-transferases (EC 2.5.1.18) 

GST plays a physiological role in initiating the detoxification of potential 

alkylating agents (117-118) including pharmacologically active compounds. These 

enzymes catalyze the reaction of such compounds with the -SH group of glutathione, 

thereby neutralizing their electrophilic sites and rendering the products more water-

soluble. Glutathione (GSH), a tripeptide thiol of glutamate, cysteine, and glycine 

(GluCysGly), is a strong antioxidant found in almost all cells (120). GSH contains a thiol 

group, which is strongly nucleophilic and forms a stable covalent compound with 

electrophilic compounds. Glutathione conjugates are thought to be metabolized further by 

cleavage of the glutamate and glycine residues, followed by acetylation of the resultant 

free amino group of the cysteinyl residue, to produce the final product, a mercapturic acid 

(118-119). The mercapturic acids, i.e. S-alkylated derivatives of N-acetylcysteine, are 

then excreted. The GST also functions as antioxidants, which is another possible 
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mechanism for their chemopreventive properties (121). 

Research has shown that polyphenols found in red wine and black tea decrease 

GST expression in colon tumors; this suggests a possible role for polyphenols in 

preventing drug resistance in these tissues. Therefore, dietary components may have both 

chemopreventive and chemotherapeutic roles in the development of colon cancer through 

the regulation of GST expression and activity (122). Moskaug et al. (123) showed that 

flavonoid increase γ-glutamylcysteine synthetase, which is a rate limiting enzyme in the 

synthesis of glutathione. The three flavonoids induced a concentration-dependent 

decrease of both the nuclear GSH content and GST activity. Myricetin, which has the 

maximum number of hydroxyl groups, was the most active (124). The glycosides rutin 

and quercetin gave dose-dependent increases in GST activity using HepG2 cells, whereas 

the fraction containing caffeic acid derivatives were inhibitory (125). Flavonoid 

administration in vivo, however, induced this activity (126). Rat liver GST was 

effectively inhibited in vitro by several other flavonoids. This activity was again closely 

related to the pattern of hydroxylation and presence of a C2-C3 double bond (127). 

Quinone reductase enzyme 

Quinone reductase (QR) is one of the several enzymes that inactivate electrophilic 

forms of carcinogens thus providing mechanism of preventing carcinogenesis (128). 

NAD(P)H:quinone oxidoreductase, also known as DT-diaphorase, is a phase II enzyme. 

The QR is a single, multi-functional enzyme that exerts its effects in different body 

tissues, including the liver, lung, colon, and breast (129). It catalyzes two-electron 

reductions on free radicals and toxic oxygen metabolites, which deactivates them and 

protects the surrounding tissues from mutagenesis and carcinogenesis. It has been 
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reported that ethyl acetate extract of anthocyanin and proanthocyanidin fractions were 

active QR inducers (55). Crude extract of anthocyanins were not highly active in QR 

induction (55). 

Human colon carcinoma cell lines  

Human colon carcinoma cell lines are an appropriate experimental model for 

preliminary research studies, such as the effect of anthocyanins on phase I and phase II 

enzymes. Cell lines are simpler than a complete organism. Isolating the effects of specific 

chemicals or compounds on certain tissues can be accomplished easily in cell models, as 

opposed to complete animal or human systems that have too many variables to control. 

The disadvantage of cell models is that compounds may not behave the same as they 

would in a complete living system, in the absence of hormones, buffers, and other 

regulating factors, so results from cell studies cannot be applied directly to humans. 

Several human colon carcinoma cell lines exist, including SW480, HT-29, and Caco-2 

cells. Among the different cell lines that exist, SW480 cells are the least differentiated 

and HT-29 cells used in the present study represent advanced stage of tumor development 

(130). 
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Table 2.1 Most of the major classes of plant polyphenol (15) 
 
The most important class of phenolic compounds in plants 
 
Number of carbon 

atom 
Basic skeleton Class 

6 C6 
simple phenols, benzoquinones 
 

7 C6 - C1 
phenolic acids 
 

8 C6 - C2 acetophenone, phenylacetic acid 

9 C6 - C3 

hydroxycinnamic acid, 
  
polypropene, coumarin, 
isocoumarin 
 

10 C6 - C4 
naphtoquinone 
 

13 C6 - C1 - C6 
xanthone 
 

14 C6 - C2 - C6 
stilbene, anthrachinone 
 

15 C6 - C3 - C6 
flavonoids, isoflavonoids 
 

18 (C6 - C3)2 
lignans, neolignans 
 

30 (C6 - C3 - C6)2  
biflavonoids 
 

n (C6 - C3)n 
lignins  

 
n (C6)n catecholmelanine  

 
n (C6 - C3 - C6)n (condensed tannins) 
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Figure 2.1 Basic structure and system used for the carbon numbering of the flavonoid 

nucleus (15) 
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Figure 2.2 The phenylropanoid pathway (Shikimate and acetate pathway) for     
                   biosynthesis of flavonoid variants (22) 
     
 
       

 
 
               
                                 

         
    
                                   
  
 

                                                              
 
 
     

                                       
 
                                   
 
 
 
   
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbreviations: PAL, phenylalanine amminia lyase; CA4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CHS, chalcone 
synthase; CHI, chalcone isomerase; IFS, isoflavone synthase; FN3H, flavanone 3-hydroxylase; FS, flavone synthase; F3’H, flavone 
3’-hydroxylase; FLS, flavonol synthase; FL3’H, flavonol 3’-hydroxylase; FL3’M, flavonol 3’-methylase; FL5’H, flavonol 5’-
hydroxylase. 
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Figure 2.3 Commonly occurring anthocyanidins and their substitution pattern (23) 
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Figure 2.4 Effect of pH on malvidin-3-glucoside (28) 
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Figure 2.5 Structures of phenolic compounds commonly present in blueberries (21, 23) 
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Figure 2.6 Pathway of quercetin metabolism (42). 
Dotted arrows indicate position of sulphate and/or glucuronide conjugation. 
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Figure 2.7 Structural criteria that modulates the free radical scavenging activity of 
flavonoids (88-89) 
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Figure 2.8 A schematic molecular view of cancer chemoprevention by anthocyanidins 
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CHAPTER 3 

 

EFFECT OF STORAGE CONDITIONS ON BIOLOGICAL ACTIVITY OF 

PHENOLIC COMPOUNDS OF BLUEBERRY EXTRACT PACKED IN GLASS 

BOTTLES 
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ABSTRACT  

Recent research suggests that blueberries are rich in total polyphenols and total 

anthocyanins. Phenolic compounds are highly unstable and may be lost during 

processing, particularly when heat treatment is involved. There is no systematic study 

available providing information on the fate of phenolic compounds during storage and 

how that affects their biological activity. We provide a systematic evaluation of the 

changes observed in total polyphenols (TPP), total anthocyanin (TACY), Trolox-

equivalent antioxidant activity (TEAC), phenolic acids, individual anthocyanins and cell 

proliferation from blueberry extract stored in glass bottles. Extract was stored at different 

temperatures (-20±1, 6±1, 23±1, and 35±1 oC). Two cultivars, Tifblue and Powderblue 

were chosen for the study. Recovery of TPP, TACY and TEAC in blueberry extract after 

pressing and heating were ~25, ~29, and ~69%, respectively for both cultivars. Recovery 

of gallic acid, catechin and quercetin was ~25% in final extract. Ferulic acid was not 

detected in the final extract in both Tifblue and Powderblue cultivars. Recovery of 

peonidin, malvidin and cyanidin was ~20 % in final extract in both cultivars. Losses due 

to processing were less when compared with initial loss due to processing. At -20 ºC, no 

statistically significant loss of TPP, TACY and TEAC was observed up to 30 days (P < 

0.05). At 6 ºC storage, there was a significant loss observed from 15 to 30 days. Similar 

results were obtained at 23 ºC and 35 ºC (P < 0.05). There was retention of more than 

40% of ellagic and quercetin after 60 days at 35±1 oC. Anthocyanins were not detected 

after 60 days of storage at 35±1 oC. Significant retention (P < 0.05) was obtained for 
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malvidin (42.8 and 25.8%) and peonidin (74.0 and 79.5%) after 60 days storage at 

23±1oC in glass bottles for Tifblue and Powderblue, respectively , when compared with 

other individual anthocyanins. A linear relationship was observed between TEAC values 

and total polyphenols and total anthocyanins. Cell viability assay was performed using 

HT-29 cancer cell lines and anthocyanins extracted from 30, 60, and 90 days stored 

extract at 6±1 and 23±1 oC. Significant cell proliferation inhibition percentage was 

observed in 30 days, although this was reduced significantly after 30-90 days. These 

results suggest that heating and storage conditions were significantly affecting the 

phenolic compounds and their biological activity. Frozen and low temperature storage is 

suggested for blueberry extract in order to retain the bioactive components. 

 

KEYWORDS : anthocyanins; blueberries; cell proliferation; flavonoids; PET; phenolic 

compounds; storage; TEAC. 
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INTRODUCTION 

Epidemiological evidence suggests that diets rich in fruits and vegetables are 

associated with a reduced risk of cancer (1), coronary heart disease (2, 3), and stroke (4). 

Fruits and vegetables are excellent sources of phenolic compounds, including phenolic 

acids and flavonoids. Recently, much evidence has been accumulated to show that these 

compounds have inhibitory effects on mutagenesis and carcinogenesis (5). Plants produce 

phytochemicals for protection from herbivores, parasites and oxidative stress. More than 

4000 of these compounds generally referred as flavonoids have been identified in both 

higher and lower plants. They can be subdivided into five classes: flavones, flavonones, 

isoflavones, flavonols (kaempferol, quercetin) and anthocyanins (6). Most of the phenolic 

compounds in plants occur as glycosides or as esters. The basic structure (7-8) for some 

of these flavonoids is given in Figure 3.1. Blueberry (Vaccinium corymbosum) of the 

family Ericuceae is reported to have high antioxidant activity compared to other fruits 

and vegetables (9-10). This is highly correlated with the anthocyanins and total 

polyphenolic content (11). Blueberries water extracts are similar to blueberry juice often 

converted into juice or concentrate for subsequent use in beverages, syrups and other 

food products.  

Polyphenolic compounds including anthocyanins are not completely stable (12). 

After harvest these compounds undergo change on processing and storage (13-14), which 

may alter their biological activity. Anthocyanins and polyphenolics are readily oxidized 

because of their antioxidant properties, and are thus prone to degradation. The native 
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enzyme polyphenol oxidase (PPO), which is present in blueberry, is responsible for 

oxidation of polyphenolics to quinones, which produce brown pigments (15-17), and 

affect the color of the extract/juice/concentrate. Heating was shown to inhibit PPO 

activity (15). The significant deterioration of phenolic compounds in highbush 

blueberries when converted to juice has already been discussed in several reports (18-19). 

Oxygen, pH, and various storage conditions are shown to have marked effects on 

anthocyanin stability (20). Previous reports are available on pomegranate juice color and 

bioactive compounds during storage (21). However reports describing changes on 

antioxidant capacity or antiproliferation activity due to storage are rarely found.  

The objectives of the present work were: (1) to study the effect of storage in glass 

bottles on phenolic compounds and their antioxidant capacity in blueberry extract and (2) 

to extract anthocyanin fractions from blueberry extract stored in glass bottles under 

different temperature conditions and evaluate their effect on cell proliferation activity 

using the HT-29 colon cancer cell line. Tifblue and Powderblue were the cultivars used. 

These are the most common berries used by food industries in prepration of different 

food products and Tifblue (Rabbiteye) is gaining attention due to its high anthocyanin 

content. 

 

MATERIALS AND METHODS 

 Chemicals. Pure standards of gallic acid, p-hydroxybenzoic acid, (+)-catechin, 

caffeic acid, (−)-epicatechin, p-coumaric acid, ferulic acid, ellagic acid, quercetin, and 

kaempferol, were purchased from Sigma (St. Louis, MO). Anthocyanin standards were 

purchased from Polyphenols Laboratories (AS) (Sandnes, Norway). These standards 
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were: Dp-Glc (Delphinidin 3-O-β-glucopyranoside), Cy-Gal (Cyanidin 3-O-β-

galactopyranoside), Cy-Glc (Cyanidin 3-O-β-glucopyranoside), Pt-Glc (Petunidin 3-O-β-

glucopyranoside), Pn-Gal (Peonidin 3-O-β-galactopyranoside), Pn-Glc (Peonidin 3-O-β-

glucopyranoside), Mv-Glc (Malvidin 3-O-β-glucopyranoside), and Pn-Ara (Peonidin 3-

O-α-arabinopyranoside). Folin-Ciocalteu reagent, dimethylsulfoxide (DMSO), and 

pectinase enzyme (Pectinex® ultra SP-L, ≥26,000 units/mL) were purchased from Sigma 

(St. Louis, MO). Acetone, acetonitrile, methanol, O-phosphoric acid (85% purity, HPLC 

grade), hydrochloric acid (analytical grade), sulfuric acid, formic acid, and water (HPLC 

grade) were purchased from Fisher Scientific (Norcross, GA). Glass bottles were 

purchased from Speciality Bottle Supply (Seattle, WA). MTT Cell Proliferation Assay 

kits were purchased from ATCC (Manassas, VA). The human hepatocellular carcinoma 

HT-29 cell line was purchased from ATCC (Manassas, VA). 

Sample Collection. Mature blueberries were harvested from the farms in Tifton, 

Experiment Station, University of Georgia, GA in 2005. The Blueberry cultivars 

collected were Tifblue and Powderblue. Samples were frozen, and stored at -40°C until 

use. 

Extract Preparation. Blueberries extract was prepared using using a modified 

method reported by earlier workers for juice preparation (14, 22). Frozen berries were 

thawed at 5 °C for 12 h. Berries were blanched using boiling water for 3 min.  Blanched 

berries were milled in household blender in three lots of 650 g each. Pectinase enzyme 

(2.2 mL) was added to 2100g of crushed berries. The mix was stirred well manually and 

kept at room temperature for 1h. Crushed berries were centrifuged at 9740×g for 20 min 
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at 10 °C. The extract (supernatant) was collected and the residue was discarded. The 

extract (1.2 L) was gradually heated to 85 °C and was held at 85 °C for 2 min. 

Temperature was brought down to 75 °C using cold water (15 °C). Extract was filled in 

glass bottles, capped, and cooled to 30 °C using chilled water.  

Storage Conditions.  Extract was packed in glass bottles (30 mL) and kept at -

20±1, 5±1, 23±1 and 35±1 °C and withdrawal time was set for 15, 30, 45 and 60 days. 

For cell proliferation assay, extract samples were withdrawn after 30, 60, and 90 days 

storage. All samples were analyzed in triplicate, and average results were reported. 

Anthocyanin Extraction. The anthocyanin fraction from extract was obtained 

using a method reported by Yi et al. (23) after incubation, extract samples were applied to 

an activated Oasis HLB cartridge (Waters Corporation, Milford, MA). The 15% methanol 

fraction contained the phenolic acids, and the acidified methanol (5% formic acid in 

methanol) eluted the anthocyanins. The fraction containing the anthocyanins was freeze-

dried using a UNITOP 600L freeze dryer (Virtis, Gardiner, NewYork). Extraction and 

hydrolysis for total polyphenols and total anthocyanins of blueberry fruit was done using 

the method reported by Sellappan et al. (24). 

Total Soluble Solids (TSS) and pH. TSS and pH were measured using an Atago 

Abbey hand refractometer (0-32 ºBrix) and a pH meter-340, respectively. 

Estimation of Total Anthocyanins. Total anthocyanin (TACY) content of the 

juice was estimated on a UV-visible spectrophotometer (Shimadzu UV-1601, Norcross, 

GA) by the pH-differential method using two buffer systems - potassium chloride buffer, 

pH 1.0 (0.025 M) and sodium acetate buffer, pH 4.5 (0.4 M). Samples were diluted in pH 
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1.0 and pH 4.5 buffers, and then measured at 520 and 700 nm. Absorbance was 

calculated as A= (A510nm – A700nm) pH1.0 – (A510nm – A700nm) pH4.5  

Monomeric anthocyanin pigment concentration in the extract was calculated as cyanidin-

3-glucoside (25). Monomeric anthocyanin pigment (mg/L) =A ×MW × DF × 1000/ (€ 

×1) where A = absorbance, MW= molecular weight (449.2); DF =dilution factor, € = 

molar absorptivity (26,900). The final concentration of anthocyanins (mg/100 g fruit) was 

calculated based on total volume of extract and weight of sample. 

Estimation of Total Polyphenols. Total polyphenols (TPP) were estimated 

colorimetrically using the Folin-Ciocalteu method (26). Extract samples were filtered 

through a 0.2-µm nylon syringe filter. A sample aliquot of 20 µL was added to 800 µL of 

water, 1 mL of 0.2 N Folin-Ciocalteu reagent and 0.8 mL of saturated sodium carbonate 

solution (7.5%) and mixed well. The absorbance was measured at 765 nm with a 

Shimadzu UV-Visible spectrophotometer after incubation for 30 min at room 

temperature. Quantification was based on the standard curve generated with 100, 200, 

300, and 400 mg/L of gallic acid. 

Assay of Antioxidant Capacity. Antioxidant capacity was performed on the 

Shimadzu UV-Visible spectrophotometer in a kinetic mode based on the method of Re et 

al. (27). Briefly, ABTS·+ radical cation was produced by reacting 7 mM of 2,2´-

azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2.45 mM 

potassium persulfate after incubation at room temperature in the dark for 16 h. The 

ABTS·+ solution was diluted with ethanol to an absorbance of 0.70 ±0.1 at 734 nm. The 

filtered sample was diluted with ethanol so as to give 20-80% inhibition of the blank 

absorbance with 20 µL of sample. A 980 µL aliquot of ABTS·+ solution (absorbance of 
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0.70 ± 0.1) was read at 734 nm for a minute; after exactly 1 min, 20 µL of the sample was 

added and mixed thoroughly. Absorbance was continuously taken at every 6 s up to 7 

min. Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman- 2-carboxylic acid, a vitamin E 

analogue) standards of final concentration 0-15 µM in ethanol were prepared and assayed 

under the same condition. The Trolox-equivalent antioxidant capacity (TEAC) of the 

sample was calculated based on the inhibition exerted by standard Trolox solution at 6 

min. 

Hydrolysis. Hydrolysis was done as reported by Yi et al. (23). For the phenolic 

acid and flavonol analysis, fractions were dissolved in methanol containing 1.2 N HCl 

(40 mL methanol + 10 mL 6 N HCl). The samples were then placed in a water-bath at 80 

ºC with continuous shaking at 200 rpm for 2 h, to hydrolyze phenolic glycosides to 

aglycones. Anthocyanin fractions were dissolved in 50% methanol solution containing 2 

N HCl (50 mL methanol + 33 mL water + 17 mL 37% HCl). Samples were placed in a 

water-bath at 80 ºC with shaking at 200 rpm for 2 h, to hydrolyze anthocyanins to 

anthocyanidins. 

HPLC Analysis. HPLC was performed with a Hewlett–Packard (Avondale, PA), 

model 1100 liquid chromatograph with quaternary pumps and a diode array UV–visible 

detector. For the analysis of phenolic acids and flavonols in blueberries juice, procedures 

previously reported by our laboratory were used (24, 28). A Beckman ultrasphere C18 

ODS 4.6 x 250 mm column was used with column temperature at 40 oC.  The mobile 

phases were, solvent A, methanol/acetic acid/water (10:2:88, v/v/v); solvent B, 

acetonitrile; and solvent C, water.  The gradients were: at 0 min, 100% solvent A; at 5 

min, 90% solvent A and 10% solvent B; at 25 min, 30% solvent A and 70% solvent B; 
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and at 30 min, 30% solvent A and 70% solvent B, with 5 min post-run with 100% solvent 

C.  The flow rate was 1 mL/min.  Phenolic compounds were detected at wavelengths of 

260, 313, and 360 nm. For the anthocyanin and anthocyanidin analysis, the mobile phase 

was: Solvent A, O-phosphoric acid/methanol/ water (5:10:85, v/v/v); Solvent B, 

acetonitrile. The flow rate was 0.5 mL/min. The gradient for the separation was a linear 

gradient of 100–50% solvent A and 0–50% solvent B over 25 min, followed by 5 min 

post-run with HPLC-grade water. Anthocyanidins were detected at 520 nm. 

Cell Cultures. The human hepatocellular carcinoma HT-29 cancer cells were 

cultured in ATCC McCoy’s medium with 2 mM L-glutamine and Earle’s BSS adjusted 

to contain 1.5 g/L sodium bicarbonate, 0.1 mM non-essential amino acids, 1.0 mM 

sodium pyruvate (90%), and 10% fetal bovine serum. Cells were incubated under 37 ºC 

with 5% CO2. Medium was changed 2–3 times per week. 

Cell Proliferation Assay. After digestion with trypsin-EDTA, uniform amounts 

(~2 ×104) of HT-29 cells in growth media were inoculated into each well of a 96-well 

flat-bottom plate. After 24 h of incubation at 37 ºC in 5% CO2, the growth medium was 

replaced with 100 µL of medium containing anthocyanin extract from juice stored under 

different storage conditions. Based on the results of earlier reports from our laboratory 

(23), concentrations of each extract were kept at 100 µg/mL. Control cultures received 

everything but the anthocyanin fractions and blank wells contained 100 µL of growth 

medium and extract without cells. Anthocyanin fractions (water soluble) were directly 

dissolved in culture medium, and DMSO was added initially to the extracts/fractions to 

help dissolve the sample. The final DMSO content in the highest concentration of 

fraction treatment was 0.25%. Therefore, the control for these treatments also contained 
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the same amount of DMSO. After 48 h of incubation, cell population growth was 

determined using the ATCC MTT Cell proliferation assay at 570–655 nm with a Bio-Rad 

Model 680 Microplate Reader (Hercules, CA). Briefly, a mitochondrial enzyme in living 

cells, succinate dehydrogenase, reduced the yellow tetrazolium salt (MTT) to insoluble 

purple formazan crystals. Therefore, the amount of formazan produced was proportional 

to the number of viable cells (29). To better explain the inhibitory results, the inhibition 

of cell population growth was calculated based on the following formula: 

Inhibition percentage 

 (Cell # in control – cell # in treatment)  
        =  ---------------------------------------------- × 100 

 (Cell # in control – original cell # before the extract was added)  
 

Statistical Analysis. Statistical analysis was done with the SAS software package 

(30). One-way analysis of variance (ANOVA) was performed to determine the difference 

among stored samples. When F values for the ANOVA were significant, differences in 

means were determined using Duncan’s multiple range tests as a procedure of mean 

separation (P < 0.05).  

 

RESULTS AND DISCUSSION  

The contents of individual phenolic acids and flavonols of frozen blueberries are 

given in Table 3.1 and individual anthocyanin is shown in Table 3.2. Catechin was the 

major flavonoid present in both cultivars: Tifblue (146.5 mg/100 g of berry) and 

Powderblue (75.5 mg/100 g of berry). Ferulic acid, caffeic acid, p-coumaric acid, and 

ellagic acid were the other predominant phenolic acids present in blueberry. These values 

are found higher than fresh berries reported by Sellappan et al. (24). The major 
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anthocyanidin found in Tifblue and Powderblue cultivers were malvidin followed by 

peonidin > cyanidin > delphinidin > petunidin (Table 3.2). Similar order was reported in 

highbush and lowbush varieties (31). The initial analysis of TPP, TACY, and TEAC of 

frozen blueberries, blueberry extract after pressing and heating is given in Table 3.3. 

Compared to the present study, our previous study showed 20% less TPP content and 

TEAC and 30% more TACY (11, 24). These variations may be due to difference in 

blueberry cultivars, storage conditions, stage of maturity, environmental factors such as 

light, temperature, agronomic practices, and various stresses. A single genotype of 

lowbush blueberries may differ in their anthocyanin content by 30% between two seasons 

(20). The Powderblue cultivar exhibited higher antioxidant capacity, TPP and TACY 

than Tifblue. The initial analysis of individual phenolic acids and flavonols and 

individual anthocyanidins of frozen blueberries, blueberry extract after pressing and 

heating of frozen blueberries,  is given in Table 3.4 and Table 3.5, respectively. 

Recovery of gallic acid, catechin and quercetin was observed above 25 % in final extract 

after heating and removal of residue. Ferulic acid was not detected in the final extract in 

both the cultivars, Tifblue and Powderblue. Recovery of peonidin, malvidin and cyanidin 

was observed ~20 % in final extract in both the cultivars. These results suggest that most 

of the phenolic compounds are lost during removal of residue and during heating. Similar 

results were reported by earlier workers during juice preparations (14, 18-19). 

Changes Observed in TPP, TACY and TEAC during Preparation of Extract . 

There was no significant change observed in TSS (11.8-12.5 ºBrix) and pH 

(3.2-3.4) in extract obtained after pressing and heating. Similar results were observed in 

both the cultivars (Tifblue and Powderblue). Recovery of TPP, TACY and TEAC in 
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blueberry extract after pressing and heating were ~25, ~29, and ~69%, respectively. The 

primary steps of preparation (thawing, crushing, depectinization and pressing) may have 

contributed to the considerable loss. Similar results were reported by other investigators 

(19, 32). This may be attributed to the oxidation of anthocyanins and polyphenols (19). 

Many researchers have suggested that native blueberry polyphenol oxidase (PPO) 

oxidizes polyphenolics to quinones, which produce brown pigments (15-17). However, 

after heating there was a slight increase in TPP in Powderblue. Slight increase in TACY 

was also observed in both the cultivars (Tifblue and Powderblue). This might be due to 

greater extraction due to fruit skin permeability/concentration during heating or complete 

inactivation of polyphenol oxidase (20). 

Effect of Storage Conditions on TPP. TPP at different temperatures and time 

intervals are given in Figure 3.2. Cultivar type was not a significant predictor for the 

retention of TPP at all temperatures. However, interaction term, time×temperature was 

found to be a significant contributor to the degradation of TPP (P < 0.05). At -20±1 ºC, 

no statistically significant losses of TPP were observed until 30 days (P < 0.05). A slight 

reduction was observed by 30 days, but thereafter no significant degradation of TPP was 

observed. At 6±1 ºC there were significant losses observed from 15 to 30 days and then 

the retention became constant. Similar results were observed at 23±1 ºC and 35 ºC (P < 

0.05). Earlier researchers reported no significant change in TPP for 12 months for frozen 

blueberry fruit (34), whereas high temperature and oxidative conditions were shown to 

significantly reduce TPP of lowbush blueberries (18, 20). 

Effect of Storage Conditions on TACY. TACY at different temperatures and 

time intervals is given in Figure 3.3. Effect of storage on individual anthocyanins will be 
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discussed separately. All variables (time, temperature and interaction term, 

time×temperature) were significant contributors (P < 0.05) to the degradation of TACY. 

Statistically significant (P < 0.05) differences were observed for the two cultivars in the 

degradation of TACY. Duncan’s multiple range tests showed that the highest value (34.7 

mg/100 mL of extract) of TACY was observed at -20±1 ºC after 15 days storage. Lowest 

retention (17.0 mg/100 mL) was observed after 60 days at 35±1 ºC in extract obtained 

from the Tifblue cultivar. At all temperatures, significant differences in degradation were 

observed from 0 to 30 days (P < 0.05); thereafter it became constant. As discussed above, 

PPO is involved in the degradation of anthocyanins. There was no significant difference 

observed between 45 and 60 days. The chemical structure is a main factor affecting the 

stability of the anthocyanins. Stability and structure of individual anthocyanins are 

discussed later in this paper. 

Effect of Storage Conditions on TEAC. TEAC at different temperatures and 

time intervals is given in Figure 3.4. Statistically significant (P < 0.05) differences were 

observed for the two cultivars with Tifblue having higher antioxidant activity than 

Powderblue. At -20±1 ºC, storage time did not affect the antioxidant activity. However, at 

35±1 ºC there was significant loss of activity after 15 days which continued through 60 

days. Table 3.6 gives total retention of TPP, TACY, and TEAC after 60 days under all 

temperature conditions. Heat, storage time and oxidation contribute to the loss of 

antioxidant activity (18). Antioxidant activity of phenolic acids depends on the number 

and position of hydroxyl (-OH) groups and methoxy (-OCH3) subsitituents in the 

molecules. Hydroxylation and glycosylation modulate the antioxidant properties of 

flavonoids (35). Prolonged storage at high temperature may affect the hydroxylation and 
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glycosylation of compounds and lead to gradual reduction in antioxidant activity (TEAC) 

as we observed. However, the rate of reduction was not similar to that of TPP and TACY, 

suggesting that there may be other compounds responsible, in part, to the antioxidant 

activity. A good example would be ascorbic acid which is present in blueberry and other 

fruits. 

Effect of Storage Conditions on Phenolic Acids and Flavonols. Percent 

retention of phenolic acids and flavonols at different temperatures after 60 days of 

storage is given in Table 3.7 (Tifblue) and Table 3.8 (Powderblue). Temperature and 

time affected retention of phenolic acids and flavonols (P < 0.05). Phenolic acids in 

Tifblue and Powderblue were, gallic acid, caffeic acid, p-coumaric acid, and ellagic acid 

and flavonols were catechin, and quercetin. At -20±1 ºC retention of quercetin was 89.7% 

and 97.8% for Tifblue and Powderblue, respectively. However at 35±1 ºC these values 

reduced to 61.2% and 54.4%, respectively. There are reports available indicating no 

degradation of quercetin in whole fruit at 5 ºC for 9 months (36). Retention of ellagic acid 

varied from 87.5-48.2% in Tifblue and 46.3-60.0% in Powderblue at all temperature 

conditions. Rate of degradation of phenolic acid and flavonol at room temperature (23±1 

ºC) is in the following order: quercetin > gallic acid > ellagic acid > catechin >caffeic 

acid > p-coumaric acid. Phenolic acids with higher hydroxyl group attachment may have 

contributed to the stability. Significant loss of caffeic may have occurred because caffeic 

acid is a good substrate for blueberry PPO (15). 

Effect of Storage Conditions on Individual Anthocyanins. Percent retention of 

individual anthocyanidins at different temperatures after 60 days of storage is given in 

Table 3.9 (Tifblue) and Table 3.10 (Powderblue). Anthocyanins found in Tifblue and 
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Powderblue were: delphinidin, cyanidin, petunidin, peonididn, and malvidin. 

Temperature had a significant effect on retention of anthocyanidins. The proportion of 

Mv-Glc was highest in the extract obtained from both cultivars. The highest retention of 

Mv-Glc was observed when extract was stored at -20 ºC and 6 ºC for Tifblue and 

Powderblue, respectively. Delpinidin was not detected in the extract. Delphinidin is 

found most unstable. This was attributed to the methoxylation of the molecule, which 

increases the stability of anthocyanins (34). Stability of Mv-Glc and Pn-Glc increased 

due to the single hydroxyl group on the phenolic ring which makes them the least 

reactive anthocyanins and the least affected by PPO inactivation (14). There was a little 

change observed in peonidin-3-galactoside. A substantial decrease was observed in Cy-

Glc. These results were in agreement with earlier studies (19). No anthocyanidins were 

detected at 35±1 ºC after 45 days. Increase in glycosidic substitution, acylation and 

methoxylation tend to improve the stability of anthocyanins. Methoxylation also increase 

the stability of anthocyanins (35). 

 Effect of Storage Conditions on Cell Proliferation. Inhibition of cell proliferation 

at different time intervals and temperatures is given in Figure 3.5. Highest inhibition 

(30.7%) was observed with anthocyanins extracted from the sample of Powderblue 

extract. Lowest inhibition (10.4%) was observed with anthocyanins extracted from 

Tifblue extract for 60 days at 6±1 °C. Interestingly, there was some cell growth (+7%) 

with anthocyanins from Tifblue extract stored for 90 days at 23±1 °C. Lower 

antiproliferation activity was associated with low or insignificant levels of delphinidin, 

petunidin, and cyanidin. Several researchers reported marked inhibitory effects of 

anthocyanins comprising cyanidin as main constituents on colorectal carcinogeneis (37) 
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and DNA damage (38), suggesting that the inhibition of anthocyanins on cell 

proliferation may be related to the number of hydroxyl groups on the B-ring. However, 

the molecular mechanisms are not clear. We observed initial inhibition percentage of 48.8 

and 43.1% with anthocyanins from Tifblue and Powderblue, respectively. This decreased 

slightly in 30 days. However there were significant decreases after 30 to 90 days in both 

cultivars (Tifblue and Powderblue). We observed a slight decrease in inhibition 

percentage in cells treated with anthocyanin fraction from extract stored at different time 

intervals. This might be attributed to the high retention of malvidin in the initial 45 days 

which was followed by a significant reduction of this anthocyanin. As suggested, the 

presence of hindered phenol on the B ring via the presence of a methoxy group enhances 

the antioxidant activity or the H-donating activity. Malvidin has the phenolic group 

hindered by two methoxyl groups (39). Few studies have shown that the 

orthodihydroxyphenyl structure on the B-ring of anthcyanidins may be essential for the 

inhibitory action because pelargonidin, peonidin, and malvidin, having no such ortho-

dihydroxyphenyl structure, failed to show the inhibitory effects (40), which is contrary to 

our results. The effects of anthocyanidin on HepG2 cell viability have been reported.  The 

estimated IC50 of cyanidin, delphinidin, and malvidin were 18.4, 10.8, and 50.4 µM 

(equivalent to 5, 3, and 17 µg/mL), respectively (41). This suggests that after heating, de- 

pectinization and storage there was a significant loss in antiproliferation activity of 

phenolic compounds. 

Correlation between TPP, TACY and TEAC. The correlation between TEAC 

and total polyphenols or total anthocyanins contents of blueberry extract from different 

time intervals stored at 23±1 ºC is presented in Figure 3.6. The average values of TEAC 
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showed positive correlation with average values of total anthocyanins and total 

polyphenols. A linear relationship was observed between TEAC and TPP or TACY. In 

Tifblue the correlation coefficient, r2 was 0.66 for TPP and and 0.56 for TACY and for 

Powderblue r2 was 0.65 for TPP and and 0.52 for TACY. These values indicate that the 

antioxidant capacity is moderately related to TPP and TACY. Fresh blueberries had 

shown strong positive correlation between TEAC and TPP (24).  

This study showed that prolonged storage of blueberry extract at room 

temperature significantly reduces the phenolic compounds and their biological activity. 

No difference in TPP, TACY and TEAC was observed between the two different 

cultivars. Retention of phenolic acids and anthocyanidins were least influenced by cold 

storage and frozen conditions. 
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Table 3.1 Individual Phenolic Acids and Flavonoids in Frozen Blueberries 

 frozen blueberries 
 Phenolic acid  

(mg/100 g fruit weight) 
Flavonoids 
(mg/100 g fruit weight) 

  
 gallic acid caffeic acid p-coumaric acid ferulic acid ellagic acid catechin quercetin myricetin 

Tifblue 5.5±3.5 32.5±4.9 29.5±4.9 69.0±11.3 11.0±5.7 146.5±10.6 8.5±0.7 3.5±2.1 
Powderblue 31.0±1.4 56.5±0.7 65.5±6.4 11.5±0.7 36.0±1.4 75.5±6.4 6.5±3.5 4.0±1.4 
Each value is expressed as mean±SD, n=3
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Table-3.2. Individual Anthocyanidins in Frozen Blueberries 

 
 frozen blueberries 
  (mg/100 g of fruit weight) 

 Dp-Glc Cy-Glc Cy-Gal Pn-Glc Pn-gal Pt-Glc Pn-Ara Mv-Glc 
Tifblue 8.5±0.7 5.5±0.7 18.0±2.8 6.0±1.4 10.0±1.4 6.5±0.7 15.5±0.7 39.0±2.8 
Powderblue 9.0±0.0 4.5±0.7 12.5±2.1 5.5±2.1 9.5±2.1 5.5±2.1 14.0±1.4 38.0±5.7 
 
Abbreviations: Dp-Glc (Delphinidin 3-O-β-glucopyranoside), Cy-Glc (Cyanidin 3-O-β-glucopyranoside),  
Cy-Gal (Cyanidin 3-O-β-galactopyranoside), Pn-Glc (Peonidin 3-O-β-glucopyranoside),    
Pn-Gal (Peonidin 3-O-β-galactopyranoside), Pt-Glc (Petunidin 3-O-β-glucopyranoside),  
Pn-Ara (Peonidin 3-O-α-arabinopyranoside), Mv-Glc (Malvidin 3-O-β-glucopyranoside). 
Each value was expressed as mean±SD, n=3 
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Table 3.3 TPP, TACY, and TEAC Content of Frozen Blueberry, Blueberry Extract after Pressing and Heating 

 
 Tifblue Powder 
 Frozen 

berries 
Extract 
after 
pressing 

Extract 
after 
heating 

Recovery 
(%) 

Frozen 
berries 

Extract 
after 
pressing 

Extract 
after 
heating 

Recovery 
(%) 

TPP 1 344.8±4.7 87.3±2.7 87.3±1.8 25.3 383.4±8.4 87.9±0.7 90.7±0.8 23.7 
TACY 2 114.5±3.2 29.9±0.3 33.6±0.5 29.3 120.9±3.7 33.4±1.8 36.1±0.3 29.9 
TEAC 3 26.1±1.1 17.0±0.9 17.2±0.1 65.9 27.3±1.2 17.5±0.6 17.4±0.3 63.7 

 
Abbreviations: 1 TPP is total polyphenol (mg/100g of frozen blueberry or extract);  
2TACY total anthocyanin mg/100g of frozen blueberry or extract); 3TEAC trolox equivalent antioxidant capacity  
Recovery percent was calculated based on frozen berries concentration as 100 %. 
(µM/g whole frozen blueberry or extract). Each value was expressed as mean±SD, n=3. 
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Table 3.4 Phenolic Acids and Flavonols in Frozen Blueberry, Blueberry Extract after Pressing and Heating 

 
 

Tifblue Powderblue 

Phenolic acids 
and flavonols 

Frozen 
berries 

Extract 
after 
pressing 

Extract 
after 
heating 

Recovery 
(%) 

Frozen 
berries 

Extract 
after 

pressing 

Extract 
after 

heating 
 

Recovery 
(%) 

 
Gallic acid 5.5±3.5 1.8±0.4 2.0±0.2 35.5±3.9 31±1.4 27±5.7 12.7±1.1 41.0±3.7 
Caffeic acid 32.5±4.9 21.5±1.8 4.4±0.6 13.4±2.0 56.5±0.7 19.1±1.2 5.4±2.2 9.5±3.9 
p-Coumaric acid 29.5±4.9 6.0±0.4 4.7±0.5 15.8±1.7 65.5±6.4 8.5±0.92 5.5±0.9 8.3±1.4 
Ferulic acid 69.0±11.3 7.6±0.4 nd nd 11.5±0.7 4.9±0.3 nd nd 
Ellagic acid 11.0±5.7 5.9±1.0 2.8±0.1 24.4±1.2 36±1.4 17.2±1.0 12.1±1.3 33.5±3.7 
Catechin 146.5±10.6 79.6±10.8 36.3±0.4 24.8±0.3 75.5±6.4 68.2±1.1 33.1±4.5 43.8±6.0 
Myrecitin 3.5±2.1 0.6±0.4 nd nd 4±1.3 0.5±0.1 nd nd 
Quercetin 
 

8.5±0.7 2.2±0.4 2.9±0.4 33.5±4.2 6.5±3.5 2.7±0.6 2.3±0.5 34.6±7.6 

 
Phenolic acids and flavonols are expressed in mg/100 g of frozen fruit and mg/100 mL of extract.  
Recovery percent was calculated based on frozen berries concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 
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Table 3.5 Individual Anthocyanidins in Frozen Blueberry, Blueberry Extract after Pressing and Heating 

 
 

Tifblue Powderblue 

Anthocynidins Frozen 
berries 

Extract 
after 
pressing 

Extract 
after 
heating 

Recovery 
(%) 

Frozen 
berries 

Extract 
after 

pressing 

Extract 
after 

heating 
 

Recovery 
(%) 

Dp-glc 8.5±0.7 3.2±0.1 nd nd 9.0±0.0 3.5±0.6 nd nd 
Cy-glc 5.5±0.7 6.8±0.7 1.1±0.2 19.9±3.2 4.5±0.7 8.3±0.2 1.1±0.2 25.1±5.3 
Cy-gal 18.0±2.8 18.4±1.0 1.0±0.1 5.6±0.8 12.5±2.1 18.9±0.1 1.0±0.1 7.7±0.8 
Pn-glc 6.0±1.4 3.6±1.0 3.2±0.1 52.7±0.9 5.5±2.3 2.8±0.1 3.4±0.1 62.1±2.2 
Pn-gal 10.0±1.4 22.6±0.8 1.1±0.0 10.5±0.1 9.5±1.9 25.0±0.7 1.2±0.0 12.4±0.3 
Pt-glc 6.5±0.7 20.9±3.1 nd nd 5.5±2.0 24±1.3 nd nd 
Pn-ara 15.5±0.6 20.7±5.0 8.7±0.3 56.2±1.8 14±1.4 20.6±1.2 8.1±0.1 58.0±0.8 
Mv-glc 39.0±2.8 38.8±14.5 7.7±0.0 19.7±0.0 38±5.7 33.3±7.9 8.6±0.2 22.7±0.5 

 
Each anthocyanidins are expressed in mg/100 g of frozen fruit and mg/100 mL of extract. Recovery percent was calculated based on 
frozen berries concentration as 100 %. Dp-glc (Delphinidin 3-O-β-glucopyranoside), Cy-glc (Cyanidin 3-O-β-glucopyranoside),  
Cy-gal (Cyanidin 3-O-β-galactopyranoside), Pn-glc (Peonidin 3-O-β-glucopyranoside), Pn-gal (Peonidin 3-O-β-galactopyranoside), 
Pt-glc (Petunidin 3-O-β-glucopyranoside), Pn-ara (Peonidin 3-O-α-arabinopyranoside), Mv-glc (Malvidin 3-O-β-glucopyranoside). 
Recovery percent was calculated based on frozen berries concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 
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Table 3.6 Percent Retention of TPP, TACY and TEAC after 60 Days at Different Temperature Conditions 

 
 Temperature (°C) 

 Tifblue Powderblue 
 -20±1 6±1 23±1 35±0.5 -20±1 6±1 23±1 35±0.5 
TPP 1 78.3±3.5a 66.6±2.2b 49.4±2.5c 49.4±2.5c 75.9±0.1a 68.9±4.1b 35.6±1.1d 50.3±2.3c 
TACY 2 77.8±3.1a 67.5±1.1c 50.4±1.3e 50.7±2.3e 75.4±1.1b 68.5±0.4d 51.3±0.6e 31.5±0.5e  
TEAC 3 98±0.3a 95.7±0.5b 87.6±0.1e 76.6±0.4g 94.6±0.4c 91.2±0.4d 79.2±0.6c 79.2±0.6f  

 
Abbreviations: 1 TPP is total polyphenol (mg/100mL of blueberry extract);  
2TACY total anthocyanin mg/100mL of blueberry extract); 3TEAC trolox equivalent antioxidant capacity (µM/ mL of blueberry 
extract).Retention percent was calculated after 60 days at a given temperature conditions. 
Percent was calculated based on 0 day concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 
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Table 3.7 Retention of Blueberry Phenolic Acids and Flavonols in Blueberry Extract After 60 Days Under Different Temperature 
Conditions 
 

 Tifblue 
  0 day                                                     after 60 days 
  -20±1 ºC 6±1 ºC 23±1 ºC 35±1 ºC 
 aconc. aconc retn. % aconc retn. % aconc retn. % aconc retn. % 

 
 
Gallic acid 2.0±0.2 0.5±0.0 23.5±1.4 1.2±0.1 61.3±2.5 1.1±0.1 53.3±2.5 1.2±0.0 59.8±1.7 
Caffeic acid 4.4±0.6 1.7±0.1 39.2±2.4 0.6±0.1 13.6±3.2 0.7±0.1 14.8±1.6 0.9±0.1 19.3±1.6 
p-Coumaric acid 4.7±0.5 1.3±0.1 27.6±1.7 0.3±0.1 6.4±2.1 0.6±0.1 12.8±3.0 0.4±0.1 8.5±3.0 
Ferulic acid nd nd nd nd nd nd nd nd nd 
Ellagic acid 2.8±0.1 2.5±0.1 87.5±2.5 1.5±0.4 53.6±1.5 1.4±0.2 48.2±7.6 1.6±0.1 57.0±5.1 
Catechin 36.3±0.4 5.6±0.4 15.4±1.2 5.9±0.6 16.1±1.8 3.7±0.3 10.2±0.9 5.4±0.3 14.9±0.8 
Myrecitin nd nd nd nd nd nd nd nd nd 
Quercetin 2.9±0.4 2.6±0.3 89.7±9.8 2.1±0.1 70.1±2.4 2.2±0.2 74.1±7.3 1.8±0.3 61.2±11.0 

 
 

Abbreviations: aconc. = Concentration of phenolic acids and flavonols expressed in mg/100 mL of extract; nd=not detected 
Percent was calculated based on 0 day concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 
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Table 3.8 Retention of Blueberry Phenolic Acids and Flavonols in Blueberry Extract After 60 Days Under Different Temperature 
Conditions 
 
 Powderblue 
  0 day                                                     after 60 days 
  -20±1 ºC 6±1 ºC 23±1 ºC 35±1 ºC 
 aconc. aconc retn. % aconc retn. % aconc retn. % aconc retn. % 

 
Gallic acid 12.7±1.13 5.0±1.6 18.9±1.1 7.3±0.3 57.7±2.3 8.0±1.3 63.0±1.0 7.0±0.1 54.7±0.6 
Caffeic acid 5.34±2.18 1.8±0.4 34.0±8.0 0.8±0.1 14.2±1.3 0.8±0.1 15.1±2.7 0.7±0.1 12.3±1.3 
p-Coumaric acid 5.45±0.92 1.3±0.1 23.4±0.9 0.3±0.0 6.3±0.3 0.4±0.0 8.0±0.8 0.7±0.1 12.0±1.3 
Ferulic acid nd nd nd nd nd nd nd nd nd 
Ellagic acid 12.05±1.3 6.0±0.1 49.6±0.6 6.5±0.7 54.2±5.9 5.6±0.5 46.3±4.1 7.2±0.4 60.0±3.5 
Catechin 33.1±4.53 6.3±0.4 17.4±1.0 3.7±0.3 11.8±0.0 7.8±0.2 23.4±0.6 4.0±0.2 11.9±0.6 
Myrecitin nd nd nd nd nd nd nd nd nd 
Quercetin 
 

2.25±0.49 2.3±0.4 97.8±1.5 1.1±0.3 47.8±1.2 1.6±0.4 67.4±1.5 1.3±0.5 54.4±2.1 

 

Abbreviations: aconc. = Concentration of phenolic acids and flavonols expressed in mg/100 mL of extract; nd=not detected 
Percent was calculated based on 0 day concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 
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Table 3.9 Retention of Individual Anthocyanidins in Blueberry Extract After 60 Days Under Different Temperature Conditions 

 Tifblue 
  0 day                                                     after 60 days 
  -20±1 ºC 6±1 ºC 23±1 ºC 35±1 ºC 
 aconc. aconc retn. % aconc retn. % aconc retn. % aconc retn. % 

 
Dp-glc nd nd nd nd nd nd nd nd nd 
Cy-glc 1.1±0.2 0.8±0.1 73.1±2.3 0.5±0.0 42.3±3.2 0.2±0.0 17.7±1.9 nd nd 
Cy-gal 1.0±0.1 0.5±0.0 44.5±3.5 0.4±0.0 37.2±0.1 0.1±0.0 15.0±5.8 nd nd 
Pn-glc 3.2±0.1 1.3±0.2 39.7±8.0 0.7±0.1 20.2±2.4 0.5±0.0 15.5±0.2 nd nd 
Pn-gal 1.1±0.0 0.9±0.0 78.6±1.9 0.7±0.1 64.6±3.9 0.5±0.1 41.4±5.6 nd nd 
Pt-glc nd nd nd nd nd nd nd nd nd 
Pn-ara 8.7±0.3 4.1±0.1 46.6±1.0 2.1±0.0 24.3±0.2 1.5±0.1 17.1±1.5 0.1±0.0 17.8±3.1 
Mv-glc 7.7±0.0 7.2±0.9 93.7±1.7 4.3±0.1 55.3±0.8 3.3±0.1 42.8±9.1 nd nd 

Abbreviations: aconc. = Concentration of phenolic acids and flavonols expressed in mg/100 mL of extract; nd=not detected 
Each anthocyanidins are expressed in mg/100 g of frozen fruit and mg/100 mL of extract. 
Dp-glc (Delphinidin 3-O-β-glucopyranoside), Cy-glc (Cyanidin 3-O-β-glucopyranoside),  
Cy-gal (Cyanidin 3-O-β-galactopyranoside), Pn-glc (Peonidin 3-O-β-glucopyranoside),    
Pn-gal (Peonidin 3-O-β-galactopyranoside), Pt-glc (Petunidin 3-O-β-glucopyranoside),  
Percent was calculated based on 0 day concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 



 

 

84 

 

 

 

Table 3.10 Retention of Individual Anthocyanidins in Blueberry Extract After 60 Days Under Different Temperature Conditions 

 Powderblue 
  0 day                                                     after 60 days 
  -20±1 ºC 6±1 ºC 23±1 ºC 35±1 ºC 
 aconc. aconc retn. % aconc retn. % aconc retn. % aconc retn. % 

 
Dp-glc nd nd nd nd nd nd nd nd nd 
Cy-glc 1.1±0.2 0.8±0.0 70.0±1.3 0.6±0.0 56.9±3.3 0.2±0.0 17.7±0.6 nd nd 
Cy-gal 1.0±0.1 0.6±0.0 74.5±4.9 0.8±0.0 59.5±2.1 0.3±0.0 27.5±0.7 nd nd 
Pn-glc 3.4±0.1 1.2±0.0 36.3±0.2 1.1±0.1 31.2±1.7 1.4±0.0 42.9±1.3 nd nd 
Pn-gal 1.2±0.0 0.8±0.0 69.4±4.4 0.6±0.0 47.1±1.8 0.2±0.0 16.7±0.0 nd nd 
Pt-glc nd nd nd nd nd nd nd nd nd 
Pn-ara 8.1±0.1 2.7±0.2 33.7±2.6 2±0.0 24.6±0.2 1.6±0.1 19.9±0.5 1.6±0.3 19.1±3.3 
Mv-glc 8.6±0.2 4.0±0.2 45.9±2.5 6.1±0.1 70.5±1.0 2.2±0.2 25.8±1.4 nd nd 

 

Abbreviations: aconc. = Concentration of phenolic acids and flavonols expressed in mg/100 mL of extract; nd=not detected 
Each anthocyanidins are expressed in mg/100 g of frozen fruit and mg/100 mL of extract. 
Dp-glc (Delphinidin 3-O-β-glucopyranoside), Cy-glc (Cyanidin 3-O-β-glucopyranoside),  
Cy-gal (Cyanidin 3-O-β-galactopyranoside), Pn-glc (Peonidin 3-O-β-glucopyranoside),    
Pn-gal (Peonidin 3-O-β-galactopyranoside), Pt-glc (Petunidin 3-O-β-glucopyranoside),  
Pn-ara (Peonidin 3-O-α-arabinopyranoside), Mv-glc (Malvidin 3-O-β-glucopyranoside). 
Percent was calculated based on 0 day concentration as 100 %. 
Each value was expressed as mean±SD, n=3. 
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Figure 3.1 Structure of phenolic compounds: (A) Phenolic acids: a) Caffeic acid (number 

of OH-2); b) p-Coumaric acid (number of OH-1); c) Gallic acid (number of OH=3); d) 

Ellagic acid (number of OH=4), (B) Flavonols a) (+)-Catechin (number of OH=5); b) 

Quercetin (number of OH=5), and (C) Anthocyanins; i) Pelargonidin (R1= H, R2= H); ii) 

Cyanidin (R1= OH, R2= H); iii) Peonidin (R1= OMe, R2= H); iv) Delphinidin (R1= OH, 

R2= OH); v) Petunidin (R1= OMe, R2= OH); vi) Malvidin (R1= OMe, R2= OMe). 
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Figure 3.2 Changes in concentration of total polyphenol (TPP) in blueberry extract 

during storage at different temperatures. X axis represents time (in days). The Y-axis 

represents concentration of TPP (mg/100 mL of extract). Samples were analyzed in 15-

day interval. Storage temperatures were at -20±1, 6±1 °C, 23±1 °C, and 35±1 °C. 

Cultivars were (A) Tifblue and (B) Powderblue.  
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Figure 3.2  
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Figure 3.3 Changes in concentration of total anthocyanins (TACY) in blueberry extract 

during storage at different temperatures. X axis represents time (in days). The Y-axis 

represents concentration of TACY (mg/100 mL of extract). Samples were analyzed every 

15 days. Samples were analyzed in 15-day interval. Storage temperatures were at -20±1, 

6±1 °C, 23±1 °C, and 35±1 °C. Cultivars were (A) Tifblue and (B) Powderblue.  
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Figure 3.3  
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Figure 3.4 Changes in Trolox equivalent antioxidant capacity (TEAC) in blueberry 

extract during storage at different temperatures. X axis represents time (in days). The Y-

axis represents TEAC in µM/mL of extract. Samples were analyzed every 15 days. 

Samples were analyzed in 15-day interval. Storage temperatures were at -20±1, 6±1 °C, 

23±1 °C, and 35±1 °C. Cultivars were (A) Tifblue and (B) Powderblue.  
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Figure 3.4 
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Figure 3.5 Cell viability after treatment with anthocyanins fractions from extract stored 

under different temperature conditions. X axis represents time (in days). The Y-axis 

represents inhibition percentage of cells. Samples were analyzed every 30 days. Storage 

temperatures were at (A) 6±1 °C, and 23±1 °C. Packaging material were glass bottles. 

Cultivars were Tifblue and Powderblue. Abbreviations: Tif=Tifblue; 

Powder=Powderblue. 
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Figure 3.6 Correlation between total polyphenols, total anthocyanins, (y-axis), to TEAC 

value. The Y-axis represents total polyphenols and anthocyanins (mg/100 mL of extract). 

X-axis represents TEAC (µM/mL). Average values were used for plot at different time 

intervals. (A) Tifblue and (B) Powderblue at 23±1 °C. 
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CHAPTER 4 

 

EFFECT OF ANTHOCYANIN FRACTIONS FROM SELECTED CULTIVARS OF 

GEORGIA-GROWN BLUEBERRIES ON APOPTOSIS AND PHASE-II ENZYMES: 

GLUTATHIONE-S-TRANSFERASE AND QUINONE REDUCTASE AS A 

MEASURE OF CHEMOPREVENTIVE PROPERTIES AND MECHANISMS 
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ABSTRACT 

In recent years, considerable attention has been paid to anthocyanins due to their 

abilities both to inhibit oxidative stress and cell proliferation and to induce apoptosis in 

malignant cells. Regulation of phase-II enzymes a) glutathione-S-transferase (GST) and 

b) quinone reductase (QR) is another potential mechanism through which flavonoids 

prevent cancer. Our study confirmed apoptosis using two different methods: DNA 

fragmentation and caspase-3 activity. The effect of anthocyanins on the activity of 

detoxifying enzymes GST and QR was also determined. Major anthocyanidins identified 

were delphinidin, cyanidin, peonidin, petunidin, and malvidin. Malvidin was found to be 

the predominant anthocyanidin in all the cultivars, but Brightwell had peonidin as 

predominant anthocyanidin. The content of malvidin was 39.0, 38.0, 43.1, and 17.5 

mg/100 g of frozen blueberry in Tifblue, Powderblue, Brightblue, and Brightwell, 

respectively. Peonidin was the second largest anthocyanidin. The total content of 

peonidin was 31.5, 28.0, 35.0, and 50.5 mg/100 g of frozen blueberry in Tifblue, 

Powderblue, Brightblue, and Brightwell, respectively. In anthocyanin fraction, malvidin 

was also found to be the predominant anthocyanidin in all the cultivars, but Brightwell 

had peonidin as predominant anthocyanidin. There was considerable loss in delphinidin 

content during extraction. In all cultivars DNA fragmentation increased with anthocyanin 

concentration from 50 to 150 µg/mL, but cells treated with anthocyanin fraction of 

Brighwell showed prominent ladder at 50 to 100 µg/mL when compared to cells treated 

with 150 µg/mL. There was a significant difference in the caspase-3 activity (P < 0.05) 
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between the control cells and the cells treated with anthocyanins from all the cultivars. 

Response correlated positively with dose. Highest activity (1.4 fold increase over control) 

was observed in cells treated with 150 µg/mL anthocyanin fraction from the Brightwell 

cultivar. Statistically no significant difference (P < 0.05) was observed in 

caspase-3 activity between cells treated with Tifblue and Powderblue anthocyanin 

fractions at the same concentration (150 µg/mL). QR activity was lower in all treated 

cells than in control cells (0.25 µM/mg protein); however, no statistically significant 

difference (P < 0.05) was observed in the QR activity of control cells and cells treated 

with the anthocyanin fraction from Brightblue (100 and 150 µg/mL) and Brightwell (50 

µg/mL). Activity decreased gradually when treated with increased concentrations of 

anthocyanin fractions (50-150 µg/mL) in the Tifblue and Powderblue cultivars. A 

positive dose-response relationship was found in all the cultivars except Brightblue, 

where activity was the same for all three concentrations. GST activity was statistically 

higher (P < 0.05) in control cells than in cells treated with anthocyanin fractions from all 

the cultivars and at all levels of concentration. These results indicated that anthocyanins 

were not highly active in induction of detoxifying enzymes; however, apoptosis was 

confirmed in HT-29 cells when treated with anthocyanins consisting predominantly of 

malvidin. 

KEYWORDS : Anthocyanins; blueberries; caspase-3; cultivars; detoxifying enzymes; 

DNA fragmentation; DNA ladder; glutathione-S-transferase; phase-II enzymes; quinone 

reductase 
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INTRODUCTION 

Anthocyanins belong to a widespread class of phenolic compounds collectively 

named flavonoids. They are present in colored fruits and vegetables such as blueberries, 

red grapes, and red cabbages (1). Structure of individual anthocyanins differs in the 

number of hydroxyl groups, the nature and number of sugars, and the position of these 

attachments (2). In recent years, considerable attention has been paid to anthocyanins due 

to their ability both to inhibit oxidative stress, decrease cell proliferation, carcinogenesis, 

and to induce apoptosis in malignant cells (3-7). Apoptosis is a programmed cell death 

characterized by a series of distinct morphological and biochemical alterations (8-9). This 

process is essential for morphogenesis, tissue homeostasis, and host defense (9), and 

plays a significant role in the elimination of seriously damaged cells or tumor cells by 

chemopreventive agents (10-11). Accumulating evidence suggests that defects in 

apoptosis may lead to several pathologies, including some neurogenerative disorders, 

ischemic injury, and some forms of cancers (10).  

Apoptosis is characterized by chromatin condensation, cytoplasmic blebbing, and 

DNA fragmentation (12-13). Nuclear alterations, the pre-eminent ultrastructural changes 

of apoptosis, are often associated with the internucleosomal cleavage of DNA (8), 

recognized as a ‘DNA ladder’ on conventional agarose gel electrophoresis and are 

considered to be a biochemical hallmark of apoptosis (14). Its measurement is simple and 

often used to determine whether a cell is apoptotic.  

Caspase activity is responsible, either directly or indirectly, for the cleavage of 
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several intracellular proteins that are proteolyzed during apoptosis (14). The activation of 

caspases during this process results in the cleavage of critical cellular substrates, 

including poly (ADP-ribose) polymerase and lamins, thus precipitating the morphological 

changes in apoptosis (15). 

Flavonoid intake, including anthocyanin, is reported to reduce the risk of colon cancer 

(16-17). Kang et al. (18) showed that tart cherry anthocyanin (cyanidin) reduced the 

growth of human colon cancer cell lines (HT-29). A well characterized defense 

mechanism may be contributing to this chemopreventive effect of flavonoids. This 

mechanism involves the induction of detoxification enzymes, including members of 

glutathione S-transferase (GST) family and NAD(P)H (quinone reductase) (QR). 

  The human body is constantly exposed to potential carcinogens in the 

environment. The body deals with these compounds through a system of xenobiotic-

metabolizing enzymes, the phase-I and phase-II enzymes. Phase-I enzymes are members 

of the cytochrome P450 superfamily. They oxidize xenochemicals into electrophilic 

intermediates. These electrophilic intermediates are able to induce DNA damage and 

mutations. This accounts for the carcinogenic activity of many chemicals (19). Phase-II 

detoxification enzymes are responsible for metabolizing products of the phase-I 

metabolic reactions. They degrade reactive electrophilic intermediates through 

conjugation or reduction reactions, thereby protecting cells from oxidative DNA damage.  

Glutathione-S-transferase (GST) detoxifies carcinogens and facilitates their 

excretion by promoting the conjugation of electrophilic compounds with glutathione and 

NAD(P)H (quinone reductase) (QR), another phase-II enzyme, works by catalyzing two-

electron reductions on free radicals and toxic oxygen metabolites; this reduction 
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deactivates them and protects the surrounding tissues from mutagenesis and 

carcinogenesis.  

More that 40 compounds from dietary sources that function as phase-II enzyme 

inducers have been identified (20-21). Many studies have shown that flavonoids such as 

anthocyanins can stimulate GST, a promising strategy for the prevention of colon cancer 

(22). Like GST, QR can be induced by dietary components, including the flavonoids 

(23). 

For this study, we used moderately differentiated HT-29 colon cancer cells, which 

are widely used in research of colon cancer and to access the bioactivity of flavonoids 

(24). The objectives of the present study were the following: 1) to confirm the apoptosis 

caused by anthocyanin fractions extracted from four cultivars of blueberries (Tifblue, 

Powderblue, Brightblue, and Brightwell) using two methods: a) DNA fragmentation and 

b) caspase-3 activity; 2) to study the effect of anthocyanins on induction of phase-II 

enzymes GST and QR in cell culture as a measure of chemopreventive properties and 

mechanisms. 

MATERIAL AND METHODS  

Chemicals. Pure standards of anthocyanins were purchased from Polyphenol 

Laboratories (AS) (Sandnes, Norway). These standards were Dp-Glc (Delphinidin 3-O-β-

glucopyranoside), Cy-Gal (Cyanidin 3-O- β -galactopyranoside, Pt-Glc (Petunidin 3-O-β 

-glucopyranoside), Pn-Gal (Peonidin 3-O- β -galactopyranoside), Mv-Glc (Malvidin 3-O- 

β-glucopyranoside). Acetone, acetonitrile, methanol, O-phosphoric acid (85% purity, 

HPLC grade), hydrochloric acid (analytical grade), sulfuric acid, formic acid, and water 

(HPLC grade) were purchased from Fisher Scientific (Norcross, GA). Caspase-3 
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colorimetric assay kits were purchased from Chemicon® International, Inc. (Temecula, 

CA). Apoptotic DNA ladder kits (Boehringer Mannheim, Roche) were purchased from 

Roche (Indianapolis, IN). Glutathione-S-transferase activity assay kits were purchased 

from Cayman Chemical Company (Ann Arbor, MI). A BCA™ Protein assay kit was 

purchased from Pierce (Rockford, IL). Tween 20, FAD, NADPH, and dicoumarol, 

potassium chloride, Tris- HCl, monobasic sodium phosphate, dibasic sodium phosphate, 

and EDTA-disodium salt were purchased from Sigma (St. Louis, MO). The human 

hepatocellular carcinoma HT-29 cell line was purchased from ATCC (Manassas, VA). 

Sample Collection. Mature blueberries were harvested from the Tifton field in 

2005. The blueberry cultivars collected were Tifblue, Powderblue, Briteblue, and 

Britewell. The samples were frozen and stored at -40 °C until use. 

Extraction and Fractionation. Anthocyanin fractions were obtained using a 

modified version of a procedure reported by Youdim et al. (25) and Oszmianski et al. 

(26). Figure 4.1 shows a schematic diagram of the fractionation procedure. Crude 

extracts of blueberries were obtained through homogenization of whole blueberries in 

acetone: methanol: water: formic acid (40:40:20:0.1, v/v/v/v). Crude extracts were 

applied to an activated Oasis HLB cartridge (Waters Corporation, Milford, MA). They 

were washed with 15% methanol to remove the phenolic acids and then washed with 

acidified methanol (5% formic acid in methanol) which eluted the anthocyanins. The 

anthocyanin fraction was passed through a Sephadex LH20 column (Amersham 

Biosciences AB, Uppsala, Sweden). The column was then washed with 70% methanol 

acidified with 10% formic acid to elute the anthocyanins and flavonols. The LH20 

column was then washed with 70% acetone to elute the tannins or procyanidins. The 
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anthocyanin and flavonol fraction were applied to the second Oasis HLB cartridge. The 

cartridge was washed with 5% formic acid, followed by ethyl acetate and then 10% 

formic acid in methanol. The ethyl acetate eluted the flavonols, and the acidified 

methanol eluted the anthocyanins. The anthocyanin fraction was collected and 

concentrated in rotatory evaloprator to remove the solvent at 48 ºC for 2 h and left for 

overnight at room temperature and freeze dried using a UNITOP 600L freeze dryer 

(Virtis, Gardiner, New York). Extraction and fractionation were repeated five times, and 

the fractions were pooled together to obtain a sufficient amount for the bioassay. 

Hydrolysis. Anthocyanin fractions were hydrolyzed by dissolving in 50% 

methanol solution containing 2 N HCl (50 mL methanol + 33 mL water + 17 mL 37% 

HCl). The samples were placed in a water-bath at 80 ºC and shaken at 200 rpm for 1 h to 

allow for acid hydrolysis of anthocyanins to anthocyanidins. 

HPLC Analysis. HPLC was performed with a Hewlett–Packard (Avondale, PA) 

model 1100 liquid chromatograph with quaternary pumps and a diode array UV–visible 

detector. The mobile phase was Solvent A, O-phosphoric acid/methanol/water (5:10:85, 

v/v/v) and Solvent B, acetonitrile. The flow rate was 0.5 mL/min. The gradient for the 

separation was a linear gradient of 100-50% for solvent A and 0-50% for solvent B over 

25 min, followed by 5 min post-run with HPLC-grade water. Anthocyanin and 

anthocyanidin were detected at 520 nm. 

Cell Culture. The human hepatocellular carcinoma HT-29 cancer cells were 

cultured in an ATCC McCoy’s medium with 2 mM L-glutamine and Earle’s BSS 

adjusted to contain 1.5 g/L sodium bicarbonate, 0.1 mM non-essential amino acids, 1.0 

mM sodium pyruvate (90%), and 10% fetal bovine serum. Cells were incubated at 37 ºC 
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with 5% CO2 (Harris model # HWO 701T-ABA, Norwalk, CT). The medium was 

changed 2–3 times per week. 

Induction of Apoptosis. Exponentially growing cells were harvested by 

centrifugation and resuspended in a fresh medium to achieve a culture density of 2×105 

cells/mL. Apoptosis was induced with different concentrations of anthocyanins (50, 100, 

and 100 µg/mL) for 6 h. These cells were used for DNA fragmentation, a caspase-3 

colorimetric assay, protein assay, GST and QR activity assays. 

Electrophoretic Analysis of DNA Fragmentation. The untreated cells (control) 

and anthocyanin-treated cells (2 × 106) were harvested, washed in phosphate-buffered 

saline (PBS), and then lysed using lysis buffer. The samples were incubated at 15-25 °C 

for 10 min. The lysed sample was poured into a filter tube containing glass fiber fleece. 

Apoptotic DNA binds quickly to glass fiber fleece in the presence of a chaotropic salt, 

guanidine hydrochloride (guanidine HCl). After cellular impurities are washed off the 

fleece, the DNA is released from the fleece using a low salt buffer. The DNA 

quantification was done at 260 nm using UV-visible spectrophotometer (Shimadzu UV-

1601, Norcross, GA). The DNA samples were electrophoresed at 100V for 1 h in 1.5% 

(w/v) agarose gels (Sigma) complemented with ethidium bromide (1 µg/mL, Sigma). 

Separated DNA fragments (DNA ladders) were visualized using UV transilluminator 

(254 nm, Ultra-Lum Electronic UV Transilluminator, Claremont, CA).  

Caspase-3 Colorimetry Assay. The untreated cells (control) and anthocyanin-

treated cells were harvested (2 × 106), washed in PBS, and centrifuged at 1500 rpm for 10 

min. The pellet was resuspended in lysis buffer and incubated at room temperature for 10 

min. After incubation, the samples were centrifuged for 5 min in a microcentrifuge 
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(10,000 × g). The cytosol collected was used for protein analysis and for caspase-3 

activity. The assay mixture was prepared in a 96-well plate using cytosol from treated 

cells and untreated cells and a caspase-3 substrate. The plate was incubated at 37 ºC for 1 

h, and the samples were read at 415 nm using Bio-Rad Model 680 Microplate Reader 

(Hercules, CA). Increases in caspase-3 activity were determined by comparing the OD 

reading from the induced apoptotic sample with the OD reading of the uninduced control. 

Cell Preparation for Enzyme Activity Assays. Following trypsinization and 

harvesting, the cell suspension was centrifuged at 750 × g for 5 min (Beckman T-J6; Palo 

Alto, CA). The supernatant was discarded. The cells were resuspended in 2 ml PBS and 

centrifuged again at 750 × g for 5 min. The cells were then disrupted using a sonicator 

(Branson Sonifier 450, St. Louis, MO) for 30 sec at 20% power. The homogenate was 

combined with an equal amount of homogenizing buffer and centrifuged (Beckman 

J2HS, JS-7.5 swinging bucket rotor; Palo Alto, CA) at 10,000 × g for 20 min at 4 °C. The 

supernatant was transferred to a polycarbonyl centrifuge tube, and the weight-matched 

tubes were ultracentrifuged (Beckman Optima LE-80K Ultracentrifuge; Palo Alto, CA) at 

100,000 × g for 1 h and 10 min at 4°C. The supernatant (cytosol) was divided into 3 tubes 

and frozen at –80°C until analysis. 

Protein Assay. The amount of protein in the cells was measured using a BCA 

protein assay kit at 590 nm with a Bio-Rad Model 680 Microplate Reader (Hercules, 

CA). Briefly, this method combines the reduction of Cu++ to Cu+ using a protein in 

alkaline media with a highly sensitive and selective colorimetric detection of Cu+ using 

bicinchoninic acid. Enzyme activities for GST and QR were expressed per mg protein. 

All samples were run in duplicate. 
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Quinone Reductase Assay. Quinone reductase (QR) activity was also measured 

in the cytosol using methods described by Kore et al. (27) with 12 mmol/L 2,6-

dichloroindophenol as the substrate (DPIP). QR activity was measured in triplicate with a 

spectophotometer (Beckman DU 650, Beckman Instruments Inc., Fullerton, CA). The 

total volume of the cuvette reached 1 mL. The contents included 0.06 to 0.28 mg cytosol 

protein incubated with 25 mmol/L Tris-HCl (pH 7.4), 0.7 mg bovine serum albumin, 1% 

Tween 20, 5 mol/L FAD, and 0.2 mmol/L NADPH and 0 or 10 mol/L dicoumarol at 25 

°C. DPIP (40 mol/L) was added to initiate the reaction. The reduction of DPIP was 

measured at 600 nm every 15 sec for 3 min. The dicoumarol sensitive portion of the 

activity was taken as a measure of QR activity. The molar extinction coefficient for 

DPIP, at 600 nm, was 2.1 nmol/mL. 

Glutathione-S-Transferase Assay. Glutathione-S-transferase (GST) activity was 

measured using 10 mM 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate. An aliquot 

of cytosolic sample, potassium-phosphate buffer (0.1 mol/L), and the reduced form of 

glutathione (GSH; MW = 307.3) were added to each microplate well. To initiate the 

assay, 5.0 µL CDNB was added to each well. The rate of change in absorbance for each 

sample was read at 340 nm using a Bio-Rad Model 680 Microplate Reader (Hercules, 

CA). This assay indirectly measures enzyme activity by measuring the conjugation of 

CDNB with glutathione by GST. All samples were run in triplicate and average values 

reported. 

Statistical Analysis. Statistical analysis was done with the SAS software package 

(28). One-way analysis of variance (ANOVA) was performed to determine differences in 

enzyme activity. When F values for the ANOVA were significant, differences in means 
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were determined using Duncan’s multiple range tests as a procedure for mean separation 

(P < 0.05). 

RESULTS AND DISCUSSION 

Initial Analysis. The contents of individual anthocyanidins of frozen blueberries 

are given in Table 4.1. The major anthocyanidin found in all the cultivers (Tifblue, 

Powderblue, Brightblue, and Brightwell) was malvidin followed by peonidin > cyanidin 

> delphinidin > petunidin. Major anthocyanidins in four cultivars (Tifblue, Powderblue, 

Brightblue, and Brightwell) are shown in Table 4.1. The number of different 

anthocyanidins is expressed based on the specific weight of the anthocyanins, including 

delphinidin, cyanidin, petunidin, peonidin, and malvidin, because most of the 

anthocyanins in blueberry are monoglycosides (i.e., galactosides, glucosides or 

arabinosides) (29). HPLC chromatogram of the different cultivars is shown in Figure 4.2 

(A), (B), (C), and (D). Malvidin was found to be the predominant anthocyanidin in all the 

cultivars, but Brightwell had peonidin as predominant anthocyanidin. The content of 

malvidin was 39.0, 38.0, 43.1, and 17.5 mg/100 g of frozen blueberry in Tifblue, 

Powderblue, Brightblue, and Brightwell, respectively. Peonidin was the second largest 

anthocyanidin. The total content of peonidin (Pn-glc, Pn-gal, and Pn-ara) was 31.5, 28.0, 

35.0, and 50.5 mg/100 g of frozen blueberry in Tifblue, Powderblue, Brightblue, and 

Brightwell respectively. There are not many reports available for anthocyanin content of 

the above cultivars; however malvidin was reported as predominant anthocyanidins in 

many blueberry varieties (30-31). Major anthocyanidins in the anthocyanin fractions of 

four cultivars (Tifblue, Powderblue, Brightblue, and Brightwell) are shown in Table 4.2. 

HPLC chromatogram of the different cultivars is shown in Figure 4.3 (A), (B), (C), and 
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(D). Malvidin was found to be the predominant anthocyanidin in all the cultivars, but 

Brightwell had peonidin as predominant anthocyanidin. The content of malvidin was 

40.5, 44.4, 44.4, and 20.0 mg/100 mg of anthocyanin fraction in Tifblue, Powderblue, 

Brightblue, and Brightwell, respectively. Peonidin was the second largest anthocyanidin. 

The total content of peonidin (Pn-glc, Pn-gal, and Pn-ara) was 23.5, 25.2, 23.4, and 35.8 

mg/100 mg of anthocyanin fraction in Tifblue, Powderblue, Brightblue, and Brightwell, 

respectively. There was considerable loss in delphinidin content during extraction. There 

were certain unidentified peaks not considered for calculation. Delphinidin and cyanidin 

were lower in concentration than previously reported (32-33). These variations may be 

due to the fractionation procedure used or storage conditions or handling of raw material 

or due to environmental factors such as light, temperature, agronomic practices, and 

various stresses. 

DNA Fragmentation. The induction of apoptosis in tumor cells has been shown 

to be the most common anti-cancer mechanism of many cancer therapies; therefore, 

finding potential therapeutic anti-tumor compounds with potent and selective apoptotic 

effects would be valuable (34). DNA fragmentation is a primary physiological 

characteristic of apoptosis and a relatively late event in apoptosis. Following agarose gel 

electrophoresis of HT-29 cells treated with anthocyanins from different cultivars, a 

typical ladder pattern of internucleosomal fragmentation was observed. Figure 4.4 shows 

the DNA fragmentation in cells undergoing apoptosis. The characteristic cleavage of 

DNA into oligonucleosome fragments can be seen as DNA laddering. In all cultivars 

DNA fragmentation increased at anthocyanin concentrations of 50 to 150 µg/mL, but 

cells treated with anthocyanin fraction of Brighwell showed prominent ladder at 50 to 
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100 µg/mL when compared to cells treated with 150 µg/mL. Necrosis may be the 

predominant process at the highest anthocyanin concentrations, with fewer cells 

undergoing apoptosis. Peonidin was the predominant anthocyanidin in Brightwell; 

remaining cultivars had malvidin as predominant anthocyanidin. Some, but not all 

researchers have reported that malvidin stimulates apoptosis in HL-60 cells (35). In 

contrast to our results, a few researchers reported that malvidin is unable to induce 

apoptosis due to absence of dihydroxyphenyl structure on the B-ring of malvidin (36-37). 

The anthocyanin fraction in the current study contained malvidin as predominant 

anthocyanidin in anthocyanin fraction from all cultivars. Thus, it is possible that malvidin 

is an inducer for apoptosis. However, the molecular mechanism for this is not clear. 

Caspase-3 Activity. Caspase-3 exists as an inactive pro-caspase-3 in the 

cytoplasm, is proteolytically activated by multiple cleavages of pro-caspase-3 to generate 

the cleave fragments in cells undergoing apoptosis. Figure 4.4 shows the significant 

increase (P < 0.05) in caspase-3 activity in treated cells compared to control. There was a 

significant effect (P < 0.05) of anthocyanin on caspase-3 activity with a response that was 

dose dependent. The highest activity was observed in cells treated with the 150 µg/mL 

anthocyanin fraction from the Tifblue, Powderblue, and Brightblue cultivars. Cells 

treated with the Brightblue cultivar anthocyanin had less increase in caspase-3 activity at 

the 150 µg/mL concentration. The lowest response was observed with Brightblue 

anthocyanin. Similar results were reported in HT-29 cells when treated with natural and 

synthetic flavonoids (38). 

Detoxifying Enzymes. Induction of the detoxification enzymes QR and GST is a 

well-characterized defense mechanism against carcinogens. In principle, the elevation of 
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these enzymes can reduce carcinogenesis due to an enhanced removal of reactive 

electrophiles. 

Quinone Reductase. QR is one of several enzymes that inactivate electrophilic 

carcinogens, providing a mechanism for the inhibition of carcinogenesis. Figure 4.6 

shows QR activity in cells treated with anthocyanin fractions from different cultivars and 

control. QR was not increased by the addition of 50-150 µg/mL anthocyanin fractions 

from any cultivar. Further QR activity decreased when treated with 100-150 µg/mL 

anthocyanin fractions from Tifblue and Powderblue cultivars. The trend appeared to be a 

dose dependent relationship. Similar results have been reported by Ramanathan et al. 

(39). Bomser et al. (40) reported that crude extract of blueberries inhibit QR activity and 

ethylacetate extracts induce QR activity. Several researchers have suggested that enzyme 

activity is dependent on flavonoid structure (41-42). The presence of double bond in 

heterocyclic ring (C) linking position 2 and 3 (Figure 4.5) is required for QR induction 

capability (42), e.g., kaempferol and quercetin. The absence of double bond in C ring in 

anthocyanins may have contributed to low QR activity. However, the exact mechanism is 

still unclear. 

Glutathione-S-transferase Activity. GST catalyzes reaction with the glutathione 

(GSH), thereby neutralizing electrophilic sites on carcinogens and rendering the products 

more water soluble. Figure 4.7 shows GST activity in cells treated with anthocyanin 

fractions from different cultivars and control. There was statistically significant reduction 

in the activity of GST in treated cells when compared with control (P < 0.05). There was 

a dose-response relationship observed with all the cultivars. Our results suggest no 

induction in GST activity due to anthocyanins. Similar results were reported by earlier 
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researchers (43-44). The effect on enzyme activity is correlated with the structure of 

flavonoid and specific tissue (45). The GST activity was significantly induced in heart 

tisues but no activity was found in colon tissue cells (45). The attachment of the B-ring to 

C-2 position and a double bond between C-2 and C-3 may be contributing to the activity 

of flavonoids (47). The structure of anthocyanin may have contributed to low activity.  

Our results show that anthocyanin compounds may not induce detoxification 

enzymes in colon carcinoma cells over the same concentration ranges that increase 

apoptosis. Anthocyanins from four cultivars Tifblue, Powderblue, Brightblue, and 

Brightwell were able to induce apoptosis in a dose-response manner. However, there was 

no increase observed in QR and GST activities. Instead, there was a decline in the 

activity of detoxifying enzymes when compared with control. 
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Table-4.1. Individual Anthocyanidins in Frozen Blueberries 

 
 frozen blueberries 
  (mg/100 g of fruit weight) 

 Dp-Glc Cy-Glc Cy-Gal Pn-Glc Pn-gal Pt-Glc Pn-Ara Mv-Glc 
Tifblue 8.5±0.7 5.5±0.7 18.0±2.8 6.0±1.4 10.0±1.4 6.5±0.7 15.5±0.7 39.0±2.8 
Powderblue 9.0±0.0 4.5±0.7 12.5±2.1 5.5±2.1 9.5±2.1 5.5±2.1 14.0±1.4 38.0±5.7 
Brightblue 8.5±0.6 7.5±0.7 10.5±2.1 7.5±2.1 13.3±2.1 3.8±2.1 14.0±1.4 43.1.0±5.7 
Brightwell 15.5±2.1 4.5±3.5 16.1±2.6 12.8±2.1 8.0±0.0 5.0±1.4 30.0±2.8 17.5±0.7 
 
Abbreviations: Dp-Glc (Delphinidin 3-O-β-glucopyranoside), Cy-Glc (Cyanidin 3-O-β-glucopyranoside),  
Cy-Gal (Cyanidin 3-O-β-galactopyranoside), Pn-Glc (Peonidin 3-O-β-glucopyranoside),    
Pn-Gal (Peonidin 3-O-β-galactopyranoside), Pt-Glc (Petunidin 3-O-β-glucopyranoside),  
Pn-Ara (Peonidin 3-O-α-arabinopyranoside), Mv-Glc (Malvidin 3-O-β-glucopyranoside). 
Each value was expressed as mean±SD, n=3 
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Table-4.2 Individual Anthocyanidins in Anthocyanin Fraction of Different Cultivars of   Frozen Blueberries 

 
 aAnthocyanin fraction 
   

 Dp-Glc Cy-Glc Cy-Gal Pn-Glc Pn-Gal Pt-Glc Pn-Ara Mv-Glc Total 
Tifblue 1.8±0.3 2.1±2.1 13.5±2.1 3.5±0.7 6.0±1.3 6.1±0.1 14.0±1.5 40.5±1.3 87.4±0.1 
Powderblue 2.6±0.8 2.0±0.1 7.7±1.2 3.7±0.6 8.2±0.3 4.7±0.6 13.3±0.9 44.4±1.9 86.0±0.1 
Brightblue 4.6±0.4 3.7±0.1 6.7±1.7 4.3±0.6 8.5±0.8 2.0±0.1 10.6±1.0 44.4±0.9 87.7±0.4 
Brightwell 8.0±0.1 2.2±1.3 9.4±0.9 6.9±2.6 6.3±1.1 4.7±0.4 21.8±1.9 20.0±1.0 79.2±0.4 
 
Abbreviations: a each anthocyanidins are expressed in mg/100 mg of anthocyanin fraction. 
Dp-Glc (Delphinidin 3-O-β-glucopyranoside), Cy-Glc (Cyanidin 3-O-β-glucopyranoside),  
Cy-Gal (Cyanidin 3-O-β-galactopyranoside), Pn-Glc (Peonidin 3-O-β-glucopyranoside),    
Pn-Gal (Peonidin 3-O-β-galactopyranoside), Pt-Glc (Petunidin 3-O-β-glucopyranoside),  
Pn-Ara (Peonidin 3-O-α-arabinopyranoside), Mv-Glc (Malvidin 3-O-β-glucopyranoside). 
Each value was expressed as mean±SD, n=3. 
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Figure 4.1 Schematic diagram of separation of anthocyanin fraction from frozen  

blueberries. Abbreviations; Acet=acetone, MeOH=methanol,  

FA=formic acid (33) 
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Figure 4.2 Analytical HPLC chromatogram of individual anthocyanidins in selected cultivars 

of frozen blueberries: (A) Tifblue, (B) Powderblue, (C) Brightblue, and D) Brightwell.  

X-axis is time (min) and Y-axis is mAU. 

Peaks: 1=Dp-Glc, 2=Cy-Glc, 3=Cy-Gal, 4= Pt-Glc, 5=Pn-Glc, 6=Pn-Gal, 7= Pn-Ara, and 8=Mv-

Glc, a and b = unidentified peak 
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Figure 4.3 Analytical HPLC chromatogram of individual anthocyanidins in anthocyanin 

fraction of selected cultivars of frozen Blueberries (A) Tifblue fraction; (B) Powderblue 

fraction; (C) Brightblue fraction; (D) Brightwell fraction.  

X-axis is time (min) and Y-axis is mAU. 

Peaks: 1=Dp-Glc, 2=Cy-Glc, 3=Cy-Gal, 4= Pt-Glc, 5=Pn-Glc, 6=Pn-Gal, 7= Pn-Ara, and 8=Mv-

Glc, a and b = unidentified peak 
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Figure 4.4 Apoptotic DNA fragmentation in HT-29 cells after 6 h treatment of anthocyanin 

fractions from four cultivars of blueberries: Tifblue, Powderblue, Brightblue, and Brightwell
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Marker/positive 
control/control 

Treated with anthocyanin 
fraction from Tifblue 

Treated with anthocyanin  
fraction from Brightblue 

Treated with anthocyanin 
fraction from Brightwell 

Treated with anthocyanin 
fraction from Powderblue 

 M       C       P   Ta     Tb      Tc 
  

Pa     Pb      Pc 
  

    Ba     Bb      Bc 
  

  Wa     Wb      Wc 
  

Concentrations of anthocyanins used were 50, 100, and 150 µg/mL of medium. Abbreviations: M=DNA marker, C=Control, 
P=Positive control, Ta, Tb, Tc=DNA from cells treated with Tifblue anthocyanin concentration of 50, 100, and 150 µg/mL of medium, 
respectively. Pa, Pb, Pc= DNA from cells treated with Powderblue anthocyanin concentration of 50, 100, and 150 µg/mL of medium, 
respectively, Ba, Bb, Bc= DNA from cells treated with Brightblue anthocyanin concentration of 50, 100, and 150 µg/mL of medium, 
respectively, and Wa, Wb, Wc= DNA from cells treated with Brightwell anthocyanin concentration of 50, 100, and 150 µg/mL of 
medium, respectively. 
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Figure 4.5. Caspase-3 activity in HT-29 cells after 6 h treatment of anthocyanin fractions from 

four cultivars of blueberries: Tifblue, Powderblue, Brightblue, and Brightwell.  
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Concentrations of anthocyanins used were 50, 100, and 150 µg/mL of medium. The Y-axis represents the 
fold increase in caspase-3 activity compared to control. Abbreviations: Tif-a, b, and c= Cells treated with 
Tifblue anthocyanin concentration of 50, 100, and 150 µg/mL of medium, respectively. Powder-a, b, and 
c=Cells treated with Powderblue anthocyanin concentration of 50, 100, and 150 µg/mL of medium, 
respectively Bright- a, b, and c=Cells treated with Brightblue anthocyanin concentration of 50, 100, and 
150 µg/mL of medium, respectively. Brightwell- a, b, and c=Cells treated with Brightwell anthocyanin 
concentration of 50, 100, and 150 µg/mL of medium, respectively. 
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Figure  4.6 Quinone reductase (QR) activity in HT-29 cells after 6 h treatment with anthocyanin 

fractions from four cultivars of blueberries: Tifblue, Powderblue, Brightblue, and Brightwell.  
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Concentrations of anthocyanins used were 50, 100, and 150 µg/mL of medium. The Y-axis 
represents QR activity (U/mg of protein). See figure 4.5 for abbreviations 
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Figure 4.7 Glutathione-S-transferase (GST) in HT-29 cells after 6 h treatment with anthocyanin 

fractions from four cultivars of blueberries: Tifblue, Powderblue, Brightblue and Brightwel
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Concentrations of anthocyanins used were 50, 100, and 150 µg/mL of medium. The Y-axis 
represents GST activity (U/mg of protein). See figure 4.5 for abbreviations
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

Blueberries are a good source of phenolic compounds, mainly flavonoids including 

anthocyanins, which are known to have potential health benefits. When blueberries are 

processed, phenolic compounds undergo various changes due to processing (thermal, mechanical 

and chemical). Stability of these compounds is also affected by various storage conditions such  

as light and temperature. We analyzed total polyphenols (TPP), total anthocyanin (TACY), 

Trolox-equivalent antioxidant capacity (TEAC), phenolic acids, flavonols, individual 

anthocyanins, and cell proliferation during storage, as a measure of antioxidant activity of 

blueberry extract.  

After pressing of extract, recovery of TPP, TACY, and TEAC in blueberry extract, were 

~25, ~29, and ~69%, respectively, for both cultivars. Recovery of gallic acid, catechin and 

quercetin was ~25 % in final extract. Ferulic acid was not detected in the final extract in both 

Tifblue and Powderblue cultivars. Recovery of peonidin, malvidin, and cyanidin was ~20% in 

final extract in both cultivars. Storage of extract for 60 days affected the phenolic compounds 

under all temperature conditions. Similar results were obtained for Tifblue and Powderblue 

cultivars. At -20±1 ºC, no statistically significant loss of TPP, TACY and TEAC was observed 

up to 30 days (P < 0.05). At 6±1 ºC storage, there was a significant loss of TPP, TACY and 

TEAC observed from 15 to 30 days. Similar results were obtained at 23±1 ºC and 35±1 ºC (P < 

0.05). There was retention of more than 40% of ellagic and quercetin after 60 days at 35±1 oC. 
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Anthocyanins were not detected after 60 days of storage at 35±1 ºC temperature conditions. 

Significant retention (P < 0.05) was observed for malvidin (42.8 and 25.8%) and peonidin (74.09 

and 79.5%) after 60 days at 23±1 oC in glass bottles for Tifblue and Powderblue, respectively, 

when compared with other individual anthocyanins. A linear relationship was observed between 

TEAC values and total polyphenols and total anthocyanins. 

Cell viability assay was performed using HT-29 cancer cell line and anthocyanins 

extracted from 30, 60, and 90 days stored extract at 6±1 and 23±1 oC. Significant cell 

proliferation inhibition percentage was observed in 30 days, although this was reduced 

significantly after 30-90 days. These results suggest that initial preparatory steps like washing, 

removal of residue mainly skin, heating and storage conditions were significantly affecting the 

phenolic compounds and their biological activity. Frozen and low temperature storage is 

suggested for blueberry extract in order to retain the bioactive components. 

Human carcinoma cells, HT-29, were treated with anthocyanin extracts from different 

cultivars of Georgia-grown blueberries. Initial analysis of anthocyanins revealed that the major 

anthocyanidins identified were delphinidin, cyanidin, peonidin, petunidin, and malvidin. 

Malvidin was found to be the predominant anthocyanidin in all the cultivars, but Brightwell had 

peonidin as predominant anthocyanidin. The content of malvidin was 39.0, 38.0, 43.1, and 17.5 

mg/100 g of frozen blueberry in Tifblue, Powderblue, Brightblue, and Brightwell, respectively. 

Peonidin was the second largest anthocyanidin. The total content of peonidin was 31.5, 28.0, 

35.0, and 50.5 mg/100 g of frozen blueberry in Tifblue, Powderblue, Brightblue, and Brightwell, 

respectively. Major anthocyanidins in the anthocyanin fractions of four cultivars (Tifblue, 

Powderblue, Brightblue, and Brightwell) were delphinidin, cyanidin, peonidin, petunidin, and 

malvidin. Malvidin was found to be the predominant anthocyanidin in all the cultivars, but 
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Brightwell had peonidin as predominant anthocyanidin. The content of malvidin was 40.5, 44.4, 

44.4, and 20.0 mg/100 mg of anthocyanin fraction in Tifblue, Powderblue, Brightblue, and 

Brightwell, respectively. Peonidin was the second largest anthocyanidin. The total content of 

peonidin was 23.5, 25.2, 23.4, and 35.8 mg/100 mg of anthocyanin fraction in Tifblue, 

Powderblue, Brightblue, and Brightwell, respectively. There was considerable loss of delphinidin 

during extraction. DNA fragmentation and increase in caspase-3 activity in treated cells 

compared to the control confirmed the apoptosis. There was a significant difference in the 

caspase-3 activity (P < 0.05) between the control cells and the cells treated with anthocyanins 

from all the cultivars. Response correlated positively with dose. Highest activity (1.4 fold 

increase over control) was observed in cells treated with 150 µg/mL anthocyanin fraction from 

the brightwell cultivar. 

There was no induction observed in quinone reductase and glutathione-S-transferase 

activity when cells were treated with anthocyanins. Contrary to this, activity decreased gradually 

when treated with increased concentrations of anthocyanin fractions (50-150 µg/mL) from the 

Tifblue and Powderblue cultivars. A positive dose-response relationship was found in all the 

cultivars except Brightblue, where activity was the same for all three concentrations. GST 

activity was statistically higher (P < 0.05) in control cells than in cells treated with anthocyanin 

fractions from all the cultivars and at all levels of concentration. These results indicated no 

induction of detoxifying enzymes; however, apoptosis was confirmed in HT-29 cells when 

treated with anthocyanins consisting predominantly of malvidin. 

SUGGESTIONS FOR FUTURE WORK 

Blueberry extract was affected by storage conditions, however there was drastic reduction 

in TPP, TACY and TEAC after initial steps of preparation of extract (washing, removal of 
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residue, and heating). These steps are also followed during juice preparation; therefore 

similar results are anticipated during preparation and storage of blueberry juice. However 

systematic studies are suggested in blueberry juice using various processing treatments and 

commonly used packaging materials. Anthocyanins are responsible for color of the blueberry 

extract. However due to poor stability, usage of anthocyanin is limited. It is suggested that a 

suitable method for extraction and encapsulation of anthocyanins with maximum purity be 

developed. There should be minimum loss of anthocyanidin, mainly delphinidin and cyanidin, in 

the fraction. 

Total polyphenol and anthocyanins contents were reduced after processing but similar 

effect was not observed in TEAC. This suggests there are certain other antioxidants present in 

the blueberry, in addition to the phenolic acids and flavonoids standards used. Identification and 

characterization is required for these compounds by more sensitive and sophisticated 

instruments. 

In vitro studies have confirmed apoptosis by anthocyanins, which is a single cell 

environment. Therefore in vivo studies are required to further confirm the process under complex 

biological environment.  

 


