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Abstract

Traffic forecasting is an important issue in several aspects. It may help governments and

city planners make better decisions in regards to an intelligent transportation system. Traffic

app developers and everyday travelers/commuters would also be interested in such matters.

This work contains an overview of the recent developments in the area of traffic forecasting.

In recent years, the availability of large amounts of traffic data has paved the way for data

scientists to train models with big data to obtain better accuracy. An extensive study on

forecasting traffic flow is given, covering various statistical and machine learning models,

while shedding light on the most recent and state-of-art modeling techniques in this field.

Furthermore, we studied the traffic forecasting problem using a situation-aware approach.

Differing from a purely data-driven modeling approach, in which the models are tasked

with learning everything from the data, we have chosen to be proactively aware of traffic

affecting situations that could help guide the model building process. Examples may include

the appropriate selection or removal of certain features and the choice of training data

when we are aware of certain events that may cause traffic patterns to deviate from the

norm, such as a weather condition or a holiday. As a result, we can obtain forecasts that

are generally more accurate and models that are more interpretable. Remaining aware of



certain situations can therefore effectively complement the popular data-driven modeling

approach. We also present the Quadratic Extreme Learning Machine model in this work.

The model generally exhibits improved performance over the standard Extreme Learning

Machine model while remaining relatively efficient. It may be a viable alternative to the

generally more computationally costly Neural Networks.

Index words: Vehicle Traffic Forecasting, Big Data, Data Science, Machine Learning,
Deep Learning, Time Series Analysis
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Chapter 1

Introduction

Traffic forecasting is an issue that is of interest to many people who would like to avoid traffic

congestions when commuting to work or traveling to other places. Traffic apps are developed

to better guide travelers/commuters in the fastest ways to their destinations. Furthermore,

governments and city planners are interested in traffic forecasting to gain insights that will

help them make better decisions in regards to road expansions, smart traffic lights, and other

aspects of an intelligent transportation system.

Realizing the need to collect large amounts of high-quality traffic data, many states have

deployed large numbers of traffic sensors on their major highways and urban areas. The

Caltrans Performance Measurement System1 (PeMS) is one such system that provides real-

time traffic data from more than 39,000 sensors in the state of California. Historical traffic

data in 5-minute resolutions are also available, making big data analytics possible in the area

of traffic forecasting.

The contributions of this work are as follows:

• An extensive literature review is provided, focusing on both the various models used

in traffic forecasting and a chronological overview of the developments in this field.

1http://pems.dot.ca.gov/
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• Using big data, the performance of various statistical and machine learning models

traffic flow forecasting is evaluated.

• The impacts of incorporating spatially dependent data into multivariate forecasting

models are studied and compared against the univariate cases.

• The performance of multi-step forecasts and the impacts of varying data resolutions

are discussed.

• The trade-offs/pros and cons of the models in terms of accuracy, stability, computa-

tional cost, and ease of use are explored.

• A situation-aware approach to forecasting traffic is discussed. Being aware of situ-

ations such as holidays, special weather conditions, and the locations of sensors can

be effectively used to guide the model building process and complement the popular

data-driven modeling approach.

• The Quadratic Extreme Learning Machine model is presented. It generally improves

upon the standard Extreme Learning Machine while remaining relatively efficient. Its

performance can be competitive with Neural Networks.

The rest of this work is organized as follows: Chapter 2 provides an extensive literature

review on both the various models that have been used in traffic forecasting and a chrono-

logical overview of the developments in this area. Chapter 3 is a submitted manuscript to

International Journal of Data Science and Analytics. It focuses on evaluations of the ef-

fectiveness of the various models in a variety of settings. Chapter 4 is a manuscript to be

submitted to IEEE Transactions on Big Data. The focus is to use a situation-aware ap-

proach to help with the model building process. The Quadratic Extreme Learning Machine

model is also presented. Finally, Chapter 5 concludes the work with a summary of major

findings.
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Chapter 2

Literature Review

The recent revolutions in big data and deep learning have swept across many fields of study,

and vehicle traffic forecasting is no exception. The availability of large quantities of sensor

data and the ample hardware computing resources have enabled data scientists to pursue

research in this direction. This section reviews literature in the field of vehicle traffic fore-

casting. It can be observed that many studies have shifted focus to applying deep learning

models with big data in very recent years.

2.1 Overview of Traffic Forecasting Models

A plethora of techniques have been successfully applied to traffic forecasting. An overview

of some of the most commonly used models and discussions of their effectiveness in regards

to traffic forecasting is located in the subsequent sections.

2.1.1 Regression Models

One of the most important and fundamental techniques for analytics is Regression [Galton,

1886]. Sometimes it may be helpful to regress on polynomial powers of the input features.

3



Such a model is known as a polynomial regression model. The products of pairs of features,

known as interaction/cross-terms, may also be incorporated into the polynomial regression

models. To model data that exhibit periodic patterns, trigonometric regression may also be

used, in which sine and cosine functions are used to transform the input features.

Both polynomial and trigonometric regression can certainly be used to capture the daily

traffic patterns such as flow and speed. There have been a few forecasting studies that rely on

local linear or polynomial regressions, which only consider data in the very recent past and

aim to produce forecasts in the immediate future [Sun et al., 2003, Zhong et al., 2005, Yue

et al., 2010]. In those scenarios, forecasts are produced through extrapolation. Others have

attempted to apply additional forecasting techniques after the standard traffic patterns have

been extracted using Trigonometric Regression [Zou et al., 2015, Tang et al., 2017].

Another type of Regression is known as Poisson Regression, which is a type of Generalized

Linear Model that assumes the response follows a Poisson distribution It is typically used to

model the number of times a particular event occurs within a given time interval, and the

most common traffic application is to predict traffic collisions [Ma et al., 2008, El-Basyouny

and Sayed, 2009, Abdel-Aty and Radwan, 2000, Hadayeghi et al., 2010, Li et al., 2013].

Rarely is Poisson Regression used to forecast traffic flow, though there has been one recent

work that attempted it in that direction [Okawa et al., 2017]. To apply Poisson Regression

to forecast flow, the flow data must be divided into separate time slots and each time slot

would require a separate Poisson Regression model be trained to forecast flow from the same

time slot (e.g., let Y represents the number of vehicles that pass through this road/sensor

from 10:00 AM to 10:15 AM). Speed and travel times are both continuous variables and

therefore not suitable for applying Poisson Regression.

4



2.1.2 Univariate Time Series Models

In univariate time series, the AutoRegressive Integrated Moving Average (ARIMA) [Box

and Jenkins, 1970] family of models is by far the most common and prevalent classical

statistical tool for forecasting. To train an ARIMA model, an order of Integration (I) must

be chosen first to difference a non-stationary time series as necessary. Seasonal AR and MA

components may also be incorporate to build a Seasonal ARIMA (SARIMA) model. Other

eXogenous (X) covariates may also be added to construct ARIMAX or SARIMAX models.

Many researchers in the field of traffic forecasting have chosen to apply univariate time

series methods due to its simplicity. Some of the earliest studies that applied ARIMA to

traffic forecasting can be traced back to [Ahmed and Cook, 1979] and [Levin and Tsao, 1980].

The effectiveness of SARIMA has been studied in work like [Williams and Hoel, 2003]. The

ARIMA family of models has the advantage of simple model structure, quick training time

and in many cases, decent forecasts. Nevertheless, they can suffer from issues such as the

tendency to miss extreme peaks and valleys [Davis et al., 1990, Hamed et al., 1995], which are

common scenarios in traffic patterns. They are also unable to take advantage of other useful

factors such as spatial dependencies by including the traffic information in the neighboring

road. ARIMAX and SARIMAX models can be used to alleviate some of these issues by

allowing exogenous variables. Some related studies include [Cools et al., 2009, Tsirigotis

et al., 2012, Wu et al., 2014], in which the exogenous variables can include the day of the

week, a representation of a clustered traffic pattern, weather data like rainfall, and other

related traffic data such as flow and percentage of trucks. Multivariate generalizations of the

ARIMA family of models are also commonly used to address these issues and are discussed

in more detail in Section 2.1.3.

Another classical statistical univariate time series forecasting model is Exponential Smooth-

ing (ES) [Brown, 1956, Holt Charles, 1957]. The Exponential Smoothing techniques, like

ARIMA, are simple to use and can produce somewhat decent forecasts. A study in [Chrobok
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et al., 2004] found Exponential Smoothing to work well, at least in the immediate short

terms but then was outperformed by historical averages in longer terms. In [Castro-Neto

et al., 2009], [Hong et al., 2011b] and [Guo et al., 2014], Exponential Smoothing was used

for comparisons with other better performing techniques. Work in [Tan et al., 2009] used

Exponential Smoothing as one of the building blocks of an aggregated model. A study in

[Chan et al., 2012] used Exponential Smoothing as a preprocessing technique to smooth the

data before training a Neural Network. It can be seen in these studies that Exponential

Smoothing is rarely the center of attention and the best performing model.

Both ARIMA and Exponential Smoothing, as univariate time series models, have existed

for decades. Plenty of research has been devoted to these models. Inevitably, due to the

recent progress in deep learning, there seems to be a significant leap from the traditional

statistical/theory-based analytics approach to a more data-driven, computational intelligence

and data-mining based approach [Vlahogianni et al., 2014]. For the lack of better terms,

ARIMA and Exponential Smoothing are somewhat outdated and less and less research has

been devoted to these models in the more recent years, except as a comparison technique to

shine the spotlight on other models. Nevertheless, they have been proven to be simple and

decent techniques that can serve as the new floor in performance for research in fields like

traffic forecasting.

2.1.3 Multivariate Time Series Models

In Multivariate Time Series analysis, relevant time series can be incorporated into the model

to help to forecast the primary time series or all time series simultaneously. Relevant infor-

mation can include traffic data from neighboring upstream and downstream sensors, other

traffic parameters (e.g., using speed data to help forecast flow), or data that can have sig-

nificant impacts on traffic, such as weather, special events and holidays. Multivariate Time

Series models include the multivariate generalization of the univariate ARIMA family of

6



models, known as the VARMA family of models, as well as the specific Space-Time variant,

STARIMA family of models. Notable studies that employ multivariate time series models

to forecast traffic include:

• [Kamarianakis and Prastacos, 2005]: Forecasting flow using 7.5-minute resolution data

from 25 sensors for two months in Athens, Greece. The authors concluded that the

STARIMA model achieved a somewhat similar performance with an ARIMA model.

• [Chandra and Al-Deek, 2008]: Forecasting traffic speed using 5-minute resolution speed

data from 5 sensors on I-4 (Orlando). Forecasts were produced for 5 minutes ahead

into the future. The VAR model which exploited spatial dependencies of upstream/-

downstream traffic information from neighboring sensors were shown to outperform

the basic ARIMA model.

• [Lin et al., 2009]: Forecasting flow using data in 15-minute resolutions from 78 sensors.

STARIMA model was used to encompass spatial dependencies, but no comparison was

done with other models.

• [Ding et al., 2011]: Forecasting flow using 5-minute resolution data for 10 weeks in

Beijing. Forecasts were produced for 5, 10, 15 and 30 minutes ahead. The STARIMA

model outperformed an ARIMA model.

• [Min and Wynter, 2011]: Forecasting traffic speed from 5 minutes to 1 hour ahead

into the future. Data were available in 5-minute resolutions. A VARMA variant was

used to predict traffic speed considering spatial dependencies of multiple sections/links

connected to a particular road. Forecasts were compared based on different road types

but unfortunately not compared with any other model.

• [Tsirigotis et al., 2012]: Forecasting traffic speed using data from a major freeway in

Athens, Greece. Data were collected in 10-minute resolutions and available for mul-

7



tiple lanes of the freeway. Rainfall data were also available in 10-minute resolutions

and used as an exogenous variable. Variations of VAR models were used to simulta-

neously predict traffic speed for all lanes. Flow and traffic mix (e.g., percentages of

trucks) were also separately used as an exogenous variable in addition to rainfall. The

authors concluded that the exogenous variables were generally helpful for predicting

traffic speed. VARX and Bayesian VARX models slightly outperformed ARIMA and

ARIMAX while VARMAX yielded significant improvements.

• [Vlahogianni and Karlaftis, 2013]: Forecasting speed based on both minutely and 5-

minute resolution data of speed and flow by lane as well as rainfall on a major freeway

between the airport and center of town in Athens, Greece. One-step ahead forecasts

were made. The RNN model outperformed VARMAX and ARIMAX models, especially

on datasets with the higher resolutions.

• [Salamanis et al., 2015]: Forecasting traffic speed based on speed probe data collected

using Tom-Tom GPS for 2 weeks in Berlin. Forecasts were made for 1 hour ahead.

The data were aggregated every 5 minutes. The authors proposed to segment the time

series based on different traffic patterns and train separate models for each pattern.

As a result, the authors’ STARIMA model, taking advantage of the segmentation,

outperformed its standard counterparts.

• [Duan et al., 2016]: Forecasting flow using 2-minute resolution data collected over 6

sensors on I-80 for 10 days. Forecasts were produced for up to 1 hour ahead (30 steps).

The authors proposed a STARIMA variant that changes the number of lags to be used

dynamically based on traffic speed data. The results were shown to be better than the

standard STARIMA model.

• [Wang et al., 2016b]: Predicting travel time in London. Twenty-two links were used,

varying from about 200 meters to 15.5 kilometers. The travel time per link was av-

8



eraged every 5 minutes. Data were collected for 166 days. Only daytime data be-

tween 6:00 AM and 9:00 PM were considered. Forecasts were made for 5 - 30 minutes

ahead into the future. The authors proposed a variant of Time Delay Neural Network

(TDNN) that also considered spatial correlations and named it Space-Time Delayed

Neural Network (STDNN), which slightly outperformed STARIMA and significantly

outperformed ARIMA.

2.1.4 State Space Models

Another popular approach is using State Space Model, and Kalman Filter (KF) [Kalman

et al., 1960] is a popular algorithm for estimating the states. Kalman Filter was designed to

work with linear systems. Other variants of Kalman Filter include Extended Kalman Filter

[Smith et al., 1962, McElhoe, 1966] and Unscented Kalman Filter [Julier and Uhlmann, 1997]

that can work with nonlinear systems. A primary advantage of Kalman Filter is that only the

previous state estimate and current measurement are needed to produce an estimate of the

current state without requiring any further history of observations. This characteristic makes

it ideal for real-time forecasting. A major difficulty in applying Kalman Filter to forecasting

is that all the input matrices must be supplied by the user. The user has the responsibility

of specifying the underlying linear system, which can be based on well-established theories,

models or laws, such as physical laws of motion, or other models that can be represented

in State Space forms. Based on the user’s expertise in his/her field of study, the transition

matrix can be carefully designed to represent an appropriate linear system.

A work in [Gardner et al., 1980] provided a way of representing an ARMA process using

the Kalman Filter. The transition matrix was designed to encompass the autoregressive

coefficients. The process noise was represented by taking the outer product of the Moving

Average coefficients vector with itself. Simplifying assumptions are made regarding the

measurement, for which the observations are assumed to be perfectly measured without

9



error, so Ht becomes a variant of identity matrix that simply retrieves the first element of

the state vector as an actual observation and Rt is assumed to be a 1×1 matrix of 0. Another

recent study in [Guo et al., 2014] used the Kalman Filter to represent an ARIMA + GARCH

process to take advantage of Kalman Filter’s ability to do efficient real-time processing.

The design of a Kalman Filter can vary greatly with different researchers. A work in

[Okutani and Stephanedes, 1984] may be the earliest work that applies Kalman Filter to

predict traffic flow. The transition matrix was constructed by column-wise appending l

matrices (l is the number of lags), in each of which the diagonal and neighboring elements

were constructed using vectors of traffic characteristics such as occupancy and density for that

lag and values of 0’s were filled in elsewhere. Another work in [Whittaker et al., 1997] used

traffic density and flow of hundreds of stations to represent the state vector and transition

matrix, though not explicitly given (due to its large size), was designed to encompass physical

laws of motion by using equations relating density, flow, area of lanes, velocity, etc. In [Chen

and Chien, 2001, Chien and Kuchipudi, 2003], the state vector represents travel time and the

transition matrix is learned from historical data that establishes relationships between travel

time at time t and t + 1. A work in [Barceló et al., 2010] adopted a similar style. Another

work in [Stathopoulos and Karlaftis, 2003] used MLE to estimate the matrices. A study

in [Fei et al., 2011] simply uses the identity matrix for both the transition and observation

matrices; the study was on travel time and the data resolution was minute by minute.

It is evident that the responsibility of designing an appropriate Kalman Filter largely

rests on the individual researcher. In a sense this is the extreme opposite of the Neural

Network model, usually for which the researchers simply provide the data and let Neural

Network figure out everything in its black box of knowledge. The Kalman Filter, on the other

hand, cannot be applied without explicit equations, systems or theories that are supposed

to effectively model a real-life scenario such as traffic forecasting.
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2.1.5 Hybrid Models

Hybrid or combined models have no specific shape or form. For example, the Dynamic Re-

gression model, as described in Section 9.1 of [Hyndman and Athanasopoulos, 2014], com-

bines regression and ARIMA models. It has the same forecasting ability as to an ARIMAX

model, but the primary reason for preferring a Dynamic Regression model over an ARIMAX

model is the easy interpretation of the regression parameter, which has its usual interpreta-

tion in a regression model. Though it does seem that in the literature, the ARIMAX related

terminology can be more popular.

There are some, but not much, work that utilized ensemble learning techniques for traffic

forecasting. Other ways to build hybrid models can vary greatly. A work in [Van Der Voort

et al., 1996] first applied a Kohonen self-organizing map as an initial classifier, and then

used a separate ARIMA or NN model for each class. Another work in [Zeng et al., 2008]

joined ARIMA and Neural Networks for traffic flow prediction. A study in [Hong et al.,

2011b] combined SVR with genetic algorithms and simulated annealing. A work in [Chan

et al., 2012] used Exponential Smoothing to smooth the data as a pre-processing step before

applying Neural Networks. This general technique can certainly be applied to other types

of models. A study in [Zhang et al., 2014] applied spectral analysis, ARIMA and GJR-

GARCH to model the intra-day/periodic trends, deterministic components, and volatility

in traffic flow patterns, respectively. Another work in [Zou et al., 2015] used Trigonometric

Regression to extract the basic traffic pattern and then applied time series models. In [Tang

et al., 2017], a similar approach was adopted by combining Trigonometric Regression with

Neural Networks.
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2.1.6 Support Vector Regression

The original Support Vector Machine [Cortes and Vapnik, 1995] algorithm was designed as a

binary classifier. Support Vector Regression (SVR) [Drucker et al., 1997] can be considered

as an extension to SVM. The SVR algorithm is a simple and effective tool that has been very

popular up until the early 2010s, and then it seemed to be mostly eclipsed by the great wave

of deep learning. Studies in [Castro-Neto et al., 2009, Hong et al., 2011a, Hong et al., 2011b]

have shown SVR to be an effective forecaster. In recent years, work involving SVR has seen

a reduction, except as a comparison, such as in [Lippi et al., 2013, Lv et al., 2015, Ma et al.,

2015, Tang et al., 2017, Zhao et al., 2017].

2.1.7 Neural Networks

Since the great breakthroughs in deep learning [Krizhevsky et al., 2012], deep Neural Net-

works have taken the center of the stage in many fields and traffic forecasting is no exception.

Though traditional Neural Networks have been used in this field for many years, the per-

formance of the then shallow and typically small Neural Networks was usually not the most

impressive. The class of Recurrent Neural Networks (RNN), which can take advantage of the

temporal dependencies in the data, are inherently suitable for forecasting. In general, RNN

allows edges to loop backward, as opposed to standard feedforward Neural Networks, in

which edges are only allowed to connect to neurons in the subsequent layer. The parameters

of an RNN or LSTM may be learned through algorithms such as the basic Backpropagation

Through Time [Robinson and Fallside, 1987, Werbos, 1988, Mozer, 1995]. Newer algorithms

such as Adam [Kingma and Ba, 2014] have also been developed in recent years.

In theory, an RNN should able to hand long term dependency, but in practice, it seems

to be having trouble doing so [Hochreiter, 1991, Bengio et al., 1994]. To resolve this issue,

LSTM was designed to retain long term memory. LSTM is arguably the most prominent
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type of RNN and has been successfully and widely applied in many fields such as speech

recognition [Fernández et al., 2007], machine translation [Sutskever et al., 2014], automatic

image captioning [Vinyals et al., 2015], among many others. It is also known to be used

in Google Android [Zen and Sak, 2015] and in particular, Google Voice Search [Sak et al.,

2015].

There are also other variants of the standard LSTM. One such recently developed variant

is known as the Gated Recurrent Unit (GRU) [Cho et al., 2014]. It has a simpler structure

than the standard LSTM and has been gaining increasing popularity.

In recent years, LSTM has also gained increasing popularity in traffic forecasting. Very

recent work in [Ma et al., 2015, Zhao et al., 2017, Jia et al., 2017] all concluded that LSTM is

the top-performing model when compared with a plethora of statistical and machine learning

models, including some deep learning models.

Another variant of RNN is known as State Space Neural Network (SSNN), which was

developed based on the insights that RNN can be used to represent spatiotemporal patterns

given in [Elman, 1990]. SSNN, just like an Elman Network, which is also known as a Simple

Recurrent Network due to its simple structure, has a context layer that stores the previous

state, which is like short term memory, and the context layer loops back to the hidden layer.

The input layer is usually used to represent spatial relationships in the data (e.g., different

segments of the road), and connections between the input layer and the hidden layer may

be selected based on spatial dependencies.

A study in [Van Lint et al., 2002] tested several variants of SSNN and concluded the

SSNN can be used to effectively predict travel time, though no other models were used in the

comparison. A work in [Van Lint et al., 2005] experimented with predicting travel time with

SSNN under the impact of missing data and concluded that SSNN can be resistant to missing

data. No other model was included in the comparison. A study in [Liu et al., 2006] proposed

to use an Extended Kalman Filter to train an SSNN, which yielded better performance than
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a standard Kalman Filter and an SSNN trained with the LevenbergMarquardt algorithm.

A work in [van Hinsbergen et al., 2009] compared SSNN with standard NN and found NN

performed slightly better for 5 minutes ahead predictions but SSNN performed better for 15

minutes ahead predictions. All of the work that used SSNN in the field of traffic forecasting

seems to come from the same group of people. It may be better or more appropriate to

consider SSNN as a type of Elman Network that considers spatial dependencies.

Another type of Neural Network that handles temporal data is known as Time Delay

Neural Network (TDNN) [Waibel et al., 1990]. It is typically implemented as a feedfor-

ward Neural Network but differs in some significant ways. The neurons in a TDNN received

outputs from neurons in the previous layer just like a feedforward NN, but they could also

receive the time-delayed (past) outputs from the same neurons in the previous layer. During

backpropagation, time-shifted copies of the network are made and error gradients are com-

puted across the copies and then averaged before weight updates. Thus position dependency

can be removed from the training process. TDNN can be considered to be extremely similar

to a one-dimensional Convolutional Neural Network that performs convolution on the time

axis. It differs from RNN, which uses hidden layers to keep track of the past as opposed to

time-varied input.

A study in [Lingras and Mountford, 2001] applied genetic algorithms for selecting connec-

tions between the input and hidden layers of a TDNN and demonstrated that the proposed

model worked better than a standard TDNN. No other models were included for the com-

parison. A work in [Ishak et al., 2003] concluded that TDNN performed slightly better than

simple RNN variants. Another study in [Zhong et al., 2005] showed TDNN can perform

better than weighted local regression if the training data are not separated into days of the

week, but would perform worse otherwise. Recent work in [Ma et al., 2015] used TDNN as

a comparison for LSTM, which outperformed TDNN. Besides that, not much recent work

seems to have been conducted using TDNN in the field of traffic forecasting.
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Both SSNN and TDNN seem to be fading away in recent years. LSTM seems to out-

shine TDNN in terms of effectively exploiting temporal dependencies. To account for spatial

dependencies, recent work in [Wu and Tan, 2016] proposed a hybrid model combining Con-

volution NN and LSTM. The performance of the hybrid model outperformed LSTM, SAE,

NN, and gradient boosting regression tree. Another recent study in [Yu et al., 2017] that

combined Convolutional NN with LSTM obtained similar top-performing results.

2.1.8 Concluding Remarks

The field of traffic forecasting has been well researched for many decades. A work in [Vla-

hogianni et al., 2004] provided a great survey of short term traffic forecasting up until 2004

and has been a great source for learning. The work has been updated in [Vlahogianni et al.,

2014], which has examined the shift from traditional classical statistical models to the more

data-driven machine learning models. Another work in [Mori et al., 2015] provided a com-

prehensive review of travel time forecasting. No comprehensive review seems to exist that

cover the recent revolution in deep learning and its impact on traffic forecasting. Certainly,

this is such a recent and dynamic field and many researchers have only delved into it in the

very recent years.

2.2 Chronological Survey of Related Work

This section primarily consists of a time-ordered table on the notable studies on traffic

forecasting since the early 2000s. Some of the studies were briefly discussed or mentioned in

the previous sections. The five columns of the Table 2.1 carry the following meanings:

• Models: a list of models used in a study.

• Type: the type of traffic data to forecast, such as flow or speed.
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• Data: a description of the data; the first item is always the resolution of the data.

• Horizon: the forecasting horizon, which is how far ahead into the future the forecasts

were made.

• Summary: an overall summary of findings in a study.
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Table 2.1: Chronological Survey of Traffic Forecasting Work

Models Type Data Horizon Summary

RNN, TDNN,

Partially Recurrent

Networks

Speed 5-min, 28

weekdays

(2001), 3

sensors on

I-4

up to 20

minutes

See [Ishak et al., 2003]. TDNN yielded the

best results overall, but the performance of

Elman NN (a simple RNN) and Partially Re-

current Networks were not too far behind.

Simple Exponential

Smoothing, Linear

Regression/Extrap-

olation, Combined

Model using

Exponential

Smoothing and

Historical Averages

Flow minutely,

350 sensors,

over 2 years

in Germany

up to 1

hour

See [Chrobok et al., 2004]. Considered both

directions of roads and special events includ-

ing a soccer game and a solar eclipse. Sepa-

rates days into Mon-Thu, Fri and days before

holidays, Sat except holidays, and Sun and

holidays. Found ES to perform well on imme-

diate short terms (around half an hour), and

then loses to historical averages. Linear ex-

trapolation generally did not perform as well.

A combined model that used ES during short

terms and historical averages in longer terms

was proposed.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

Locally weighted

regression, TDNN

Flow hourly, 6

sensors, 4-5

years in

Canada

1 hour See [Zhong et al., 2005]. This work made

an effort to cover roads with different traf-

fic patterns such as regional commuter, ru-

ral long-distance, summer recreational, etc.

GAs were used to filter the most recent 168

data points (1 week) to include only 24 input

data points that have maximum correlations

with the value to be predicted. TDNN per-

formed better than locally weighted regres-

sion if they were both trained with all the

available data. Regression performed better

than TDNN when the training data were sep-

arated into different days of the week.

SARIMA,

ARIMAX,

SARIMAX

Flow daily, 3

years, 4

sensors in

Belgium

1 day See [Cools et al., 2009]. This paper, in par-

ticular, studied the effect of holidays on daily

traffic counts. A binary-encoded exogenous

variable was used to indicate if a day is a hol-

iday. Six binary-encoded variables were also

used to represent seven days of a week, with

Sunday represented by all zeros in the vari-

ables. The authors found that the holiday ef-

fects were significant on commuter roads but

not as much on leisure roads.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

SVR based model,

outperforming

Gaussian maximum

likelihood-based

model, Double

Exponential

Smoothing and NN

Flow 5-min, 16

days, 7

sensors from

PeMS

5 min See [Castro-Neto et al., 2009]. This work pri-

marily focused on forecasting traffic flow un-

der abnormal conditions and special events

such as holidays and traffic collisions. The

NN structure, in terms of the number of neu-

rons in each layer, was 10-4-1. The authors’

proposed model performed the best under

both typical and atypical conditions.

VAR,

outperforming

ARIMA and

SARIMA

Flow,

Speed

5-min flow

and speed

data, 5

sensors,

March 2003

on I-4 (near

Disney)

5 min See [Chandra and Al-Deek, 2009]. The VAR

model took advantage of the spatial depen-

dencies between sensors that are on the same

freeway. Flow and Speed were forecasted us-

ing only flow and speed data, respectively,

from multiple sensors.

ARIMA, MA, and

Double Exponential

Smoothing are

aggregated using

NN, outperforming

basic ARIMA,

nonparametric

regression and NN

Flow hourly, 1

year, 1

sensor in

Guangzhou

(southern

China)

up to 3

hours

See [Tan et al., 2009]. Three time series

were extracted from data, hourly, daily and

weekly; ARIMA, MA and double ES were

used to forecast each of the three aforemen-

tioned time series, respectively. A NN was

then trained by using the forecasts from the

three base models as inputs to produce the

final output forecast. Extremely similar to

Stacking, except that each base model was

trained with a different time series.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

SSNN, NN Travel

Time

5-min, 39

morning

rush hours

(2007), 19

sensors in

Netherland

up to 15

minutes

See [van Hinsbergen et al., 2009]. Each seg-

ment of the road was represented by a neuron

in the hidden layer of SSNN. The inputs in-

cluded both flow and speed for a particular

road segment. The performance of SSNN and

NN were similar for 5 minutes ahead forecasts

(NN slightly better), and SSNN performed

better for 15 minutes ahead forecasts than

NN.

STARIMA,

outperforming

Multivariate

Adaptive

Regression Splines

and model based

on chaos theory

Flow 15-min, 1

day

(10/21/06),

10 sensors on

2nd Ring of

Beijing

15 min-

utes

See [Min et al., 2009]. The spatial matrix of

STARIMA was based on Turn Ratio Predic-

tion Model, which attempted to model the in-

coming number of vehicles at a location based

on the vehicles from neighboring streets that

could make turns into the location of interest.

GSTARIMA,

outperforming

STARIMA slightly

Flow Same as

above,

except the

chosen day is

10/21/06

Same as

above

See [Min et al., 2010]. An extended version

of the above paper. The GSTARIMA dif-

fers from STARIMA by allowing different lo-

cations to have different autoregressive and

moving average parameters. The authors

suggested that more data could potentially

further improve the results.

Local cubic and

linear regression

Speed 5-min, 2

hours, 1

sensor in LA

5 min See [Yue et al., 2010]. Using local cubic

and linear regression to estimate traffic speed.

Cubic regression generally performed better

than the linear one.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

SVR based model,

outperforming

SARIMA

Flow hourly, 1-2

months, 3

sensors in

Taipei,

Taiwan

1 hour See [Hong et al., 2011a]. The parameters of

the SVR model were optimized using the ant

colony optimization algorithm.

SVR based model,

outperforming

SARIMA, Double

and Triple

Exponential

Smoothing and NN

Flow Same as

above

Same as

above

See [Hong et al., 2011b]. An extended ver-

sion of the above paper. The proposed

SVR model used a hybrid genetic algorithm-

simulated annealing technique to learn the

parameters of SVR. The structure of the NN

was rather small, with only 3 neurons in the

hidden layer.

NN, in combination

with Simple

Exponential

Smoothing and

Levenberg-

Marquardt

algorithm

Flow minutely,

morning

rush hours

only for a

couple of

weeks, 30

sensors from

western

Australia

5 min See [Chan et al., 2012]. Simple ES was used

as a pre-processing/smoothing step before

training the NN on the smoothed data using

the Levenberg-Marquardt (LM) algorithm to

minimize the cost function. Evaluations were

mostly done with other NN that used vari-

ants of the LM algorithm, wavelet NN and

a Bayesian NN. The authors’ proposed NN

generally performed better.

ARIMA, SARIMA,

Kalman Filter,

SVR based models

and NN

Flow 15-min, 9

months, 16

sensors from

PeMS

15 min-

utes

See [Lippi et al., 2013]. The NN structure

was of size 5-10-1 and generally did not per-

form well. The SARIMA model whose pa-

rameters were estimated using a Kalman Fil-

ter was the top-performing model. However,

SVR did run much faster at the expense of

losing some accuracies.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

Geographically

Weighted Poisson

Regression,

Generalized Linear

Model

Crash Annual, 4

years of

crash counts

data from 58

counties in

CA

1 year See [Li et al., 2013]. Explanatory Vari-

ables included traffic information such as

Daily Vehicle Miles Traveled and percentage

of trucks/trailers, types of road (e.g., urban,

freeway) and social-demographic information

(e.g., age, poverty level). The Geographically

Weighted Poisson Regression model was com-

pared with a GLM model that had the same

setup except that it did not include the ge-

ographical/county information. The Poisson

Regression model performed better by having

extra county information.

Wavelet Transform

+ NN,

outperforming NN

Flow hourly, 1

month (Jan

2009), 2

sensors in

Dublin,

Ireland

1 hour See [Dunne and Ghosh, 2013]. Rainfall data

were incorporated into the models. The

study showed that incorporating rainfall data

certainly helped improve prediction.

Adaptive KF

representation of

SARIMA +

GARCH,

outperforming

Triple ES,

SARIMA and

regular KF

Flow 15-min, 3-12

months, 36

sensors in

UK and US

15 min-

utes

See [Guo et al., 2014]. The joint SARIMA

+ GARCH model was able to produce both

traffic flow prediction (mean) and the pre-

diction interval (variance). The Adaptive

Kalman Filter representation of such model

was advantageous in 1) efficiency in real-time

processing 2) ability to update process vari-

ances as time passes.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

Hybrid model of

Trigonometric

Regression and

time series models

including an ST

model, VAR and

ARIMA

Speed 5-min, 7

months, 5

sensors on

I-394E

up to 1

hour

See [Zou et al., 2015]. The Space-Time (ST)

model was based on linear combinations of

the lagged values of all stations (at most

2 lags, not all lags from all stations were

used). The variables were chosen in a step-

wise forward feature selection manner using

BIC. Both the ST and VAR models took ad-

vantage of the spatial dependencies by includ-

ing information from neighboring traffic sen-

sors. The hybrid model that extracted the

periodic components first and then fed the

residuals into time series models yielded im-

proved results for forecast-horizon that was

greater than half an hour. ST models gen-

erally performed the best and VAR was in

second place.

Deep NN built with

SAE,

outperforming NN,

SVR, and RBF NN

Flow 5-min, all

sensors

(about

15000) for

the first 3

months of

2013 from

PeMS

up to 1

hour

See [Lv et al., 2015]. The deep NN took ad-

vantage of both temporal and spatial depen-

dencies by incorporating the lagged values of

all freeway time series as inputs. No manual

selection was done to determine the relevan-

t/connected ones. Grid search was performed

to determine the number of hidden layers to

be 2-4, with the size of each layer 200-500,

depending on the actual forecasting horizon.

Continued on next page
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Table 2.1 – Continued from previous page

Models Type Data Horizon Summary

LSTM,

outperforming

Elman NN, TDNN,

NARX NN, SVR,

ARIMA and KF

Speed 2-min, 1

month (June

2013), 2

sensors on

2nd Ring of

Beijing

2 min-

utes

See [Ma et al., 2015]. Both Speed and Flow

data were used to forecast speed. The per-

formance of LSTM was overwhelmingly well

comparing with the other techniques.

kNN,

outperforming

SARIMA and

Kalman Filter

based models

Flow 15-min, 3-12

months, 30

sensors in

the UK and

US

up to 90

minutes

See [Habtemichael and Cetin, 2016]. Fore-

casts were produced using kNN to find the

closet historical traffic pattern profiles and

aggregate them. The kNN algorithm was a

very simple algorithm and the authors sug-

gested that it may be very suitable for real-

time short term traffic forecasts.

Deep Belief

Network, ARIMA

and NN

Flow 15-min, 4

months in

late 2013, 47

sensors from

PeMS

15 min-

utes

See [Koesdwiady et al., 2016]. Incorporated

weather information such as rain, tempera-

ture, humidity, etc., into a deep belief net-

work. Performance comparisons were done

with ARIMA and a neural network model

of three layers. The authors’ proposed deep

belief network outperformed ARIMA signif-

icantly and did better than the three-layer

neural network, though the margins were not

as great.

Continued on next page
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Models Type Data Horizon Summary

Bilinear Poisson

Regression

Flow probe data

converted to

20-min

resolution, 1

month in

2015, Tokyo

up to 48

hours

See [Okawa et al., 2017]. Data were divided

into 14 major routes/segments and 72 20-

minute intervals for every 24 hours. The au-

thors’ proposed Bilinear Poisson Regression

model was able to take advantage of the spa-

tial dependencies and produced forecasts for

all segments. However, this model was only

compared with two other forms of Bilinear

Poisson Regression models, one trained on all

the data (baseline 1) and the other trained on

each segment separately (baseline 2). The au-

thors’ proposed model performed much bet-

ter than baseline 1 and slightly better overall

than baseline 2.

Fuzzy NN with

Trigonometric

Regression,

outperforming NN,

SVR, ARIMA,

VAR

Speed 2-min, 1

month (Dec

2014), 3

sensors from

4th Ring in

Beijing

up to 20

minutes

See [Tang et al., 2017]. Trigonometric regres-

sion was fit on the data to capture periodic

patterns in the daily traffic speed. The peri-

odic components were then given to the au-

thors’ proposed fuzzy NN, which yielded im-

proved accuracies for multi-step forecasts.

LSTM,

outperforming

ARIMA, SVM,

RBF NN, SAE NN

and RNN

Flow 5-min, the

first

half-year of

2015, 500

sensors in

5th Ring in

Beijing

up to 1

hour

See [Zhao et al., 2017]. LSTM structures con-

sisted of 2-6 layers depending on the forecast-

horizon using trial and error. The authors’

proposed LSTM structure took advantage of

both spatial and temporal dependencies by

representing each sensor at each time point

as a memory unit.

Continued on next page
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Models Type Data Horizon Summary

LSTM,

outperforming

ARIMA, NN, DBN

Flow 2-min,

Jun-Aug in

2013 and

2014, 4

sensors

between 2nd

and 3rd Ring

of Beijing

10 and

30 min-

utes

See [Jia et al., 2017]. Rainfall data were in-

corporated into the models. The authors con-

cluded the incorporation of rainfall data gen-

erally improved forecasting performance for

most models that were tested.

RNN with GRU Flow hourly, two

months in

late 2016, 1

sensor in

Santa Clara

county (CA

PeMS)

up to 12

hours

See [Zhang and Kabuka, 2018]. The weather

data included precipitation, speed, and tem-

perature. The authors demonstrated that

the incorporation of weather data can im-

prove forecasting accuracies; however, no

other models were used for comparison pur-

poses. Only the authors’ proposed model,

with and without weather data, was included

in the performance evaluations.
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Chapter 3

Traffic Flow Forecasting on Highways

Evaluation and Comparison of

Models
1

1Hao Peng and John A. Miller. Submitted to International Journal of Data Science and Analytics,
06/20/19
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Abstract

Traffic flow forecasting is valuable to both governments for designing intelligent transporta-

tion systems and everyday commuters or travelers who are interested in the best routes to

their destinations. This work focuses on forecasting traffic flow on major highways in the

San Diego, California area using data from a large number of sensors. A large variety of

models is considered, including seasonal Autoregressive Integrated Moving-Average model,

seasonal Vector Autoregressive Integrated Moving-Average model, regression models, Sup-

port Vector Regression, Extreme Learning Machine, Feedforward Neural Networks, and two

types of Long Short-Term Memory Neural Networks. Forecasting is performed in both a

univariate manner by relying on the historical temporal data of a particular sensor as well

as in a multivariate manner by considering a neighborhood of three closely located sen-

sors. Two data resolutions are also used in the experiment, a 5-minute resolution, and a

15-minute resolution, both are commonly found in the existing literature. Multivariate fore-

casters generally improve upon their univariate counterparts. The various neural networks,

in particular, Encoder-Decoder Long Short-Term Memory Neural Networks, can achieve the

highest level of accuracy but are also the most computationally expensive. Extreme Learn-

ing Machine can be trained in a very short amount of time while achieving great accuracies.

The trade-off between accuracy and computational costs, effects of down-sampling to a lower

data resolution, as well as issues of parameter tuning and overfitting are discussed.

3.1 Introduction

Traffic flow forecasting is an important aspect of designing intelligent transportation systems

for cities and highways. It is also of great interest to everyday travelers who may desire to

know in advance the congestion levels of roads and the amount of time it would take to reach

their destinations. Much research has been devoted to studying this topic in recent years,
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as can be evident in very recent work such as [Okawa et al., 2017, Tang et al., 2017, Zhao

et al., 2017, Jia et al., 2017]. The fruits of such studies can be of good use to city planners

in governments, traffic app developers as well as everyday commuters and travelers. A

congested road segment may be identified by low traffic flow and speed, which may lead a

commuter to choose a different route.

The dawn of the big data era has also created great opportunities for data scientists to

push for advancements in research on traffic forecasting. Seeing the need to collect large

amounts of high-quality, high-resolution traffic data, numerous states in the United States

have invested in deploying a great number of traffic sensors on their busiest roads and high-

ways. The Caltrans Performance Measurement System (PeMS)2 from the state of California

is an example of such systems. High-resolution traffic data such as flow and speed are

collected in real-time from more than 39000 sensors deployed in major urban areas and

highways across the state. This work is devoted to studying traffic flow forecasting using

PeMS data collected in the San Diego, California area during the entire year of 2018. Figure

3.1 illustrates the location of all the sensors in this study.

The vast majority of existing literature on the topic of traffic forecasting has devoted to

forecasting in the immediate short terms, such as a couple of minutes ahead. It is certainly

justified, as the immediate short terms can usually best capture the dynamic nature of traffic

situations and are usually of the greatest interests. For example, a commuter would be very

interested in the optimal routes to avoid the most traffic congestions during morning rush

hours; or the amount of time, hopefully in minutes, for the commuter to arrive at his or

her workplace. Longer-term traffic forecasts can certainly be done by relying more on the

historical data of a particular location but may suffer from relatively poorer accuracies due

to larger time gaps (e.g., forecasting many hours in advance may need to heavily rely on

2http://pems.dot.ca.gov/
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Figure 3.1: Location of Sensors. Generated by mapmakerapp.com on Google Maps.
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historical averages, but if exceptional circumstances occur, such as an accident or rainy

weather, then clearly such forecasts may not be as reliable).

Many researchers have exclusively studied one-step-ahead forecasts [Lippi et al., 2013,

Guo et al., 2014, Ma et al., 2015, Koesdwiady et al., 2016]; in other words, if the data are

of the 15-minute resolution, then forecasts are produced for only 15 minutes ahead. Others,

especially recently, have also studied multi-step traffic forecasting, from minutes to a couple

of hours ahead, such as in [Lv et al., 2015, Zhao et al., 2017, Jia et al., 2017]. This study

focuses on producing forecasts for up to 12 steps in the future, which is equivalent to up to

1 hour and 3 hours ahead, in 5-minute and 15-minute data resolutions, respectively.

Univariate forecasting, meaning producing forecasts by relying on historical data from

one particular sensor alone, is also predominant in the literature, such as in [Tan et al.,

2009, Hong et al., 2011b, Lippi et al., 2013, Ma et al., 2015, Jia et al., 2017]. Multivariate

forecasting often involves using data from multiple spatially dependent sensors to produce

improved forecasts over their univariate counterparts, such as in [Chandra and Al-Deek,

2009, Lv et al., 2015, Zhao et al., 2017]. Very recently, some researchers have also chosen to

simply give data from very large numbers of sensors to a deep neural network and task it

to determine and establish any dependencies among the data [Lv et al., 2015, Zhao et al.,

2017]. Some studies have also included external variables such as weather data into their

forecasting models, such as in [Koesdwiady et al., 2016, Jia et al., 2017].

Commercial companies that provide some type of traffic/travel predictions often rely on

data such as travel distance, speed limits, and historical traffic conditions. Some companies

are also able to estimate the current traffic condition by collecting real-time data from users’

mobile devices with their permissions. To provide reliable traffic forecasting, it is crucial to

have access to accurate and current traffic data and analyze them using appropriate models.

A very recent study in [Neilson et al., 2019] provided a thorough review of the various

research questions and challenges in using big data in the domain of transportation and
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smart city. The collection of large amounts of traffic data requires careful consideration

of issues such as storage space, quality control, and data security. It is also important to

determine what types of data to collect as well as how frequently the data should be collected.

There are also various ways scientists must decide as to what and how to analyze the data,

including analysis of historical data, predictive analytics, real-time forecasting, video/image

analytics, collision preventions, etc. Such research questions and challenges must be properly

addressed to build better transportation systems. Our study focuses on predictive analytics,

traffic flow forecasting in particular, and for future work, we plan to extend our work to

real-time forecasting.

This work is an extended version of a conference proceeding [Peng and Miller, 2019].

Additional models are considered, two new experiments are conducted using 15-minute res-

olution data, and more detailed discussions of the models and the results are included. The

contributions of this work are as follows: 1) to evaluate the effectiveness of various statisti-

cal and machine learning models on univariate traffic flow forecasting using large amounts

of temporal data; 2) to study the impacts of incorporating spatially dependent data into

multivariate forecasting models; 3) to examine the performance of multi-step forecasts and

the impacts of varying data resolutions; 4) to explore the various trade-offs/pros and cons

of the models in terms of accuracy, stability, computational cost, and ease of use.

Most forecasting models used in this work are provided by the ScalaTion project

[Miller, 2018]. It is an open-source, MIT licensed, Scala-based project designed for analytics

and simulation using big data. For more details, please visit ScalaTion homepage at

http://www.cs.uga.edu/~jam/scalation.html. Various neural network models in this

study are provided by Keras [Chollet et al., 2015] using the Tensorflow [Abadi et al., 2015]

backend. The ScalaTion project is also actively developing various neural network models

and currently provides implementations of feedforward neural networks.
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The rest of this paper is organized as follows: Section 3.2 discusses the basic background

of various statistical and machine learning models included in this study. Section 3.3 is about

Related Work in traffic forecasting. Section 3.4 explains the detailed experimental, perfor-

mance evaluations, and detailed discussions of the results. Finally, Section 3.5 concludes the

paper and offers potential directions for future work.

3.2 Background

For any model to produce accurate forecasts, it must rely on appropriate sources of inputs.

Define ytl1 as the vector [yt−1, . . . , yt−l1 ], εtl2 as the vector [εt−1, . . . , εt−l2 ], and Xtl3 as a

matrix of row vectors [xt−1, . . . ,xt−l3 ]; where yt is the response at discrete time t, εt is the

residual at time t, xt is a vector of exogenous predictors at time t, ytl1 is the vector of

historical values of the response up to lag l1, εtl2 is the vector of past residuals (interpreted

as shocks) up to lag l2, and Xtl3 is the matrix containing exogenous predictors at previous

time points up to lag l3. Then a very general form of a univariate forecasting model may

take on the form of

yt = f1(ytl1 ;α) + f2(εtl2 ;θ) + f3(Xtl3 ;β) + εt (3.1)

where f1, f2, and f3 are functions that optimize parameters α, θ, and β, from input data

ytl1 , εtl2 , and Xtl3 , respectively, so that some type of norm of the residuals such as the Sum

of Squared Error (SSE) or Mean Squared Error (MSE) are minimized; ŷt is the forecasted

value at time t, i.e., yt = ŷt + εt. Sometimes a differencing operator ∇d of order d may be

appropriately applied to the original time series

zt = ∇dyt , (3.2)
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Figure 3.2: A general model. It considers three streams of data: a time series of interest and
two exogenous predictors.

where zt is the value of the differenced time series at time t and then the model in Equation

3.1 may be fitted on zt instead. The univariate model may also be generalized into the

multivariate case by including additional inputs such as the lagged values of other time

series.

The same general model in Equation 3.1 can be illustrated in Figure 3.2. Three streams

of inputs are sent to the model. The feedback of y − ŷ is needed to computed the residual-

s/shocks used in f2. The outputs of the three functions are aggregated to produce a stream

of forecasts. In Equation 3.1, the aggregation operator (“x” within a circle) represents sum-

mation, but the means of aggregation may vary in other contexts.

Most models would need ytl1 as input to make reliable forecasts. Often time series models

could make use of εtl2 , but it is not very common for machine learning models. The exogenous

predictors Xtl3 can include information such as weather conditions, time of the day, real-time

collision data, etc., and may improve models’ performance.
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3.2.1 Model Inputs and Outputs

The time series models in this study, named seasonal ARIMA and VARIMA models, just

require the time series of interests as inputs. Other models typically require the data from

the time series to be organized into training instances of input and output features. Such a

design allows more flexibility in adding and removing features. Models like neural networks

may also require the appropriate scaling of the data.

Another major difference between the time series model and other models is the time

series models must rely on previously produced forecasts as inputs to make subsequent

forecasts. For example, to produce two-step ahead forecasts, the forecasted value at step one

is needed as input to produce a forecast at step two. Other models typically would only rely

on the actual values of their input features to produce forecasts for any forecast-horizon.

The orders of the time series models can be chosen based on the plots of the autocorrela-

tion function (ACF) and partial autocorrelation function (PACF). Sample ACF and PACF

plots are in Figure 3.3. From the ACF plots, the last significant lag is 3, which suggests

an moving average order of 3. The PACF plots are slightly more difficult to interpret the

autoregressive order. The lags quickly drop off at around lag 5, but stays at roughly the same

level of significance throughout. An autoregressive order of 5 can be a reasonable choice.

Alternatively, we also used an automated approach proposed by [Hyndman et al., 2007] to

find the appropriate orders by using a grid-search like algorithm based on some type of scor-

ing function, such as Bayesian Information Criterion (BIC) [Schwarz et al., 1978]. Though

it would be feasible to try to choose the best orders for the time series models, it would be

difficult to make perfectly fair comparisons with other models [Karlaftis and Vlahogianni,

2011], mostly due to the differences in inputs and forecasting equations.

To train other models, typically an n×ki input training matrix V , where n is the number

of instances and ki is the number of input features, and an n × ko output/response matrix

W , where ko is the number of outputs/responses, are required. In this study, the following
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Figure 3.3: ACF and PACF. Generated using 15-minute resolution data from sensor ID
1108415 located on I-15 N. Order 1 seasonal differencing and order 1 simply differencing
have been applied. Plots are generated by the “forecast” package [Hyndman et al., 2019] in
R.
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input features are considered for input matrix V : 12 most recent traffic flow observations,

12 observations from the previous seasonal period (e.g., if using 5-minute resolution data

to forecast this coming Monday’s traffic from 8:00 AM to 9:00 AM, then last Monday’s

traffic flow data from the same time window are used), 12 historical averages computed from

previous 4 weeks, and the time of the day. The output training matrix W simply includes

traffic flow data for the next 12 steps. In mathematical notations, instance/row t of the

input training matrix V may be defined as

vt = [ȳt, . . . , ȳt+h−1, yt−s, . . . , yt+h−1−s, yt−h, . . . , yt−1, hrt] , (3.3)

and its associated instance/row t of the output training matrix may be defined as

wt = [yt, . . . , yt+h−1] , (3.4)

where h is the forecasting horizon, 12 in this study; s is the seasonal period; hrt is the time

of the day (e.g., 7.5 would represent 7:30 AM) associated with yt; and ȳt is the historical

average computed weekly for 4 weeks before time t (e.g., if yt represents traffic flow this

coming Monday at 8:00 AM, then ȳt is the historical average of traffic flow for the last

four Mondays at 8:00 AM). The training input matrix V may also be expanded for the

multivariate experiments by including similar data from neighboring sensors.

Note that in this design, each column of W represents a particular forecasting step.

Depending on the model, the training process may need to consider one output feature,

represented by a column in W , at a time or all output features at once.

The input features of V can be highly correlated with each other, therefore introducing

multicollinearity into the training matrix. However, as stated in Section 5.9 of [Hyndman and

Athanasopoulos, 2018], this study is not concerned with the interpretations of parameters on

the highly correlated features and the future traffic flow values are within the recent historical
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Figure 3.4: Residuals vs. time. Generated using 15-minute resolution data from sensor ID
1108615 located on I-5 S. One-step ahead forecast values produced by Extreme Learning
Machine are used to compute the residuals.

range, therefore the problem of multicollinearity is not an issue. A sample residual plot is

also available in Figure 3.4, which shows no significant trends or patterns. The histogram of

the same residuals is in Figure 3.5.
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Figure 3.5: Histogram of residuals. The mean and standard deviation are -0.0008047318 and
67.13218, respectively. Plot generated by the “hist” function in R.
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3.2.2 Time Series Models

Time series models generally involve formalization of equations with the assumption that

there are dependencies amongst the y stream (referring back to Figure 3.2) that can be

explained. Commonly use time series forecasting models include seasonal Autoregressive

Integrated Moving-Average (ARIMA) model [Box and Jenkins, 1970] and its multivariate

generalization seasonal Vector Autoregressive Integrated Moving-Average (VARIMA) model

[Sims, 1980].

Seasonal ARIMA

The seasonal Autoregressive Moving-Average model may be defined as

zt = ∇d∇D
s yt (3.5)

zt = c+

p∑
i=1

φizt−i +

q∑
i=1

θiεt−i +
P∑
i=1

Φizt−is +

Q∑
i=1

Θiεt−is + εt , (3.6)

where the differencing operator ∇ and seasonal differencing operator ∇s, of orders d and

D, respectively, may need to be applied to the time series stabilize the mean before fitting

the parameters. the parameters include an intercept c, p autoregressive parameters φ’s, q

moving-average parameters θ’s, and their seasonal counterparts, P Φ’s and Q Θ’s. Notation-

wise, it is common to express a seasonal ARIMA model as SARIMA (p, d, q)× (P,D,Q)s.

Seasonal VARIMA

The seasonal Vector Autoregressive Integrated Moving-Average model is the multivariate

generalization of the seasonal ARIMA model. Instead of only relying on the lagged values

of a single time series to make forecasts, the seasonal VARIMA model incorporates lagged

values from m time series to help make forecasts for each time series. The seasonal VARIMA
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model may be expressed as

zt = c +

p∑
i=1

Aizt−i +

q∑
i=1

Miεt−i +
P∑
i=1

Uizt−is +

Q∑
i=1

Oiεt−is + εt , (3.7)

where zt is a vector of dimension m representing the vector of differenced responses at time

t, generated similarly as in Equation 3.5 for each of the m concurrent time series; εt is a

vector of residuals at time t; c is a vector of intercepts; the parameter matrices A’s, M ’s,

U ’s, and O’s3 are all of dimensions m ×m and are the multivariate generalizations of φ’s,

θ’s, Φ’s, and Θ’s in Equation 3.6, respectively;

3.2.3 Regression Models

Regression models such as linear regression and polynomial regression are usually very effi-

cient and effective. The linear regression model may be expressed as

yt = b · [1,vt] + εt , (3.8)

where b is a vector of parameters and a value of 1 is prepended to vt (in Equation 3.3) to

account for the intercept. The left-hand side of Equation 3.8 is taken from the first column

of W , representing 1-step ahead training output values. Separate regression models would

need to be fitted for subsequent columns of W (see Equation 3.4).

Polynomial regression introduces non-linearity into the model by including additional

input features such as the powers of the original input features. A Response Surface

model would also include products of all possible pairs of original input features, known

as interaction/cross-terms, in addition to the power terms. Recently, there has been inter-

3The letters of the matrices are chosen from the first two letters of AUtoregressive and MOving-average.
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est in polynomial regression as an alternative to feedforward neural networks [Cheng et al.,

2018].

3.2.4 Support Vector Models

Support Vector Regression (SVR) [Drucker et al., 1997, Smola and Schölkopf, 2004], in its

simplest linear form, may be expressed as

yt = c+ b · vt + εt , (3.9)

where c is the intercept and b is a vector of parameters. Optimization is performed to

minimize

1

2
||b||2 , (3.10)

subject to the constraint of

|yt − (c+ b · vt)| ≤ ρ , (3.11)

that is, the predicted value must be within a threshold ρ of the observed value for all training

instances. Often, a non-linear kernel function may be used to transform the training instances

into higher dimensional space to fit a curve rather than a line. The parameter vector b may

also be expressed as a linear combination of selected training instances, known as support

vectors [Smola and Schölkopf, 2004].

3.2.5 Neural Networks Models

Neural Networks have garnered much attention in recent years, primarily due to the ad-

vancement in deep learning research.
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Feedforward Neural Networks

A standard 3-layer feedforward Neural Network (NN) with more than one output neuron

may be expressed as,

yt = fa
o (BT

o f
a
h (BT

h vt + ch) + co) + εt , (3.12)

let kh represent the number of hidden nodes, then parameters include the ki × kh param-

eter/weight matrix Bh, the kh dimensional bias/intercept vector ch, the kh × ko parame-

ter/weight matrix Bo, and the ko dimensional bias vector co. These parameters are typically

learned using gradient-based back-propagation algorithms [Rumelhart et al., 1988]. The two

activation functions, fa
h and fa

o , output signals from the input layer to the hidden layer, and

from the hidden layer to the output layer, respectively. yt and εt are the ko-dimensional

vectors of outputs and residuals, respectively; Additional hidden layers may be added to a

neural network and its forecasted/predicted values may be produced in a similar layer-by-

layer manner. The neural network model is also flexible to consider one output feature at a

time or all output features at once. Since the information can only be passed in a forward

manner, and every pair of adjacent layers are completely connected by edges, such neural

networks are also more precisely called feedforward fully connected neural networks.

If a neural network contains many layers, then it is generally referred to as a deep neural

network, though there is no universal consensus as to how many layers are considered deep

enough [Schmidhuber, 2015]. However, everyone does seem to agree that a neural network

with a single hidden layer is considered “shallow”. Other structurally varying neural networks

also exist; some have been revived from the past and others were newly invented in the wave

of deep learning.
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Extreme Learning Machine

Extreme Learning Machine (ELM) [Huang et al., 2006] may be viewed as a special type of

feedforward neural network. A simple, 3-layer ELM may be efficiently learned in a two-step

process.

1. Input-to-Hidden: apply an activation function to the inputs with fixed random weights.

This would help introduce non-linearity into the model and the state of the hidden layer

may be viewed as encrypted features that have been non-linearly transformed from the

inputs.

2. Hidden-to-Output: use linear regression to learn the outputs from the hidden fea-

tures. The linear regression problem may be effectively solved using pseudo-inverse

techniques.

The ELM model has several advantages over a traditional feedforward neural network, such

as minimal parameter tuning and low computational cost.

Long Short-Term Memory Neural Networks

The Long Short-Term Memory (LSTM) Neural Network [Hochreiter and Schmidhuber, 1997]

is a type of recurrent neural network designed to work with temporal data. The core of an

LSTM NN is an LSTM unit, which may also be viewed as a special layer. The input to an

LSTM unit/layer must contain an additional temporal dimension to the standard instances

× features training input matrix V used in other machine learning models. In other words, a

training input instance to an LSTM unit/layer contains the temporal evolution of the values

of the features. The additional temporal dimension can lead to deep LSTM structures that

take longer to train, but often produce great results. The designs of the 3-dimensional

training input structures are based on the contents of V and are explained in more detail
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in Section 3.4.3. Let vt be redefined as a vector of input features of a particular training

instance at time step t, then an LSTM unit may be defined as

ft = σ(Bf [ht−1,vt] + cf ) , (3.13)

it = σ(Bi[ht−1,vt] + ci) , (3.14)

ot = σ(Bo[ht−1,vt] + co) , (3.15)

mt = ft ∗mt−1 + it ∗ tanh(Bm[ht−1,vt] + cm) , (3.16)

ht = ot ∗ tanh(mt) . (3.17)

An illustration of the inner workings of an LSTM unit is in Figure 3.6. An LSTM

unit/layer contains a cell state that serves as a memory unit (mt) responsible for maintaining

valuable information throughout time. At each time step t, the inputs to the current temporal

layer include both the outputs from the previous layer (ht−1) and current input features (st).

Three gates exist within an LSTM unit/layer that affects the information stored in the cell

state: 1) the forget gate (ft) determines what old information is no longer relevant in the

cell state; 2) the input gate (it) determines new information that needs to be added to the

cell state; 3) the output gate (ot) determines what output signals to produce based on the

contents of the cell state. The four parameter/weight matricesB’s and the four intercept/bias

vectors c’s may be learned through the backpropagation through time algorithm [Werbos

et al., 1990].

Once the final output from an LSTM unit/layer has been obtained at the last time step,

then the output may be fed into another neural network layer, such as a fully connected

layer described in the previous section, and the final forecasted output may be obtained in

a similar layer by layer manner described in Equation 3.12.
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Figure 3.6: An LSTM unit.

A special type of LSTM NN is known as Encoder-Decoder (ED) LSTM Neural Networks

[Cho et al., 2014], specifically designed for Sequence-to-Sequence (Seq2Seq) problems. There

are two LSTM units in an ED LSTM NN. The first LSTM unit is the encoder which maps the

input sequence to a fix-length vector representation. The second LSTM unit is the decoder

that maps the fixed-length vector to the output sequence.

Other Deep Learning Models

Other neural network architectures, though not directly used in this study, have been applied

in the field of traffic forecasting in recent years. Some of the most important ones are briefly

discussed in this section.

Stacked Autoencoders An autoencoder [Ballard, 1987] is a neural network that is de-

signed to reproduce its inputs. The dimensions of the hidden layers should be smaller than

those of the input and output layers so that the information from the input neurons can be

encoded with fewer hidden neurons, thus achieving an effect of dimensionality reduction. By
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stacking layers of autoencoders, successful applications have found in filtering out noise and

recover distorted inputs [Vincent et al., 2010]. The dimensionality reduction capabilities of

autoencoders can be effective when given large quantities of input traffic data.

Convolutional Neural Network Best known for achievements in image recognition,

convolutional neural networks [Krizhevsky et al., 2012] model spatial dependencies by using

shared weights in a specific region. The number of parameters is therefore significantly

reduced from a fully connected neural network. As a result, convolutional neural networks

are much less likely to overfit. Some researchers have used convolutional neural networks to

model the spatial dependencies among the traffic sensors.

Gated Recurrent Unit Considered as a variant of LSTM, the Gated Recurrent Unit

[Cho et al., 2014] simplifies the architecture of LSTM and is, therefore, able to be trained

faster. The forget gates and input gates are merged into a single gate. The cell state and

the hidden state are also combined into one.

3.3 Related Work

In an attempt to survey recent studies in the field of traffic forecasting, the following are

chosen from the last 10 years due to their importance and relevance in the field. Many studies

began in a univariate setting, typically the dataset consists of a few sensors. As much more

data have been collected in recent years, researchers have chosen to conduct their studies in

larger scales and multivariate experiments have become more common.

Selected studies on univariate traffic flow forecasting are as follows. Cools et al. in 2009

[Cools et al., 2009] studied the effect of holidays on daily traffic flow from 3 years of daily

data collected by 4 sensors in Belgium. Forecasts were made for 1-step ahead, the equivalent

of one day ahead. The ARIMA family of models were used with additional binary-encoded
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exogenous variables representing holidays. No models were included outside the ARIMA

family for comparisons. Castro-Neto et al. in 2009 [Castro-Neto et al., 2009] found SVR to

outperform exponential smoothing and a small neural network. The size of each of the 3

layers of the neural network was 10, 4 and 1. It would be possible for the neural network

to achieve better accuracies if its structure is expanded. The traffic data span 16 days in

5-minute resolution, collected from 7 sensors in PeMS, and forecasts were made for 1-step

ahead, the equivalent of 5 minutes ahead. Tan et al. in 2009 [Tan et al., 2009] used a

neural network as a meta-learner trained by the outputs of ARIMA, Moving-Average, and

exponential smoothing models. The performance was better than ARIMA and a small NN

consisting of 3 layers of sizes 3, 16, and 1. Hourly data were collected for 1 year from a

single sensor in the Guangzhou province of southern China. Forecasts were produced for

up to 3 steps, the equivalent of 3 hours. Hong et al. in 2011 [Hong et al., 2011b] proposed

an SVR model that outperformed SARIMA, exponential smoothing, and a small neural

network that only has 3 neurons in its hidden layer. The proposed SVR model used a hybrid

of genetic algorithm and simulated annealing technique to learn the parameters. Hourly data

were collected for two months from 3 sensors in Taipei, Taiwan. Forecasts were made for

1-step ahead, the equivalent of one hour. Lippi et al. in 2013 [Lippi et al., 2013] compared

SARIMA, SVR, and NN using 15-minute resolution data collected over 9 months by 16

sensors from PeMS. The SARIMA model performed the best, but the authors’ proposed

SVR model ran much faster without losing much accuracy. A small NN was also included

but did not perform as well. The size of each layer in the NN was 5, 10, and 1. Nine months

of data from 16 sensors in PeMS were collected. The data were aggregated into 15-minute

resolutions and forecasts were produced for 1-step ahead, the equivalent of 15 minutes. In a

study done by Jia et al. in 2017 [Jia et al., 2017], LSTM NN outperformed ARIMA and other

types of neural networks. Rainfall data were also included to improve forecasting accuracies.

The LSTM NN structure is made up of a single hidden layer, which is the LSTM layer.
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The other neural networks contained one to two hidden layers, with 300 to 400 neurons per

hidden layer depending on the forecasting step. The data were of 2-minute resolutions and

collected from June to August in 2013 and 2014. Four sensors in Beijing were used in the

study and forecasts were produced for 10 and 30 minutes ahead.

Multivariate time series forecasting generally relies on using spatially dependent sensor

data to improve performance. In a study conducted by Chandra and Al-Deek in 2009

[Chandra and Al-Deek, 2009], a VAR model took advantage of the spatial dependencies

between sensors that are on the same freeway and outperformed univariate ARIMA and

SARIMA models. The data were of 5-minute resolutions and collected from 5 sensors on

I-4 in Florida (near Disney) during March 2003. Forecasts were made for 1-step ahead, the

equivalent of 5 minutes. Min et al. in 2010 [Min et al., 2010] used Generalized Space-Time

ARIMA, which can be considered as a special case of VARIMA, to model spatial dependencies

among sensors on connected roads. Its performance was only compared with Space-Time

ARIMA. Data were collected in 15-minute resolutions for one day from 10 sensors in Beijing.

Forecasts were made for 1-step ahead, the equivalent of 15 minutes. Zhao et al. in 2017

[Zhao et al., 2017] proposed an LSTM structure, consisting of 2-6 hidden layers depending

on the forecast-horizon, outperformed ARIMA, SVR, and other types of neural networks.

The data were in 5-minute resolution, collected during the first half-year of 2015, from 500

sensors in the 5th Ring (city bypass) in Beijing. Forecasts were made for up to 1 hour ahead.

It can be seen that the general trend within the last decade has been a transition from

mostly univariate studies to multivariate ones, single-step forecast to multi-step forecasts,

small amount of data to much larger amount of data, and simple models with few parameters

to structurally complex models. Most recently, many researchers have focused their attention

on applying deep learning models to traffic flow forecasting. In particular, several such papers

studied traffic forecasting using datasets from PeMS. Although not directly comparable with

the findings of the study presented here since the datasets used in the various studies are

49



from different locations in the state of California, one may still be able to obtain some

general ideas on the most recent developments in the field of traffic forecasting, particularly

the various level of accuracy measures when using datasets from PeMS.

A commonly cited study done by Lv et al. in 2015 [Lv et al., 2015] studied traffic flow

forecasting up to 1 hour. The exact geographical locations in which the datasets come from

were not explicitly stated by the authors, so they may have used all available datasets in

the first 3 months of 2013. The data were also appeared to be aggregated into 15-minute

resolution, as a couple of graphs illustrating observed vs. predicted traffic flow values are

shown in 15-minute intervals. The authors’ proposed model was a deep neural network built

using stacked autoencoders and its performance is compared with other machine learning

models, namely two other types of neural networks and SVR. The number of hidden layers

varies from 2 to 4, depending on the forecasting horizon, and the number of neurons in the

hidden layers varies from 200 to 500. The authors proposed model obtained MAPE4 in the

6% to 7% range for the forecasts in the first 4 steps, though it is rather intriguing that

their 45-minute and 60-minute ahead forecasts were more accurate than their 15-minute and

30-minute ahead forecasts. The MAPE values were mostly comparable with the ones in our

study, in which slightly lower MAPE values are obtained for the first 2 steps and slightly

higher MAPE values for the next 2 steps. Our MAPE values also gradually degrade as the

forecasting horizon increases, which is more consistent with common reasoning.

Shao and Soong in 2016 [Shao and Soong, 2016] provided a very small-scale study that

focused on a single PeMS sensor located in Irvine, CA. The authors’ primary model was

an Encoder-Decoder LSTM NN, which achieved an optimal MAPE of 5.4% in the one-

step-ahead forecast. The network structure consists of a single hidden LSTM layer with 32

neurons. Other models that the LSTM NN outperformed include machine learning models

such as SVR and a stacked autoencoder NN containing 3 hidden layers of 40 neurons each.

4In the paper it was called Mean Relative Error
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It is more difficult to attempt to draw comparisons between our study and our findings since

only the MAPE value from a single sensor was reported. In our results, the MAPE values

from different locations can vary quite a bit.

Wu et al. in 2018 [Wu et al., 2018] used data from 33 sensors in Highway I-405 to train

their proposed deep neural network built with Convolutional Neural Networks and Gated

Recurrent Units to capture spatial and temporal dependencies among the data, respectively.

All data are given to a single deep neural network to produce concurrent forecasts for all

33 sensors. The training data were from April 1, 2014, to June 20, 2015, and the testing

data were the remaining 10 days from June 2015. The authors’ approach was to let a large

deep neural network determine any spatial-temporal dependencies among all of the sensors,

while our study takes a more “local” approach that focuses on forecasting traffic at a single

sensor while considering data from upstream and downstream sensors. Their forecasts were

made for up to 9 steps, the equivalent of a 45-minute forecasting horizon, with MAPE values

ranging from around 7% to 9%. The best MAPE values for the 9-step ahead forecasts using

5-minute resolution data are around 6% to 8%, which are slightly lower than their MAPE

values.

Yang et al. in 2019 [Yang et al., 2019] chose 50 PeMS sensors from the San Diego/Imperial

area, which is by far the most similar to the ones in our study, though not as many. The

data from March and April of 2017 were used as training data and those from May were

used for testing. The authors’ proposed model is an LSTM variant that achieved a MAPE

of 6.54%, which outperformed several other machine learning models including the stacked

autoencoder based deep neural network previously mentioned in [Lv et al., 2015]. Our best

1-step ahead forecast MAPE in 15-minute data resolution is around 5.5%.

While most of the recent deep learning papers focused on accuracy, not many provided

the computational costs of their deep neural networks. Another common theme among

the recent studies has been to build larger and deeper neural networks, but the actual
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performance improvements, say over smaller networks focusing on a local area, do not seem

to be sufficiently addressed. The models, including various neural networks, in our study,

are not necessarily as large in terms of model structures as those in some of the studies

mentioned above, but the forecasting performance seems comparable. Our study also covers

a greater number of sensor locations or time range than many of the studies as mentioned

earlier, for which the researchers, in an attempt to build huge network structures, may not

be able to do so to ensure the training process completes in a reasonable amount of time.

3.4 Evaluations

This section provides details on the datasets, experimental setup, performance evaluations,

and thorough discussions of the results.

3.4.1 Dataset Description and Preprocessing

The traffic data are obtained from the Caltrans Performance Measurement System. This

study focuses on the San Diego, California area, or district 11 as classified by the Califor-

nia Department of Transportation. All data are from major highways, or Mainline (ML)

according to PeMS classification. The data are made available to download in the 5-minute

resolution. A separate dataset is also created by down-sampling the original 5-minute reso-

lution data to 15-minute resolution. The traffic flow values are aggregated and traffic speed

values averaged for every three 5-minute intervals. This process has an inherent smoothing

effect on the data and could help lower the level of noise or sudden fluctuations in the data.

A total of 373 sensors are chosen in this study by filtering out only highways with sensors

that span at least 10 miles for the multivariate experiment. The size of all the data is ap-

proximately 1.5 gigabytes. Table 3.1 contains a summary of the number of sensors selected

52



Table 3.1: Number of Sensors from Each Highway.

Highway 15 N 15 S 5 N 5 S 52 E 52 W
Sensors 38 54 78 79 4 8
Highway 8 E 8 W 78 E 78 W 805 N 805 S
Sensors 21 20 5 11 28 27

from each highway. All sensors chosen for this study must contain data for the entire year

of 2018.

The quality control system of PeMS is very robust. If missing data arise due to sensor

failure, PeMS automatically imputes the data and provides the imputed data to the users.

The users are also given information on the percentage of observed (non-imputed) data

across all lanes at any sensor location. On extremely rare occasions, the data provided by

PeMS may contain missing data for certain timestamps. In such cases, we would impute the

missing data through linear interpolation. The overall missing value rate is about 10%. All

imputed data are included to train models but excluded for performance evaluations.

3.4.2 Evaluation Metrics

Three normalized evaluation metrics are considered, Mean Absolute Percentage Error (MAPE),

Normalized Root Mean Squared Error (NRMSE), and coefficient of determination R2

MAPE =
1

T

T∑
t=1

∣∣∣yt − ŷt
yt

∣∣∣ , (3.18)
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T∑T
t=1 yt

√∑T
t=1(yt − ŷt)2

T
, (3.19)

R2 = 1−
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2
t − 1
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(
∑T
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2
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where T is the total number of instances in the evaluation set. Any instances in which yt

is imputed or takes on the value of 0 are removed from evaluation. A total of four exper-

iments are conducted, univariate and multivariate experiments using two data resolutions.

All experiments are conducted on compute nodes each with a 32-core Intel Xeon Skylake

processor and 187GB of RAM from the Sapelo2 cluster of Georgia Advanced Computing

Resource Center5.

3.4.3 Problem Analysis and Modeling

Data from the first 8 months of 2018 are used to train models and the last 4 months are

used to evaluate the performances. Only data from workdays are considered, as weekend

data are usually of significant different patterns. Such practice is common in the literature,

as can be seen in [Lippi et al., 2013, Lv et al., 2015]. Furthermore, the evaluation is focused

on daytime traffic from 7:00 AM to 7:00 PM since traffic is most congested and dynamic

during the daytime.

Some preliminary work has also been done to produce rolling forecasts by repeatedly

re-training models using the most recent data. Minor improvements result from re-training

models in weekly and daily frequencies. If models are re-trained hourly, which is more like

real-time forecasting, some decent accuracy improvements can be obtained. We plan to

devote more effort to real-time forecasting in future work.

Forecasts are produced for 12 steps ahead, or up to 1 hour for the 5-minute resolution

dataset and up to 3 hours ahead for the 15-minute resolution dataset. A baseline, weekly

historical averages computed from the previous 4 weeks, is included to compare against

other forecasting models. Figure 3.7 provides a sample on the forecasting performance of

the baseline in the 15-minute data resolution. For comparison purposes, Figure 3.8 illustrates

5https://gacrc.uga.edu/
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Figure 3.7: Actual traffic flow (black) vs. baseline forecasts (red). Sep 10-14 (M-F), 2018,
7:00 AM-7:00 PM only, sensor ID 1111542 on I-805 S near intersection with El Cajon Blvd
in San Diego.

the 1-step ahead forecasting performance on the same location and time by using the linear

regression model, which is more accurate than the baseline.

Univariate Experiments

In the univariate experiment, a model is trained only with historical data from one particular

sensor. The SARIMA (1, 0, 1)× (0, 1, 1) model is simple model found in literature [Shekhar
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Figure 3.8: Actual traffic flow (black) vs. linear regression forecasts (red). Sep 10-14 (M-F),
2018, 7:00 AM-7:00 PM only, sensor ID 1111542 on I-805 S near intersection with El Cajon
Blvd in San Diego.
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and Williams, 2008, Lippi et al., 2013, Peng et al., 2018]. The seasonal period is one week.

The parameters are optimized using Maximum Likelihood Estimation (MLE). This model

is used for both the 5-minute and 15-minute resolution data. Due to the model’s simplicity,

it may be considered as an alternative baseline to benchmark other models.

Using randomly selected sensor data, we have also attempted to construct other SARIMA

models using a grid search like algorithm proposed by [Hyndman et al., 2007] based on the

BIC [Schwarz et al., 1978] scoring function. For the 5-minute resolution data, the SARIMA

(12, 1, 4)× (1, 1, 1)1440 is found to have the best BIC value. The seasonal period of 1440 still

refers to one week (excluding weekends) in 5-minute resolution. For the 15-minute resolution

data, the SARIMA (5, 0, 3) × (1, 1, 1)480, using weekly seasonality, is found to be the best.

Both of these two models are referred to as SARIMA2 in later figures and tables, and the

distinction can be made obvious based on the data resolution.

For the majority of other models, the training input and output matrices, V and W ,

are scaled within the range of 0 and 1 using Min-Max normalization. Various regres-

sion models are considered, including multiple linear regression (Reg), quadratic regres-

sion (QuadReg), response surface (RespSurf), which is quadratic regression with additional

interaction/cross-terms, and cubic regression (CubicReg). These regression models tend to

be very fast and their parameters are solved using the QR factorization technique [Francis,

1961, Kublanovskaya, 1962].

The ν-SVR model, in which the parameter ν controls the number of support vectors,

is used in this study. The ScalaTion implementation is based on the LIBSVM package

[Chang and Lin, 2011]. The alternative Epsilon-SVR was attempted but resulted in a higher

number of chosen support vectors but lower accuracy. The Radial Basis Function (RBF)

kernel is used. Other kernels such as linear and polynomials kernels were also tested, but the

RBF kernel gives the best performance. Grid search is used to determine the parameter ν

and the cost. For the 5-minute resolution data, ν is set to 0.05 and cost is set to 1.0; for the
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15-minute resolution data, ν is set to 0.1 and cost is set to 5.0. The values of the parameter ν

are rather small because traffic flow data tend to have very strong seasonal/repeated patterns,

therefore the proportion of boundary data points serving as support vectors is generally low.

All other parameters are left to LIBSVM recommended defaults.

For the Extreme Learning Machine, the tanh activation function connecting the input

layer and the hidden layer is found to work well. The training data are therefore scaled

between -1 and 1. The number of neurons in the hidden layer is tuned to be 8 times the

number of input neurons plus one, to draw similarities with a regression model that contains

non-linearly transformed features that are 8 times the original number of features plus one

to account for the intercept.

The Feedforward Neural Network, denoted as NN in later figures, is made up of 4 layers.

The number of layers is chosen to be 4 since such models can extract features better than

shallow neural networks (e.g., 3-layer NN) [Schmidhuber, 2015]. Neural Networks of other

depths are planned to be tested in future work. The two hidden layers are using leaky

ReLU activation functions [Maas et al., 2013], for which the alpha parameter representing

the negative slope is tuned to 0.3, which is also the default value in Keras. The output layer

is using the identity activation function. The size of each hidden layer is set to be the average

of the size of its previous layer and that of the output layer. The number of training epochs

is tuned to be 300 and batch size is 32, which agrees with the recommend default batch size

in recent findings [Bengio, 2012, Masters and Luschi, 2018].

The first LSTM NN, simply denoted as LSTM in later figures, is similar to a vanilla

LSTM NN, but with one additional hidden layer using the leaky ReLU activation function

before the output layer using the identity activation function. Its first hidden layer is the

LSTM layer, which requires 3-dimensional input unlike the previously mentioned regression

and machine learning models. Instead of the instances × features training input matrix,

the LSTM layer requires a 3-dimensional structure of instances × time steps × features as
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input. Because of the addition of the time steps dimension, and to maintain the overall

design of the input matrix V , this LSTM NN is trained with the weekly evolution of the

same features defined in V . To construct the input structure, the instances in the training

2-dimensional input matrix V used in other models are simply grouped weekly for 4 weeks.

As a result, the time steps becomes 4, and the number of features remains the same, but

now the temporal evolution of those features for 4 weeks are represented. Similar to NN, the

size of each hidden layer is set to the average of the size of its previous layer and that of the

output layer. The number of training epochs is tuned to be 100. Both NN and LSTM also

have the option of training to forecast 12 output features at once or considering one output

feature at a time but train 12 separate networks. We have chosen the latter approach so

that all the weights in a neural network may be devoted to forecasting one particular time

step into the future.

The second LSTM NN is the Encoder-Decoder LSTM NN, simply denoted as ED LSTM

in later figures. The number of neurons for the encoder LSTM unit and decoder LSTM unit is

both tuned to be 150. The output layer, similar to the previous two neural networks, is using

the identity activation function. The Encoder-Decoder LSTM NN is designed to forecast a

sequence of output values (12 in this study) and its input sequence is best represented in the

“time steps” dimension rather than in the “feature” dimension in the previous LSTM NN

design. As a result, the 3-dimensional input structure is re-designed as follows: The number

of time steps is 24, consisting of 12 seasonal components and 12 most recent observations.

A feature is now re-defined to mean a single time series. For the univariate case, the time

series of traffic flow and the time of the day are considered. The number of training epochs is

tuned to be 50. The Encoder-Decoder LSTM NN also inherently considers all entire output

sequence as a whole, so training one such network per sensor is preferred.

All three neural networks in Keras are trained using Adam [Kingma and Ba, 2014] using

mean squared error as the loss function. To reduce overfitting, a random 20% slice of the
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available training instances is reserved as validation set while the neural networks are trained

with the remaining 80% of data. Any other parameter not explicitly stated is left to Keras’

default value.

Multivariate Experiments

On a given highway, there can be many sensors. Intuitively, data from traffic sensors nearby

are spatially dependent. Data from an upstream sensor can provide information on upcoming

congestions while data from downstream sensors determines the rate of traffic flow down the

road. In this multivariate traffic flow forecasting experiment, traffic sensors on a particular

highway are first sorted by either longitude or latitude, depending on the direction of the

highway; then they are divided into groups of 3, with a distance of at least 5 miles between

any neighboring sensors in the group. Most PeMS sensors in the area are approximately half

a mile apart. In a preliminary experiment in which the most closely located 3 sensors were

grouped, the improvements of most multivariate models seemed marginal. This was likely

because the sensors were simply located too closely together and could only cover a short

segment of the highway. The data patterns were also likely to be extremely similar for the

most closely located sensors.

The central sensor in each group is the focus of forecast, considering data from both the

upstream sensor and the downstream sensor. In this experiment, both flow and speed from

all 3 sensors are considered and features are generated similarly as in the univariate exper-

iment for each of the 6 concurrent time series. The seasonal VARIMA (1, 0, 1) × (0, 1, 1) is

used with matching orders from its univariate counterparts. However, no VARIMA equiv-

alents are considered for the matching SARIMA2 models, for the following reasons: 1) the

optimization of parameters of a high-order VARIMA model can be very computationally ex-

pensive; 2) though the univariate SARIMA2 models generally outperform SARIMA models,

the SARIMA2 models still reside in the lowest tier of models in terms of accuracy, implying
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that their matching VARIMA models are very likely to exhibit similar performance pat-

terns. Therefore, time and computational resources are devoted to other models with better

performance.

For other models, due to a large number of available features, a simple feature selection

process is also conducted to extract 72 most useful features, which would be approximately

one-third of all the available features. The feature selection is based on a repeated forward

selection process that picks the next best feature which optimally improves the overall ad-

justed R2 when fitting a linear regression model with the output feature in step 12, which is

the hardest one to forecast. The selected input features are used with all regression and ma-

chine learning models except for Encoder-Decoder LSTM NN because its inputs are designed

quite differently from the other models.

Besides the expanded training inputs, the other setups of the multivariate models are

mostly kept the same with their univariate counterparts, with the following exceptions. In

preliminary testings, the response surface model did not yield decent results in the multi-

variate experiment due to the increase in the number of input features, and as a result, an

increase in quadratic order of the number of cross/interaction terms. Therefore, the response

surface model is excluded from the multivariate experiments. The number of neurons in the

hidden layer of ELM is re-tuned to be 5 times the number of input neurons plus one. For

Encoder-Decoder LSTM NN, the sizes of the encoder and decoder LSTMs are also increased

to 200 to accommodate inputs that are now larger in dimensions.

3.4.4 Forecasting Evaluations

The forecasting evaluation results are aggregated from all 373 sensors using a weighted

scheme, since each sensor may have a slightly different number of observed (non-imputed)

values in the evaluation set.
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Forecasting Accuracies using 5-Minute Resolution Data

The first experiment is conducted using traffic data in 5-minute resolution, which are di-

rectly provided by PeMS. Figure 3.9 in particular illustrates the performance comparisons

of the univariate models using the MAPE metric. The figure contains two graphs, and the

lower graph simply zooms in on the top performers in the top graph for easier readability.

The forecasting accuracies are plotted across 12 forecasting steps, equating to a forecasting

horizon of 1 hour. Since the baseline exclusively relies on weekly historical data, its per-

formance is independent of the forecasting horizon, e.g., the 4-week historical average value

for this Monday at 8:00 AM remains the same whether the time of making a forecast is

7:00 AM (12-step ahead) or 7:55 AM (1-step ahead). Of course, all other models besides

the simple baseline exhibit better forecasting performances for shorter a shorter forecasting

horizon than a longer one.

The forecasting performances of the two SARIMA models are the lowest among all the

models besides the baseline, and it is worth noting that the other models do take in a much

greater number of input features. The next tier of forecasting models is a group of regression

models. Linear regression is the least accurate in this tier, while quadratic regression and

cubic regression both introduce non-linearity into the features and produce better accuracies.

The response surface model is a quadratic regression model with cross/interactive terms and

creates a reasonable boost in performance.

Among the machine learning models, SVR performs slightly better than the quadratic

and cubic regression models but not as good as the response surface model. The ELM model,

which has taken ideas from both neural networks and regression, performs better than the

response surface model, which is the top performer within the regression family.

The top tier of forecasting models belongs to the family of neural networks. The 4-

layer feedforward NN is slightly worse than the LSTM NN, particularly in the early steps.

The Encoder-Decoder LSTM NN is the overall top performer among all models and across
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Figure 3.9: Univariate MAPE comparisons in 5-min resolution. Lower graph zooms in on
the top performers.
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all forecasting steps. It seems that the deep structure of Encoder-Decoder LSTM NN has

captured the temporal dependency within the time series quite well. The cell state memory

within the LSTM unit also seems to have helped to retain useful information.

The performance comparison using the MAPE metric of the forecasting models in the

multivariate setting is shown in Figure 3.10. The relative standings of the models have mostly

remained the same, with a few notable exceptions. Among the multivariate forecasting

models, quadratic and cubic regression models have overtaken SVR in terms of performance.

The multivariate SVR model can take advantage of spatial dependencies and improve upon

its univariate counterpart, but the improvements are not as much as those of quadratic and

cubic regression models. ELM has also further closed its gap with other types of neural

networks. The standard feedforward NN has slightly improved its performance upon its

univariate counterparts, but the other two types of LSTM Neural Networks seem to suffer

from overfitting that results in slightly lower accuracies.

Figure 3.11 and Figure 3.12 are the performance comparisons in the NRMSE metric

of the univariate and multivariate models, respectively. The univariate comparisons bear

many similarities to the univariate MAPE comparisons in Figure 3.9. In the multivariate

comparisons, the feedforward NN becomes the top performer and ELM achieves on-par

performance with Encoder-Decoder LSTM NN.

Figure 3.13 and Figure 3.14 show the performance comparisons using the R2 metric of the

univariate and multivariate models, respectively. Once more, the univariate R2 comparisons

agree with those of the MAPE and NRMSE metrics. In the multivariate comparisons, the

feedforward NN and ELM models are the top performers, with NN having a slight edge

overall.

Table 3.2 shows the average improvements across all 12 steps of the multivariate mod-

els upon their univariate counterparts in the 3 evaluation metrics. The percentages are

computed by first taking the difference between the univariate metric and the multivariate
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Figure 3.10: Multivariate MAPE comparisons in 5-min resolution. Lower graph zooms in on
the top performers.
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Figure 3.11: Univariate NRMSE comparisons in 5-min resolution. Lower graph zooms in on
the top performers.
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Figure 3.12: Multivariate NRMSE comparisons in 5-min resolution. Lower graph zooms in
on the top performers.
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Figure 3.13: Univariate R2 comparisons in 5-min resolution. Lower graph zooms in on the
top performers.
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Figure 3.14: Multivariate R2 comparisons in 5-min resolution. Lower graph zooms in on the
top performers.
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Table 3.2: Average Improvements of Multivariate Models over Univariate Models (5-min)

Model MAPE NRMSE R2

VARIMA 5.93% 5.16% 11.07%
Reg 6.08% 5.69% 4.26%
QuadReg 6.10% 5.52% 3.82%
CubicReg 6.45% 5.63% 3.84%
SVR 4.53% 4.22% 2.82%
ELM 3.23% 3.02% 1.84%
NN 1.35% 1.80% 0.84%
LSTM -1.01% -1.34% -1.12%
ED LSTM -1.01% -1.12% -0.94%

metric, and then divide by the univariate metric. An additional negative sign is applied to

the R2 metric calculations so that all positive percentages across the 3 metrics indicate im-

provements. It can be observed that generally, the time series models and regression models

tend to have greater improvements than the machine learning models when given spatially

dependent data from the upstream and downstream sensors. As for the two LSTM Neural

Networks, the presence of data from two additional sensors seems to have also introduced

more noise that the LSTM NNs, unfortunately, have unnecessarily fitted, even by using

validation sets during training does not seem to completely prevent overfitting.

Forecasting Accuracies using 15-Minute Resolution Data

The second experiment is conducted by down-sampling the original 5-minute resolution data

to 15-minute resolution, a common traffic data resolution found in the literature. The number

of steps ahead to produce forecasts is still 12, which is equivalent to making forecasts up to

3 hours ahead.

Figure 3.15 and Figure 3.16 are the performance comparisons using the MAPE metric

of the univariate and multivariate models, respectively. The SARIMA model has performed
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Figure 3.15: Univariate MAPE comparisons in 15-min resolution.

considerably better than its 5-minute data resolution counterpart, most likely due to the

reduction of noise through down-sampling, though it still resides in the lowest tier of all

forecasting models presented in the figure. The SARIMA2 model has also improved and its

performance is only slightly worse than linear regression overall. The other models in Figure

3.15 have mostly maintained their relative standings when comparing with their 5-minute

resolution counterparts. In the multivariate comparisons in Figure 3.16, Encoder-Decoder

LSTM NN is the overall top performer, though NN and LSTM NN do perform slightly better

in the first few early steps.

Figure 3.17 and Figure 3.18 are the NRMSE comparisons of the univariate and multi-

variate models, respectively. Figure 3.19 and Figure 3.20 are the R2 comparisons of the
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Figure 3.16: Multivariate MAPE comparisons in 15-min resolution.
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Figure 3.17: Univariate NRMSE comparisons in 15-min resolution.

univariate and multivariate models, respectively. Both sets of figures are consistent with the

findings of the MAPE figures.

Table 3.3 provides the average improvements of the multivariate models over their univari-

ate counterparts. Notably, the Encoder-Decoder LSTM NN does improve in all 3 metrics by

using 15-minute resolution data, possibly due to the noise reduction effects of down-sampling.

On the other hand, The LSTM NN still seems to overfit. It is likely because this model, in

particular, considers selected features up to 4 weeks while other models only consider the

seasonal component from the previous week. The additional data in two extra sensors from

the past four weeks might have provided more noise than useful information.
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Figure 3.18: Multivariate NRMSE comparisons in 15-min resolution.

Table 3.3: Average Improvements of Multivariate Models over Univariate Models (15-min)

Model MAPE NRMSE R2

VARIMA 3.21% 3.93% 5.25%
Reg 2.82% 4.21% 3.55%
QuadReg 2.84% 3.72% 2.64%
CubicReg 3.48% 3.93% 2.69%
SVR 3.00% 4.03% 2.64%
ELM -0.55% 0.47% 0.10%
NN 0.24% 1.19% 0.16%
LSTM -3.29% -2.34% -1.80%
ED LSTM 0.36% 1.74% 0.81%
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Figure 3.19: Univariate R2 comparisons in 15-min resolution.
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Figure 3.20: Multivariate R2 comparisons in 15-min resolution.
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Table 3.4: Average means and standard deviations using univariate 5-min resolution data.

Model MAPE-m MAPE-sd NRMSE-m NRMSE-sd R2-m R2-sd
Baseline 12.66% 7.39% 15.15% 3.02% 40.36% 23.84%
SARIMA 11.48% 5.84% 13.76% 3.04% 49.42% 22.36%
SARIMA2 9.84% 5.49% 11.96% 3.02% 59.47% 23.67%
Reg 8.90% 5.50% 10.27% 2.19% 71.39% 13.93%
QuadReg 8.70% 5.42% 10.08% 2.25% 72.51% 13.77%
CubicReg 8.70% 5.47% 10.06% 2.21% 72.61% 13.58%
SVR 8.63% 5.81% 9.91% 2.41% 73.20% 14.14%
RespSurf 8.26% 5.43% 9.74% 2.39% 74.07% 14.28%
ELM 8.19% 5.47% 9.64% 2.21% 74.55% 13.31%
NN 7.81% 5.38% 9.41% 2.27% 75.46% 13.70%
LSTM 7.76% 5.66% 9.37% 2.34% 75.65% 13.78%
ED LSTM 7.64% 5.59% 9.27% 2.28% 76.01% 13.81%

Model Rankings and Stability

Table 3.4 and Table 3.5 provide the average means (“-m”) and standard deviations (“-

sd”), respectively, across all datasets and all steps using the 5-minute resolution data. The

standard deviations can be used to measure the level of stability of the models across a

variety of datasets. Table 3.6 and Table 3.7 are similar tables for the 15-minute resolution

data. The models in the tables are also ranked according to the mean MAPE values; the

best performing models are placed at the bottom of the tables.

From the four tables, it may be observed that typically, regression models tend to reduce

their standard deviations when presented with spatially dependent data in the multivariate

experiment while the machine learning models tend to have greater standard deviations

when given data from more sensors. The regression models appear to be more robust in

guarding against noise when presented with more data while the machine learning models

such as neural networks are more prone to be misled by the additional noise, though their

forecasting accuracies do also tend to be higher.
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Table 3.5: Average means and standard deviations using multivariate 5-min resolution data.

Model MAPE-m MAPE-sd NRMSE-m NRMSE-sd R2-m R2-sd
Baseline 12.66% 7.39% 15.15% 3.02% 40.36% 23.84%
VARIMA 10.79% 5.84% 13.01% 3.15% 54.20% 22.97%
Reg 8.36% 5.55% 9.69% 2.17% 74.38% 13.12%
SVR 8.24% 5.88% 9.49% 2.54% 75.24% 13.90%
QuadReg 8.17% 5.38% 9.52% 2.16% 75.24% 12.83%
CubicReg 8.14% 5.34% 9.49% 2.12% 75.36% 12.82%
ELM 7.93% 5.66% 9.35% 2.18% 75.91% 13.06%
LSTM 7.85% 5.44% 9.50% 2.38% 74.83% 14.53%
ED LSTM 7.72% 5.29% 9.38% 2.35% 75.30% 14.79%
NN 7.70% 5.56% 9.25% 2.22% 76.10% 13.67%

Table 3.6: Average means and standard deviations using univariate 15-min resolution data.

Model MAPE-m MAPE-sd NRMSE-m NRMSE-sd R2-m R2-sd
Baseline 11.27% 13.58% 13.89% 2.92% 44.64% 24.01%
SARIMA 9.74% 12.39% 11.87% 2.83% 58.34% 20.17%
SARIMA2 9.17% 12.34% 11.06% 2.74% 63.66% 18.81%
Reg 8.96% 12.53% 10.47% 2.32% 67.27% 15.69%
QuadReg 8.65% 12.72% 10.04% 2.38% 70.06% 15.09%
CubicReg 8.61% 12.76% 9.98% 2.37% 70.35% 15.16%
SVR 8.48% 12.65% 9.76% 2.36% 71.33% 14.59%
RespSurf 8.04% 12.52% 9.42% 2.56% 73.05% 16.14%
ELM 7.95% 12.42% 9.28% 2.49% 73.58% 16.60%
NN 7.54% 12.43% 8.92% 2.33% 75.43% 14.89%
ED LSTM 7.46% 11.41% 8.84% 2.33% 75.65% 15.54%
LSTM 7.38% 11.99% 8.78% 2.30% 76.06% 14.94%
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Table 3.7: Average means and standard deviations using multivariate 15-min resolution data.

Model MAPE-m MAPE-sd NRMSE-m NRMSE-sd R2-m R2-sd
Baseline 11.27% 13.58% 13.89% 2.92% 44.64% 24.01%
VARIMA 9.43% 12.32% 11.40% 2.84% 61.22% 20.15%
Reg 8.73% 12.74% 10.05% 2.29% 69.61% 15.25%
QuadReg 8.41% 12.52% 9.67% 2.25% 71.88% 14.38%
CubicReg 8.33% 12.31% 9.59% 2.25% 72.22% 14.52%
SVR 8.24% 12.91% 9.38% 2.34% 73.19% 14.40%
ELM 8.00% 12.45% 9.25% 2.28% 73.69% 15.54%
LSTM 7.62% 12.90% 8.99% 2.36% 74.73% 15.92%
NN 7.52% 13.05% 8.82% 2.34% 75.56% 15.82%
ED LSTM 7.43% 13.24% 8.68% 2.31% 76.24% 15.71%

3.4.5 Discussions

After examining the forecasting models in a total of four experiments, univariate and multi-

variate forecasting using two different data resolutions, we make the following observations.

Effects of Data Resolution

The 5-minute resolution traffic data can be a little noisy. In experiments using 15-minute

resolution data, the best MAPE for 1-step ahead forecast is a little over 5%. On the other

hand, if using 5-minute resolution data, the best MAPE values for steps 1-3 are around 6%

to 7%. In other words, it is easier to accurately forecast the number of vehicles that have

passed a particular location in 15 minutes than to separately forecast three consecutive 5-

minute periods. The smoothing effects of down-sampling can help models to maintain better

forecasting accuracies for a longer forecasting horizon. Certain models, such as SARIMA,

can be very sensitive to noise or sudden fluctuations in the data, especially if the number

of parameters is to be kept relatively low. Depending on the applications, applying down-

sampling to high-resolution traffic data can be beneficial; but if accurate high-resolution
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forecasts are required, then it would be worthwhile to devote further research into effectively

utilizing high-resolution data while minimizing the negative influence of noise.

Parameter Tuning and Overfitting

Most machine learning models require parameter tuning. Some researchers may spend

months tuning their neural networks’ parameters to achieve better results on a particular

dataset, but if given a different problem or dataset, then the previously tuned parameters

may not be effective. On the other hand, if given datasets of similar patterns, then the pa-

rameters tuned for one dataset may suffice for others. In this study, there are large amounts

of data from hundreds of locations, so it is certainly not feasible to fine-tune a separate set

of model parameters for data from each sensor.

Another interesting observation is that sometimes it can be difficult to tell if the neural

networks have overfitted. For example, in Figure 3.10, the 3 multivariate neural networks are

the top performers. Many in the deep learning community have also concluded the same for

other types of problems. However, only by examining Figure 3.9 we can see that the 2 types

of LSTM NNs can perform slightly better using only univariate data and the multivariate

LSTM NNs have likely overfitted to the extra noise introduced by additional sensors. In

the field of traffic forecasting, such comparisons between complex and deep models taking

in large amounts of input data and relatively smaller models do not seem to be sufficiently

addressed by the deep learning community. Nevertheless, even with some overfitting, the

neural networks are still able to stay in the top tier of forecasters.

There are also other models that require little effort in parameter tuning and are much

less likely to overfit. They are usually statistical models such as regression, as well as ELM,

a type of neural network. Such models can be quickly and easily applied to a great variety

of problems and have decent performances. For the traffic flow forecasting problem in this

study, the neural networks that require effort in tuning parameters and can easily fall into the
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trap of overfitting, are still able to produce the best accuracies. Though the other models,

especially ELM and some regression models, are not that much behind in terms of accuracy

but are much faster to train. The choice is once again for the users to make depending on

what levels of accuracies are acceptable to them and how much time and effort they are

willing to invest to tune the models.

Accuracy and Computational Cost Trade-Off

Another closely related issue is the trade-off between accuracy and computational cost. The

various neural networks have the highest level of accuracy but are also the slowest to train.

On the other hand, the regression models and ELM are lighting fast and can produce decent

results. Of course, the neural networks may leverage GPU computing powers to decrease

training time, but such computing resources may not be accessible to everyone. The ultra-

low training times of the regression/ELM models may also be more suitable for real-time

traffic forecasting, in which models may need to be repeated re-trained with the most up-to-

date data. Since the nodes in the Sapelo2 cluster are often highly loaded, the actual timing

results are not as reliable since they can fluctuate greatly depending on the load of the nodes.

Therefore, only rough estimates of the computational costs of the models are given in Table

3.8, which also provides an overall summary of findings on the various forecasting models in

this study.

3.5 Conclusion and Future Work

In this study, we focus on multi-step forecasting of traffic flow using large amounts of sensor

data from the San Diego, California area. Various models are extensively evaluated in terms

of accuracy, stableness, computational cost, and ease of use in terms of parameter tuning.

The incorporation of spatially dependent data generally improves the performance of most
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Table 3.8: Summary of Forecasting Models.

Model Accuracy Speed Comments
SARIMA Low Fast Highly sensitive to noise/sudden fluctuations in

the data.
SARIMA2 Low Fast A little slower than SARIMA, but more accu-

rate.
VARIMA Low Medium MLE optimization can become slow for large

numbers of parameters.
Reg Medium Very Fast Fastest model, decent accuracy.

QuadReg Medium Very Fast Improves upon accuracy of linear regression
without adding too much computational costs.

RespSurf High Fast Univariate only. The interactive/cross-terms
can be effective in boosting accuracies, but too
many such terms (e.g., from an increasing num-
ber of raw input features) can greatly increase
computational costs and lower accuracies.

CubicReg Medium Very Fast About the same level of accuracy as QuadReg
but a bit slower.

SVR Medium Medium Often outperforms QuadReg and CubicReg, but
slower. Consistently outperformed by ELM,
which is also much faster.

ELM High Fast Highest accuracy besides the other neural net-
works, reasonably fast, and mimimal parameter
tuning.

NN Very High Slow High accuracy, much slower than previously
mentioned models, parameters tuning can be-
come very tedious, may use GPU to improve
training speed if available.

LSTM Very High Slower Most likely to suffer overfitting in multivariate
experiments, possibly due to consideration of
data that are too far back in time.

ED LSTM Very High Slowest Often the most accurate model, always the
slowest.
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models when compared to those that rely on univariate temporal data alone. The down-

sampling process also has an inherent smoothing effect on the data that help models to

produce more accurate forecast in slightly larger intervals and for longer terms. The various

types of neural networks, in particular, the Encoder-Decoder LSTM NN, produce the best

accuracies overall, though they are also computationally the most expensive. The number of

parameters in the neural networks is fairly large and does lead to better performance. The

cell state memory in the LSTM unit also seems to contribute to superior accuracy. On the

other hand, the Extreme Learning Machine is a fairly fast learner, requires little parameter

tuning, and can produce great accuracies, only slightly lower than the other much slower

neural networks.

For future work, we plan to conduct more detailed studies on the computational costs of

the various models on dedicated machines with GPUs. We also plan to test the performance

of a single neural network simultaneously producing forecasts for all steps and compare the

performance to our current individual neural networks each responsible for one step. We

are also interested in real-time traffic forecasting. Since many sensors located nearly are

likely to exhibit similar traffic patterns, transfer learning can be used to effectively reduce

the training time of the various neural networks.
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Abstract

The dawn of the big data era has led to various breakthroughs in data science. The deep

learning revolution, marked by its incredible achievements in image recognition, has drawn

many to approach data science in a data-driven manner. In this process, the heavy reliance

on the models to learn all knowledge from large quantities of data seems to have diminished

the role of existing knowledge about the system and well-established theories. In particular,

the vehicle traffic patterns, which are generally regular every week, can deviate from the

norm in certain situations such as rain, accident, road work, etc. A purely data-driven

approach would simply let the model handle all the different situations. However, when the

data scientists are aware of such situations, they may take advantage of their knowledge

about the situations and help guide the model building process. This work aims to illustrate

how situation awareness can help data scientists to build more effective models in the field

of vehicle traffic forecasting. The traffic affecting situations under consideration include

holidays, special weather conditions, location awareness that facilitates transfer learning, and

the awareness of potentially outdated data that prompt periodical retraining. In addition, we

present a novel modeling technique, Quadratic Extreme Learning Machine, that generally

improves upon the standard Extreme Learning Machine model while remaining relatively

efficient. The Quadratic Extreme Learning Machine can be potentially used as an alternative

to Neural Networks, which generally entails higher computational costs.

4.1 Introduction

In the big-data era, along with the rapid increase in volume, velocity, and variety of data,

the needs for organizing and understanding the data are increasing. Furthermore, hundreds

of modeling techniques that may be used to analyze the data need to be better understood.

The recent breakthrough in deep learning has revolutionized fields such as image and speech
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recognition. As a result, many data scientists are pursuing research in this direction and

attempt to apply to various fields of study. The availability of large amounts of data has

made it possible for data scientists to build and train deep learning models that take in great

numbers of inputs. The rationale is to allow the models to learn anything and everything

from the data, a common theme in a purely data-driven approach. However, in many fields

of study, there are existing situations, conditions, knowledge, and theories that can affect

the system of interest. Though models may learn much from the data, the learning can

potentially be improved or made more efficient if the data scientists can leverage what they

know to help guide and constrain the model building process. For example, in the field

of vehicle traffic forecasting, a common data-driven approach would be to provide models

with large amounts of traffic sensor data, train the models, and produce forecasts [Lv et al.,

2015, Wu et al., 2018, Yang et al., 2019]. On the other hand, we know of potential situations

that affect traffic patterns, such as holidays, weather conditions, accidents, lane closures,

etc. Being aware of such situations should prompt data scientists to make smarter choices

when designing their models to handle special conditions. The process should complement

the popular data-driven approach that has gained popularity in recent years. However, in

the most recent studies of traffic forecasting, many of which focus on deep learning models,

traffic patterns affecting situations are not sufficiently addressed.

In this paper, we aim to illustrate how situation awareness can benefit data scientists

to build better models. The traffic affecting situations under consideration include holi-

days, special weather conditions, location awareness that facilitates transfer learning, and

the awareness of potentially outdated data that prompt periodical retraining. Data from

a total of 1230 traffic sensors in the San Diego Bay Area (District 4) from the Caltrans

Performance Measurement System (PeMS)2 are used in this study. The total size of the

2http://pems.dot.ca.gov/
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data is approximately 9.4 gigabytes. A map of the PeMS sensors considered in this study is

illustrated in Figure 4.1.

Most of the models included in this study come from the ScalaTion project, which

is an open-source framework under an MIT license for simulation, analytics, and optimiza-

tion. More details about the project can be found in http://cobweb.cs.uga.edu/~jam/

scalation.html.

The rest of this paper is organized as follows: Section 4.2 focuses on situation awareness

and its role in data science while providing a focus on traffic forecasting. Related work is

reviewed in Section 4.3. Section 4.4 provides an overview of the support provided by the

ScalaTion big data framework for data science and forecasting. Illustrative examples of

their use for vehicle traffic forecasting will be given in Section 4.5. More detailed results from

ScalaTion models for traffic forecasting studies may be found in [Peng et al., 2018, Peng

and Miller, 2019], while related traffic simulation studies may be found in [Bowman and

Miller, 2016]. Finally, conclusions and future work are given in Section 4.6.

4.2 Situation Awareness in Data Science

The situations that affect a system of interest are generally specific to a particular field

of study. They may be considered as simple forms of knowledge, which can be more for-

mally organized in a knowledge base involving ontologies, Markov Logic Networks (MLN)

[Richardson and Domingos, 2006], etc. As a starting point, the situations involve condi-

tions and events that may prompt the data scientists to take helpful actions in the model

building process. The next section briefly discusses related approaches to data science that

could complement the data-driven approach while the subsequent sections discuss in detail

the specific situations that affect typical traffic patterns and the appropriate actions data

scientists should take.
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Figure 4.1: Location of PeMS District 4 Sensors. Generated by gpsvisualizer.com.
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4.2.1 Related Approaches to Data Science

Some situations could be more formally organized using semantic technologies (e.g., Markov

Logic Networks) or represented using well-established scientific theories (e.g., laws of physics

governing speed and motion of vehicles). Benefits include automated reasoning, more formal

interpretations of the models and the results, etc. More concrete applications demonstrating

the benefits of these approaches to data science are planned for future work.

The field of Semantic Data Science is beginning to emerge in the mid-2010s. For ex-

ample, in 2014, the Department of Defense started an initiative on the topic https://

semanticommunity.info/Data_Science/Semantic_Data_Science_for_DoD. In the paper,

“Simulation and the Semantic Web,” [Miller and Baramidze, 2005], the synergy between

Semantic Web technology and simulation is explored. Due to the recent big data revolution,

there are also growing interests in applying Semantic technology to data science/analytics.

Theory-Guided Data Science is a term coined by Faghmous and Kumar in 2014 [Fagh-

mous and Kumar, 2014] and the concept is further expanded in later work in 2017 [Karpatne

et al., 2017]. Many predictive analytics models can achieve high accuracy/low error rates,

even if they provide no ability for interpretation or understanding. Worse, they may suggest

mechanisms that are physically not realizable. Theory-Guided Data Science was defined by

[Karpatne et al., 2017] to mean that portion of data science “where scientific theories are

systematically integrated with data science models in the process of knowledge discovery.”

As discussed in [Karpatne et al., 2017] there have been some success stories in using Theory-

Guided Data Science techniques. In [Miller et al., 2017], the support for theories in open

science is discussed with a case study in the field of computational economics and finance.
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4.2.2 Special Traffic Conditions

Typically traffic patterns on weekdays are very regular from week to week as most people

would need to commute to work on weekdays. However, there are special scenarios that

would cause traffic patterns to very much deviate from the norm. A holiday that falls on

a weekday would have a very different pattern. During holidays, most people would not be

commuting to work. They may choose to rest at home, travel to recreational activities, or

go out of town to visit families. A special weather condition, such as rain, snow, and fog can

also cause traffic patterns to deviate from the norm since people would either avoid driving

or drive much slower than usual. An accident near the side of a road typically leads people

to change to a neighboring lane and may slow down the overall traffic flow. Road work and

lane closures may force drivers to take detours on other routes that they may not typically

travel. The awareness of such situations can and should be used to help data scientists to

build and train more effective models.

4.2.3 Transfer Learning

Being aware of the locations of the sensors and a correlation measure between data generated

by two sensors can be used to facilitate transfer learning. Transfer learning is the idea that

elements of one modeling study may be used in another related modeling study [Pan and

Yang, 2009]. To do transfer learning with neural networks, two choices need to be made. The

first choice is the which layers, or their associated weights and biases, need to be transfered.

The second choice is which of the transferred layers are to be kept frozen, meaning no changes

to the weights and biases. Transfer learning may result in improved accuracy of the model

as well as reduced execution time [Pan and Yang, 2009, Goodfellow et al., 2016]. Reduction

in execution time is important for the training of forecasting models that utilize Neural

Networks because the training time can be very large. Improving this will potentially allow
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for more frequent re-training. Preliminary testing suggests that for our traffic data, the best

results can be produced when all the layers are transferred and none of them are kept frozen.

4.2.4 Re-training with More Recent Data

Traffic patterns, though typically possess a degree of regularity, may also gradually evolve as

time passes. For example, a newly constructed highway may direct drivers to take the new

route to work. As mentioned earlier, short term traffic pattern changes may also occur due

to road work. The new construction/expansion of a major company/factory that employs

many people will certainly cause increasing traffic flow towards the new workplace. As a

result, the collected traffic data may become outdated due to a combination of obvious and

unobserved factors. Being aware of this situation about traffic patterns, it would be helpful

to adjust or re-train the models using the most up-to-date data This is rarely done in the

recent deep learning studies on traffic forecasting because re-training a deep neural network

can be very time-consuming. As an alternative, faster models can be used, including our

proposed Quadratic Extreme Learning Machine model that is both efficient and possess a

relatively high level of accuracy. The proposed model is discussed in more detail in Section

4.4.

4.3 Related Work

Most of the very recent work in the field of traffic forecasting focuses primarily on deep

learning models using data-driven approaches. Our work aims to complement the existing

literature by approaching the problem of traffic forecasting while remaining situation-aware.

There have been some attempts to be more intelligent when building models while being

aware of various situations that could affect traffic patterns.
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There have been several studies attempting to handle special weather situations. In

[Koesdwiady et al., 2016], weather information such as rain, temperature, humidity, etc. are

given to a deep belief network. The additional weather data did yield better performance

than using just traffic data alone to make forecasts. A total of 47 PeMS sensors from the San

Francisco Bay Area are chosen along with 16 National Weather Service network stations.

Other considered models include ARIMA and a standard feedforward Neural Network. An-

other study in [Jia et al., 2017], rainfall data are incorporated into models such as LSTM,

ARIMA, Neural Networks, and Deep Belief Neural Networks. The best performing model

was LSTM, and the additional rainfall information improved the MAPE by almost 1%. In

[Zhang and Kabuka, 2018], a small-scale study was conducted using one PeMS sensor in

the Santa Clara county. Precipitation, speed, and temperature data were given to a Gated

Recurrent Unit, which performed better than a Gated Recurrent Unit without the weather

data. It appears that typically in these studies, the weather data are simply given to the

neural networks as inputs. As we demonstrate in our applications, such an approach may

not be the best or most efficient way to handle such situations. For example, a feature

containing rainfall data would contain mostly zeros. The imbalance in the feature may not

be able to facilitate the most efficient learning from the data.

Not many researchers seem to have devoted much effort to studying holiday traffics,

possibly due to the irregular traffic patterns and limited amounts of holiday traffic data.

In [Chrobok et al., 2004], the holiday data were differentiated to predict traffic flow during

special events such as a soccer game. Another work in [Cools et al., 2009] focused on holiday

traffic prediction. Binary encoding was used to represent holidays and other days of the

week. The study also focused on various types of roads and the authors concluded that the

holiday effects are significant on commuter roads but not as much on leisure roads, which

seem very reasonable and logical. A much more recent study in [Gao et al., 2019] focused
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on predicting traffic speed on holidays. The work primarily focused on using LSTM to make

predictions but did not consider other types of models.

A study in [Wang et al., 2016a] applied a transfer learning based technique to speed

up the training process of deep neural networks, though the time range of the datasets

was relatively small, spanning only a couple of weeks. Speed forecasts were made up to 50

minutes ahead. The transfer learning approach was to cluster various road segments based

on speed and train models using data from the clusters. The goal was to make sure there

were sufficient training instances by pulling all data from similar road segments. A recent

study in [Deng et al., 2017] proposed an automated mechanism for both identifying various

traffic situations (e.g., rush hour, accident, etc.) using clustering algorithms and pull the

data from multiple sensors in the same situation to train models.

4.4 Support in the ScalaTion Big Data Framework

This section highlights ScalaTion’s support for time-series analysis and forecasting. Our

proposed Quadratic Extreme Learning Machine model is also presented.

4.4.1 Support for Time-Series Databases

ScalaTion provides support for Time-Series Databases [Bobade, 2018]. This makes it

easy to collect multiple time-series datasets along with supporting related data. Support is

also provided for pre-processing the data including time-based merging, outlier removal, and

missing value imputation. Query languages are provided to make selections of data relevant

to a modeling study easy. The ScalaTion’s time-series databases is general-purpose work-

ing for non-time-series data as well. It is also among the fastest such databases being built

as a main-memory, columnar database (see [Bobade, 2018] for a performance comparison).
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Table 4.1: List of Modeling Techniques.

Technique Description Strength

AR Autoregressive Model Simplicity.
ARMA AR, MA Allows shocks to be introduced to the sys-

tem.
ARIMA AR, Integrated, MA Support non-stationary time series.

SARIMA Seasonal ARIMA Can model seasonal time series.
SARIMAX SARIMA with Exogenous Allows exogenous variables.
VARIMA Vector ARIMA Can model multiple concurrent time series.

Seasonality allowed.
Regression Multiple Regression Global minimization of MSE based on the

given features.
PolyReg Polynomial Regression Allows nonlinearity into the system.

SVR Support Vector Regression Flexibility in the terms of the parameters
and model equations.

ELM Extreme Learning Machines Efficient and accurate.
QuadELM Quadratic ELM Allows nonlinearity in the output layer.

Typically more accurate than ELM.
NN Neural Networks Highly flexible in structure and great ac-

curacy.
LSTM Long Short-Term Memory Specializes in modeling temporal depen-

dencies in time series.

The database supports seamless integration with the over one hundred modeling techniques

provided by ScalaTion .

4.4.2 Support for Forecasting

ScalaTion supports a large variety of modeling techniques for forecasting including the

commonly used techniques as shown in Table 4.1. These forecasting techniques have been

applied to traffic forecasting in the San Diego area using CalTrans Performance Measurement

System (PeMS) [Peng and Miller, 2019]. Multi-hour ahead traffic forecast with low MAPE

values are reported in [Peng et al., 2018, Peng and Miller, 2019]. Interesting trade-offs
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emerge as the second tier modeling technique ELM executes much more quickly than the

top tier consisting of 3 neural network models. Seeing the potential of ELM, we proceed

to extend upon that model and formally present the Quadratic Extreme Learning Machine

(QuadELM) model.

4.4.3 Quadratic Extreme Learning Machine

The Quadratic Extreme Learning Machine (QuadELM) model is considered to be a type of

neural network that may be described as follows:

1. Input-to-Hidden: apply an activation function with fixed, random weights. This intro-

duces non-linearity into the system. The size of the hidden layer typically needs to be

tuned so that the hidden layer can sufficiently represent the transformed inputs.

2. Hidden-to-Output: use the quadratic regression model in which the hidden states are

used as inputs. The parameters can be efficiently solved using well-established pseudo-

inverse techniques.

Our proposed Quadratic Extreme Learning Machine model replaces the linear regression

model in the output layer of the original ELM model [Huang et al., 2006] with the quadratic

regression model, thus introducing another layer of nonlinearity in the output layer. In

the traffic forecasting application presented in Section 4.5, the Quadratic Extreme Learning

Machine model can further improve upon the accuracy of the standard ELM without adding

too much to the computational costs.

4.5 Vehicle Traffic Forecasting

Traffic patterns on weekdays are typically very similar from week to week. In recent years,

many traffic forecasting related studies focused on deep neural networks [Lv et al., 2015,
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Shao and Soong, 2016, Wu et al., 2018, Yang et al., 2019]. A typical trend in the deep

learning community is to learn all knowledge by using deep neural networks. However,

various situations can cause traffic patterns to deviate from the norm and they would require

additional considerations. Currently, there seem to be relatively little efforts devoted to

allowing the awareness of traffic affecting situations into the modeling process as many data

scientists elect to task the neural networks to do all the learning. A purely data-driven

approach to traffic forecasting has several weaknesses that do not seem to be sufficiently

addressed in the literature:

1. Slow training times of deep neural networks, which make re-training on most recently

available data infeasible (e.g., in the context of real-time forecasting).

2. A single model may be able to handle the typical traffic patterns very well, but can

be lacking when encountering special and rare traffic conditions (e.g., due to a special

weather condition). In fact, many recent deep learning traffic forecasting studies do

not consider such special cases at all.

3. Simultaneous consideration of data from large numbers of traffic sensors, which may

exhibit distinct traffic patterns depending on the locations, may not be able to best

capture the distinct traffic conditions of certain sensors. For example, a traffic sensor

located near a popular interchange may exhibit special traffic patterns that are different

from the rest of the highway; but if all the sensor data on the highway are trained

together, then the traffic data from the sensor near the popular interchange may not

be well represented in the training batches.

Instead of relying on purely data-driven approaches, better traffic forecasts may be pro-

duced if the data scientist can remain aware of traffic affecting situations while building the

models. Various situations can arise, including the following:

• Weather

96



• Accidents

• Lane closures

• Holidays

• Sporting Events

• Locations of Sensors

As an example of remaining situation-aware during the modeling process, awareness of the

locations of various traffic sensors and correlation among them may help us deduce that

closely located traffic sensors are likely to share similar traffic patterns, for which transfer

learning may be used for neural networks to significantly reduce training times. Depending

on the specific situation, an effective traffic forecasting system should be able to

• Select models

• Select appropriate features

• Add relevant features

• Use selected data for training

Figure 4.2 provides the vision for such a traffic forecasting system. This study primarily

focuses on leveraging various traffic affecting situations to help guide the model building

and training process while tasks such as the construction of a knowledge base and apply

automated reasoning to determine the appropriate actions in a given situation are planned

for future work. Several case studies that captures some of the previously mentioned ideas

are presented in this section. Traffic data come from the PeMS system. This study focuses

on District 4, which is the San Francisco/Bay Area of California. Forecasts are produced

on 1230 Mainline (ML) traffic sensors. A total of 9.4 gigabytes of traffic data are collected
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Figure 4.2: Vision of the Traffic Forecasting System.

from these sensors. Raw data are in 5-minute resolution. In this study, the data are fur-

ther aggregated into 15-minute resolution. The forecasting performance is evaluated using 3

metrics: Mean Absolute Percentage Error (MAPE), Normalized Root Mean Squared Error

(NRMSE), which divides RMSE by the mean of the time series, and the R2 metric. Two

baselines are considered: weekly historical average from the past four weeks (BaselineHA)

and random walk (BaselineRW), which uses the current observation as forecasts for the fu-

ture. Experiments are conducted on the Sapelo2 cluster from Georgia Advanced Computing

Resource Center3.

3https://gacrc.uga.edu/
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4.5.1 Traffic Forecasting Study on Holidays

Holidays can introduce special traffic patterns since most people will not be commuting to

work but may have other special travel plans, such as a short vacation or visiting families.

A purely-data driven approach may elect to include a column representing holidays in the

training inputs. To illustrate the effects of forecasting performance, various efficient models

are used. The training data include the entire year of 2017, excluding weekends, and the

testing data are from 2018, again excluding weekends and only daytime 7:00 AM to 7:00

PM traffic data are evaluated. Figure 4.3 illustrates the performance comparison of various

efficient models for the entire year of 2018 using the MAPE metric. Our Quadratic Extreme

Learning Machine (ELM) model is the overall top performer. The SARIMA model is the

SARIMA (1, 0, 1) × (0, 1, 1) model using weekly seasonality, a common model found in the

literature [Shekhar and Williams, 2008, Lippi et al., 2013, Peng et al., 2018]. The inputs to

the other models include the most recent 12 traffic flow observations, 12 flow observations

from the previous week, the most recent 4 traffic speed observations, day of the week, time of

the day, and whether the day is a holiday (0 if not a holiday, normalized day of the year if it

is a holiday). The ELM and QuadELM models are tuned to use the tanh activation function

in the hidden layer, which is of size 8 and 6 times the size of the input layer, respectively.

Figure 4.4 and Figure 4.5 represent the performance evaluation using the NRMSE and R2

metric. The relative performance of the models mostly agrees with those using the MAPE

metric. One notable difference is the ELM model, which performs better when considering

the NRMSE and R2 metrics.

The interesting question is that since the models do take consideration of the holiday

information, could this be sufficient for producing reliable forecasts during holidays? The

same trained models can be evaluated only by their performance during holidays. Figure

4.6 illustrates the performance of the models evaluated on the holidays of 2018 only using

the MAPE metric. The historical average baseline is not performing too well as expected.
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Figure 4.3: MAPE of Forecasts from 2018 in District 4.
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Figure 4.4: NRMSE of Forecasts from 2018 in District 4.
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Figure 4.5: R2 of Forecasts from 2018 in District 4.

The MAPE values of other models are also generally much worse than their overall 2018

performance as in Figure 4.3. The random walk baseline, surprisingly, performs relatively

well. This could be indicative that the level of traffic pattern fluctuations is not as great as

on a regular weekday.

Figure 4.7 and Figure 4.8 represent the performance of the models on holidays of 2018

using the NRMSE metric and the R2 metric, respectively. The models typically perform

slightly worse than the random walk baseline in the early steps but do catch up for longer

steps.

It appears that even though the holiday information is available to the models, they may

not be able to produce reliable forecasts. This is likely because holidays are generally rare
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Figure 4.6: MAPE of Models from Holidays of 2018 in District 4.
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Figure 4.7: NRMSE of Models from Holidays of 2018 in District 4.
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Figure 4.8: R2 of Models from Holidays of 2018 in District 4.
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occurrences in a year, and the highly unbalanced holiday input data consisting of mostly 0’s

may not be able to guide the model to sufficiently learn the special traffic patterns.

To create a more intelligent traffic forecasting system due to our awareness of holidays,

some adjustments can be made to the modeling process:

• Remove the seasonal components of the inputs, since the weekly seasonality most likely

will not apply to a holiday.

• Train separate models by using holiday data only.

The performance evaluations of the revised models are illustrated in Figure 4.9, Figure 4.10,

and Figure 4.11, based on the 3 evaluation metrics. There is a very small number of training

datasets, 21 in particular, for which the Cubic Regression model was having difficulty learning

the parameters when training only on holiday data. It is likely due to the small number of

training instances while trying to maintain a large number of parameters. These datasets

are therefore removed from considerations. To maintain fair comparisons, they were also

removed from considerations in earlier figures: Figure 4.6, Figure 4.7, and Figure 4.8.

The historical average baseline and the ARIMA model are omitted from the figures due

to poor performance. The size of the hidden layer of ELM has been reduced from 8 times

the size of the input layer to 3 times the size. Similarly, the size of the hidden layer of

QuadELM has been reduced from 6 times the size of the input layer to the same size as the

input layer. The reductions are necessary due to the reduction of both the number of training

instances and the number of features available in the model. From the performance results,

it seems that quadratic regression, in two out of the three metrics, is the best performing

model for forecasting traffic during holidays. Linear regression and ELM are the next best in

performance, though the linear regression model does appear to be the top-performing model

if judging by the MAPE metric alone. More complex models, in terms of parameters, such

as QuadXRegression, CubicRegression, and QuadELM, did not do too well in this scenario.
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Figure 4.9: MAPE of Models Trained with Holiday Data Only.

They could require more training data to obtain better fits. It is interesting to see that the

simpler models tend to do better in this experiment, likely due to the reduced number of

features and training instances to work with.

To visualize the improvement from our situation-aware models over the standard models,

a simple metric such as the percentage of improvement can be used. The percentage of

improvement metric can be calculated, using MAPE as an example, as follows:

MAPEstd −MAPEsa

MAPEstd

× 100% (4.1)

where std represent the standard models and sw represent situation-aware models. The

percentage of improvement of the NRMSE metric is calculated similarly while that of the
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Figure 4.10: NRMSE of Models Trained with Holiday Data Only.
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Figure 4.11: R2 of Models Trained with Holiday Data Only.
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R2 metric has an extra negative sign prepended to the equation so that a positive value will

indicate improvements across all 3 evaluation metrics. However, in some cases for the R2

metric, the denominator can potentially become close to 0 or negative, leading to unreliable

resulting percentages. To resolve this issue in certain cases, the following simple difference

formulas can be used.

(R2
sa −R2

std)× 100% (4.2)

In cases where the simple difference of R2 is used, it will be explicitly stated. Otherwise, it

will be assumed to be a percentage of improvement.

Figure 4.12, Figure 4.13, and Figure 4.14 represented the improvements of the situation-

aware models over the standard models, which were trained with the feature column repre-

sented holidays. Figure 4.14 illustrates the simple difference improvements.

4.5.2 Transfer Learning

In general, neural networks can take time to train, especially for complex network structures

trained with large amounts of data. In traffic forecasting, we know that traffic conditions

from closely located sensors are likely to be very similar. Instead of training neural networks

individually per sensor, or simply give all the sensor data to a large neural network to train,

it may be better to take advantage of transfer learning. To determine the similarity of traffic

patterns between 2 sensors, the correlation metric is used. The awareness of the locations of

the sensors and the correlation between two sensors should be helpful in this regard.

For the number of epochs, preliminary testing suggests that at around 175 epochs the

learning of Neural Networks and Convolutional Neural Networks have mostly plateaued.

Therefore, the number of training epochs of the initial sensor in the transfer learning group

for Neural Networks and Convolutional Neural Networks is set to be 200. The Encoder-

Decoder Gated Recurrent Unit is slightly different. The value of the loss function, MSE in
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Figure 4.12: MAPE Percentage of Improvement on Holidays by Using Situation-Aware Mod-
els.
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Figure 4.13: NRMSE Percentage of Improvement on Holidays by Using Situation-Aware
Models.
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Figure 4.14: R2 Simple Difference Improvement on Holidays by Using Situation-Aware Mod-
els.
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this case, is continually decreasing, but during initial testings, going over around 50 epochs

actually yield worse results on the testing sets even when the MSE of both the training

and validation sets are still decreasing. This has come to us as an expected phenomenon.

As a result, the number of epochs for Encoder-Decoder Gated Recurrent Unit is set to 50.

Furthermore, a patience value of 30 is used to allow early stopping based on the MSE of the

validation set. With transfer learning, Neural Networks and Convolutional Neural Networks

are only trained for 40 epochs and Encoder-Decoder Gated Recurrent Unit is only trained

20 epochs. By applying transfer learning, the potential savings in training times per sensor

can be 80% for Neural Networks and Convolutional Neural Networks and 60% for Encoder-

Decoder Gated Recurrent Unit. The various neural network models tested are provided by

Keras [Chollet et al., 2015] using the TensorFlow [Abadi et al., 2015] backend.

However, before doing transfer learning, one may still make the argument that traffic

patterns are generally similar in a geographical location and the awareness of the locations

and correlations may not be necessary. Furthermore, perhaps transfer learning may be

detrimental since the inherited weights can be stuck in a local minimum. To address this

concern, a sample sensor is chosen to received learned weights from a closely located and

highly correlated sensor. Another random sensor in District 4 is also chosen to initialize

the weights. Furthermore, a neural network model is also trained without transfer learning,

meaning the weights are initialized randomly. Figure 4.15, Figure 4.16, and Figure 4.17

illustrate the results of transfer learning from a nearby correlated sensors vs. a random

sensor and the effects of not using transfer learning.

It can be seen from the figures that though the nearby located and correlated sensor

demonstrate better performance for transfer learning, the random sensor also did reasonably

well. It is likely that because both sensors are located on major interstates in the same

geographical region, there are sufficient traffic pattern similarities. Though the results of the

transfer learning models would certainly be more interpretable if the source of the weights
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Figure 4.15: MAPE of Sensor 403318 on I-280 N using Transfer Learning.
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Figure 4.16: NRMSE of Sensor 403318 on I-280 N using Transfer Learning.
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Figure 4.17: R2 of Sensor 403318 on I-280 N using Transfer Learning.
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and bias are from a nearby correlated sensor of the same highway. Comparing with the

performance without using transfer learning at all, the neural network trained from randomly

initialized weights performed quite similarly with the neural network that is trained using

transfer learning from a nearby correlated sensor. In fact, in some steps and metrics, such as

MAPE and early steps of NRMSE and R2, transfer learning actually leads to better results.

To proceed with the transfer learning process, initially, all the sensors from a given high-

way in a single direction are sorted by their post miles, representing their relative locations

on the highway. Then starting from the initial sensor where the traffic is flowing from, check

its correlation with subsequently located sensors using 2017 data only. If the correlation

is greater than a particular threshold, 80% in our case, then traffic patterns from the two

sensors are considered to be sufficiently similar. If at any point the threshold falls below the

threshold, then a new group of sensors is to be created starting from that sensor. During the

training phase, the starting sensor in each group is to be trained first. Then each subsequent

sensor would start training, using much fewer epochs, by initializing weights and biases from

the finished state of the models for the previous sensor. The performance evaluations using

the 3 metrics are illustrated in Figure 4.18, Figure 4.19, and Figure 4.20.

Overall, the Neural Network (NN) model, which consists of 4 feed-forward layers, per-

forms the best. Its inputs are the same as those used in the models from the holiday

experiment. The sizes of the two hidden layers are set to 90% and 80% of the size of the

input layer while the output layer is of size 12, representing forecasts from all 12 steps ahead.

The Encoder-Decoder Gated Recurrent Unit (EDGRU) did not perform as well, which is

rather unexpected since some of our earlier results obtained using data from the San Diego

area demonstrates that the Encoder-Decoder LSTM, which is very similar to EDGRU, was

obtain to yield decent, top tier forecasting performance. One possible reason could be the

lack of flexibility in its input structures by requiring the additional time steps dimension.

Because of the additional time steps dimension, the inputs to EDGRU has to be adjusted.
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Figure 4.18: MAPE of Neural Network Models using Transfer Learning.
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Figure 4.19: NRMSE of Neural Network Models using Transfer Learning.
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Figure 4.20: R2 of Neural Network Models using Transfer Learning.
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The number of time steps is set to 24, consisting of 12 seasonal steps and 12 most recent

lags. The time series used as inputs include historical average, traffic flow, traffic speed,

and time of the day. Some inputs must be omitted, such as the day of the week, which

would contain a sequence of the same value for all 24 steps; and holiday, which would be

a sequence consisting of all zeros most of the time. EDGRU also tends to overfit on a

particular dataset, even though the training and validation MSE are still decreasing, but the

forecasting performance can become poorer. The validation set does not seem to be able to

completely guard EDGRU against overfitting, which is also unexpected since the validation

set serves the purpose of guarding the model against overfitting. It is also possible that the

test set consisting of the entire year of 2018 may be too far into the future and the trained

parameters for EDGRU are not as up to date. Convolutional Neural Networks (ConvNN)

provides reasonable performance, typically slightly worse than NN. The inputs to ConvNN

are identical to those used in EDGRU.

After the completion of transfer learning for the neural network models, their performance

graphs may be merged with earlier figures consisting of only the efficient models, namely

Figure 4.3, Figure 4.4, and Figure 4.5. Figure 4.21, Figure 4.22, and Figure 4.23 illustrate

the performance comparisons among all our available models.

It would be interesting to compare the performance of the top performers from the group

of efficient models and the best neural network model. Figure 4.24 contains a graphs of the

percentage of improvement of QuadELM over NN. It can be seen that if judging by the MAPE

metric, the performance of QuadELM and NN are actually quite similar, with QuadELM

take the lead in the first 4 steps and slightly loses to NN in the remaining steps until step

12. The NRMSE and R2 metrics, on the other hand, both show the NN performs better,

only slightly in the initial steps and then around 3% for later steps. It is worth noting that

the NRMSE and R2 metrics are inherently more similar because they both contain the Sum

of Squared Error (SSE) component in the definition of the metrics. Besides, the QuadELM
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Figure 4.21: MAPE of Forecasts for All Models from 2018 in District 4.
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Figure 4.22: NRMSE of Forecasts for All Models from 2018 in District 4.
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Figure 4.23: R2 of Forecasts for All Models from 2018 in District 4.

is generally much less computationally expensive than the Neural Networks. Depending on

the availability of computational resources, QuadELM may be more preferable than Neural

Networks in certain situations.

The performance of ELM and Neural Networks can also be compared. Figure 4.25 illus-

trates the improvement of ELM over NN. Since all percentage values are negative, ELM is

generally not as accurate as NN. When using NN as a benchmark, the performance difference

between QuadELM and ELM are indeed significant.
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Figure 4.24: Percentage of Improvement of QuadELM over NN.
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Figure 4.25: Percentage of Improvement of ELM over NN.
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4.5.3 Periodic Re-training with Up to Date Data

Though traffic patterns, for the most part, possess similar weekly patterns at a given location,

there can still be situations that cause traffic patterns to shift. Extended periods on road

work or expansion of a major company that creates thousands of new employment opportu-

nities are examples of such situations. There may also be other unobserved situations that

cause the training data to gradually become outdated as time passes. Therefore, it would be

useful to periodically retrain the models so that the most up-to-date traffic patterns can be

learned. In recent studies on traffic forecasting, most of which focus on deep learning, this is

generally not a considered option due to the high computational costs of the deep learning

models. To explore this option, several very efficient models were chosen and tested. The

performance degradation is first studied to see how well the models can forecast traffic as

time passes throughout the testing set, which includes the entire year of 2018. Figure 4.26

illustrates the performance degradation of a sample sensor throughout the months of 2018.

It can be observed that the general trend of the metrics are declining as time passes in 2018.

The sliding window, representing the size of the training set, is tuned to be 52 weeks,

roughly equivalent of a year worth of data. The re-training frequency is set to 2 weeks.

Figure 4.27, Figure 4.28 and Figure 4.29 illustrate the forecasting performance in District

4 for the entire year of 2018 using periodically re-trained models. The figures are intended

to be compared with Figure 4.3, Figure 4.4 and Figure 4.5, for MAPE, NRMSE and R2,

respectively.

For more straight-forward comparisons, the percentage of improvement metrics are cal-

culated for the models. Figure 4.30, Figure 4.31 and Figure 4.32 illustrate the percentage of

improvement of the periodically re-trained models over their one time trained counterparts.

From the figures, models generally show improvements when they are periodically re-

trained using the most up-to-date data. The ELM and QuadELM models show greater

potentials in their ability to take advantage of the most up-to-date data than linear and
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Figure 4.26: Degradation in Performance of Sensor 400001 on I-101 N. Step 12 Forecasts by
QuadELM are Used.
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Figure 4.27: MAPE of Forecasts using Periodically Re-trained Models.
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Figure 4.28: NRMSE of Forecasts using Periodically Re-trained Models.
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Figure 4.29: R2 of Forecasts using Periodically Re-trained Models.
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Figure 4.30: MAPE Improvement using Periodically Re-trained Models.
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Figure 4.31: NRMSE Improvement using Periodically Re-trained Models.
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Figure 4.32: R2 Improvement using Periodically Re-trained Models.
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quadratic regression models. A very interesting observation is that the percentage of im-

provement generally increases with the forecasting step. In other words, the most up-to-date

training data generally help more when trying to make longer-term forecasts than the imme-

diate short term. A possible explanation for this scenario is that in the immediate short term,

say 1-step ahead, the forecasting problem is generally the easiest when comparing against

longer steps ahead. As a result, there is not much room for improvement. On the other

hand, the longer-term forecasting problem is relatively more difficult, and training using the

most up-to-date data helps to allow the models to capture the potentially evolving traffic

patterns. It is also worthy to note that even though ELM shows greater improvements than

QuadELM, the performance of QuadELM is still the best.

4.5.4 Traffic Forecasting in Low Visibility Conditions

Another important factor that may cause traffic patterns to deviate from the norm is a special

weather condition. Rainfall and fog are likely to cause drivers to slow down to ensure safety.

To consider special weather conditions, a total of 14 Automated Surface Observing System

(ASOS)4 sensors near the San Francisco Bay Area are used. To ensure the accuracy of the

data, each PeMS sensor is paired with its closest ASOS sensor and the distance between the

two sensors must be less than 5 miles. As a result, a total of 447 PeMS sensors meet the

qualification and are considered in this case study.

The weather attribute of interest is visibility. Visibility data are available in 5-minute

resolution, while the rainfall data are of hourly resolution. Also, fog is a pretty common

occurrence in the San Francisco Bay Area, therefore it would be important to consider such

a factor. Initially, several models are evaluated only during low visibility conditions (3 miles

or less) without any inputs from the ASOS sensors. Figure 4.33, Figure 4.34 and Figure

4.35 illustrate the performance of the forecasting models in the 3 metrics. The historical

4https://www.weather.gov/asos/
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Figure 4.33: MAPE in Low Visibility Conditions without ASOS data.

average baselines, unsurprising, performs very poorly and are excluded from the graphs.

The historical average values for MAPE, NRMSE and R2 are approximately 0.332, 0.374

and -3.36, respectively.

There are a couple of noteworthy observations. The random walk baseline is very effective

in the immediate short terms. It is likely because, in low visibility conditions, all drivers will

slow down their vehicles to a somewhat uniform speed and carefully follow the car in front

from a safe distance. The result is likely a near-constant traffic flow in the immediate short

term. Another interesting observation is that unlikely the holiday case study, the models,

without any inputs from ASOS sensors, actually perform somewhat decently. This is likely

because the models have access to speed data from the PeMS sensors already, and low
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Figure 4.34: NRMSE in Low Visibility Conditions without ASOS data.
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Figure 4.35: R2 in Low Visibility Conditions without ASOS data.
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visibility will cause a reduction in speed, thus the information about the weather condition

is indirectly given to the models through speed data. This is different from the holiday

scenario, for which the speed data, during holidays, are likely to remain high throughout the

day.

In an attempt to improve forecasting accuracy in low visibility conditions, the following

adjustments to the models are made. Remove the seasonal components, as they are not

likely to help with the short term forecasting. This may potentially cause the models to lose

accuracy in longer terms, depending on how soon the visibility restores to normal. Also, the

models are now trained with instances where the visibility is less than 10 miles, which is

considered to be perfect visibility in the ASOS datasets. A preliminary attempt to train the

models using data with less than or equal to 3 miles of visibility did not yield good results,

possibly due to a lack of training data. Figure 4.36, Figure 4.37 and Figure 4.38 show the

performance of the models trained with consideration of the ASOS visibility data.

Overall, it appears that the quadratic regression model performs the best in this scenario.

The linear regression model also appears to show the greatest improvements, though still

at the low tier of all the models. The ELM and QuadELM models closely follow quadratic

regression but appeared to suffer losses in accuracy in longer terms. The sizes of their

hidden layers are also reduced just like in the holiday study. For easier comparison of the

effects of training with instances in which the visibility is less than perfect, the percentage of

improvement graphs are included in Figure 4.39, Figure 4.40 and Figure 4.41. Figure 4.41,

in particular, computes improvement scores using the simple difference formula in Equation

4.2.

The figures show that overall, the simpler models, linear and quadratic regression, benefit

the most from working with selected training instances and features. The ELM model

generally did not benefit. The QuadELM model can benefit a bit from this setup in the

short term but loses accuracy in the longer terms. It is possible that ELM and QuadELM
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Figure 4.36: MAPE of Models Trained with Consideration of ASOS Data.
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Figure 4.37: NRMSE of Models Trained with Consideration of ASOS Data.
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Figure 4.38: R2 of Models Trained with Consideration of ASOS Data.
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Figure 4.39: MAPE Percentage of Improvement Due to Consideration of ASOS Data.
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Figure 4.40: NRMSE Percentage of Improvement Due to Consideration of ASOS Data.
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Figure 4.41: R2 Simple Difference Improvement Due to Consideration of ASOS Data.
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simply need more training data in low visibility conditions. Potentially multiple years of

training data may be downloaded to see if there improvements on the ELM and QuadELM

model.

4.6 Conclusions and Future Work

In this study we have demonstrated the advantages of being aware of various traffic affect-

ing situations can indeed help with the modeling process. In particular, four experiments

are conducted to illustrates the effectiveness of doing big data analytics while remaining

situation-aware. The awareness of holidays has led to better forecasting models designed to

handle the rare situation. The awareness of the locations and correlations among the sen-

sors has facilitated effective transfer learning. The awareness of the need to use up-to-date

training data has produced improved results by various models. The awareness of special

weather conditions has led to the preference of simpler models in such situations. We have

also presented the Quadratic Extreme Learning Machine model that is efficient, generally

improves upon the standard Extreme Learning Machine model, and can potentially be an

alternative to Neural Networks. Future work includes the expansion of the ScalaTion

framework to better support the use of semantic technology and theories in data science.
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Chapter 5

Conclusion

In summary, we have made the following contributions in this work:

• An extensive literature review is provided, focusing on both the various models used

in traffic forecasting and a chronological overview of the developments in this field.

• Using big data, the performance of various statistical and machine learning models

traffic flow forecasting is evaluated.

• The impacts of incorporating spatially dependent data into multivariate forecasting

models are studied and compared against the univariate cases.

• The performance of multi-step forecasts and the impacts of varying data resolutions

are discussed.

• The trade-offs/pros and cons of the models in terms of accuracy, stability, computa-

tional cost, and ease of use are explored.

• A situation-aware approach to forecasting traffic is discussed. Being aware of situ-

ations such as holidays, special weather conditions, and the locations of sensors can
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be effectively used to guide the model building process and complement the popular

data-driven modeling approach.

• The Quadratic Extreme Learning Machine model is presented. It generally improves

upon the standard Extreme Learning Machine while remaining relatively efficient. Its

performance can be competitive with Neural Networks.

For related future work, more support for the theory-driven data science and the inclusion

of additional modeling techniques in the ScalaTion project are planned.
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