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ABSTRACT 

The effects of OxiDate 2.0, sodium hypochlorite, thyme oil, rosemary stem infusion and 

ginkgo leaf infusion were tested in vitro on the bacterial cells of Xanthomonas 

euvesicatoria, Clavibacter michiganensis subsp. michiganensis, and Pseudomonas 

syringae pv. tomato. All treatments significantly reduced bacterial populations except for 

the infusions. Tomato seed artificially inoculated with X. euvesicatoria was treated with 

OxiDate 2.0, NaOCl, thyme oil or hot water and assayed by dilution plating of seed 

washes. All treatments gave significant reductions. Germination was not affected. 

Seedlings grown for 14 days from treated seed were assayed for bacterial populations 

using dilution plating and real-time PCR. Bacterial transmission to seedlings occurred in 

all treatments although seedlings from treated seeds had significantly lower populations 

than the control. NaOCl and hot water were the most effective seed treatments for 

reducing pathogen populations.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Planting material, such as seeds, bulbs and cuttings can be a significant source of 

primary inoculum for many pathogens, and are often the only source of primary inoculum 

(Baker and Smith 1966; Elmer 2001). The textured or pubescent surfaces of seeds 

facilitate contamination with pathogen propagules. Not only can seed surfaces be 

contaminated, but many pathogens can get under the seed coat or enter seed tissues 

through the vascular system or floral parts (Maude 1996). The primary recommendation 

for control of seedborne diseases is to use seeds that are pathogen-free, especially for 

diseases that have the potential to cause significant losses (Gitaitis and Walcott 2007; 

Maude 1996; McGee 1995). Producing pathogen-free (clean) seed is challenging, in part 

because phytopathogens may infest or infect seeds without producing symptoms on the 

host or seed tissues (Bashan et al. 1982; Darrasse et al. 2007; Dutta et al. 2014) and field 

inspections of seed crops may not be sufficient for certifying seed as pathogen-free 

(Schultz and Gabrielson 1986). Testing for pathogen inoculum in seed samples is 

therefore necessary to prevent the spread of pathogens but there are challenges in 

sampling and detection of pathogens on or in seed. The distribution of infested seed 

within a seed lot is not homogenous so samples must include several thousand seeds in an 

attempt to be statistically representative of the level of contamination in a seed lot 

(Gitaitis and Walcott 2007; Schaad 1982; Schaad 1988). Even then, the test results are 

only reflective of the sample tested (Morrison 1999). The level of inoculum in a sample 
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may be low enough to escape detection by seed health testing procedures unless 

enrichment techniques are used (Jones et al. 1986; McGee 1995) but sufficient to initiate 

a disease outbreak (Stall et al. 2009). Hence, seed treatments may be needed even if a 

seed lot has been certified pathogen-free. 

Bacterial plant diseases are difficult to manage once introduced into a field, partly 

because there are few effective chemistries (Jones et al. 1986; Lo Cantore et al. 2009) and 

host resistance is not universally available or effective (Stall et al. 2009). In greenhouse 

production, the close proximity of plants, high moisture conditions and handling of plants 

facilitates the rapid spread of bacteria and disease outbreaks (Hausbeck et al. 2000). In 

addition to the use of clean seed, other commonly recommended disease management 

strategies for bacterial diseases involve the use of copper bactericidal sprays (Jones et al. 

2006) and cultural practices, including sanitation and crop rotation (Goode and Sasser 

1980; Hausbeck et al. 2000; Jones et al. 1986; Ritchie and Averre 1996; Sun et al. 2002). 

The challenges are greater for organic agriculture because certification regulations 

prevent or restrict use of many antimicrobial compounds.  

In the European Union, organic growers must use seed produced using organic 

methods  (Groot et al. 2004; Lammerts van Bueren et al. 2003). The USDA's National 

Organic Program (NOP) regulations for seeds and planting stock production specify that 

certified organic operations must use organic seed whenever possible (US GPO 2015). 

The use of nonorganic seed is allowed if the unavailability of suitable organic seed can be 

clearly demonstrated. In such instances, the seed must be untreated or treated with a 

substance allowed for organic agriculture (USDA NOP 2013). According to Groot et al. 

(2004), because of this derogation of the organic seed regulations, seed companies have 
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little incentive to invest in organic seed production. The current restrictions on the use of 

nonorganic seed may increase the risk of seedborne disease due to a sometimes higher 

disease incidence in organic seed production fields (Kühne et al. 2005). Conventional 

seed production is dominated by a few companies and the Organic Seed Alliance (2011) 

has observed that these large seed companies have not adequately addressed the needs for 

organic seed in the organic sector. Therefore, organic seed production may largely be the 

responsibility of smaller seed companies that specialize in organic seed.  

Seed treatments are important in an integrated approach to prevent disease 

outbreaks, but because seed treatments often reduce the shelf life of the seed, growers are 

often responsible for treating the seed. Heat treatment (especially hot water) of seeds can 

be effective (Fatmi et al. 1991; Jahn et al. 2006) but does not always eliminate the 

pathogen (Schaad 1982). Organic production is dominated by small-scale growers who 

often do not have access to specialized equipment for heat treatments. Treatments using 

NOP-approved materials in relatively simple formulations and applications are therefore 

most desirable to obtain consistent and reliable results for small-scale growers. 

Lammerts van Bueren et al. (2003) identified the need for more research on the 

production of high quality organic planting material. In reference to NOP's regulations, 

du Toit (2004) echoed this opinion, noting the increased demand for organically 

produced seed and for research into suitable seed treatments that ensure clean seed for 

organic growers. This project investigates the efficacy of organic seed treatments in 

reducing seed contamination with the bacterial spot of tomato pathogen, Xanthomonas 

euvesicatoria. Although the treatments were tested against X. euvesicatoria, they could 

be useful against other seedborne bacterial pathogens. 
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Literature Review 

Tomato production statistics. Tomato (Solanum lycopersicum L.) is native to 

South America and is currently the most widely grown vegetable in the world. The 

United States is the second largest producer in the world and fresh market tomato is 

produced in every state. In 2013, the United States produced 12.6 billion kg (27.8 billion 

pounds) of tomatoes for the fresh and processing markets, valued at over $2 billion. 

Georgia was the tenth largest fresh market tomato-producing state in 2014 in terms of 

acreage harvested, with yield valued at $17.48 million representing 1.5% of the national 

total for fresh market tomatoes (USDA NASS Quickstats). Although it still represents a 

small percentage of total acreage and production, market demand for organic produce has 

been increasing, evidenced by the rise in acreage devoted to organic agriculture over the 

past several years. In 2011, the total acreage for organic tomato production in the US was 

more than three times what it was in 2006 (USDA ERS 2013).  

Bacterial Spot of Tomato: Disease Development and Biology. The genus 

Xanthomonas contains almost 30 species and all are exclusively plant-associated. 

Xanthomonads are strictly aerobic, gram negative, rod-shaped, yellow-pigmented 

bacteria with a high GC content (Aysan and Sahin 2003; Stall et al. 2009; Thieme et al. 

2005). The genus contains saprophytes and epiphytes but most Xanthomonas species are 

pathogens of approximately 400 angiosperm hosts (Leyns et al. 1984; Ryan et al. 2011; 

Vauterin et al. 1990).  

Bacterial spot, caused by either X. euvesicatoria or X. vesicatoria, is a disease of 

worldwide importance in tomatoes as well as peppers (Capsicum spp.) (Aysan and Sahin 

2003; Black et al. 2001; Hamza et al. 2010; Kavitha and Umesha 2007; Ward and 
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O'Garro 1992). The disease can be found in all tomato and pepper producing areas. 

Bacterial spot is often the most damaging disease in the major tomato production states of 

Florida (Jones 1991; Pernezny and Collins 1997; Sun et al. 2002) and California (Davis 

et al. 2014).  

Bacterial spot was first observed on tomato in the United States in 1912 and in 

Pretoria, South Africa in 1914 (Doidge 1921). A similar disease was identified in pepper 

in the United States in 1918 (Jones et al. 1998). The tomato pathogen was identified and 

described in South Africa in 1921 by Ethel M. Doidge who named it Bacterium 

vesicatorium (Doidge 1921). In a later publication that same year, M. Gardner and J. 

Kendrick described the pathogen in the United States. The pathogen was renamed 

Pseudomonas vesicatoria in 1925, then Phytomonas vesicatoria in 1930, Xanthomonas 

vesicatoria in 1939 and later X. campestris pv. vesicatoria. X. campestris is the most 

complex of the xanthomonad species (Vauterin et al. 1990) having over 140 pathovars 

(Jones et al. 1998; Jones et al. 2004; Vauterin et al. 1990). In 1998, Jones et al. divided 

bacterial spot strains into four groups, A, B, C and D. Strains of X. campestris pv. 

vesicatoria were placed into groups A and B based on amylolytic and pectolytic activity 

as well as the expression of unique heat-stable proteins, reaction patterns with 

monoclonal antibodies and DNA:DNA hybridization (Jones et al. 1998). Vauterin et al. 

(1995), using DNA:DNA hybridization and carbon utilization assays, determined that 

groups A and B were two distinct species, which were renamed X. axonopodis pv. 

vesicatoria and X. vesicatoria, respectively. Almost ten years later, a reclassification of 

X. campestris pv. vesicatoria was proposed, dividing the diverse group of strains into 

four species, namely X. euvesicatoria, X. vesicatoria, X. perforans and X. gardneri on the 
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basis of DNA:DNA hybridization (Jones et al. 2004). X. campestris pv. vesicatoria was 

found to have five races, T1, T2, T3, T4 and T5 (Yang et al. 2005) based on pathogenic 

reactions with different tomato genotypes (Bouzar et al. 1994) but with reclassification, 

these tomato races no longer belong to the same species (Hert et al. 2009).  The 

etiological agent of interest in this project is Xanthomonas euvesicatoria, the most 

widespread bacterial spot pathogen worldwide (Moretti et al. 2009).  X. euvesicatoria 

strains are host specific and may be pathogenic on tomato only, pathogenic on pepper 

only or pathogenic on both hosts (Bonas et al. 1991).  

Bacterial spot of tomato and pepper is most severe in warm (24°C to 30°C) 

tropical and subtropical regions where moisture levels are moderate to high (Jones et al. 

2000) from early in the growing season. In a growth chamber, pathogen populations do 

not increase on the leaf surface at a relative humidity of less than 40% (Bashan et al. 

1982). The pathogen is usually introduced on infested seeds or transplants (Bashan and 

Okon 1986; Langston 2014; Ryan et al. 2011) and populations can increase to high 

numbers on asymptomatic hosts before the appearance of disease symptoms (Bashan et 

al. 1982). Economic losses from bacterial spot are due to reduced yield, leaf abscission, 

sunscald of fruit, and unmarketable fruit (Davis et al. 2014; Ritchie 2000).  

Symptoms typically first appear on the leaves, sometimes exclusively, accounting 

for earlier references to this disease as bacterial leaf spot. Epiphytic populations increase 

on the leaf surface before bacteria enter the leaves through stomata, hydathodes or 

damaged epidermal cells. As the populations increase in the intercellular spaces (Ryan et 

al. 2011; Sharon et al. 1982) leaf spots appear as small water-soaked areas on the 

underside of the leaf that penetrate to the upper surface and become chlorotic. The 
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centers of these irregularly-shaped lesions become somewhat raised and necrotic as they 

expand and with persistent moist conditions the spots coalesce resulting in large dead 

areas on the leaves (Ritchie and Averre 1996; Sun et al. 2002). Leaf damage and 

abscission (especially in peppers) result from the production of host-derived ethylene, 

which is stimulated by pathogen-derived ethylene in susceptible cultivars (Ben-David et 

al. 1986). Ethylene causes expansion of chlorosis in leaf lesions and may limit growth of 

necrotic areas on tomato leaves so that the symptoms are spots rather than blights 

(Bashan et al. 1985; Ciardi et al. 2000; Lund et al. 1998; Stall and Hall 1984). Spots do 

not always occur on the fruit although contaminated seeds can be produced by 

asymptomatic fruit. Fruit spots develop only on immature fruit and are initially small, 

irregular and either blister-like or depressed, with yellowish or white water-soaked halos. 

Spots later become dark and wart-like, and the halo disappears. Although the spots are 

superficial this makes the fruit undesirable for both fresh and processing markets because 

of reduced aesthetic quality, misshapen appearance, interference with peeling during 

processing, and the facilitation of secondary infections leading to rot (Goode and Sasser 

1980; Ritchie and Averre 1996; Sun et al. 2002).  

Seed contamination. Infested seed are an important source of initial inoculum 

and the pathogen can survive on seed stored for up to 10 years (Bashan et al. 1982). 

Bacterial spot is not a systemic disease and X. euvesicatoria populations are established 

between host cells in the mesophyll layer of leaves rather than inside vascular tissue 

(Ryan et al. 2011). Contamination of seeds through the vascular system is unlikely. 

Warm, wet conditions facilitate the spread of epiphytic populations to the flowers and 

fruit where the pathogen may gain access to seeds (Bashan and Okon 1986). The stigmas 
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are a favorable site for colonization. The bacteria pass through the style, enter the ovaries 

and establish populations that contaminate the seed (Dutta et al. 2014). Contamination 

may also occur during the seed extraction process (Agrios 2005; Zitter 1985).  

Pathogen populations on seed contaminate seedlings during germination. The 

pathogen is readily spread to other plants in the greenhouse or field by water, such as 

splash from irrigation and wind-driven rain, by airborne aerosols and by mechanical 

means from worker and equipment activities (McInnes et al. 1988; Pohronezny et al. 

1990; Ryan et al. 2011; Sun et al. 2002). Other sources of initial inoculum include 

volunteer tomatoes, tomato debris, diseased leaves, soil, and the rhizosphere of host and 

some nonhost plants such as solanaceous weeds (Bashan et al. 1982; Jones et al. 1986; 

Ritchie 2000).  

Management strategies. Transplants are the preferred planting material in both 

conventional and organic systems as this avoids the challenges of direct-seeding and 

allows the crop to establish quickly and uniformly in the field (Boyhan and Kelley 2014). 

To reduce the risk of infested planting material, seed and transplants are ideally produced  

in cool, arid areas certified disease-free (du Toit 2004; Langston 2014) but this strategy is 

not always successful (Darrasse 2007; Gitaitis and Walcott 2007; Schultz and Gabrielson 

1986), especially with a pathogen that can colonize the host and contaminate seed 

without producing symptoms (Bashan et al. 1982; Dutta et al. 2014; Stall et al. 2009).  

Cultural practices can create less favorable conditions for disease development. 

Sanitation, crop rotation, and drip, furrow or trickle irrigation are recommended for 

management of bacterial spot. Sanitation removes sources of initial inoculum that could 

lead to disease the following season. Xanthomonas survives only 16 days in sandy soil 
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with no viable host material, but several months in host-free loam soil, up to several 

months on crop residues depending on the rate of decomposition, and up to twelve 

months on volunteer tomatoes (Bashan et al. 1982; Jones et al. 1986; Ryan et al. 2011; 

Stall et al. 2009). Solanaceous weeds may serve as hosts providing inoculum for the next 

season although they may not serve as hosts for long-term survival of the pathogen 

(Gitaitis et al. 1992). Therefore, weed control and the disking or removal of postharvest 

debris and volunteers are important. Cull piles should not be established near the crop 

(Langston 2014). The use of disinfectants to clean tools and work surfaces and the use of 

skin-safe disinfectant washes reduce the risk of transmission by workers and their 

equipment (Pohronezny et al. 1990). The best sanitation efforts may not, however, 

remove all sources of inoculum. Considering that the pathogen can survive several 

months on crop residues, a minimum of one year crop rotation with nonsolanaceous crops 

(Davis et al. 2013; Langston 2014) is advised but may not be economically feasible. 

Fixed copper compounds have broad-spectrum bactericidal activity and foliar 

sprays are effective in reducing the impact of bacterial spot on tomato (Dougherty 1978) 

and other bacterial diseases. They are effective as protectants and must contact the 

pathogens before infection. Therefore, coppers must be used early, usually at the first 

sign of disease or emergence of the first true leaves (Hausbeck et al. 2000; Sun et al. 

2002). Copper compounds are more effective when tank-mixed with ethylene 

bisdithiocarbamate (EBDC) fungicides. The mode of action that increases its efficacy is 

not clearly understood. Marco and Stall (1983) suggested that it increases the amount of 

available copper but Hausbeck et al. (2000) disagreed, postulating a synergistic effect, 

although they did not observe any bactericidal effects of the fungicide.  
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Coverage of the entire plant is important because bacterial populations on leaf 

surfaces are nonuniform. Higher numbers are usually found on the abaxial surface 

(Beattie and Lindow 1999; Sharon et al. 1982). Epiphytic bacteria may enter substomatal 

spaces or colonize other protected areas such as buds where they evade contact by copper 

sprays (Hugouvieux et al. 1998; Pernezny and Collins 1997). The challenge of using this 

chemical tool is compounded by the risk of copper phytotoxicity (Lalancette and 

McFarland 2007; Mazhoudi et al. 1997; Ouariti et al. 1997) and the development of 

tolerance to copper in some strains of the pathogen (Jones et al. 1991; Ritchie and 

Dittapongpitch 1991; Ward and O'Garro 1992). Copper resistance genes are located on 

plasmids that can be transmitted to other bacteria (Behlau et al. 2013; Bender et al. 1990). 

Public health concerns have been raised about the use of EBDCs (Yang et al. 2005) and 

they are no longer allowed in some states for use on processing tomatoes (Hausbeck et al. 

2000). EBDC compounds are not allowed in organic production. 

Antibiotics have been tried for bacterial spot management but are not presently in 

common usage. Streptomycin is the most common antibiotic used in plant production, but 

oxytetracycline and kasugamycin have also been studied in greenhouse and field 

applications (Ritchie and Averre 1996; Sun et al. 2002; Vallad et al. 2010). Antibiotic 

resistance develops relatively quickly in Xanthomonas (Lai et al. 1977; Minsavage et al. 

1990) and antibiotics may have phytotoxic effects (Humaydan et al. 1980; McManus et 

al. 2002). Resistance to antibiotics has been reported among a number of bacteria, 

including strains of bacterial spot pathogen (Ritchie and Dittapongpitch 1991; Ward and 

O'Garro 1992). Antibiotic use is not advisable in the field (Ritchie and Averre 1996) 

except for high value crops because of the high cost and the short time for which the 
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antibiotic is effective (Stockwell and Duffy 2012). Concerns have been raised about the 

spread of antibiotic resistance among clinically important bacteria resulting from use of 

antibiotics in agriculture (Stockwell and Duffy 2012). Antibiotics have not been 

recommended for bacterial spot management for over forty years (Stall et al. 2009).  

Host resistance against bacterial spot is the most desirable method of disease 

management. Tomato cultivars resistant to races of tomato and pepper bacterial spot 

pathogens have been identified (Bonshtien et al. 2005; Gibly et al. 2004; Horvath et al. 

2012; Scott et al. 1995; Yang et al. 2005). However, these cultivars have not gained 

widespread use (Langston 2014) possibly because the resistance is not durable (Clarke et 

al. 2014; Stall et al. 2009), the available resistant cultivars are not resistant to all strains 

of the pathogen and they lack the horticultural characteristics demanded by the fresh and 

processing tomato markets (Hartz et al. 2008; Jones et al. 2006; Le Strange 2000). Recent 

research has determined that eggplant (Solanum melongena) and related species may be a 

promising genetic resource for resistance to X. euvesicatoria and Pseudomonas syringae 

pv. tomato (Clarke et al. 2014).  

Biological control organisms such as antagonistic bacteria and fungi as well as 

plant growth-promoting rhizosphere (PGPR) bacteria have been used as seed treatments 

and in foliar applications (El Hendawy et al. 2005; Fontenelle et al. 2011; Hert et al. 

2009; Kavitha and Umesha 2007). The effectiveness of biocontrol agents is influenced by 

interactions with other microorganisms as well as the chemical and physical components 

of the phyllosphere and rhizosphere. Such interactions cannot be predicted and biocontrol 

organisms usually exhibit a low to moderate level of control when compared to chemical 

bactericides. Only some strains of a biocontrol agent may be useful against a particular 
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strain of the pathogen and even with the appropriate biocontrol strain, the effectiveness at 

reducing disease is variable (Byrne et al. 2005). Even the most effective biocontrol 

microorganisms cannot prevent disease outbreaks when environmental conditions are 

conducive. Biocontrol is not intended to be a substitute for chemical bactericides but can 

be part of an integrated disease management plan.  

Bacteriophages (or phages) have demonstrated effective control of their bacterial 

targets and in 1995 the EPA registered a phage-containing product for use against 

bacterial spot and speck in tomatoes (US EPA 2011). Phages have been identified that are 

specific to X. euvesicatoria but have no effect on other bacterial spot pathogens (Gašic et 

al. 2011). The effectiveness of phages is limited by their sensitivity to UV light 

(Silverman et al. 2013), high temperatures, pH changes and other environmental 

conditions, and they require free moisture in which to diffuse to their host cells. 

Bacteriophages degrade relatively quickly (Jones et al. 2007) necessitating frequent spray 

applications. Phage preparations are more effective when a mixture of bacteriophages is 

used and protective compounds are added to extend the period for which they are active 

on leaf surfaces (Balogh et al. 2003; Flaherty et al. 2000; Obradovic et al. 2004).  

Acibenzolar-s-methyl (ASM) is a synthetic plant activator shown to induce 

systemic acquired resistance that is as effective as copper-EBDC sprays in controlling 

bacterial spot on both peppers and tomatoes (Huang et al. 2012; Louws et al. 2001; 

Obradovic et al. 2005; Romero et al. 2001). Efficacy is observed whether ASM is applied 

before (Huang et al. 2012) or after (Cavalcanti et al. 2007) the plants are inoculated with 

the pathogen. Host defense mechanisms against bacterial spot are also induced by foliar 

applications of chitosan (Coqueiro et al. 2011). 
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Essential oils have been used for centuries for their putative antiseptic properties. 

They are formed in aromatic plants as volatile, secondary metabolites. Oil extracts have a 

strong odor, and can have a protective function against herbivory (Bakkali et al. 2008). 

The activity of essential oils against insects (Choi et al. 2003; Lale 1992; Waliwitiya et 

al. 2005) fungi (Kordali et al. 2008; Marinelli et al. 2012; Omidbeygi et al. 2006) and 

bacteria (Daferera et al. 2003; Fisher and Phillips 2009; Friedman et al. 2002; Rasooli et 

al. 2006) is well documented. Essential oils or their components have also been used 

against microorganisms in seed disinfection (Lo Cantore et al. 2009) and in food 

preservation and safety (Holley and Patel 2005; Mishra and Dubey 1994; Solomakos et 

al. 2008; Tzortzakis and Economakis 2007). The antimicrobial effects of essential oils are 

attributed to nonspecific modes of action that affect cellular membranes, macromolecules 

(including enzymes and ion channels) and energy production (Isman 2000; Janssen et al. 

1987). Gram negative bacteria appear to be less susceptible to the damaging effects of 

essential oils than gram positive bacteria due to cell wall structure (Abozid and Asker 

2013; Bakkali et al. 2008; Iacobellis et al. 2005; Ziani et al. 2011). 

Investigations into the efficacy of essential oils against phytopathogens are often 

limited to in vitro studies that suggest the potential for their use in disease management 

and against storage fungi (Daferera et al. 2003; Omidbeygi et al. 2006; Riccioni and 

Orzali 2011; Suwitchayanon and Kunasakdakul 2009; Tzortzakis and Economakis 2007). 

Effective use as foliar sprays has been recorded by da Silva et al. (2014) in which 

essential oils of thyme, clove, eucalyptus, cinnamon, citronella, tea tree and lemongrass 

reduced populations of Pseudomonas syringae pv. tomato, causal agent of  bacterial 

speck of tomato, in greenhouse trials. Pre-infection treatments provided better control 
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than post-infection sprays. de Lira Guerra et al. (2014) used foliar sprays of essential oils 

from eleven plants and saw reduction of soft rot of Chinese cabbage caused by 

Pectobacterium carotovorum ssp. carotovorum. Foliar applications and seed treatment 

using thyme oil suspensions have been effective against bacterial spot of tomato 

(Altundag and Aslim 2011). Six of the eleven essential oils tested by Mbega et al. 

(2012a) were effective against X. perforans, another bacterial spot pathogen. These six 

oils were subsequently used as seed treatments. Tomato seeds treated with essential oils 

of clove, thyme and lemongrass did not emerge when planted, possibly because of the 

relatively high concentrations used (2%), or the long time for which they were soaked in 

the treatment (overnight). The remaining three oils of eucalyptus, rosemary and niaouli 

(Melaleuca viridiflora) were effective in reducing incidence and severity of the disease 

(Mbega et al. 2012a). Bean seeds infested with X. campestris pv. phaseoli var. fuscans 

were treated by Lo Cantore et al. (2009) with various components of essential oils. The 

phenol and alcohol components of the oils were the most effective in reducing bacterial 

populations on the seeds. Microorganisms are not all affected in the same way by a 

particular concentration of an essential oil (Riccioni and Orzali 2011; Tzortzakis and 

Economakis 2007). Determining the lowest effective concentration of essential oil is 

important because of phytotoxicity risks, including inhibition of germination and seedling 

growth (Kordali et al. 2008). Other plant extracts have been suggested as seed treatments 

(Mbega et al. 2012b; van der Wolf et al. 2008) but there is too much variation in the 

sources, preparation and concentrations of the active compounds to allow for reliable 

recommendations. Some of these studies did not obtain similar results when repeated 

(van der Wolf et al. 2008). 
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Compost mixtures and their water extracts have been investigated for bacterial 

spot management. Used as soil amendments, foliar sprays and seed treatments (Abbasi et 

al. 2002; Al-Dahmani et al. 2003; Al-Dahmani et al. 2005; Reddy et al. 2012), compost 

and compost extracts are generally effective against bacterial spot only when disease 

pressure is high. Overall yield does not always increase, but there may be a higher yield 

of marketable fruit because of reduced spot symptoms on the fruit. 

Seed treatments. The desire for clean seed has led to decades of research on seed 

treatments (Carisse et al. 2000; Mbega et al. 2012a, 2012b; Walker 1948). Seed 

treatments may be chemical or physical, such as the use of heat. Chemical treatments, 

such as with hypochlorite (in chlorine bleach) or inorganic and organic acids, sanitize the 

seed surface while hot water treatments can also reduce bacterial populations within the 

seed. Hot water seed treatments are usually effective (McGee 1981; Mtui et al. 2010) 

especially if the infestation in the seed lot is relatively low (du Toit and Hernandez-Perez 

2005). Such treatments can be difficult to conduct because of the precise temperature 

required to kill the pathogen without impacting the germination potential, seedling vigor 

and shelf life of the seed (Fatmi et al. 1991; Goode and Sasser 1980; Hopkins et al. 2003; 

Kordali et al. 2008; Lo Cantore et al. 2009; Nega et al. 2003; van der Wolf et al. 2008). 

Treating small numbers of seeds may be impractical for large-scale production and there 

is no guarantee that all the seeds in a large treatment batch will attain the treatment 

temperature for the recommended duration (du Toit and Hernandez-Perez 2005). In 

addition, Humaydan et al. (1980) demonstrated that hot water treatments are not always 

more effective than chemical disinfection. 
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Chlorine compounds are widely used disinfectants, especially sodium 

hypochlorite (NaOCl) which is the active ingredient in chlorine bleach. Clorox® brand 

contains 5.25% NaOCl but lower and higher concentrations are present in other brands. 

Sodium (or calcium) hypochlorite is also frequently used in laboratory investigations to 

sanitize seed or seedling surfaces in preparation for experimental work. The 

recommendations for the use of hypochlorite in seed treatments can vary from 0.5% to 

20% in a water mixture and the duration of soaking from 2 to 40 min (Bashan 1986; 

Juhnke et al. 1989; Kordali et al. 2008; Ritchie and Averre 1996). In all cases, the seeds 

were thoroughly rinsed in water after soaking in order to minimize any negative impact 

on seed vitality (Khah and Passam 1992). Hypochlorite concentrations equivalent to less 

than 1% bleach can kill some bacterial spores within 5 to 10 minutes (Rutala et al. 2008). 

Organic matter (Ivancev-Tumbas et al. 1999), bacterial biofilms (Jaglic et al. 2012; 

Wirtanen and Salo 2003) and possibly the xanthans produced by Xanthomonas species 

(Brown et al. 1993; Maude 1996) can quickly neutralize chlorine compounds and reduce 

the efficacy of disinfectants. In heavily infested seeds, especially where pathogens may 

be clumped on the surface, the biofilm may protect some pathogens from exposure to the 

treatment. Therefore, hypochlorite concentrations need to be high enough to compensate 

for these challenges but without damaging the seed (Khah and Passam 1992). 

Inorganic and organic acids have also shown effectiveness as seed treatments. 

The most commonly used inorganic acid is hydrochloric (Fatmi et al. 1991; Hopkins et 

al. 2003). Acetic acid (Borgen and Nielsen 2001; van der Wolf et al. 2008) and peracetic 

(peroxyacetic) acid (Hopkins et al. 2003) are the most commonly used organic acids but 

lactic acid and ascorbic acid also showed promising results (van der Wolf et al. 2008).  
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Each of the management tools discussed is only partially effective against 

bacterial spot. Some are not permitted in organic agriculture. Therefore, in both organic 

and conventional production, disease management requires an integrated approach of 

which seed treatments are an essential part.  

 

Objectives 

1. Investigate the in vitro efficacy of proposed seed treatments in reducing 

populations of the bacterial pathogens Xanthomonas euvesicatoria, Clavibacter 

michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato.  

2. Determine the efficacy of seed treatments in eliminating Xanthomonas 

euvesicatoria populations from infested seed. 

3. Determine the efficacy of seed treatments in reducing transmission of 

Xanthomonas euvesicatoria populations to seedlings. 
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Abstract 

Two in vitro methods were used to determine the effects of five antimicrobial 

compounds, sodium hypochlorite, OxiDate 2.0, thyme oil and infusions of rosemary stem 

and ginkgo leaf, on populations of phytopathogenic bacteria. Bioscreen C, an automated 

turbidimetric system, was used to measure the population growth of three seedborne 

pathogens, Xanthomonas euvesicatoria, causal agent of bacterial spot of tomato and 

pepper, Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker 

of tomato, and Pseudomonas syringae pv. tomato, causal agent of bacterial speck of 

tomato, in nutrient broth with or without the treatments. A second method exposed X. 

euvesicatoria cells to the treatments followed by a rinse in buffer and plating onto culture 

media. This method distinguished bacteriostatic effects of the treatments from 

bactericidal effects. Sodium hypochlorite killed all bacterial cells regardless of method 

used. No bacterial growth was observed with OxiDate 2.0 in the Bioscreen C but with the 

plate method, OxiDate 2.0 significantly (P < 0.0001) reduced bacterial populations by 

52.3% but did not kill all X. euvesicatoria cells. The thyme oil treatment resulted in 

significant reductions in the growth of X. euvesicatoria and C. michiganensis subsp. 

michiganensis, but not P. syringae pv. tomato, using the Bioscreen C. Some X. 

euvesicatoria cells survived the thyme oil treatment using the plate method although 

there was a significant (P < 0.0001) reduction in population by 56.5%. The rosemary 

stem infusion inhibited the growth of C. michiganensis subsp. michiganensis in the 

Bioscreen C. X. euvesicatoria growth was not inhibited by rosemary stem infusion 

regardless of the method used. The ginkgo leaf infusion inhibited the growth of C. 

michiganensis subsp. michiganensis and X. euvesicatoria in the Bioscreen C, but there 
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was no inhibition of the growth of X. euvesicatoria in the plating method. In the case of 

P. syringae pv. tomato, both infusions resulted in a significant (P < 0.0001) increase in 

growth using the Bioscreen C.  

 

Introduction 

Planting material, such as seed, is often the source of primary inoculum (Baker 

and Smith 1966) for many bacterial diseases. Seed may carry bacterial pathogens even 

though the seed crop displayed no symptoms. Additionally, transplants grown from 

contaminated seed may also be asymptomatic (Dutta et al. 2014; Gitaitis and Walcott 

2007). Seed health assays, though essential, cannot guarantee that an entire seed lot is 

free of pathogens (Morrison 1999; Schaad 1982). Techniques for disinfecting seeds are 

therefore necessary for disease management when seed is the most important primary 

source of inoculum. Hot water seed treatments are effective and commonly used but may 

be difficult for small-scale growers to conduct because of the precision of exposure time 

and temperature required to achieve disinfection without negatively affecting seed 

physiology (Fatmi et al. 1991; Goode and Sasser 1980). In addition, some studies have 

shown that hot water treatment may not always be 100% effective (Schaad 1982) and that 

chemical seed treatments may be more effective (Humaydan et al. 1980). Heat may also 

reduce the shelf life, germination percentage and vigor of seed (McGee 1995). Chemical 

treatments are often more convenient to use, although care must be taken to use the 

minimum concentration required for the minimum exposure time as these can also 

decrease seed vitality (van der Wolf et al. 2008). While the specific time and temperature 

of each hot water treatment is prescribed for seed from a particular crop, chemical seed 
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treatments may be effective against a range of pathogens (Feng et al. 2012) on different 

seeds. Each crop is threatened by more than one pathogen (Bajpai et al. 2011), any 

number of which may be carried on its seeds. Seeds may even be contaminated with 

microorganisms that are pathogens of another crop (Dutta et al. 2014) and this is a 

potential problem in rotated crops. Hence, broad-spectrum seed treatments are desirable 

if they are effective.  

For organic systems, the use of clean seed may be even more important 

(Lammerts van Bueren et al. 2003). Fewer effective in-season treatments are available for 

organic growers and therefore prevention of disease is critical both in the seed production 

fields and in crop production. Organic growers should use organically produced seed 

when available but in cases where suitable organic seed is unavailable, organic growers 

are permitted to use nonorganic seed, provided it is untreated or has been treated with  a 

method or material approved for organic use (USDA NOP 2013). Large seed companies 

do not appear to be meeting the needs of organic producers for a number of reasons, as 

discussed in the State of Organic Seed Report (OSA 2011). Organic growers also are 

more likely to save, trade and sell seed, and as a result, the responsibility of seed 

treatment for disease control is often left to the grower. Treatments that are relatively 

easy to prepare and apply without special equipment and that are effective against more 

than one pathogen are preferred. In this way, seeds can be treated with a minimum 

number of products thus reducing any risk of deterioration associated with seed 

treatments (Kordali et al. 2008; Mbega et al. 2012a).  
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Seed is known to be an important source of primary inoculum for important 

bacterial pathogens of solanaceous crops, including  Xanthomonas euvesicatoria, causal 

agent of bacterial spot of tomato and pepper (Leite et al. 1995), Clavibacter 

michiganensis subsp. michiganensis causal agent of bacterial canker of tomato (Fatmi et 

al. 1991), and Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of 

tomato (McCarter et al. 1983). In-season management of bacterial diseases is difficult 

(Jones et al. 2007; Lo Cantore et al. 2009). Bactericidal preparations of fixed copper are 

widely used to suppress bacterial disease but the effectiveness of copper compounds is 

limited and the repeated use of copper compounds can lead to copper accumulation in the 

soil (Pietrzak and McPhail 2004). Antibiotics can be effective in managing some 

bacterial diseases but antibiotics are expensive. Additionally, the use of antibiotics, such 

as streptomycin and oxytetracycline, is usually restricted to a few bacterial diseases on 

high-value crops (McManus et al. 2002; Stockwell and Duffy 2012). Finally, bacterial 

resistance to both copper and antibiotics commonly develops with repeated use (Behlau 

et al. 2013; Cazorla et al. 2002; Jones et al. 1991). The primary management strategy for 

bacterial diseases is therefore to prevent the introduction of the pathogens through the use 

of clean planting material (Gitaitis and Walcott 2007; McGee 1995). 

Sodium hypochlorite (NaOCl) is a commonly used seed disinfectant (Benhamou 

et al. 1994; Carisse et al. 2000; Pernezny et al. 2002). Sodium hypochlorite is an effective 

broad-spectrum disinfectant because of its toxic secondary products, such as 

hypochlorous acid, which causes nonspecific damage to proteins (Urano and Fukuzaki 

2005) and other cell components. While NaOCl can cause lethal DNA damage, 

pathogens on the seed surface are probably killed through cell surface damage rather than 
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DNA denaturation (Miché and Balandreau 2001). Sodium hypochlorite seed treatments 

are commonly used due to the low effective concentrations (0.52%, Sahin and Miller 

1997 to 2%, Mtui et al. 2010), low cost, common availability and ease of application. 

OxiDate 2.0 is labeled as a treatment for Pythium, Phytophthora, Rhizoctonia, 

Fusarium and Thielaviopsis and unspecified bacterial pathogens on or in seed. Although 

it is not labeled for any specific bacterial diseases and studies on the use of this product 

as a seed treatment were not found, its active ingredients, hydrogen dioxide (27.1%) and 

peroxyacetic acid (2.0%), have both been effective on phytopathogenic bacteria (Hopkins 

et al. 2003; Pernezny et al. 2002). At least one other commercial product with the same 

active ingredients (in different proportions) has been shown to be effective as a seed 

treatment for another bacterium (Feng et al. 2009).  

 Thyme oil from common thyme, Thymus vulgaris L., is a frequently investigated 

essential oil that is used mainly in flavorings and pharmaceuticals (Abozid and Asker 

2013; Janssen et al. 1987; van der Wolf et al. 2008). The putative main active ingredient 

in thyme oil, thymol, constitutes almost 40% of the oil but other components may also 

have antimicriobial activity (Abozid and Asker 2013; Friedman et al. 2002). Thyme oil 

has a relatively high solubility in water (Ziani et al. 2011) making it possible to make 

mixtures that do not require emulsifiers. Various in vitro methods using essential oils 

extracted from different species of Thymus demonstrated effective inhibition of human 

and plant bacterial pathogens (Daferera et al. 2003; Lucas et al. 2012; Rasooli et al. 

2006). Aqueous plant extracts have also been tested for their efficacy against 

phytobacteria (Feng et al. 2012), including their usefulness as seed treatments (Mbega et 

al. 2012b; van der Wolf et al. 2008). Extraction is usually made from plant parts, such as 
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leaves, stems, bark and rhizomes, rather than whole plants. Generally, plant extracts that 

significantly reduced pathogen populations had higher minimum inhibitory 

concentrations than effective essential oils (van der Wolf et al. 2008) but did not have a 

negative effect on germination (Mbega et al. 2012b; van der Wolf et al. 2008). 

In vitro assays can be used to test the antimicrobial effectiveness of chemicals 

including plant extracts and oils (Bisignano et al. 1999), disinfectants (Gomes et al. 

2001), synthetic antibiotics (Murakawa et al. 1980) and fungicides (Fenn and Coffey 

1984; Hardy et al. 2001), as well as the compatibility of treatments that will be applied 

simultaneously (Constantinescu et al. 2014). Testing of potential seed treatments begins 

with in vitro assays of the effects of the treatments on pure cultures of the pathogen (Feng 

et al. 2012). Effective treatment concentrations and exposure times are then tested on 

contaminated seeds or susceptible plants (Weller et al. 1985).  

The Bioscreen C turbidimetric system is an automated system for measuring 

growth using optical density (OD) and provides a reliable method of comparing treatment 

effects on pathogen growth over time. Like most in vitro assays (Janssen et al. 1987), 

Bioscreen C keeps the bacterial cells in constant contact with the compound, hence, this 

system does not distinguish between cells being killed by the treatment (bactericidal 

effect) and cells being temporarily suppressed in growth (bacteriostatic effect). The 

Bioscreen C can assay 200 samples simultaneously, allowing for a number of replicates 

of a range of treatments to be assayed efficiently. Bioscreen C uses optical density as a 

measure of growth, so although replicates may be compared to each other, the results do 

not provide estimates of population sizes. The color and turbidity of the treatments will 

influence the Bioscreen C results and, therefore, appropriate controls must be used.  
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Some in vitro methods for assessing treatment efficacy use agar plates amended 

with the treatment but this method may only suppress cell growth temporarily. Exposing 

a suspension of bacterial cells to the treatment followed by rinsing and plating cells onto 

culture media allows only viable cells to grow, providing a more accurate assessment of 

the ability of the treatment to kill the cells. The objective of this study was to ascertain 

the effects of proposed seed treatments (1.05% NaOCl, 0.33% thyme oil, 0.99% OxiDate 

2.0, 10% (w/v) rosemary stem infusion, 10% (w/v) ginkgo leaf infusion) on the in vitro 

growth of X. euvesicatoria, C. michiganensis subsp. michiganensis, and P. syringae pv. 

tomato using the Bioscreen C turbidmetric system. A plating method developed for this 

study was used to determine the effects of these treatments on X. euvesicatoria. 

 

Materials and Methods 

Bacterial strains. X. euvesicatoria strain XCV 04-100 was isolated from pepper 

in Georgia and is pathogenic on both pepper and tomato. C. michiganensis subsp. 

michiganensis and P. syringae pv. tomato strain 88-84 were both isolated from tomato in 

Georgia (Table 2.1). The bacteria were maintained in 15% glycerol at -80°C and 

subcultured on nutrient yeast dextrose agar (NYDA, 8 g nutrient broth, 3 g yeast extract, 

5 g dextrose, 17 g agar per liter distilled water). For each assay, bacterial cell suspensions 

in 10 mM MgSO4 were prepared from three-day-old NYDA cultures of X. euvesicatoria 

and P. syringae pv. tomato, and four-day-old NYDA cultures of C. michiganensis subsp. 

michiganensis.  The suspensions were adjusted spectrophotometrically (Spectronic 20, 

Bausch and Lomb, Bridgewater, NJ, USA) to 10
8
 CFU/ml. OD values had been 

previously determined by dilution plating onto NYDA.  
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Preparation of treatments. Treatments were prepared and diluted using sterile 

distilled water (SDW). Chlorine bleach was diluted to 1.05% sodium hypochlorite 

(NaOCl) (Fatmi et al. 1991; Miller and Lewis Ivey 2005). OxiDate 2.0 (BioSafe Systems, 

Hartford, CT, USA) is a commercial product for plant disease control labeled for seed 

treatment and was used at the recommended 0.99% (1:100) dilution. Thyme oil (white, 

Sigma-Aldrich, St. Louis, MO, USA) was diluted without an emulsifier to a 

concentration of 0.33% (van der Wolf et al. 2008). The infusions were prepared using 

rosemary stems (RS) or ginkgo leaves (GL) cut into pieces approximately 2 cm long. Ten 

grams of plant material was added to 100 ml distilled water in a 250 ml beaker to obtain a 

10% (w/v) concentration (Mbega et al. 2012b). This mixture was heated to boiling, 

immediately removed from heat and allowed to cool for 10 min. Plant material was 

removed by filtering through two layers of cheesecloth and the filtrate sterilized by 

autoclaving. The infusions were stored at 4°C and used within four days of preparation. 

Bioscreen C method. Suspensions of each bacterium were prepared for use in the 

Bioscreen C (Growth Curves USA, Piscataway, NJ, USA) by diluting to 10
5
 CFU/ml 

using 10 mM MgSO4. Each well of the Bioscreen C 100-well plate contained a total 

volume of 400 μl, of which 10% consisted of the bacterial suspension (10
3
 CFU/well), 

50% was nutrient broth (8 g/l) and 40% was each of the following treatments: 1.05% 

NaOCl, 0.99% OxiDate 2.0, 0.33% thyme oil, 10% (w/v) RS infusion or 10% (w/v) GL 

infusion. There were 5 wells with nutrient broth (NB) (negative control) in order to 

ensure that there was no contamination of the medium. Negative controls (5 wells per 

pathogen) included bacterial suspension (40 μl, 10
5
 CFU/ml) and sterile distilled water 

(SDW) (360 μl) only. Positive control (10 wells per pathogen) each included bacterial 
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suspension (40 μl, 10
5
 CFU/ml), NB (200 μl) and SDW (160 μl). Wells with the 

treatments (8 wells per treatment per pathogen) included bacterial suspension (40 μl, 10
5
 

CFU/ml), NB (200 μl) and treatment (160 μl). Plates were incubated in the Bioscreen C 

machine at 28°C with shaking at medium amplitude. Optical density measurements were 

taken every 30 min at 600 nm for 60 h (2.5 days).  

Dilution plating method. The effective duration of exposure of the bacterium to 

each treatment was determined using a 10
8
 CFU/ml suspension of X. euvesicatoria in 10 

mM MgSO4 buffer. Sodium hypochlorite was tested at 10, 20, 30 and 40 min. OxiDate 

2.0, labeled for a 2 min treatment, was tested at 2 min and 10 min. The RS and GL 

infusions were tested at 10, 30 and 60 min. Each replicate investigated one treatment at a 

time with treatment duration as the only manipulated variable. Thyme oil was not 

included because previous studies had determined that a 30-min soak was the effective 

exposure time without compromising seed germination percentage (Gomah 2008; van der 

Wolf et al. 2008). 

For each of the treatments, 1 ml of bacterial suspension (10
8
 CFU/ml) in a 1.5 ml 

microcentrifuge tube was centrifuged at 13,000 rpm for 5 min (Hermle Z180M, Labnet, 

Edison, NJ, USA). The pellet was resuspended in 500 μl of the treatment and incubated at 

room temperature (≈ 23°C) for the relevant duration. Timing of the application was done 

so that all the treatments were rinsed from the cells at the same time. Bacterial cells were 

then separated from the treatment by centrifugation, and the pellet was rinsed by 

resuspending in 500 μl of 10 mM MgSO4 buffer and incubating for 10 min at room 

temperature. The suspension was centrifuged and the pellet was again resuspended in 500 

μl of 10 mM MgSO4 buffer. For the thyme oil treatment, the tube was mixed vigorously 
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by a vortexer for a few seconds every three to five minutes during the treatment and rinse 

to prevent separation of the mixture. Tenfold dilutions using 10 mM MgSO4 buffer were 

made from each of the suspensions of rinsed cells and three 20 μl aliquots were spotted 

on each of four quadrants on plates of NYDA (Fig. 2.5). Plates were incubated for 24 h at 

28°C (Percival Intellus environmental controller) and colonies were counted using a 

dissecting microscope at 10X to 15X  magnification. Bacterial cells treated with SDW for 

30 min served as a negative control. The experiment was repeated three times. 

Data analysis. For the Bioscreen C results, the area under the growth curve 

(AUGC) for each replicate (each well) was computed (SigmaPlot version 13, Systat 

Software Inc., San José, CA, USA) using the OD readings as a relative measure of 

growth. An analysis of variance (ANOVA) on the AUGC values was conducted using 

Proc GLM in SAS version 9.2 (SAS Institute, Cary, NC, USA). The plate counts were 

log10 transformed and used for ANOVA. Mean separation was determined by Student's t 

test (least significant difference, LSD). 

 

Results  

Bioscreen C. NaOCl and OxiDate 2.0 were the only treatments that completely 

inhibited the growth of all three pathogens based on the AUGC (Figs. 2.1 to 2.3). Thyme 

oil significantly suppressed the growth of X. euvesicatoria and C. michiganensis subsp. 

michiganensis, but the growth of P. syringae pv. tomato was not significantly different 

from that of the untreated (SDW) control (P < 0.0001). The AUGC was significantly 

higher than the positive control (NB) for both RS and GL treatments for all three bacteria 

except for X. euvesicatoria which was significantly suppressed in growth by the GL 
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treatment. The growth curves (Fig. 2.4) indicated inhibition of the growth of C. 

michiganensis subsp. michiganensis by RS infusion but no inhibition of P. syringae pv. 

tomato and X. euvesicatoria. Growth curves also showed that GL infusion inhibited the 

growth of C. michiganensis subsp. michiganensis and X. euvesicatoria while the growth 

of P. syringae pv. tomato was not inhibited by GL infusion. 

Dilution plating assay. In preliminary results, the 10 min treatment with NaOCl 

was as effective as the 20, 30 and 40 min exposures. No X. euvesicatoria colonies were 

seen on the plates after 24 h for any of the NaOCl treatment times. Treatment with 

OxiDate 2.0 for 10 min was as effective as the labeled 2 min soak (Table 2.2). There 

were no significant differences in bacterial populations among the treatment times for RS 

and GL infusions. The longest treatment time was chosen for simultaneous treatments to 

give maximum exposure of the cells to the infusions. 

When tested simultaneously (Fig. 2.6), NaOCl was the most effective treatment 

with no viable bacterial cells detected on the NYDA plates. OxiDate 2.0 reduced 

bacterial populations by 52.3% and thyme oil by 56.5% (Table 2.3). Infusions of RS and 

GL did not provide a significant reduction in bacterial cell numbers, according to 

Student's t test (P < 0.0001). 

Discussion 

Most in vitro assays for determining the antimicrobial activity of a compound use 

solid media amended with the compound (Mishra and Dubey 1994) or an agar overlay 

technique (Janssen et al. 1987) that measures zones of inhibition (Feng et al. 2012) or 

mycelial growth diameter (Fenn and Coffey 1984). This approach is appropriate in 

testing for antagonism between living organisms (Rajendiran et al. 2010), but such assays 
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keep the pathogen constantly exposed to the treatment and do not distinguish between 

bactericidal and bacteriostatic effects. Compounds for use in seed treatments must be 

bactericidal. Hernández et al. (2000) described a method in which the antimicrobial agent 

was neutralized before the treated pathogens were mixed with growth medium. In the 

current study, a method was developed in which the treatment compounds were rinsed 

from the bacterial cells before the suspension was plated onto solid medium. 

In in vitro tests against various pathogenic bacteria 1% NaOCl was among the 

effective treatments with varying minimum exposure times required to kill the bacteria 

(Vianna et al. 2004). A gram positive bacterial species known to be resistant to NaOCl in 

low concentrations required 20 min exposure but gram negative species were all killed 

when exposed to 1% NaOCl for 10 min or less (Gomes et al. 2001; Saejung et al. 2014; 

Vianna et al. 2004). X. euvesicatoria is gram negative, so the results of this study are 

consistent with other in vitro assays using gram negative bacteria. 

The highly inhibitory effects of OxiDate 2.0 observed on bacterial cells in 

suspension using both Bioscreen C and plating methods were not surprising given the 

known antibacterial effects of this product. However, the plating method indicated that 

OxiDate 2.0 did not completely kill all bacterial cells and may not be a good seed 

treatment as only a few bacterial cells left on the seeds could result in a disease outbreak 

(Hausbeck et al. 2000).  

Preliminary investigations in this study used 0.25% thyme oil because it was the 

minimum inhibitory concentration for a number of bacteria (Janssen et al. 1987). This 

concentration only reduced X. euvesicatoria populations tenfold. A concentration of 

0.33% was effective as a seed treatment without adverse effects on seed germination (van 
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der Wolf et al. 2008). This higher concentration (0.33%) increased the effectiveness of 

the treatment in the current study by reducing populations from 10
8 
CFU/ml to 10

3
 

CFU/ml. Some preparations of thyme oil have enhanced solubility by using ethanol 

(Altundag and Aslim 2011; Tanović et al. 2013), but ethanol would also be expected to 

have antimicrobial effects on the pathogens. Thyme oil was therefore used without 

emulsifier so that any antimicrobial effects of the emulsifier could be avoided. 

Mbega et al. (2012b) used RS and GL infusions to treat tomato seed infested with 

X. perforans and reported 100% reduction of the pathogen population on seeds treated 

with RS infusion and 94% reduction on seeds treated with GL infusion. Based on their 

findings, the RS and GL treatments were expected to inhibit growth significantly when 

used on pure cultures of the bacteria. However, this was not observed. A plant extract 

may be effective against a number of genetically unrelated microorganisms (Elgayyar et 

al. 2001; Feng et al. 2012) so the difference in bacterial species is not likely to be the 

reason for this inconsistency. The infusions are expected to vary in composition among 

preparations and different studies because of the use of different species or cultivars of 

the plant. Even if the same cultivar is used, the concentration of active ingredient may be 

different each time the infusions are prepared (Janssen et al. 1987).  

RS infusion appeared to have a suppressive effect on X. euvesicatoria in 

preliminary investigations using amended media in which water in the NYDA mixture 

was replaced with the infusion before the medium was autoclaved (results not shown). 

Bioscreen C results contradicted these observations using the amended media, as the 

growth of X. euvesicatoria was not affected by the RS infusion (Fig. 2.4). The inhibition 

of growth of X. euvesicatoria by GL infusion observed with Bioscreen C appeared to be 
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bacteriostatic rather than bactericidal as there was no inhibition of growth observed with 

the plating method. Most of the AUGC values for RS and GL infusions were higher than 

that of the NB positive control for the same bacterium. While this suggests that the 

infusions enhanced the growth of the bacteria, this does not appear to always be the case 

(Fig. 2.4). Optical density is used by Bioscreen C as a measure of growth and is 

influenced by the color of the cell suspension. The greater AUGC values for the 

infusions, even when there was no apparent growth, appeared to be due to the higher 

baseline OD of the infusion mixtures, perhaps due to the brown pigment in the infusions. 

The infusions are poor candidates for use as seed treatments since P. syringae pv. tomato 

grew in both infusions and X. euvesicatoria grew in the RS infusion (Fig. 2.4). In 

addition, no inhibition of growth was observed for the infusions in the plating method 

(Fig. 2.6). The reason for the enhanced growth may be due to substances in the infusions 

that act as a food source for some bacteria. 

As expected, the SDW control had the lowest AUGC values for all three bacteria. 

NaOCl, OxiDate 2.0 and thyme oil treatments were all colorless. Adding the colored NB 

resulted in higher AUGC values than the control, even if the pathogens did not grow. For 

more meaningful comparison among AUGC values, controls of the nutrient broth and 

nutrient broth with the treatments in the same concentrations as in the samples but 

without the bacterium should be included. The OD values from the controls could then be 

subtracted from the OD of the test samples to obtain more accurate AUGC values. 

Dilution plating often involves using a bent glass rod to spread the bacterial 

suspension on the surface of a plate of agar medium. Large numbers of plates may be 

used with this method of bacterial cell enumeration. For X. euvesicatoria, colonies are not 
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usually visible to the unaided eye for at least three days when plates are incubated at 

28°C. With the spot plate method, more than one dilution can be tested on one agar plate 

(Fig 2.5), which conserves media, and results can be obtained earlier than the spread plate 

method by using a dissecting microscope to count colonies after 24 h incubation.  

Bioscreen C demonstrated the effects of treatments on bacterial growth over time 

and allowed comparison of all the treatments growth curves on the same graph. The 

shape of the growth curves may also be useful for determining the minimum treatment 

exposure time of the bacterium. The plating method showed the efficacy of the treatments 

in killing bacterial populations in a given amount of time. Plating determined whether the 

observed growth suppression by the treatments with Bioscreen C were bacteriostatic, 

only inhibiting bacterial growth, or if the effects were bactericidal, killing the cells. In 

addition, the plating method detected only viable cells, while the OD measurements of 

the Bioscreen C may have detected dead cells remaining in the mixture. Therefore, there 

is merit in using both Bioscreen C and plating methods for in vitro assays. 

The results of this study indicate that sodium hypochlorite, OxiDate 2.0 and 

thyme oil are effective in eliminating or significantly reducing X. euvesicatoria 

populations and warrant further study as seed treatments. Treatments with RS and GL 

infusions were not significantly different from the untreated controls in some of the 

results from the Bioscreen C assay and in the plating assay. The infusions should not be 

further investigated as seed treatments.  
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Tables and Figures 

 

Table 2.1. Bacterial strains used in this study. 

 

Strain Host Geographic Region 

Clavibacter michiganensis subsp. michiganensis
a
 Tomato Georgia 

Pseudomonas syringae pv. tomato 88-84
a
 Tomato Georgia 

Xanthomonas euvesicatoria XCV 04-100
b
 Pepper Georgia 

 

a Strains provided by R. Walcott, University of Georgia 
b Strain provided by B. Dutta, University of Georgia 
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Table 2.2.  Results of preliminary investigations to optimize treatment duration for in 

vitro assays on Xanthomonas euvesicatoria (10
8
 CFU/ml in 10 mM MgSO4). Bacterial 

cells were incubated in the treatments at room temperature (≈ 23°C), rinsed in 10 mM 

MgSO4 then spot plated onto NYDA. Plates were incubated for 24 h at 28°C and colonies 

were counted using a dissecting microscope.  

 

Treatment 

 

Xeu population 

(log10CFU/ml)
y
 

2
z
 10 20 30 40 60 

SDW (control) - 8.58 a - 8.45 ab - 8.60 a 

1.05% NaOCl - 0 f 0 f 0 f 0 f - 

0.99% OxiDate 2.0 4.09 de 4.66 d - - - - 

0.33% Thyme oil - - - 3.72 e - - 

10% (w/v) Rosemary 

stem infusion 
- 7.79 abc - 8.42 ab - 8.24 ab 

10% (w/v) Ginkgo 

leaf infusion 
- 7.54 bc - 7.12 c - 7.83 abc 

 

y Values with the same letter are not significantly different, according to Student's t test, P < 0.0001. 

z Treatment duration in minutes. 
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Table 2.3 Effects of treatments on reduction of Xanthomonas euvesicatoria populations 

after soaking, rinsing the cells in 10mM MgSO4 and spot plating on NYDA. Plates were 

incubated for 24 h at 28°C and colonies were counted using a dissecting microscope. 
 

Treatment log10CFU/ml
y
 

Percent 

reduction
z
 

SDW (control) 8.58  a - 

1.05% NaOCl 0  c 100 

0.99% OxiDate 2.0 4.09  b 52.3 

0.33% Thyme oil 3.73  b 56.5 

10% (w/v) Rosemary stem infusion 8.24  a 4.0 

10% (w/v) Ginkgo leaf infusion 7.83  a 8.7 
 

yValues with the same letter are not significantly different according to Student's t test, P < 0.0001. 
zPercent reduction calculated by 100-(Tc/Cc x 100), where Cc is log10CFU/ml of control and Tc is 

log10CFU/ml of treatment. 

 

 

 

 

 

 

 

 



71 

 

 
 

Fig 2.1. Effect of seed treatments on the growth of Clavibacter michiganensis subsp. 

michiganensis after incubation for 60 h using the Bioscreen C turbidimetric system. 

SDW: sterile distilled water (negative control), NB: nutrient broth (positive control), 

NaOCl: 1.05% sodium hypochlorite, OX: 0.99% OxiDate 2.0, TO: 0.33% thyme oil, RS: 

10% (w/v) rosemary stem infusion, GL: 10% (w/v) ginkgo leaf infusion. Comparisons of 

the AUGC values here are as estimates because growth was measured as optical density 

and was therefore affected by the color of the NB and treatments, especially RS and GL. 

Bars with the same letter are not significantly different according to Student's t test, P < 

0.0001.  
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Fig. 2.2. Effect of seed treatments on the growth of Pseudomonas syringae pv. tomato 

after incubation for 60 h using the Bioscreen C turbidimetric system. SDW: sterile 

distilled water (negative control), NB: nutrient broth (positive control), NaOCl: 1.05% 

sodium hypochlorite, OX: 0.99% OxiDate 2.0, TO: 0.33% thyme oil, RS: 10% (w/v) 

rosemary stem infusion, GL: 10% (w/v) ginkgo leaf infusion.  Comparisons of the AUGC 

values here are as estimates because growth was measured as optical density and was 

therefore affected by the color of the NB and treatments, especially RS and GL. Bars 

with the same letter are not significantly different according to Student's t test, P < 

0.0001. 
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Fig. 2.3. Effect of seed treatments on the growth of Xanthomonas euvesicatoria after 

incubation for 60 h using the Bioscreen C turbidimetric system. SDW: sterile distilled 

water (negative control), NB: nutrient broth (positive control), NaOCl: 1.05% sodium 

hypochlorite, OX: 0.99% OxiDate 2.0, TO: 0.33% thyme oil, RS: 10% (w/v) rosemary 

stem infusion, GL: 10% (w/v) ginkgo leaf infusion. Comparisons of the AUGC values 

here are as estimates because growth was measured as optical density and was therefore 

affected by the color of the NB and treatments, especially RS and GL. Bars with the same 

letter are not significantly different according to Student's t test, P < 0.0001. 
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Fig 2.4. Effect of rosemary stem (RS) and ginkgo leaf (GL) infusions on the growth 

curves of Clavibacter michiganensis subsp. michiganensis (Cmm), Pseudomonas 

syringae pv. tomato (Pst) and Xanthomonas euvesicatoria (Xeu) after incubation for 60 h 

using the Bioscreen C turbidimetric system.  
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Fig 2.5. Spot plate technique used to assess the bactericidal effects of chemicals. Each 

spot is 20 μl and there are three spots per dilution and four dilutions on each plate. 

Colonies were counted using a dissecting microscope after 24 h incubation at 28°C. 

Plates were left at room temperature (≈ 24°C) for an additional 3 days until colonies were 

visible to the unaided eye to confirm identity of the bacterium. 
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Fig. 2.6. Xanthomonas euvesicatoria CFU recovered after treatment using dilution 

plating. Cells were soaked in the proposed seed treatments, rinsed in 10mM MgSO4 and 

dilutions spotted (20 μl) onto NYDA. Plates were incubated for 24 h at 28°C. Bars with 

the same letters are not significantly different according to Student's t test, P < 0.0001.  
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CHAPTER 3 

THE EFFECT OF ORGANIC SEED TREATMENTS ON POPULATIONS OF 

Xanthomonas euvesicatoria ON TOMATO SEEDS
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
2 McFarquhar, J. A., and Little. E. L. To be submitted to Plant Disease. 
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Abstract 

Tomato seed was artificially infested with Xanthomonas euvesicatoria and 

subjected to one of the following seed treatments: hot water at 50°C for 25 min, 1.05% 

NaOCl for 10 min, 0.99% OxiDate 2.0 for 2 min or 0.33% thyme oil for 30 min. The 

treated seed was assayed for bacterial populations by seed wash and dilution plating. 

Seeds were also assayed for the effect of the seed treatment on germination. Compared to 

the sterile distilled water control, the hot water and NaOCl treatments reduced X. 

euvesicatoria populations on the seed to undetectable levels. OxiDate 2.0 reduced the 

populations of X. euvesicatoria by 49.8 to 80.3% and thyme oil gave 80 to 93.9% 

reduction. There was no significant difference in the percentage or rate of seed 

germination among the treatments and the controls.  

 

 

Introduction 

  Bacterial plant diseases are very difficult to manage once they become 

established in the field. Resistant plant host cultivars are available for only a few bacterial 

diseases and major gene resistance often breaks down in the field (Clarke et al. 2014; 

Stall et al. 2009). Fixed copper, sometimes mixed with ethylene bisdithiocarbamate 

(EBDC) fungicides, is the most widely used effective chemical treatment available to 

manage bacterial diseases but bacterial populations readily acquire resistance to copper 

with repeated use (Jones et al. 1991; Spotts and Cervantes 1995). Concerns about copper 

accumulation in the soil and phytotoxicity on sensitive plants also restrict the use of 

copper sprays (Lalancette and McFarland 2007). Antibiotics such as streptomycin are 
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used against certain bacterial diseases in high value crops. However, the use of antibiotics 

is limited by the cost, concerns about the use of human antibiotics in agriculture, and 

antibiotic resistance development in the target bacterial populations (McManus et al. 

2002; Popowska et al. 2010; Stockwell and Duffy 2012). 

The initial inoculum for many bacterial diseases is often seedborne and the use of 

clean seed is an important part of integrated disease management (Hausbeck et al. 2000; 

Jones et al. 2007). Chemical seed treatments are effective and commonly used for 

seedborne fungal diseases (Maude 1996), but for bacterial diseases, the most commonly 

used seed treatment methods are hot water (Mtui et al. 2010), sodium hypochlorite 

(Carisse et al. 2000; Chun et al. 1997), and acid (Fatmi et al. 1991; Thyr et al. 1973). 

Certified organic agriculture requires the use of seed that is produced and treated in ways 

that are consistent with the National Organic Program (NOP) rules. Synthetic chemicals 

are restricted or prohibited (USDA NOP 2013). Even when conventionally produced seed 

is allowed in organic production, it must be untreated seed or seed treated with permitted 

chemicals (Lammerts van Bueren et al. 2003; US GPO 2015). Commercial vegetable 

seed, whether organically produced or not, is usually not treated for bacterial diseases and 

in many cases is not assayed for the presence of phytobacteria. Therefore, the grower 

must make the choice of whether to treat the seed. Hot water treatments, though effective, 

must be conducted using precise instruments to avoid damage to the seed from (Jahn et 

al. 2006), and small-scale growers generally lack a precise temperature-controlled water 

bath to administer hot water treatments.  
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Sodium hypochlorite (NaOCl) is often used as a seed surface disinfectant. 

Effective concentrations and exposure durations need to be determined for each type of 

seed to minimize adverse effects on seed germination and shelf life. Studies have shown 

that 1% NaOCl effectively reduced seedborne fungi (du Toit and Hernandez-Perez 2005; 

Sauer and Burroughs 1986) and bacteria (Carisse et al. 2000; Pernezny et al. 2002). 

Generally, the effectiveness increased with increased soak time up to 40 min but the 

pathogen was not completely eliminated. A 40-min treatment could negatively affect 

germination (Khah and Passam 1992). Miller and Lewis Ivey (2005) recommend soaking 

tomato seeds in a 1.05% NaOCl mixture with surfactant for only 1 minute to control 

bacterial spot. The hairs and crevices on the tomato seed coat may provide areas in which 

the pathogen may evade treatment (Sauer and Burroughs 1986), so tomato seed may 

require a longer soak to ensure exposure of any pathogens in these protected areas. A 10-

min soak in 1.05% NaOCl (without surfactant) was therefore used in this study. When 

following the NOP rules, the use of NaOCl as a seed treatment is not clearly stated and 

may not be allowed in some cases. Certified organic growers should get the approval of 

the certifying agency before using NaOCl as a seed treatment (USDA NOP 2011).  

Tóbías et al. (2007) found that acidic seed treatments were more effective than 

alkaline and that some essential oils successfully inhibited bacterial tomato pathogens. 

OxiDate 2.0 is a commercial product labeled for use as a seed treatment and is permitted 

under the NOP rules (OMRI 2015). Although it is not labeled for control of specific 

bacterial diseases, the active ingredients in OxiDate 2.0, hydrogen dioxide (peroxide) 

(27.1%) and peroxyacetic acid (2.0%), are effective as seed treatments for pathogenic 

bacteria (Buchholz and Matthews 2010; Hopkins et al. 2003; Pernezny et al. 2002).  
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Thyme oil from common thyme, Thymus vulgaris L., is a frequently investigated 

essential oil that is used mainly in flavorings and pharmaceuticals (Abozid and Asker 

2013; Janssen et al. 1987; van der Wolf et al. 2008). The active ingredient in thyme oil, 

thymol, constitutes almost 40% of the oil (Abozid and Asker 2013; Friedman et al. 2002). 

Thyme oil has a relatively high solubility in water (Ziani et al. 2011) making it possible 

to make mixtures that do not require emulsifiers. Preparations of thyme oil have 

demonstrated antimicrobial activity in vitro (Abozid and Asker 2013; Riccioni and Orzali 

2011), and have been effective in reducing bacterial populations when used as foliar 

applications (Altundag and Aslim 2011) and as seed treatments (Tóbías et al. 2007; van 

der Wolf et al. 2008).  

Bacterial spot caused by the bacterium Xanthomonas euvesicatoria continues to 

be of the most common bacterial diseases of tomato and pepper, and seed is considered 

an important source of initial inoculum (Bashan and Okon 1986; Jones et al. 1986). In 

Georgia, bacterial spot continues to cause crop losses in tomato and pepper crops 

(Williams-Woodward 2013). Similar to many other bacterial phytopathogens, X. 

euvesicatoria will establish epiphytic populations on the host plant before infection 

(Beattie and Lindow 1995; Hirano and Upper 1983; Zhang et al. 2009). The bacterium 

may colonize host tissues, including seed, without producing disease symptoms (Dutta et 

al. 2014b; McGuire et al. 1991; Sharon et al. 1982). Therefore, scouting for the disease 

symptoms in seed production fields may not guarantee pathogen-free seed (Schultz and 

Gabrielson 1986). Since tomato and pepper seed are considered important sources of 

initial inoculum for outbreaks of bacterial spot in the field, the use of tomato seeds 

contaminated with X. euvesicatoria to test seed treatments would provide useful 
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information for growers. X. euvesicatoria is easily isolated and cultured on bacterial 

media. The pathogen can be identified using species-specific PCR primers (Moretti et al. 

2009) making this bacterium a good candidate for this study. 

Naturally infested seed is preferred for seed treatment investigations since the 

level of seed contamination would be reflective of the type of seed that growers would be 

purchasing and treating. However, the bacterial populations on naturally infested seed are 

often low (Gitaitis and Walcott 2007; Morrison 1999) and the distribution of infested 

seed is heterogenous within seed lots (Hadas et al. 2005) so replicated tests on 

subsamples may not produce comparable results. Artificially infested seed is often used 

to test the efficacy of seed treatments due to the ability to produce a seed lot with a 

consistently high level of the target bacterium (Hopkins et al. 2003; Kritzman 1991; 

Pernezny et al. 2002).  

The objective of this study was to produce tomato seed infested with X. 

euvesicatoria and test the efficacy of seed treatments (hot water, 1.05% NaOCl, 0.99% 

OxiDate 2.0, 0.33% thyme oil) in reducing X. euvesicatoria populations on the seed. 

 

 

Materials and Methods 

Bacterial strain and inoculum preparation. X. euvesicatoria XCV 04-100 was 

obtained from Dr. Bhabesh Dutta at the University of Georgia, Tifton, GA and was 

originally isolated from pepper leaves (Dutta et al. 2014a). The bacterium was stored in 

15% glycerol at -80°C and sub-cultured  on nutrient yeast dextrose agar (NYDA, 8 g 

nutrient broth, 3 g yeast extract, 5 g dextrose, 17 g agar per liter distilled water).  
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The inoculum was prepared by placing a single bacterial colony from a 3-day 

NYDA culture in 50 ml of nutrient broth (8 g/liter, Difco, Becton, Dickson and 

Company, Sparks, MD, USA) in a 125 ml Erlenmeyer flask. The culture was incubated in 

a rotary shaker (Model G25 Incubator Shaker, New Brunswick Scientific Co., Inc., 

Edison, NJ, USA) at 29°C ± 1°C and 200 rpm for 14 to 16 h. The bacterial cells were 

harvested by centrifugation for 5 min at 5000 rpm (Allegra 25R Centrifuge, Beckman 

Coulter, Indianapolis, IN, USA) and the pellet was resuspended in 1X PBS (phosphate 

buffered saline), which was prepared by a ten-fold dilution of 10X PBS (80 g NaCl, 2 g 

KCl, 11.5 g Na2HPO4.7H2O, 2 g KH2PO4 per liter distilled water). The cell concentration 

was adjusted to 10
8
 CFU/ml (OD600nm = 0.3A) (Spectronic 20, Bausch and Lomb, 

Bridgewater, NJ, USA). 

Seed production. In early spring 2013, tomato plants (cv. Celebrity, Johnny's 

Seeds, Winslow, ME, USA) were established in the greenhouse. Inoculation of the 

flowers began approximately 10 weeks after planting. X. euvesicatoria inoculum was 

applied to open flowers with an atomizer (DeVilbiss, Somerset, PA, USA) sanitized with 

70% ethanol and rinsed with 1X PBS before filling with inoculum. The flowers were 

sprayed to run off each day, for a maximum of three applications per flower. This was 

repeated on all open flowers for four weeks. Inoculation was repeated in the fall of 2013 

on greenhouse-grown tomatoes. Flowers were inoculated daily for only one week as most 

of the fruit harvested from the spring planting were from flowers inoculated during the 

first week. A third lot of tomato seeds was produced from field-inoculated tomato plants 

at the Tifton Vegetable Park, Tifton, GA. Transplants of tomato cultivar BHN 602 were 

obtained from Lewis Taylor Farms (Tifton, GA, USA) and placed in the field in mid May 
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2014. The plants were inoculated at flowering with a 10
6
 CFU/ml suspension of X. 

euvesicatoria using a CO2 backpack sprayer calibrated to deliver 40 gal/acre. Tomatoes 

were harvested 46 days after planting and transported to Athens, GA for seed extraction. 

Seed extraction. Seeds from all three lots were extracted by fermentation as 

follows (McCormack 2004). The tomatoes were surface-disinfested with 70% ethanol 

(spring 2013) or 0.5% NaOCl (fall 2013), crushed by hand and left to ferment for 3 to 7 

days, stirring twice daily. The fruit produced in summer 2014 were rinsed but not 

surface-disinfested before crushing as surface microbes may have been necessary for 

more efficient fermentation. Seeds were separated from the pulp and spread to air-dry for 

two days at room temperature. To test the effect of fermentation on X. euvesicatoria 

populations, some of the seed was not fermented. The locular jelly from the unfermented 

seed was removed by rubbing with a bleach-sanitized microfiber cloth. Seed was rinsed 

and air-dried for two days at room temperature.  

Seed inoculation. The seeds from field-grown cultivar BHN 602 were vacuum 

infiltrated (Hadas et al. 2005; Kritzman 1991; Mbega et al. 2012) with a 10
8
 CFU/ml 

suspension of X. euvesicatoria to obtain a consistently high level of detectable bacterial 

populations in the seed lot. A nutrient broth culture from a single colony of XCV 04-100 

was grown for 14 to 16 h at 29°C then centrifuged at 5000 rpm for 10 min (Allegra 25R 

Centrifuge, Beckman Coulter, Indianapolis, IN, USA) and the supernatant discarded. The 

pellet was resuspended in sterile distilled water and the concentration was adjusted to 10
8
 

CFU/ml (OD600nm = 0.3A) (Spectronic 20, Bausch and Lomb, Bridgewater, NJ, USA).  

The OD value had been previously determined by dilution plating onto NYDA. The 

tomato seeds were immersed in the bacterial suspension in a sterile 1000 ml beaker in a 
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vacuum chamber. Vacuum was applied to the seeds and disrupted at 15 min intervals. 

After each disruption, the seeds were stirred with a sanitized glass rod. This was repeated 

three times for a total vacuum time of 45 min. The seeds were stored at 4°C and used 

within one month of inoculation. 

Preparation of seed treatment mixtures. Two hundred milliliters of each 

mixture were prepared immediately before treatment in sterile 250 ml Erlenmeyer flasks. 

Dilutions were prepared using sterile distilled water (SDW). Chlorine bleach was diluted 

to 1.05% sodium hypochlorite (NaOCl) (Fatmi et al. 1991; Miller and Lewis Ivey 2005). 

Thyme oil (white, Sigma-Aldrich, St. Louis, MO, USA) was diluted without emulsifier to 

a concentration of 0.33% (van der Wolf et al. 2008). OxiDate 2.0 (BioSafe Systems, 

Hartford, CT, USA) was used at the label recommended 0.99% (1:100) dilution.  

Seed treatments. The concentrations of the seed treatments used were based on 

the results of in vitro assays in an earlier study (chapter 2). For each treatment, 5 g of 

seed was suspended in a sterile drawstring cheesecloth pouch in a sterile 400 ml beaker. 

All treatments, except the hot water treatment, were done at room temperature (≈ 23°C) 

using 200 ml of each treatment to completely immerse the seeds. Seeds were soaked in 

SDW for 30 min (control), 1.05% NaOCl for 10 min and 0.99% OxiDate 2.0 for 2 min on 

a rotary shaker at 85 rpm (Innova 2100 platform shaker, New Brunswick Scientific Co., 

Inc., Edison, NJ, USA). The seeds were exposed to the thyme oil for 30 min on a stir 

plate (setting 8, Thermolyne Nuova II) to prevent the separation of the thyme oil and 

water suspension and maintain contact of the treatment mixture with the seeds. In 

compliance with label directions, seeds treated with OxiDate 2.0 treatment were not 

rinsed. Seeds treated with SDW, NaOCl, and thyme oil were rinsed three times in 
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distilled water in a 600 ml beaker with stirring (setting 8, Thermolyne Nuova II) for 12 to 

15 min. Hot water treated seeds were pre-warmed in distilled water at 37°C for 10 min 

then immediately transferred to 50°C SDW in a shaking water bath for 25 min (Mtui et 

al. 2010; Miller and Lewis Ivey 2005). The seeds were immersed in SDW at 10°C to 

15°C for 10 min immediately after the treatment period ended. 

The seeds were spread in their loosened cheesecloth pouches on sterile 90 mm 

plastic petri dishes lined with sterile Whatman no. 1 filter paper and air-dried for 48 h at 

room temperature (≈ 24°C). Experiments were conducted twice in a completely 

randomized design with four replicates. 

Pathogen detection on seeds. A subsample of 3 g of seed (≈ 820 seeds) was 

placed in a 250 ml Erlenmeyer flask containing 100 ml peptone buffer (5.3 g KH2PO4, 

8.61 g Na2HPO4, 1 g bactopeptone per liter distilled water). The mixture was shaken at 

150 rpm (Gyrotory shaker model G2, New Brunswick Scientific Co., Inc., Edison, NJ, 

USA) for 3.5 h at 4°C ± 1°C followed by shaking at room temperature (≈ 23°C) for 2 h. 

The wash was separated from the seed by filtering through three layers of sterile 

cheesecloth. The filtrate was centrifuged at 8000 rpm for 30 min (Beckman J2-21 Floor 

Model Centrifuge, Beckman Coulter, Indianapolis, IN, USA) and the pellet resuspended 

in 2 ml peptone buffer containing 20 μl Tween 80. Aliquots of 100 μl of this undiluted 

suspension as well as 10-fold dilutions to 10
-4

 in peptone buffer were spread onto Tween 

Medium B (TMB, McGuire et al. 1986) plates in triplicate and incubated at 28°C 

(Percival Intellus environmental controller) for 4 days. Yellow, round, glossy, raised 

colonies were often visible by the third day. Two to three representative colonies were 

isolated onto NYDA from each replicate and tested by PCR to confirm X. euvesicatoria.  
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PCR protocol. A bacterial colony from a 3-day-old NYDA plate was suspended 

in 500 μl 1X PBS and heated at 95°C in a dry heat block for 10 min during which the 

tubes were vigorously mixed twice. PCR was carried out in a final volume of 25 μl 

containing 12.5 μl MasterMix (Qiagen), 1.25 μl Xeu2.4, 1.25 μl Xeu2.5, 8.5 μl RNAse 

free water and 1.5 μl of the lysed cells. The PCR primers Xeu2.4 (5'-CTGGGAAACTC-

ATTCGCAGT-3') and Xeu2.5 (5'-TTGTGGCGCTCTTATTTCCT-3') primer set 

(Moretti et al. 2009) were diluted to 10 mM before use. The temperature profile had an 

initial denaturing step of 94°C for 3 min, followed by 35 cycles of a denaturing step of 

94°C for 45 s, an annealing step at 64°C for 50 s, an elongation step at 72°C for 50 s, and 

a final elongation step of 72°C for 10 min. The samples were held at 4°C until used. A 10 

μl aliquot of each amplified PCR product was electrophoresed on a 1.5% agarose gel, at 

46V for 5 min then 95V for 100 min in 1X TBE buffer, stained with ethidium bromide, 

and visualized on a UV transilluminator.  

Germination tests. Three subsamples of 100 seeds each from the four treatment 

replicates were germinated on wet blotter paper in transparent boxes. Seeds were kept at 

22°C ± 1°C with 16 h light per day for 14 days (Mastouri et al. 2010). Seedlings with 

emerged radicles were counted and removed daily.  

Data analysis. Colony counts were log10 transformed before analysis. Data were 

analyzed as a completely randomized block. An analysis of variance (ANOVA) was 

conducted using Proc GLM in SAS version 9.3 (SAS Institute, Cary, NC, USA). Mean 

separation (t grouping) was determined by Student's t test. 
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Results 

Determination of X. euvesicatoria populations in seed lots. The spring 2013 

seed lot had an infestation level of 19 to 155 CFU/g of seed. Preliminary investigations 

assessed X. euvesicatoria populations on fermented seed and unfermented seed from the 

fall 2013 seed lot. More bacteria were recovered from the unfermented seed. The 

fermented seed lot had an infestation level of 2.34 x 10
2
 CFU/g of seed and the 

unfermented seed had 5.3 x 10
3
 CFU/g of seed. The level of X. euvesicatoria populations 

on the vacuum-infiltrated seed was approximately 10
7
 CFU/g of seed as determined by 

dilution plating of seed wash onto NYDA. 

Seed Wash. The populations of X. euvesicatoria on the untreated seed (SDW) 

were 1.25 x 10
7
 CFU/g of seed in repetition 1 of the experiment and 6.5 x 10

6
 CFU/g of 

seed in repetition 2. Two slightly different types of yellow colonies were seen on the 

SDW plates (Fig 3.1). Isolates of both types were tested by PCR and were all positive as 

X. euvesicatoria (Table 3.1). All treatments significantly reduced the X. euvesicatoria 

populations on the seeds (P < 0.0001) (Fig. 3.2). Hot water or NaOCl eliminated 

detectable populations of X. euvesicatoria from the seed. OxiDate 2.0 and thyme oil 

significantly reduced but did not eliminate X. euvesicatoria populations on the seeds. 

OxiDate 2.0 reduced bacteria on the seeds by 49.8% to 3.93 x 10
3 
CFU/g of seed in the 

first repetition, while the thyme oil was significantly more effective than OxiDate 2.0 

with an 80% reduction to 7.25 x 10
1
 CFU/g of seed. In the second repetition, however, 

the reduction by OxiDate 2.0 and thyme oil were not statistically different, giving 

reductions of 80.3% to 7.83 x 10
1
 CFU/g and 93.9% to 1.13 x 10

1
 CFU/g respectively 

(Tables 3.2a, 3.2b).  
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Germination. Percent germination ranged from 69.5% to 77% in repetition 1 and 

from 71.3% to 74.5% in repetition 2. The NaOCl-treated seeds had the highest 

germination percentage in both experiments, but there was no significant difference 

between the germination percent of the control (SDW) and the treatments in both 

experiments according to Student's t test, P = 0.05 (Fig. 3.3). Federal standards require a 

minimum germination percentage of 75% for tomato seeds (US GPO 2011) so most of 

the replicates fell below the standard. This may have been because the temperature (21°C 

to 23°C) was below 25°C (Mastouri et al. 2010).  

 

Discussion 

 Seed infestation by pathogenic phytobacteria has been shown to be a passive 

process in which bacteria can colonize host surfaces, including the blossoms, and move 

onto the developing seed without causing disease symptoms (Dutta et al. 2014a, 2014b; 

van der Wolf and van der Zouwen 2010). Blossom inoculation with X. euvesicatoria was 

attempted with tomatoes in the greenhouse. However, the resulting naturally-infested 

seed lots were not useful to test seed treatments due to a low level of detection of X. 

euvesicatoria on the seed. The fermentation process reduces seedborne populations of 

Clavibacter michiganensis subsp. michiganensis (Dhanvantari 1989). Preliminary 

investigations comparing X. euvesicatoria populations on fermented seed with 

unfermented seed revealed more bacteria from the unfermented seed, suggesting that 

fermentation may also reduce populations of X. euvesicatoria. Leite et al. (1995) were 

unsuccessful in recovering plant-pathogenic xanthomonads from naturally infested 

tomato and pepper seeds using seed washes and plating onto yeast extract nutrient agar or 
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TMB. By vacuum infiltrating tomato seeds with Xanthomonas perforans, Mbega et al. 

(2012) were able to see significant effects on disease incidence and severity of the 

essential oils tested. Working with Clavibacter michiganensis subsp. michiganensis on 

tomato seeds, Hadas et al. (2005) used naturally infested seeds and seeds vacuum 

infiltrated with various concentrations of bacterial suspensions. They tested for 

infestation levels using individual seeds from each sample and found a much wider range 

of infestation levels in the naturally infested seed sample than the infiltrated samples. For 

the current study, the production of naturally infested seed was attempted by inoculation 

of host plant flowers with the bacterium but seed wash assays did not indicate high 

inoculum levels. To increase infestation homogeneity and measurability of the treatment 

effect, seed artificially infested by vacuum infiltration was used to test the efficacy of 

NOP-acceptable seed treatments in reducing seedborne populations of X. euvesicatoria.  

The dilution plates from seed washes of NaOCl treated seeds had no detectable 

pathogen populations. In vitro assays (see chapter 2) in this study found 1.05% NaOCl 

for 10 min exposure to be just as effective as a 40 min soak in killing the pathogen. 

Studies using 1% NaOCl to disinfest vegetable seeds contaminated with bacterial 

pathogens, demonstrated significant reduction, but not elimination, of pathogen 

populations (Carisse et al. 2000; Pernezny et al. 2002). A higher concentration (2%) was 

used by Mtui et al. (2000) for bacterial spot pathogen on tomato seed but the exposure 

time was 5 min. Though there was significant reduction, the treatment did not eliminate 

the pathogen from the seeds. The elimination of X. euvesicatoria from tomato seeds in 

the current study supports the use of NaOCl to disinfest seeds. The relatively short 

treatment time means that several batches of seed can be treated per day.  
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The thyme oil treatment significantly reduced pathogen populations but there 

were still detectable levels of X. euvesicatoria. A number of studies report antimicrobial 

activity of thyme oil against fungal and bacterial pathogens (Marinelli et al. 2012; 

Schmitt et al. 2004) including the use of thyme oil as a seed treatment (Singh et al. 2003; 

van der Wolf et al. 2008). Although there were no studies found using the same protocol 

as in this study, the results are consistent with other seed treatment studies, which found 

that a treatment time of 30 min is not detrimental to germination percentage (Gomah 

2008; Tinivella et al. 2009) although the pathogen may not be completely eliminated 

from the seed (van der Wolf et al. 2008). Thyme oil concentrations lower than 0.3% 

provide little control (Singh et al. 2003; van der Wolf et al. 2008) unless treatment 

temperature was raised (Tinivella et al. 2009). Higher concentrations and longer soak 

times eliminated the pathogen from the seed but may reduce germination (Mbega et al. 

2012).  

Overall, the OxiDate 2.0 treatment was the least effective. As a foliar treatment 

for bacterial or fungal disease, the product gave moderate control in field trials (Gubler et 

al. 2014; Howard et al. 2006). The effectiveness of seed sanitation with OxiDate 2.0 is 

variable. Seed treatments using either or both of the components of OxiDate 2.0 

eliminated pathogens when used at concentrations higher than the label recommendation 

(Pernezny et al. 2002) but could be detrimental to seed vitality (Feng et al. 2009). 

Methods using hydrogen peroxide or a mixture containing hydrogen peroxide were 

observed by Montville and Schaffner (2004) to be among the most effective for seed 

sanitization. They concluded that the variability in treatments containing hydrogen 

peroxide is influenced by soak time and organism more than by concentration of the 
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treatments. Although OxiDate 2.0 is labelled for 2 min soak in 1:100 dilution, a variety of 

soak times and concentrations should be investigated for X. euvesicatoria in tomato to 

determine the best combination that reduces pathogen numbers without decreasing 

germination percentage. 

Further investigation of the treatments tested here is warranted as they may be 

useful as disinfestants against bacterial phytopathogens on seed, especially NaOCl and 

thyme oil, as many of the dilution plates from seed washes from these two treatments had 

very little bacterial growth. Preparation of the treatment mixtures is simple and requires 

no special equipment. While thyme oil is more expensive than NaOCl, 0.33% thyme oil 

is only 1 teaspoonful (5 ml) thyme oil in 1515 ml water. At these low concentrations, the 

treatment is not costly. For pathogens that are known to occur beneath the seed coat, 

however, disinfestants will be insufficient and physical treatments such as hot water soak 

may be the best option (Fatmi et al. 1991). 

The effectiveness of a seed treatment for disease management cannot be measured 

solely by the reduction or elimination of pathogens from the seed surface. Studies that 

investigate transmission from seed to seedling, the incidence and severity of disease in 

the field and impact on yield will help to determine seed inoculum thresholds in each 

pathosystem. Such investigations often involve the planting of seeds with known levels 

of infestation, then assessing the plants for disease symptoms and pathogen populations 

(Dutta et al. 2014b; Tsiantos 1987). In this study, bacteria were able to infest seeds of 

host and nonhost plants through blossom-inoculation and these bacteria were transmitted 

to the seedlings (Dutta et al. 2014b). Even within a single bacterial species that has 

different hosts there can be variation in the host-pathogen interactions (Jones et al. 1998). 
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The features of a particular host-pathogen system should not, therefore, be used to make 

generalizations regarding disease management of another host crop. Transmission assays 

are needed for specific host-pathogen systems in order to make decisions regarding the 

need for seed treatments based on seed health assays and more realistically determine the 

effectiveness of a seed treatment.  

 Hot water and NaOCl treatments are effective seed surface disinfestants against 

X. euvesicatoria and may be recommended for the management of bacterial spot. 

Although thyme oil and OxiDate 2.0 did not eliminate the pathogen from the seed 

surface, they significantly reduced the levels of inoculum and may help to reduce disease 

incidence resulting from infested seed lots. Additional management strategies such as 

sanitation, crop rotation and avoiding overhead irrigation should still be used. X. 

euvesicatoria is not a zero tolerance pathogen, therefore elimination of the pathogen from 

the seeds may not be required for a seed treatment to be considered effective.   
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Tables and Figures 

 

Table 3.1. PCR confirmation of suspected Xanthomonas euvesicatoria colonies isolated 

from seed wash spread plates. Colonies were isolated onto NYDA then stored at -80°C in 

15% glycerol until grown out to be checked by PCR using species-specific primers.  

 

Seed treatment 

No. of yellow strains 

checked by PCR 

(type A + type B)
 y
 

Percent of strains confirmed as 

X. euvesicatoria
z
 

SDW (control) 22 + 19 100 (41) 

Hot water 0 0 (0) 

NaOCl 2 0 (0) 

OxiDate 2.0 25 100 (25) 

Thyme oil 4 100 (4) 
 

y
 Fig. 3.1 shows the morphology of the colony types. The differences were noticeable only in the SDW 

plates. Colonies in plates from all other treatments appeared to be of type A. 
z Numbers in parentheses are the number of isolates that were PCR-positive. 
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Table 3.2a. Xanthomonas euvesicatoria populations recovered from artificially 

inoculated tomato seeds after treatment in experiment repetition 1. Populations were 

determined by seed wash and dilution plating on semiselective Tween Medium B. Values 

with the same letter in the same column are not statistically different, according to 

Student's t test, P < 0.0001. 

 

Treatment 
Population recovered 

(log10CFU/g seed) 

Percent reduction of 

bacterial populations 

SDW (control) 7.04 a - 

Hot Water 0 d 100 

NaOCl 0 d 100 

OxiDate 2.0 3.53 b 49.8 

Thyme oil 1.41 c 80 
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Table 3.2b. Xanthomonas euvesicatoria populations recovered from artificially 

inoculated tomato seeds after treatment in experiment repetition 2. Populations were 

determined by seed wash and dilution plating on semiselective Tween Medium B. Values 

with the same letter in the same column are not statistically different, according to 

Student's t test, P < 0.0001. 

 

Treatment 
Population recovered 

(log10CFU/g seed) 

Percent reduction of 

bacterial populations 

SDW (control) 6.79 a - 

Hot Water 0 c 100 

NaOCl 0 c 100 

OxiDate 2.0 1.34 bc 80.3 

Thyme oil 0.42 bc 93.9 
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Fig 3.1. Dilution plating of seed wash from control (SDW) seeds on Tween Medium 

B. Counts were taken after incubation at 28°C for 3 days then the plate left at room 

temperature (≈ 24°C) for 2 days so that morphologies could be seen more clearly for 

photographing. Three colony morphologies are shown. The yellow colonies are of 

two types, one (B) larger and more mucoid than the other (A), both with small, thin 

zones of white crystals surrounding the colonies. PCR confirmed both yellow colony 

types as Xanthomonas euvesicatoria. The third colony type (C) has a large dense zone 

of white crystals surrounding a creamy-white colony. Colony type C has the 

characteristic colony morphology described by McGuire et al. (1986) for X. 

euvesicatoria but were not yellow when isolated onto NYDA media and grew 

noticeably faster than X. euvesicatoria.  

A 

B 

C 
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Figure 3.2. Effects of seed treatments on Xanthomonas euvesicatoria populations on 

the seed as determined by seed wash and spread plating on Tween Medium B. No 

viable cells were recovered from seed treated with hot water or 1.05% NaOCl. Means 

with the same letter are not significantly different according to Student's t test, P < 

0.0001.  
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Figure 3.3. Effect of seed treatments on percent germination of tomato seed. For each 

treatment, three replicates of 100 tomato seeds each were kept on moist blue blotter 

paper for 14 days. Seeds with radicles emerged were removed and counted daily. 

Percent germination was calculated as (no. germinated seeds ÷ total no. of seeds) x 

100. There is no statistically significant difference between the germination percent of 

the control (SDW) and the treatments or among the treatments according to Student's 

t test, P = 0.37 (Rept. 1), P = 0.25 (Rept. 2). 
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CHAPTER 4 

THE EFFECT OF ORGANIC SEED TREATMENTS ON THE SEED-TO-

SEEDLING TRANSMISSION OF BACTERIAL SPOT OF TOMATO
3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
3 McFarquhar, J. A., and Little, E. L. To be submitted to Plant Disease. 
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Abstract 

Bacterial spot transmission was assessed on shoots of 14 day-old tomato seedlings 

grown from Xanthomonas euvesicatoria infested seed that had been subjected to seed 

treatments prior to planting. The seedlings were grown in sterilized Magenta GA-7 

vessels on water agar. The seedlings were washed in buffer and the wash buffer was 

assayed for bacterial populations by dilution plating on Tween Medium B and by real-

time PCR. Real-time PCR detected X. euvesicatoria in seedlings grown from the hot 

water- and NaOCl-treated seed although the dilution plating did not detect any pathogen 

populations. Seedlings grown from OxiDate 2.0- and thyme oil-treated seed had 

detectable populations of the pathogen using both methods but had significantly fewer 

bacterial cells than the control (sterile distilled water). Comparison was also made 

between seed wash assays performed on the seed prior to planting and the seedling wash 

results. Seeds that were heavily infested gave rise to relatively large populations on the 

seedlings. Seeds that showed no infestation using the dilution plating method had no 

viable cells detected on the seedlings and had the smallest bacterial populations detected 

by real-time PCR.  

 

 

Introduction 

Seedborne diseases result from the transfer of inoculum from infected or infested 

seed to the germinating seedlings (Maude 1996) and under conducive environmental  

conditions will lead to outbreaks in the field. Bacterial plant diseases are difficult to 

control once established in the field (Jones et al. 2007) and initial inoculum sources must 
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be reduced or eliminated to prevent disease outbreaks (Gitaitis and Walcott 2007).  Seed 

treatments are an important tool in the exclusion of seedborne pathogens. For seedborne 

pathogens, disease management considers not only the presence of pathogens on the seed 

but also the dynamics of transmission to the seedling in the particular pathosystem 

(McGee 1995). Transmission tests are important in determining the effectiveness of seed 

treatments because even if seed assays detect viable pathogens on the seed, this does not 

always result in disease transmission (Baker and Smith 1966). Also, pathogens may 

escape treatment if they are within the seed (Thyr et al. 1973) or in protected areas 

(Maude 1996) such as grooves on the seed surface. Bacteria often form a protective 

coating of adhesive exopolysaccharides (EPS) that make the cells resistant to seed washes 

used for pathogen detection (Danhorn and Fuqua 2007; Salcedo et al. 1992). Results of 

seed assays could indicate pathogen-free seed even when inoculum is present on the seed, 

giving false negative results.  

Seedling grow out (SGO) tests are common seed health assays that are based on 

the expression of disease symptoms on the seedlings (Gitaitis and Walcott 2007). 

Symptom development in SGO tests is not reliable for assessing transmission of many 

bacterial pathogens because plants can be asymptomatic even when epiphytic pathogen 

populations are present (Bashan et al. 1985; Pernezny and Collins 1997; Rigano et al. 

2007; Sharon et al. 1982). In some cases, symptoms may take several weeks to develop 

(Grondeau and Samson 2009) or may develop only when conducive conditions, such as 

high humidity, are created (McCarter et al. 1983). 
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Wash buffers are often used to remove pathogens from the surfaces of seedlings 

or leaflets for subsequent estimation of pathogen populations (Lindemann et al. 1984). 

Epiphytic bacteria are usually rinsed easily from the surface of leaves (Lindow and 

Brandl 2003) but the xanthomonad EPS, xanthan, which enhances epiphytic survival, 

increases adhesion to the leaf surface (Dunger et al. 2007). To increase the efficiency of 

bacterial removal from the shoots, a surfactant such as 0.02% Tween 80 is usually added 

(Hausbeck et al. 2000; Leite et al. 1995; Pillay and Nowak 1996). 

Dilution plating on semiselective medium is a common method of quantifying 

viable cells (Jones et al. 1991; Leite et al. 1995). The target organism may be difficult to 

quantify when nontarget microorganisms are growing on the plates. The semiselective 

medium for the identification of colonies of Xanthomonas euvesicatoria, Tween Medium 

B (TMB, McGuire et al. 1986), reduces the variety of microorganisms that grow on the 

plates through the addition of antifungal and antibacterial chemicals. Colonies of X. 

euvesicatoria form a characteristic zone of crystals surrounding the colonies as the 

bacteria metabolize the fatty acids in the Tween and form calcium salts (McGuire et al. 

1986). The exclusion of some microorganisms and the production of a visible metabolite 

make TMB useful in detecting and isolating viable X. euvesicatoria cells from samples 

containing a variety of microorganisms. Unfortunately, TMB allows growth of other 

xanthomonads, including nonpathogenic species and saprophytes (Sijam et al. 1991). 

Checking every colony by PCR to confirm its identity is not feasible and an over-

estimation of pathogen populations may occur if some of these nontarget xanthomonads 

are included. Therefore, representative colony types must be tested for identity. 
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PCR amplification of the seedling wash is highly specific to the target bacterium 

and can be more sensitive than plating (Gitaitis and Walcott 2007; Herrera-Vasquez et al. 

2009). Real-time PCR, also called quantitative PCR (qPCR), provides results in threshold 

cycle (Ct) values that allow for relative quantification of samples. The higher the Ct 

value, the lower the quantity of the target nucleic acid in the sample. A standard curve of 

Ct values for various known concentrations of bacterial cells can be determined and used 

to convert Ct values into population sizes (CFU/ml). However, qPCR may amplify DNA 

from nonviable target cells. Using a plating method that recovers only viable cells along 

with qPCR of the seedling wash provides a more comprehensive understanding of the 

pathogen populations on seedlings (Leite et al. 1995). 

The objective of this study was to determine the efficacy of the seed treatments in 

reducing seed-to-seedling transmission through the assessment of epiphytic populations 

on the seedlings. Tomato seedlings were grown from seeds that had been previously 

subjected to various seed treatments to reduce populations of X. euvesicatoria. Seedlings 

were washed in buffer and the wash buffer analysed for bacterial populations using 

dilution plating on TMB. The wash buffer was also analysed using real-time PCR.  

 

Materials and Methods 

Seed treatments. The tomato seeds (cv. BHN 602) used to produce the seedlings 

in this experiment were infiltrated with a suspension of X. euvesicatoria and treated as 

described previously (see chapter 3) (Table 4.1).  
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Seedling growth and seedling wash. Thirty to thirty-five seeds from each 

treatment replicate were placed on the surface of approximately 100 ml of water agar (8 g 

per liter distilled water, Difco bactoagar, Becton, Dickson and Company, Sparks, MD, 

USA) in sterile Magenta GA-7 vessels (Sigma-Aldrich, St. Louis, MO, USA) and grown 

for 14 days at 21°C to 23°C with 16 h light per day (Mastouri et al. 2010) (Fig. 4.1). At 

day 14, a maximum of 25 seedlings per treatment replicate were assayed as follows. The 

shoots of the seedlings were removed aseptically, weighed in sterile 125 ml flasks and 

washed in sterile peptone buffer (5.3 g KH2PO4, 8.61 g Na2HPO4, 1.0 g bactopeptone per 

liter distilled water) with 200 μl Tween 80 (BioXtra, Sigma-Aldrich, St. Louis, MO, 

USA) per liter added to give a final concentration of 0.02% Tween 80 (Leite et al. 1995; 

Pillay and Nowak 1997). Ten milliliters of buffer per gram of seedling was added to the 

seedling shoots (Jones et al. 1991). Seedlings were washed at room temperature (≈ 24°C) 

for 30 min at 150 rpm on a platform shaker (Innova 2300 platform shaker, New 

Brunswick Scientific Co., Ltd., Edison, NJ, USA) (Jones et al. 1991), after which the 

wash buffer was decanted into sterile tubes. Serial ten-fold dilutions were made in 

peptone buffer without Tween 80. One hundred microliter aliquots of each dilution were 

spread on plates of Tween Medium B (TMB, McGuire et al. 1986) in triplicate. The 

plates were incubated at 28°C (Percival Intellus environmental controller) for five days 

and, beginning on day three, they were checked daily for the appearance of round, raised, 

yellow colonies with smooth margins. These were counted and one to four representative 

colonies from each treatment were subcultured on nutrient yeast dextrose agar (NYDA, 8 

g nutrient broth, 3 g yeast extract, 5 g dextrose, 17 g agar per liter distilled water).  
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Conventional PCR protocol. Single colonies from 3-day-old NYDA plates of 

bacterial isolates taken from seedling wash plates were suspended in 500 μl 1X PBS and 

heated at 95°C in a dry heat block for 10 min during which time the tubes were 

vigorously mixed twice. PCR amplification was carried out in a Veriti 96-well Thermal 

Cycler (Applied Biosystems, Foster City, CA, USA) using the X. euvesicatoria-specific 

primer set Xeu2.4 (5'-CTGGGAAACTCATTCGCAGT-3') and Xeu2.5 (5'-TTGTGG-

CGCTCTTATTT-CCT-3') (Moretti et al. 2009) each diluted to 10mM before use. The 

reaction volume was 25 μl containing 12.5 μl PCR Master Mix (Qiagen), 1.25 μl Xeu2.4, 

1.25 μl Xeu2.5, 8.5μl RNAse free water and 1.5 μl lysed cells. The temperature profile 

had an initial denaturing step of 94°C for 3 min, followed by 35 cycles of a denaturing 

step of 94°C for 45 s, an annealing step at 64°C for 50 s, and an elongation step at 72°C 

for 50 s. A final elongation step of 72°C for 10 min was run, and samples were held at 

4°C until used. A 10 μl aliquot of each amplified PCR product was electrophoresed on a 

1.5% agarose gel at 46V for 5 min then 95V for 100 min in 1X TBE buffer, stained with 

ethidium bromide, and visualized on a UV transilluminator.  

Quantitative PCR. SYBR Green-based qPCR was used for relative estimates of 

bacterial populations in the seedling washes. Heat-lysed cells were used because 

preliminary investigations showed there was no PCR inhibition by the seedling washes. 

A subsample of 1.5 ml was taken from each seedling wash and heated at 95°C for 10 

min, during which the subsamples were vigorously mixed twice. After cooling on ice, the 

subsamples were concentrated 30-fold by centrifugation of at 13,000 rpm for 6 min 

(Hermle Z180M, Labnet, Edison, NJ, USA), and the pellet resuspended in 50 μl of sterile 

Millipore water. Each PCR reaction of 20 μl contained 10 μl Power SYBR Green PCR 
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master mix (Applied Biosystems by Life Technologies, Warrington WA1 4SR, UK), 2 μl 

each of primers Xeu2.4 and Xeu2.5, 4 μl sterile Millipore water and 2 μl of the 

concentrated seedling wash sample. Real-time PCR was carried out in 96-well plates in 

StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) using 

the following thermal profile: denaturation at 94°C for 3 min and 35 cycles each of 

denaturation at 94°C for 45 s, annealing at 64°C for 50 s, and extension at 72°C for 50 s 

(Dutta et al. 2014; Moretti et al. 2009). A standard curve for the estimation of X. 

euvesicatoria populations was constructed using 10-fold dilutions of X. euvesicatoria, 

strain XCV 04-100. The dilutions were prepared from a single colony of X. euvesicatoria 

from a 3-day-old NYDA culture, grown for 14 to 16 h in 50 ml nutrient broth at 29°C at 

200 rpm. The broth culture was centrifuged at 5,000 rpm for 5 min, the pellet was 

resuspended in sterile Millipore water and the suspension adjusted to 10
8 

CFU/ml 

(OD600nm = 0.3A) spectrophotometrically (Spectronic 20, Bausch and Lomb, 

Bridgewater, NJ, USA). Serial 10-fold dilutions to 10
2
 CFU/ml were made using sterile 

double distilled water. Real-time PCR analysis of each dilution was completed using the 

reagents, quantities and thermal profile as described above for the seedling wash samples. 

Data analysis. Data from dilution plates and qPCR were log10 transformed before 

analysis and expressed as CFU/g shoot tissue. An analysis of variance (ANOVA) was 

conducted using Proc GLM in SAS version 9.3 (SAS Institute, Cary, NC, USA). Mean 

separation was determined by Student's t test (least significant difference, LSD). 
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Results 

 Shoot weight. The fresh weight of seedling shoots ranged from 25 to 33 mg with 

averages from 26 to 30 mg. The differences in the fresh weights among the treatments 

were not statistically significant according to Student's t test, P > 0.11. 

Dilution plating. All treatments significantly reduced pathogen populations on 

the seedlings compared to the controls (Fig. 4.2). No viable cells were recovered from the 

seedlings of hot water- or NaOCl-treated seeds in both repetitions of the experiment. The 

thyme oil treatment eliminated all detectable bacterial populations on the seedlings in the 

second repetition but bacterial populations (27.6 CFU/g) were recovered in the first 

repetition (Table. 4.2). Bacterial populations were recovered from the OxiDate 2.0 

treatment in both repetitions (1.35 x 10
3
 CFU/g in rept. 1, 1.35 x 10

2
 CFU/g in rept. 2) 

(Table 4.2, Fig. 4.2). The population numbers recovered from the OxiDate 2.0 treatment 

were not significantly different from the numbers recovered from the thyme oil treatment. 

Samples of yellow colonies with smooth margins were isolated from each 

treatment onto NYDA. Except for the SDW control where 5 of the 39 strains tested were 

PCR negative, and the NaOCl treatment where neither of the two strains were positive, 

all colonies checked by PCR were confirmed as X. euvesicatoria (Table 4.3). Most of the 

plates from the NaOCl treatments had little bacterial growth. The plates from the SDW 

and hot water treatments had several colonies with the "fried-egg" appearance described 

by McGuire et al. (1986) as characteristic of X. euvesicatoria growing on TMB. Sijam et 

al. (1991) noted that other bacteria may produce colony morphology similar to X. 

euvesicatoria on TMB. These strains grew faster than X. euvesicatoria on both TMB and 

NYDA, were not yellow on either medium, and all 11 strains were PCR negative.  
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Real-time PCR. Populations estimates were calculated from the equation for the 

standard curve (y = -3.1376x + 40.552) generated by known concentrations (10
2
 to 10

8
 

CFU/ml) of X. euvesicatoria (R
2
 = 0.9934, efficiency = 1.0831). In the first repetition, the 

mean number of X. euvesicatoria cells detected ranged from 1.41 CFU/g shoot tissue 

(NaOCl treatment) to 27.5 CFU/g shoot tissue (control) but these differences were not 

significant at P = 0.05 (Table 4.2). Hot water treatment seedlings had populations (2.88 

CFU/g) slightly higher than the NaOCl treatment seedlings, and the OxiDate 2.0 (9.0 

CFU/g) and thyme oil (8.27 CFU/g) treatments had the highest populations of all the 

treatments, not including SDW. In the second repetition, hot water was the most effective 

treatment with 1.29 CFU/g shoot tissue, compared to 135 CFU/g shoot tissue in the 

control. Seedlings from NaOCl and OxiDate 2.0 treatment had similar populations (7.18 

CFU/g and 7.16 CFU/g, respectively). Except for the SDW control, seedlings from thyme 

oil treatment had the largest populations (15.3 CFU/g).  

In samples from both repetitions, qPCR detected X. euvesicatoria on seedlings 

from seed treated with hot water and NaOCl in approximately half the replicates (Table 

4.4) even though  X. euvesicatoria was not detected in these treatments using the plating 

method (Fig 4.2). For the control, OxiDate 2.0 and thyme oil treatments, the numbers of 

bacterial cells detected using qPCR were lower than in the plating assay (Table 4.4). In 

both repetitions of the experiment, bacterial cells recovered by plating the wash buffer 

from the SDW (control) treatment was 10
7
 CFU/g shoot tissue while qPCR only 

estimated 10
1
 to 10

2
 CFU/g shoot tissue (Figs. 4.4a, 4.4b). In the OxiDate 2.0 treatment, 

the plating assay detected about 100 times the number of cells per gram than were 

detected by qPCR.  In the first repetition of the thyme oil treatment, plating detected 27.6 
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CFU/g while qPCR detected 8.27 CFU/g, and in repetition 2 plating did not yield any 

viable X. euvesicatoria cells while qPCR detected 15.3 CFU/g shoot tissue (Table 4.4).  

In both plating and qPCR assays of the seedling washes, seedlings from treated seed had 

smaller X. euvesicatoria populations than the control seeds, but this was not always 

statistically significant (Table 4.4).  

 

 

Discussion 

Seed to seedling transmission of phytopathogenic bacteria often results in the 

establishment of epiphytic populations before the pathogen colonizes internal tissues and 

produces disease symptoms (Sharon et al. 1982). Therefore, quantifying epiphytic 

populations may serve as an indicator of the risk of disease incidence or severity 

(Lindemann et al. 1984; Stromberg et al. 1999; Umesh et al. 1998) provided that the 

impact of environmental variables (Hirano and Upper 1983; Schaad 1988) and risk for 

dispersal from infected plants (Darrasse et al. 2007; McInnes et al. 1988; Schaad et al. 

1980) are taken into account. Seeds with the highest X. euvesicatoria populations gave 

rise to the seedlings with the highest epiphytic populations. Seed lots treated with hot 

water and NaOCl had no viable cells of X. euvesicatoria detected by plating and, in most 

cases, gave rise to the lowest qPCR-detectable populations. According to Moretti et al. 

(2009) the detection limit of the PCR protocol was 2 x 10
2
 CFU/ml. The results obtained 

to construct the standard curve supported this, as in 35 cycles some replicates of the 10
2 

CFU/ml samples had threshold cycle (Ct) values of 33 or above. The lowest pathogen 

level detected was from a hot water treatment that contained 6.82 x 10
1
 CFU/ml of 
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concentrated seed wash. Based on the detection limits of the qPCR protocol, the pathogen 

would not have been detected by qPCR in this sample had it not been concentrated. 

Concentration of the samples, therefore, increased the chances of detecting the pathogen. 

Comparing dilution plating and qPCR results for hot water and NaOCl treatments 

in both repetitions and the thyme oil treatment in repetition 2, the qPCR method was 

more sensitive. Also, qPCR detected cells in a larger proportion of samples than dilution 

plating. Unexpected results were seen in the control (SDW) and OxiDate 2.0 treatments 

of both repetitions and the thyme oil treatment in repetition 1, in that the qPCR results 

gave lower pathogen numbers than the plating assays. This difference was greatest in the 

controls in repetition 2, with plating assays yielding 10
7
 CFU/g shoot tissue and qPCR 

detecting 10
2
 CFU/g. Cells may have been lost in the removal of the supernatant after 

centrifuging in the process of concentrating the samples, but this would have affected all 

samples as they were concentrated in the same manner. The dilution plating may have 

overestimated the populations. Although the majority of isolates suspected to be X. 

euvesicatoria tested positive by conventional PCR, the two yellow colonies isolated from 

the NaOCl treatments were PCR negative. Other yellow colonies may have been counted 

that were not X. euvesicatoria.  

The qPCR method detected X. euvesicatoria on seedlings that were grown from 

hot water- and NaOCl-treated seeds even though no viable cells were detected when the 

seeds were assayed following treatment (data not shown, see chapter 3). One explanation 

may be that qPCR detected the DNA from nonviable cells, i.e. false positives. 

Alternatively, some bacterial cells may have been located internally thus escaping a seed 

soak treatment. Vacuum infiltration of the seeds with X. euvesicatoria may have 
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deposited cells under the seed coat. The NaOCl treatment would only affect pathogens on 

the surface of the seed. Sauer and Burroughs (1986) found that NaOCl treatments were 

sometimes ineffective because hairs, cracks and bubbles on the seed surface protected the 

pathogen from the treatment. In addition, wash assays may not remove all the cells from 

the seed surface (Schaad 1982) due to hairs on the surface of tomato seeds and the 

protective xanthan exopolysaccharide produced by xanthomonads (Dunger et al. 2007). 

Combined, these factors allow pathogen cells to escape the NaOCl seed treatment, and to 

remain on the seed after washing, later colonizing the seedlings (McGuire et al. 1991). 

Hot water treatments are effective because they can kill bacteria within the seed but they 

do not always eradicate the pathogen from the seed (Schaad 1982). Some bacterial cells 

may have remained alive in the hot water treatment if some of the seeds were not exposed 

to the correct temperature for the duration of the treatment. Slightly more than half of the 

replicates had no detectable pathogens using qPCR but this does not mean that half the 

seeds were infested. Since the seedlings from each vessel were assayed in bulk, the 

bacterial cells detected in the positive replicates could have originating from only one or 

a few seeds in each Magenta vessel.  

Despite the addition of cycloheximide and antibiotics to the medium (TMB), 

background growth of fungi and non-xanthomonad-like bacteria was observed. In the 

plates from the control (SDW) seedling wash, there were a variety of bacteria-like 

organisms. The plates from the hot water and OxiDate 2.0 treatments had an abundance 

of one common bacterium-like growth.  The OxiDate 2.0 treatment had significant fungal 

growth on many of the plates. In a number of plates, the nontarget microorganisms 

prevented the isolation of suspected X. euvesicatoria colonies for PCR confirmation. This 
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could explain why the pathogen was not detected on plates from the hot water-treated 

seed or seedlings, yet was detected by qPCR. The plates from the NaOCl and thyme oil 

treatments had the lowest diversity of microorganisms, with some of the plates having no 

visible growth.   

Further assays are needed to determine if the low population numbers estimated 

using qPCR in the samples from hot water- and NaOCl-treated seed will result in 

unacceptable levels of bacterial spot in the field. Enumeration of epiphytic populations on 

individual seedlings grown in isolation (to prevent seedling to seedling transfer) before 

planting in the field would determine if epiphytic population numbers are a useful 

predictor of disease incidence and severity in the field (Lindemann et al. 1984; Stromberg 

et al. 1999; Sudisha et al. 2006). Under conducive environmental conditions, epiphytic 

populations can increase rapidly resulting in disease outbreaks. On spray-inoculated 

pepper leaves, for example, epiphytic populations of the bacterial spot pathogen 

increased from 10
3
 CFU/g leaf tissue to almost 10

8
 CFU/g in 3 days (Sharon et al. 1982). 

The results of seed to seedling transmission studies should be correlated with 

environmental factors such as temperature and moisture (Schaad 1988; Umesh et al. 

1998) so that reliable seed inoculum thresholds can be determined. 

The seed inoculum threshold for preventing significant disease outbreaks has not 

been determined for X. euvesicatoria. Jones et al. (1986) reported a detection limit of one 

infested seed in 1,000 (0.1%) but there was no indication that this was the inoculum 

threshold for bacterial spot of tomato. A threshold of one infested seed in 10,000 (0.01%) 

was determined by Schaad et al. (1980) to be the maximum level of contamination to 

prevent black rot of crucifers caused by X. campestris pv. campestris. Grondeau and 
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Samson (2009) found the threshold for Acidovorax valerianellae in corn-salad seeds to be 

0.1% to 0.5% infected seed with between 10
2
 and 10

4
 CFU/g seed required for severe 

disease outbreaks. Umesh et al. (1998) found that 10
4
 CFU/g seed was the contamination 

level that produced bacterial blight (Xanthomonas campestris pv. carotae) in carrots but 

considered this a high threshold, noting that the climatic conditions were not conducive to 

disease development. For Clavibacter michiganensis subsp. michiganensis, a 

transmission level of one seed in 10,000 (0.01%) could lead to a serious epidemic 

(Hausbeck et al. 2000). Darrasse et al. (2007) showed that for X. axonopodis pv. phaseoli 

transmission did not occur in naturally infested seed with inoculum levels below 10
3
 

CFU/seed and transmission rates as high as 0.1% produced plants that were 

asymptomatic although contaminated with epiphytic populations. Schaad (1982) reported 

that a bean seed certification scheme in Michigan for X. axonopodis pv. phaseoli 

established 0.005% or fewer symptomatic seed plants as an acceptable level during field 

inspections but there was a zero tolerance for the pathogen in seed test assays. In the seed 

assays, surface-disinfested beans were soaked in water for 24 h and the leachate injected 

into healthy seedlings, which were later observed for disease symptoms.  

Fewer than 600 seedlings were assayed per treatment in the current study and X. 

euvesicatoria was detected by qPCR in all treatments, though not in all replicates. If the 

inoculum in each Magenta vessel of seedlings came from a single seed, then at least 1.8% 

of the seeds were infested (11 infested seeds in 600) in the hot water treatment. This is 

higher than any of the thresholds outlined above, indicating that although the treatments 

reduced pathogen populations on the treated seed, they may be inadequate on their own 

for preventing transmission and the subsequent development of disease.  
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Due to the important of seedborne inoculum in disease development, research on 

seed treatments to prevent bacterial disease needs to continue. In this study, NaOCl seed 

treatment was as effective as hot water treatment and warrants further investigation. 

Thyme oil and OxiDate 2.0 were less effective at eliminating the pathogen from seeds 

and are probably not useful as seed treatments. Future research could vary treatment 

concentrations and soak durations or use vacuum infiltration of treatments. Pretreatment 

of the seeds to decrease the hydrophobic surfaces increased the contact of the NaOCl 

treatment with the seed surface (Sauer and Burroughs 1986) and improved seed treatment 

effectiveness. Seed sanitization with NaOCl followed by application of a biological 

control as seed treatment (Kavitha and Umesha 2007) may also improve disease control, 

as well as combining seed treatments simultaneously or sequentially. Kritzman (1993) 

showed that a chemi-thermal treatment reduced the treatment time of tomato seeds from 

25 min to 10 min and the temperature from 50°C to 45°C and eliminated the bacterial 

spot pathogen. Even with improvements to seed treatments, cultural practices and 

sanitation are still needed to reduce additional sources of initial inoculum and pathogen 

spread that may lead to disease outbreaks. 
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Tables and Figures 

Table 4.1. Seed treatments applied to tomato seeds used for the seedling grow out tests. 

Each treatment had four replicates and the experiment was conducted twice. For each of 

these replicates, three subsamples of 30 to 35 seeds each were grown in 0.8% water agar 

in sterile Magenta vessels for 14 days. 

 

Seed treatment Duration (min) 

Sterile distilled water (SDW) (control) 30 

Hot water (50°C)
a
 25 

1.05% NaOCl 10 

0.99% OxiDate 2.0 2 

0.33% Thyme oil 30 
 

a
 Seeds were preheated at 37°C for 10 min before treatment and cooled at 13°C ± 2°C immediately after 

treatment duration. 
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Table 4.2. Effect of seed treatments on the transmission of Xanthomonas euvesicatoria 

from seed to seedling. The number of pathogens detected by plating and real-time PCR 

from seedling wash samples is given as CFU/g shoot tissue.  

 

Seed 

treatment 

Xeu detected by dilution plating 

(CFU/g)
a
 

Xeu detected by real-time PCR
b
 

(CFU/g)
a
 

Repetition 1 Repetition 2 Repetition 1 Repetition 2 

SDW 2.15 x 10
7
 1.23 x 10

7
 2.75 x 10

1
 1.35 x 10

2
 

Hot water 0 0 2.88 1.29 

NaOCl 0 0 1.41 7.18 

OxiDate 2.0 1.35 x 10
3
 1.35 x 10

2
 9.0 7.16 

Thyme oil 2.76 x 10
1
 0 8.27 1.53 x 10

1
 

 

aCFU/g calculated by converting log10 averages back to numbers. 
b Samples were concentrated 30-fold before PCR amplification.  
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Table 4.3. PCR confirmation of suspected Xanthomonas euvesicatoria colonies isolated 

from seedling wash spread plates. Colonies were stored at -80°C in 15% glycerol until 

suncultured to be checked by PCR. 

 

Seed treatment 
No. of yellow colonies 

checked by PCR 

Percent of strains confirmed 

as X. euvesicatoria 

SDW 39 87.2
a
 

Hot water 1 0 

NaOCl 2 0 

OxiDate 2.0 22 100 

Thyme oil 3 100 
 

a
 5 yellow colonies did not have X. euvesicatoria  morphology when isolated but were checked. None of 

these were PCR-positive. 
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Table 4.4. Percentage of seedling wash replicates in which Xanthomonas euvesicatoria 

was detected by dilution plating and real-time PCR. Each of the 5 treatments had 4 

replicates. For each of these replicates, 3 subsamples of seedlings were assayed, giving 

24 replicates for each treatment across both repetitions of the experiment. 

 

Seed 

treatment 

Percent replicates with 

Xeu detected by plating 

Percent replicates with Xeu 

detected by real-time PCR 

SDW 87.5 (21 of 24)
a
 95.8 (23 of 24) 

Hot water 0 (0 of 24) 45.8 (11 of 24) 

NaOCl 0 (0 of 24) 54.2 (13 of 24) 

OxiDate 2.0 25 (6 of 24) 79.2 (19 of 24) 

Thyme oil 4 (1 of 24) 62.5 (15 of 24) 
 

a
 Numbers in parentheses are the number of replicates in which Xeu was detected. 
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Fig 4.1. Tomato seedlings growing in a Magenta vessel. Thirty to thirty-five seeds were 

placed on 0.8% water agar in each vessel and grown in the closed vessels for 14 days at 

22°C ± 1°C with 16 h of light per day. Shoots from a maximum of 25 seedlings from 

each vessel were washed with peptone buffer with 0.02% Tween 80 added. The seedling 

washes were assayed by dilution plating and real-time PCR. 
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Figure 4.2. Populations of  Xanthomonas euvesicatoria on 14-day-old tomato seedlings 

grown from treated seeds, determined by dilution plating of seedling washes onto Tween 

Medium B. Bars with the same letters are not significantly different, according to 

Student's t test, P = 0.0008 (Rept. 1), P = 0.0003 (Rept. 2). 
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Figure 4.3. Populations of Xanthomonas euvesicatoria on 14-day-old tomato seedlings 

grown from treated seeds, determined by real-time PCR of concentrated seedling washes. 

Bars with the same letters are not significantly different, according to Student's t test, P = 

0.07 (Rept. 1), P = 0.0001 (Rept. 2). 
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Figure 4.4a. Comparison of seed wash and seedling wash assays from repetition 1. Seed 

treatments were applied to tomato seed that were vacuum infiltrated with Xanthomonas 

euvesicatoria. Dilution plating of seed wash (black bars) was used to estimate bacterial 

populations. Treated seed were grown for 14 days and seedling shoots washed in buffer. 

Seedling wash buffer was assayed for X. euvesicatoria by dilution plating (gray bars) and 

quantitative PCR (qPCR) (white bars). Plating of the seed and seedling washes was done 

on Tween Medium B (TMB).  
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Figure 4.4b. Comparison of seed wash and seedling wash assays from repetition 2. Seed 

treatments were applied to tomato seed that were vacuum infiltrated with Xanthomonas 

euvesicatoria. Dilution plating of seed wash (black bars) was used to estimate bacterial 

populations. Treated seed were grown for 14 days and seedling shoots washed in buffer. 

Seedling wash buffer was assayed for X. euvesicatoria by dilution plating (gray bars) and 

quantitative PCR (qPCR) (white bars). Plating of the seed and seedling washes was done 

on Tween Medium B (TMB).  
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CHAPTER 5 

SUMMARY AND CONCLUSION 

Organic agriculture is a steadily growing sector fuelled by the desire for 

sustainable food production, ecological health and healthful foods. The USDA National 

Organic Program (NOP) and other regulatory bodies worldwide have specified that 

organic growers use organic seed (Le Buanec 2004; USDA NOP 2013). Where organic 

seed is unavailable, the NOP allows certified growers to use nonorganic seed that is 

untreated or has been treated with materials or processes permitted for organic systems 

(USDA NOP 2013). Seed treatments are necessary to prevent seedborne diseases 

(Lammerts van Bueren et al. 2003). Bacterial phytopathogens in particular are difficult to 

control and preventing the introduction of inoculum into the field is the primary approach 

to disease management (Gitaitis and Walcott 2007).  

Seed treatment for bacterial phytopathogens can be physical, usually using heat, 

biological, or chemical, for which organic acids and essential oils are the most popular in 

organic systems (Le Buanec 2004). Hypochlorites such as sodium hypochlorite (NaOCl), 

the active ingredient in chlorine bleach, are allowed with restrictions (USDA NOP 2011). 

Heat treatments are effective, especially if the pathogen is inside the seed, but require 

precision and special equipment to prevent heat damage to the seed. Seed treatments 

using organic acids and essential oils are usually easy to prepare and apply without 

special equipment but care must be taken to use the lowest effective concentration and 

exposure time to avoid phytotoxic effects (Mbega et al. 2012).  
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This study showed that hot water, NaOCl, OxiDate 2.0 and thyme oil were 

effective in reducing the population of Xanthomonas euvesicatoria on tomato seed. The 

bacterium was not recovered from the hot water- and NaOCl-treated seed by dilution 

plating. Populations were recovered from the OxiDate 2.0 and thyme oil treatments.  

Seedlings were grown from the treated seed to determine if seedling transmission 

of X. euvesicatoria from the seed was reduced. No viable cells of X. euvesicatoria were 

recovered by the dilution plating methods on the seedlings grown from the hot water- and 

NaOCl-treated seed but real-time PCR detected the pathogen in the seedling wash 

subsamples of both treatments. Inoculum in a seed lot does not always result in disease 

and significant yield loss in a crop (Baker and Smith 1966; Langerak et al. 2004; van der 

Wolf et al. 2013) especially when the levels of infestation are low. Thresholds of 

contamination need to be determined for bacterial spot pathogens on tomato seed so that 

the usefulness of the seed treatments can be determined. This work contributes to the 

knowledge on the most promising preparations suitable for use as organic seed treatments 

to control bacterial phytopathogens.  
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