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ABSTRACT 

 The sheer complexity of the brain has forced the neuroscience community and specifically 

the neuroimaging experts to transit from the smaller brain datasets to much larger hard-to-handle 

ones. The primary goal of flagship projects such as the BRAIN Initiative and Human Brain Project 

is to gain a better understanding of the human brain and to treat the neurological and psychiatric 

disorders through the cutting-edge technologies in the biomedical imaging field. In the context of 

fMRI, the primary challenge is obtaining meaningful results from the intrinsic complex structure 

of large fMRI data and lack of clear insight into the underlying neural activities. However, 

archiving, analyzing, and sharing the fast-growing neuroimaging datasets posed significant 

challenges. New computational methods and technologies have emerged in the domain of Big Data 

but have not been fully adapted for use in neuroimaging. In this dissertation, I introduce my efforts 

toward creating a comprehensive platform to store, to manage and to process such datasets. I 

further present my GPU-based deep learning solution for distributed data processing that employs 

TensorFlow, Apache Spark, and Hadoop using cloud computing services. Finally, I demonstrate 

the significant performance gains of our platform enabling data-driven extraction of hierarchical 

information from massive fMRI data using a distributed deep convolutional autoencoder model. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 After the success of the Human Genome Project (HGP) [1], [2], [3] to map 3 billion 

nucleotides representing human inheritance, the US Brain Research Through Advancing 

Innovative Neurotechnologies (BRAIN) [4] Initiative, European Union Human Brain Project 

(HBP) [5] launched in 2013 and China Brain Project were initiated to reflect the aspiration and 

investment in neuroscience research for understanding the human brain structure and function, 

especially to treat many brain disorders.  

The sheer complexity of the brain has forced the neuroscience community and specifically the 

neuroimaging experts to transit from the smaller brain datasets to the extent far less manageable. 

The cutting-edge technologies in the biomedical imaging field, as well as the new techniques in 

digitizing, all lead to collect further information from the structural organization and functional 

neuron activities in the brain [6].  

Understanding the relationship between functional neural activity, structural organization of brain 

regions, and subsequent behavior became the main goals of neuroscience. These goals are only 

achievable by analyzing covariance in large scale studies [6]. Aligned with these goals, discovery-

based approaches have been employed to empower the investigation of brain-behavioral 

relationships. These goals are not reachable but through large-scale datasets. The possible 

challenges of holding and analyzing this much data have been one of the main topics of the annual 

meetings of the Organization for Human Brain Mapping (OHBM) since 2012.  
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Certainly, Human Connectome Project (HCP) with more than 1200 healthy subjects is a perfect 

example of these large datasets [7], [8]. HCP was awarded about $40 million in 2010 to develop 

advanced neuroimaging methods and to recruit a large number of individuals to map brain regions 

and their connectomes [9, 10]. The main goal is to understand the human brain better and 

eventually to treat the neurological and psychiatric disorders. The other examples can be 1000 

functional connectomes [11] and openfMRI project [12]. These efforts clearly draw a portrait 

clarifying the emphasis of neuroscience community to employ new techniques to deal with 

neuroimaging bigdata. 

As a few studies have shown [13], [3], the arrival of big data in neuroscience demands a cultural 

shift from isolated single efforts applying limited methods over small dataset to a more horizontal 

effort to cover a wider range of problems, using larger datasets and more comprehensive 

techniques. This transition, however, will require the community to address certain challenges 

[13]. A few of these challenges are as follows. 

Handling more comprehensive datasets demands sophisticated techniques and substantial 

resources that necessitate close collaboration among laboratories. In recent years, numerous 

articles have stressed the importance of data sharing, particularly neuroscience MRI data [11], 

[12], [14], [15], [16]. They mostly indicate that adoption of new data sharing tools along with close 

collaboration among researchers will benefit researchers methodologically, financially, and 

ethically, fully allowing researchers to exploit the sizeable quantities of information generated 

across laboratories.  

Techniques for studying the neural activities and the brain structure are varied, consisting of 

strategies to represent a vast range of temporal and spatial resolutions [13]. Each of these methods 

is limited to a specific resolution and only applicable to a portion of the brain studies. These 
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techniques can be as fast as 0.0001s for patch clamping and as accurate as electron microscopy 

with ~0.0001mm accuracy, to electroencephalography and fMRI with lower spatial and temporal 

resolutions. Each of these techniques carries its own set of vocabulary and metadata, and thus 

different standardizations are needed. This complexity makes the cross-pipelines harder to 

automate, as multidimensional problems involving multiple modalities and techniques are required 

to reach an appropriate level of scientific certainty.  

Among various neuroimaging methods, functional magnetic resonance imaging, fMRI, has been 

widely used to assess functional activity patterns in the brain [17], [18], [19], [20]. Since the early 

1990s [21], [22], when fMRI came to dominate the brain mapping research, more than 42,000 

papers have been published according to PubMed which indicates the significant interest of 

scientists to use this modality to understand brain functions. Researchers have vastly used both 

Task-based (tfMRI) and Resting-state (rfMRI) fMRI techniques for functional brain mapping. 

[23], [24], [25], [22], [27], [28], [29], [30].  From a total of 12 available shared neuroimaging 

datasets at 2014, 8 of those contained rfMRI and four of them tfMRI scans [15]. This demonstrates 

the fundamental role of fMRI as a tool for discovery, shedding light on the unexplored functional 

brain activities.  

Given the popularity and the importance of fMRI to map functional brain networks, tremendous 

efforts have been devoted to the establishment of fMRI neuroinformatics systems through which 

users can easily employ comprehensive statistical and computational approaches for fMRI analysis 

[31], [32], [33], [34], [35], [36]. These systems are expected to host large-scale datasets and to 

provide a modular independent platform to run wide-ranging complex algorithms and processes 

in which tasks can be run in a distributed and/or parallel fashion. Storing, analyzing, visualizing, 
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and sharing large datasets need intensive computational and storage resources that more traditional 

methods could not deliver.  

 

1.1 Thesis Statement 

 A series of studies from my collaborators at Cortical Architecture Imaging and Discovery 

laboratory and I, have been performed towards characterizing the functional organization pattern 

and the cognitive process of human brain. These tasks were mostly achieved by developing models 

on the functional Magnetic Resonance Imaging (fMRI) data on various scales and conditions. 

These models were first designed and tested on a scale of few fMRI subjects and then we created 

scalable distributed versions to apply over much larger datasets. Analyzing very large amount of 

data, however needs intensive computational and storage resources and techniques, that traditional 

platforms could not deliver. Thus, designing and implementing customized frameworks that fulfill 

the needs of such a large community were critical.  

My work, represented in this dissertation, focuses on providing large-scale analytical solutions to 

better characterize the functional pattern and the cognitive process of human brain. My main 

concentration since starting my research at 2014, was to design and develop practical tools that 

can efficiently help the neuroimaging researchers, store, analyze, visualize and share very large 

datasets. My efforts, inspired by recent machine learning and distributed processing researches, 

offer a practical approach in resolving the computationally intensive, structurally complex, large 

neuroimaging data.  

I fit the current computational challenges for neuroimaging bigdata analytics in 6 categories of 

data management systems, processing pipelines, computing platforms, distributed storages, data 

visualization tools and processing engines. Following these challenges, I will explain a few 
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examples where experts have addressed each correspondingly. I then discuss my comprehensive 

solutions, developed at CAID in chapter 2 to 4. 

 

1.2 Computational Challenges for Neuroimaging Bigdata Analytics 

 
1.2.1 Data Management System  

 Data management is the core requirement to both organize and present data to the 

researchers. The Extensible Neuroimaging Archive Toolkit, XNAT [37] is one of the best 

examples, designed particularly to host and manage neuroimaging data in which supports the 

standard input formats such as DICOM and covers a broad range of meta-data standards. A 

hierarchical Extensible Markup Language (XML) schema provides a framework in which users 

can define their own types of inference, depend on the imported data, and easily import the 

experiments’ descriptors through both web interface and command environment. XNAT is an 

active project, and the modified version of this toolkit serves as the basis of Human Connectome 

Project Database [38]. The open-source availability and the RESTful application programming 

interface allow communication between package components via the web, making XNAT a unique 

solution for neuroimaging data management system.  

 

1.2.2 Data Processing Pipeline  

 This is another essential element of neuroimaging bigdata analysis where end-to-end 

processing workflows are specified, and users can manage workflow parameters and execution. 

There exist a few of neuroimaging pipelining solutions, including LONI [39], [40] with a graphical 

user interface, Nypype [41] a Python-based pipelining tool, and XNAT, an XML-based solution 

with grid computing capability.  
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1.2.3 Computing Platform  

 Computing platforms are the critical requirement for bigdata analysis. For example, 

preprocessing fMRI data takes roughly 5 minutes per subject using an 8-core machine with 16 

gigabytes memory dedicated to this task. Preprocessing compromises skull removal, motion 

correction, slice time correction, and spatial smoothing as well as global drift removal [30]. 

Applying this step over hundreds of subjects will take hours to days using a single machine. 

Therefore, running computationally-intensive tasks in parallel is essential to reduce the overall 

computational time from days and months to hours and minutes; high-performance computing 

(HPC) is a very common solution. With the use of CPU and GPU-based clusters, substantial 

speedups can be achieved with no need of modifying the existing software tools. Incorporating 

GPUs and CPUs in parallel processing has recently become a popular topic among researchers to 

study [42], [43], [44], [45]. Amazon Elastic Compute Cloud (EC2) is one of the most successful 

instances in providing scalable computing capacity on-demand.  

 

1.2.4 Cloud Storage and Cloud Computing  

 Using cloud resources are inseparable parts of bigdata analysis. High-speed access to the 

stored data is essential in cloud computing due to the constant read and write flow among 

computing nodes. Amazon Simple Storage System, or S3, as an example, is an efficient choice of 

cloud storage with instant access to the data from EC2 computing nodes. The read and write speed 

and fault tolerance, as well as pricing, make S3 a competitive choice for researchers. 
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1.2.5 Data Visualization  

 Visualization is an imperative entity of bigdata: making complex results understandable 

and interpretable by a human, and dynamic visualization is to improve the insight gained from 

data. A well-designed pipeline should generate graphics that represent the rich variety of date in 

neuroimaging, including time series, regions of interest, networks, and connectomes. There exist 

several tools and libraries that in combination with statistical and analytical frameworks generate 

data-related graphics. However, it is hard for general users to implement and  to apply and 

consequently, more efforts are needed to create customized tools for neuroscience experts that can 

be easily applied in the existent pipelines. As Freeman in [46] suggests, visualizing the results with 

an interactive environment is far valuable than a static image representing only a portion of 

information especially when we are interacting with large datasets with rich data. 

 

1.2.6 Processing Engines 

 Processing engines enable researchers and programmers to load and analyze data in a 

distributed fashion and to create new methods to handle sophisticated analytics processes faster 

and with ease of use. As I discussed earlier, dealing only with a portion of datasets is ideal only at 

the testing stage, but in benchmark analysis, a more substantial portion of datasets is necessary. In 

2003 and 2004, the Google file system and MapReduce were introduced, respectively, to the world 

as a simplified abstraction for parallel manipulation of massive datasets [47]. The main idea of 

MapReduce is to store data in a distributed file system located in a cluster environment and then 

use individual nodes to do the computation. This way, data is accessible from all the nodes and 

only the subsequent aggregation steps of the computation will be transferred to the master node. 

The whole workflow works in two stages: map and reduce. At first, a function will apply to 
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partitions of the data in parallel, and then an associative operator will aggregate the results across 

partitions. Figure 1.1 shows an example of word count problem solved by MapReduce.  Although 

MapReduce is widely used by researchers and programmers to model variety of computationally 

intensive tasks and machine learning methods [48], due to some data modeling constraints, it is 

not considered an all-purpose big data tool.  MapReduce loads the data into the memory from the 

hard disk and returns the results at every round of analysis that causes a substantial amount of disk 

I/O and queries especially for iterative machine learning algorithms in neuroimaging. It is also 

hard to represent complex series of computations given pipelining in neuroimaging. 

 

  

Figure 1.1. Illustration of the mapReduce model applied to counting words problem. A potentially 

large list of words is processed into key-value pair records of form (word, 1) in parallel during the 

Map step. During the Reduce step, records with the same key (word) will be combined and an 

associative operator computes a sum for each word. 
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In 2009, the Spark framework [49] was developed at the University of Berkeley AMPlab. This 

framework addresses deficiencies of MapReduce by introducing resilient distributed datasets 

(RDD) abstract which the operations are performed in the memory. Spark compiles the action 

lineages of operations into efficient tasks, which are executed on the Spark engine. Spark’s 

scheduler will execute the duties across the whole cluster. Spark minimizes the repetition of data 

loading by caching data in memory which is crucial in complex processes. Also, Spark supports 

multiple programming languages, including Java, Python, Scala, and R. figure 1.2 shows the 

general Spark workflow and how it operates tasks in different stages. Spark uses Hadoop 

filesystem as a core distributed file system (HDFS) but networking file systems (NFS) can also be 

used if it runs on an HPC cluster. Apache Spark is the single most active Apache project. The new 

version 2.0 is promised to repair the performance leaks already found in the earlier version of 1.5 

and 1.6. While Spark has considerable traction in industry and academia, Apache Flink [50], 

developed originally as Stratosphere in 2014, is another new distributed processing engine with 

similar goals but an entirely new architecture. Flink offers a full compilation of execution plans, 

optimizing the operations performed and minimizing repeated computations and network accesses. 

However, this project is still under development, having only reached version 1.0 in recent months. 
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Figure 1.2. Illustration of the spark stack with its components. Spark offers a functional 

programming API to manipulate Resilient Distributed Datasets (RDDs). RDDs represent a 

collection of items distributed across many compute nodes that can be manipulated in parallel. 

Spark Core is a computational engine responsible for scheduling, distribution and monitoring 

applications which consists of many computational tasks across worker machine(s) on a 

computation machine/cluster. 

 

1.3 Contributions and Outlines 

 For the rest of this dissertation, I explain each of my efforts to address the abovementioned 

challenges using the most recent technologies and advances in computer science. I categorize these 

efforts as follows.  
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1.3.1. A Large-Scale Platform for the Neuroimaging Informatics 

 At first, I developed a large-scale platform for neuroimaging informatics dubbed as 

HELPNI [51] to store and visualize large-scale multi-modal neuroimages datasets. This platform 

was first intended to facilitate running and to control complicated neuroimaging multi-stage 

processes with a smooth, user-friendly web interface and later to give researchers parallel and 

distribute computing accessibility while they implement their own analytical and visualization 

tools. We applied our Holistic Atlases of Functional Networks and Interactions framework [52] 

(HAFNI), for the sparse representation of whole brain fMRI signals over more than 5 thousand 

publicly available fMRI images. HAFNI is recognized as an efficient method for inferring a 

comprehensive collection of concurrent functional networks in the human brain. [52]. HELPNI 

will be discussed at Chapter 2. 

 

1.3.2 A Distributed Platform for fMRI Big Data Analytics 

 I then concentrated on developing and extending the data storage, data management, and 

also data processing aspects of HELPNI. The primary goal was to add a distributed file system as 

well as empowering the computational platform with distributed processing features. 

Consequently, my collaborator, Xiang Li and I devolved a novel Distributed rank-1 Dictionary 

Learning [55] (D-r1DL) model, leveraging the distributed computing in handling large scale fMRI 

big data. This model estimates one rank-1 basis vector with sparsity constraint on its loading 

coefficient from the input data at each learning step through alternating least squares updates. By 

iteratively learning the rank-1 basis and deflating the input data at each step, the model is then 

capable of decomposing the whole set of functional networks. I implemented and parallelized the 

rank-1 dictionary learning algorithm using Apache Spark engine [49] and deployed the resilient 
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distributed dataset (RDDs) abstracts on top of HDFS [57] for the data distribution and operations. 

It is expected that the D-r1DL algorithm and methodology could be widely applicable to many 

other domains of applications that entail sparse representation of big data. D-r1DL will be 

discussed at Chapter 3. 

 

1.3.3 Distributed Cloud-Based Platform for fMRI Big Data Analytics 

 The recent advances of new data-driven computational intensive Neural Network 

approaches such as deep learning along with fMRI intrinsic complex structure, and the sheer size 

of fMRI data inspired me to implement a platform to process the very large amount of data using 

deep learning, employing the powerful GPU-based computational technologies. In result, I 

implemented a Distributed Cloud-based Deep Learning framework [56] (DCDL) leveraging the 

Apache Spark and TensorFlow [43], to parallelize millions of fMRI time series and to train our 

model over a large cluster of GPUs. Furtherly, I proposed a novel fast and scalable distributed 

Deep Convolutional Autoencoder [56] (dist-DCA) that hierarchically models large-scale task-

fMRI time series data while gaining a higher-level abstraction of the tfMRI signals. DCDL and 

dist-DCA will be discussed at Chapter 4. 
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CHAPTER 2 

HAFNI-ENABLED LARGESCALE PLATFORM FOR NEUROIMAGING INFORMATICS 

(HELPNI)1 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

1 Makkie, Milad, Shijie Zhao, Xi Jiang, Jinglei Lv, Yu Zhao, Bao Ge, Xiang Li, Junwei Han, and 

Tianming Liu. "HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI)." 

Brain informatics 2, no. 4 (2015): 225-238. 

 Reprinted here with permission of the publisher. 
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ABSTRACT 

 

 Tremendous efforts have thus been devoted on the establishment of functional MRI 

informatics systems that recruit a comprehensive collection of statistical/computational 

approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are 

especially designed for specific fMRI sessions or studies of which the data size is not really big, 

and thus has difficulty in handling fMRI ‘big data’. Given the size of fMRI data is growing 

explosively recently due to the advancement of neuroimaging technologies, an effective and 

efficient fMRI informatics system which can process and analyze fMRI big data is much needed. 

To address this challenge, in this work, we introduce our newly developed informatics platform, 

namely, ‘HAFNI-Enabled Largescale Platform for Neuroimaging Informatics (HELPNI)’. 

HELPNI implements our recently developed computational framework of sparse representation of 

whole-brain fMRI signals which is called HAFNI (Holistic Atlases of Functional Networks and 

Interactions) for fMRI data analysis. HELPNI provides integrated solutions to archive and process 

large scale fMRI data automatically and structurally, to extract and visualize meaningful results 

information from raw fMRI data, and to share open-access processed and raw data with other 

collaborators through web. We tested the proposed HELPNI platform using publicly available 

1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and 

meaningful functional brain networks across individuals and populations based on resting state 

fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate 

that our HELPNI system has superior performance than other systems for large scale fMRI data in 

terms of processing and storing the data and associated results. 
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2.1 Introduction 

 Understanding the organization of brain function has received significant interest since the 

establishment of neuroscience. During the past two decades, functional magnetic resonance 

imaging (fMRI), which is an in-vivo neuroimaging technique, has revolutionized the functional 

mapping of the brain [23], [24], [25], [22], [27], [26], [29], [8]. Specifically, task-based fMRI 

(tfMRI) has been widely used to record functional brain activities during a specific task 

performance and further to identify brain regions that are functionally involved in the task 

performance [24], [22], [27]. Meanwhile, resting state fMRI (rsfMRI) has also received intense 

interest more recently to acquire brain activities while participants are in a task-free state. The 

coherence in the functional brain organization which is free from the task performance constraint 

can be reflected based on the spontaneous signal changes during resting state [23], [25], [22], [27], 

[26], [29], [8]. 

Given the importance of fMRI (including both tfMRI and rsfMRI) data for functional brain 

mapping, tremendous efforts have been devoted on the establishment of fMRI informatics systems 

which recruit a comprehensive collection of statistical/computational approaches for fMRI data 

analysis [31], [32], [33], [26], [35], [36]. For example, MEDx is one of the earliest tools which 

was produced to incorporate advances in neuroimaging methods in 1993 [31]. Later on, FSL 

(FMRIB's Software Library) toolbox was developed to bring more insights to the neuroscience 

analysis tools and since June 2000 it has helped researchers globally apply FEAT, MELODIC, 

FABEER, BASIL and VERBENA tools for fMRI data processing and analysis [32], [33]. 

Moreover, statistical methods and tools have become one of the main tools to study brain networks 

and connectivity. For example, statistical parametric mapping (SPM) is one of the most influential 

tools which have been designed for brain imaging data sequence analysis from different cohorts 
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or time-series [30]. Analysis of Functional NeuroImages (AFNI) package is another tool to 

visualize and statistically analyze of fMRI data sets [35]. Furthermore, some have dedicated their 

resources to create a concentrate database to index the context and content of the fMRI literature 

in a searchable fashion, considering the multidisciplinary nature of fMRI researches and thousands 

of investigators around the globe. Fox and Lancaster have discussed demands of such a system 

and proposed BrainMap to address required applications [36], [58]. Although significant successes 

have been achieved for these fMRI informatics systems [59], [39], a considerable limitation is that 

all of those state-of-the-art systems are especially designed for specific fMRI sessions or studies 

of which the data size is not really big. As a consequence, there is difficulty for those systems to 

preprocess, analyze, and visualize fMRI ‘big data’ simultaneously. 

With the advancement of neuroimaging technologies, the size of fMRI data is growing explosively. 

Given the lack of a uniform resource center for fMRI data providers, researchers and developers, 

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) was established in 2006 

to facilitate finding and computing neuroimaging resources for functional and structural 

neuroimaging analyses to be a common place to share required tools and data [60]. Although it 

was not for the first time that a government-funded project became an international neuroscience 

resource provider to cover pioneers worldwide, for example Neuroscience Information Framework 

(NIF) in 2004 [61] as well as Biomedical Informatics Research Network (BIRN) in 2001 [61], but 

NITRC was successful and popular to host and provide one of the biggest fMRI data-bases named 

1000 Functional Connectomes (1000FC) resting state fMRI project. 

[https://www.nitrc.org/projects/fcon_1000/]. Moreover, there are other fMRI big datasets that are 

publicly available for researchers such as OpenfMRI [12] and Human Connectomes Project (HCP) 

[7]. HCP is a recent NIH-funded project devised to map the brain’s communication network called 
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connectome. This project provides a collection of neural data along with an interface to graphically 

navigate the data. The OpenfMRI is a National Science Foundation funded project established in 

2010 to provide resources for researches to upload their owned fMRI data and make them publicly 

available.  

In short, the availability of fMRI big-data has globally attracted increasing attention for researchers 

in the neuroimaging field to test various methods and algorithms based on a ‘big data’ strategy. 

For instance, the velocity of studies as well as the variety and volumes of neuroimages are 

aggregating exponentially, which are among the biggest challenges nowadays [63]. As Van Horn 

studied and mentioned [16], the calculated neuroimaging data from listed articles in representative 

issues of Neuroimage have been increased drastically and it is being expected to grow 

exponentially. The average size of raw data per study is expected to be 15 GB in 2015 and 20 GB 

in 2020. Therefore, effective and efficient fMRI informatics systems which can process and 

analyze fMRI big data are much needed.   

To deal with the abovementioned limitation of previous fMRI informatics systems and to address 

the need of effective fMRI informatics system which can process and analyze fMRI big data for 

researches, in this paper, we have developed a HAFNI-Enabled Largescale Platform for 

Neuroimaging Informatics (HELPNI) (http://bd.hafni.cs.uga.edu/helpni). This system is 

established using the extensible neuroimaging archive toolkit web application and storage 

solutions [64], a widely used open source system for storing, managing and analyzing medical 

images and related meta data [37]. RESTful application programming interface makes it especially 

useful for data sharing since the entire database’s contents are reachable programmatically through 

the web application [37]. Specifically, the proposed HELPNI system in this work, implements our 

latest computational framework of sparse representation of whole-brain fMRI signals which is 

http://bd.hafni.cs.uga.edu/helpni
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called ‘Holistic Atlases of Functional Networks and Interactions’ (HAFNI) [52]. The main idea of 

HAFNI is to aggregate all of hundreds of thousands of tfMRI or rsfMRI signals within a whole 

brain of one subject into a big data matrix, which is subsequently factorized into an over-complete 

dictionary basis matrix (represented by the panel (I) of figure 2.1) and a reference weight matrix 

(represented by the panel (II) of figure 2.1) via an effective online dictionary learning algorithm 

[53], [54]. The time series of each over-completed basis dictionary represents the functional BOLD 

(blood-oxygen-level dependent) activities of a brain network (the white curves in the panel (II) of 

figure 2.1) and its corresponding reference weight vector stands for the spatial map of this brain 

network (the volume images in the panel (II) of figure 2.1). The HAFNI framework has been found 

to be effective and efficient in inferring a comprehensive collection of concurrent functional 

networks in the whole brain [52]. HELPNI covers the fMRI big data both from big data matrix 

and high volume of subjects.  This happens first through employing HAFNI framework to handle 

the big data matrix for each subject and second by utilizing a database to store large scale datasets, 

and then using an scheduling engine to distribute analyzing tasks to multiple machines and to 

process multiple subjects simultaneously. HELPNI as an advanced informatics system, provided 

us with resources to identify large scale (over all 1200+) functional connectomes subjects 

automatically via automated computational pipeline based on our HAFNI framework function, to 

store the results in an organized data structure, and to generate detailed reports for data analysis 

(containing registration, online dictionary learning, and identified functional brain networks 

results) accessible through our web interface publicly. The HELPNI system significantly expands 

the previous neuroimaging archive toolkit by adding HAFNI capabilities, that is HAFNI-enabled, 

while significantly enhancing HAFNI by integrating the advanced informatics system.  
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Figure 2.1. (I) The decomposed dictionary components from the fMRI data during one single task 

and (II) the 14 corresponding reference weight maps by applying the HAFNI method to the whole-

brain fMRI signals. This figure visualizes 14 selected dictionary components which are either 

motor task-evoked networks (M1-M5) or resting state networks (RSN1-RSN9). The green bars in 

(I) show 400 dictionary network components (indexed along x-axis) and the spatial non-zero voxel 

numbers that each component’s reference weight map contains (represented by the horizontal 

height of each bar). The panels in (II) visualize the temporal time series (white curve) and spatial 

distribution map (eight representative volume images) of each network. The red curves represent 

the task contrast designs of the motor tfMRI data. 
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The rest of this paper is organized as follows. We will describe the methods of development in 

addition to obtained results of HAFNI implementation in Section 2.2. We will also discuss the 

significance of this system in comparison to the previous methods of fMRI analysis studies. 

Results are provided in Section 2.3 and discussion and conclusion are in Section 2.4. 

 

2.2 Method 

 In this section we first provide a technical overview of HELPNI system and then we discuss 

HAFNI implementation details and its workflow in our system. Subsequently, we will discuss the 

1000FC database we used as the test bed in this paper. 

 

2.2.1 Overview of HELPNI System 

 The main purpose of HELPNI is to store and manage large diverse imaging datasets to 

facilitate neuroimaging researches with complicated processes and large amount of data. The 

interesting feature of this platform is the extendibility, through which developers can customize 

their desired analytical and visualization tools. The platform uses XML schema to generate custom 

components, modules, workflows for different tiers. As the figure 2.2 elaborates, the standardize 

workflow helps users to a) capture imaging/non-imaging data and meta-data (either from 

neuroimaging machines or other databases manually); b) inspect data by means of pre-archiving 

feature; c) analyze data remotely or locally on-demand; d) collaborate easier using the predefined 

filter (In this way, collaborators can be noticed when a related dataset were added to system); and 

e) control access and share data where datasets and linked results can be shared publicly through 

the web interface to facilitate collaboration. 
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Figure 2.2. HELPNI structure and connected components. a) Web builder through which the web 

application will be built. b) HELPNI platform big picture. c) File infrastructure workflow consist 

of pre-archive and archive in which data will be temporary stored and then after user inspection 

and running required processes, data will be moved to their permanent destination where pipelines 

processes will be run on. d) Client application and users transactions. Local and global users 

connect to the web interface after logging into the system and passing firewall, using their preferred 

client application. Then they will be able to process, share, download and upload data interactively. 

e) Pipeline processing unit(s) that dynamically receive parameters and executives from pipeline 

manager and after running pre-defined steps, generate a user-friendly report along with required 

notifications and then will store the results into file storage. 

 

In the HELPNI system, we implemented our recently developed HAFNI framework for fMRI data 

analysis using the extendible pipelines. Pipeline is a workflow described in an XML document. 

Parameters could be specified within the XML document or be sourced as another XML document. 

So far we have implemented a few pipelines each of which contains different sets of scripts for 

our HAFNI framework. These pipelines can both extract input parameters from subjects 

automatically or ask users to provide them manually. Pipeline engine works based on the Java 

framework which parses parameters out of XML document and it links sequence of activities into 

a defined process flow and can manage data flow at each step. It can be configured to send 

notification at desired step(s) for quality control or to modify parameters, then restart pipeline from 

where it stopped. We have used pipeline to automate the whole processes of fMRI data registration 

and online dictionary learning (ODL) and to reduce the processing time. It also helped to run the 

data over a very large set of data in much less amount of time as we implemented it over the 
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1000FC data. Pipelines can leverage from distributed computing and in this way a huge amount 

of processes can result in much less computation time.  

 

Figure 2.3. An overview of HAFNI implementation through HELPNI and its workflow. 

 

In this work, we used the 1000FC project datasets as test bed for HELPNI system developing and 

testing. The 1000FC project contains 1200+ resting state functional MRI (rsfMRI) images 

collected from 33 locations. We defined a workflow to obtain the result as we discuss here. Figure 

2.3 shows the implemented pipelines and workflow of our process from the beginning of obtaining 

fMRI data from NITRC to data process steps and finally result reporting. The main three steps of 

this workflow are a) data preparation and modification; b) data process and workflow; and c) user 

interface and data access as detailed in Sections 2.2 and 2.3, respectively. 

 

 

User interface and data access

Arhiving results and report Sharing Collaborative study

Data process and workflow

Pre-processing pipeline Online Dictionary Learning pipeline Generating report 

Data preparation and modification

Data prepration and modification Pre-archiving   Archiving
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2.2.2 Data Preparation and Modification 

 At the very first step, users need to prepare data to import to system. We first obtained data 

from 1000FC database and modified the data structure as our own predefined structure. After 

modifying hierarchy and trimming data, images with correspondent meta-data should be uploaded 

to pre-archive for primary tests and analysis. The required format of data should be created in file 

system including ID and sequence type as well as any special data type that needs to be defined in 

system. To do so we prepared required meta-data including TR value, field strength, gender and 

handedness of each subject and experiment. Then data were transferred to pre-archive as a 

temporary cache destination for further tests and review of quality (figure 2.2c). Pre-archiving step 

keeps data integrated and protects them from data loss or corruption. We also tested our workflow 

to fix any possible flaw in implemented algorithms. When data became ready and analytical 

methods turn mature to be modeled in XML schema, we imported data into the archive as final 

destination for viewing purposes and/or running standard processes on prepared data. We used 

curl to upload fMRI data through REST API [65] from command line. 

 

 

2.2.3 Data Process and Workflow 

 The next step in HELPNI platform is data processing. The raw fMRI data need to be pre-

processed before data analysis. We implemented the rsfMRI and tfMRI pre-processing pipeline in 

HELPNI to address this demand. Our preprocessing step includes skull removal, motion 

correction, slice time correction and special smoothing as well as global drift removal.[8]. We used 

Build and ArcBuild [37] predefined XNAT tools for image session scan selection and running 

processing steps, respectively.  

Applying the major processing pipeline is the next step. We integrated our HAFNI (Holistic 

Atlases of Functional Networks and Interactions) computational framework in HELPNI. The basic 
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idea of HAFNI framework [52] is to aggregate all of the thousands of fMRI signals within the 

whole brain from one subject into a big data matrix and then decompose it into an over-completed 

dictionary matrix and a reference coefficient matrix. Specifically, each column of the dictionary 

matrix represents a typical brain activity pattern and the corresponding row in coefficient matrix 

naturally reveals the spatial distribution of the activity pattern. Typically, each subject brain’s 

signals form an m×n matrix S, with m represents the fMRI time points (observations) and n 

represents the number of voxels. In order to sparse represent the signal matrix S using D, we aimed 

to learn a meaningful and over-completed dictionary matrix  𝐷𝜖ℝ𝑚×𝑘 (k>m, k<<n), with k being 

the dictionary atoms (i.e. components). The loss function is defined in Eq. (1) with a ℓ1 

regularization that yields to a sparse resolution of 𝛼𝑖. 

ℓ(𝑠𝑖 , 𝐷) ≜ 𝑚𝑖𝑛
𝛼𝑖𝜖ℝ𝑚

1

2
||𝑠𝑖 − 𝐷𝛼𝑖||2

2 + 𝜆||𝛼𝑖||1 (1) 

Here 𝛼𝑖 is the coefficient matrix and λ is a sparsity regularization parameter. In order to prevent D 

from arbitrarily large values, the columns 𝑑1, 𝑑2, … … 𝑑𝑚 are constrained by Eq. (2). 

𝐶 ≜ {𝐷𝜖ℝ𝑡×𝑚    𝑠. 𝑡.   ⩝ 𝑗 = 1, … 𝑚, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1} (2) 

min
𝐷𝜖𝐶,𝛼𝜖ℝ𝑚×𝑛 

1

2
||𝑆 − 𝐷𝛼||𝐹

2 + 𝜆||𝛼||1  (3) 

Briefly, the problem can be transferred into a matrix factorization problem in Eq.(3) and we 

adopted the state-of-the-art online dictionary learning algorithm [54] for the sparse representation 

of the whole brain fMRI signals.   

Once we obtained the learned dictionary matrix D and coefficient matrix 𝛼, we mapped each row 

in the α matrix back to the brain volume and examine their spatial distribution patterns, through 

which functional network components are characterized on brain volumes [52]. At the conceptual 

level, the sparse representation framework in figure 2.4 can achieve both compact high-fidelity 
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representation of the whole-brain fMRI signals (figure 2.4c) and effective extraction of meaningful 

patterns (figure 2.4d) [53] , [54], [66], [67], [68], [69]. For more details please refer to our recent 

literature report [52].  

 

 
Figure 2.4. The computational pipeline of sparse representation of whole-brain fMRI signals using 

an online dictionary learning approach. (a) The whole-brain fMRI signals are aggregated into a 

big data matrix, in which each row represents the whole-brain fMRI BOLD data in one time point 

and each column contains the time series of one single voxel. (c) Illustration of the learned atomic 

dictionary, each dictionary represents one functional network component. (d) The coefficient 

matrix, each row in the matrix measures the weight coefficient of the corresponding dictionary 

over the whole brain. That is, each row defines the contribution of one dictionary to the 

composition of all voxel-wise fMRI signals.  
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The system is designed to feed the preprocessing as the input of online dictionary learning pipeline 

automatically or manually after filtering the preprocessed data. For visualization purposes and to 

make the generated results easy to explore, both preprocessing and ODL pipelines will generate a 

PDF report at the end after which will be automatically uploaded to the web-interface. These 

reports contain generated results from the executed pipelines identified by experiment ID 

appended to pipeline name. For example, ODL report contains 400 png files sorted sequentially.  

Pipelines can also be set to send notification within different steps of workflow. For example, user 

can be notified when a specific step is done to evaluate the result and then if it meets the quality, 

let the pipeline continue. Otherwise user can modify the input variables and restart the pipeline. 

Also, at the end of workflow, assigned users will be notified of a successful run. 

 

 

2.2.4 User Interface and Data Access 

 Large scale fMRI data usually needs group-wise analysis and collaborators need to work 

together. In HELPNI, users can connect to system remotely and choose their desired subset of 

archive through bundle feature in the system. Users are also able to email other collaborators a link 

containing selected subset of archive. 

The standard user interface features useful tools including a search box which provides searching 

through all archived subjects and sessions and menus in which users upon their permissions can 

access. Users need to login to system to be able to modify or upload new data but viewing and 

downloading 1000FC data as well as preprocessing and ODL results are publicly available 

(http://bd.hafni.cs.uga.edu/helpni). User can browse experiments and data via three methods. One 

is by selecting project and subject subsequently, the other is through searching for a subject name 

from search box, and the last is through selecting a listing. Where user can input certain 

http://bd.hafni.cs.uga.edu/helpni
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information of project/subject or image modality and then query a list containing correspondent 

filtered data. 

 

2.3 Results 

 We tested the proposed HELPNI platform by applying the implemented computational 

framework of HAFNI on one of the largest open-source resting-state fMRI (rsfMRI) database: 

1000 Functional Connectomes project (known as 1000FC). This database has gathered more than 

1200 rsfMRI datasets independently collected from all over the world containing over 130 Giga 

Bytes 0f data. Table 2.1 summarized rsfMRI datasets. Age, sex and imaging center information 

are provided for each of datasets and all subjects have been uploaded to the HELPI. As detailed in 

Section 2.2, HELPNI automatically preprocessed the raw rsfMRI data, extracted the rsfMRI 

signals from each subject, applied the HAFNI computational framework, and returned and stored 

meaningful experimental results. In this experiment, we used 8-core Intel® Xeon® E5-2650 v2 

2.60GHz, 20M Cache CPU and 32GB RDIMM, 1600MT RAM. With the help of HELPNI, we 

identified consistent and meaningful functional brain networks across individuals and populations 

based on rsfMRI big data which are detailed in section 2.3.1. Moreover, using HELPNI possess 

modularity and plug-and-play capability, we developed an efficient sampling module and 

integrated it with HAFNI framework to speed up the HAFNI overall computational time and to 

automatically calculate and obtain meaningful functional brain networks in a much faster fashion. 

The detailed results are demonstrated in section 2.3.2. 
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Table 2.1. The 1000 Functional Connectomes Project datasets summery. 

Baltimore 

 

(n = 23 [8M/15F]; 

ages: 20-40; TR = 

2.5; # slices = 47; # 

timepoints = 123) 

Bangor 

 

(n = 20 [20M/0F]; 

ages: 19-38; TR = 2; 

# slices = 34; # 

timepoints = 265) 

Beijing_Zang 

 

(n = 198 [76M/122F]; 

ages: 18-26; TR = 2; # 

slices = 33; # 

timepoints = 225) 

Berlin_Margulies 

 

(n = 26 [13M/13F]; 

ages: 23-44; TR = 

2.3; # slices = 34; # 

timepoints = 195) 

Cambridge_Buckner 

 

(n = 198 [75M/123F]; 

ages: 18-30; TR = 3; 

# slices = 47; # 

timepoints = 119) 

Cleveland CCF 

 

(n = 31 [11M/20F]; 

ages: 24-60; TR = 

2.8; # slices = 31; # 

timepoints = 127) 

Dallas 

 

(n = 24 [12M/12F]; 

ages: 20-71; TR = 2; # 

slices = 31; # 

timepoints = 115) 

Durham_Madden 

 

(n = 42 [n/a]; ages: 

n/a; TR = n/a; # slices 

= n/a; X timepoints = 

n/a) 

ICBM 

 

(n = 86 [41M/45F]; 

ages: 19-85; TR = 2; 

# slices = 23; # 

timepoints = 128) 

Leiden_2180 

 

(n = 12 [12M/0F]; 

ages: 20-27; TR = 

2.18; # slices = 38; 

# timepoints = 215) 

Leiden_2200 

 

(n = 19 [11M/8F]; 

ages: 18-28; TR = 2.2; 

# slices = 38; # 

timepoints = 215) 

Leipzig 

 

(n = 37 [16M/21F]; 

ages: 20-42; TR = 

2.3; # slices = 34; # 

timepoints = 195) 

Milwaukee_a 

 

(n = 18 [n/a]; ages: 

n/a; TR = 2; # slices = 

20; # timepoints = 

175) 

Milwaukee_b 

 

(n = 46 [15M/31F]; 

ages: 44-65; TR = 2; 

# slices = 64; # 

timepoints = 175) 

Munchen 

 

(n = 16 [10M/6F]; 

ages: 63-73; TR = 3; # 

slices = 33; # 

timepoints = 72) 

Newark 

 

(n = 19 [9M/10F]; 

ages: 21-39; TR = 2; 

# slices = 32; # 

timepoints = 135) 

NewHaven_a 

 

(n = 19 [10M/9F]; 

ages: 18-48; TR = 1; 

# slices = 16; # 

timepoints = 249) 

NewHaven_b 

 

(n = 16 [8M/8F]; 

ages: 18-42; TR = 

1.5; # slices = 22; # 

timepoints = 181) 

NewYork_a_ADHD 

 

(n = 25 [19M/4F]; 

ages: 20-50; TR = 2; # 

slices = 39; # 

timepoints = 192) 

NewYork_a 

 

(n = 84 [43M/41F]; 

ages: 7-49; TR = 2; # 

slices = 39; # 

timepoints = 192) 

NewYork_b 

 

(n = 20 [8M/12F]; 

ages: 18-46; TR = 2; 

# slices = 33; # 

timepoints = 175) 

NewYork_Test-

Retest_Reliability 

 

(n = 25 [10M/15F]; 

ages: 22-49; TR = 2; 

# slices = 39; # 

timepoints = 197) 

Ontario 

 

(n = 11 [n/a]; ages: 

n/a; TR = 3; # slices = 

29; # timepoints = 

105) 

Orangeburg 

 

(n = 20 [15M/5F]; 

ages: 20-55; TR = 2; 

# slices = 22; # 

timepoints = 165) 

Oulu 

 

(n = 103 [37M/66F]; 

ages: 20-23; TR = 

1.8; # slices = 28; # 

timepoints = 245) 

Oxford 

 

(n = 22 [12M/10F]; 

ages: 20-35; TR = 2; 

# slices = 34; # 

timepoints = 175) 

PaloAlto 

 

(n = 17 [2M/15F]; 

ages: 22-46; TR = 2; # 

slices = 29; # 

timepoints = 235) 

Pittsburgh 

 

(n = 17 [10M/7F]; 

ages: 25-54; TR = 

1.5; # slices = 29; # 

timepoints = 275) 

Queensland 

 

SaintLouis 

 

Taipei_a 

 

Taipei_b 
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(n = 19 [11M/8F]; 

ages: 20-34; TR = 

2.1; # slices = 36; # 

timepoints = 190) 

(n = 31 [14M/17F]; 

ages: 21-29; TR = 

2.5; # slices = 32; # 

timepoints = 127) 

(n = 14 [n/a]; ages: 

n/a; TR = 2; # slices = 

32; # timepoints = 

295) 

(n = 8 [n/a]; ages: 

n/a; TR = 2; # slices 

= 33; # timepoints = 

175) 

Atlanta 

 

ages: 22-57; TR = 2; 

# slices = 20; # 

timepoints = 205) 

AnnArbor_a 

 

(n = 25 [22M/3F]; 

ages: 13-40; TR = 2; 

# slices = 40; # 

timepoints = 295) 

AnnArbor_b 

 

(n = 36 [17M/19F]; 

ages: 19-80; TR = 

0.75; # slices = 16; # 

timepoints = 395) 

 

 

 

 

2.3.1 Group-Wise Consistent Functional Brain Networks Identification Using HELPNI 

 With the help of HELPNI system and the implemented HAFNI computational framework, 

we successfully identified 10 meaningful and consistent resting state networks (RSNs) which are 

in agreement with previous studies across all individuals and datasets in 1000FC database. Figure 

2.5 shows the identified 10 group-wise consistent networks in five randomly selected datasets (that 

are Baltimore, Beijing, Berlin, Cambridge and Cleveland dataset) in 1000FC. Networks #1, #2 and 

#3 are all located in visual areas and closely related to visual behavior. Network #4 includes 

ventromedial frontal cortex, bilateral inferior-lateral-parietal and medial parietal areas and are 

often referred as default mode network (DMN). Network #5 covers the cerebellum and 

corresponds to action-execution function. Networks #6, #7 and #8 are related to sensorimotor, 

auditory, and executive control function, respectively. Networks #9 and #10 cover several front 

parietal areas and are closely related to cognition/language paradigms [70]. Figure 2.6 illustrates 

the identified 10 consistent networks in 5 randomly selected individual subjects from the same 5 

datasets. We can see that the identified 10 functional networks are quite consistent across different 

datasets and subjects and consistent with the templates in previous studies [70]. Quantitatively, we 

calculate the spatial overlap between the identified networks and templates which are detailed in 

Table 2.2 and Table 2.3. The spatial overlap is calculated as the percentage of the overlapping area 
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between our identified networks and templates (Lv et al., 2015).  Based on these results, we can 

see that our developed HELPNI system is effective and efficient in reconstructing meaningful 

functional brain networks from rsfMRI data. 

 

 

Figure 2.5. The identified group-wise consistent 10 RSN networks from 5 randomly selected 

datasets (Baltimore, Beijing, Berlin, Cambridge and Cleveland) in 1000 Functional Connectomes 

Project by HELPNI. Each row represents the networks from one dataset; the last row shows the 

RSN templates for comparison. Only the most informative slice, which has been overlaid on the 

MNI152 template, is shown here. 
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Figure 2.6. The identified 10 RSN networks of individual subject from 5 datasets (Baltimore, 

Beijing, Berlin, Cambridge and Cleveland) in 1000 Functional Connectomes Project by HELPNI. 

For each dataset, the 10 RSN networks from one randomly selected subject are shown here. 

 

Table 2.2. Spatial overlap between identified group-wise RSNs and templates in different datasets 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Baltimore 0.88 0.94 0.82 0.74 0.75 0.78 0.65 0.61 0.67 0.71 

Beijing 0.95 0.98 0.95 0.82 0.86 0.94 0.85 0.58 0.66 0.82 

Berlin 0.81 0.95 0.86 0.80 0.72 0.77 0.71 0.60 0.73 0.82 

Cambridge 0.86 0.98 0.92 0.76 0.93 0.79 0.80 0.56 0.69 0.78 

Cleveland 0.82 0.89 0.80 0.77 0.72 0.75 0.72 0.58 0.53 0.75 
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Table 2.3. Spatial overlap between identified individual RSNs and templates in different datasets 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Baltimore 0.34±0.09 0.28±0.09 0.29±0.09 0.33±0.05 0.23±0.05 0.30±0.07 0.21±0.06 0.24±0.05 0.21±0.05 0.23±0.06 

Beijing 0.36±0.09 0.29±0.12 0.32±0.12 0.37±0.08 0.28±0.09 0.41±0.10 0.25±0.07 0.27±0.08 0.24±0.06 0.26±0.06 

Berlin 0.32±0.06 0.29±0.09 0.24±0.10 0.33±0.06 0.23±0.07 0.36±0.09 0.25±0.06 0.26±0.05 0.27±0.08 0.26±0.05 

Cambridge 0.35±0.08 0.32±0.10 0.33±0.12 0.35±0.07 0.41±0.10 0.40±0.09 0.25±0.06 0.29±0.05 0.23±0.05 0.24±0.05 

Cleveland 0.32±0.09 0.27±0.13 0.25±0.11 0.35±0.06 0.19±0.08 0.36±0.09 0.22±0.06 0.27±0.06 0.24±0.06 0.22±0.05 

 

2.3.2 Integrating Sampling Module in HELPNI 

 One important characteristics of our HELPNI system is the plug-and-play capability. Since 

the implemented pipelines are modularly designed, we could easily develop and test new modules 

to enhance established computational framework. For example, in order to speed up the current 

HAFNI framework in the HELPNI system, we developed and integrated and efficient signal 

sampling module [71] to improve the calculating speed while obtaining comparable results. The 

average computation time of training a dictionary for one individual brain is about 30 seconds 

using sampling module, whereas the time cost without sampling is 340 seconds, which speeds up 

the HAFNI training procedure more than 10 times. At the same time, the returned results could 

identify the similar consistent and meaningful functional brain networks across datasets and 

individuals as discussed in Section 3.1. Figure 2.7 shows the same identified 10 group-wise 

consistent networks with sampling module in the same five datasets (that is Baltimore, Beijing, 

Berlin, Cambridge and Cleveland dataset) in 1000FC. Figure 2.8 illustrates the identified 10 

consistent networks in the same 5 individual subjects in section 3.1. Similar to original HAFNI 

computational framework with no sampling module, the identified 10 functional networks are 

quite consistent with each other across different datasets and populations and consistent with the 

templates in previous studies [70]. Quantitatively, we calculated the spatial overlap between the 
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identified networks and templates which detailed in Table 2.4 and Table 2.5.  From these results, 

we can see that the integrated sampling module in HAFNI framework via HELPNI system 

significantly decreased the computing time while achieved comparable results for functional brain 

network identification at the same time. It also demonstrates the plug-and-play capability of 

HELPNI system to effectively detect meaningful functional brain networks from raw 

neuroimaging data. 

 

 

Figure 2.7. The identified group-wise consistent 10 RSN networks from 5 datasets (Baltimore, 

Beijing, Berlin, Cambridge and Cleveland) in 1000 Functional Connectomes Project by HELPNI 

with sampling module. Each row shows the networks from one data set and the last row shows the 

RSN templates for comparison. 
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Figure 2.8. The identified 10 RSN networks of individual subject from 5 datasets (Baltimore, 

Beijing, Berlin, Cambridge and Cleveland) in 1000 Functional Connectomes Project by HELPNI 

with sampling module. For each dataset, we randomly selected one subject’s result as example. 

 

 

Table 2.4. Spatial overlap between identified group-wise RSNs with sampling module and 

templates in different datasets 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Baltimore 0.89 0.89 0.82 0.79 0.76 0.92 0.64 0.59 0.68 0.72 

Beijing 0.94 1.00 0.95 0.89 0.88 0.97 0.88 0.63 0.74 0.87 

Berlin 0.87 0.95 0.90 0.83 0.73 0.87 0.76 0.68 0.88 0.82 

Cambridge 0.84 0.98 0.94 0.84 0.95 0.86 0.82 0.57 0.68 0.83 

Cleveland 0.80 0.95 0.88 0.82 0.75 0.75 0.77 0.61 0.57 0.74 
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Table 2.5. Spatial overlap between identified individual RSNs with sampling module and 

templates in different datasets 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Baltimore 0.38±0.09 0.30±0.10 0.29±0.10 0.35±0.06 0.26±0.06 0.36±0.08 0.21±0.06 0.29±0.07 0.24±0.07 0.25±0.06 

Beijing 0.39±0.11 0.32±0.13 0.34±0.13 0.39±0.09 0.31±0.10 0.43±0.11 0.29±0.08 0.31±0.10 0.27±0.07 0.29±0.08 

Berlin 0.36±0.06 0.31±0.10 0.28±0.12 0.36±0.08 0.24±0.07 0.39±0.08 0.26±0.06 0.32±0.05 0.28±0.07 0.28±0.06 

Cambridge 0.37±0.08 0.34±0.11 0.33±0.12 0.37±0.07 0.44±0.12 0.41±0.09 0.27±0.06 0.32±0.05 0.26±0.06 0.26±0.06 

Cleveland 0.34±0.11 0.29±0.13 0.25±0.11 0.36±0.05 0.20±0.08 0.38±0.08 0.24±0.06 0.32±0.08 0.26±0.07 0.24±0.06 

 

 

2.4 Discussion and Conclusion 

 In this work, we have designed and developed a neuroimaging informatics platform, 

HELPNI, to archive large-scale fMRI datasets, to automate sequence of complex processes for 

fMRI data analysis and finally to use distributed and parallel computing resources to bust up big 

data analysis time. HELPNI has leverage from extensible neuroimaging archive toolkit to power 

up the web application and storage part of the system and is composed of three main parts of web 

application and storage, pipeline analysis framework and the big data analytic tools. This novel 

platform integrated our recently developed HAFNI computational framework for fMRI data 

analysis in an accelerated way. As demonstrated in this work, we used the open access 1000 

functional connectome datasets as a basic example to import 1200+ rsfMRI data into HELPNI 

system, to run the HAFNI framework on the rsfMRI data, and to identify consistent and 

meaningful functional brain networks across individuals and populations. Our experimental results 

demonstrated that efficient sampling module can be implemented together with HAFNI framework 

to speed up the dictionary learning and identification of meaningful functional brain networks. 
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The HELPNI platform is publicly accessible through http://bd.hafni.cs.uga.edu/helpni where users 

can view all of the archived fMRI data as well as the processed results. Authorized users can also 

upload new data and run pipelines over their desired fMRI images. 

Considering the explained characteristics (Section 3.2) as well as the task scheduling feature of 

our HELPNI (figure 2.3e) in which tasks can be run in a distributed or parallel fashion, HELPNI 

with plug and play capability and modularity can significantly speed up the fMRI data processing. 

Users can easily feed their workflow to the HELPNI and it will schedule, distribute and run all 

tasks using all available resources and will notify users with the final results. We are also 

implementing big data analytic tools to empower the processing part through Hadoop and Spark. 

Parallel optimization procedure has shown significance improvement in sparse dictionary learning 

computation time [72]. 

The large-scale datasets can be imported to the HELPNI system and various computational 

pipelines and analyses can be then run over the big data without corrupting the original archived 

images. For example, in this paper, we ran the HAFNI pipeline over all subjects in 1000FC project 

and the users could examine the results in a well-structured report in addition to original image 

data. We also ran the sampling pipeline on a subset of the dataset and stored them in the same 

fashion. In this way, users can evaluate and compare the results with sampling and no sampling 

simultaneously. The HELPNI system saved much computing time since there was no idle time in 

between of processes using the task scheduling feature. In the future, the distributed scheduling 

and big data analytics tools are planning to be used to save more time by means of distributed 

system available at the University of Georgia. This will provide fMRI community to use HELPNI 

system integrated with other analytical tools on large-scale fMRI datasets and to collaborate with 

other laboratories and research centers. 

http://bd.hafni.cs.uga.edu/helpni
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Adding a few new features including auto classifying the stored images based on the analysis 

results, fully implementing the parallel algorithm for HAFNI and improve the current user 

interface of HELPNI are scheduled as our future improvements to HELPNI.  Future applications 

of HELPNI include testing other big datasets such as HCP and OpenfMRI, implementing new 

modules such as population clustering of learned dictionary HAFNI spatial maps, and eventually 

discovering disease specific biomarkers.  
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ABSTRACT 

It has been shown from various functional neuroimaging studies that sparsity-regularized 

dictionary learning could achieve superior performance in decomposing comprehensive and 

neuroscientifically meaningful functional networks from massive fMRI signals. However, the 

computational cost for solving the sparse coding problem has been known to be very demanding, 

especially when dealing with large-scale fMRI data sets. Thus, in this work, we proposed a novel 

distributed rank-1 dictionary learning (D-r1DL) model and applied it for fMRI big data analysis. 

The model aims at estimating one rank-1 basis vector with sparsity constraint on its loading 

coefficient from the input data at each learning step through alternating least squares updates. By 

iteratively learning the rank-1 basis and deflating the input data by the learning results in each step, 

the model is then capable of decomposing the whole set of functional networks or connectomes. 

We implemented and parallelized the rank-1 dictionary learning algorithm using Spark engine and 

deployed the resilient distributed dataset (RDDs) abstracts for the input data. Experimental results 

on the Human Connectome Project (HCP) data have shown that the proposed D-r1DL model is 

fast and scalable towards fMRI big data analytics, thus enabling data-driven neuroscientific 

discovery from massive fMRI big data in the future. 
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3.1 Introduction 

 In recent years, the field of neuroimaging studies based on functional magnetic resonance 

imaging (fMRI) has featured unprecedented large-scale data availability thanks to the efforts from 

a series of data collection works including Human Connectome Project [7], 1000 Functional 

Connectomes [11] and OpenfMRI Project [12]. The rapidly growing data characterized different 

aspects of brain cognitive processes as well as various disorders, thus providing a great opportunity 

for decoding and identification of potential functional biomarkers for brain diseases. 

Consequently, there is an urgent call for more efficient and scalable data analytics and knowledge 

discovery methods, especially for dealing with fMRI big data. Functional network analysis has 

become an important and popular approach for discovering the underlying organization structures 

and meaningful dynamic patterns from the vast and noisy functional brain signals. Focusing on 

understanding the functional aggregation/co-activation among brain regions through quantitative 

and data-driven approaches, researchers have employed various types of matrix decomposition 

methods for the functional network analysis studies, including Independent Component Analysis 

(ICA) [88], Principal Component Analysis (PCA) [87] and Dictionary Learning [80]. Dictionary 

learning in particular has been shown to be a powerful tool in image compressed sensing [86], 

classification [83] and denoising [77], and has shown superior performance in decomposing the 

meaningful and comprehensive functional networks from various types of fMRI signals [52]. 

However, the computational cost for solving the sparse coding problem for dictionary learning has 

been known to be very demanding [81], especially when dealing with large-scale data sets. 

Furthermore, most of current dictionary learning methods for fMRI data analysis are only 

implemented for local application without any parallelization scheme. Facing with the rapidly 

growing fMRI data and the needs for population-level analysis with terabytes or even petabytes of 
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data size [87], the computation power limit of a single machine will eventually become the 

bottleneck for efficient and effective knowledge discovery from the fMRI big data. 

Following the previous success in using dictionary learning for functional network decomposition 

[52], in this work we devolved a novel distributed rank-1 dictionary learning (D-r1DL) model, 

leveraging the power of distributed computing for handling large-scale fMRI big data. Compared 

to the gradient-based dictionary learning algorithms such as the online dictionary learning [54] 

(based on stochastic gradient descent) and the K-SVD [73] (based on gradient descent), the 

proposed rank-1 dictionary learning algorithm has a few critical advantages: 1) The learning 

process is a fix-point algorithm by alternating least squares updates, thus avoiding the tuning of 

the learning rate/step size while also avoiding the slow convergence near the solution; 2) The 

memory cost of the proposed algorithm is very low because it needs not to maintain the potentially 

large gradient matrix in the memory. The intermediate results will be discarded after each rank-1 

basis is learned and stored, which further reduce the memory cost. More importantly, the rank-1 

dictionary learning algorithm is very light-weighted regarding to the operational complexities: 

besides the input data, most of the routines in the algorithm will only take one vector as input and 

one vector as output. This feature helps the r1DL algorithm to be easily parallelized to its 

distributed version.   

For the algorithm parallelization, in this work we used the Spark engine [50] to implement the D-

r1DL algorithm. Spark is a high-performance distributed compute engine for large-scale data 

processing. It is similar to MapReduce, but has several distinct advantages that make it ideal for 

the deployment of large-scale analytics frameworks. First, its basic abstraction for distributed data, 

the resilient distributed dataset (RDD) [90], combines robust fault-tolerance with highly efficient 

data layout strategies. RDDs track their computation lineage as a directed acyclic graph; therefore, 
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if a segment is lost, it can be easily recomputed from the lineage. These lineages can be optimized 

on-the-fly to minimize the overhead of the prescribed computations. Second, all operations in 

Spark are performed in-memory, thus significantly improving throughput of data pipelines. This 

is a departure from Hadoop MapReduce, in which data are serialized to disk in between map and 

reduce steps. Third, the Spark compute engine is much more generalizable than MapReduce, and 

can efficiently support highly diverse workloads. While Spark supports the map and reduce 

primitives from Hadoop MapReduce, it also supports graph processing [79] and streaming [91] 

APIs on the same compute engine, in addition to numerous functional primitives beyond map and 

reduce. This structural flexibility is crucial to the efficient implementation of a wide variety of 

distributed algorithms.  

An illustration for the operational and algorithmic pipeline consisting of three layers of model 

specification is shown in figure 3.1. The first and foremost deliverable of this work is to provide 

an integrated solution for the large-scale fMRI big data analysis. Therefore, we initially deployed 

the proposed D-r1DL model on our in-house server (termed “in-house solution”) with an 

integrated neuroinformatics system [51]. The neuroinformatics system provides a web-based 

user interface for fMRI data uploading, hosting and result post-processing [51], as illustrated in 

figure 3.1(a). Alternatively, we also tested deploying the D-r1DL model on the cloud computing 

service provided by Amazon Web Services Elastic Compute Cloud (AWS-EC2), which has been 

widely applied for biomedical imaging researches due to its resource flexibility and ease of use. 

For the “AWS-EC2 solution”, the data preprocessing was performed before running the D-r1DL 

model on it. Subroutines of the r1DL algorithm and its logic flow are illustrated in figure 3.1(b). 

The parallelization subroutines and its relationship with the r1DL algorithm are illustrated in 

figure 3.1(c). 
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Figure 3.1. (a): Operations on the neuroinformatics system for preparing the application of D-r1DL 

and post-analysis. (b): Algorithm pipeline of the rank-1 dictionary learning. (c): Parallelization 

subroutines of the D-r1DL model derived from the corresponding subroutines of the r1DL using 

Spark. The distribution of input data S is based on RDDs.  

 

3.2 Background and Related Work 

 Functional network analysis based on matrix decomposition methods has the basic 

premise: the observed functional signals are the result of the linear combination from the signals 

of many latent source (i.e. functional networks), plus noises and/or artifacts signals [74]. The 

methods then aim to identify the latent source signals as well as the loading matrix based on various 

learning priors including spatial/temporal independence [74], [88] (for ICA), or the sparsity in the 
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loading coefficients  [80], [52] (for dictionary learning). The decomposition results consist of two 

parts: the signals of the latent sources (i.e. temporal pattern of the functional networks) that are 

regarded as basis activation patterns, and the loading matrix characterizing how each source 

contributes to the formation of each observed signal across voxels/ brain regions (i.e. spatial 

pattern of the functional networks). The spatial and temporal pattern of a sample network 

decomposed result is shown in figure 3.2.  

Several sets of consistent and meaningful functional networks have been identified in the previous 

literature: including the 10 well-established resting-state networks (RSNs) [88] obtained using 

ICA, the task-related patterns obtained using PCA [89], and the HAFNI (holistic atlases of 

functional networks and interactions) atlases [52] featuring 32 group-wise consistent patterns 

during both task and resting-state using dictionary learning. Visualization of one functional 

network from the matrix decomposition results using the proposed r1DL method is shown below, 

to illustrate the temporal (the time series curve) and spatial (on cortical volumetric space) patterns 

of the brain network. 
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Figure 3.2. Top: spatial pattern visualized on cortical volumetric space of one decomposed 

network. Bottom: visualization of its temporal pattern. 

 

 

While dictionary learning in general is an active area of research, there has been significantly less 

effort in scaling the algorithm. One of the few methods proposed was [72], in which the authors 

designed a sparse coding framework on Hadoop MapReduce. The method was parallelized by 

splitting the core operations in two main phases: the sparse coding phase, in which the loading 

weights were learned in parallel; and the dictionary learning phase, in which the dictionary atoms 

were updated. By taking advantage of hard sparsity constraints, the authors avoided materializing 

the entire data matrix in memory at once, instead operating on blocks of the matrix in parallel and 

constructing the loading matrix row by row. In this work we undertook the similar dataflow 
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optimization techniques: the sparse coding and dictionary atoms are assumed to fit easily in 

memory for fast and efficient computation. However, using the Spark framework instead of 

Hadoop MapReduce provides us intrinsic speedups. Where Hadoop MapReduce excels in batch 

processing, Spark is optimized for iterative computation: intermediate results are cached in-

memory on the workers and re-used in subsequent iterations, and the updates are efficiently 

broadcasted to the workers. Most importantly, the RDDs abstraction pipelines the requested 

operations and lazily executes them after determining the optimal computational path using the 

least amount of resources. We leverage these advantages to provide a substantial performance gain 

in our D-r1DL dictionary learning implementation. 

 

3.3 Rank-1 Dictionary Learning For fMRI Data Analysis 

 The rank-1 dictionary learning algorithm aims to iteratively estimate multiple rank-1 basis 

vector u (T×1 vector with unit length) and its loading coefficient vector v (P×1 vector) to 

decompose the input signal matrix S of dimension T×P, by minimizing the following energy 

function L(u, v): 

𝐿(𝑢, 𝑣) = ‖𝑆 − 𝑢𝑣𝑇‖𝐹, s. t. ‖𝑢‖ = 1, ‖𝑣‖0 ≤ 𝑟. (1) 

Eq. 1 indicates that the product of u and v is supposed to well-fit the input S while the total number 

of non-zero elements in v should be smaller than or equal to the given sparsity constraint parameter 

r. The minimization problem in Eq. 1 can be solved by alternatively updating u (randomly 

initialized before the first iteration) and v until convergence: 
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𝑣 = argmin
𝑣

‖𝑆 − 𝑢𝑣𝑇‖𝐹 , 𝑠. 𝑡. ‖𝑣‖0 ≤ 𝑟,  

𝑢 = argmin
𝑢

‖𝑆 − 𝑢𝑣𝑇‖𝐹 =
𝑆𝑣

‖𝑆𝑣‖
, 

Converging at step 𝑗 if: ‖𝑢𝑗+1 − 𝑢𝑗‖ < 𝜀, 𝜀 = 0.01. 

(2) 

Eq. 2 involves multiplication between input matrix S and vector u, followed by setting all elements 

in the resulting vector smaller than its r-th largest value to zero, essentially performing the vector 

partition operation. One rank-1 basis [u, v] can be estimated in each step; afterwards the input 

matrix S will be deflated to its residual R: 

𝑅𝑛 = 𝑅𝑛−1 − 𝑣𝑇𝑅𝑛−1, 𝑅0 = 𝑆, 1 < 𝑛 ≤ 𝐾, (3) 

where K is the total number of expected basis (i.e. dictionary atoms) to be discovered from the 

input data. It could be seen that the formulation of the proposed rank-1 dictionary learning 

algorithm is similar to the sparse PCA problem [75]. However, the goal of PCA and sparse PCA 

is to derive a low-dimensional basis (i.e. learning a smaller set of high representative basis); in 

contrast, the goal in dictionary learning is to learn an over-complete dictionary set [81]. Regarding 

the algorithm convergence, it is easy to show that the value of the energy function as in Eq. 1 

decreases at each iteration (until convergence), thus the objective is guaranteed to converge. The 

convergence of the learning in Eq. 2 was also empirically tested in this work. The deflation 

operation in Eq. 3 is based on Hotelling’s deflation method for estimating the eigenvectors, where 

each step of deflation leads to the corresponding eigenvalue replaced by zero. The validity of using 

Hotelling’s deflation for sparse PCA was provided in [75], while better deflation methods were 

also discussed in [84]. figure 3.3 shows a running example illustrating the data preparation and 

networks decomposed by r1DL. 
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Figure 3.3. Illustration of the r1DL model applied on fMRI data as a running example. (a) 4D 

fMRI data represented as a series of 3D volume images. (b) Converting 4D data into 2D input 

matrix S. (c) Spatial (v1…vK) and temporal (u1…uK) patterns of the decomposed functional 

networks from S using r1DL dictionary learning. 

 

3.4 Algorithm Parallelization and Deployment on Spark  

 In this work, the rank-1 dictionary learning algorithm introduced above was implemented 

and parallelized on the Spark engine. Specifically, the vector-matrix multiplication and the matrix-

vector multiplication steps in Eq. 2 were implemented by their corresponding distributed 

primitives in Spark. Reading and partitioning the input data S is supported by the RDD abstraction; 

therefore, the distribution of S to each node as a series of key-value pairs is inherently straight 

forward: data formation of the current work is based on row-vectors. In other words, each column 

in S contains the T number of observations for one specific feature, to the total of P features. While 

S was maintained as an RDD, the vectors u and v were broadcast to all nodes. Thus, during the 
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vector-matrix multiplication, each node will use its portion of the updated u vector, and then 

estimate the v vector based on the multiplication of portions of S and u. The resulting v vectors 

from all the nodes will be then map-reduced by the summation operation. The matrix-vector 

multiplication is relatively easier, where each node will use all the updated v vector then estimate 

its corresponding portion of the u vector. The resulting u vector is just the collection of the results 

from each node. In addition, the matrix deflation operation in Eq. 3 was also parallelized by 

broadcasting both the u and v vectors learned from Eq. 2, and then estimating the outer produce 

between portion of u vector and the whole v vector at each node. The S matrix is then subtracted 

by the results of each node through mapping over each row and deflating it in parallel. This 

implementation of the r1DL algorithm after parallelization is termed as the “Distributed rank-1 

dictionary learning” (D-r1DL) model. 

 

3.4.1 Complexity of the Distributed Primitives 

 The computational complexity of the original (un-parallelized) rank-1 dictionary learning 

algorithm is quite obvious: all the major subroutines including matrix-vector multiplication, 

vector-matrix multiplications and deflation have complexity of T*P, essentially traversing through 

input matrix S. However, the distributed primitives added for the parallelization in D-r1DL will 

potentially cause large extra computations and/or data transfers across nodes. The problem will be 

magnified when such transfer occurs over a network (e.g. worker nodes are distributed across 

Internet). Thus, we analyzed the extra complexity induced by the parallelization of the three 

subroutines, assuming that there are M number of nodes. It should be noted that the estimations 

are upper bounds for the complexity; the empirical performance will be largely dependent on how 
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Spark optimizes the transformation lineage for the RDD, and how the RDD is distributed across 

the cluster.  

• For the vector-matrix multiplication for estimating v, the total complexity is (T*M + 

P*M+Tlog(T) + P): T*M caused by the broadcasting, P*M+Tlog(T) caused by the map reduce 

and network shuffle, and P caused by the updating of v. 

• For the matrix-vector multiplication, the total complexity is (P*M + T): P*M caused by the 

broadcasting, and T caused by the updating of u. 

• For the matrix deflation, the total complexity is (P*M+T*M): both u and v will be 

broadcasted to all M nodes. 

 

3.4.2 Deployment and Configuration 

 The D-r1DL model was deployed on two different sets of server clusters, leading to two 

solutions for the data analysis. The first set is based on the in-house server, called the “in-house 

solution”. Spark version 1.5.2 pre-built for Hadoop 1.0 and python version 2.7.11 with all the 

required dependencies were installed on the in-house server. We setup one standalone spark cluster 

on the server with a master node consisting of 16 cores and 16GB RAM. The in-house solution 

also featured an integrated neuroinformatics system named HELPNI (HAFNI-enabled largescale 

platform for neuroimaging informatics) as introduced in [51]. Authorized users of the system can 

upload, manage, and perform the preparations of the fMRI data for the model analysis. For running 

the D-r1DL model, the preparation steps include fMRI signal preprocessing (gradient distortion 

correction, motion correction, bias field reduction, and high pass filtering) [78], converting the 4D 

fMRI images to 2D data matrix, as well as the generation of shell scripts according to user 
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specifications. When the computations by D-r1DL are finished, the reports of the results 

(consisting of the statistics and visualizations of the decomposed functional networks) will be 

automatically generated by the HELPNI neuroinformatics system [51] and uploaded to the server, 

accessible via web interface for viewing and sharing. The in-house solution is mainly used for 

testing the single-server (on the local threads), standalone mode performance of the D-r1DL 

algorithm.  

The second set was based on the computational resources provided by AWS-EC2 service. For the 

AWS-EC2 implementations, we used the provided EC2 deployment scripts with the Spark 

distribution. These created a Spark cluster on EC2 with one master node and 16 workers. Each 

worker consisted of 2 cores and 7.5GB memory. EC2 clusters are highly scalable, as the number 

of workers recruited could be adjusted within the cluster. The preprocessed and converted fMRI 

data was stored at the cloud through Amazon S3 and accessible by the EC2 cluster. The nodes 

featured Hadoop distributed file system (HDFS), which ensured data consistency and improved 

I/O speed. Hadoop version 1.0, Spark version 1.5.2, and Python version 2.7.11 with the Anaconda 

scientific programming stack (e.g. NumPy, SciPy) were installed on EC2 cluster. An illustrative 

diagram showing the organization and execution architecture of the two solutions are shown 

below. 
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Figure 3.4. Illustrative diagram showing the organization and execution architectures for the 

standalone local mode and the multi-worker cluster mode. 

 

3.5 Experimental Application on Brain Functional Imaging Data 

3.5.1 Validation of the D- r1DL Model 

 To validate the effectiveness of the proposed D-r1DL model in terms of its capability of 

decomposing fMRI data into meaningful functional networks, we applied the framework on the 

fMRI data acquired during multiple tasks from the Human Connectome Project (HCP) Q1 release 

dataset [7]. The HCP dataset is advantageous in its high temporal and spatial resolution (TR=0.72s, 

varied temporal length from 176 to 1200 volumes; 2mm isotropic voxels, to the total of over 

200,000 voxels), which enables more detailed characterization of the brain’s functional behavior. 

Additionally, the HCP dataset includes acquisitions of fMRI data during 7 tasks and resting-state 
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from 68 subjects, to the total of over 500 individual data, which matches the aim of the proposed 

framework for population-level fMRI big data analysis. 

The learned collection of functional networks represented by rank-1 dictionary basis was then 

compared with the HAFNI atlases [52]. The HAFNI atlas was obtained by applying online 

dictionary learning method [54] on all the individual fMRI data in the same HCP Q1 dataset. 

Subsequently, 32 group-wise consistent networks were identified through manual inspection over 

more than 200,000 decomposed networks [52]. Thus our aim in this validation was to identify the 

presence (or absence) of those atlas networks from the results of D-r1DL. The main rationale of 

performing comparison with network templates and atlas network for the model validation in this 

work was due to the lack of ground truth in fMRI data. At this stage, the capability and accuracy 

of the proposed model could only be validated by comparing with the previously-reported and 

well-established results from the same dataset. 
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Figure 3.5. Spatial maps obtained from applying the dictionary learning method on the same fMRI 

dataset implemented by HAFNI, r1DL in C++, and D-r1DL in Spark. 

 

In addition, the D-r1DL model was compared with the rank-1 dictionary learning algorithm 

implemented in C++ without any parallelization, in order to investigate whether the parallelization 

would affect the model performance. Both of the implementations were deployed on the same in-
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house server and applied on the HCP Q1 individual resting-state fMRI data as well as two task 

fMRI datasets (“Emotion” and “Working Memory”) using the same parameter setting (r=0.07, 

K=80). An illustration for the spatial maps of two sample networks decomposed by r1DL 

implemented in C++ and D-r1DL, as well as the corresponding individual-level atlas network in 

HAFNI, is shown in the three panels in figure 3.5 (a)-(c), respectively. 

The obtained functional networks from D-r1DL were then matched to the individual-level atlas 

networks on the same subjects of the same tasks (or resting-state) by maximizing the spatial 

similarity between them: 

𝑅(𝑃1, 𝑃2) = |𝑃1 ∩ 𝑃2|/|𝑃2|, (4) 

where P1 and P2 are the spatial map vectors of the two networks. In this work P1 is the network 

decomposed by D-r1DL and P2 is the atlas network. Operator |•| counts the total number of voxels 

with non-zero values in the given spatial pattern. R ranges from 0 (no voxels overlapping) to 1 

(exactly the same maps). The spatial similarity results show that all of the atlas networks defined 

in HAFNI could be found from the results of D-r1DL. Specifically, the 3 atlas networks from 

Emotion dataset were identified from D-r1DL results with average spatial similarity of 0.82. The 

6 atlas networks from WM dataset were identified with average spatial similarity of 0.79. The 10 

resting-state networks, originally reported in [76] and later included in the HAFNI atlas were 

identified from the results of applying D-r1DL on resting state fMRI data with average spatial 

similarity of 0.70. The spatial similarity results also show that the networks decomposed by r1DL 

implemented in C++ and D-r1DL implemented in Spark are almost identical, with average spatial 

similarity of 0.99. 
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3.5.2 Experiment on Algorithm Convergence 

 As discussed in section 3.3 for the algorithm description, we have performed extensive 

experiments for testing the convergence of alternating least squares with l-0 constraint problem in 

Eq. 2. By running the r1DL algorithm on each individual fMRI dataset in the HCP Q1 release 

across 7 tasks with dictionary size parameter K=400 (i.e. decomposing 400 functional networks 

from each fMRI data), we found that the learning of u and v converged for all the 190,400 networks 

decomposed. The average number of alternative updates needed for learning one network for 

different datasets of 5 randomly selected sample subjects is listed in Table 3.1 below. It can be 

seen that regardless of the input data size, the majority of the learning would be finished within 

only a few iterations. 

 

Table 3.1. Average number of iterations needed for convergence across 7 tasks of 5 subjects 

 sbj1 sbj2 sbj3 sbj4 sbj5 

Emotion 6.1 6.1 6.2 6.1 6.2 

Gambling 6.3 6.3 6.5 6.3 6.2 

Language 6.4 6.3 6.4 6.3 6.3 

Motor 6.4 6.2 6.3 6.5 6.3 

Relational 6.2 6.2 6.2 6.2 6.2 

Social 6.3 6.3 6.2 6.3 6.3 

WM 6.4 6.3 6.4 6.4 6.4 

 

3.5.3 Performance Boost by r1DL Comparing with Other Dictionary Learning Algorithms 

 One of a major premise of the proposed r1DL algorithm is that because of its smaller 

memory cost and robust learning mechanism (no need to set learning rate), the algorithm should 

have similar or faster running speed, compared with other dictionary learning methods, even 

without the parallelization. Based on the performance statistics from running r1DL over the whole 

HCP task fMRI (tfMRI) dataset as introduced above, we compare the r1DL with the other two 
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dictionary learning algorithms: online dictionary learning implemented in SPAMS package [54] 

and the stochastic coordinate coding (SCC) algorithm introduced in [82], by applying these two 

methods on the same HCP Q1 dataset using the same in-house server. The performance 

comparison is shown in figure 3.6 (averaged across all 68 subjects). From the comparison, it can 

be seen that r1DL has exhibited improved computational speed over the other two methods in all 

the 7 tfMRI datasets. It should be noted that we used the r1DL implemented in C++ for the testing 

in this experiment, and in the same way the other two methods were implemented to ensure 

consistency in the comparison. 

 

 
Figure 3.6. Average time cost (measured in seconds) for functional network decomposition from 

individual tfMRI data during 7 tasks across 68 subjects, using the three dictionary learning 

methods. 
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Furthermore, to benchmark the D-r1DL efficiency on the running time, we designed an experiment 

using two popular parallel processing platforms of Spark and Flink. We set up a virtual cluster of 

three nodes, each with four virtual CPUs, 8192 MB RAM, and 30 GB disk storage. As we 

examined both platforms using varying of input matrixes, the  preliminary testing shows that Flink 

Dr1DL could offer performance gains over Spark Dr1DL for large data. Figure 3.11 illustrates the 

performance gain of Flink as the input data growth.  

 
Figure 3.11. Run time comparison of D-r1DL using Flink and Spark with varying input data sizes.  

 

 

3.5.4 Performance and Scalability Analysis for D-r1DL Using the In-House Solution  

 As introduced in 3.5.1, in this work we applied the D-r1DL model on the three types of 

datasets for functional network decompositions: tfMRI data of Emotion task with dimension of 

176*2M, tfMRI data of Working Memory (WM) task with dimension of 405*2M, and resting state 

fMRI (rsfMRI) data with dimension of 1200*2M. The testing input files sizes of the three types of 

dataset were 300MB, 700MB and 2GB, respectively. Using the in-house solution as specified in 
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4.2, we firstly analyzed the performance of the D-r1DL model using different numbers of cores on 

a single machine. The performance statistics measured in time cost are shown in figure 3.7. 

 

 

Figure 3.7. Time cost for decomposing one functional network from three different fMRI datasets 

by recruiting varying number of cores, using the in-house solution. 

 

 

For all the three datasets, there exists clear logarithmic relationship (R2=0.84, 0.89 and 0.92) 

between the number of cores recruited and the total time cost for the decomposition. The speed 

boosts by recruiting more cores for the computation comparing with the baseline (1-core) 

configuration for the three datasets using the in-house solution are listed in Table 3.2, showing the 

ratio between the time cost using 1 core and the time cost using multiple cores. 
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Table 3.2. Ratios of time cost changes by recruiting various number of workers comparing with 

standalone mode 

 

Emotion WM RS 

2 workers 3.1 2.8 1.8 

4 workers 6.0 5.1 3.3 

8 workers 6.6 7.7 6.3 

16 workers 6.8 8.6 6.7 

 

 

As the configuration for using only one core for D-r1DL is equivalent to the non-parallel algorithm, 

the performance statists indicate that the parallelization based on Spark could greatly improve the 

performance of the rank-1 dictionary learning algorithm. Specifically, the better performance gain 

on larger dataset indicates that the parallelization of the rank-1 dictionary learning could 

potentially overcome the computational bottleneck for analyzing big neuroimaging data, 

potentially enabling high-throughput analysis on a locally-deployed high-performance 

computation cluster in the future.  

Another analysis of the performance of D-r1DL on the in-house server was aiming at investigating 

the relationship between dictionary size K (i.e. number of functional networks to be decomposed) 

and the time/memory cost. The rationale is that, as discussed in 3.3.1, the rank-1 dictionary 

learning algorithm has advantages in the iterative estimation of the basis vectors [u, v]. Thus the 

program does not need to maintain the learning results in the memory. As shown in figure 3.8, the 

average time cost for estimating one dictionary only marginally increased when using larger 

dictionary sizes K. Further, the total memory cost of running the D-r1DL was independent with K. 

This feature is especially useful when the spatial dimension of the input data is large, either because 

of the higher spatial resolution or because of the aggregated dataset from multiple subjects in a 



 

62 

population. As in such cases, the size of all decomposed networks, which equals to P*K, could be 

very large. 

 

 

 
Figure 3.8. Time and memory costs for decomposing Emotion tfMRI datasets with varying 

dictionary size K, recruiting 16 cores, using the in-house solution. 
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3.5.5 Performance Of D- r1DL in Multi-Worker Mode Using AWS-EC2 Solution 

 In addition to the experiments of the single-machine multi-core configurations conducted 

using the in-house solution, we have also applied the D-r1DL on the same datasets using the cloud 

computing service provided by AWS-EC2 as introduced in 3.4.2. We aimed to investigate the 

performance of D-r1DL when applied over multiple machines through a network interface. 

Specifically, as the Spark Python architecture and the resilient distributed dataset abstracts have 

been designed for supporting large-scale, high efficient analytic framework, we are interested to 

test its capability of utilizing the distributed computational resources provided by AWS-EC2. In 

this work, we tested the performance in terms of time and memory cost of the D-r1DL model using 

1, 2, 4, 8 and 16 workers on three datasets, while each worker has two cores for the computation. 

The D-r1DL would be running in stand-alone mode under single-worker configuration, similar to 

the configuration used in the in-house solution. As discussed in 3.4.1, the communications through 

network interfaces caused by the parallelization of computation (e.g. the broadcasting of u and v) 

will potentially increase the time cost mainly due to latencies. Thus, the single-worker 

configuration serves as the baseline for testing whether recruiting more workers will be beneficial 

from the performance perspective. The performance results of the time and memory cost are 

summarized in figure 3.9, with the baseline results from single-worker configuration highlighted.  
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Figure 3.9. Time cost for decomposing one functional network from three different fMRI datasets 

by recruiting varying numbers of workers, using the AWS-EC2 solution. The results from single-

worker (standalone mode) configuration are highlighted as blocked markers. 

 

First of all, from the results it can be seen that the AWS-EC2 solution recorded faster computation 

speed (10%~80% faster) comparing with the in-house solution, especially on larger dataset, when 

both of them use two cores. Considering the fact that the hardware configuration of AWS-EC2 

features larger memory capacity better optimized for computation purposes, such difference in 

performance is within our expectation. 

On the other hand, it is interesting to observe that for AWS-EC2 solution, there exists the break-

even point at which the multiple-worker mode outperformed the stand-alone mode, but only for 

the two larger datasets. The ratio between the time cost using standalone mode and the time cost 

using multiple workers are for the three datasets summarized in Table 3.3. It can be observed that, 

for the 700MB WM and the 2GB RS dataset, using 4 or more workers could lead to faster speed 
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comparing with the standalone mode using 1 worker. While for the smaller 300MB Emotion data, 

the standalone mode is the fastest among all experiments. Thus, it can be concluded that the multi-

worker configuration will be more suitable for analyzing larger datasets, while standalone mode 

or the simpler in-house server solution might be preferred for datasets with typically smaller sizes. 

 

Table 3.3. Ratios of time cost changes by recruiting various number of workers comparing with 

standalone mode 
 

Emotion WM RS 

2 workers 3.1 2.8 1.8 

4 workers 6.0 5.1 3.3 

8 workers 6.6 7.7 6.3 

16 workers 6.8 8.6 6.7 

 

 

The memory cost on each worker as summarized in figure 3.10 indicates that the multi-worker 

mode under AWS-EC2 solution scales good with the increasing input file size, as it maintains 

reasonable small (~100MB) memory cost for all configurations including the single-worker 

standalone mode. That is the major advantage of using Spark Python model and its resilient 

distributed dataset for the parallelization: one or multiple workers need not to load the whole 

dataset at once, but only its corresponding portion of the data according to the data partitioning 

strategy implemented in the RDDs abstract.  
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Figure 3.10. Memory cost for decomposing three different fMRI datasets by recruiting varying 

number of workers, using the AWS-EC2 solution. The results from single-worker (standalone 

mode) configuration are highlighted as blocked markers. 

 

 

3.6 Conclusions 

 In this paper, we proposed a novel and effective distributed dictionary learning model 

based on iterative rank-1 basis estimation. The model was implemented and parallelized in Spark, 

and then deployed using the in-house solution as well as the AWS-EC2 solution. The aim of this 

work is to meet the challenges posed by fMRI big data for more efficient and scalable data 

analytics methods. The testing results from running both solutions on the HCP Q1 dataset show 

that functional network decomposition using rank-1 dictionary learning could benefit from 

parallelization for both single-worker multi-core configuration and the multi-worker cluster 

configuration, with significant performance improvement especially on larger datasets. In the 

current work, we have only analyzed individual-level fMRI data, with the largest data size of 2GB. 
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As it has been shown from the performance statistics that the Spark engine supported by RDDs 

abstract could effectively perform the data partition and reduce the memory cost for large-scale 

input data, we will test the model performance on larger, population-level datasets (e.g., the HCP 

full dataset) with the size of dozens or hundreds of terabytes in the near future. The ultimate goal 

of the proposed D-r1DL model with the HELPNI neuroinformatics system is to provide an 

integrated solution for functional neuroimaging big data management and analysis, enabling high-

throughput neuroscientific knowledge discovery. In addition, the similar parallelization scheme 

used in this work for D-r1DL could be implemented on other algorithms as well. Thus, the 

experience of this work also offers a practical perspective for improving the efficiency and 

scalability of general machine learning and data mining algorithm developments. 
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CHAPTER 4 

 

A CLOUD-BASED DISTRIBUTED DEEP LEARNING PLATFORM FOR fMRI BIGDATA 

ANALYTICS 1,2 
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ABSTRACT 

 In recent years, analyzing task-based fMRI (tfMRI) data has become an essential tool for 

understanding brain function and networks. However, due to the sheer size of tfMRI data, its 

intrinsic complex structure, and lack of ground truth of underlying neural activities, modeling 

tfMRI data is hard and challenging. Previously proposed data modelling methods including 

Independent Component Analysis (ICA) and Sparse Dictionary Learning only provided shallow 

models based on blind source separation under the strong assumption that original fMRI signals 

could be linearly decomposed into time series components with corresponding spatial maps. Given 

the Convolutional Neural Network (CNN) successes in learning hierarchical abstractions from 

low-level data such as tfMRI time series, in this work we propose a novel scalable distributed deep 

CNN autoencoder model and apply it for fMRI big data analysis. This model aims to both learn 

the complex hierarchical structures of the tfMRI big data and to leverage the processing power of 

multiple GPUs in a distributed fashion. To deploy such a model, we have created an enhanced 

processing pipeline on the top of Apache Spark and Tensorflow, leveraging from a large cluster of 

GPU nodes over cloud. Experimental results from applying the model on the Human Connectome 

Project (HCP) data show that the proposed model is efficient and scalable toward tfMRI big data 

modeling and analytics, thus enabling data-driven extraction of hierarchical neuroscientific 

information from massive fMRI big data. 
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4.1 Introduction 

 

 

 The sheer complexity of the brain has forced the neuroscience community and particularly 

the neuroimaging experts to transit from the smaller brain datasets to much larger hard-to-handle 

ones. The cutting-edge technologies in the biomedical imaging field, as well as the new techniques 

in digitizing, all lead to collect further information from the structural organization and functional 

neuron activities in the brain through rich imaging modalities like fMRI [6]. Projects such as 

Human Connectome Project (HCP) [7], 1000 Functional Connectomes [11] and OpenfMRI [12] 

are the perfect examples of such large neuroimaging datasets. The primary goal of these efforts is 

to gain a better understanding of the human brain and to diagnose the neurological and psychiatric 

disorders. Among various neuroimaging methods, task-based functional magnetic resonance 

imaging, tfMRI, has been widely used to assess functional activity patterns and cognitive behavior 

of human brain [17], [18], [19], [20]. However, the main challenges are to obtain meaningful 

patterns from the intrinsic complex structure of tfMRI and also lack of clear insight into the 

underlying neural activities. Given the hierarchical structure of functional networks in human 

brain, the previously data-driven methods such as Independent component analysis (ICA) [85] and 

sparse coding for Dictionary Learning [52] as well as model-driven approaches such as General 

Linear Model (GLM) [92] have been demonstrated to disregard some of the information contained 

in the rich tfMRI data [93], [94]. Thus, these shallow machine learning models are not capable of 

fully understanding the deep hierarchical structures of functional networks in human brain [93], 

[94]. Consequently, there is an urgent call for more efficient and scalable data analytics and 

knowledge discovery methods to crack the underlying brain activities. 

Recently, new data-driven computational intensive neural network approaches such as deep 

learning have gained increasing interest among researchers, due to their efficiency of extracting 
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meaningful hierarchical features from the low-level raw data. Particularly, Convolutional Neural 

Network (CNN) is among the top deep learning methods in the scientific community [95], [96], 

[97], [98], [99], [100], [101], especially in classifying and learning image data [102]. 

In the context of high dimensional data such as fMRI, however, the large size of training examples 

(dozens of millions of time series each with hundreds of time points) and the sheer size of model 

parameters can drastically impact the computational cost and accuracy of learning the fMRI 

signals. Furthermore, most of the current neural network methods for fMRI analysis are only 

implemented for local application without any parallelization scheme [107], [108], [109], [110], 

[112]. As indicated by an extensive battery of literature [103], [104], [105], [106], many of scaling 

deep learning applications by using large-scale clusters of GPUs can solve the computational 

bottleneck for efficient and effective knowledge discovery from fMRI big data. 

Following the previous successes in using distributed GPU processing for scaling neural network 

model, in this work we aim to design a fast and scalable distributed framework and to implement 

a deep convolutional model, dubbed distributed Deep Convolutional Autoencoder (dist-DCA) to 

leverage the power of distributed optimization, distributed data partitioning, and multiple GPU 

processing. The distributed optimizer is based on an asynchronized Stochastic Gradient Descent 

(SGD) method [103]. In this model, we have used multiple replicas of a single model to optimize 

parameters, which lead to reducing the training time significantly. For data parallelization, we 

utilized Apache Spark [90] and Hadoop Distributed File System (HDFS). Considering the 

computationally intensive operations in tuning the parameter, Spark acts as a fast extract transfer 

load layer to optimize the data partitioning for the underlying Hadoop ecosystem. This is being 

accomplished via constructing the Resilient Distributed Dataset, RDD, which provides a functional 
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interface to partitioned data across the cluster. Our major contributions of this work can be 

summarized as follows. 

1) We implement a distributed deep learning framework using  TensorFlow on Spark 

to take advantage of the power of distributed GPUs cluster. 

2) We propose a distributed deep convolutional autoencoder model to gain meaningful 

neuroscience insight from the massive amount of tfMRI big data. 

3) We validate our proposed dist-DCA model using a novel high-level sparse 

dictionary learning method. 

Compared to the existing distributed deep learning frameworks such as dist-keras [117], elephas 

[123] and dl4j [124], our proposed framework has a few critical advantages: 1) The migration from 

a standalone code to a distributed version can be done with only a few lines of change. 2) Despite 

of the previous framework, our framework works efficiently with HDFS, allowing Spark to push 

datasets. 3) Integrating the model with the current pipeline is easy as Spark is in charge of 

parallelizing the data. 4) The framework is easy to deploy and scale over the cloud or in-house 

clusters. We have created an Amazon Machine Image (AMI), which in combination with a spark-

ec2 script, can easily scale up the cluster. 

The rest of this paper describes our dist-DCA model and architecture in detail. In section 4.2, we 

briefly introduce the primary components in which dist-DCA is implemented. We also review 

related works in this domain. We then thoroughly describe our deep convolutional model in section 

4.3. Section 4.4 is dedicated to data parallelism and distributed optimization. Section 4.5 describes 

our scalable experiments in large GPU clusters where we explain how our model can be easily 

distributed among dozens of GPU nodes to reduce computational time efficiently. 
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4. 2 Preliminary and Related Works 

 

 Recent advances in building affordable high-performance GPUs with thousands of cores 

were one of the critical factors in advancing large-scale deep learning models. This breakthrough 

has also encouraged the scientific community to utilize GPUs more often, as CPU’s capacity does 

not seem to grow in proportion to the rate of increasing demand. However, the limited memory 

capacity of typical GPUs on the market (usually 8 gigabytes) has become a bottleneck in feeding 

extensive datasets as far as the training speed is concerned. Therefore, two common approaches of 

data parallelism and model parallelism are of the researchers’ interest. 

 

 

Figure 4.1. An asynchronous data parallelism model using Asynchronous SGD 

 

In model parallelism, different portions of a model computation are done on different 

computational devices simultaneously for the same batch of examples while sharing the 

parameters among devices as a single model. This approach, however, is efficient for very large 

models as splitting a neural network model needs to be done in a case-by-case manner and is very 

time-consuming. Data parallelism, on the other hand, seems more straightforward for general 

implementation and can be easily scaled to larger cluster sizes. Figure 4.1 demonstrates a data 
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parallelism paradigm. We will discuss our dist-DCA data parallelism scheme in more depths in 

section 4.4. 

Our main motivation behind this work is to implement a scalable, asynchronous data parallelism 

model leveraging TensorFlow on Spark [113] to efficiently learn meaningful hierarchical 

abstraction of massive size of fMRI data. 

 

4.2.1 TensorFlow 

 

 TensorFlow [122] is a mathematical software and an open-source software library for 

Machine Intelligence, developed since 2011, by Google Brain Team and initially aimed to machine 

learning research and deep neural networks. TensorFlow is a numerical computation library using 

data flow graphs that enables machine learning experts to do more data-intensive computing, e.g., 

it contains some robust implementations of conventional deep learning algorithms. It offers a very 

flexible architecture that enables deploying computation to one or more CPUs or GPUs in a 

standalone, parallel or distributed fashion. We selected TensorFlow in our work as it efficiently 

supports distributed and parallel GPU processing and it supports Keras. However, having an easy 

to scale framework is required for running TensorFlow applications when the model and data 

become large. So, a queuing framework to both seamlessly feed data into the cluster nodes and to 

schedule and manage tasks efficiently is needed. Pipelining pre-processing, training and inferences 

steps is a known challenge yet to be addressed by the TensorFlow ecosystem. 

 

4.2.2 Spark 

 

 Since 2009, the Spark framework [90] was developed at the University of Berkeley 

AMPlab and currently is being maintained by Databricks. This framework addresses deficiencies 
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of MapReduce by introducing resilient distributed datasets (RDD) abstract where the operations 

are performed in the memory. Spark compiles the action lineages of operations into efficient tasks, 

which are executed on the Spark engine. Spark offers a functional programming API to manipulate 

Resilient Distributed Datasets (RDDs). RDDs represent a collection of items distributed across 

many computing nodes that can be manipulated in parallel. Spark Core is a computational engine 

responsible for scheduling, distributing and monitoring applications. It consists of many 

computational tasks across executor node(s) on a computation node/cluster. Spark’s scheduler will 

execute the duties across the whole cluster. Spark minimizes the repetition of data loading by 

caching data in memory, which is crucial in complex processes. Spark uses Hadoop filesystem as 

a core distributed file system (HDFS). Apache Spark is one of the most active Apache projects on 

GitHub. 

In this work, we used a combination of TensorFlow and Spark [122] to leverage the data 

parallelism and scheduling of Spark, thus enabling direct tensor communication among 

TensorFlow executors and parameter server(s). Process-to-process direct communication enables 

TensorFlow program to scale effortlessly. In section 4.4, we will describe such communication in 

more details.   

 

4.2.3 Previous Works 

 In the past few years, there have been multiple studies in adopting neural network methods 

to model fMRI data and its associated applications. For instance, Chen et al. [107] used 

convolutional autoencoder in fMRI data aggregation; Plis et al. [108] used deep belief network 

(DBN) to learn physiologically important representations from fMRI data; Suk et al. [109] 

combined the Deep Auto-Encoder with Hidden Markov Model to investigate the functional 
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connectivity in resting-state fMRI; Huang et al. [110] used the restricted Boltzmann machine to 

mine the latent sources in task fMRI data; Ren et al. [112] used convolutional neural networks to 

classify fMRI-derived functional brain networks, and Wen et al. [33] have used AlexNet to 

reconstruct the visual and semantic experiences using fMRI data. In the context of applying deep 

learning applications to fMRI data, however, most works have focused on the classification 

problem by using a single computation node. Our focus in this paper is the provision of an 

unsupervised distributed CNN encoder that effectively models the tfMRI big data. This enables us 

to learn hierarchical feature abstraction while lowering the spatial and temporal noises contained 

in fMRI data and ensures us to efficiently reduce model training and inferences time by easily 

scaling cluster of GPUs. 

 

4.3 Deep Convolutional Autoencoder 

 

 Figure 4.2 illustrates both the structure of our proposed dist-DCA model and a validation 

pipeline based on the online dictionary learning (ODL) algorithm. We will describe this pipeline 

later in section 4.5. A neuroinformatics platform [51] is used to preprocess the tfMRI signals. Then 

Keras and Tensorflow APIs are used to construct the DCA model. In section 4.4, we will explain 

how asynchronous gradient computation reduces the model’s training time by communicating and 

updating parameters values. 

A non-distributed version of DCA model is elaborated in [120]. To facilitate the understanding of 

the model, we recapitulate the model in the following paragraphs. The purpose of autoencoder in 

DCA is to first encode the input fMRI time series by mapping them into higher level feature maps 

and then to decode the signals by reversing the process. Throughout this process, we obtain a 

hierarchical abstraction of fMRI signals while denoising them. As mentioned below, we assume 
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that the model consists of only one convolutional layer both at the encoder and decoder and later 

we extend it to the real model. A summary of the key model parameters is shown in Table 4.1. 

Figure 4.2. An illustration of the dist-DCA model and the online dictionary learning validation 

study. (a) demonstrates the preprocessing step of the tfMRI data including signal extraction and 

normalization. (b) demonstrates the structure of the dist-DCA model and its components including 

all hidden layers and feature maps. (c) shows the validation study through which we obtain the 

brain activity pattern. 

 

 Table 4.1 dist-DCA model summary 

 

 

 

 

Feature map/filter  Layer1  Layer2  Layer3  Layer4  

Encoder  32/21  64/9  128/9  256/9 

Decoder  128/9  64/9  32/9  1/21  

Total Parameters 6,023,549 
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4.3.1 Encoder 

 The Encoder takes one 1D tfMRI signal x as shown in  figure 4.2.b and then by convolving 

the filters throughout the entire signal generates the feature map in the next layer using the equation 

1.  

zi = f(pi ∗ x + bi) (1) 

where x is the signal input, and pi and bi are the corresponding filter and bias for the i-th feature 

map. f is the activation function. In this paper, except for the output convolutional layer in the 

decoder layer where we use linear activation function, we use the Rectified Linear Unit (ReLU) as 

activation functions. The advantages of choosing ReLU in our study is first to reduce the possibility 

of vanishing gradient and second to represent the signal sparsely as we later use the sparse 

representation of the hidden layer for data validation. A fully connected layer is used at the end of 

the encoder to match the encoder final hidden layer feature size with the input signal and to ensure 

that the hidden states are learned with a full receptive field of input as we use it as the final desired 

output of the model as mentioned in [120]. 

H = Z × W + C (2) 

In the equation 2, the hidden layer states are represented by H, whereas Z, W and C are the feature 

maps, weight and bias of the fully connected layers, respectively. 

 

4.3.2 Decoder 

 The decoder is following a symmetric pattern and attached to the previous encoder. To 

reconstruct the input signal, first, the hidden states are mapped and reshaped to a reconstructed 

version of feature maps Z′ via fully connected layer in the decoder. In equation 3, W′ and C′ denote 

the weights and bias of the fully connected layer in the decoder, respectively. 
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Z′ = H × W′ + C′ (3) 

In the end, input signal will be reconstructed by linearly combining these feature maps, where x̂ 

denotes the reconstructed signal, and pi′ and bi′ are the filters and biases in the decoder as shown 

in equation 4. 

x̂ =  ∑ pi′i ∗ zi
′ + bi′ (4) 

The same concept is extended to a model with more layers (4 layers in encoder and 4 in the 

decoder) by transforming the input layer into different feature map in each convolutional layer by 

a chain rule. To minimize the mean square error between fMRI signals and their reconstructions, 

we also used an L2 regularization term between feature maps in the top layer of the encoder and 

the bottom layer of the decoder. Doing so ensures us that the fully connected layer does not 

randomly shuffle the timing order when reconstructing features maps in the decoder. λ in equation 

5 controls the significance of the L2 regularization term and we experimentally set it to 0.006. 

min
1

2
||X − X̂||2

2 + 
1

2
λ||Z − Z′||2

2 (5) 

 

4.3.3 Max-Pooling and Unpooling 

 The max pooling is applied on each layer after the convolutional layer. This helps first by 

substantially reducing the computational cost for the upper layer and second, by gaining 

translation-invariance. The translation-invariance is particularly important in tfMRI due to 

possible time-shift phenomena while acquiring the raw signal [115], [113]. 

Given the invertible property of max-pooling, we utilized switches [116] in the encoder to 

memorize the location of the local max in each pooling regions and then we applied the location 

of the corresponding local max value to its original position. In validation studies (section 4.5) 

when “switches” are not available, we simply use traditional up-sampling. 
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In the next section, we explain how such a model is replicated among spark executor nodes. 

 

4.4 Data Parallelism and Model Deployment 

 In data parallel approaches, a copy of the entire model is sent to each executor, parallelizing 

processing of gradient descent by partitioning data into smaller subsets. A parameter server then 

combines the results of each subset and synchronize the model parameters between each executor 

after receiving gradient delta from each executor. This can be done synchronously or 

asynchronously. However, in homogeneous environments where nodes share the same hardware 

specifications and communicate via a reliable network of communication, asynchronous [103] 

methods outperform for two reasons [103], [106]. First, executors do not wait for others to commit 

before start processing the next batch of data. Second, asynchronous method is more robust to 

failure of nodes as if one node fails the others will still train their own data partitions and fetch 

new updates from parameter server. 

For example, given a batch size of 100 elements, 5 replicas of the model compute the gradient for 

20 elements, and then combine the gradients in a separate node, known as parameter server, and 

apply parameters updates synchronously, in order to behave exactly as if we were running the 

sequential SGD algorithm with a batch size of 100 elements. 

We have implemented downpour SGD [103] in our distributed framework and have fixed the 

𝜂fetch and 𝜂push of weights and gradients to one, for speeding up convergence and for ease of 

comparison to simple SGD. Our experiment shows that relaxing consistency requirements are 

remarkably effective. Downpour SGD comes from the intuition that if we view the gradient 

descent as a water droplet toward minimizing the error rate, then individual executors can be 

considered as several droplets near each other, all separately flowing down into the same valley.  



 

81 

Moreover, we practiced a warm-up phase, wherein a single executor node starts training on its own 

data partition before starting other executors. This has significantly decreased the probability of 

diverging of each executor being trapped in its own local optima. 

 

 

Figure 4.3. Dist-DCA. Executor nodes asynchronously fetch parameters w and push gradients to 

the parameter server. Spark driver is also in charge of data penalization and task scheduling. 

  

We also chose the Adagrad optimizer [118] to keep the learning rate update for each parameter as 

the model is training and to ease extending the number of executing nodes. Adagrad uses a separate 
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adaptive learning rate for each parameter. Let ηi,K be the learning rate of the i-th parameter at 

iteration K and ∆wi,K its gradient, then in  equation 6 we obtain ηi,K. 

ηi,K = γ/√∑ (∆𝑤𝑖, 𝑗)2𝐾
𝑗=1  (6) 

Because these learning rates are computed only from the summed squared gradients of each 

parameter, Adagrad is easily implemented locally within the parameter server. γ is the constant 

scaling factor for all learning rates, which is larger than the best fixed learning rate used without 

Adagrad. The use of Adagrad extends the maximum number of model replicas that can 

productively work simultaneously. 

 

 

Figure 4.4. Dist-DCA data partitions. Spark driver keeps track of data partitions and executors’ 

computational times. Here you can see the computational time of all active nodes and how the 

training tasks are scheduled. 
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The abovementioned optimization procedures ideally address our problem in two ways. One is by 

empowering us to process massive fMRI data (nearly 10 million tfMRI time series each with 284 

time points as in this work). And, the other is by allowing us to train our relatively large model, 

consisting of more than 6 million trainable parameters, faster. As a result, our proposed dist-DCA 

benefits from asynchronous data parallelism through two main components of distributed data 

partitioning and distributed parameter optimization as it is shown in the  figure 4.3. We use Hadoop 

as our main distributed file system and Spark for tasks scheduling and data partitioning. Each 

Spark executor acts as a wrapper of TensorFlow application where one node handles the parameter 

synchronization and the rest run the TensorFlow application independently just as one single node 

setup. Each executor commits its gradient delta to parameter server after each processing batch 

elements and receives the latest parameter from the server. Meanwhile, Spark core efficiently feeds 

each of the executors through HDFS by partitioning the data based on the number of epochs and 

dataset size. The figure 4.4. shows Spark data partitioning among a cluster of 16 nodes consisting 

of one driver, two parameter servers, and 13 executors. Spark driver is responsible for handling 

tasks and for replicating TensorFlow model across a cluster. For each stage and each partition, 

tasks are created and sent to the executors. If the stage ends with a shuffle, the tasks created will 

be shuffle-map tasks. After all tasks of a particular stage are completed, the driver creates tasks for 

the next stage and sends them to the executors, and so on. This repeats until the last stage, where 

the results return to the driver. With the asynchronized implementation, we ensure that both the 

model replicas and data partitions are run independently, thus reducing the delays induced by the 

loaded executors. 
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4.5  Experiments 

 We evaluated the TensorFlow on Spark performance and scalability by our novel dist-DCA 

model using Amazon Elastic Cloud Computing (EC2). We trained this model on 9,658,464 fMRI 

time series of 48 human subjects and evaluated on 4,024,360 time series of 20 separate subjects. 

 

4.5.1 Experiments Setup 

4.5.1.1 Dataset 

 We use the Human Connectome Project (HCP) Q1 release dataset [7] containing 68 healthy 

subjects’ tfMRI data. The HCP dataset is advantageous in its high temporal and spatial resolution 

(TR=0.72s, varied temporal length from 176 to 1200 volumes; 2mm isotropic voxels, to the total 

of over 201,218 voxels’ signals per subject each with the length of 284 time points), which enables 

more detailed characterization of the brain’s functional behaviour. We use motor task fMRI data 

in this study, composed of six most basic motor tasks including visual cues (event 1), tapping left 

(right) fingers (event 2, 3), squeezing left toes (event 4, 5) and moving tongue (event 6). We 

divided the Motor task Q1 subjects into two separate subsets of 48 training and 20 validating 

subjects. For running the dist-DCA model, the preparation steps include fMRI signal pre-

processing (gradient distortion correction, motion correction, bias field reduction, and high pass 

filtering) [114], all implemented using FSL FEAT. Furthermore, we recruited our integrated 

neuroinformatic platform, HELPNI [51], to facilitate the pre-processing and to integrate different 

steps of data acquisition using its powerful pipelining ability. 
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4.5.1.2 Cloud Platform 

 The dist-DCA model is deployed on Amazon Web Service Elastic Cloud Computing, AWS 

EC2.  EC2 clusters are highly scalable, as the number of executor nodes could be adjusted 

effortlessly within the cluster. The pre-processed and converted fMRI data was stored in the cloud 

through Amazon S3 and accessible by the EC2 clusters. This enables us to pull data to newly 

initialized instances easily. We used customized scripts along with an AMI containing a 

preconfigured instance to scale our cluster according to desire. Each cluster’s node contains 

Apache Spark version 2.2.0, Hadoop version 2.6.0, TensorFlow 1.3, Keras 2.08 and python 2.7. 

To benchmark the scalability and robustness of our proposed framework, we used a variety of node 

hardware configurations with a different number of node per experiment as summarized in Table 

4.2. The configuration of nodes are as follows. G3 nodes are equipped with High-Frequency Intel 

Xeon E5-2686 v4 (Broadwell) processors, NVIDIA Tesla M60 GPU, with 2048 parallel 

processing cores and 8 gigabytes of video memory per GPU with 25 Gbps of aggregate network 

bandwidth within the cluster. G2 nodes come with Intel Sandy Bridge processors, NVIDIA Kg20 

Grid GPU with 1536 CUDA cores and 4 gigabytes of memory per GPU. 

 

Table 4.2. Cloud clusters’ configuration, each line represents a separate experiment setup. 

No of 

Spark/TF 

Executors 

vCPU 

Cores/node 

Used GPU 

Memory per 

node (GB) 

Memory 

per node 

(GB) 

EC2 

Node 

Type 

1 16 8  122 G3-4x 

2 16 8  122 G3-4x 

4 4 12 61 P2-x 

4 8 4  15 G2-2x 

4 16 8  122 G3-4x 

4 32 4 60 G2-8x 

8 16 8  122 G3-4x 

13 16 8  122 G3-4x 
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4.5.2 Performance 

 

 We aimed to investigate the performance of our framework with respect to the mean 

processing time of a single mini-batch (1 fMRI signal) for Downpour SGD with Adagard training 

as a function of the number of nodes used in a single model instance. To do so, we deployed four 

clusters of G3 instances with 4, 6, 8 and 16 nodes (correspond to 2, 4, 8 and 13 TensorFlow 

executors respectively as shown above). Given the broadband network communications, except 

for the 16-node cluster with two parameter servers, we only dedicated one parameter server along 

with one spark driver. Moreover, to evaluate the effect of network traffic on training speed, we ran 

a non-distributed version (called DCA) of the model on a single node with the same configuration. 

In all the experiments, we trained our models (dist-DCA and standalone DCA) on 9,658,464 time 

series of HCP Q1 data for 1600 batches and 6036 steps per epoch.  

Figure 4.5. demonstrates the speed of various implementations including our standalone and 

distributed ones on GPU nodes. Since the standalone DCA has no data-parallelism and no network 

overhead, it obviously outperforms the two-node cluster. However, clusters with the higher 

number of executor nodes easily exceed regarding computation time. For example, the cluster with 

13 executors outperforms the standalone model with almost seven times. It can be observed that 

training speed linearly grows as the number of executor nodes increase.  However, we expect that 

the performance drops if we increase the number of executor nodes to more than 13. This happens 

as network overhead starts to rule over our dist-DCA model performance and as executor nodes 

will have fewer tasks to do while waiting to fetch new parameters. 
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Figure 4.5. Training speed-up versus the numbers of local/spark executors. 

 

4.5.3 Scalability 

 To further demonstrates the scalability of our implemented distributed framework, we 

measured the training time of dist-DCA on the previously discussed dataset. We trained our model 

in 4 different cluster settings with 2, 4, 8 and 13 G3 executor nodes with a total of 2, 4, 8 and 13 

GPUs respectively. Please note that for the sake of comparison, in all experiments, only one GPU 

per node was used. Our goal is to obtain minimum loss in the minimum amount of training time.   

Figure 4.6. illustrates that the training time is reduced significantly by almost 51 hours in a four-

executor with 64 CPU cores (4 GPUs) compared to a two-executor cluster with 32 CPU cores (2 

GPUs). However, this increased rate does not hold from the four-node to the eight-node cluster 

with 128 cores of CPU (8 GPUS). We believe that this is due to network communication overhead 

and previously discussed warm-up phase. As explained in section 4.4, the TensorFlow application 
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(here dist-DCA model) is wrapped inside a spark executor at each node. Executors independently 

start to train the model by pushing gradients and fetching the new parameters from the parameter 

server at each stage. These recurring network communications can cause the larger clusters to not 

linearly scale-up as opposed to the ones with fewer nodes. We can conclude that network can 

always be a bottleneck in larger clusters.  

 

 

Figure 4.6: Training time of dist-DCA based on the number of CPU cores on different cluster 

setups. 

 

 

We also performed another experiment solely to evaluate the effect of CPU cores on our proposed 

framework performance. To do so, we launched 4 clusters each with 4 nodes to train dit-DCA 

model over our HCP data. In each cluster setup, we used the same environmental setup and one 

GPU card per node (total of 4 GPUs). Clusters utilized 4, 8, 16 and 32 CPU cores per node 

respectively. Demonstrated results in  figure 4.7 suggests that increasing only the number of CPUs 
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would not benefit the training speed significantly. A simple comparison of the results in Fig. 5 

with the  figure 4.7 shows that while increasing the number of GPUs in a distributed setup reduces 

training time significantly; such a conclusion cannot be drawn as opposed to increasing CPU cores. 

 

 

Figure 4.7. Training time of dist-DCA based on the number of CPU cores in clusters with the 

same number of nodes. 

 

4.5.4 Learned Features Validation and Visualization 

 To validate the learned features of our proposed model, we have performed a validation 

study on the hidden layer features of the encoder. An illustration of the computational procedure 

of this validation study is shown in the  figure 4.2c. The rationale behind this is to compare the 
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detected task-related patterns of brain activity through a sparse dictionary learning method in two 

setups. One by feeding the high-level features of the hidden layer (setup 1) contained by dist-DCA 

and the other with the raw tfMRI signals (setup 2). Sparse dictionary learning as an unsupervised 

learning algorithm aims at finding a sparse representation of input data in the form of a linear 

combination of basic elements, known as dictionaries along with their corresponding coefficients. 

[52], [121], [55]. This goal is achieved by aggregating fMRI signals into an over-complete 

dictionary matrix and a corresponding coefficient matrix through an effective online dictionary 

learning algorithm [119]. The time series of each over completed dictionary represents the 

temporal activity of a brain network, and its corresponding reference weight vector stands for the 

spatial map of every network. This method is recognized as an efficient method for inferring a 

comprehensive collection of concurrent functional networks in the human brain [52]. The spatial 

and temporal pattern of a sample network decomposed results is demonstrated in  figure 4.8. 

 

 

Figure 4.8. Top: spatial pattern visualized on cortical volumetric space of one decomposed 

network. Bottom: visualization of its temporal pattern. 
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To draw a fair comparison, we have used the same parameters in both runs. We adopted the 

parameter-tuning approach that Lv et al. suggested [52]. Both setups learned 400 dictionaries with 

0.7 sparsity regularizer [119] to achieve the best performance of the brain network inference. After 

training, the high-level features of setup one are decomposed as high-level dictionaries and 

corresponding spatial distributions. Then we use the decoder to project these high-level 

dictionaries (time series patterns) back to the signal space. The detected patterns are visualized in  

figure 4.9. As shown on the right side of the figure, although the dictionary learning analysis in 

both setups has detected all the six motor task patterns, these patterns are mixed with a large 

number of noises in setup 2, and as a result, the correlation values with task design pattern are 

quite small. On the other hand, the setup 1 contained much fewer noises in both of the time series 

patterns and spatial maps. Consequently, we can conclude that our proposed model filters noises 

in each layer and preserves the useful information of the brain activities. For the sake of simplicity 

and page limitation, we do not explain the theoretical brain model analysis and reconstruction error 

analysis. Further details of this comparison can be found at Huang et al. work [120]. 

Furthermore, we visualized the filters in each layer.  Figure 4.10 shows all 32 filters in the first 

layer of the encoder. The first layer filters summarized the most common sub-shapes of tfMRI 

time. For example, sinuous and bowl patterns of fMRI are shown with arrows at  figure 4.10. 
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Figure 4.9 Validation study of the dist-DCA. Comparing the temporal and spatial patterns of 6 

motor tasks driven from high-level features and raw-data. GLM is for reference. Pearson 

correlation of the designed tasks with learned dictionary atoms is shown as PCC value 

 

 

 

 

Figure 4.10 All 32 filters in the first layer of encoder. Arrows show the most common pattern of 

tfMRI time series. 
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4.6 Conclusions 

 Providing an effective model to represent the large scale tfMRI data to break down the 

intrinsic complex structure of tfMRI signals has been highly demanded yet challenging. A novel 

deep learning model along with distributed computing are the keys to transforming our 

understanding of some of the most complicated brain signals [120]. In this work we presented a 

novel scalable distributed deep convolutional autoencoder that hierarchically models large-scale 

tfMRI time series data while gaining a higher level abstraction of the tfMRI signal. We used 

Apache Spark and TensorFlow as the computational engines to parallelize millions of fMRI time 

series and to train our model over large cluster of GPUs. Our experiment results showed that such 

a model can effectively scale-up to dozens of computation nodes, processing extensive dataset 

over hundreds of computational cores. The significance of network overhead, however, can 

severely impact the training time.   Furthermore, our results showed that the high-level features 

are superior in task-related regions detection. The proposed autoencoder was also able to denoise 

the tfMRI signal as the learned dictionary atoms by our novel high-level sparse dictionary learning 

suggests. In general, our work contributes a novel deep convolution autoencoder framework for 

fMRI data modelling with significant application potentials in cognitive and clinical neuroscience 

in the future. 

In our future work, we plan to perform further tests to implement a parallel version of our model 

to use the computational power of multi-GPU on a multi-node distributed setting to maximize the 

performance. We also plan to use the 1200+ available subjects of all HCP releases including 

acquisitions of different types of tasks to identify brain areas in a wide range of neural systems 

(such as Relation, Working Memory, Language, Social Interaction, Motor, etc.). This will benefit 
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from our proposed distributed model, enabling data-driven hierarchical neuroscientific discovery 

from massive fMRI big data in the future. 
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CHAPTER 5 

 

CONCLUSION 

  

 The neuroscience has entered into the bigdata era just as other leading sciences. This arrival 

though requires a cultural shift among the community from enormous isolated efforts applying a 

single technique to the smaller problems in laboratories toward more horizontal approaches 

researchers integrate data collected using a variety of techniques to solve bigger problems 

addressing the central questions of how the brain functionally and structurally connected. I have 

categorized the current computational efforts of neuroscience experts for in dealing with the 

bigdata challenges in 6 groups of data management, data visualization, Cloud storage, computing 

platforms, processing pipelines and processing engines. In this dissertation, I introduced my 

endeavors to address each of the above categories, notably for fMRI data types.  

In chapter 2, I introduced HELPNI as an efficient neuroinformatics platform for data storage, 

processing pipeline, and data visualization. This platform was first intended to facilitate running 

and to control complicated neuroimaging multi-stage processes with a smooth, user-friendly web 

interface and later to give our collaborators parallel and distribute computing accessibility while 

they implement their own analytical and visualization tools. We applied our Holistic Atlases of 

Functional Networks and Interactions framework [52] (HAFNI), for the sparse representation of 

whole brain fMRI signals over more than 5 thousand publicly available fMRI images. HAFNI uses 

an online dictionary learning algorithm.  
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As explained in chapter 3, I then concentrated on developing and extending the data storage, data 

management, and also data processing aspects of HELPNI. The primary goal was to add a 

distributed file system as well as empowering the computational platform with distributed 

processing features. Consequently, we devolved a novel Distributed rank-1 Dictionary Learning 

[55] (D-r1DL) model, leveraging the distributed computing in handling large scale fMRI big data.  

We implemented the D-r1DL framework on Apache Spark and Apache Flink for distributed 

functional network analysis on large-scale neuroimaging data. I tested its performance on both the 

individual and group-wise fMRI data from HCP Q1 release dataset and demonstrated the results 

through an online visualization tool. The results show that the framework can meet the desired 

scalability and reproducibility requirements for fMRI bigdata analysis and serve as a useful tool 

for the community. The framework and the neuroinformatics system are both online as a web 

service for public usage and testing.  

In chapter 4, I further present our novel GPU-based deep learning platform for the distributed data 

processing that employs TensorFlow, Apache Spark, and Hadoop using cloud computing services. 

Finally, I demonstrate the significant performance gain of this platform enabling datadriven 

extraction of hierarchical neuroscientific information from massive fMRI big data using a 

distributed deep convolutional autoencoder model. 
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