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ABSTRACT 

This research was performed to increase the optimization of hour-ahead hybrid solar irradiance prediction 

methods through the design and implementation of a new hybrid system and model that utilized sky images 

as a replacement variable for cloud types identified by overhead satellites. Improving current solar radiation 

prediction methods will benefit electricity producers that need to better understand the availability of solar 

irradiance and how it may impact their forecasting. Phase one outlines a comparison between current 

supervised learning methods and deep learning methods. Recurrent Neural Networks produced lower 

RMSE and higher R2 values and outperformed supervised learning methods. 

Phase two outlines building and validating a new one-hour ahead hybrid prediction model by 

combining a deep learning approach with a replacement feature derived from real-time image collection 

and location specific numerical weather features. This replacement feature was the percentage of sky cover 

from an observation point on the ground and was called Sky Types. Sky Types are less expensive to obtain 

and can be collected at any location, which also makes the prediction of solar irradiance specific to the 

same location. Deep learning models validated that the use of Sky Types was not only a valid substitution 

for cloud types, but were more optimal for training as model performance improved with reduced network 

topology and while still being optimal for hour-ahead predictions. 

 



To use Sky Types in the new hybrid prediction model, a system was designed to collect the sky condition 

information from the National Weather Service and relevant images representing the sky condition; both 

were captured at the same time intervals. Phase three outlines the creation of a system used for collecting 

images and weather data, preparing images for use by the new hybrid prediction model and building a 

classification model using a Convolutional Neural Network.  

The system’s GHI predictions were validated using hour-ahead ground truth solar irradiance 

amounts from ten locations and averaged an RMSE of 41.26 W/m2 and outperformed GFS forecasted GHI 

by 32% on highly variable weather days. This new hybrid system can be used anywhere numerical weather 

data and sky images can be captured. 
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CHAPTER ONE 

INTRODUCTION 

The need for adequate renewable energy resources has never been more prevalent than in 

today’s times. As we progress as a society and the population continues to expand, we are quickly 

using more of our current energy resources than we can adequately replace in some type of 

manageable way. Our climate is changing rapidly and decades of mining our planet’s precious 

resources have resulted in a steep decline in their availability and an increase in the research, 

investigation and production of new methods for different applications and implementations of 

renewable energy resources (Bauner & Crago, 2015). Solar energy shows great promise in filling 

this role and, as solar photovoltaic hardware continues to develop and advance, the full 

understanding of the potential solar energy can provide to our society has never been more 

important (Best & Burke ,2018). In addition, rapidly advancing technologies such as blockchain 

are expanding the availability of solar energy across regions where it would have otherwise been 

incapable of being used (Basden & Cottrell, 2017). Neighborhoods are beginning to share solar 

energy resources through the expanded use of micro-grids (Mengelkamp et al., 2018); rural 

farmlands in Australia are being powered by distributed solar energy resources (Kim, Park & 2018) 

and even energy sharing electric car installations are being proposed (Financial Review, 2018). 

This is only the beginning of the widespread adoption of solar energy and, as the advancement of 

solar photovoltaic panels also increases, so will their adoption, the benefits of their use and the 

size of the industry and its investment potential (Pieroni, 2018).  
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This work is being presented to improve current hour-ahead solar irradiance prediction 

methods, particularly the value of sky imaging and deep learning to predictions. Electricity 

producers may need to better understand the availability of solar radiation and how it may impact 

their forecasting. Moreover, predicting both availability and production capacity is necessary for 

preventing the overproduction of electricity and vital to demonstrating the full potential solar 

energy can provide in many different areas and industries.   

Prediction methods not only help in these areas, but can also help increase awareness and 

understanding of the optimal return on investment that is available. This work will begin with an 

introduction and explanation of solar irradiance and the current solar model before introducing 

machine learning, which is the primary methodology under evaluation. In addition, the relevant 

methods and studies investigating hour-ahead solar irradiance prediction that have come before 

this work will also be presented. This will provide a foundation for this research and provide 

success metrics. These previous methods are divided into two branches that are separated by their 

implementation: hybrid approaches that utilize numerical weather data and other external features 

that impact solar irradiance and singular approaches that only use numerical weather data. Our 

primary contributions surround a new hour-ahead hybrid system and are presented in three main 

phases. 

  Chapter 4 outlines an evaluation of modern GHI hour-ahead prediction methods, including 

descriptions of all variables used in current prediction processes through exploratory data analysis. 

As part of this evaluation, classification and regression models were constructed using five 

different supervised machine learning algorithms. This effort established a baseline for 

understanding and improving upon existing methods. 
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  Solar irradiance is impacted most by clouds (Perez et al., 2007) and the current Solar PV 

model uses regional satellite imagery to ascertain the types of clouds that are in a region. This is 

one of the main variables used in predicting solar irradiance, but it is sparsely collected, contains 

missing observations and it is related to regions and thus cannot be used for making predictions at 

specific locations. Chapter 5 presents the novel application of sequential deep learning methods to 

build classification and regression models to the prediction tasks. Evidence supports that deep 

learning methods outperform current supervised machine learning methods for this type of 

application. Further, we introduce an extension of this deep learning approach with a replacement 

variable drawn from real-time data collection and location specific numerical weather data, the 

percentage of sky cover taken from an observation point on the ground. The new hybrid model 

will be less costly to implement and will be relevant to specific and individualized locations where 

more regionally-based hour-ahead solar prediction models fall short. Using variables from hour-

ahead weather forecasts from the Global Forecasting System, the new hybrid model will be 

validated to be more accurate than current hour-ahead GHI prediction supervised learning models 

from Chu et al (2014) and Amrouche and Le Pivert (2014) by 10%. In addition, this new hybrid 

prediction model is applicable to all weather conditions wherein the two previously cited models 

are not utilized in all weather conditions.  

  Chapter 6 outlines the design and implementation of an image collection system that 

obtains real-time images for use in the new hybrid model from chapter 5. This new system collects 

real-time images from publicly available cameras and processes them for use by the new hybrid 

prediction model. This new system is not only less expensive to implement but can also be scaled 

and is specific to any location where the technology is available.  In future work, this new system 
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can be used to collect and store local data that could be used to predict local solar irradiance ahead 

every fifteen minutes.  

  Hybrid approaches that use both numerical weather data and external variables that impact 

solar irradiance are already beginning to show great promise in solar irradiance prediction and 

these will continue to grow. This growth is relative to the expansion and advancement of 

technology which is greatly impacting accuracy and error rates in similar studies that utilize more 

traditional approaches for prediction. This research not only provides a foundation for ongoing 

and future research, but already directly challenges current methods. 
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CHAPTER TWO 

BACKGROUND KNOWLEDGE 

2.1. Solar Irradiance 

  We often don’t think of the sun as a large star that is constantly producing usable energy. 

We could empower the entire world with a continuous 1.2 x 105 terawatts (Crabtree & Lewis, 

2007) of energy if we could fully harness the power of the sun. At any given time, the sun’s solar 

irradiance is 1000 watts/m2 at any point in space within our local atmosphere, but that energy is 

most often refracted by numerous elements within our atmosphere (Lave, Hayes, Pohl & Hansen, 

2015) breaking solar irradiance into two different components: Direct Normal Irradiance (DNI) 

and Diffuse Horizontal Irradiance (DHI) (Marion, 2015). These two components present the entire 

amount of solar irradiance that is available at any given time, which is referred to as Global 

Horizontal Irradiance or GHI.  

  Direct Normal Irradiance, redefined DNI, is the amount of the sun’s solar irradiance that 

can be captured by a perpendicular surface when the sun is at a relative perpendicular position in 

the sky as shown in Fig. 1. This single component is vital to the overall calculation of solar 

irradiance because it is the most prevalent component of the two (Bird, 1984). It is often measured 

using a solar photometer and is often used to in correlation with the movement of the sun to 

calibrate solar photovoltaic systems that include the use of movable or solar panels that track the 

movement of the sun to keep their orientation perpendicular to its zenith angle. Blanc et. al., (2014) 

calculated DNI for any given direct normal irradiance of the sun on a perpendicular surface for 

any wavelength λ as: 
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 Idλ = HOλDTrλTaλTwλToλTu 
(1) 

 

Whereas HOλ is the intensity of the power of the sun at the given distance between the Earth and 

Sun and D a given correction factor for such distance. The remainder of the equation represents 

transmission functions of the atmosphere at the same given wavelength.  

 

Fig 1: DNI and Solar Zenith Angle. (Performance, 2018) 

  The sun’s incoming rays can be impacted by the Earth’s atmosphere and many physical 

objects such as clouds and physical structures; this portion can be calculated using functions of 

solar altitude, atmospheric vapor content, dust content, ozone content and other features (Liu & 

Jordan, 1960) that it interacts with on its path to the ground. In many instances solar radiation can 

also be reflected or refracted from its direct impact with the ground itself sending it back into the 

atmosphere. As DNI encompasses the direct or normal measure of the Sun’s beam, Diffuse 

Horizontal Irradiance or DHI is represented by this remaining solar irradiance that is reflected or 

refracted within the Earth atmosphere. The proportion of the incident light or radiation that is 

reflected by a surface is commonly referred to as Albedo. DNI, DHI and Albedo are shown is Fig. 

2 and all three are considered part of the Global Horizontal Irradiance factors since all three 

features or components contain some type of measurement, whether directly or  



7 

 

 

Fig 2: DNI, DHI and Albedo. Data Irradiation. (2018). 

indirectly, of the average 1000 W/m2 amount of solar irradiance present at any given time on a 

horizontal surface.  

 Two main emphasis areas are commonly addressed in all GHI prediction methods. The 

first method uses variables from historical numerical weather data and includes cloud related 

features (Matuszko, 2012) that have a direct impact on DNI and as a direct correlation the amount 

of GHI. This method is a hybrid prediction model because of its usage of both historical weather-

related data and cloud types, sky conditions or specific cloud features; these models have also been 

implemented as in the cases of Shamim, Bray, Remesan & Han (2015) and Cheng & Yu (2015).  

The second method utilizes predictions made with quantitative weather models (Amrouche & Le 

Pivert, 2014); this method only uses variables from numerical weather data such as wind speed, 

wind direction, temperature humidity, etc. and relates how each if these impacts the amount of 

GHI available at any given time. The main findings and related work described later is directly 

related to a new hybrid approach that will serve as one of the objectives of this work. 
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2.2. Forecasting Methodologies 

Aman, et al. (2014) outlined four areas of energy demand and GHI forecasting: averaging 

models, regression models, time series and Artificial Intelligence (AI) approaches. The main 

difference between these four approaches is centered on the concept of how the model is 

constructed and the how the relationships between the variables are used, which also forms the 

basis of the main differences between statistical approaches and traditional machine learning and 

artificial intelligence methods.  

In traditional statistical-based approaches, mathematical relationships are formed between 

independent and dependent variables; these relationships formulate or compose the structured 

model that is then used to infer or make predictions in future data that is structured in the same 

manner. In traditional machine learning inferences are not made, rather algorithms are 

programmed to “learn” the complex relationships among variables. Most statistical methods 

require a previous understanding of data collection, statistical significance and a broad 

understanding of procedure, whereas most machine learning processes and algorithms can operate 

independently without satisfying these objectives beforehand. For example, a Statistician would 

perform many statistical tests on data to ascertain how the variables might be related or find usable 

relationships in the data to build model with. Machine learning practitioners often study the data 

as well, but for purposes of either transforming it and/or understanding how variables are 

distributed to make informed decisions about the specific machine learning processes to use to on 

it. In addition, machine learning processes can be highly optimized when many of these objectives 

are known as well.  

Time series methods are often considered to be statistical methods mainly due to many of 

the previously described processes with the addition of a time component. It is a statistical model 



9 

 

that is repeated at various intervals of a predetermined time frame. At every interval, a new 

regression model is built with rules from the previous analysis and the error rate is measured 

between the two iterations. This interval was defined by Box et al. (1994) as a backshift operator 

(B) of the time series where Bzt = Zt-1 where zt and Zt-1 are represented as two consecutive time 

series.  This type of statistical approach is also not dependent on a given set of known features, but 

normally applied between one or many independent variables and one dependent variable where 

direct relationships can be derived before the analysis.  

Regardless of the approach taken, statistical methods and machine learning methods are 

highly focused on a set of independent variables that are often referred to as a feature set in 

statistical methods and a feature space in machine learning methods as shown in Table 1. This set 

of variables provides input(s) to the model and establishes how predictions are made going 

forward. Variables in this space are often simply regarded as features.  

The relationship, not only among features but also between features and known outcomes 

or dependent variables, is important to understanding how either of these processes work, 

especially in the case of machine learning. 

Machine learning algorithms can be programmed to make weighted adjustments among 

the features that can be highly impactful to their priority and use within a model. Traditional 

statistical methods generally do not have this ability and any weighting of the features must occur 

manually, which is another reason it is mandatory to know such relationships beforehand.  

Table 1: Example of a Feature Space/Set 

Feature Space (Independent Variables) Dependent Variable 

Month Day Hour Minute GHI 

1 1 0 30 0 

1 1 1 0 0 

1 1 1 30 0 
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2.3 Global Forecasting System 

  The most prevalent GHI prediction models (Perez et al., 2013) use weather variables taken 

from the National Centers for Environmental Prediction (NCEP) as inputs and the same were used 

for this study. The NCEP produced the Global Forecast System (GFS), which is a weather model 

containing various weather-related variables like temperature, wind speed, humidity, etc.  The GFS 

can predict weather-related variables out 16 days in the future, which makes it a good model to 

obtain the numerical weather data for predicting GHI.  In this study, predictive models will be 

created using a dataset of historical GFS variables and the actual GHI measurements at the same 

time as shown in Table 2. These predictive models will then apply any rules learned from historical 

weather data to predict GHI amounts one-hour ahead of the current time by using variables from 

one-hour ahead weather forecasts from the GFS.  

Table 2: Example of Historical Average Hourly GFS Weather Variables  

Year Month Day Hour Dew Point Temperature Humidity 
Cloud 

Type 
GHI 

2010 12 28 7 39.2 41 100 7 0 

2010 12 28 8 42.8 44.6 96.25 3 29 

2010 12 28 9 46.4 50 88.75 4 138 

2010 12 28 10 50 51.8 94.35 4 15 

2010 12 28 11 51.8 53.6 94.71 6 59 

2010 12 28 12 51.8 53.6 99.05 6 11 

 

2.4. Solar PV Model 

  The most current (NREL, 2015) method for modeling solar irradiance was produced and 

managed by the National Renewable Energy Laboratory (NREL), which also manages the latest 

processes for modeling the information contained within the National Solar Radiation Database 

(NSRDB). The evolution of the NSRDB, previously referred to as SOLMET, can be traced back 

to 1977 with the first models that contained numerical weather data ranging back to 1952 when 



11 

 

there were only 248 NOAA weather stations across the United States and only 26 had the capability 

to measure the type of information needed to derive any type of useful inference regarding solar 

irradiance. The NSRDB first became a reality in 1994 (NCDC, 2018) under the management of 

the DOE and the National Oceanic and Atmospheric Association (NOAA) when 239 National 

Weather Service stations first began to model this type of data and an additional 56 stations were 

added to the list of those that could measure such data. In 2005, the list grew to almost 1500 

National Weather Service (NWS) stations that were capable of modeling solar irradiance. These 

more current models utilized satellite measurements and ground observations regarding Cloud 

Index and Clearness Index; Cloud Index is widely used to measure solar irradiance on the Earth’s  

surface (Hammer et al., 2015) and Clearness Index is the ratio of DNI to DHI (Mellit et al., 2008). 

Current solar PV models utilize numerical weather data and data from the PATMOS-X satellite 

(Foster & Heidinger, 2013) to predict solar radiation at the Earth’s surface; the quantities and 

relative units of the data are shown in Table 3. This information is then used in radiative transfer 

models (Barker et al., 2003 that can better ascertain the layer densities and make up of individual 

clouds and cloud cover. This framework is often referred to as the Physical Solar Model (PSM) 

framework which is shown in Fig. 3. In this framework, cloud-based data is analyzed by satellites 

overhead with aerosols and water vapor from other sources, such as forecasts and various surface  

readings (Cermak et al., 2010). The collection and analysis of cloud related variables conveyed in 

this framework is relevant to this work as a new collection method for a similar cloud-related 

feature will be presented here. The ‘Cloud Properties’ section of the framework contains eight 

different variables related to clouds, none of which can be obtained from ground-based 

observations as shown in Fig. 3. In addition to these eight variables, various tests within 
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classification algorithms (Bankert et al., 2009) are used to identify the cloud types (Desbois, Seze, 

& Szejwach, 1982). 

Table 3: Solar Model Variables. (NREL, 2015) 

 

These tests must be passed for a cloud to be positively identified as being one of ten cloud types. 

Of the ten categories, one category is assigned to clouds that cannot be identified; these clouds are 

labeled as unknown clouds. All this information is obtained from various levels of satellite data 

and process through three different algorithms, all of which are beyond the technical scope of this 

work, but further relate the need for an improved model that is relevant to observations from the 

ground and uses numerical weather data and other features that are easy to obtain. An improved 

model might be less expensive to implement and generalize better to specific locations since the 

current models are very depended on regional satellite data. 
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Fig. 3: Physical Solar Model. (NREL, 2015) 

  The Solar PV model also contains four radiative transfer models (Clough, 2005), which 

are calculate the transfer of solar radiation through the atmosphere. These models are essential to 

the numeric modeling of solar irradiance; two of the four models are relevant to this work in 

functionality and the features being used for predicting GHI. The Clear Sky Model, as described 

in Sengupta & Gotseff (2013), is used specifically to predict irradiance, illuminance and active 

radiation under cloudless sky conditions. Gueymard & Ruiz-Arias (2015) reviewed 24 radiative 

models for the application in 1-minute time interval predictions and found a Clear Sky Model 

refereed to as REST2 to perform well in all weather conditions; an identify that only two other 

models shared and one of the foundational reasons this work was implemented. In addition to its 

variation in use, REST2 also was the only model to outperform the Rapid Radiative Transfer 

Model for General Circulation Models (RRTMG), which uses many climatological physical 

principals in its Mathematical derivation of GHI amounts; many consider these physical principles 
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used during modeling essential to the model’s ability to generalize well to other locations in other 

climates (Iacono et al., 2008).  

  Like REST2 and RRTMG, the Cloudy Sky Model from the NREL was created to produce 

hourly solar radiation forecasts in all sky conditions (Myers, 2006). This method was based on the 

observation of cloud cover, which is a similar implementation found in this body of work, and 

aptly described the clouds as ‘The Long-Standing Problem’ (Myers, 2006), which describes the 

difficulty clouds introduce into prediction. This model was the first model to use the Octa in the 

quantification of sky occlusions and compare the measured amount to possible correlations to GHI 

(Bird & Hulstrom, 1981). This method is still used to classify sky conditions by the National 

Weather Service. The third model, the Direct Insolation Model, again by Bird & Hulstrom (1981), 

formed the basis for the prior two models described here and is used in combination with previous 

methods in the more recent forth model or the Fast All-sky Radiation Model for Solar applications 

(FARMS) in Xie, Sengupta & Dudhia (2016).  

2.5. Machine Learning 

 GHI forecasting has been based mainly on mainstream statistical methods (Mathiesen & 

Kleissl, 2011), but machine learning is beginning to change and update the way things have been 

done. This is mainly because numerous quantitative and qualitative features that were previously 

unable to be studied can now be purposed and weighted directly in the creation of predictive 

models (Lauret et al., 2015). In addition, new tools and new methods are now available for 

experimenting with combining, eliminating or even recreating many of these elements to build a 

feature space that is better for building predictive models. 

  Alpaydin (2014) defined machine learning by first addressing the concept of an algorithm 

as being a sequence of instructions that should be carried out to transform an input to an output. 
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Restated, a set of rules or instructions relate a set of input variables to a related outcome. This is 

commonly described as the relationship between X independent variables and Y dependent 

variable(s), respectively, with the ability to adjust the priority or weighting of all variables as the 

data and/or observations change (Langley, 1988).  It is this ability that makes machine learning 

appropriate for the use in hybrid-type approaches for predicting global horizontal radiance, but 

many different problems must also be addressed before the process can be finalized and an overall 

model produced. In addition, creating a model only addresses a portion of the overall machine 

learning workflow or process, which is outlined in Fig. 4. 

  Machine learning begins with a scope that outlines the project details and acceptable 

project metrics before moving into the largest part of the overall process, which involves working 

with data. Data is often ‘dirty’ (or contains irrelevant and unusable information) and must be 

‘cleaned’ prior to creating an optimal feature space that will be used for model building.  

 

Fig 4: Machine Learning Process. The Machine Learning Process. (2016) 

 

In addition, a specific type of problem must be matched with a specific machine learning tool(s); 

both decisions need to be made early in the process. In principle, some machine learning 

algorithms are sensitive to different types of problems such as problems only containing numeric 
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data or problems containing mixed data consisting of both numbers and categories. Some 

algorithms, again in principle, function optimally when presented with problems that are in a 

specific structure or format like comma separated values or test files.  

  After cleaning the data, a very detailed exploration of the data is performed. This is 

necessary to make proper decisions about which features to using the feature space and which 

features to remove, if any. In addition to making these decisions, it is important to understand the 

relevance of the problem and the nature of the scope as well as the general makeup and type of 

data that are used in the problem as this information is directly related to the success and 

optimization of any models built from it. During this process data is often transposed, substituted 

and even removed to prepare the data for the chosen algorithm that will be utilized during training 

or when the algorithm learns the rules from the patterns in the data it has been used on. After 

models are trained, an assessment occurs and either a chosen model is accepted for use in making 

predictions or the process begins again with another set of algorithms that might be more 

applicable to the data. A specific model is then chosen and its generalization capability assessed 

and either then deployed into production, which means using it to make predictions in an external 

process, or rejected and the retraining begins using different algorithms or using different features 

(Michalski et al., 2013). 

2.6. Data and Problem Types 

  Machine learning problems are often divided into two categories, both of which are defined 

by the type of data of the dependent variable. If the dependent variable is the number or numeric, 

the machine learning problem is called a regression problem (Smola & Schölkopf, 2004). If the 

dependent variable is a category or class, the machine learning problem is called a classification 

problem (Bradley, 1997). Machine learning algorithms also can learn patterns in data that is 
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unstructured, like text or multimedia data, and does not fall into either of the previous categories 

mentioned (Nguyen & Armitage, 2008). Variables for classification or regression problems often 

fall into one of two definitions: variables that are highly related and can be competently modeled 

or correlated and/or variables that assume no correlation or predefined relationships (Blum & 

Langley, 1997). The former case, which is most commonly referred to as parametric data due to 

its distribution or the measurement of how the data is spread, is often addressed with a specific 

type or subset of machine learning algorithms that are built to learn direct relationships between 

features and related outcomes (Silverman, 2018). The latter case addresses data that is most 

commonly referred to as non-parametric data; nonparametric machine learning algorithms can be 

used on either nonparametric data or parametric data (Domingos, 2012). While nonparametric 

machine learning algorithms can be applied to almost any type of data they are often considered 

by industry practitioners to be very slow and computational inefficient (Brownlee, 2016). In 

addition, while their output is generally considered to be widely optimized, many different types 

of nonparametric machine learning algorithms are often prone to overtraining or learning patterns 

in the historical data ‘too well’ and cannot generalize well when presented with new data that is 

absent of similar outcomes (Dietterich, 1995). This process is called overfitting and will be 

described in more detail later in this work. 

  Langley (1996) also describes the use of specific algorithms in machine learning that 

improve their performance with experience. For example, machine learning algorithms might use 

historic data in the form of not only GHI in various geographic locations but also corresponding 

historical weather-related variables such as temperature, wind speed, etc. Whether describing 

classification problems that utilize categorical dependent variables or regression problems that 

utilize numeric dependent variables, problems in machine learning are directly related by the way 
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the models train on the type of data being presented and are broken into two training categories:  

supervised learning and unsupervised learning.  

2.7. Supervised Learning 

  Kotsiantis, Zaharakis & Pintelas (2007) defined supervised learning as a machine learning 

process or method that utilizes and describes observations or instances that are provided with 

known labels or outcomes as shown in Fig. 5. Data used in supervised learning problems are 

broken down into two main sections that encompass all instances or observations. The first section 

is composed of the features or independent variables. The second section contains the dependent 

variable. These two sections might or might not be related to each other in some type of way; the 

main goal of machine learning algorithms is to learn how this relationship occurs, so it can be 

replicated with similar data absent of any outcomes (i.e. make predictions). This is done by training 

a model. To reduce any errors in the process and increase the accuracy of predictions being made 

by the models, machine learning algorithms use function approximation algorithms (Rasmussen, 

2004). These machine learning algorithms train on historical data with the goal of improving the 

accuracy of a given function. A good example of such function is the linear separation between 

two different categories based on their features. Another example of type of scenario is centered  

 

Fig 5: Supervised Machine Learning Process. (Polotan, 2015) 
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on minimizing the given function or set of functions within an algorithm as described by Jordan 

& Mitchell (2015).   

  In supervised learning, predictive models are built using data that are normally split into 

training sets and testing sets. During training, algorithms may experiment with different weights 

or priorities between the independent variables within the feature space and maintain random 

samples of data and combinations of features during experimentation all while trying to minimize 

some type of error and maximize some type of metric. After training concludes, any built models 

are assessed by a predefined or predetermined metric that corresponds directly to the type of 

problem an algorithm is being used to solve. Regression problems and classification problems 

have different types of assessment metrics; these will be covered later in the body of this work but 

regardless of the method, after a specific trained model is trained, it is then used with the test set 

to make predictions. At the end of this process the predictions made from corresponding rules 

learned by the trained model are compared to the known outcomes present in the testing set; these 

outcomes are commonly referred to as “ground truth” and serve as the major assessment point of 

success or failure for the predictive modeling process. If the predictions made by the trained model 

fall within a success metric window defined by the project scope when compared to the ground 

truth, the trained model is successful and can be used to generalize to outcomes with other known 

data features. In addition, any future predictions made will match the same success criteria that 

was previously assessed if the structure of the data does not change or the distribution does not 

deviate from any structure used during model training. Most predictive models do undergo some 

type of routine maintenance and are often retrained by repeating the process again with new data 

to account for this change in variation over time.  
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2.8. Unsupervised Leaning 

  While supervised learning is widely prevalent in GHI forecasting, a second type of machine 

learning has been used in cases where the data contains a feature space that does not have labelled 

or possibly even related outcomes. When data does not have a specific dependent variable, but 

rather a set of generalized variables that describe a general domain area in a quantitative or 

qualitative way, unsupervised learning algorithms can be used to ascertain related domain 

divisions that are relevant within the makeup of the data and component relationships that exist 

among the individual variables. As described by Fisher, Pazzani & Langley (2014), unsupervised 

methods must discover ‘useful’ categories within data using heuristics or predetermined search 

methods. Unsupervised learning will not be used in this work. 

2.9. Overfitting and Underfitting  

  When predictive models are constructed, the main goal is to ascertain the optimal 

independent variables that will best predict the occurrence and value or class of a dependent 

variable. If this is accomplished, the trained predictive model will replicate or predict the 

dependent variable in the separate test set of data within some probability; this is the optimal 

scenario. According to Babyak (2004), overfitting yields findings that appear in a model that will 

not replicate from the trained model to the test data as shown in Fig. 6. Overfitting often occurs in  

many different types of machine learning models but can be especially prevalent where Euclidean 

Distance (Nasrabadi, 2007) is implemented in the training process or when elements of collinearity 

(Doorman, et. al, 2013) exist in regressions models. Overfitting (Hand, Mannila & Smyth, 2001) 

refers to a machine learning model that can model the data well, but cannot make predictions with 

the same performance obtained during training.  
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Fig. 6: Overfitting and Underfitting. (Regression, 2018). 

This can be avoided by using methods such as Dimensionality Reduction or by reducing the size 

of the feature space and by using shrinkage, which is reducing the overall variance of the model 

by adjusting the values of its coefficients as described in Buehlmann (2006). Dimensionality 

Reduction is used in classification problems when redundant features are often removed to reduce 

the training size of the feature space and reduce possible bias that might be introduced by the 

redundant features. Underfitting is a much worse problem and often requires using a different 

algorithm as a solution (Domingos, 2012).  

K-Fold Cross Validation is another method used to prevent overfitting; this method 

involves an automated process that partitions or folds the training set into various sections or folds 

wherein data is held out and never trained on (Batista et al., 2004). K represents the size of such 

equal sample or partition. The process is repeated K-number of times and each of the samples is 

used only once in the validation or testing data; an example of this process is shown in Fig. 7. The 

resulting output is then averaged to produce a single metric. Cross validation is also an acceptable 

way to partition ordinal data or data that follows a predefined order, this type of data present bias  

opportunities in machine learning algorithms that tend to over train on such types of structured or 

ordered data (Flach, 2012). This is caused by the folds being removed in different places within 

the training set thus removing any opportunity for bias caused by ordinal variables or the ordering 
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of the data itself. In addition, since the samples are taken randomly this also increases the 

likelihood of additional stratification being added to the remaining data. 

 

Fig. 7: 10-Fold Cross Validation. (Towards Data Science, 2017) 

2.10. Model Assessment 

  Supervised machine learning models are assessed after training to check not only the 

performance of the model, but also to ensure the model did not overfit during training. If the trained 

model passes the assessment metric, it is used to make predictions and a second assessment is 

performed to gauge the ability of the model to generalize to the data or make predictions. 

Regression models are assessed with different metrics than classification models are. The degree 

of error and the ability to understand the amount of variation a model can understand in the data 

are the two main objectives that are measured in regression models (Mjolsness & DeCoste, 2001).  

  In regression problems, observations and/or predictions are compared to their central 

distance from a mean regression line as is shown in Fig 8. All regression problems contain some 

amount of error, which is assessed as the distance from each individual observation to the 

regression line. 
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Fig. 8. Mean Regression Assessment. Devasthali (2018) 

Mean Square Error (MSE) is the average measure of the squares of all the errors or the squares of 

all distances between the observations and the regression line (Wang & Bovik, 2009). MSE is 

calculated as follows where Ŷ represents the predictions and Y represents the ground truth or 

observed values: 

  This metric is also considered to be an assessment of the quality of the algorithm being 

used or its appropriateness to the type of data it is being used on. Mean Square Error, as shown in 

eq. (2), is used to measure individual models and how well they fit the type of data being used for 

training. For example: Parametric models are applied to parametric data because the algorithms 

used for training are sensitive to this type of data, but it is sometimes difficult to ascertain the type 

of data just from its distribution alone in the absence of domain knowledge and incorrect models 

are applied to incorrect types of data. High MSE values are seen with this occurs (Wallach & 

Goffinet, 1989). 

 

 𝑀𝑆𝐸 =
1

𝑛
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  Mean Average Error or MAE is used to assess regression problems where the magnitude 

and only the magnitude of errors needs to be assessed (Bauer & Kohavi, 1999). This metric 

measures an average over the test sample of the absolute differences between the predicted values 

and the known values or ground truth. Where inherent outlier data can be expected, it is often 

common to see the square root of the average squared error taken; this is referred to as Root Mean 

Square Error (RMSE) and its value is in the same units as the dependent variable (Chai & Draxler, 

2014). An additional metric used to measure error is Mean Absolute Percentage Error or MAPE, 

which is a measure of the accuracy of the predictions made by a regression models. This is done 

by comparing actual values to predicted values as a percentage of their difference and is shown in 

eq. (3) where At is the actual value and Ft is the predicted or forecasted value; n is the total number 

of observations and M represents MAPE: 

 
𝑀 =

100%
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  Lastly, the overall performance of the model and its ability to understand the variation of 

the data is assessed. This metric is called the Coefficient of Determination (R2) and is used to 

assess the proportion of any variance present in the dependent variable that can be predicted from 

the independent variable. When graphing visualizations of regression models, a higher Coefficient 

of Determination is easier to see as observations are more tightly wrapped around the regression 

line. In addition, models that have a higher Coefficient of Determination have a lower error rate 

regardless of being assessed with MSE or RMSE. This is indicative of a better performing model 

The Coefficient of Determination can also be used to identify overfit or underfit (poor training) in 

a model. Coefficient of Determination is assessed in decimal values that range from 0 to 1. As the 

values increase, the “goodness of fit” of the model also increases, except in instances where the 
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Coefficient of Determination is 1. In this case, either the model has overfit or a pure correlation or 

one-to-one correlation exists between an independent variable and the dependent variable. In either 

case, the process would need to be re-examined to create a model that would generalize well with 

data that is presented to it later. Pure correlations may represent feature bias (Yu & Liu, 2004) in 

machine learning algorithms and the purely correlated feature (when related to the dependent 

variable) or features are sometimes eliminated so that the other features can be prioritized in the 

model (Kira & Rendell, 1992). Otherwise, a machine learning algorithm will likely treat a pure 

correlation as a single feature in the model due to the direct relationship it has with the dependent 

variable.   

  Classification problems have nominal data as dependent variables, or labels, these are 

generally assessed with ratios that measure the model’s ability to correctly classify different 

categories against the errors made during the process. Classification model produce four different 

types of outcomes: true positives (TP), true negatives (TN), false positives (FP) and false negatives 

(FN). Confusion Matrices (Godbole & Sarawagi, 2004) as shown in Fig. 9 are normally utilized 

to fully understand the model’s ability to derive the relationships and adequately build rules 

between the features; all four categories of outcomes from classification algorithms are shown in 

confusion matrices.  

 

Fig. 9. Example of a Confusion Matrix. (DNI Institute, 2016). 



26 

 

This method, which is also known as an error matrix, is a tabular format that allows one to ascertain 

the specific performance of a classification algorithm and the specific classes of the dependent 

variable the model incorrectly classified compared to the ones the algorithm correctly classified 

are labeled. This analysis is key to understanding the performance of a machine learning 

classification algorithm as many classification algorithms are prone to false positives (Kotsiantis 

et al., 2007) and these might be overlooked if a confusion matrix is not generated and analyzed 

properly.  

  Sensitivity and specificity (Table 4) are two additional metrics used to assess classification 

models; both are related to the four outcomes previously defined. Sensitivity measures a proportion 

of the correctly identified true positives and specificity is a measurement of the proportion of the 

actual negatives or true negatives that are correctly identified (Huang et al., 2012).  Both metrics 

can assess how well a specific algorithm has performed on a given set of data since both are true 

assessments of real values and eliminate any confusion stemming from false positives incorrectly 

identified by the model. Tan & Gilbert (2003) used machine learning on gene expression data for 

cancer classification and observed cases where heathy genes were false positives or were 

incorrectly classified as cancerous genes.  

Table 4: Sensitivity and Specificity Equations 

Sensitivity= true positives / (true positive + false negative) 

Specificity=true negatives / (true negative + false positives) 

 

  When assessing the overall performance of a classification algorithm, the measurement of 

Accuracy is used. Accuracy is a simple ratio of the number of correct predictions to the number of 

total predictions derived by a model (Pang, Lee & Vaithyanathan, 2002). Higher accuracy rates 

mean the model has a higher number of correct predictions versus the total number of predictions 
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it has made. In cases where the dependent variable does contain two categories, Accuracy is often 

calculated in terms of positives and negatives and is shown in eq. (4) to be derived as follows: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

  Cohen’s Kappa (García, Fernández, Luengo & Herrera, 2009) is used to assess a model’s 

ability to generalize well using new data, since it compares observed accuracy with an expected 

accuracy. This metric is used to evaluate or assess and compare the performance of algorithms 

used for training (Ben-David, 2008). ROC Curves or Receiving Operator Characteristic Curves 

(Davis & Goadrich, 2006) are also used to assess classification models and can be used to constrain 

a classifier that maximizes the true positives, while minimizing the false positives. Restated, the 

ROC score is a single numeric score that is equivalent to much of the information found in the 

Confusion matrix; higher ROC score are indicators of better performing models (Sokolova, 

Japkowicz & Szpakowicz, 2006) 

2.11. Feature Selection / Feature Engineering 

  Regardless of the type of problem that machine learning is used to solve and regardless of 

the problem being addressed with supervised or unsupervised learning methods, the solution to 

good models is not found not in the outcome, but rather in the features (Witten et al., 2016). 

Features are central to the model building process and an understanding of which feature(s) should 

be in the feature space is key to model optimization and performance, which are both correlated to 

its ability to produce adequate predictions. Methods in this area of machine learning are in two 

categories: feature engineering and feature selection (Jade et al., 2003).  Feature engineering is 

performed when specific algorithms are applied to the feature space to reduce its dimensionality, 

eliminate or alleviate certain features that might be redundant or might not provide any learning 
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advantage. Feature engineering algorithms can also produce a new feature space based on highly 

correlated features that, when combined, can be utilized in by the model in a better way (Malhi & 

Gao, 2004). Feature selection is a simple process of deciding which features to keep and which 

features to eliminate. This is normally accomplished by running simple statistical tests to check 

for statistical significance or identify redundant features that can be eliminated.  

  Three definitive areas of feature engineering and feature selection are used in machine 

learning. Traditional methods, commonly referred to by Hall (2000) as filtering methods, use 

correlation for studying and better understanding relationships in both parametric and 

nonparametric data. Specific machine learning algorithms that include feature selection methods 

during training are called embedded methods and use filtering during the training process. 

According to Verzijlbergh, Heijnen, de Roode, Los & Jonker (2015), many embedded methods 

perform iterative experimentation by building numerous sample feature spaces and testing 

iteratively to assess what performance metric has been met. Wrapper feature selection methods are 

implemented when an algorithm repeatedly constructs a predictive model and chooses the best 

feature space by process of elimination (Fan, Xiao & Wang, 2014). Iteratively, a model is 

constructed with a given feature space of P; the model is then trained and assessed. The process, 

which is called Recursive Feature Elimination is shown in Fig. 10, then repeats itself with a feature 

space of P-1 features and reassesses the model’s performance. This process is repeated until all the 

features are eliminated, or a given performance metric is met, for example, as shown by García-

Hinde, et al., (2016) where specific features were extracted to solve a relevant GHI prediction 

problem. 

 Regardless of the type of features (meteorological related features, cloud imagery or hybrids) 

studies are beginning to develop and utilize specific algorithmic processes to optimize feature 
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spaces in presented problems. While there are generalized heuristics concerning how the rules of 

Statistics can be applied to individual independent variables and their related combinations of such, 

these rules can often be combined and/or slightly manipulated to improve the resolution and 

sensitivity of a feature space, while not modifying data and/or skewing any related results. 

 

Fig. 10. Recursive Feature Elimination. Kuhn (2018) 

Feature selection can be extremely powerful, for example, O’Leary & Kubby (2017) used machine 

learning algorithms in a similar method that included two levels of preprocessing and feature 

selection before training began. This pre-training feature selection process resulted in a 14.4% 

increase the accuracy, a 5.37% reduction in MAE and an RMSE reduction of 6.83% and was 

shown to be highly impactful in this case of regression. 

  When features are missing observation (Turrado et. al, 2014) or instances altogether, 

methods must be used to fill-in the missing details, so the data can be processed before training 

and testing can begin. While this is often considered an element of preprocessing that occurs before 

feature selection happens, there have been cases (Wang, et al., 2015) where feature extraction 

methods were derived to create new features to substitute for previously unknown variables that 

were relevant to the data but missing some type of label or domain description. This methodology 
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resulted in new models that were more accurate (~4-5%) than models that contained the domain 

specific features that were provided just as they were captured and/or sampled.  

  While feature selection has been described previously in this work as being the prevalent 

factor impacting the outcome and performance of a predictive model, the machine learning 

algorithm is still on the training process, which is also dependent on such features. It is important 

to understand that there are numerous machine learning algorithms and all have specific use cases 

and work on all different types of data. In the case of GHI forecasting and prediction there are 

prevalent algorithms that have been used more than others and those are presented in this work in 

the next chapter. 
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CHAPTER THREE 

LITERATURE REVIEW 

  This section will outline recent studies that are widely cited in this area of research; these 

are being introduced to not only provide more information about current GHI prediction methods, 

but also establish baseline metrics that will be used later in this study to assess the new hybrid 

method being presented here. Each study is categorized by the specific machine learning 

algorithm(s) that were used, all of which will also be used in this work.  

3.1. Neural Networks 

  Neural networks, originally called Artificial Neural Networks (ANNs) (Schalkoff, 1997), 

refer to a type of algorithm that is modeled to function and process data like how neurons in the 

human brain process data. According to Haykin & Network (2004) the brain can easily be 

considered a nonlinear information processing system and thus an algorithm could be built to 

simulate how inputs are processed into related outputs. 

  Neural networks are algorithms that receive individual inputs, apply some weighted metric 

along with a transform to each input, and output the resulting combination for each instance. This 

process is shown in Fig. 11 and is used in the production of solar photovoltaic systems and in the 

forecasting of solar irradiance. Neural networks are categorized by their operational methodology 

or topology. Feedforward neural networks (FNN) are generally considered the simplest type of 

neural network and most other ANNs are similarly structured. In this ANN, data enters the first 

layer where the input variables are weighted and provided to the network. Data then moves linearly  
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Fig 11. Artificial Neural Network. Castrounis, A. (2018) 

through the next layer(s), called the hidden layer(s), where all the work inside a neural network is 

performed. In the hidden layer(s), weighted inputs are transformed using an activation function 

(Zurada, 1992). This function defines the output that will be delivered by nodes or sections in the 

hidden layer to the last layer or the output layer. The output layer contains the outcome of the 

neural network, which is then compared to the known value(s) or ground truth, in the data. The 

difference between these two values (predicted and known) is the error of the neural network. This 

occurs for every observation in a dataset and the goal of the neural network is to minimize the 

difference between its outputs and the ground truth.  The process is measured and controlled by a 

loss function (Schapire, 2003) and the network will continue to optimize the training process to 

minimize the loss function. In neural networks that contain more than a single layer, the error can 

be reduced by sending it back through the network using an algorithm known as backpropagation 

(Adeli & Hung, 1994) as shown by the arrows in Fig. 12. A recurring theme in much of the 

academic literature surrounding GHI prediction methods and outlined here is most methods are 

implemented in chosen or specific weather conditions. The new methods being presented here will 

challenge this method by using data from all-weather conditions. 
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Fig. 12. Backpropagation in a Neural Network. (Raschka, 2018) 

 

  Ding, Wang & Bi (2011) created an improved backpropagation method that positively 

impacted the twenty-four-hour prediction capability of an artificial neural network-based approach 

used in GHI forecasting. This weather data, which served as the inputs to the neural network, 

utilized historical power obtained from a local 15 kW photovoltaic array. The data used in the 

study consisted of historical and forecasted weather from a local public weather forecasting 

website and studied rainy, sunny and snowy days as shown in Fig. 13. The design of the neural 

network contained one hidden layer, which was designed by trial and error per Bahman (1998). 

To properly validate the performance of the model and the accuracy of predictions, historical 

forecasts from one sunny day and one rainy day were used for testing and historical power data 

was used for validation and comparison. Predictions for the sunny day forecast fell within 10% of 

the ground truth and predictions for the rainy day fell within 20% of the ground truth. The study 

considered the sunny day to be more accurate because of the low variation in photovoltaic output 

on sunny days; the average error (MAPE) of all predictions was 14.75%.  
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Fig. 13 Three Weather Conditions Studied in Ding, Wang & Bi (2011) 

  Amrouche & Le Pivert (2014) implemented a process using ANNs at two European 

locations, INES (French National Institute of Solar Energy) and Cadarache, FR, for one-day ahead 

solar energy so a photovoltaic connected system could generate and use daily weather forecasts to 

build the feature space used for training the ANN. This was done so the process could be replicated 

at any location where similarly structured forecasts were available, although a new predictive 

model specific to each location would need to be constructed. As conveyed in their study, any 

single model for a location would likely not generalize well using features used from another 

location. This study divided the model design and construction into three separate phases 

surrounding the proposed forecasting method shown in Fig. 14. 

 

Fig 14. Model Design and Construction Phases. Amrouche & Le Pivert (2014) 
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  The first phase included model choice and topology construction, a second phase for 

training and the final stage for validation, where the predictions were applied to a new set of data 

absent of outcomes. During the first phase, GHI only and GHI with ambient temperature forecasts 

were features used as inputs. The final model design choice was based on the results from models 

that used either a combination of these two features or either single feature individually in GHI 

forecasting. The final model design choice was a multilayer neural network with two hidden layers 

containing 20 and 12 neurons each; these would be used for weighting and backpropagation. This 

was a progressive approach where the ANN began training on a much weaker dataset and gained 

more knowledge as the training continued; this method is very similar to Recurrent Neural 

Networks (RNNs), which can train in both directions and will be described in more detail in a later 

section. Root Mean Square Error and MAPE were the metrics used to assess the training; these 

metrics were compared to a prevalent statistical model (Le Pivert, Sicot & Merten, 2009). Fig. 15 

illustrates the metrics for each location (INES and Cadarache), which compared the MSE at each 

validation or testing period of the ANN to the best local statistical model and shows the ANN 

outperformed other methods, including Geometric Modelling (another statistical method), with an 

average error (MAPE) of 22.5% and an RMSE of 51.5 W/m2 when used for intraday and day-

ahead forecasting.  

  Khatib, Mohamed, Sopian & Mahmoud (2012) presented work where model performance 

was degraded in poor solar radiation conditions; they derived an approach for using ANNs to 

predict both hourly solar radiation and diffuse radiation using four different topologies (or 

designs), but only Elman Backpropagation Neural Networks (ELMNN) Nolfi, Parisi & Elman  
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Fig 15. MSE per Iteration by Method. (Amrouche & Le Pivert, 2014) 

(1994) were specific to the work being done here. ELMNNs are also very similar in makeup to 

RNNs and have the ability during training to use information recursively from previous iterations. 

ELMNNs also have a separate layer for gaining learning from previous contexts.   

  Inputs included eight geographical and climate related variable such as hour, day, 

longitude, latitude, etc. with two outcomes being estimated: hourly radiation and diffuse radiation. 

ELMNNs must be designed with a feedback layer (Baharin, et al., 2013) to ensure output from 

previous learning is transferred to the next iteration of learning, but this context must be present in 
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the data to be of any use to this type of method. This is another similarity these networks have with 

the RNNs and this will be described in greater later in this section. As shown in Fig. 16, the 

performance of ELMNNs in this study was assessed using RMSE for DNI and averaged 135.5 

100.7 W/m2. 

  Chen, Duan, Cai & Liu (2011) derived an advanced statistical method for solar power 

forecasting that utilized past historical power data and historical solar irradiance forecasts, along 

with relative humidity and temperature, to build a predictive model for 24-hour ahead forecasting. 

In this study, a neural network was designed with three layers and a feature that utilized 

unsupervised learning in the hidden layer and supervised learning in the second layer. This ANN 

utilized a Radial Bias Function (Al-Amoudi & Zhang, 2000) (RBF) for activation, which is like to 

the Sigmoid transfer functions (Mubiru & Banda, 2008) utilized in many ANNs. This multilayer 

topology of this ANN is one of the reasons this study was included in the research as similar 

topologies will be used later in this work.  Sunny, cloudy, and rainy days were used to validate the 

results of the model and create a comparison to ground truth where MAPE (Lewis, 1982) was used 

to ascertain the difference between the predictions and actual known values. The results are shown 

in Fig. 17 where rainy days were difficult for the models to predict; the average MAPE for all 

days was 19.45%. This is prevalent in the literature as most models don’t perform well in all 

weather conditions and a solution for such will be addressed in the body of this work. 

 

Fig. 16: ELMNN Performance. (Khatib, Mohamed, Sopian & Mahmoud, 2012) 
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  Yadav, Malik & Chandel (2014) implemented three ANNs (ANN-1, ANN-2 and ANN-3) 

in a similar manner to predict solar radiation, but also utilized feature selection methods from 

inputs consisting of geographical locations and meteorological data such as mean pressure, mean 

temperature, mean vapor pressure. In this manner, the ANNs trained and weighted the previously 

selected individual features that were related to the specific outcomes of each of observation.  

 

Fig. 17: MAPE from RBF ANN. (Chen, Duan, Cai & Liu, 2011) 

Temperature, maximum temperature, minimum temperature, altitude and sunshine hours were 

selected as the most relevant input variables using filtering methods. The study included data from 

twenty-six cities across different climate zones, which makes it an excellent candidate for 

understanding how training that uses vastly different climatological distributions might impact the 

overall generalization capacity of the predictive models used in different regions. The maximum 

MAPE for ANN-1, ANN-2 and ANN-3 models was found to be 20.12%, 6.89% and 9.04% 

respectively. 

  ANNs are not just utilized in machine learning problems that are based off numerical 

features or predictors when forecasting Global Horizontal Irradiance as they are also used in 
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systems that are constructed for cloud detection and measuring the impact different cloud types 

have on irradiance. The second part of this dissertation presents the design and implementation of 

a new image collection system and process that will provide the sky conditions needed for a new 

hybrid approach. This work was based off a smart adapter cloud identification system (Chu, et al., 

2014) that and used a combination of sky images and solar irradiance measurements as inputs of 

an ANN forecasting model to develop and improve forecasting methods. A fish-eye camera 

captured images every minute during the daylight hours in the winter and spring of 2013 and 

processed the images with an image processing algorithm that was developed internally. Prior to 

processing, these images were selected manually and represented the following atmospheric 

conditions: clear, overcast, and partly cloudy; these would serve and the additional inputs for the 

ANN. The related model was tested and validated and produced an RMSE of 77.5 W/m2 as shown 

in Fig 18.  

  In the development of such systems, hybrid approaches are utilized to take advantage of 

current cloud detection methods and machine learning approaches that utilize quantitative  

weather features that are then used for training. In these types of systems (Marquez, Pedro & 

Coimbra, 2013), processed images gathered from satellite imagery and data from numerical 

weather models combine as features that serve as inputs used in ANNs to further extend the 

predictive capability of pre-existing GHI forecasting methods.  

 

Fig. 18: RMSE from Hybrid System. (Chu, et al., 2014) 
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While hybrid approaches have shown to be relevant and sensitive to both types of input data, there 

has been less research and study done in this research area, which is another reason this work was 

completed.  

3.2.  Support Vector Machines 

  Support Vector Machines (SVMs) were introduced in the mid-1990s and are considered 

(Lu, Lin, Jia & Tang, 2014) to be slightly more variable than Artificial Neural Networks when 

used in this type of application. Support Vector Machines can map data to a higher dimensional 

input or feature space (Suykens & Vandewalle, 1999) in a process called kernelling. This allows 

for easier separation of multiclass data or data with numerous categories as the data can be 

separated by the model so different classes no longer exist on the same plane. SVMs are also 

considered more accurate (Smola & Schölkopf, 2004) in nonlinear regression problems and 

problems with mixed data because of this kernelling ability.  Most often used in binary 

classification problems (Hsu, Chang & Lin, 2003) as shown in Fig. 19, SVMs can also be used in 

regression problems like those found when using numerical weather data in GHI forecasting. 

Prevalent studies (Zeng & Qiao, 2013) have utilized Support Vector Machines in many different 

capacities that support GHI forecasting and prediction.  

 

Fig 19: Support Vector Machines. (Hsu, Chang & Lin, 2003) 
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Some utilize this algorithm to predict different quantitative aspects of atmospheric conditions 

while other studies have utilized Support Vector Machines to predict the occurrence and amount 

of specific weather conditions like wind speed (Mohandes, Halawani, Rehman & Hussain, 2004), 

which has been shown (Borowy & Salameh, 1994) to greatly impact irradiance amounts due to its 

impact on regional weather conditions. Other hybrid studies (Olatomiwa et al., 2015) have utilized 

Support Vector Machines in a more hybrid type scenario to predict monthly mean solar radiation 

when combined with heuristic search methods like Genetic Programming and using sunshine 

duration, maximum and minimum ambient temperatures. This type of hybrid approach has shown 

to be very usable in this area when compared with results from ANNs and Genetic Programming 

(Koza, 1992) with RMSE, R2 and MAPE values exceeding both the former by as much as 10% 

during training and testing assessments; training results (R2) for the outlined model (SVM-FFA) 

are shown being compared to other cited models in Fig. 20. 

  Feature selection is also very prevalent in the use of Support Vector Machines. Other 

prevalent studies such as Piri et al. (2015) and Chen, Liu, Wu & Xie (2011) have shown that 

traditional and adequate feature selection methods that produce different combinations of 

experimental feature spaces have shown promise with assessments (Accuracy) as high as 96%. 

Atmospheric or meteorological values such as atmospheric transmission and/or wind speed are 

also predicted in this manner (Gill et al., 2006). Later in this dissertation, classification models will 

be used to optimize GHI prediction methods in a similar manner. 

 

Fig 20. Model Training Metric Comparison. (Olatomiwa et al., 2015) 
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  Shi, Lee, Liu, Yang & Wang (2012), which used classification methods to identify specific 

clouds related data in the feature space. In this study SVMs, were trained on specific types of cloud 

related images that were divided into categories such as clear sky, cloudy, foggy and rainy; a 

similar approach using GHI and images related to sky conditions will be outlined later in this 

dissertation. In other similar classification studies, such as Inman, Pedro & Coimbra (2013) and 

Martínez-Chico, Batlles & Bosch (2011), numerical features were often discretized into specific 

labeled categories to provide a less diverse training space for the algorithm and this same method 

was used here. In the latter study, specific percentages of cloudiness showed good potential for 

solar energy applications like the work being presented here. 

3.3. Decision Trees   

  Decision trees are a type of machine learning algorithm that uses inductive learning 

(Quinlan, 1987) to quantify different patterns within data using iterative sets of binary branches as 

shown in Fig 21. These can also be used to uncover complex relationships and then move the 

inductive learning forward into a predictive model. Studies that utilize decision trees to forecast 

GHI often utilize secondary algorithms like K-Nearest Neighbor (McCandless, Haupt & Young, 

2015) or even more traditional ANNs and SVMs to assist with feature selection. 

 

Fig 21. Decision Tree Branching. (Revolvy, 2018) 
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This type of combination yields a higher result than studies that have been presented that 

implemented a single algorithm in its basic capacity in shorter or near term hourly forecasting (Tso 

& Yau, 2007). These supplemental algorithms are used for external processes such as feature 

selection, which often optimizes the model(s) altogether in cases where this type of method is used 

Koprinska, Rana & Agelidis, 2015). In regression problems, near-term forecasts producing 

baseline metrics including RMSE have shown to have been lowered by as much as 31% (Hassan, 

Khalil, Kaseb & Kassem, 2017). This type of multifaceted approach has also been successful in 

short-term or next day forecasting where decision trees and additional algorithms have been used 

to optimize the feature space before training begins (Hong, Pinson & Fan, 2014). 

  Although approaches that utilize decision trees for cloud identification or prediction are 

not very prevalent due to limitations of the algorithm in image identification, some studies like 

Jiménez-Pérez & Mora-López (2016) have implemented decision trees and the use of clouds in a 

hybrid approach, like the work being presented here, for GHI forecasting. Studies like this are 

defined in two distinct phases: the first containing some type of definitive discretization, which is 

a categorized cloud type, and the second phase containing feature selection and model training 

based on inputs both from the feature selection phase and from the discretized inputs from the first 

phase (Banda & Angryk, 2009). 

3.4.  Linear Regression 

  In its simplest form, methods of linear regression derive almost the same implementation 

that basic machine learning methods do in that most methods combine a set of specific input values 

(feature space or predictors in machine learning) and relate these to a general output of a given 

known observation (i.e. the dependent variable). When a single input and a single output are 

utilized in the model, simple linear regression is implemented. Problems that require wider feature 
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spaces with numerous input variables often employ multiple linear regression methods (Neter, 

Kutner, Nachtsheim & Wasserman, 1996). In either case, the basic form of the model resembles 

Fig. 22. 

  Linear regression models are limited to numerical features in most cases although nominal 

features can be used for training machine learning models if the classes are limited to binary levels 

(Montgomery, Peck & Vining, 2012). Since this data is mainly composed of quantitative values, 

linear regression models can quickly and easily be trained to build predictive solutions. Sharma, 

Irwin & Shenoy (2011) used historical data from National Weather Service forecasts and annual 

GHI readings to build a predictive, site-specific model for solar power generation. In this study, 

multiple machine learning techniques were derived using linear least-squares regression, which 

uses the sum of all errors in the problem as the optimization method, and found linear regression 

to be up to 51% better than similar approaches that only used past data along with existing sky 

conditions (Toğrul & Onat, 1999).   

  Edwards, New & Parker (2012) studied seven different machine learning methods 

including Linear Regression to potentially create better residential modeling methods using power 

measurements collected every 15 minutes. It is very important to note that the study did not 

examine GHI prediction as many of the previous studies outlined in this survey have but rather 

had the objective of predicting next hour residential building consumption. This work is included 

in this survey because consumption should be included in the overall process of understanding 

how to better predict the overproduction of energy. Since the problem is two faceted, it is essential 

to understand both methods: the first being energy prediction and the second being energy 

consumption. Another aspect of this study, was it included a comparison of sensor-based modeling 

techniques that monitored and reported data at predefined intervals with more traditional  
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Fig 22. Linear Regression. (Towards Data Science, 2017) 

supervised machine learning techniques. This comparison can be correlated to the two different 

methods of cloud identification that are used for GHI prediction since one method utilizes satellite 

imagery and the second utilizes actual data from the ground. Sensor data is more directly related 

to specific buildings in this study and can be more accurate than generalized or historic data that 

is taken from buildings of a similar design than from those not containing sensors. Model training 

and testing was done using an experimental set of data taken from a recently constructed residential 

development and compared to a recent energy production competition that is held annually by 

ASHRAE or the American Society of Heating, Refrigerating and Air Conditioning Engineers. The 

results of the study found that ANNs generally perform much better than traditional Linear 

Regression methods which is consistent other work as well (Li, Su & Chu, 2011). An additional 

advantage of Linear Regression modeling is its speed. In machine learning applications where it 

was used in larger scale regression problems (Collobert & Bengio, 2001), it is often considered 

the preferred option, but it is often limited due to its parametric nature. If correlation among the 

variables is not high, patterns in the data may be missed by this method.  

  While machine learning methods are the central focus of this survey, the highlighted usage 

of traditional Linear Regression statistical methods is being presented here because some have 

shown optimal results in studying cloud climatology. One study (Badescu & Dumitrescu, 2016) 

used Linear Regression to predict solar radiation availability at any time by building a comparison 
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between global irradiance, cloud amounts and cloud types. The latter two inputs were provided by 

an existing facility and the solar irradiance measurements were taken for the same time periods 

from five different stations on the ground. The output of this comparison would create a better 

understanding of the potential impact cloud amounts and cloud types have on solar irradiance in 

different locations, which is same objective being outlined here. Statistical models were 

constructed for both clear and overcast skies and an existing heuristic outlined in Mueller (2009) 

was followed for generating solar irradiance values. Models predicting solar irradiance during 

cloudy sky conditions averaged R2 values of 0.80, which can be considered much lower than solar 

irradiance models constructed using Linear Regression methods that utilize features and training 

(Ibrahim et al., 2012), but these types of models also generally do not include cloud types in the 

feature space(s).  

3.5. Ensembles  

In studies that will be outlined in this section, processes and algorithms were combined in 

a cumulative approach called ensemble learning (Dietterich, 2000). Dietterich further describes 

ensemble methods as “learning algorithms that construct a set of classifications and then classify 

new data points by taking a weighted vote of their predictions.” This construction occurs iteratively 

and uses different methods that invoke building and comparing the results of numerous models 

during training. Random Forest (Sun, et al., 2016) is a good example of an ensemble learning 

method where multiple decisions trees (i.e. the forest) are created during training and the output is 

derived by taking the mean result of all the produced trees within the forest. Classification and 

Regression Tree (CART) algorithms perform iterative training like all ensembles, but CART 

algorithms build linear models that contain processes based on decisions and correlated extensions 



47 

 

that contain the related regressive calculations (Lawrence & Wright, 2001). In CART methods, 

both classification and regression are used in one combined method. 

Bootstrap Aggregation or bagging (Brieman, 1996), occurs when a training set of N 

examples is used to created multiple models of different samples of the data contained in the 

training set. A prediction can then be made using an average of the results of each of the previously 

created models. Bagging is considered an ensemble method because one of its main goals is to 

improve the overall model accuracy through iterative training. This is performed with the 

assumption that an average of errors on different samples provides a higher accuracy of the given 

learning method. 

According to Friedman (2002), Gradient Boosting, constructs additive regression models 

by “sequentially fitting a simple parameterized function to current residuals by using the least 

square at each iteration.” Restated, the model builds multiple decision trees like Random Forest 

does, but Gradient Boosting uses an arbitrary differential loss function instead of using the mean 

to make the resulting prediction.  

Chaouachi, Kamel, Ichikawa, Hayashi & Nagasaka (2009) constructed a bagged ANN 

model for predicting short-term solar irradiance that consisted of a Multilayer Perceptron, an RBF 

Kernal, an RNN and an ensemble approach (NNE) that provided an average forecasting based on 

the other three models. The objective of this study was to create a reliable 24-hour-ahead solar 

power generation forecast. Model performance was assessed using forecasting error, which in this 

study was the difference in the actual and forecasted values when compared to statistical 

approaches or Mean Average Deviation; MAPE was also used to assess all three bagged models 

as shown in Table 5. Both error metrics were low for all three bagged methods and all three 

methods had the similar degree of error; this occurs when many ensemble approaches are utilized  
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Table 5: Bagged ANN Error Rates. (Chaouachi et al., 2009) 

 

because the base model topologies (designs) are similar in nature to begin with. This also further 

explains the use of ensemble methodologies as being used to not only optimize training, but also 

to further fine-tune smaller averages within the results. 

Sun et al., (2016) took a less investigated approach using ensemble methods to predict solar 

radiation by creating different Random Forest models using meteorological data, solar radiation 

and air pollution index data, which is not used very often. The study utilized variable importance, 

which is an internal function used to ascertain the quantitative value of individual features.  Some 

machine learning ensemble algorithms (again, Random Forest) can perform this function, but not 

all.  Investigators uses variable importance here because they wanted to ascertain how the models 

treated or weighted the individual inputs to better understand any prevalence the related features 

might have on solar irradiance; the process is shown in Fig. 23. This study demonstrated that 

Random Forest ensemble models can be used effectively to predict the impact seasonal changes 

might have on of solar irradiance models and used RMSE as the metric for assessment. Output 

was measured in megajoule per square meter (MJ m-2) with RMSE values in summer being 2.229  
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Fig 23. Random Forest Functionality. (Bradley & Made, 2015) 

MJ m-2 and 1.189 MJ m-2 in the winter (around 500-600 w/m2). Since Random Forest has the 

functionality needed to assess the feature importance, the model found sunshine hours, along with 

one feature that is prevalent in the pollution index, to be the most relevant features used for 

modeling. This finding can then be correlated to it being the most relevant features in the process 

externally when being used for predicting solar radiation. This study is another example of a hybrid 

approach being created using numerical weather features and externally collected real-time 

information, which in this case, came from the local pollution index. Later in the body of this work, 

the investigation of an externally collected feature will also be described and implemented.  

3.6. Naïve Bayes 

  Machine learning algorithms can use the dependencies that exist between features to assign 

different weights or priorities for each for training, but there is a method that assumes that all the 

features within a given space are conditionally independent (Murphy, 2006). These types of 

algorithms are in a category of Bayesian classification and assign the most likely outcome to the 

most closely related feature Rish (2001). Although this is an unrealistic assumption, it is 
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considered (Lowd & Domingos, 2005) an accurate practice and the implementation of naïve Bayes 

is prevalent in GHI prediction from the data consisting of prior observations as shown in Fig. 24.  

 

Fig 24. Bayesian Classification. (Naive Bayes, 2017) 

In most Bayesian classification methods posterior probability is directly linked to some level of 

probability along with previous observations.  

Chakraborty, Marwah, Arlitt & Ramakrishnan (2012) utilized a Bayesian ensemble-based 

approach for predicting photovoltaic output that included three different methods. The first method 

utilized a combination of Naïve Bayes and nearest neighbor methods, while the second method 

utilized weighted inputs that more closely captured variations between local and more global data. 

The third method used a more statistical approach using a Motif based (Snoek, Larochelle & 

Adams, 2012) process that took advantage of the sequential nature of solar photovoltaic power 

generation. Historic photovoltaic power generation data and available weather forecasting data 

was used for the feature space(s) and related outcomes. Previous day measurements as well as 

weather models and a Stagewise method (Hocking, 1976) like recursion, were used as baselines 

for validating the models’ results. Training was implemented using predictors with the lowest error 

and the models were assessed using Percentage Absolute Error, Percentage RMSE and, as shown  
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in Table 6, the Bayesian Ensemble (Ensemble 2) was only outperformed by the method using the 

Motif ensemble. Percentages are shown in the table to provide an understanding of the comparison 

between different methods, but non-composite values were not provided in this study. As Bayesian 

methods continue to progress in this area, more ensembles will continue to be utilized in similar 

manners and machine learning methods continue to be combined to produce better results than in 

previous studies and implementations. Heidinger, Evan, Foster & Walther (2012) used Bayesian 

methods for cloud detection using satellite observations and a high-resolution Radiometer as the 

inputs and outcomes. The relative purpose here is machine learning being used to handle building 

predictive models utilizing feature spaces that are derived both from weather-related features and 

from the output of Bayesian ensemble methods that included cloud detection and classification 

outcomes serving in the feature space.  

Table 6: Training Error Metrics. (Chakraborty, Marwah, Arlitt & Ramakrishnan, 2012) 

 

The resulting methods in this study provided probability of correct cloud detection metrics ranging 

from 70% to 90%, which can be generalized to much broader geographical area, unlike other 

methods previously discussed, which is an additional reason it was included in the survey. As has 

been previously discussed earlier in this survey most machine learning models in this area are 

constrained to certain geographical areas where the training data was taken from. Alonso-
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Montesinos, Martínez-Durbán, del Sagrado, Águila & Batlles (2016) used Bayesian methods for 

cloud classification using satellite images to create the feature space used for training and different 

cloud genera (Rogers & Yau, 1989) as the related outcomes. The feature space utilized satellite 

channels, solar altitude, DNI and DIF and Accuracy was used assess model performance. Different 

Bayesian models were created including using Tree Augmented Naïve Bayes, k-dependence 

estimators (KDB) (Sahami, 1996) and a decision tree-based Bayesian model with the Tree 

Augmented Naïve Bayes (TAN) slightly outperforming all other models as shown in Table 7. 

While the previous studies in photovoltaics have utilized naïve Bayes successfully to adequately 

predict power generation, others like Aguiar et al., (2015) and English, Eyre & Smith (1999) have 

successfully used this same methodology for cloud classification in images taken from satellite 

observations.  

Table 7: Accuracy rates for Bayesian Models. (Alonso-Montesinos et. al, 2016) 

 

3.7. Deep Learning 

While traditional methods have shown a wide variety of applications in cloud detection 

and identification, a relatively new area (Deng & Yu, 2014) of machine learning is beginning to 

show promise in both areas as well. This area of machine learning is commonly referred to as Deep 

Learning (Goodfellow, Bengio, Courville, & Bengio, 2016) and is based on a hierarchical 

framework of learning many different representations of data rather than just understanding and 

ascertaining rules and complex relationships like can be found more traditional methods. Like 
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ANNs, deep learning algorithms receive input, perform different weighting aspects and transforms 

and eventually develop an output (Schmidhuber, 2015).  In the same linear form of an ANN, the 

process is linear in the beginning. but becomes different in the hidden layer(s) of the algorithm 

when the process involves deep learning. In the hidden layer of deep learning ANNs, iterative 

learning occurs in a hierarchical fashion that uses the information from subsequent hidden layers 

and trains the model based on the weights and results of the previous layer (LeCun, Bengio & 

Hinton, 2015). In this recurrent nature, hierarchical learning begins to develop as knowledge and 

continues to develop the process of passing from one hidden layer to another; a comparison of 

both methods is shown in Fig. 25. This iterative and recurrent architecture solves existing problems 

that occur when using ANNs in their typical architectural topology (Arel, Rose & Karnowski, 

2010). This is done mainly by making previous learning rules that were constructed and assessed 

earlier in the network available to layers again later in the network. This type of recursive or 

recurrent learning makes the learning algorithms very sensitive to structure data that is sequential 

in form or follows a certain order and is also why deep learning neural networks are often referred 

to as Recurrent Neural Networks (RNNs). 

 

Fig 25: Deep Learning Architecture. (Deep Learning in Digital Pathology, 2018) 
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This recurrent and hierarchical characteristic also make deep learning methods widely used 

in image and object recognition and methods can easily be scaled to work on larger problems like 

those prevalent with feature spaces consisting of satellite imagery (Chu, et al., 2014) and/or 

imagery taken from the ground by whole sky imagers (Tapakis & Charalambides, 2013). This 

large-scale size also requires an improved computational backbone that is more capable than most 

modern CPUs which is why GPUs are most often used in larger image recognition tasks such as 

was done by Krizhevsky, Sutskever & Hinton (2012).  

RNNs (Medsker & Jain, 2001) are sensitive to sequential data and do not only use 

feedforward functionality, but perform the same task for every element within the sequence. Each 

layer in the network is not only dependent on the output from the previous layer, but can use 

previously learned context from earlier in the training like the EMLNNs discussed prior in Khatib, 

Mohamed, Sopian & Mahmoud (2012). This process of sequential learning from layer to layer is 

shown in Fig. 26 where Xt is the input at time step t, St is the hidden state at time step t and Οt is 

the output at step t. W represents the weight added at each individual node and V represents the 

output of each related node. Sequential information is preserved in the hidden state. As learning 

occurs, the network shares all its parameters, including all its weights, across all nodes; this ensures 

every sequential task can access the same depth and breadth of learning occurring elsewhere within 

the training. 

 

Fig. 26: Dissected Recurrent Neural Network Node. (Gupta, 2017) 
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As the network progresses, it finds correlations between events separated by frequency. These 

events are often referred to as long-term dependencies (Hochreiter et al., 2001) because 

downstream learning can depend on what has happened previously in the network recurrence. 

RNNs, like ANNs, also use backpropagation, but in RNNs it is often referred to as 

backpropagation through time (De Jeses & Hagan, 2001) for the added sequential functionality 

present in RNNs.  As RNNs begin to train, each node tries to reduce the error of the previous node 

by applying newly learned or previously learns rules and optimizing any weighting necessary to 

optimize the function; this change is expressed by a gradient curve and is dependent on such 

optimization through the process. This is type of optimization is referred to as Gradient Descent 

(Ruder, 2016); an example is shown in Fig. 27. 

 

Fig. 27: Gradient Descent. (Hands-On Machine Learning, 2018) 

Gradient Descent is widely used in machine learning algorithms and often used with RNNs 

(Andrychowicz et al., 2016) and continues to drive the error lower throughout each iteration until 

the function has been optimized and the loss minimized. This optimization method and the 

recursive architecture of RNNs can negatively impact model performance. During training, 
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weights receive an update in each node that is related to the error reported by backpropagation. 

This is an iterative process and how the reduction of error occurs in neural networks, including 

RNNs. As this error reduction occurs, some of the error amounts returned through backpropagation 

are very small, yet continue as a catalyst for Gradient Descent. In cases where this occurs, the 

probability of the gradient no longer serving as a guide for the loss function becomes more of a 

problem until the gradient disappears and any optimization ceases. This is commonly called the 

‘Vanishing Gradient’ problem (Jozefowicz, Zaremba & Sutskever, 2015, June). This issue is like 

overfitting described earlier, as the problem is directly related to model overtraining and can be 

prevented with and optimized network topology. 

Cao & Lin (2008) combined an RNN and a wavelet neural network, which operates like a 

standard ANN except with a nonlinear activation function, as the base method for creating a new 

method they called a diagonal recurrent wavelet neural network (DRWNN). This new method was 

created for hourly and daily irradiance forecasting and was validated at two locations in China: 

Shanghai and Macau. The RNN used in the study was a diagonal recurrent neural network, which 

is a different type of neural network that uses backpropagation, but does not use connections 

between the nodes as functional RNNs do. This method optimizes training time due to a lower 

convergence (learning process) of the network topology. Historical climate records, date, time, 

cloud cover, aerosol and relative humidity were used as the inputs for the network and he study 

noted that cloud cover presented the strongest influence on GHI over the remaining features. 

Success measures were derived from two previously created models; the comparisons, along with 

a common regression line, are shown in Fig. 28. 
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Fig 28. R2 Values from Cao & Lin (2008) 

Coefficient of Determination (R2) values from the DRWNN were assessed to be .973, but these 

were validated on a very small sample (100 observations) of ground truth. In comparison to the 

previously discussed models, R2 was high and possibly unrealistic for generalization in this type 

of application. This study was included in the literature review not only for its use of cloud cover 

in the feature space, but also to convey that some models presented in this area of study could be 

overly optimistic, but perform very well on smaller validation sets with low variance.  

A Long Short-Term Memory Unit or LSTM is an RNN that uses a gated process or cell 

(Fig. 29) that can store information and make decisions about when to use the information (Poudel, 

& Jang, 2017). These cells open and close and are controlled during training by the activation 

functions of the network. As information is passed to these memory gates or cells, the cells decide 

whether to block the information or pass it along to another node or another cell (Srivastava & 

Lessmann, 2018). This decision is made based on the strength and priority of the information when 

it is received and it controls the potential amount of error passing back through the network. This 

methodology solves the vanishing gradient problem (Chung et. al, 2014) by preventing 
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overtraining due to function ‘over’ optimization. If the function has less error to optimize, the 

gradient will not be in danger vanishing from attempting to minimize the loss.  

 

Fig 29. Cells in an LSTM Block. (Chen, 2016) 

 

Gensler, Henze, Sick & Raabe (2016) utilized deep learning algorithms in the form of the 

Deep Belief Networks (DBN), an AutoEncoder (Witten, Hall & Pal, 2016) and an LTSM for power 

forecasting of renewable energy plants. This study focused on using numerical weather prediction 

methods to create a combined forecasting algorithm (Auto-LSTM). A physical photovoltaic 

forecasting model (P-PVFM) was used as a reference comparison and the data consisted of time 

series related data taken from twenty-one photovoltaic facilities was captured in a three-hour 

resolution over three years.  
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Fig. 30: Error Comparisons for Deep Leaning Methods. (Gensler et. al, 2016) 

Time series values were normalized and the dependent variable, which was the measured 

power output, was normalized using the normal output capacity of the given facility where it was 

recorded. The study used five different error metrics to assess the performance of the model; 

RMSE is provided as normalized values of W/m2 and MAE is shown normalized percentage of 

prediction error and are shown in Fig. 30. Both metric averages were RMSE: .0713 and MAE: 

.0366 for the Auto-LSTM models and much lower (-.30) than the standard P-PVFM. 

Alzahrani, Shamsi, Dagli & Ferdowsi (2017) experimented with solar irradiance 

forecasting with an RNN that used climatological and meteorological features as inputs and local 

solar irradiance measurements as outcomes. Support Vector Regression and a NN were also 

trained so comparisons could be made with more traditional methods of machine learning. Data 

was preprocessed using interpolated values and normalized to ensure a low probability of feature 
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bias during training. An LSTM network topology containing two hidden layers and thirty-five 

neurons produced normalized RMSE and MSE metrics as shown in Table 8. 

Table 8: Model Error Metrics. (Alzahrani, Shamsi, Dagli & Ferdowsi, 2017) 

Method RMSE MBE 

FNN 0.16 W/m2 0.005 

SVR 0.11 W/m2 0.0042 

LSTM 0.086 W/m2 0.004 

 

An additional sequential neural network used for image classification and will be used for 

such later in the body of this work is called a Convolutional Neural Network or CNN (Sun, Szűcs 

& Brandt, 2018). In 1968 two Neurophysiologists published a paper (Hubel & Wiesel, 1968) 

describing the path information travels from the eyes to the visual cortex. In this work, it was 

discovered that complex cells in the visual cortex were sensitive to an objects interaction within 

regions of the receptive field. These regions overlap and cover the entire surface of the visual 

receptive field and process what is seen by the eyes (Gilbert & Wiesel, 1992), but Hubel and 

Wiesel discovered that these regions, which are made up of cells, were sensitive to edges and 

curves. They derived this was the basis for understanding and processing images and context is 

not gained from content alone, but the visual cortex is processing millions of shapes and curves 

obtained from the images. The operational aspects of CNNs were patterned after this same process 

and are shown in Fig. 31. 

CNNs are used for image classification to take advantage of the sparse connectivity 

between the network’s neurons and adjacent layers (Yosinski et al., 2015). This spatial 

connectivity uses the inputs from one layer from the subset of inputs from the previous layer, all 

of which come from inputs from neurons serving as the receptive field of the network.  When  
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Fig. 31: Visual Cortex / CNN Receptive Field. (CNN From the Ground Up 2018) 

CNNs use images as their inputs, the inputs are three dimensional and represent multichannel 

images as numeric arrays. The ‘Convolution’ portion of the network begins by applying a small 

matrix filter sequentially over each area of the image and extracting features (curves and edges) 

from the pixels represented in the image array (Zeiler & Fergus, 2014). As the convolution 

continues each filtered ‘snapshot’ of the extracted pixels represented by the extracted curves and 

edges is compared to the actual pixels in the previously scanned region; this process continues as 

a series until the entire image is represented by a set of layered feature maps (He, Zhang, Ren & 

Sun, 2016).  Shi, Wang, Wang & Xiao (2017) tested using CNNs for ground-based clout 

classification and utilized to publicly available data sets for training and validation. As outlined in 

the study, clouds play an important role in GHI prediction but existing ground-based images are 

obtained by professionally trained personnel. Furthermore, the study stressed the need for 

“automatic and efficient cloud classification” similar to methods previously used by Buch, Sun & 

Thorne (1995) and Singh & Glennen, 2005). Five different CNN models were extensively tested 

on cloud image data to measure the viability of using this type of network for image classification. 

The results in Fig. 32 show that CNNs outperformed more traditional image classification methods 

(Heinle, Macke & Srivastav, 2010) where ‘FC’ outlined the number of folds and convolutional 

layers in the CNN and the highest Accuracy was assessed at 89%. 
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Fig. 32: CNN Accuracy. Shi, Wang, Wang & Xiao (2017) 

Like RNNs, CNNs can share weights among all neurons. In image classification problems this in 

optimal because neurons operate on each feature map during training to learn the structure of each 

area of each map during convolution (Ciregan, Meier & Schmidhuber, 2012). This local 

connectivity maximizes efficiency by distributing the learning across the image sequentially rather 

than linearly like traditional supervised learning functions. 

CNNs are composed of three layers: a previously described Convolutional layer, a pooling 

layer and the final layer creates the final connection of the full network. Pooling layers are often 

seen in between iterative Convolutional layers and serve to reduce the spatial size of the image 

region representation; this maximizes the computational process overall (Lee, Gallagher & Tu, 

2016). This is done through a process called Max Pooling, which uses filters to reduce the 

dimensionality of each image region processed by the Convolution process in a process also known 

as downsampling (Schmidhuber, 2015). The final layer, the fully connected layer, contains all  

activations to all neurons in the previous layer and completes the network. The CNN process is 

shown in Fig. 33.  
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Fig. 33: Convolution Process. (Convolutional Neural Networks, 2018) 

 Training sequential networks occurs much differently than when using non-sequential 

neural networks (Oquab et al., 2014). Not only does the entire layer architecture need to be pre-

planned (many tools have grid search functions that can help optimize and automate this process), 

but each model has a specific set of learning processes and options that also need to be configured. 

After establishing the training and testing sets, the model is defined with a series of one Sequential 

Class (if an API is being used which is most common) then a series of layers follows.  The first 

layer, which serves as the input layer, takes the number of input dimensions (features), an 

activation function and a model assessment metric. The activation function in CNNs works just 

like an NN activation function and calculates the weighted sums of its inputs to determine the 

relative output. Two of the most common types of activators are Rectifier (reLU) and Sigmoid, 

but only ReLU (Srivastava et al., 2014) will be used in this work because its sparse activation 

matches the sparse connectivity in the defined layers in RNNs and CNNs used in this study.   
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 The learning process for sequential models contains two different functions; a third is 

added to control what metric the model trains or prioritizes during training. The first function the 

learning process uses is called an optimizer; this function controls what optimization function is 

being applied to the learning process (Lv, Jiang & Li, 2017). The ‘Adam’ optimizer is often used 

find a good starting point in the training and learning processes; ‘Adam’ differs from the normal 

Gradient Descent and has some advantages over other methods as well (Kingma & Ba, 2014). It 

uses a moving average of the gradient and the squared gradient instead of only adapting the 

learning on the average mean as in more traditional (and older) methods like traditional Gradient 

Descent. The next function in the learning process is called the loss function and this defines the 

magnitude of error of the learning that occurs during training just as is done in ANNs.  

 During training, there are three parameters that are specified: epoch, batch size and number 

of iterations. Sequential models, as has been previously discussed, don’t train like ‘regular’ 

machine learning models; they require many passes through the training data to establish the 

training baseline and subsequent error metrics going forward (Jaeger, 2002). The number of epochs 

in a model represents a single forward and a single backward pass through the training 

observations. Batch size refers to the number of training examples in a single epoch or 

forward/backward pass, and the size of each batch is proportional to the amount of memory used 

for training. The larger the batch size is, the more memory that is used, which is one reason smaller 

batches of one hundred examples are normally used during training (Sutskever, Vinyals & Le, 

2014); the number of iterations controls the number of passes made for each batch size.  

3.8.  Conclusion 

Different supervised machine learning methods and deep learning methods used for 

predicting solar irradiance were outlined in the section. These studies were selected not only 
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because of having been predominantly cited in many GHI prediction studies, but also for their 

relevance to the work being presented here. The criteria for choosing these studies outside of the 

two previously mentioned objectives were centered on the implementation of neural networks, 

ensemble models that utilize linear costs functions as an optimization feature and deep learning 

methods, of which there are currently very few predominantly cited works. Performance metrics 

from some of the studies outlined in this section will be compared to the hour-ahead prediction 

metrics produced from the deep learning models later in chapter 5. The models chosen for 

comparison in this study are shown Table 9. 

Table 9: Comparison Metrics Used in This Study 

Studies MAPE RMSE 

Ding, Wang & Bi (2011)  14.75% NA 

Amrouche & Le Pivert (2014) 22.50% 51.5 W/m2 

Khatib, Mohamed, Sopian & Mahmoud 

(2012) NA 135.5 W/m2 

Chen, Duan, Cai & Liu (2011)  19.45% NA 

Chu et al (2014) NA 77.5 W/m2 
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CHAPTER FOUR 

PHASE ONE 

  Fig. 34 provides a visual understanding of the machine learning workflow as was 

previously shown in chapter one; each process will be explored further in the first section of this 

chapter. After collecting data, preprocessing is the next part process and involves cleaning and 

transforming data to prepare it for analysis. Exploratory Data Analysis involves obtaining a deeper 

understanding of all data utilized in the project. Traditional statistical and analytics methods are 

utilized to gain insight and data is often transformed into a structural format that is more 

appropriate for machine learning algorithms. This includes scaling, standardizing or normalizing 

the data not only to ensure that all independent variables are represented by the same scale in the 

model, but to also decrease the possibility of introducing feature bias, which occurs when a model 

over prioritizes the relevance of any one given feature due to its greater value of scale, into the 

model during training causing it to overfit. 

 

Fig 34: Machine Learning Process. The Machine Learning Process. (2016) 
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Feature Selection as was previously described involves not only selecting the specific 

independent variables that will make up the feature space used for training a model, but also 

involves making some decisions about how the data will be used for training. Model Training or 

model fitting contains two objectives: iterative model training and model selection. Iterative model 

training involves repetitively training a model with different machine learning algorithms until an 

appropriate success metric has been met. Tuning or adjusting the training parameters of each 

algorithm is done during this iterative process to improve the performance of each model.  During 

this iteration it is sometimes necessary to return to the feature selection process to make 

modifications and/or improvements to the structure of the data based on the output of the iterative 

training sessions (Michalski, Carbonell, & Mitchell, 2013). This process continues until an optimal 

model has been constructed and a predefined assessment like RMSE or Accuracy met. The model 

is then applied to the testing set and a second set of assessments created. This is to ensure that the 

trained model generalized optimally to data that it was not trained on. This also ensures that no 

overfitting occurred during training. If overfitting occurred, the assessment of the predicted values 

compared to the known values in the test set would be very low (Witten et al., 2016) and model 

building would need to be repeated after solving the issue. If the testing assessment validates and 

the trained model generalizes well to values not used for training, the model is then put into 

production or deployed into a working environment. 

4.1. Data Collection and Preprocessing 

  The data used in this study was collected from the National Solar Radiation Database and 

represented average observations taken every 30 minutes in the region surrounding Athens, 

Georgia, USA. The recorded data was delivered as a series of text-based files that contained 

recorded observations from years 1998-2014. Data during the daylight hours between 8:00 AM 
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and 4:00 PM was used to capture the most optimal times for studying GHI as was done in Yadav, 

Malik & Chandel (2014). Preprocessing involved imputing any missing values with the related 

means except in the cloud type variable. This variable contained over 1000 empty observations 

that represented unknown clouds; these were removed from the data since a suitable replacement 

was not available. Preprocessing ended after removing any data that was non-usable or in a format 

that was not acceptable for machine learning models, which represented ~ 2% of the data. 

After preprocessing and cleaning the data, exploratory data analysis was performed to gain 

insight useful for building models. The main goals of this section were centered on visualizing the 

distribution of each feature, identifying any potential outlying observations and comparing the 

relevance each feature had to other features and the relevance each feature had to Global 

Horizontal Irradiance. Correlation was measured between all the variables to study the strength of 

the relationships and to identify variables that were highly correlated not only to GHI, but also to 

each other. This is called collinearity (Belsley, 1991) and will be problematic for regression 

algorithms causing overfit during training. This occurs because regression algorithms often cannot 

properly ascertain the correct weights to assign to individual independent variables that are highly 

related to each other. Classification models are not impacted by collinearity, but rather can often 

be problematic in problems with high dimensionality or containing many features (Friedman, 

1997). In classification, correlation is used to identify features that are not relevant to the model; 

these features can be removed to reduce the number of dimensions in the data and decrease training 

time. 

Pearson’s correlation coefficient was used to measure correlation among all the numeric 

variables present in the data. Correlation coefficient is measured numerically from -1 to + 1; 

variables that have correlation coefficients close to -1 are negatively related (Taylor, 1990) and as 
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one numeric variable increases the other numeric variable decreases. When two numeric variables 

have a high positive correlation, they are positively correlated and when one variable increases the 

other variable also increases. A matrix of all correlations for the variables in the study is shown in 

Fig. 35. After investigating the correlation between all variables Temperature was found to be 

correlated (0.790) with Dew Point as well as GHI (0.520). The only other two variables that were 

notably correlated were Dew Point and Relative Humidity and were only slightly correlated 

(0.215). 

 

Fig. 35: Variable Correlation 
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None of these four were removed from the data, although Temperature or Dewpoint might need 

to be removed from the regression process to prevent overfitting from collinearity; this would be 

checked later after modelling. No other variables needed to be removed from the feature space as 

the data was not high dimensional and removing variables because of low correlation may have 

removed otherwise strong candidates from the machine learning process (Hall, 2000). 

 Histogram visualizations are used to plot the frequency of occurrence of a given variable; 

in machine learning it is also useful to understand potential distributions that variables may follow 

(Rasmussen, 2004). Understanding the distributions of variables can help define the type of 

algorithm used for training. Histograms do not provide distribution information; this information 

is derived from density estimation (Silverman, 2018) and this method is often used in machine 

learning to ensure the correct type of algorithm is being used for training (Robert, 2014). Kernel 

Density Estimation (KDE) is a type of density estimation method that uses a kernel or type of 

distribution to specify the shape of the distribution at each point in the data; this allows inferences 

to be made about the population represented by the variable being studied (Nasrabadi, 2007). KDE 

is used in the next section of to help visualize any potential nonparametric or parametric 

distributions that would otherwise not have been shown by histogram binning or partitions alone. 

Any variables relevant to time were not studied in this phase due to their ordered nature.  

 Temperature in the region, as is shown in Fig. 36, was skewed to the right of its mean value 

of 68.08 °F and was widely distributed with a standard deviation of 16.03 °F. These amounts are 

reflective of the daylight hours covered in the study and do not reflect temperatures throughout an  

 



71 

 

 

Fig. 36: Temperature Density 

entire 24-hour day. Temperature values just above the mean occurred more than values occurring 

below the mean and most of the observations were in the upper two quartiles. 

Barometric Pressure was normally distributed throughout the observations with a mean of 

982.07 millibars and standard deviation of 6.04 millibars. Wind Speed was distributed around its 

mean of 1.33 m/s; Dew Point, like Temperature, was distributed widely to the right of its mean of 

51.11 °F with a standard deviation of 14.67. This is relevant to the region where the data was 

measured as many days are hot and muggy from the high moisture content in the air and the hot 

days that are prevalent throughout many days of the year.  

 GHI was the last numeric variable studied in this phase of the analysis. Shown in Fig. 37, 

GHI had a mean 485.75 of and a standard deviation of 259.47 and a distribution skewed to the left  
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Fig. 37. GHI Density 

of the mean. GHI is the dependent variable in all the models and its high variance is one of the 

reasons classification is also being utilized in this work with GHI amounts being discretized into 

four different buckets like Jiménez-Pérez & Mora-López (2016) did with cloud classes. These 

processes will be covered later when the models are described in more detail.  The higher amounts 

of solar irradiance prevalent in the distribution are noteworthy and provided purpose to initiate this 

work. Cloud Type and Wind Direction are not numeric variables were not included in the density 

visualizations.  

4.2. Exploratory Data Analysis: Pairwise Comparisons 

In the next phase of exploratory data analysis, each numeric variable was compared to GHI 

to ascertain if any of the independent variable distributions were like or intersected with GHI. This 
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would make the independent variable being studied a good candidate for a machine learning model 

(Rasmussen, 2004). Joint plots were utilized for all the visualizations in this section as these were 

necessary to show the intersecting densities of two the variables. Darker areas in the visualizations 

are indicative of intersecting higher densities of both variables; lighter areas in the visualizations 

are also indicative of intersecting distributions but are indicators of wider distributions that are 

more widely distrusted across the observations. The relative KDE for each variable is shown in 

the right and top margins of each plot. In addition to using KDE for this portion of exploratory 

data analysis, the Pearson correlation coefficient and relevant P-values, which are used to 

determine possible statistical significance between both variables are discussed here. It is 

customary (Robert, 2014) to accept P-values of less than 0.05 as an indicator of the relationship 

between the variable being compared to GHI and GHI as being statistically significant and not a 

random occurrence. The first comparison was made between ‘Month’ and ‘GHI’. As shown in Fig. 

38, there was an overlap in density between the winter months and lower amounts of solar 

irradiance.  

Dew Point was the next independent variable that was compared to the distribution of GHI. 

As was discussed earlier, this variable was skewed to the right and related to Temperature; a similar 

assessment was found when comparing it to GHI. These two variables showed a dense intersection 

throughout almost the entire distribution of GHI. GHI was found to be higher when the Dew Point 

was also higher, which is a positive relationship and quantified by the .11 correlation coefficient; 

the relationship was also validated by low P-value (0.02) score between the two variables. The 

next-to-last variable comparison included in this phase of exploratory data analysis was a 

comparison between GHI and Hour as is shown in Fig. 40. This comparison resembled the  
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Fig. 38: GHI/Month Density 

comparison between GHI and Month and is prevalent in both visualizations as time is related to 

all three variables. In this comparison, the intersecting densities are lower at the beginning and end 

of each time that was being studied.  

The last pairwise comparison made was between GHI and Hour, which is shown in Fig 39. 

The relationship between these two variables shows an intersection between their distributions on 
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the lower ends of both variables with intrahour variance also being shown. This can also be seen 

in the slight negative correlation between the two variables, but low P-value (0.015) measured 

between these two variables validates the findings the previously covered studies where Wind 

Speed was relevant to the prediction of GHI. Although high wind speeds are not prevalent in the 

region being studied, this variable will likely remain in the feature space as most of the previous 

work also used it as a feature for modeling.  

 

Fig. 39: GHI/Hour Density 
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While this might not be very relevant in the southern states, it will help any models derived 

from this work generalize well when/if applied in different. In the current case, values that fall 

outside of the current distribution and used to validate the predictive models would likely cause a 

slightly higher error rate. This could be corrected with more data that better explains variance in 

the outcomes.   

While expert level domain knowledge is often not a needed (Witten, Hall & Pal, 2016) 

when building machine learning models, this analysis expanded the overall understanding of the 

impact individual numerical weather variables have on the availability of GHI. The findings from 

this phase of the process will be incorporated into the next phase where the specific feature space 

for modeling will be created. After studying the correlation of all the independent variables 

Relative Humidity was found to be related to Temperature and may be removed from the next 

phase of the process and not be used as a feature in any future modeling. Dew Point and 

Temperature are also correlated and their distributions intersected similarly with GHI, which might 

be an indication of collinearity; this relationship will have to be monitored during model training 

as a potential influencer of overfitting. 

4.3. Feature Selection 

 The next phase of the machine learning process involves making a final selection of the 

independent variables that will make up the features the models will use for training. Feature 

engineering methods were not utilized here because the data was not highly dimensional and the 

many of the independent variables lacked the correlation needed for feature engineering methods 

to be beneficial. Inversely, independent variables can also be engineered solely to reduce the 

dimensionality of the feature space so feature selection methods were used. As previously 

described, there are three methods of feature selection: filtering methods, embedded methods, and 
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wrapper methods. Filtering methods were used previously used doing exploratory data analysis to 

identify highly correlated features. Recursive Feature Elimination was used on the independent 

variables to ascertain if it otherwise may have been beneficial to remove more independent 

variables from the proposed feature space than those few that were identified during exploratory 

data analysis. This was done to ensure nothing was missed during the previous analysis. This is 

often done (Das, 2001) in cases of regression and classification for this same goal. While RFE did 

identify four independent variables that could be removed from the model, these were not 

identified as being problematic or likely to cause overfit, but were identified because of their low 

correlation to the dependent variable. As has already been discovered all the independent variable 

distributions intersected in some type of way and most have very low P-values when measured 

with GHI. 

 In the last part of the feature selection process, the independent categorical variable Cloud 

Type had to be changed from an integer to an object before it could be used in any multiple 

regression problems. This was because the numerical values were represented by this variable 

represented each type of cloud that was identified by the current solar PV model, which are 

outlined previously in this work. Regression problems can use categorical variables if they only 

contain two different classes; classes represent the number of levels or categories that are contained 

any categorical variable. Cloud Type contained more than two classes so it had to be converted to 

a series of additional variables that were each represented by a numerical Boolean state of either 

‘0’ for not present or ‘1’ for present. The additional features that represent the single categorical 

variable were then be added to the final feature space as shown in Table 10. 
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Table 10: Final Feature Space 

Independent Variables Data Type Dependent Variable 

Month Integer  

Day Integer  

Hour Integer  

Cloud Types (1-9 Boolean) Integer 

GHI Dew Point Integer 

Temperature Integer 

Pressure Integer  

Wind Direction Integer  

Wind Speed Integer  

 

4.4. Modelling 

To establish a baseline to compare the deep learning models against, two processes were 

designed to create models using the previously identified feature space for training. These 

processes, one being a multiple regression process and the second being a classification process, 

used the same machine learning algorithms, the same cross validation methods and the same data 

for training. The same requirements will also be relevant to the deep learning models. The system 

of modeling is necessary to support the hypothesis of deep learning improving current GHI models. 

4.4.1. Multiple Regression: Supervised Learning 

Five supervised machine learning algorithms were chosen to be assessed in the creation of 

the multiple regression baseline models. The algorithms were chosen based on their ability to be 

tuned with various hyperparameters and their resiliency to overfitting, except in the case of 

decision trees. Decision trees were included in the baseline study as they are very adaptable to both 

regression and classification and were used in previous studies previously discussed. Two 

ensemble algorithms, Gradient Boosting and Ada Boost, were also chosen to be used. All 

algorithms and relevant hyperparameters are shown in Table 11. K-fold cross validation was used 

to stratify the data to remove any ordering and to create a testing set for model assessment.  
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Table 11: Regression Machine Learning Algorithms and Hyperparameters 

Algorithm Type Hyperparameters 

Gradient Boosting (GBR) Ensemble  Learning rate = 0.1 

K-Nearest Neighbor (KNN) Neighbor - Distance K = 2 

Decision Tree (CART) Criterion/Splits  Criterion = mse, Splitter=Best 

Multi-Layer Perceptron (MLP) Neural Network  Activation = relu, Max Iter = 200 

AdaBoost Ensemble Estimators = 50 

 

To create a comparison between the baseline regression models, baseline classification models and 

deep learning methods default hyper-parameters were used during training. Machine learning 

algorithms, especially ensembles and neural networks, provide numerous tunable parameters and 

can be tuned specifically to the type of data they are being used on, but this was not the focus of 

this work. Model training was done using Python and a machine learning library called Sci-Kit 

Learn. Learning curves were created for each model; these show the progress of the model during 

training.  The Learning curves assessed both the training score, which was the R2  produced by the 

models, and a cross-validation score, which is a metric produced by Sci-Kit learn to compare 

algorithms  against one another  when used on the same data (Pedregosa et al., 2011). Higher cross-

validations scores (Table 12) mean the algorithm being assessed is more sensitive to the same data 

a lower scoring algorithm was used on. All models were validated using a sperate validation set 

taken prior from the training and containing 500 random observations.  

Table 12: Cross Validation Scores (Regression Models) 

Algorithm Cross Validation Score 

Gradient Boosting (GBR) 0.92 

K-Nearest Neighbor (KNN) 0.87 

Decision Tree (CART) 0.87 

Multi-Layer Perceptron (MLP) 0.81 

AdaBoost 0.74 
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RMSE was used to assess the validated models and R and RMSE were recorded to monitor for 

overfit and as assess the performance of the models. The top three models are presented here 

beginning with Gradient Boosting. Gradient Boosting (GBR) scored higher than other methods 

and its performance was reflective of it being a good method to use o this data.  In addition, the 

learning curves (Fig. 40) and cross validation curves converged during training, which is an 

indication of the persistence of the model and it not needing any further data fir training (Dataquest. 

(2018).  GBR understood more the variation in the data than all the other algorithms with an R2 

value of 0.901. The same model also produced a lower error, when comparison to the other models, 

of 62.68 W/m2. The Classification and Regression Tree also performed well during training as 

shown in Fig. 41 with a convergence between the learning curve and the cross validations cross-

validation score.  

 

Fig. 40: Learning Curves - Gradient Boosting 
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Decision Trees and Gradient Boosting ensembles share some of the same regression functionality 

(Elith, Leathwick & Hastie, 2008); this is likely why both were so similar during training. From 

the produced metrics the Decision Tree would have likely outperformed GBR with if more data 

were available.    

 

Fig. 41: Learning Curves – Decision Tree 

KNN was the final model outlined in this work; it scored 0.87 for a cross-validation score, but this 

model produced a high RMSE of 109.33 W/m2 on the validation data. This is indicative of KNN 

not being able to generalize well to the outcome in the validation data. KNN has shown 

(Rajagopalan & Lall, 1999) to be sensitive to numerical weather data so this is likely due to the 

validation set not having the same variance or less than the training data.  
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While 0.901  is a very acceptable metric for regression models, the GBR ensemble that produced 

it did also produce a larger error rate than the Decision Tree model as shown in Table 13. This 

might be indicative of the size of the data or from variance in any one of the given features; GBR 

will not be used in this work. For the purposes of a baseline comparison used in the remainder of 

this section, the Decision Tree will be used.  

Table 13: RMSE values for Baseline Regression Models 

Algorithm RMSE 

Gradient Boosting (GBR) 44.4 W/m2 

Decision Tree (CART) 39.06 W/m2 

Other Models in the Study 

K-Nearest Neighbor (KNN) 146.99 W/m2 

Multi-Layer Perceptron (MLP) 99.51 W/m2 

AdaBoost 95.01 W/m2 

 

4.4.2. Classification: Supervised Learning  

The next step in the process involved building classification models to establish a 

comparison set of models. The classification process used the same algorithms that were used in 

the multiple regression baseline study and the same cross-validation process, parameters and 

model building processes. The main differences that were how one independent variable was 

transformed and how the dependent variable was partitioned. As was previously mentioned in  

the multiple regression process ‘Cloud Type’ had to be converted to a series of binary independent 

variables to be utilized for multiple regression. Classification models can utilize numeric data that 

represents categories, so this independent variable was converted back to such. For the dependent 

variable, GHI, it was a continuous numeric variable and classification problems only work on 

dependent variables that are nominal or categorical. To convert GHI from a continuous numeric 

variable to a categorical variable, a process known as discretization (Kerber, 1992) was used. 
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Discretization involves equally dividing a continuous numeric variable into partitions or what is 

called bins. Each of these bins is then given an appropriate label and the variable is converted from 

a continuous numeric variable to a categorical variable with classes. The distributions of GHI in 

this data could be equally partitioned into four separate bins and still represented a positive and 

useful distribution that could be utilized for model building. GHI was binned into four groups that 

were labeled as: Low, Good, Better and Best. Each of these bins represented the amount of GHI 

that was a relative to its availability in each predicted class. ‘Low’ GHI could be considered not 

relevant enough to be productively gathered by most solar PV arrays.  

 

Fig. 42: Learning Curves - Gradient Boosting 

‘Better’ GHI could be useful for everyday use in most photovoltaic arrays. ‘Better’ and ‘Best’ GHI 

amounts are the top two in the predictive classes and represent the most optimal states (Ram, Babu 

& Rajasekar, 2017) that could be utilized by solar photovoltaic installations. Higher amounts of 
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discretization could easily add additional categories or classes to GHI thereby creating more 

precision, if needed. All five classification models were trained and again, the GBR ensemble 

scored an Accuracy of 84%. The learning curves for this model are shown in Fig. 42 with both 

curves converging during training. In the classification modelling, the decision tree (Fig. 43) also 

performed well with an Accuracy of 84%, which is further evidence of the influence of the 

similarities it shares with GBR. KNN, MLP and the other ensemble all performed lower than these 

two models in the classification process as is shown in Table 14.  

 

Fig. 43. Learning Curves – Decision Tree 

The baseline results of supervised learning methods show that ensembles represent a possible 

avenue in the use of GHI prediction as the Gradient Boosting algorithm performed highest of all 

supervised learning methods tested. While the Gradient Boosting algorithm did very well on the 

Coefficient of Determination it also presented higher error, which was unacceptable. As previously 
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explained the error metric (RMSE) used to assess the regression models is in the same unit as the 

dependent variable. This would mean the ensemble method that performed so well during baseline 

regression models could miss generalizing by as high as 45 W/M2. Deploying the model built from 

the Gradient Boosting regression algorithm would present the risk of having a 10% error in its 

baseline predictions when related to the total W/M2 in a single individual observation. 

Table 14 – Accuracy values for Classification Models 

Algorithm Accuracy 

Gradient Boosting (GBR) 83% 

Decision Tree (CART) 84% 

Other Models in the Study 

K-Nearest Neighbor (KNN) 80% 

Multi-Layer Perceptron (MLP) 76% 

AdaBoost 62% 

 

4.4.3. Regression Modelling: Deep Learning 

 The regression portion of modelling using Deep Learning used the same feature space as 

was used in the supervised learning process and used a Recurrent Neural Network and the same 

validation method that was used for the supervised learning models.  The network was designed 

to use five layers during training, including the final fully connected layer as shown in Fig 44. A 

custom function was built so RMSE could be used as the loss function and the ‘Adam’ optimizer 

was used as an optimization function.  The model prioritized accuracy during its training so the 

loss (RMSE) would be minimized during; a batch size 50 of was processed by 400 epochs. The 

network design and training parameters produced a model with an RMSE of 25.23 W/m2 and an 

R2 of 0.926, which is higher than what the ensemble model scored in the supervised learning 

regression process, but lower in error. 
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Fig 44. Recurrent Neural Network Design: Regression 

When the error in regression models decreases, R2 values also increase unless models are 

underfiftting. The same learning curves used for the supervised learning methods are not available 

for deep learning models. However, the training history can be plotted to show the RMSE gained 

for each epoch used for training. A summary of the RMSE during training, per epoch, is shown in 

Fig. 45.  

4.4.4.  Classification Modelling: Deep Learning  

The classification portion of modeling used all the same features that were used in 

regression and followed the process that was used during the supervised learning classification 

process using a discretized dependent variable that was binned into four classes. 
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Fig 45: Recurrent Neural Network: RMSE History 

The network design for the classification training was different than what was used in regression 

because of this discretization. The classification model used four layers, including the final 

connected layer and used on reLU activation to train batch sizes of 10 through 400 epochs of 

training; the model design is shown in Fig. 46.  Model training was optimized using the ‘Adam’ 

optimizer just as was done in the regression processes. A function was built so the Mean Prediction 

value would control how model minimized error during training. Accuracy was used as the output 

metric. The classification model optimized the mean predictions well enough to produce an 

Accuracy of 94.35% on the training set and just under 90% on the testing set. Both values  
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Fig 46: Recurrent Neural Network Design: Classification 

(including those found in the regression method) will likely increase with more data being added 

to the model as the learning histories were trending upward at the end of training; the results of the 

classification training are show in Fig. 47. The model began a steep training climb and training 

optimized after 300 epochs of training. The distance between the training line in the testing line is 

a very strong indicator that the model does not overfit, as the two lines continue separation 

throughout the training cycles and throughout the epochs. KNN, MLP and AdaBoost produced 

Accuracy metrics of (80%, 76% and 62%). 

4.4. Conclusion 

The Recurrent Neural Network trained during the deep learning process retained a very 

similar Coefficient of Determination as the supervised learning model, but a lower RMSE value 

as can be seen in the comparisons and Tab. The lower error obtained by this model is reflective of 

the type of model that a RNN can produce using the optimization function that is applied during  
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Fig 47. Recurrent Neural Network: Accuracy History 

training and from the sequential nature of the layering continuously reducing the error lower during 

training. This deep learning regression method performed better than all five supervised learning 

regression methods and three previously described studies as outlined in Table 15; RMSE and R2 

values were both exceeded when used for hour-ahead predictions made between 8:00 AM and 4:00 

PM over one week at a single location. This validates that deep learning methods, specifically 

Recurrent Neural Networks, can outperform traditional supervised learning methods in multiple 

regression problems used in GHI prediction.  
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Table 15: Hour Ahead Averages - Comparison 

Model/Study RMSE R2 

Chen et. al. (2015) 77.51 W/m2 NA 

Amrouche & Le Pivert 51.52 W/m2 NA 

GBR 44.411 W/m2 0.92 

CART 39.062 W/m2 0.871 

RNN 25.237 W/m2 0.92 

 

The performance of deep learning in the classification methods was also higher than the five 

methods representing supervised learning. The Recurrent Neural Network scored over 10% higher 

accuracy (Table 16) than ensemble methods and decision trees used in supervised learning and 

exceeded Accuracy in previously outlined study (Alonso-Montesinos et. al., 2016) where similar 

supervised learning classification methods were utilized. 

Table 16: Classification Averages 

Classification Model/Study Accuracy 

Alonso-Montesinos (2016) 94.1% 

GBR 83% 

CART 84% 

RNN 94.35% 

 

The only disadvantage found for using deep learning in this type of prediction are modeling 

was centered on the technology itself. Numerous GPU faults occurred during training and the 

system had to be reset for model training to begin again. The training process is much more stable 

in cases of supervised machine learning where larger models can train for hours or days without 

interruption. This could have been a limitation of the system that was being used for this study. In 

either case, the interruptions were minimal. In future studies of this sort it might be more 
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appropriate to use a cloud-based system that might not interrupt in the process. In addition, the 

technology behind GPU modeling is becoming more advanced and more optimal as it gets closer 

to mass adoption in the academic and business settings; all of this is may improve the usability. 
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CHAPTER FIVE 

SKY TYPES 

 The next section of this research outlines whether a substitution can be made for the feature 

serving as Cloud Type in current GHI prediction models. As has previously been discussed, this 

feature is derived from satellite imagery using a complex set of algorithms. These can not only 

identify the type of cloud, but can also dissect clouds and ascertain the chemical makeup, physical 

properties, height and distance, none of which can currently be derived from ground observations. 

This limitation makes finding a substitute variable difficult, but studies previously covered earlier 

in this text have tried with moderate success. These used specific equipment for collecting whole 

sky images from ground observation points by capturing a ‘fisheye’ view of the entire sky 

throughout a day, with the most successful occurring in mostly in clear conditions. To create a 

more generalized model that can be utilized anywhere, sky-based images need to represent all sky 

conditions. 

 Finding a substitute feature will also make prediction less expensive since the use of 

satellite data would then be optional. In addition to being less expensive, finding a substitute 

variable might be more optimal. This is because one of the categories used to identify cloud types 

is used when there is not enough data to classify clouds. This creates an ‘unknown’ category and 

creates in the observations in the cloud type feature in the data. As was described earlier, this was 

relevant in the data used for this study and had to be solved during preprocessing. If a substitute 

variable can be found that has no unknown label category, this gap can be filled and possibly 

improve the GHI prediction models altogether by providing a more cohesive data set that is more 
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representative of the variables captured and any relative relationships that might be present among 

them. In addition, without using regional satellite data and focusing on local observations, GHI 

prediction at an individual location can occur. When examined on a larger scale and across a 

distributed network, this type of prediction might be very accurate at individual locations because 

these locations can use predictions from other locations that are nearby where predictions are also 

being made. This concept goes beyond the scope of this work, but it is a concept that can be 

explored further if a substitute variable can be found and validated to be useful.  For example: a 

regional, real-time weather forecast is seemingly ever-changing, but the accuracy and response 

time is increasing with nowcasting methods that utilize this same process (Xingjian et al., 2015).  

A similar approach can be implemented locally with GHI prediction if a model can be built without 

the use of cloud types, but with a new feature that is specific to exact locations and could be 

captured at any time.  

5.1. Sky Conditions “Sky Types” 

 The closest thing relative to the clouds is the sky itself and, while the exact composition of 

clouds or their height or their distance cannot be ascertained from ground-based observations 

alone, there is another element that might be relevant to GHI prediction. One variable that can be 

satisfied from ground observations is the percentage of the sky that is covered by the clouds. The 

National Weather Service (2018) defines this amount as sky conditions and these are recorded for 

every weather observation that is reported by the National Weather Service. Their definition is 

uses an equal division of octants (eights) of the sky and a percentage of the number of octants 

covered at any given time by clouds in a single observation (Cazorla, Olmo & Alados-Arboledas, 

2008). In addition, sky conditions are also captured from space-based imagers, assessed from 

surface-based instrumentation or collected by trained human observers (Nrel, 2015). All three of 
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these methods contain issues that a new method might solve. Satellite images that are used in this 

method are often obscured by higher clouds and only capture one moment in time. Lower-level 

clouds are often closer to the surface of the Earth and are very difficult to obtain from satellite 

images or are often missed altogether (Arking & Childs, 1985). Lastly, these observations are 

regional and do not include individual locations other than from the central offices where they are 

collected. The specific calculation for each sky condition is shown in Table 17, including a sky 

condition describing a nighttime condition named ‘fair’. For the purposes of this study, this 

condition was not utilized as GHI is not optimally predicted at night as it is during the day. These 

sky conditions will be referred to as ‘sky types’ in the remainder of this work and will be the name 

of the possible substitute variable that will be tested as a replacement for cloud types. This 

introduces a new question that will be addressed in this section: If the NWS already reports sky 

conditions and this information is available why not just use the labeled categories that were used 

during training for building the new process? While this method is viable, it isn’t applicable for 

local areas. In addition, these types of observations have been recorded for over 50 years. This 

creates a viable historical data set that can be used to train a deep learning model to identify sky 

conditions, not from any of the previously mentioned methods, but rather from images taken at the 

same time. All of this depends on its relevance to GHI.  

If it can be validated that the new variable does impact GHI prediction, gathering and 

classifying local images matching the specific cloud type class that is related to the NWS 

classification would make a new process scalable and specific to the location the image is collected 

from. For example: If local images could be paired with the NWS labelled classes provided at the 

same observation time, a correlation could be made between the NWS text-based label and what 

the sky really looks like when given that label. The only other data that would be needed to make 
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a local prediction would be the weather data that relevant the same individual location and at the 

same time. If this process were viable, a user could point their mobile devices to the sky, capture 

an image with the camera and know the GHI for their exact location at that moment. Expand this 

process into a networked and distributed system concept and time relevant predictions can be 

‘pushed’ downstream or upstream of the user’s location; predictions representing irradiance 

amounts in the future can then be obtained. This will be discussed in the ‘future work’ section as 

using sky types is the relevance of the remainder of this part of the work. Designs and solutions 

for both portions of the process, image collection and classification, will be presented as well as 

implemented along with the results being validated.  

Table 17: Sky Conditions and Cloud Coverage 

Sky Condition Cloud Coverage 

Clear / Sunny 0/8 

Mostly Clear / Mostly Sunny 1/8 to 2/8 

Partly Cloudy / Partly Sunny 3/8 to 4/8 

Cloudy 8/8 

Fair (mainly for night) Less than 4/10 opaque clouds, no precipitation, no 

extremes of visibility/temperature/wind 

 

5.2. Data Collection 

Before building a new process, it was only pertinent to ensure that this type of feature was 

relevant in the prediction of GHI. Just as was done in the previous part of this work, regression 

and classification models were constructed, but this time only deep learning methods were used. 

To bridge the gap between numerical weather data containing relevant information for the 

prediction of GHI and relevant sky types, two different datasets were combined to build the testing 

and training sets for this experiment. The first data set was collected from the National Solar 

Radiation Database (NSRB) and was the same data used earlier in this work. The second data set 

was collected from the NOAA Climate Data Record and contained numerical weather data just as 
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the data set from the NSRDB contained with one major addition; this data also contained hourly 

observations regarding the type and amount of cloud cover present at every hourly recording. 

Seven years from each data set were combined to create a single data set that contained numerical 

weather data and the sky conditions for every observation that was taken. The success criteria for 

this experiment was established as 90% R2 and an RMSE below 50 W/m2 for regression and 90% 

Accuracy for the classification method; these metrics were taken from previous studies presented 

earlier. 80% of the data was used for training the model and the remaining 20% was used as a 

separate testing set.  

5.3. Data Preprocessing and Feature Selection 

 Preprocessing consisted of inspecting the data, imputing any missing values with their 

means and removing any data that was non-usable or in a format that was not acceptable for 

machine learning models. Exploratory data analysis was performed to ascertain the relative 

correlation and distribution of the potential new feature. Pearson Correlation Coefficient was used 

to ascertain the correlation between the new sky type feature and GHI. The two features were 

slightly negatively correlated with a value of -.037 with a P-value of .0002. As shown in Fig. 48, 

there are more days with clear skies, mostly clear and partly cloudy skies than the other sky types. 

From this basic exploratory data analysis, sky types might be relevant to the prediction of GHI and 

may be able to serve as a substitution for the cloud type feature that was used in previous models 

and current solar modeling methods. The low correlation and low P-value are promising signs that 

machine learning, especially deep learning along with time elements, should be able to use the 

feature, but model training and testing would provide the validation needed to make the 

substitution. 
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Fig 48: Sky Types Frequency 

5.4: Regression Modelling 

 The Deep Learning regression portion of modelling used the same feature space as was 

used in the supervised learning process with the exception being sky types was substituted for 

cloud types. A Recurrent Neural Network trained on the combined dataset and, since it had already 

been established that deep learning is a better method for predicting GHI, the network was 

optimized for training for this experiment. The network was designed to use four layers for 

training, including the final fully connected layer, as shown in Fig 49. The same custom function 

that was built for RMSE in part one was used as the Loss function and the ‘Adam’ optimizer was 

used as the optimization function. Just as in the previous process in part one, the model prioritized 
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Accuracy during its training so the loss (RMSE) would be minimized during training. A batch size 

50 of was processed by a lower number (300) of epochs and the smaller network design and 

training parameters produced a model with a low RMSE of 23.46 W/m2 and an R2 of .914. Because 

of this experiment it was discovered that a smaller network with less epochs would produce at least 

the same results as the previous methods that utilized a larger network with 100 more epochs. 

Scaling this problem to a larger amount of data would likely result in a large reduction of training 

time and a model that is much easier to maintain over time.  This is likely related to the smaller 

number of sky types compared to the wider distributed cloud types feature it replaced.  The low 

RMSE did meet the established metric for using sky types as a substitute feature for regression, 

but more study would be needed to validate that other features weren’t compensating for the 

absence of ‘conditions.  

 

Fig 49: Recurrent Neural Network Topology 
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In the case of regression, sky types do seem to be an optimal replacement feature for as 

these results are almost identical to the previous deep learning process that used cloud type and 

higher than what the ensemble model scored in the supervised learning regression process, but 

much lower in RMSE. This evidence is shown by the increased R2 value produced by the model; 

a summary of the RMSE during training per epoch is shown in Fig 50.  

5.5. Validation of Findings 

To validate these findings and ensure sky types could serve as a substitute for cloud types, 

a second regression model was created using an RNN without any features relating to cloud 

conditions. For this experiment Cloud Types (nor ‘sky types’) was not present in the feature space 

and the model was built using the same network topology and number of epochs that was used for 

the model that used sky types as its replacement.  This was done to ensure the impact of removing 

cloud types was measurable, and the model was not relying on its presence or using any other 

features more heavily. This second model produced a higher RMSE (88.23 W/m2) and lower R2 

value of .864 than either previous experiment with cloud types or with sky types. This is a valid 

indicator that not only can sky types serve as a substitute for cloud types, but it may also be a better 

performing feature, at least in the case of regression. The next experiment involved substituting 

sky types for cloud types and building a classification model to ascertain if any improvements in 

Accuracy might be made over the previous models.  

5.6. Classification Modelling 

 The classification modeling process produced somewhat different results. After optimizing 

the network topology and increasing the number of epochs the Accuracy (.861) produced by model 

did not match or exceed the model produced in the deep learning process using cloud types. This 

was noteworthy given the previous higher Accuracy produced by discretizing the dependent 
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variable.  However, the model did produce slightly a lower mean predicted value of .273, which 

is indicative of a model that might generalize well to new data but wasn’t as sensitive to this new 

feature space as the previous regression model was. This model might be acceptable for consumer 

or residential usage, especially if given more time to evolve, but it will not be used the remainder 

of this work as the variance between the predicted values and ground truth is too high when 

compared to the low RMSE produced by the sister regression method that used ‘sky types’ as the 

substitute feature. Based on these findings and conclusions there was no need to validate this 

process. 

 

Fig 50: Recurrent Neural Network: RMSE History 
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5.7. Hour-Ahead Validation 

After validating that sky types could serve as a valid substitution for cloud types, the 

multiple regression deep learning model using sky types and weather conditions in the feature 

space for its training was validated by the process shown in Fig. 51. The National Weather Service 

updates their hour-ahead forecasts every hour; these forecasts use the same weather variables as 

the historical weather data used for training the model, except for GHI. The model predicted what 

GHI was in one hour based on what the forecasted weather conditions would be in the next hour.  

 

Fig 51. Hour Ahead Model Validation Process 

Model results were validated using a single hour ahead of GFS forecasted weather variables for 

seven days. To ensure the predictive model could generalize well to any hour-ahead interval, 

predictions were made at a different time on each day and the predicted GHI values were validated 

with ground truth GHI values an hour later with RMSE averages shown in Table 18. Results from 

similar studies are shown in Table 19 for comparison. 
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Table 18: Average Metrics (Predictions made daily at 9:00 AM) 

T = Prediction Time RMSE 

T + 1 26.36 W/m2 

T + 2 27.62 W/m2 

T + 3 25.89 W/m2 

T + 4 23.78 W/m2 

T + 5 26.41 W/m2 

T + 6 31.40 W/m2 

T + 7 26.00 W/m2 

 

Table 19: Comparison Metrics Used in This Study 

Studies MAPE RMSE 

Ding, Wang & Bi (2011)  14.75% NA 

Amrouche & Le Pivert (2014) 22.50% 51.5 W/m2 

Khatib, Mohamed, Sopian & Mahmoud (2012) NA 135.5 W/m2 

Chen, Duan, Cai & Liu (2011)  19.45% NA 

Chu et al (2014) NA 77.5 W/m2 

 

5.8. Conclusion 

The finding that sky types is a valid replacement for cloud types in existing solar irradiance 

prediction methods satisfies one of the objectives of this study. In addition, and very relevant to 

the production of GHI, these findings were derived from a data set that included all weather 

conditions and five of the six defined sky conditions. This is relevant because most of the prevalent 

GHI prediction methods were focused mainly on clear sky days and often don’t include any data 

that represented changes in the weather nor a high amount of variation in the GHI from day-to-

day. In addition, many of these methods will not generalize well to other locations where the 

weather differs other than from that of the observed and studied area. 

Further evidence will be presented later in this study that not only can sky condition serve 

as a substitution for clouds that are identified and analyzed by satellites, but sky conditions might 
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also provide the needed element to ensure that the deep learning models will generalize well to 

many areas within a region. Sky conditions do vary from region to region including how they are 

distributed across the sky. It is likely that the method being proposed here would generalize well 

across any given region regardless of the specificity of it being designed to be relevant to precise 

locations. To validate this inference, more data that is relevant to sky conditions from other regions 

would need to be added to the models before such generalization would be applicable to other 

areas of the country. The relevance of using deep learning in this type of application is somewhat 

of a new area and many studies have yet to utilize sky types it in this manner. However, the studies 

that were presented in the deep learning section of the literature review did address deep learning 

being implemented in hybrid type approaches and approaches where only numerical weather data 

was utilized.  

The lower error metrics assessed in the regression models built with Recurrent Neural 

Networks were a good sign that this new method is applicable and can be built upon. Perhaps there 

are other features that can be substituted for as well? Observing that a regression model trained in 

this fashion can also be trained with a lower network topology is also a valid finding. Lastly, 

accepting that the already proven deep learning classification methods don’t generalize well when 

substituting sky types for cloud types, creates a method for others to challenge or not utilize 

altogether. These findings can establish a baseline for other studies to challenge as there has not 

been a study created to data that has used sky types in this manner. 

 Sky types and this new deep learning regression model method were validated through an 

applied process, but relevant images would also need to be collected to train a network that could 

classify images as such. Since the body of this work is focused entirely on prediction, it is 

necessary that a method for collecting images that correlate to the individual classes of ‘sky types’ 
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be proposed and implemented. The next chapter will outline the creation and implementation of a 

system that utilized ‘sky types’ for hour-ahead GHI prediction. In addition, a new image collection 

system and decision support system will also be discussed and presented.  
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CHAPTER SIX 

SKY TYPES: APPLICATION 

 This chapter will describe the outline and implementation of a new system that is designed 

to collect, process and classify ‘sky types’ from any location for delivery to the new multiple 

regression deep learning model for the prediction of GHI and used as a substitute feature for cloud 

types as was previously discussed. During the proposed process, numerical weather data will also 

need to be collected at the same time and location images are collected. This data will be used in 

a predictive model that will be used to make local predictions, which is one of the objectives this 

study addresses as regional predictions are more prevalent. In addition, this new collection system 

functions from the ground and does not rely on any satellite data. Planning for the system occurred 

over a one-year period with different design and scope concepts being conceived. A Systems 

Engineering process was followed for planning the system; the steps contained in this process will 

be outlined and described further in this section and throughout the remainder of this chapter; the 

steps are as follows: 

Step 1: Requirements Analysis 

Step 2: System Analysis Control 

Step 3: Functional Analysis/Allocation 

Step 4: Design Synthesis. Process Input, Requirements Loop, Design Loop, 

Process Output & Verify 

 

The process began with a thorough requirements analysis wherein functional requirements, 

baseline performance metrics and design constraint requirements were examined and outlined. 

System Analysis Control outlines the control structure and describes each component of the 

system. In addition to the individual processes that occur during each step, where applicable, 
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components will also be outlined and described. The functional analysis portion of the section will 

discuss specific interface elements between each step and component roles in the system. Design 

synthesis elements will be discussed in detail during the discussion of the previous steps.  

6.1. Requirements Analysis 

Requirements analysis was divided into two parts that addressed both the end-user 

requirements and the system requirements. Users often require (Norman, 1999) very specific types 

of information to be displayed and very specific types of decisions to be made so it was paramount 

to understand the viability of how this process would map to these types of requirements. This was 

addressed during planning and implemented throughout the process. System requirements were 

derived from previous works that were described earlier in this work and conceptualizing new a 

method and processes that have yet to be utilized in this type of application. The system 

requirements were collected and a high-level project scope created. The concept, which was briefly 

described earlier, involved designing and building the following hardware and software 

components and processes: 

1. An image collection system 

2. A process that controls and functions the relative image processing steps 

3. A system to deliver processed images to a deep learning image classification algorithm that 

properly classifies the image as being one of five sky types 

4. A system to deliver the relevant and classified sky types to the previously trained deep 

learning multiple regression model 

5. A process for collecting numerical weather data specific to a location 

6. A user-friendly Decision Support System 

 

User requirements required all the steps be fully functional and self-controlled, leaving the user 

with very little to do except monitor the system from a dashboard and Decision-Support System 

(DSS). Usability and maintenance objectives in the project scope required the DSS must have been 

easy to use and followed all relevant interface and usability guidelines (Rauch, 2011). Any 

hardware must have also been easy to maintain, if not maintenance free, and must have been easily 
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deployed in an outdoor environment that might be exposed to weather-related elements and 

conditions. The system also needed some level of security from theft and or alteration. In addition 

to the hardware components, all software and scripting that drove the system must have also been 

easy to maintain, relevant to current methods and somewhat future proof, as numerous updates 

were expected. In addition, the project was likely to be utilized by other students in the future so 

relevant and current coding standards (Python, 2018) were specified as part of the project scope to 

be used. 

6.2. System Analysis Control 

The system, which is shown in Fig. 52, was controlled by a series of scripted functions that 

Control the flow of data as well as the validation of data and the processing of data from each 

individual step in the process. Predefined image collection times were also specified as part of the 

system control functionality; these were implemented to guarantee the relevancy of the images 

that were being collected. Hardware and software needed to be monitored and a system of 

notifications implemented in the event of system failure. The last element of system control was 

centered on maintenance. As was previously proposed, the image collection portion of the system 

was required to be implemented in an environment that could be exposed to high variations in 

weather, extended periods of soiling and even theft or modification. Precautionary steps must have 

been taken to prevent moisture being introduced to the system from exterior elements; these 

involved creating a completely closed system that were designed with materials relevant to exterior 

use. 

 Soiling occurs when equipment has been exposed to outside elements over time (Mejia & 

Kleissl, 2013). Particles from dust, dirt and wind-driven rain often accumulate on equipment and 

when the moisture dries, it is left behind until it is cleaned. A system of control had to be put in 
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place to maintain a constant level of cleanliness to ensure that any images captured by the device 

were clear and error-free. This decision presented a problem as the planned orientation of the unit 

was to be vertical and almost normal with the sky. This orientation, while optimal for collecting 

images, also represented the perfect surface for soiling. Numerous ideas were conceived with 

various designs ranging from a simple powered brush that swept across the lens of the collection 

device to the design of a circular globe that housed the image collection device and rotated on an 

axis that was parallel to the ground. This rotation, which would happen at various pre-determined 

times, would ensure that any soiling collected on the top of the surface of the collection device 

would be revolved away from the camera itself. A collection plan that included a stationary brush 

would be housed in the bottom of the unit to wipe away and collect any soiling on a periodic basis. 

Regardless of the concepts conceived during the design and planning this experiment, the best 

solution that could be deployed optimally was simply requiring the unit to be cleaned periodically. 

This is also done in many solar photovoltaic installations where soiling has been determined to be 

an issue and was an acceptable method for this experiment (Appels et al., 2013). In addition, 

solving the soiling issue wasn’t a main objective of this study, although future work will certainly 

be focused in this area.  

6.3. Functional Analysis and Design Synthesis: Hardware; Image Collection 

The first role in the system begins with capturing an image from the sky. This was 

accomplished by using a Raspberry Pi 3 that utilized a Raspberry Pi Module V2 - 8 Megapixel 

camera. The camera had a fixed focus lens and could capture video as well as images and was 

connected to the Raspberry Pi that was housed inside the collection unit. To protect the small 

computer, it was placed in an acrylic Smraza case with a cooling fan and heatsinks to control 

temperature. Heat dissipation was a major concern during this experiment since the unit was 
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housed in a completely sealed structure so it was vital to ensure the heatsinks were installed 

properly. A standard 5V/2.5A power supply and a microSD card using the default operating system 

included controlled operation and concluded the of technology hardware for the image collection 

unit. The unit was mounted on a plastic bracket inside a 4-inch diameter PVC pipe that was 

purchased from the local hardware store along with PVC end-caps and sealant to help protect the 

image collector from moisture. The end of the PVC pipe that was to be pointed at the sky was 

sealed with a 4” hemispheric clear acrylic dome that served to not only protect the collection 

device, 

 

Fig 52: System Design 
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Fig 53: Imager Prototype 

but also allowed for images to be collected by the camera and processed by the unit. A picture of 

the image collection device and its storage container is provided in Fig. 53, which was taken during 

a dry-fit of the system. The unit was anchored to the ground with a weatherproof ground stake, so 

it would remain vertical and stable even in stormy conditions and it was placed in an open area 

free of any overhanging obstructions that might be captured by the camera and in the images. This 

would be problematic because additional image processing would need to be designed to extract 

or remove any irrelevant imagery from the regions being processed and so erroneous information 

didn’t go into the training process later in the system.  

First iterations of the unit presented issues. Heat was an issue in the installation and the 

small computer did not perform well in the completely sealed enclosure, so ventilation holes were 

added to the top and bottom portions but were drilled at a steep upward angle to prevent water 

from entering the enclosure. The holes were then covered by a dense mesh wire fabric to not only 

help with moisture intrusion, but also prevent insects from climbing into the enclosure. The 

hemisphere clear acrylic dome also presented some issues during the first few days after the unit 

was installed. Most of these were mainly related to moisture intruding into the system and fogging 
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up the hemisphere dome when the sun began to evaporate the moisture during the day. To ensure 

that any excessive moisture that funneled up through the unit during the evaporation process was 

repelled from the interior of the dome, a commercial window treatment solution was applied to the 

dome. This eliminated the moisture and condensation issue and, although some of the earlier 

morning images still contained small amounts of the water droplets, image is collected after mid-

morning were absent of any moisture issues 

6.4. Functional Analysis and Design Synthesis: Software and Numeric Weather Data 

This section will provide a systems level understanding of some of the high-level processes 

and components contained in the software side of the system and how weather data will be 

collected. A Python script was written to control the frequency of operation of the camera in the 

system; images were programmed to be taken every 15 minutes throughout the day beginning at 7 

AM in the morning and ending at 7 AM in the evening. In addition to controlling and operating 

the camera in the system, the script also provided a small system check on images that were 

captured by the camera. This involved ensuring a relevant file size was present indicating that the 

operation did indeed complete as needed. If a relevant file-size wasn’t found by the system an 

additional image was taken; if a relevant file-size was found by the system, the image was 

transmitted via network to a local server where the images were stored. A wired network was used 

to ensure any possible downtime was negated, although a wireless process will be described in 

detail later this work.  

The next step in the process involved processing the images. A script was written that 

would regularly retrieve recently captured images from the folder where they were being stored 

and processed the images using the Histogram of Oriented Gradients (HOG) algorithm, which will 

be described in greater detail in the next section. Images were cropped to provide a focused region 
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of interest (ROI) in the upper-center of the image and to remove any non-relevant information 

from the image(s). After images were processed, a script delivered the images as inputs to a 

previously trained deep learning model. The model classified the images as one of five relevant 

sky types and provided this information to the existing multiple regression deep learning model 

that has previously been described in this work. The deep learning regression model used the new 

feature, along with numerical weather data that was provided from an Ambient Weather WS-1001 

weather station (Fig. 54) that was installed close to the image processing system. This combination 

created the new hybrid GHI prediction system. 

At this point in the system the model made the GHI prediction, which were then delivered 

to the Decision-Support System to not only provide relevant information to the end-user, but also 

assist with decision making. This software Displays the information and if applicable, utilized it 

in a decision-making capacity surrounding whether electricity should be generated or not. After 

the prediction was delivered to the decision-support system, the prediction was also passed along 

to a local database that stored every prediction made by the system, which again was done every 

60 minutes. After eight hours of predictions the system used the stored predictions to drive a time 

series process. This information was also passed back to the decision-support system so time 

relevant ‘future’ predictions could be assessed and used by the system. This is relevant to the 

location and use of the system over time and, once the timeseries regression model became 

functional, it would continue to do so, and the relevant assessment metrics continued to improve 

as more predictions were stored in the system.  
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Fig 54: Ambient Weather WS-1001  

6.5: Image Capture: Trial One 

After numerous iterations of testing the image collection camera, a final orientation was 

chosen that provided the least chance for obstructions represented by objects in the sky. Two weeks 

of testing the image collection camera and the network storage process were riddled with numerous 

images that were either filled with easily identified flying objects, insects, rain and anything else 

that would otherwise Render the images unusable; an additional problem also existed. The convex 

nature of the hemispheric plastic dome that was placed on top of the image collection camera 

created an extreme glare from the sun intersecting with its hemispheric shape at various times 

throughout the day. This intersection anomaly created lens flares that were captured in almost all 

images that were processed on a sunny day. Even after processing, these lens flares represented an 

additional feature that was showing up in all images and this would have been captured by the 

deep learning classification model that was going to be used later in the system for classifying the 

images. The main problem this presented was images that no longer halve such lens flares but also 
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represented images that were taken on a clear day when the sun was shining high, would likely not 

have been correctly classified as being an image from a clear day. Not only did the lens flares 

create an issue with the images, all created a but the hemispheric dome shape itself created a 

problem that would also easily be found by the deep learning process. The external rim of the 

hemispheric dome stretched the images as the sun became parallel with the lens of the camera. 

This widening of the image would surely not generalize well to the images that come from other 

sources where the same hemispheric dome was not used to protect a camera from the elements. 

An example of one of the collected images showing both problems is shown in Fig. 55. To validate 

if these images could be utilized by the CNN, a trial model was built using 800 images that were 

collected over the trial time. These images were used for training and an additional 200 images 

that represented various sky conditions were utilized for testing. As feared the CNN model trained 

well on the data it was presented with but did not make predictions adequately enough to proceed 

with this collection method.  

 

Fig 55: Anomalies Caused by Hemispheric Globe 
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The best accuracy that was obtained during testing was 40% and that was with a high 

network topology and additional image processing to try to remove the analogies. In addition, 

many of the other images that did not contain random lens flares, but did represent the distortion 

caused by the hemispheric shape of the globe were also incorrectly classified. This validation was 

enough evidence to reject this image collection method and research another solution. 

6.6. Revisiting the Project Scope: Image Capture: Trial Two 

 The project scope requirements were revisited and a second experiment was planned using 

images collected from an outdoor webcam. A Reolink 4MP Super HD PoE Outdoor Camera was 

installed at the same location as the previous image collector was installed but installed parallel to 

the ground and at a higher elevation to try to eliminate any interference caused from the Sun’s 

glare throughout the day. The camera was oriented toward an open ‘window’ in the nearby horizon 

line to lessen the amount of extraneous and unneeded information that might be captured in the 

images.  An example of a captured image is shown in Fig. 56; as shown, there is no glare from the 

Sun nor any interference from the lens protection that was already on the camera. In addition, there 

was very little interference being injected into the image and it was already very close to being 

optimal for use for training, except for the trees that were in the bottom of the image.  

 

Fig 56. Example of Parallel Image and Horizon 
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To validate if this method would be useful for model training, another two weeks of 

captured images were cropped manually and 80% used for training, 10% used for testing and the 

remaining 10% used to validate the model. Except for the manual cropping, which was done in the 

same manner for all images to remove the bottom 500 pixels, the images were used ‘as is’ for 

training, testing and validation. Using a small, four layer designed network topology for a CNN 

the, Accuracy of the trained model increased to 81.34% and, while the Accuracy of the predictions 

was lower at 72.41%, this was likely due to the small testing set being used and the large variations 

present in the skies. The second trial was accepted as being a valid method for collecting images 

and the image collection allowed to continue, but a process for improving the training accuracy 

would need to be developed and a second classification test performed after such a process was 

designed and tested while more images were collected by the newly validated collection process. 

6.7. Image Processing 

The next problem to solve in the image collection process was centered on image 

processing. To be increase the Accuracy of the CNN used for training, the collected images needed 

to be simplified in a way that would be easier for the models to ‘find’ the features of the sky types 

(Krizhevsky, Sutskever & Hinton, 2012). These characteristics are relevant to each image 

belonging to each type or class of sky type. The main success metric for this problem was to build 

a process that could identify the largest occurring features present in the images; this could be done 

either by color separation or even using processes like texturizing (He, Zhang, Ren & Sun, 2016). 

The overlapping clouds in the sky contained ever-changing variations that would have likely be 

too much for any type of machine learning problem to capture adequately enough to be used for 

training and generalization. Any images that were to be used would have to be simplified wherein 

the most highly relevant features in each of the images would need to be identified, highlighted in 
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a way to create more focus and separated from the rest of the image. This is reflective of the same 

definitive process that establishes their very definition; the sky being separated from the clouds. 

Numerous methods were tested for validity and impact on providing this type of needed solution 

and a method that is commonly used in object detection in computer vision was found to be the 

most relevant and impactful.  

Object detection in computer vision is often separated into two individual methods or 

approaches (Torralba, Murphy & Freeman, 2004). The first approach, which is referred to as a 

global approach, contains methods for distinguishing a single feature in an image as an object 

while the second approach, which is referred to as a part-based approach, contains methods for 

extracting individual features from objects within an image. Global approaches are often 

considered to be more simpler and work well on smaller resolutions or in problems that only 

contain binary classes, which is also why it is considered global (Papageorgiou & Poggio, 2000). 

The process is only extracting one object from an image; this is where the binary definition is 

derived. Part-based approaches are much better for isolating small portions of objects within 

images and can detect and work around typical occurrences that often occur in images like 

overlapping objects (Felzenszwalb et al., 2010).  Part-based approaches are often considered to be 

much more memory intensive than global approaches from the larger amount of processing that is 

required to isolate small portions of an object and handle interactions at that level. Both approaches 

often apply various types of Gradient Histograms, which measure the orientation and power of 

objects or image ‘gradients’ with a section or image of a region, to images to help separate the 

object that is to be extracted or identified from the surrounding and extraneous content (Tsai, 

2010). This type of implementation would provide some relevance for the CNN to build upon. 

There are three main algorithms and computer vision that have this ability and are widely used but 
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the most appropriate one for this work is called the Histogram of Orientated Gradients (Dalal & 

Triggs, 2005). This algorithm, which is a global approach, was chosen because of its ability to 

capture edge or gradient structures that can easily correlate the local shapes, which are often seen 

in different compositions of skies. In addition to this ability, the algorithm also can be adjusted so 

that the orientation and spatial sampling of the density of the histograms within each cell can also 

be adjusted (Peng et al., 2016). From a machine learning viewpoint this is important because it 

increases the likelihood of relevant and important features being identified by the network during 

training. HOG also functions from the same processes that CNNs do and this convolution approach 

was expected to work very well with such a network.  

The basic concept behind the operation and functionality of the Histogram of Oriented 

Gradients (HOG) is centered around redefining an image as a series of gradients (Lalonde et al., 

2012) with varying intensities and/or edge directions; this happens in five linear phases: 

1. Image normalization 

2. X and Y gradient computation 

3. Histogram gradient creation 

4. Cell normalization 

5. Flattening to create the feature vector  

 

Most images include some degree of impact caused by direct or indirect illumination from light sources 

(Van der Walt et al, 014). This is especially relevant to images taken outside where the natural ambient 

light intersects with many of the objects captured in the images. Before any histogram image processing is 

done, the degree of this impact is often normalized to provide a foundation for the image processing 

algorithm to do its work. The first step HOG performs is applying a global normalization function designed 

to reduce this impact caused by illumination (Huang et al., 2012). Since the algorithm would be processing 

the entire image, this normalization is accomplished by computing the square root of each color channel. 

After normalization, the gradient computation process begins with the algorithm dividing the image into 

small portions that are often referred to as cells (Huang et al., 2012). The center horizontal and vertical 
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gradients are calculated along with the related magnitude and orientation. During this process, silhouette 

and basic texture information is also captured by the representation of the added gradients; if RBG images 

(3 channel) are used, the process will choose the color channel with the highest gradient magnitude.  Next, 

the algorithm builds a system of binned histogram orientations or descriptors within the cells and, in this 

final step of the process, collates all these descriptors, approximates and combines them into a ‘feature 

dimension’ described by using the combined edges as a vector and describing the object within the cell, 

which is shown in (b) of Fig. 57 (Huang et al., 2012).  

After the images were collected during the second test period of the external collection process, a 

small process for collecting images from one folder, processing them with HOG and moving them to 

another folder, was created for testing. The HOG parameters used during this process specified using eight 

orientations for the gradients in 16x16 pixel cells and was adjusted to utilized multichannel images since 

the ~800 images being processed were in color.   

 

Fig 57: Functionality of HOG. A Demonstration of the HOG Feature Extraction Method (2018) 

The second CNN experiment was conducted using the same network topology and training/testing 

processes as in the previous experiment before the images were processed, but used the processed images 

as features for the CNN; this was done to assess the impact the image processing had on model Accuracy. 

As is shown in Fig 50, the Accuracy improved to ~95%, which validated the CNN model performing well 

on the images processed by this method. 
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6.8. Final Process Design 

The next step in the process was to revisit the image collection method and derive a process 

for scaling and collecting more images. Not only did the single collection point from the local 

deployment of the external camera not provide enough variable images over time, but also the 

images that it collected were collected from a single collection point. This practice did not provide 

the variations needed to create a GHI predictive model that would generalize as well to images 

that were collected from other locations. This problem would need to be solved before any further 

modeling was tested and major objectives would need to be met for this process to be considered 

successful. The first objective was obtaining a method for collecting sky conditions recorded from 

the National Weather Service at specific times and at specific locations. The second objective was 

to obtain images from those same time observations and from those same locations. If a process 

could be derived to bring these two objectives together in a single method, that process could be 

validated. These two objectives created both items needed to train a CNN: the ground truth sky 

conditions obtained for each location as the inputs for training the network and the related 

outcomes would be the sky types that correlated to each observation.  

6.9. Obtaining Ground Truth 

Numerical weather data is easy to obtain from various organizations and services including 

the National Weather Service, which provides an application programming interface or API that 

allows developers easy access to any weather data obtained from any National Weather Service 

station at any time. To access this type of information from most organizations, an API key is 

required to validate that the proper credentials have been secured to access the information. These 

credentials are normally an email address and a password, so the organizations know whom is 

using the data and for what purpose, which is most commonly for research and is free to use for 

such. The researcher or developer accesses the API from within the software, which then makes a 
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request to a server for the information being granted access to. The information is returned in 

various types of formats that can be parsed by the developer or system and individual pieces of the 

information separated and used accordingly. An example of what this information looks like when 

it is returned from the server can be seen in Fig. 58. 

 

Fig 58: Numerical Weather Data API Response 

The ground truth needed for sky types were collected by obtaining real images of sky 

conditions that were needed to satisfy the second half of this process; these images were not as 

easy to obtain as the numerical weather data relating to sky conditions. Two approaches were 

investigated. The first approach involved deploying more external web cameras at various 

locations across the region and capturing images over the course of several months. The second 

approach involved using existing public external web cameras that were already deployed across 

the United States. The second method would be much easier to scale and much less expensive to 

implement if such a system of cameras could be located and utilized and permission to use such 

obtained. After researching and investigating user terms, a publicly accessible system of web cams 

was found that could be utilized for research efforts since any images obtained from such would 

not be published, but rather were utilized to train the CNN that was used in the system.  

There are thousands of these types of cameras located across the United States (Breiholz 

et al., 2018). Many belong to universities, many belong to public institutions and schools and many 

belong to government entities; cameras that were specifically available to the public at any time 
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were chosen for this work. Many of these cameras took time-lapse photos in a series of video 

streams and were specifically located in areas that were often free of surrounding buildings and 

obstructions, so the sky and weather conditions could be easily observed. In addition, most publicly 

available cameras such as these often timestamp the images collected. This would prove to be very 

beneficial for matching the images to the ground truth sky conditions obtained from the numerical 

weather data.  

This network of cameras created the collection source for this study, although a process 

would still need to be created for bringing the two portions (images and weather data) of the system 

together. The location of the cameras, the height of their installation and their orientation were 

very important aspects related to the study. If camera locations were oriented in a direct normal 

relationship with the horizon, images captured could more easily be divided into two separate 

pieces: the top half representing the sky conditions and the bottom half representing the extraneous 

material that wasn’t needed for this study. An example of this type of orientation is shown in Fig. 

59 where the upper half of the images free of obstructions in the lower half of the image contains  

the relevancy of what’s being captured in the image, which was not going to be used for training. 

If the installations found the cameras being oriented parallel to the ground and high enough to be 

free of obstructions, the images could be utilized in a manner needed for this study to be successful. 

A semi-automated process was created to retrieve over 300 images daily from ten different 

locations across the United States: 

• Atlanta, GA: Dekalb EMA – pointing East 

• Tucker, GA: Stone Mountain – pointing West 

• Miami, FL: Port of Miami – facing West 

• Phoenix, AZ: City of Phoenix – facing North 

• San Francisco, CA: Port of San Francisco 
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• New Orleans, LA: Louis Armstrong International Airport 

• Panama City Beach, FL: City Traffic Cam – facing South 

• Ocean City, MD: Ocean City Boardwalk 

• Oak Harbor, WA: Traffic Cam – facing East 

• Tulsa, OK: Oklahoma DOT Cam (I-244) – facing West 

 

When visitors visit the webpages that contain these web cameras the users’ browser 

automatically stored references to every image within its internal network queue. At the end of 

every day this network queue was analyzed for each camera at each location and any relevant time-

lapse imagery captured in the form of the URLs that linked to the images. A process was then 

created that collected and stored all the URLs at the end of every day. Because all the public web 

cameras were time-lapse cameras, all images were captured as a series of still frames. The system 

stored the URL of all collected image sources and separated the image names from the relevant 

URLs. As expected, the naming conventions of every image captured by the system also contained 

the relevant timestamp related to when they were captured as still images from the video feeds.  

 

Fig 59: Horizon/Camera Relationship. (The Horizon Line Changes, 2018) 

These timestamps were processed by the system and stored for access later after the images were 

processed. This was the key objective that would later combine the inputs of the network with the 

correlated images, both of which represent ground truth of every given observation. Next, the 
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system separated the URLs and the image names, so the image names could be utilized again when 

saving the images locally. Since the timestamps were being stripped from the image names this 

concept made it easier to reference images when viewing them in a directory. It was easier to see 

when each image was captured just by viewing the image name and not having to retrieve the 

timestamp that was stored in a different location again. The end of the process involved a simple 

system that collected all the URLs and downloaded each image individually to a local data 

structure and paired the image with the related sky condition that was previously obtained from 

the application programming interface specific to the same location where the images were 

collected from. A simple flowchart outlining the system and processes is shown in Fig. 60.  

 

Fig 60: Public Weather Camera Image Collection Process 

For the CNN to train adequately enough to be used for production and deployed for usage with the 

decision support system, ~10,000 images were needed for training and testing. Images were 

collected from the previously outlined process daily over the course of six months. The process 
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was checked every other day to ensure it was still properly functioning and remove any non-

irrelevant images being added to the system. This included images that were taken at night and 

would not be utilized for this study. This figure was much higher than expected and as much as 

20% of the images were sorted into a separate folder for nighttime or late evening analysis. Clean, 

usable images were then paired together with their related timestamps and ground truth sky 

conditions retrieved from the application programming interfaces as previously described. Images 

were then preprocessed and resized using Open CV and the HOG algorithm previously outlined 

in an earlier section. Before and post-processed images are shown in Fig 61. 

 

 

 

Fig 61: Web Camera Image Pre- and Post-Processing (shown cropped) 

6.10. Training and Testing the CNN 

A seven-layer CNN (Fig. 62) was designed for classifying the images, of which 8000 were 

used for training and 2000 used for testing. Minor image augmentation was also used during 
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training to help with image preprocessing to prepare the data more for the CNN. Validation data 

was retrieved from other locations to create a small ~500 image validation set along with the 

related sky conditions for assessing the mean classifications of the model, which represented the 

ratio of correctly classified images to the incorrectly classified images. Twenty-five epochs 

processed over 8000 images using 70 steps per epoch and training time ~8 hours on a local 

workstation produced a model with 95.23%% Accuracy. 

 

Fig 62: CNN Layers 

After training and testing the model and applying the model to the validation set, an 

additional experiment was planned to assess if less images could be used for training the model as 

training time wasn’t optimal enough for the retraining that would likely be needed for production 
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models (Towards Data Science, 2018). The same network layer topology was used except the 

number of epochs were double and the number of images used for training the model was reduced 

by ½. In this experiment, the CNN model performed almost as well as it did previously with twice 

as many images, but the training time was reduced by 40% so a third model was built. The training 

images were reduced by ½ once again; the number of epochs was also doubled to 100 and the steps 

per epoch were increased to 100. This model produced a higher Accuracy than the first model, but 

only a negligible decrease in training time was measured. A last model was built using only 1000 

images for testing, 100 epochs and 100 steps per epoch. The Accuracy of this model was very 

similar (95.48%) as obtained in the first model and training time remained roughly the same.  

It appears that CNNs are sensitive to learning from images processed by the HOG and 

images of this nature (sky types). It is also viable that a lower number of images could be used for 

model building and the same or better accuracy obtained as shown in Table 20 for all trained and 

tested models. This process was accepted as the process to be used for classifying sky conditions 

as ‘sky types’ that would be used for improving GHI prediction methods. 

Table 20: Image Classification Topology Tests 

Number of Images Epochs Steps/Epoch Accuracy 

8000 25 70 95.23% 

4000 50 70 93.14% 

2000 100 100 96.14% 

1000 100 100 95.48% 

 

6.11. Time Series Regression 

This study already validated deep learning models can successfully make hour ahead 

predictions, since time was an available variable a small experiment was planned to ascertain if 

predictions further than one hour ahead could be made using inputs from previous predictions 

made by the system as a time series.  
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Any problem that contains time as an element and some type of data that is sampled at the 

same frequency over such time can be considered a time series analysis problem (Chatfield, 2016). 

Time series regression methods use correlated trends and patterns derived from the time periods 

that are being studied to make forecasts about future values, simulate scenarios, interpret 

seasonality or wider time-based patterns and even provide elements of control to a system 

(Reikard, 2009).  

This experiment was to the test the validity of using a Long Short Memory Unit. This was 

considered a test as there was some risk that this application and the structure of the data might 

not present the sequential structure needed for the LSTM to produce valid results. Timeseries 

regression models need continual and non-interrupted sequences of time to build the correlated 

trend that is needed to make predictions more than one-hour ahead (Reikard, 2009). The main 

concern here with using any type of timeseries regression method was the gap in GHI presented 

by nighttime conditions.  

The same process that was followed for building the machine learning predictive models 

could not be followed in this manner. Rather than utilizing an 8 AM to 4 PM time frame as 

previously studied, an entire day or longer noninterrupted spans of prior predictions would need 

to be available for any timeseries regression methods to be useful, but the hybrid model making 

the predictions wasn’t designed for such. If the LSTM didn’t produce viable results, the GHI 

prediction model itself would be used, as was validated in the previous chapter, for hour-ahead 

predictions. 

 The LSTM used for this experiment was designed in a very similar manner as the previous 

deep learning methods were. It utilized six different layers, two of which were special layers called 

dropout layers, and function just like cross validation in supervised learning. These were necessary 
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because LSTMs are prone to overfit on trends in time series (Gal & Ghahramani, 2016). Mean 

Squared Error was used as the Loss parameter instead of RMSE that was utilized in the previous 

Recurrent Neural Networks and, rather than utilizing ‘Adam’ as the optimizer, RMSprop was used. 

This optimizer is better structured for use on timeseries problems that are prone to overfit and 

normally have diminished learning rates over time even if an LSTM does not experience vanishing 

gradient issues (Krause et al., 2016).  

As previously expressed, the main concern with this type of approach was centered on the 

large fluctuations in the sequence of time being used for the model. The model could utilize the 

lower amounts of GHI as a sequence and train on such, but there was some concern regarding how 

the model might perform when the trend suddenly changed as the daytime hours begin to be 

introduced into the model. This wide variance was a concern that could only be validated or 

challenged with testing. Minor data preprocessing had to be performed prior to the test being 

implemented. Normalization of the data is mandatory when using an LSTM and all zero values 

contained in the timeframe had to be incremented by one unit to prevent division by zero errors 

that occur during normalization. The data was divided into separate test and train sets and the 

training time series was presented to the designed network that used 100 epochs used for the 

training. The LSTM model performed well with some observations when GHI was high, but did 

not adequately predict GHI when the trend was suddenly reduced. This sequencing (Fig. 63) 

variation was too much for the cells in the LSTM to use in an advantageous way and the learning 

rates couldn’t translate the rapid change in variation. The LSTM was not validated as a useful 

method to use for time series regression so the deep learning multiple regression model would 

continue to be used for hour ahead predictions. 
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Fig 63. LSTM Results 

6.12. Decision Support Systems (DSS) 

This section work outlines the design and implementation of a dashboard and decision-

support system that was driven by data provided by the hybrid solar irradiance prediction method 

derived from parts one and two of the project. The decision-support system also utilized numerical 

weather data from a local collection source and sky images from the new collection system.  

Decision Support Systems are often found on the user side of data-driven systems such as 

the GHI prediction model and the overall system that has been described and implemented in this 

work. Decision Support Systems are created to solved both semi-structured and unstructured 

problems. The DSS that is used in this process solves structured problems as the data is being 
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provided to the system and simple decisions are being made about outcomes to assist users and 

provide feedback about the system. Most decision-support systems are divided into two processes: 

decision-making and problem-solving (Power, 2002). The decision-making portion of the process 

utilizes programmed intelligence that can be driven by algorithmic processes or simple heuristics 

and is controlled by the overall system and interface design (Bonczek et al., 2014). Both objectives 

support, power and deliver any decisions made by the system. The problem-solving portion of the 

process involves both implementation and monitoring. Implementation in a DSS is an extra layer 

of interface system process that allows the system to not only assist with making decisions, but 

also utilize the same decisions to make automatic adjustments to systems. 

The DSS created for this work did not contain an implementation objective. However, it 

did contain a monitoring section that expressed general information about the health and needs of 

the GHI prediction system. This type of information can be helpful to users and will provide about 

any system needs.  

There are three different solution types that drive DSSs: optimization, sacrificial and 

heuristics (Bonczek et al., 2014). An optimization solution involves a programmatic approach to 

finding the best solution. More recent DSSs take this approach and utilize genetic algorithms or 

evolutionary computing to help make decisions based on input provided from various sources 

(Pearl, 2014). These decisions are often based on and derived by previous best practices, but in a 

programmatic way that supports drilling down to a minimum number of conclusions. The 

sacrificial method or model involves presenting the user with an acceptable decision, which might 

not be most optimal, but often can be utilized for the purpose it is being derived for (Gottinger & 

Weimann, 1992). The last solution type is a solution that power the DSS used here, which is driven 

by commonly accepted methods or procedures that normally would otherwise derive an acceptable 
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solution. This heuristic type approach is commonly found in simpler systems (Power, 2002) that 

are data-driven. These data-driven systems utilize the output from systems such as the GHI 

prediction model and proven ‘rules of thumb’ to inform the user about simple decisions. No 

evolutionary computing is utilized in this type of DSS as was is driven by a simple system of 

conditional statements that are programmatically implemented and based on the output of the GHI 

system.  

 There are numerous factors to consider when evaluating problem-solving and decision-

support and there are often multiple objectives involved in making decisions along with possible 

alternatives and both intended and unintended actions. In addition to this decision-making 

capability, most DSS also provide options reports and visualizations to the user. This is especially 

prevalent in data-driven decision based systems such as the one being presented here. Systems 

must offer the user not only a general understanding of the data being presented, but also an easy 

way to understand what data is being visualized and how it can be used best (McLeod & 

Schell,2007). More event-driven DSS provide alternatives and options for simulations and 

different scenarios, but this DSS (Fig. 64) did not provide such options as the GHI prediction 

model was built to predict GHI at any given time and location and predict GHI values in the future; 

this is primarily the type of information that is conveyed by this system, along with basic 

informative type displays.  

6.13. System Requirements 

 When designing interface-based system such as this is paramount to understand the user 

requirements before any design or conceptualization occurs (Adams, 2014). This DSS was 

designed and implemented primarily for the use by electrical production companies, but could also 

be used by commercial installers and residential adopters. These three audiences all have different 
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needs and different levels of understanding regarding GHI and how the system works. While this 

constraint provided some level of limitation over a more generalized approach to design, six high-

level objectives that were common to all three audiences were conceived as follows: 

1. Gather, display and update numerical weather data every hour (max) 

2. Collect and display sky-based imagery from a local source every hour (max) 

3. Show GHI predicted and actual values every hour (max) 

5. Make simple decisions about electricity production based on GHI predictions  

6. Be easily ported to mobile applications using a web application framework 

 

 

Fig 64. DSS Processes 

6.14. User Requirements 

Decision-Support Systems provide a great tool to assist organizations and individuals with 

day-to-day operational support but these types of systems also require a well-designed interface 

for users to interact with and obtain information from. Without such an interface, DSS would not 

have a vehicle for delivering and displaying the information that is used to help users make 

decisions. The specific type of interface that was used with the new hybrid GHI system is called a 
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dashboard; the name is taken from the similarities between its functionality and those found in 

automobile’s dashboard (Few, 2006). Dashboards represent an interface that can properly convey 

a collection or group of visualizations and provide a presentation structure that is often restricted 

to a single page. Dashboards are commonly used for this type of application and are often used as 

a standalone tool for quickly accessing and using frequently needed information (Turban et al., 

2013). There are two different types of dashboards: operational dashboards that convey important 

information for time sensitive needs and analytical dashboards that simply provide up-to-date 

information to users (Phippen, Sheppard & Furnell, 2004). This information is often data-driven 

and relevant in everyday tasks. The dashboard type used for this system is somewhat of a hybrid 

approach. Both types of methods would be needed as operational information and analytical 

information needed to be satisfied in the design requirements of the system, which were as follows: 

1. The design would need to be web-based and reside on one page 

2. The overall structure of the dashboard would need to be relevant to the needs of the user 

and the requirements of the system as previously outlined 

3. Smaller areas of the dashboard needed for educating the user regarding what type of data 

is being displayed and what it can be used for 

4. A section must be present in the dashboard where data can be visualized in a high-level 

summary 

5. The dashboard design must be easily ported to mobile devices 

 

6.15. Design and Testing 

The design of many dashboard systems that are data-driven is often limited to the 

technology surrounding presenting the relevant areas of visualizations that are needed to help users 

make decisions. There are many open source dashboard frameworks available that meet the user 

and system requirements for this project so many of the design aspects could easily be met by 

utilizing an open source solution that was already available. However, the backend processes of 

data analysis, processing and information delivery would still need to be created to populate any 
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solution that was chosen. A predesigned open-source solution that would satisfy all design and 

usability requirements was chosen. To test the overall operation of the DSS and the system 

dashboard, a test heuristic was established and a sample test of values created so the system would 

have some data to operate on as it was not yet connected to the GHI prediction model. Using a 

simple heuristic of less than 25% of the maximum amount of GHI being available in an area as 

being the criteria for production, the dashboard and decision-support system were deployed to a 

local server and connected to a database. The system was programed to retrieve information from 

the database every 60 minutes, which represented the same time frequency as the GHI prediction 

model would be using. A small Python script generated new random data and updated the database 

and the DSS retrieved the new information from the database and populated the dashboard as 

required. This was a simple test and validation method mainly just to check the functionality of 

the network connectivity paths between the DSS and the database that was going to be further 

utilized with the GHI prediction model when it was online. Testing and validation performed as 

required so the only objective left to add and test was a time series regression method. 

6.16. Hybrid GHI Process Testing and Validation 

The main parts and processes of the system were designed, created, tested and the results 

validated and all objectives surrounding image collection, preprocessing and classification having 

been satisfied or otherwise addressed. A viable multiple regression model that utilized ‘sky types’ 

was validated to accept data and images from the CNN; the complete system now had to be tested 

and validated as a working system of components and processes. Its customary to temporarily 

deploy machine learning models that have been trained, tested and validated to assess how well 

these will generalize to data while in production. This process involved deploying the model into 

a server framework and building a web application backend environment that assisted the 
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processes with delivering information from relevant application programming interfaces into the 

model in the form of inputs. This process also involved delivering the classified image labels from 

the same classification predictions into the multiple regression model. Both objectives served as 

features for making predictions during deployment.  

To test the viability of the complete system, a smaller deployment framework, Flask, was 

installed on a local server and served as an API endpoint that sent information to and from the 

trained models. This process created the backend functionality for what is commonly referred to 

as a REST Service and is shown in Fig. 65. The trained models (Image Classification model and 

Multiple Regression Model) were sent information from a web cam and its related location’s 

numerical weather data through this architecture. The regression model used the sky condition 

label produced by the classification model as a feature and made a GHI prediction; the same 

framework delivered a response to DSS. During testing, a simple terminal interface served as 

placeholder for the DSS.  

.  

Fig 65: REST Web Service. (Phpflow.com, 2012). 

The deep learning model were serialized (made ready for use) and deployed into the new 

environment; testing was done using a single image and a single API call to retrieve of the related 
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numeric weather data. This was completed with data from the local NWS office for testing the 

system, but those aren’t located throughout all the regions where images were being captured so a 

process like ‘crowd sourcing’, or collecting data from multiple public sources at once, was used to 

obtain local GHI readings that were used for obtaining the ground truth needed for validating the 

predictions made by the system. 

There are thousands of publicly accessible weather stations deployed by hobbyists around 

the United States and some of these stations measure GHI as shown in Fig. 66, but most do not 

contain sky conditions. Weather Underground is a commercial weather service that provides a 

platform for amateurs and hobbyists to deploy their own weather stations on in exchange for 

openly sharing their weather data with the public.  

 

Fig 66: Publicly Accessible Weather Station Reading (Atlanta, GA) 

Weather stations with the capability of measuring GHI were found in each of the regions as close 

to the source of the images as possible to capture local sky conditions and GHI from two related 

locations.  
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The validation process was tested manually with 100 different API calls and 100 different 

classified images before the models were put into production in an automated system that made 

API calls every 60 minutes at a single location; this was done between the hours of 8:00 AM and 

4:00 PM. This was necessary to check the variance and accuracy of the models; the assessment 

metric used for validation was RMSE and predictions were compared with hourly forecasted GHI 

from the GFS. This metric was calculated from the predicted GHI and the actual GHI retrieved 

from the ground truth weather station at the same location an hour later than the predictions were 

made. Validation results were monitored to ensure that the system was working properly; the 

validation results are shown in Table 21. 

Table 21: Hour Ahead Average RMSE Values 

Prediction Time = T New Hybrid Model GFS Forecasted GHI 

T + 1 28.74 W/m2 32.15 W/m2 

T + 2 27.26 W/m2 45.10 W/m2 

T + 3 29.16 W/m2 51.36 W/m2 

T + 4 27.59 W/m2 22.15 W/m2 

 

After validating the system at a single location, the system was tested at scale over the course of 

seven days making hour-ahead predictions using weather conditions forecasted by the GFS and 

sky imagery captured at the current prediction time T. MAPE was used to assess the differences 

between the predicted values made at time T for time T+1 and the actual values measured later at 

time T+1; the results are shown in Table 22; MAPE was 2.4%. 

6.17. Conclusion and Lesson Learned 

Phase III of this work (Fig. 67) uncovered many new findings and some failures, both of 

which can be useful for future researchers in this same area. The first trial of deploying the image 

collection system resulted in collecting images not useable for training the CNN. The design of 
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the device was optimized for deployment in exterior weather conditions with a minimal footprint 

and minimal maintenance being high-level requirements as previously studied imagers were very 

large and utilized an internal workstation for image processing and camera control. 

Table 22: Average MAPE (7 Days of Testing) 

Location Hour-Ahead GHI Predictions 

Atlanta, GA: Dekalb EMA 9.82% 

Tucker, GA: Stone Mountain 8.67% 

Miami, FL: Port of Miami 11.15% 

Phoenix, AZ: City of Phoenix 7.23% 

San Francisco, CA 12.16% 

New Orleans, LA 10.03% 

Panama City Beach, FL 11.02% 

Ocean City, MD 13.32% 

Oak Harbor, WA 9.87% 

Tulsa, OK 12.65% 

 

Although the image collection process did result in failure, the overall design of the unit 

was successful as the Raspberry Pi could successfully be deployed and operate in external weather 

conditions as required and do so over an extended period. The external hemispheric dome also 

caused numerous issues during testing, most of which were due to its shape interacting directly 

with the sun like the lenses in a pair of glasses. Not only did the shape cause magnification and 

distortion of the images, but captured images also contained numerous lens flares captured as the 

Sun’s rays passed through the dome throughout the day. 

The second trial of the image collection process successfully validated that an inexpensive 

external camera mounted 20’-0” above the ground and oriented parallel to the ground could 

successfully be used to collect images for training a CNN to correctly classify sky conditions. In 

addition, it was discovered that HOG worked very well when classifying sky type images 

processed by HOG with a CNN. Also, a lower number of images could be used to train the 

network. This will make the training process more optimal and take less time than traditional 
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methods where no image processing is done prior to training. Part three of this work also validated 

a new hybrid approach to GHI prediction can be successfully implemented with the use of local 

images serving in the place of sky conditions.  

 

Fig 67: Final System Design 

The hybrid GHI prediction model was also validated for the use in making hour-ahead 

predictions with an average error of 1.28% over one day from one location. This new process was 

validated in various locations across the United States with a Mean Average Error of 10.59%, 

which is better than similar approaches previously studied that did not generalize to other locations 

and were only applicable to clear sky days.  

This new hybrid method is also relevant to any location and any weather conditions. This 

method (Deep learning Classification and a Deep Learning Multiple Regression Model) can also 
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be scaled and deployed anywhere numerical weather data and local images can be obtained; no 

satellite data is needed. This not only makes the system less expensive to deploy, but also ensures 

model retraining requirements will be much lower over time as the outcome variance is increased 

and the model trained with more images.   
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORK 

This research was performed to increase the optimization of GHI prediction through the 

design and implementation of a new hybrid prediction system that utilized sky conditions as a 

replacement variable for cloud types identified by overhead satellites. The current processes can 

not only be optimized with this better replacement feature but can also be made more relevant to 

specific locations rather than regional forecasts.  

Phase one of this work began by studying the relevancy and sensitivity deep learning 

methods have on numerical weather data that is often used for predicting Global Horizontal 

Irradiance. To make a comparison between current methods and deep learning methods, baseline 

classification and regression models were created using supervised learning algorithms. This was 

also done to establish success metrics that could be compared to those derived from previous 

studies. A deeper understanding of the data was also presented in this work; this was done to 

provide a foundation and understanding of the numerical weather data involved in these processes 

and to better understand the types of supervised learning and deep learning algorithms that could 

be useful to improving this area.  

After performing exploratory data analysis and establishing supervised classification and 

regression baseline models and metrics, deep learning models were built using the same data. This 

baseline experiment provided evidence in the form of performance metrics with lower RMSE and 

higher R2 values in the deep learning regression models than the metrics ascertained by the 

regression models built from supervised learning methods. Metrics were compared to other studies 
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and RNNs outperformed current supervised methods used in GHI prediction. This was also the 

case when comparing classification methods from both processes; a higher Accuracy was obtained 

using the deep learning models. In both classification processes, the dependent variable was 

partitioned to create four categories representing different ranges of GHI values. It was necessary 

to create classification models to ascertain if this partitioning would impact the optimization of the 

prediction models and prior studies had also used this method. The major finding from this portion 

of the work was that RNNs outperform supervised learning methods by as much as 60% in 

regression and 10% in classification models. The findings surrounding discretization can also be 

useful for creating processes that are more generalization and can be used for general estimates 

where ranges of GHI are more useful or enough to be beneficial.  

Future work includes the further investigation of different substitute features as well as the 

investigation of the relevance and correlation the elements of time have when compared only to 

GHI and not using any of the remaining numerical weather data. It could be likely that Recurrent 

Neural Networks could work using only time in the feature space, but this will need to be 

investigated further before it can be validated. 

Current hybrid GHI prediction methods utilize numerical weather data and external data in 

a combined process. In previously discussed works, these hybrid systems most often utilized data 

related to sky conditions, clear sky indices, angles of the sun and other meteorological variables. 

This work, which focused on a new hybrid method, proposed using a new feature as a substitute 

for the satellite-based and satellite collected cloud types that are prevalent in current solar 

prediction models. This cloud type feature was relevant to the predictive capacity of the models as 

was proven by the increase in error in the models when it was removed. To find a suitable 

replacement for this feature, a new variable that was inexpensive and easy to obtain was proposed. 
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This new variable, referred to as sky types, was directly correlated to sky conditions that were 

provided from regional offices of the National Weather Service in the form of labels. To ascertain 

if sky condition labels could be utilized or substituted for cloud types, new deep learning models 

using Recurrent Neural Networks were built using sky conditions as a replacement feature. As was 

previously done, classification and regression models using deep learning methods were created 

to ascertain if sky conditions would match or outperform the previous feature representing cloud 

types.  

While classification methods did not validate the use of sky types in this manner, multiple 

regression deep learning models validated that the use of sky types was not only a valid substitution 

for cloud types, but also a more optimal feature for training as a lower network topology could be 

used to obtain an optimal RMSE. Sky conditions can be used in the place of cloud types and not 

only is this a better feature, but it is easier and less expensive to obtain and can be collected at any 

location. This makes the prediction of GHI availability relevant to the same location. 

To apply the use of sky types in a GHI hybrid prediction model, a system had to be designed 

to derive the same sky type labels that were provided by the regional offices of the National 

Weather Service and obtain a suitable replacement for their use. This new system would include 

an image collection system and a system for processing images. A system for classifying images 

as each sky type label, a system for collecting numerical weather data specific to a location instead 

of regional areas and a control system for information delivery and processing were also 

implemented. Lastly, a user based system for making decisions and presenting the information was 

created and deployed. 

To establish a process for directly correlating labels provided from the National Weather 

Service with real time images from the same locations, the new collection system needed to capture 
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images at regular intervals that directly correlated with sky condition labels observed at the same 

interval and reported by the National Weather Service. These frequently reported sky condition 

labels were used as outcomes for a Convolution Neural Network and the directly correlated, real-

time images from the sky were used as the related inputs of the Convolution Neural Network. This 

network was trained to learn the ability to classify real-time images being delivered to the hybrid 

model; this would remove the need for any further labeling provided by the National Weather 

Service. This new system can classify sky conditions on its own based on the rules it learned during 

previous training. These new classifications served as sky types for the new hybrid GHI prediction 

model. 

The image collection system implementation process contained two different trials; the 

first trial failed and the second trial was successful. Modifications between the trials included 

moving from a ground-based collection system to a scaled system that utilized publicly available 

equipment that was easily accessible, already in place and met the predefined requirements of the 

collection system. The second trial process for image collection was validated using data from ten 

different locations across the United States. Minor image preprocessing was implemented to resize 

the images and create a region of interest before utilizing the images for training and testing a 

CNN. The results were acceptable, but further image preprocessing was performed and the 

Histogram of Oriented Gradients (HOG) tested to ascertain if any model improvements could be 

gained.  This new method was found to be impactful and was validated for use by an increase in 

classification Accuracy. In addition, a lower network topology and a lower number of images were 

required for obtaining similar results. Future work in this area is centered on process optimization 

and a scalability. This system has been tested on a small number of locations and will need more 

locations to prove the potential impact any possible distributed collection might have on the 
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model’s classification capacity or ability. Major findings in this portion of the work included 

validating HOG as being beneficial for preprocessing images used for training a CNN when used 

to classify sky conditions; its implementation increased classification Accuracy, reduced the CNN 

design requirements and reduced the number of images and time required for model training.  

After validating the new image collection process, a process for collecting numerical 

weather data from the same locations where the sky condition images were collected from was 

designed and implemented. Since regional National Weather Service offices provided valid 

numerical weather data and local weather data was needed, a nationwide network of amateur 

weather stations was utilized to ascertain localized, specific numerical weather data. This numeric 

data was collected from the same 10 locations where the relating images were taken.  

These two local collections of data, sky condition images and numerical weather data, 

served as the inputs for the new hybrid GHI prediction system. A collection and distribution 

process to ensure adequate and scalable information retrieval and delivery was designed and the 

new GHI hybrid prediction model populated with real-time information collected from both 

sources. The system was validated with real-time ground truth GHI amounts from the same ten 

locations with a total Mean Error of just over 10% and tested for time related predictions at a single 

location with a MAPE of 2.40% and an average RMSE of 41.26 W/m2. This exceeds both 

Amrouche & Le Pivert (2014) and Chu et al (2014) and is better than GFS forecasted GHI on high 

weather variability days (as much as 32% when used hour-to-hour at a single location). Findings 

from this portion include the validation of a localized hybrid GHI prediction model implemented 

using locally sourced numerical weather data and real-time images. This new hybrid system is not 

constrained to clear sky days and can be used anywhere numerical weather data and images can 

be captured. 
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Future work in this are involves creating a process for acquiring ‘sky types’ from any 

images embedded in social media feeds that include geotags and timestamps. This method will 

also require a new feature extraction process to extract only the sky relevant data from the images 

and retrieve the needed numerical weather data from the weather station located closest to the 

geotagged post. In addition, additional locations for collecting real-time sky condition images also 

need to be added to the model to create a better range of generalization capacity based on the 

learning obtained and represented by images from other areas of the country. 

The system and process utilized local resources on a local server and have not been tested 

for large-scale production, although it was built with such as a requirement. The underlying deep 

learning libraries that were used in this study have been widely adopted and used in large-scale 

systems and the hybrid GHI prediction model is a candidate for such. Minimal modification would 

be needed to the backend systems that were designed for this work to place it into production in a 

large-scale application; future work will be done to satisfy this requirement. In addition, the same 

new hybrid model that was described here could also be used to predict sky conditions instead of 

GHI. This introduces the possibility of creating a second model that could be utilized to predict a 

feature for the GHI hybrid model. Future work is planned around this type of implementation to 

ascertain if a timeseries classification model can be created to predict not only GHI from the hybrid 

approach but also the type of upcoming sky types. These candidates, along with their deployment 

in a distributed network, would optimize GHI prediction across an entire region and would be 

derived from a collection of local predictions from the same region. 

An LSTM unit was tested as a possible candidate for multistep timeseries regression after 

the hybrid model was validated. This new model used predictions from the new hybrid prediction 

model as its inputs and train using the relationship between every time step and the amount of GHI 
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as sequences. A second approach utilizing the hybrid model for timeseries regression was 

established as a secondary plan as there was high risk associated with using a complete days’ worth 

of data, which included high variance. The LSTM unit was found to not be a good candidate for 

multistep timeseries regression as the model performed poorly due to not being able to ascertain 

and learn the strong variances that were present and presented by the lower GHI values in the data 

set. To satisfy the time series prediction requirement of the system, the hybrid GHI prediction 

model would be used to forecast relative GHI since the three elements of time were already features 

in the model and it was an RNN. This prediction is not based off trend or seasonality as many 

timeseries regression models are, but is related to the three elements of time serving as features 

and related GHI as their outcomes; the combination of such creating the sequence needed for the 

RNN. 

A decision support system was designed and implemented to not only receive output from 

the hybrid GHI prediction model, but also use this output to assist users with making decisions. 

These decisions were mainly centered on commercial applications directed at electricity producers 

making decisions surrounding electricity generation at any given time based on GHI forecasts that 

are made by the model. This decision support system was created and delivered in a dashboard 

type format that was displayed on a single webpage and with a framework that was easily ported 

to a mobile application. This would allow the system to be adopted and used by consumers and 

installation technicians as well as stakeholders at energy production facilities that may want to 

monetize a new process. Future work in this area includes developing a multiplatform mobile 

device application that also has the capability to crowd source local images and geolocation 

information for the system. This will provide additional data for the hybrid model as the mobile 

application is used. 
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