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ABSTRACT 

The mammalian brain is the most complex organ. Modern genetics has shown that the 

complexity of brain structures and functions is ultimately encoded in the genome. As the primary 

functional interpretation of genome, a systematic study of transcriptome promises to enlighten 

how structures and functions are supported from the molecular scale. Fast advance in genomic 

information and throughput of technologies allows large-scale survey of transcriptome. The 

technique of in situ hybridization offers direct visualization of gene expression at cellular 

resolution. The spatial correlation among genes is closely associated with different phenotypes of 

anatomic regions. On the other hand, the correlations among transcripts allow us to investigate 

how sets of genes act in collaboration to control biological processes. However, how to 

unbiasedly derive the genetic-neuroanatomic correlations from the high-dimensional 

transcriptome data remains challenging. This thesis focuses on developing methods to connect 

genetics to neuroanatomy. To answer whether gene expression patterns can refine the 

architecture of the brain, I proposed dictionary learning and sparse coding (DLSC) as a tool 

because it considers the sparse structure of gene expressions. Voxels with similar coexpression 

patterns form tight clusters. Many clusters correspond well to neuroanatomy while others 

revealed finer delineation of regions previously considered homogeneous. Regionalized 



expressions in fiber tracts and ventricular systems have been discovered and reported for the first 

time. DLSC is also proven effective in grouping genes into gene coexpression networks (GCNs). 

The GCNs are crucial to understanding how genes act jointly in defining the anatomy of the 

brain. Gene ontologies and comparisons with curated gene lists with known functions confirmed 

the functional roles of these networks. One standing issue for the above-mentioned work is 

incomplete data. To address the problem, I designed a volume completion network accompanied 

with customized training scheme. The network successfully completed the large missing region 

on a slice as well as one or two consecutive missing slices. On the completed data, I seek out a 

probabilistic-based model Restricted Boltzmann Machine and its extension, deep belief network, 

to construct a hierarchical transcriptome anatomy. A fine-to-coarse organization emerges from 

the network layers, providing a multi-resolution transcriptome architecture. 
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CHAPTER 1 

Introduction 

1 What is Transcriptome 

Transcriptome refers to the entire set of RNA molecules, including mRNA, rRNA, tRNA, 

and other noncoding RNAs. Among them, mRNA plays the most important role because they 

encode proteins. Virtually all cells have the same copies of DNAs. It is the level of gene 

expressions that differentiate cells into different types and functions. For a set of instructions 

encoded in DNA to execute, these DNAs need to be transcribed, or in other words, readout, into 

transcripts. As a result, an analysis of the entire collection of transcripts gives us information 

about the gene activity inside the cells, including which transcripts are active, their expression 

levels and the novel splicing sites.  

2 Why is Transcriptome Important in Neuroscience 

2.1 Understand cortical organization 

Transcriptome in brain plays a crucial role in understanding the cortical organization and 

the development of brain structure. It provides a relatively stable platform for the research of 

cortical organization because the transcriptome is not altered much by behavioral manipulations 

or cognitive states, but varies strongly between anatomical locations, cell types, and 

developmental stages (Lein, Ed S. et al., 2007). Previous research has revealed extensive 

regional heterogeneity of transcriptome. A number of molecular markers, such as calcium-

binding proteins and growth factors, showed distinct patterns that can be utilized to distinguish 
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between field CA1 and field CA3 in adult mouse and rat brains (Woodhams, Celio, Ulfig, & 

Witter, 1993). Tole et al (Tole, Christian, & Grove, 1997) further discovered that two field-

specific genes display unique patterns distinguishable between CA1 and CA3 a week before the 

distinctions in morphology are displayed. Later, with the improvement of DNA microarray and 

in situ hybridization (ISH), a large number of gene expression patterns were reported to mirror 

the gross anatomical partitioning in hippocampus and some region-specific gene expression 

patterns can delineate the brain into finer subdivisions (Ed S. Lein, Zhao, & Gage, 2004; X. Zhao 

et al., 2001). As the current preeminent methodology in transcriptomics, the explorative single-

cell RNA sequencing (RNA-Seq) (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008) 

showed its power by classifying cells in the mouse somatosensory cortex and hippocampal CA1 

region into 47 subclasses (Zeisel et al., 2015). The discovery of the region-specific and cell-type 

related genes lays the foundation for the elucidation of the detailed mechanism that controls the 

specification and differentiation of areas and brain development and functioning, as well as 

genetic dysregulation in large. 

2.2 Common ‘default gene network’ 

In contrast to Section 2.1, whose goal is to understand the spatial distribution of genes as 

a function of structures, this line of research aims to identify the core transcriptional machinery 

conserved across individuals. Faced with complex patterns of expression of thousands of genes, 

a Gene Coexpression Network (GCN), representing the interactions among genes, is often used. 

Previous studies have shown that genes displaying similar expression profiles are very likely to 

be involved in the same transcriptional regulatory program (Allocco, Kohane, & Butte, 2004; 

Mody et al., 2001), encode interacting proteins (Ge, Liu, Church, & Vidal, 2001) or participate in 

the same biological processes (Tavazoie, Hughes, Campbell, Cho, & Church, 1999).   



 

3 

An establishment of ‘default gene network’ allows us to focus on the highly conserved 

features. For example, one pioneering work by Stuart et al (Stuart, Segal, Koller, & Kim, 2003) 

is a comparative study on the microarray data of humans, flies, worms, and yeast. The results 

showed that multiple groups of conserved genes are associated with core biological functions 

that are essential to viability. Knowledge of these key groups is an essential step to 

understanding the overall design of genetic pathway. Efforts also went toward deriving common 

GCNs in the human brain (Michael Hawrylycz et al., 2015; Oldham et al., 2008). Despite 

significant variations between individuals, preserved clusters of genes corresponding to discrete 

neuronal subtypes emerged from the comparisons of GCNs in different subjects. These 

consensus groups of genes consistently found in different subjects across brain regions provide 

strong evidence of a link between conserved gene expression and functionally relevant circuitry. 

The common clusters of genes can also be compared on a temporal direction. Kang et al. (Kang 

et al., 2011) investigated human brain transcriptome over 15 periods from embryo to late 

adulthood collected from 57 human brains. They identified two temporally regulated clusters of 

genes. By comparing with the curated list of genes that are the indicators of various 

neurodevelopmental processes, they discovered common neurodevelopmental trajectory patterns 

(Kang et al., 2011). 

With a common template set up, the differences due to developmental stages, species, or 

between healthy and diseased brains (Michael Hawrylycz et al., 2015; Kang et al., 2011) are also 

available for study. Bakken et al (Bakken et al., 2016) compared the expression trajectories in the 

frontal cortex among rat, rhesus monkey and human. They reported a human-specific 

developmental trajectory that is attributed to 9% of genes, featuring prolonged maturation. In 

another study by Voineagu and colleagues (Voineagu et al., 2013), comparisons were also made 
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between transcriptome of brain tissues of 19 autism patients and 17 healthy controls. The results 

showed distinct regional patterns at frontal and temporal cortex between patients and controls. 

The highly correlated clusters of genes are enriched for autism susceptible genes. Further, the 

following RNA-Sequencing of selected gene candidates demonstrate the splicing dysregulation 

as the underlying mechanism of the disorder.  

2.3 Integration with other modalities 

The complexity of brain structures and function is ultimately encoded in genes. As a 

result, transcriptome serves as a central modality that complements other meso-scale or 

macroscale modalities. One good example is neuronal cell-type classification. Cell type 

classification of neurons has been a fundamental, long-standing task in the neuroscience field 

because a clear taxonomy is the foundation for understanding how brain works or fail to work 

(Migliore & Shepherd, 2005; Seung & Sumbul, 2014; Zeng & Sanes, 2017). Yet the diverse 

molecular, morphological and physiological properties of neurons make it extremely challenging 

(Migliore & Shepherd, 2005; Zeng & Sanes, 2017). Traditionally, neurons are classified by a 

single feature, such as morphology or electrophysiology. Later on, it is proved that an integration 

of critical features can better capture the complex functional phenotypes (Migliore & Shepherd, 

2005). In a study of somatosensory cortex of juvenile rat, the morpho-electrical characterization 

assigned all excitatory neurons into one single category (Markram, 2015). In contrast, single cell 

RNA-Sequence profiling of genes from mouse visual cortex successfully classified 19 subtypes 

(Tasic et al., 2016). Thus, transcriptomic profiling of cells brings information from a different 

dimension to the classification task. 

Other researchers referred to gene expressions as a means of understanding how the 

molecular underpinnings correlate with the neural properties such as connectivities and electrical 
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profiles. One of the heavily studied topics is how the functional connectivities are supported 

from molecular scale (Fakhry & Ji, 2015; French & Pavlidis, 2011; Wolf, Goldberg, Manor, 

Sharan, & Ruppin, 2011). Multiple researchers reported that a significant correlation exists 

between gene expressions and neuroanatomical tracing profiles (Fakhry & Ji, 2015; French & 

Pavlidis, 2011; Wolf et al., 2011) in rodent as well as functional resting state activity and 

transcriptome in human (Michael Hawrylycz et al., 2015; G. Wang et al., 2015). Fakhry et al. 

(Fakhry & Ji, 2015) went a step further and showed that the gene expressions can accurately 

predict the connectivity with an accuracy of 93% on the voxel level. The ontologies of the genes 

that contribute most to the prediction are related to neuroanatomical connectivity. Relatedly, 

Toledo and colleagues (Toledo-Rodriguez et al., 2004) reported that single-cell gene expression 

can also predict the electrical properties of neurons. Since the transcriptome difference is the root 

cause for the difference in the phenotypes, linking them at various properties is a fruitful avenue.  

3 Technologies that quantify transcriptome 

Most of the commonly used transcriptome technologies fall into the categories of 

hybridization-based methods and sequence-based methods. For hybridization-based methods, it 

relies on the hybridization reactions between two DNA strands, where one strand is specifically 

matched to the complementary nucleic acid strand via hydrogen bonds. Sequence-based 

methods, on the other hand, directly sequence the transcripts.  

3.1 Microarray 

Microarray has been one of the dominant transcriptional technologies since its first 

introduction in the 1990s. The ability of processing tens of thousands of transcripts 

simultaneously at a relatively low cost make it the most widely used tool for large-scale 

transcriptome analysis. Microarray has been used for various studies, including characterizing 
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differentially expressed genes across different conditions, exploring genetic abnormalities in a 

range of tumors (Veltman, Fridlyand, Pejavar, & et.al., 2003), profiling physiological functions 

of unknown genes and uncovering transcriptional regulation in human and animal model (Su et 

al., 2002).   

Microarray is a typical example of the hybridization-based methods. The sample 

containing mRNA of interest is first isolated, reversed transcribed and copied into stable double 

stranded complementary DNA (ds-cDNA). Then these ds-cDNA samples are fragmented, 

fluorescently labelled and incubated with the probes on the microarray. Each probe on the array 

is a fragment of predefined complementary oligonucleotides of known DNA or RNA sequence. 

The abundance of the transcripts in the sample is determined by the fluorescence intensity bound 

to the probe.  

The key limitation of this technology is that it relies on previous knowledge of genome 

sequence. The quantification of transcriptome is only restricted to the genes arrayed in a probe 

and any sequence beyond the pre-defined genomic sequence is not detected. Another concern is 

the high background noise because of cross-hybridization, which undermines the accuracy of 

microarray. The high level of noise specifically poses a challenge to accurately measure the 

transcript in low abundance. Relatedly, due to the high sensitivity to the experiment 

environment, comparisons across different experiment set-up, time points, different laboratories 

or on different microarray platforms is often difficult and requires complex normalization 

methods (Irizarry et al., 2005; Jaksik, Iwanaszko, Rzeszowska-Wolny, & Kimmel, 2015; 

Johnson, Li, & Rabinovic, 2007).  
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3.2 RNA-Sequencing (RNA-Seq) 

Sequence-based approach, as the name suggests, measure the cDNA or RNA sequence. 

With the advance in next generation sequencing technology (Metzker, 2010), it is possible to 

quantitatively analyze the RNA molecules through sequencing on a large scale and this 

technology is named RNA-Seq. The methods for RNA-Seq is different from microarray. Rather 

than incubate with the probes on the microarray, the samples that contain RNA or ds-cDNA are 

sequenced. The level of transcripts is reported as the number of reads within the gene bounds, 

normalized by sequencing depth.  

As a sequence-based transcriptome profiling technology, RNA-Seq enjoys many 

advantages. First, RNA-Seq is not constrained to pre-defined genome sequence. In the scenario 

where no reference genome is given, it can assemble the sequence de novo and provide both the 

sequence as well as the expression counts for each transcript. This property makes RNA-Seq 

very appealing to transcriptome studies of non-model organisms and research that characterize 

alternative splicing patterns (Trapnell, Pachter, & Salzberg, 2009) or gene fusion (Maher et al., 

2009). Second, RNA-Seq quantifies the expression by counting the exact match between a DNA 

sequence and the region of genome. Therefore, it has a much broader detection range given little 

background noise or signal saturation. Multiple studies that compare the results obtained using 

microarray and RNA-Seq showed that RNA-Seq provide better estimates to the absolute 

transcript levels (S. Zhao, Fung-Leung, Bittner, Ngo, & Liu, 2014).  

It is worth mentioning that single-cell RNA-Seq (sc RNA-Seq) has been particularly 

useful for neuronal cell type classification (E. Lein, Borm, & Linnarsson, 2017; Zeng & Sanes, 

2017). Cells dissected from neuronal tissues of a specified brain region are sorted and further 
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sequenced. The inventory of the transcriptome profiles of cells provide a key component useful 

for cell typing. 

3.3 In situ hybridization 

In situ hybridization (ISH) is a powerful technique to localize a specific DNA or RNA 

sequence in a tissue. It is achieved by hybridizing pre-designed complementary oligonucleotide 

probes, which are fluorescently or calorimetrically labeled. A visualization of these hybridized 

probes shows the spatial distribution along with the level of expressions of the sequence of 

interest. Unlike the non in-situ approaches that require samples removed from the native 

environment, ISH is an image-based approach and thus naturally preserves the spatial location of 

RNAs within a cell and the organization of cells within tissue. 

 The spatial information of transcriptome is crucial for probing many biological 

questions. For example, to understand the molecular underpinning of the different phenotypes of 

subregions in hippocampus, Lein et al (E. S. Lein, 2004) and colleagues first used microarray to 

locate the genes that are regionally expressed in the hippocampus regions. Further with ISH, they 

visualize the spatial distributions of the selected gene expressions and reported that gene 

expressions respect the cytoarchitectural boundaries in hippocampus. ISH is also a powerful tool 

to understand the linkage of presence of candidate genes in a brain region to a brain disease 

because many brain diseases show strong spatial organizations. In the work by Cohen et al 

(Cohen, Golde, Usiak, Younkin, & Younkin, 1988), a comparison of the ISH of brain tissues 

from Alzheimer diseased (AD) patients and controls confirmed that the increased level of β-

amyloid mRNA, which plays a role in AD, comes from nucleus basalis neurons in the Broadman 

area 21 (Cohen et al., 1988).  
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4 Allen Mouse Brain Atlas 

The central dataset used in the thesis is the publicly available Allen Mouse Brain Atlas 

(AMBA). The AMBA (Lein, Ed S. et al., 2007) provides genome-wide in situ hybridization 

image data for approximately 20,000 genes in 56–day-old male C57Bl/6J mouse brain. The 

inbred mouse strain is used to reduce the animal-to-animal variation in brains. Processed brain 

tissues were first cut into slices and a set of 2-dimensional (2D) ISH images were generated for 

each transcript tested. These ISH images were then processed in an informatics pipeline to obtain 

a three-dimensional (3D) expression grids (Lau et al., 2008). To enable three-dimensional 

volumetric representations from the acquired coronal or sagittal series images, a common 

coordinate space of the 3D reference atlas (H. Dong, 2008) was first created so that the ISH 

images of each gene can be consistently registered to the same space and aligned.  To enable 

quantification, each image was divided into a 200 µm isotropic grid and pixel-based statistics 

were collected. The output is a 3D summary of the gene expression statistics for each transcript. 

The resulted voxelized expression grids encode the important spatial information of 4,345 genes 

in coronal sections and 21,718 genes in sagittal sections. They make up the key components of 

the AMBA. In the paper, expression energy metric was used for all analyses. As seen in 

equations (1.1-1.3), this metric is correlated with the total transcript count incorporating both 

area occupied by expressing pixels as well as pixel intensity. 

expression density = sum of expressing pixels ÷ sum of all pixels in division (1.1) 

expression intensity = sum of expressing pixel intensity ÷ sum of expressing pixels (1.2) 

expression energy = expression intensity × expression density (1.3) 

Throughout the thesis, coronal sections are chosen for analysis because they registered 

more accurately to the reference model than the counterparts of sagittal sections. 4,345 3D 
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volumes of expression energy of coronal sections were downloaded from the website of ABA 

(http://mouse.brain-map.org/) to perform our analysis. A 3D volume of brain anatomical 

annotation based on the ARA (Version 3) was also downloaded. The dimension of all 3D 

volumes is 67 (posterior-anterior) by 41(inferior-superior) and by 58 (right-left). 

5 Dissertation Outline 

In this thesis, I focus on developing data-driven methods to relate gene expression 

patterns to neuroanatomy. 

Chapter 1 starts with an introduction of the concept of transcriptome and explanation of 

why the study of transcriptome is important for advancing our understanding in how brain shapes 

and works by a brief survey of recent literatures. Next, I give a summary of different methods for 

characterizing transcriptome and their pros and cons. In section 4, a detailed description on the 

central dataset for the thesis projects is given. The final section is the outline of each chapter.   

In chapter 2 and chapter 3, I showed that dictionary learning and sparse coding (DLSC) is 

a useful data-driven method in relating spatially resolved gene expression data to neuroanatomy. 

Chapter 2 focuses on building a whole-brain transcriptome architecture of adult mouse using 

DLSC. The key idea is to consider gene expressions as features of each voxel. Those voxels 

using the same dictionary for representation should share similar features and therefore clustered 

to the same region. Multiple components were found corresponding to the canonical 

neuroanatomical subdivisions. Other components revealed finer anatomical delineation of 

domains previously considered homogeneous. An informatics portal was built as an open-access 

resource for result visualization and further explorations. 

In chapter 3, using DLSC, I demonstrated a new way of constructing gene coexpression 

networks (GCNs). GCNs is an effective and efficient representation of gene-gene interactions. 
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They are useful when we need to make comparisons across species, or over developmental time 

points. The key assumption is that if two genes use the same dictionary for representation, these 

two genes should share similar coexpression patterns and thereby belong to the same network. 

Following the assumption, 50 GCNs were constructed. To verify the constructed GCNs, I 

compared them with the ones generated by a most widely used method weighted gene 

coexpression network analysis (WGCNA) (Langfelder & Horvath, 2008). The comparative 

analysis showed a very good consistency between the GCNs generated by the two methods while 

DLSC provides a complementary perspective when different gene assignment arises. Further, to 

interpret GCNs biologically, I performed gene ontologies and compared with published gene 

lists of known functions. A set of GCNs were found significantly enriched for major cell types, 

anatomical regions, biological pathways and/or brain diseases.   

In chapter 4, I proposed a volume recovery network (VRN) that completes 3D volume 

data. A major issue encountered to the work presented in chapter 2 and 3 is data missing of the 

in-situ hybridization data. In chapter 2, about 30% of data was removed from further analysis 

due to a lack of data. In chapter 3, I worked around the data missing problem by only considering 

the gene-gene interaction on slices with data. However, this is only a temporary solution for a 

specific task. In chapter 4, I provide a complete solution to this problem. The rationale for the 

design of VRN is analogous to denoising autoencoders (Vincent, Larochelle, Bengio, & 

Manzagol, 2008). Instead of feeding the network data with manually added noises and teaching 

the network to undo noises, we hide a portion of each training sample so that the network can 

learn to recover missing voxels from the context. A comparison with different training schemes 

shows the importance of designing the right strategy that fits the missing data patterns. 
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In chapter 5, I continued the work on analyzing the transcriptional patterning of mouse 

brain. In chapter 2, we have successfully delineated brain regions based on the differentially 

regulated gene. However, most of the existing methods, including the work in chapter 2, assumes 

linear shallow mappings and inadequate for inferring complex non-linear structures of data. In 

this chapter, I seek out to a probabilistic model known as a restricted Boltzmann machine (RBM) 

and the deeper model deep belief network, which is a stack of RBMs. It is demonstrated RBM 

can derive meaningful delineations from the transcriptome. Then we stack multiple RBMs to 

form a DBN. With DBN, a fine-to-coarse organization emerges from the network layers. This 

organization incidentally corresponds to the anatomical structures, suggesting a close link 

between structures and the genetic underpinnings. 

In chapter 6, I summarize the thesis and discuss future work.   



 

13 

 

 

CHAPTER 2 

TRANSCRIPTOME ARCHITECTURE OF ADULT MOUSE BRAIN REVEALED BY 

SPARSE CODING OF GENOME-WIDE IN SITU HYBRIDIZATION IMAGES1  

                                                 
1 Yujie Li, Hanbo Chen, Xi Jiang, Xiang Li, Jinglei Lv, Meng Li, Hanchuan Peng, Joe Z. Tsien, Tianming Liu, 

2017, Transcriptome Architecture of Adult Mouse Brain Revealed by Sparse Coding of Genome-Wide in Situ 

Hybridization Images, Neuroinformatics. 15:285–295. 

Reprinted here with permission of the publisher. 
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1 Abstract 

In this chapter, I demonstrate how dictionary learning and sparse coding can be used to 

derive transcriptome organization from gene expression data from mouse brain.  

Highly differentiated brain structures with distinctly different phenotypes are closely 

correlated with the unique combination of gene expression patterns. Using a genome-wide in situ 

hybridization image dataset released by Allen Mouse Brain Atlas, we present a data-driven 

method of dictionary learning and sparse coding. Our results show that sparse coding can 

elucidate patterns of transcriptome organization of mouse brain. A collection of components 

obtained from sparse coding display robust region-specific molecular signatures corresponding 

to the canonical neuroanatomical subdivisions including fiber tracts and ventricular systems. 

Other components revealed finer anatomical delineation of domains previously considered 

homogeneous. We also build an open-access informatics portal that contains the detail of each 

component along with its ontology and expressed genes. This portal allows intuitive 

visualization, interpretation and explorations of the transcriptome architecture of a mouse brain. 

2 Background and Motivation 

Highly differentiated brain structures with distinctly different phenotypes are closely 

correlated with the unique combination of gene expression patterns (Jiang, Tsien, Schultz, & Hu, 

2001; Mody et al., 2001). Many studies have reported that transcriptomes can serve as important, 

informative modalities to classify cell types and reveal deeper organization of brain structures 

(Mike Hawrylycz et al., 2010; Heintz, 2004; Nelson, Sugino, & Hempel, 2006; Winden et al., 

2009). These results, together with many others (Belgard et al., 2011; Heintz, 2004; Molyneaux, 

Arlotta, Menezes, & Macklis, 2007), provide strong evidence that gene expression patterns are 

useful features in revealing the cellular makeup of different brain regions.  
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Led by the exciting discoveries revealed by gene expression studies, a global systematic 

study on a wide range of cellular markers with fine resolutions is essential to make quantitative 

associations between genetic and anatomical architecture of the entire brain. One enormous 

effort is the openly available Allen Mouse Brain Atlas (AMBA) (Lein, Ed S. et al., 2007), which 

provides genome-wide in situ hybridization (ISH) image series of the adult mouse brain at 

cellular resolution. To investigate the differences between the “transcriptome fingerprints” of 

different brain locations, ISH image series for each mRNA is registered to a common atlas space, 

the Allen Reference Atlas (ARA) (H. Dong, 2008) so that a global comparison across regions 

and against the classical neuroanatomy is possible. (Mike Hawrylycz et al., 2010; Ng et al., 

2009; Thompson et al., 2008). 

Multiple tools and methods have been developed for mining the ISH dataset. The 

Anatomic Gene Expression Atlas (AGEA) (Ng et al., 2009), for instance, is a publicly available 

computational tool specifically designed to visualize the spatial correlations of gene expression 

patterns in the mouse brain. In AGEA, gene expression patterns are features of each voxel and 

Pearson correlation metric is used to measure the similarity between voxels. Based on the 

calculated similarity, a hierarchical clustering was applied to parcellate apparent anatomical 

subdivision. Yet the tool requires regions defined for enrichment a-priori. On the other hand, 

Bolhand and colleagues (Bohland et al., 2010) have shown that singular value decomposition 

(SVD) was able to reveal structures in rough concordance with classical anatomy, yet finer 

structures were not resolved and an extra step of K-means clustering was required to clusters 

voxels with similar gene expression profiles. Relatedly, a modified non-negative matrix 

factorization (mNMF), was also used to study ~2600 genes expressed in hippocampus and led to 

the identification of a large groups of regionally enriched transcripts (Thompson et al., 2008).  
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Inspired by the above promising findings, we proposed to apply dictionary learning and 

sparse coding (DLSC) on genomic data. DLSC is a data-driven method aiming at obtaining 

parsimonious representation of data. The popularity of applying DLSC on images derived from 

the observations that neurons encode sensory information using a small number of active 

neurons at any given point in time (Olshausen & Field, 2004). It is reported that sparsification 

can “weed out” those basis functions not needed to describe a given image structure, thus 

obtaining an easier interpretation (Olshausen & Field, 2004). Due to these properties, DLSC has 

found great success in applications such as image denoising, demosaicing and inpainting (Elad & 

Aharon, 2006; Mairal, Elad, & Sapiro, 2008). In the context of revealing the transcriptome 

organization based on gene expression profiles, we assume that if multiple voxels use the same 

dictionary atom for sparse representation, then these voxels must share the features described by 

the shared dictionary atom and thereby should belong to the same subregion. On the other hand, 

it is reported that most genes are expressed in a fairly small percentage of cells (70.5% of genes 

are expressed in less than 20% of total cells in the ISH dataset) (Lein, Ed S. et al., 2007).  We 

assume this notion can be captured by imposing a sparsity constraint that limits the number of 

voxels that a gene can be active on. Thus, DLSC can serve as a useful tool that learns the internal 

transcriptome architecture from the ISH dataset without any prior knowledge. 

In this study, we performed a comprehensive analysis on the genome-wide in situ 

hybridization data of the mouse brain and showed that DLSC can effectively elucidate patterns 

of transcriptome organization. Several components obtained from sparse coding display robust 

regional specific molecular signatures corresponding to the canonical neuroanatomical 

subdivisions. Other components revealed finer anatomical delineation of domains previously 

considered homogeneous. An informatics portal was built as an open-access resource for result 
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visualization and further explorations. The webpages contain the spatial distribution of the 

components and the corresponding ARA ontology of neuroanatomical structures, as well as the 

genes that are regionally enriched. The links to the original dataset affords a direct comparison 

and a convenient interpretation. 

3 Methods 

The computational pipeline is outlined as follows (Figure 2. 1). First, images of gene 

expression patterns were downloaded from AMBA dataset (Lein, Ed S. et al., 2007). Based on 

the corresponding annotation map, foreground voxels were extracted for analysis. Those voxels 

with missing data were either excluded from analysis or estimated from the neighboring voxels 

(Figure 2. 1 (a)). Then the 3D expression energies for one gene were flattened out into one line 

so that all gene expression data can be arranged into a big matrix where each row corresponds to 

one gene and each column corresponds to one voxel. The matrix was next decomposed into a 

fixed number of dictionaries and its corresponding coefficient matrix (Figure 2. 1(b)). Due to the 

sparse constraints on the energy function, the coefficient matrix is sparse and encodes the spatial 

distribution of each dictionary. Finally, we compared the spatial patterns of the learned 

dictionary components with the manual annotation atlas from ARA (Figure 2. 1(c)). An 

informatics portal was built to present the whole mouse brain’s transcriptome architecture 

(Figure 2. 1(d)).  
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Figure 2. 1. Computational pipeline of the deriving transcriptome architecture using DLSC. (a) 

Preprocessing steps for ISH data from Allen Mouse Brain Atlas. (b) Dictionary learning and sparse 

coding of ISH matrix. (c) Comparisons between transcriptome spatial patterns with the neuroanatomy. (d) 

Informatics portal to facilitate the exploration of transcriptome architecture. 

3.1 Data preprocessing 

Based on the 3D annotation, a mask of brain volume was generated and applied to extract 

foreground voxels (62529 voxels). By observation, data were missing for many foreground 

voxels (-1 in expression energy). The lack of data was assumed mostly due to problems during 

data acquisition such as missing slices, broken tissues, and slice misalignment. Mainly the 

missing data were categorized into three groups: 1) An entire slice was lost; 2) Part of a slice was 

lost; 3) A few voxels were missing. To reduce the impact of missing data, two filtering steps and 

an estimation step were performed at the preprocessing stage. First, a filtering step was applied 

to mask out “unreliable” voxels. A foreground voxel with gene expressions missing in over 10% 
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of the total transcripts was removed. In this step, about 7% of foreground voxels were eliminated. 

Second, a filtering step was applied to filter out “unreliable” transcripts. A transcript with 

expressions missing for an entire slice was excluded. After this step, 67% (2905/4345) 

transcripts were retained for further analysis. Most missing values were resolved in the two 

filtering steps. The remaining missing values were estimated as the mean of foreground voxels in 

its 26 neighborhood. Recursive mean calculations were performed on the images until all 

missing values were filled. Eventually, 2905 transcripts on 60904 foreground voxels were sent to 

the DLSC module. 

3.2 Dictionary learning and sparse coding 

Dictionary learning and sparse coding is a useful tool that can extract meaningful patterns 

from signals. Given a matrix 𝑿 ∈ ℝ𝑁×𝑀, it can be approximated by the matrix factorization such 

that: 

𝑿 = 𝑫 × 𝜶 + 𝜺 (2.1) 

where 𝑫 ∈ ℝ𝑁×𝐾is the dictionary matrix, 𝜶 ∈ ℝ𝐾×𝑀 is the corresponding coefficient matrix, and 

𝜺 ∈ ℝ𝑁×𝑀 is the reconstruction error. This matrix decomposition problem is solved with a sparse 

constraint on 𝜶, which limits the number of dictionaries used to reconstruct the original signals. 

The factorization can be formulated as the following optimization problem: 

< 𝐃, 𝛂 >= argmin
1

2
‖𝑿 − 𝑫 × 𝜶‖2

2 + 𝜆‖𝜶‖1   (2.2) 

where ‖∗‖2  is the summation of ℓ2 norm of each column and ‖∗‖1  is the summation of ℓ1 norm 

of each column. 𝜆 regulates the tradeoff between the sparsity of 𝜶 and the reconstruction error. 



 

20 

The optimization problem is solved by an alternating minimization procedure through 

lasso and least-square steps that iteratively updates to improve the estimate of the sparse codes 

while keeping the dictionaries fixed and then updating dictionaries that fit the sparse codes best. 

At all times, the energy function in equation 2.5 should be minimized (Mairal, Bach, Ponce, & 

Sapiro, 2010). 

In practice, we arranged the gene expression energies into a single matrix 𝑿 ∈ ℝ𝑁×𝑀 , 

such that N rows correspond to N genes and M columns correspond to M foreground voxels. 

Then, each column of the matrix was centered and then normalized by the standard deviation of 

the elements in each column. After normalization, the publicly available online dictionary 

learning and sparse coding package was applied to solve the matrix factorization problem 

proposed in equation 2.5 (Mairal et al., 2010). Eventually, the gene expression energy matrix 𝑿 

was decomposed into a dictionary matrix 𝑫 and a sparse coefficient matrix 𝜶.  

The key idea of applying sparse coding to the ISH dataset is that if multiple voxels use 

the same dictionary atom for sparse representation, then these voxels share the features described 

by the shared dictionary atom and thereby should form a subregion. The major assumptions of 

applying sparse coding to the ISH data is that each gene is expressed in a limited number of 

voxels in the brain. This assumption is supported by the fact that most genes are expressed in a 

fairly small percentage of cells (70.5% of genes are expressed in less than 20% of total cells in 

the ISH dataset) (Lein, Ed S. et al., 2007). The other assumption is that the gene expression 

energies can be linearly combined because in DLSC each dictionary is a linear combination of 

gene expressions. If the integration of two gene expression follows a non-linear relationship, 

DLSC would not be able to reconstruct the original signals correctly. The similarities between 

the reconstructions and the raw signals validate that this assumption holds here. 
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The degree of sparsity of 𝜶 is controlled by the regularization parameter λ. Too large of a 

λ will result in very sparse networks, potentially losing important patterns, while a small λ will 

introduce more irrelevant features into the results. In addition to 𝜆, the number of dictionaries 

can also impact the sparsity of 𝜶 and the decomposition accuracy. As no gold standard exists for 

parameter selection, we proposed three criteria, the reconstruction error, the density of 𝜶 matrix 

and the mutual information with the reference atlas, to evaluate the performance of DLSC and 

then carried out a grid search on the optimized parameters. λ=1.5 was selected and different 

dictionary sizes were tested fixing the λ. By visual check, the parameter combinations resulted in 

meaningful brain delineations. 

4 Transcriptomic Anatomy 

Based on the method proposed, gene expression energy signals of a whole mouse brain 

were decomposed into multiple components. After mapping the coefficient matrix back to 3D 

volume space, different spatial patterns were observed for different dictionary atoms. A visual 

inspection showed that voxels with high coefficients smoothly distributed in 3D space and forms 

tight clusters. The formed clusters correspond to various canonical anatomical regions spanning 

the entire brain - ranging from isocortex, olfactory area, striatum to thalamus, midbrain and 

cerebellum etc., conceptually validating sparse coding as a useful data-driven approach to extract 

region-specific gene signatures from transcriptome and obtain meaningful brain divisions (Figure 

2. 2). This clustering patterning agrees with the brain’s organizational principle that 

transcriptome similarities are strongest between spatial neighbors, both between cortical areas 

and between cortical layers (Bernard et al. 2012), which has been seen in a range of methods 

including unsupervised hierarchical clustering, analysis of variance (ANOVA) and etc. 
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Interestingly, multiple white fiber pathways, as well as the ventricular system, were also 

extracted by DLSC. 

Different numbers of dictionaries (100, 200, 400, 600, 800, and 1000) were tested for 

matrix decomposition (Figure 2. 3, Figure 2. 4). Intuitively, larger numbers of dictionaries would 

be expected to result in finer parcellation of the mouse brain.  It should be noted that when the 

dictionary number is set to 200 or below, the gene expression based laminar structures are not 

obvious (Figure 2. 3). With a growing number of dictionaries, the coarsely parcellated 

subcortical areas were further parcellated into subregions and more details of layered and 

laminar architectures of neocortex were observed (Figure 2. 3). 

 

Figure 2. 2. Visualization of selected 3D spatial maps of the coefficient matrix. Results were obtained 

using 200 dictionaries. 12 dictionaries corresponding to 12 major canonical regions were selected. 
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Figure 2. 3. A comparison of transcriptome anatomy obtained for different dictionary numbers. A random 

color was chosen for each dictionary and the intensity was scaled by dictionary coefficients. 4 coronal 

slices were selected for visualization. The corresponding Nissl stain image was shown in the first row. 

From top to bottom, finer delineations of the mouse brain were shown. 
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Figure 2. 4. Hippocampal formation related dictionaries obtained by using 100, 200 and 400 dictionaries. 

A random color was chosen for each dictionary and the intensity is scaled by dictionary coefficients. Here 

5 coronal planes of sections were selected for visualization and the corresponding Nissl stained image as 

well as anatomical annotation downloaded from ARA were shown on the left. 

4.1 Hippocampal formation 

To show as an example, we analyzed the hippocampus-related components. The 

components obtained from 100, 200 and 400 dictionaries were identified by overlapping 

measurement with ARA (Figure 2. 4). With 100 dictionaries, the proposed method successfully 

separated major anatomical structures in hippocampus including field CA1, field CA3, dentate  
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Figure 2. 5. 3D renderings of spatial pattern of field CA3 related components obtained using different 

dictionary numbers. The color scheme of each region is listed at the bottom of subfigure and is the same 

as Figure 2. 4. 

 

gyrus (DG), subiculum (SUB), and entorhinal area (ENT). With more dictionaries, layered 

structures of these regions gradually emerge. Specifically, as shown in Figure 2. 5, field CA3 

was identified as a complete piece when 100 dictionaries were used. When 200 dictionaries were 

used, field CA3 was decomposed into 4 sub-components including 2 frontal components and 2 

posterior components. When 400 dictionaries were used, 6 finer components related to field CA 

3 were identified. For the lateral components, field CA3 was completely separated into septal 

and temporal parts as highlighted in Figure 2. 5. These components might be associated the 
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various pyramidal neurons that send and receive signals with other parts of the hippocampus and 

reflect the distribution of intrahippocampal projections (Ishizuka et al. 1990). A non-symmetric 

component was shown on the right hemisphere only. Having examined the ISH images, the 

unilateral component was a result of artefacts during image acquisition and preprocessing. 

4.2 Fiber tracts and ventricular system 

One of the most interesting findings is that the DLSC can extract expression patterns that 

correspond to fiber tracts and ventricular system. One example is dictionary 17 that corresponds 

to the white matter pathways. Specifically, the fiber tracts observed here are mainly corpus 

callosum (Figure 2. 6a-c white arrows), internal capsule (Figure 2. 6b yellow arrows) and fimbria 

(Figure 2. 6c blue arrows). Even though the signals at other regions are relatively strong, the 

distinctly high expressions at corpus callosum and internal capsules agree well with the reference 

atlas for fiber tracts. Many transcripts that showed enhanced signals at these regions are also 

markers for oligodendrocyte (Cahoy et al., 2004). The two presented transcripts Mbp, Cdn11 

encode myelin basic proteins (Figure 2. 6g-i, j-l). Other transcripts that heavily use the dictionary 

for representation such as Plp1 and Cnp are also related to myelination, which is a featured 

function for oligodendrocyte. The increased myelin level is presumed the reason for the 

enhanced signals in white matter in comparison with other regions because it is known that 

oligodendrocytes produces myelin membranes in the white matter. Another example is 

Dictionary 71, which features enhanced expression patterns at lateral ventricle (Figure 2. 6A-C 

white arrows), third (Figure 2. 6B-C yellow arrows) and fourth ventricles (Figure 2. 6C blue 

arrows). As seen in Figure 2. 6, both transcripts Cd63 and Slc38a3 showed prominent signals at 

these regions (Figure 2. 6I-P), corroborating the spatial map of dictionary 71. Notably, both 

transcripts are markers for astrocyte (Cahoy et al., 2004; Ng et al., 2009). The significantly high 
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expressions at the ventricles is reminiscent of that the subventricular zone is rich with astrocytes 

((Quinones-Hinojosa and Chaichana, 2007)). The abundance of astrocytes is likely the reason for 

the enriched and restricted expression at ventricular regions. The above two examples 

demonstrate that DLSC can extract expression patterns that are restricted to white matter and 

ventricular systems possibly via cell-type markers that are enriched at these regions. 

 

Figure 2. 6. Slice-based views of the spatial distribution of components that correspond to the fiber tracts 

(dictionary 17) and ventricular system (dictionary 71). Each column is a different slice. First row are the 

reference atlases for fiber tracts (left) and ventricular system (right). Second row are the spatial 

distribution of the components. Third and fifth rows are the normalized energy expression of selected 

genes. Fourth and sixth rows are the raw ISH data for the selected genes. Gene acronyms are on the left of 

ISH images. 

5 Comparison with Principal and Independent Component Analysis  

To benchmark with the alternative matrix factorization methods, we performed principal 

component analysis (PCA) and independent component analysis (ICA) on the same gene 

expression matrix. For PCA, data was first centered and then whitened. Singular value 
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decomposition algorithm was used as the solver. To visualize the spatial distributions, we 

projected each individual mode back to the brain space (Figure 2. 7). The top four modes account 

for over 80% of variance. The first two modes have a very broad distribution across the brain.  

The third mode is also broadly distributed with enhanced specificity for the cerebellum, and the 

 

Figure 2. 7. Visualizations of top 36 modes obtained using PCA. The values in the parentheses are the 

percentage of variance explained by the mode. 

 

fourth mode is particularly prominent in striatum and CA3. For modes that account for less 

variance, the spatial distributions span the entire brain and the agreement to the anatomy is less 
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obvious. In summary, the first few modes contain spatial structures in rough concordance with 

classical anatomy. However, it is also apparent that finer structure cannot be revealed by PCA.  

 

Figure 2. 8. Visualization of 33 components corresponding to anatomical regions using ICA. The 

components were assigned to 10 brain regions by calculating the overlaps between the reference atlas and 

the spatial maps. The brain regions were color-coded. Results were obtained using 100 components. 

 

A comparison with the results from the application of ICA also confirmed that DLSC is a 

better fit to the context of deriving the transcriptome organizations. The basic goal of ICA is to 

determine a transformation so that the transformed components are statistically as independent 

from each other as possible. The goal is realized by finding a direction that maximizes the 

negentropy (Comon, 1994). Therefore, ICA requires a strong assumption that the components 

are independent. In comparison, DLSC minimizes the total loss of reconstruction error and the 

ℓ1 penalty of the coefficient matrix, without imposing assumptions on the relationship between 
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components. To ensure a fair comparison, 100 components were generated using ICA. The 

algorithm used in ICA was FastICA (Hyvärinen, 1999). Spatial maps were obtained by 

projecting the coefficient matrix to the brain space and then classified into 10 major brain 

regions (Figure 2. 8). The biggest difference observed between DLSC and ICA is that DSLC is 

able to produce components that cover most parts of major anatomical brain regions including 

thalamus, striatum, midbrain, olfactory area etc. (Figure 2. 2). In comparison, almost all 

components generated by ICA were in concordance with only a small portion of the major brain 

regions. Such example components were seen in thalamus, hindbrain, midbrain, cerebellum etc. 

A few exceptions were ventricular system, field CA3, field CA1 and dentate gyrus. The lack of 

components that correspond to the complete brain regions is probably a result of unsupported 

assumptions. ICA assumes the components to be independent and solves the matrix factorization 

by maximizing the statistical independence of the estimated components. However, it is likely 

that two genes are regulated by the same transcription factors and thereby their expressions are 

dependent. In comparison, the assumption of DLSC is the sparsity of the coefficient matrix and 

supported by that 70% genes are expressed in a limited number of cells. The advantage of sparse 

coding over ICA has also been demonstrated in other data modality such as functional magnetic 

resonance imaging (Lv et al., 2015). 

6 Online Informatics Portal 

To allow other researchers to explore the comprehensive transcriptome architecture 

identified by the proposed framework, all the information is organized into web pages and can be 

easily accessed at: http://mbm.cs.uga.edu/mouse/transcriptome_architecture. To facilitate the 

exploration of components, the portal provides two main ways to view the transcriptome 

architecture - by dictionary number and by anatomical brain regions. Altogether, there are 6 
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levels of brain delineations by sparse coding with the dictionary number varying from 100, 200 

to 1000 and 13 canonical brain divisions. In each component, a comprehensive webpage 

consisted of both the anatomical and genomic information of the component has been generated 

(Figure 2. 9). As to the anatomical information, in addition to the selected Nissl stained image 

and its ontology that afford the context for interpretation, a 3D spatial map corresponding to its 

coefficient matrix (Figure 2. 9 (a)) is visualized. To quantify the composition of the obtained 

component, the percentage of overlapping volume between the component and ARA is 

calculated and the top 20 regions along with the number of voxels occupied by the component 

and the overlap percentage were tabulated (Figure 2. 9 (b)). Each of the obtained components 

can be downloaded as a zip file for further investigation. With respect to the genetic information, 

the regionally enriched and restricted transcripts were retrieved and the related ISH raw data are 

shown alongside, offering a direct link to the original data in the database. For the convenience 

of comparison, we only visualized the slice with the highest expressions of the component 

(Figure 2. 9(c)). The differentially expressed transcripts were not determined from the absolute 

expression levels but ranked by the average expression energy within each component weighted 

by the dictionary coefficients. Transcripts with the top two highest (lowest) expression energies 

in a specific component were taken as a relatively expressed (non-expressed) gene in this 

component. In addition to the differentially expressed transcripts, we also include the transcripts 

that heavily used the dictionary for signal reconstructions (Figure 2. 7 (e)). To evaluate the 

importance of a dictionary for a particular transcript, we first calculated the error changes in 

reconstructions of each transcript after removing this particular dictionary and then weighted the 
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Figure 2. 9. Illustration of anatomic and genetic information of a dictionary component on the informatics 

portal. (a) 3D spatial map of the component. (b) The 20 regions that showed the highest overlaps with the 

spatial distribution of the component. (c) Nissl stained image, reference atlas and spatial distribution of 

the coronal slice that showed major expressions. (d) ISH raw images of transcripts that showed high and 

low expressions regionally. (e) ISH raw images of transcripts that use the dictionary for signal 

reconstructions. 
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changes by the ℓ2 norm of the raw signals considering that transcripts with higher signals overall 

tend to use more dictionaries for representation. The obtained scores were the indicator of the 

importance of this dictionary for each transcript. Accompanying the above-mentioned two ways 

to examine the components, a slice-by-slice view (Figure 2. 3) is also enabled for more detailed 

comparisons on each slice between the components obtained from different dictionary numbers. 

7 Discussion and Conclusion 

We have presented a data-driven DLSC framework that delineates the entire mouse brain 

into multiple components based on the whole-genome transcriptome. Visualization of the 

components reveals meaningful patterns spanning the entire brain. When the input dictionary 

number is low, most of the obtained components correspond to the classical anatomical regions 

while other components, intriguingly, accord well with the white matter pathways and 

ventricular systems. At higher dictionary number, a deeper and more detailed parcellation is 

seen, reflecting a more complex nature of brain organizational principle. However, one caveat is 

that a higher dictionary number does not always result in a more intricate parcellation. A main 

cause is the artifacts associated with tissue handling, image acquisition and registration integrity.  

Although DLSC has proved a robust analytical method and can de-noise images (Elad & 

Aharon, 2006), some of the obtained components were clearly identified as products of artifacts 

by visual inspection. The other reason is concerning to the limited resolution of current ISH 

image mapping. The voxel size is 200 microns on a side and exceedingly large to discern cells of 

different types and classes. Nonetheless, we have shown that the parcellation of fiber tracts and 

the ventricular systems is probably via markers for oligodendrocytes and astrocytes that are 

enriched in these regions.  
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As mentioned earlier, the two key assumptions of the DLSC framework are 1) each gene 

is expressed in a limited number of cells in the brain. 2) The integration of two gene expression 

follows a linear relationship. The second assumption is necessary for all matrix factorization 

methods. The comparative analysis with the results generated from ICA and PCA showed that 

DLSC was able to produce localized components that correspond to the major brain regions. In 

contrast, the modes obtained from PCA usually span multiple brain regions and finer structures 

cannot be directly resolved. Most of the components obtained from ICA either distribute across 

multiple brain regions or correspond to a small portion of major brain regions. The explanation 

to these components is attributed to the unsupported assumption that gene expressions were 

independent from one another. Interestingly, the ventricular system is also revealed by ICA. 

In addition to the proposed framework, we have contributed a comprehensive 

transcriptome architecture of the adult mouse brain. It is comprehensive on two levels. First, the 

input of the framework is the whole-genome ISH data of the entire mouse brain. Second, the 

components generated by the framework are brain-wide, covering not only the canonical 

anatomical areas but also white matter pathways and ventricular systems. Further work will 

include a detailed analysis of the relationship between the mouse brain connectomes and the 

revealed white matter pathways, as well as the involved functioning genes. Another focus will be 

a comprehensive characterization of co-expressed gene networks of the whole mouse brain. A 

deeper knowledge of these networks is an essential step toward understanding protein 

interactions, regulatory pathways and, ultimately, brain organization, structures and functions. 

Additionally, the genetic architecture, especially when it is coupled with systematic profiling in 

various stages of brain development and aging processes (Jiang et al., 2001; Mody et al., 2001), 
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can serve as an informative and complementary approach to the on-going, large-scale brain 

mapping and decoding efforts (H. Chen et al., 2015; Tsien et al., 2013). 
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1 Abstract  

Gene coexpression patterns carry rich information regarding enormously complex brain 

structures and functions. Characterization of these patterns in an unbiased, integrated and 

anatomically comprehensive manner will illuminate the higher order transcriptome organization 

and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse 

coding, we derived coexpression networks from the space-resolved anatomical comprehensive in 

situ hybridization (ISH) data from Allen Mouse Brain Atlas dataset. The key idea is that if two 

genes use the same dictionary to represent their original signals, then their gene expressions must 

share similar patterns, thereby considering them as “co-expressed”. For each network, we have 

simultaneous knowledge of spatial distributions, the genes in the network and the extent a 

particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with 

published gene lists reveal biologically identified coexpression networks, some of which 

correspond to major cell types, biological pathways and/or anatomical regions. 

2 Background and Motivation 

Gene coexpression patterns carry rich information about enormously complex cellular 

processes (Brown, Johnson, & Sidow, 2007; Eisen, Spellman, Brown, & Botstein, 1999; Grange 

et al., 2014; Lee, Hsu, Sajdak, Qin, & Pavlidis, 2004; Oldham, Horvath, & Geschwind, 2006; 

Peng et al., 2007; Stuart et al., 2003). Previous studies have shown that genes displaying similar 

expression profiles are very likely to participate in the same biological processes (Tavazoie et al., 

1999).  Gene coexpression networks (GCNs), offering an integrated and effective representation 

of gene interactions, has shown advantages in deciphering the biological and genetic 

mechanisms across species and during evolution. In addition to revealing the intrinsic 

transcriptome organizations, GCNs have also demonstrated superior performance when they are 
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used to generate novel hypotheses for molecular mechanisms of diseases because many disease 

phenotypes are a result of dysfunction of complex network of molecular interactions (Bando et 

al., 2013; Carter, Hofree, & Ideker, 2013; Gaiteri, Ding, French, Tseng, & Sibille, 2014). 

Various proposals have been made to identify the GCNs. The most common and useful 

class of approach is clustering. Many clustering variants including hierarchical clustering and k-

means clustering have demonstrated a good capability in identifying genes that share common 

roles in cellular processes (Bohland et al., 2010; Eisen et al., 1999; Tamayo et al., 1999). The 

alternative group of methods is to apply network concepts and models, which offers a more 

descriptive power to the complicated gene-gene interactions (Oldham, Langfelder, & Horvath, 

2012). Given the high dimensions of genetic data and the urgent need in revealing the differences 

or the consensus between subjects or species, one common theme of all these methods is 

dimension reduction. Instead of analyzing the interactions across over tens of thousands of 

genes, the grouping of genes by their co-expression patterns can considerably reduce the 

complexity to dozens of networks or clusters, while preserving the original interaction 

relationships. 

Along the line of data-reduction, we proposed dictionary learning and sparse coding 

(DLSC) algorithm for GCN construction. DLSC is an unbiased data-driven method that learns a 

set of new bases (denoted as dictionaries) from the signal matrix so that the original signals can 

be represented in a sparse and linear manner. Unlike decompositions based on principal 

component analysis and its variants, sparse learned models do not impose that the basis vectors 

be orthogonal, allowing more flexibility to adapt the representation to the data (Mairal et al., 

2010). An equally important feature is that sparse coding can model inhibition between the bases 

by sparsifying their activations. In the context of extracting coexpression patterns, we assume 
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that if two genes use the same dictionary to represent their original signals, then their gene 

expressions must share similar patterns, thereby considering them as “co-expressed”. On the 

other hand, it is reported that most genes are expressed in a fairly small percentage of cells 

(70.5% of genes are expressed in less than 20% of total cells in the ISH dataset) (Lein, Ed S. et 

al., 2007).  We assume this notion can be captured by imposing a sparsity constraint that limits 

the number of voxels that a gene can be active on. The added sparse constraint will also 

encourage the dictionary to capture the most common gene coexpression patterns so that a 

parsimonious representation is possible. Thus, DLSC can serve as a useful tool for GCN 

construction. 

Most of the GCNs were constructed from the microarray data and in situ hybridization 

(ISH) data. One major advantage of ISH over microarray data is that ISH preserves the precise 

spatial distribution of genes. One of the most valuable ISH resources is the openly available 

Allen Mouse Brain Atlas (AMBA) initiated by the Allen Institute for Brain Sciences (Lein, Ed S. 

et al., 2007), which surveyed over 20,000 genes expression patterns in 56-day-old C57BL/6J 

mouse brain using ISH. This dataset, featured by the whole-genome scale, cellular resolution and 

anatomically comprehensive coverage, allows systematic and holistic investigation of the 

molecular underpinnings and related functional circuitry.  Using AMBA, the GCNs identified by 

DLSC showed significant enrichment for major cell types, biological functions, anatomical 

regions, and/or brain disorders. The identified GCNs hold promises to serve as foundations to 

explore different cell types and functional processes in diseased and healthy brains. 

3 Slice-Wide GCN Construction and Validation 

The computational pipeline consists of two parts: the slice-based GCN construction and 

validation (Figure 3. 1a-d) and global GCN construction and analysis (Figure 3. 1e). We discuss  
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Figure 3. 1. Computational pipeline for constructing slice-wide GCNs (a)-(d) and brain-wide GCNs (e). 

(a) Raw ISH data preprocessing step that removes unreliable genes and voxels and estimates the 

remaining missing data. (b) Dictionary learning and sparse coding of ISH matrix with sparse and non-

negative constraints on α matrix. D is the dictionary matrix and α is the coefficient matrix. ε is the 

reconstruction error. (c) Visualization of spatial distributions of slice-based GCNs (d) Visualizations of 

co-expression networks. (e) Integrating slice-based GCNs into global GCNs and global GCN gene 

ontology. (f) Visualization of slices of raw expression grids before preprocessing (g) Visualization of 

slices of raw expression grids after preprocessing. Some missing data were estimated. (h)Expression girds 

were arranged in an M by N matrix. (i) Visualizations of 3D spatial patterns of global GCNs. 

 

the first part here. The major obstacle to a global analysis of ISH data on all coronal slices is the 

number of missing data observed on each slice. Since each slice has its own missing genes, 

obtaining a common set of genes on all slices would require roughly 33% of the genes removed 
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from analysis, resulting in a significant amount of information loss. Additionally, as the ISH data 

was acquired by each coronal slice before they were stitched and aligned into a complete 3D 

volume, despite extensive preprocessing steps (Ng et al., 2007) such as a global adaptive 

thresholding method and morphological filtering employed to remove noise and connect broken 

segments, quite significant changes in average expression levels of the same gene between slices 

were observed. Considering these problems, studying the coexpression networks slice by slice 

enables leveraging off the information loss and alleviation of the artifacts due to slice handling 

and preprocessing. Yet additional efforts are needed to integrate gene-gene interactions on each 

slice.  

3.1 Data preprocessing 

For slice-wide analysis, the input of the pipeline are the expression grids of one of 67 

coronal slices. A preprocessing module (Figure 3. 1a) was first applied to handle the foreground 

voxels with missing data (-1 in expression energy). The lack of data is assumed mostly due to the 

artefacts during ISH including missing slices, broken tissue and image processing steps such as 

slice alignment error. Specifically, this module includes an extraction step, a filtering step and an 

estimation step.  First, the foreground voxels of the slice based on the annotation map from ARA 

were extracted. Then the genes of low variance (standard deviation <0.5) or genes with missing 

values in over 20% of foreground voxels were excluded from further analysis because they 

provided little information for network construction. A similar filtering step was also applied to 

remove voxels in which over 20% genes do not have data. Most missing values were resolved in 

the two filtering steps. The remaining missing values were recursively estimated as the mean of 

foreground voxels in its 8 neighborhood until all missing values were filled. The maximum 

number of iterations is 4 with most values using 2 or 3 iterations. The low number of iterations 
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suggest that the estimated data is reasonable. After preprocessing, the cleaned expression 

energies were organized into a matrix and sent to DLSC (Figure 3. 1b). In DLSC (section 3.2), 

the gene expression matrix was factorized into a dictionary matrix D and a coefficient matrix α. 

These two matrices encode the distribution and composition of GCN (Figure 3. 1c-d) and were 

further analyzed and validated against the raw data and existing methods. 

3.2 Dictionary Learning and Sparse Coding 

The gene expression grids were arranged into a single matrix 𝐗 ∈ ℝM×N, such that rows 

correspond to M foreground voxels and columns correspond to N genes (Figure 3. 1b). Then, 

each column of the matrix (gene signal in a voxel) was normalized by the L2-norm of the 

column. After normalization, the publicly available online DLSC package was applied to solve 

the matrix factorization problem proposed in equation 3.2 (Mairal et al., 2010). Eventually, the 

gene expression energy matrix 𝐗 was represented as sparse combinations of learned dictionary 

atoms 𝐃. Each column in D is one dictionary consisted of a set of voxels. Each row in α 

corresponds to one dictionary and details the coefficient of each gene in a particular dictionary.  

Formally, given a set of M-dimensional input signals X=[x1,…,xN] in ℝ𝑀×𝑁, learning a 

fixed number of dictionaries for sparse representation of X can be accomplished by solving the 

following optimization problem: 

< 𝐃, 𝛂 >= argmin
1

2
‖𝑿 − 𝑫 × 𝜶‖2

2  𝑠. 𝑡 ‖𝜶‖1 ≤  𝜆 (3.1) 

where 𝑫 ∈ ℝ𝑁×𝐾 is the dictionary matrix, 𝜶 ∈ ℝ𝐾×𝑀  is the corresponding loading coefficient 

matrix, λ is a sparsity constraint factor and indicates each signal has fewer than λ items in its 

decomposition, ‖∗‖2  is the summation of ℓ2 norm of each column and ‖∗‖1  is the summation 

of ℓ1 norm of each column. ‖𝑿 − 𝑫 × 𝜶‖2
2 denotes the reconstruction error. 
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In efficient sparse coding algorithm, the optimization problem is solved by an alternating 

minimization procedure through lasso and least-square steps that iteratively updates to improve 

the estimate of the sparse codes while keeping the dictionaries fixed and then updating 

dictionaries that fit the sparse codes best. At all times, the energy function in equation 3.1 should 

be minimized (Mairal et al., 2010). 

As will be discussed later that each entry of α indicates the degree of conformity of a 

particular gene to a coexpression network, a non-negative constraint was added to the ℓ1 -

regularization. This additional prior, included in equation 3.2, can be handled by homotopy 

method presented in Efron et al (Efron, Hastie, Johnstone, & Tibshirani, 2004). 

< 𝐃, 𝛂 >= argmin ∑
1

2

𝑁

𝑖=1

‖𝑥𝑖 − 𝑫 × 𝛼𝑖‖2
2  𝑠. 𝑡 ‖𝜶‖1 ≤  𝜆 , ∀ i, 𝛼𝑖 ≥ 0 (3.2) 

The key assumption of enforcing the sparsity is that each gene is involved in a limited 

number of gene networks. The non-negativity constraint on α matrix imposes that no genes with 

the opposite expression patterns will be placed in the same network. 

In the context of deriving GCNs, we consider that if two genes use the same dictionary to 

represent the original signals, then the two genes are coexpressed in this dictionary. There are 

several benefits of this set-up. First, both the dictionaries and coefficients are learned from the 

data and therefore should reflect the intrinsic organization of transcriptome. Second, the level of 

co-expressions is quantifiable, and the level is not only comparable within one dictionary, but the 

entire α matrix.  

Further, if we consider each dictionary as one network, the corresponding row of α 

matrix contains all the genes that use this dictionary for sparse representation, or that are 

‘coexpressed’. Additionally, each entry of α measures the extent to which this gene conforms to 

the coexpression pattern described by the dictionary atom. Therefore, this network, denoted as 



 

44 

the coexpression network, is formed. Since the dictionary atom is composed of multiple voxels, 

by mapping each atom in D back to the ARA space, we can visualize the spatial patterns of the 

coexpressed networks. Combining information from both D and α matrices, we would obtain a 

set of intrinsically learned GCNs with the knowledge of both their anatomical patterns and gene 

compositions. As the dictionary is the equivalent of the network, these two terms will be used 

interchangeably. 

3.3 Parameter Selection 

The choice of the number of dictionaries and the regularization parameter λ are crucial 

for effective sparse representation. As there exists no gold standard for parameter selection, we 

first proposed three criteria to evaluate the performance of DLSC and then carried out a grid 

search on the optimized parameters using one example slice.  

The first criterion is the reconstruction error. It is defined as the square difference 

between the original signal matrix and the reconstruction from sparse representation (equation 

3.3).  A high reconstruction error indicates a less accurate representation.  

   𝑒𝑟𝑟𝑜𝑟𝑦 =  
1

2
‖𝑿 − 𝑫𝜶‖𝐹

2  (3.3) 

The second evaluation metric is the average uncertainty coefficient (AUC) between the 

obtained dictionaries and the reference atlas. The uncertainty coefficient, defined in equation 3.5, 

is a normalized variant of mutual information (MI). Many studies have shown that different 

combinations of gene expression profiles mirror the gross anatomical partitioning (Dobrin et al., 

2009; Oldham et al., 2008). We thus assume the set of the parameters that result in the highest 

correspondence between the transcriptome patterns and canonical anatomical structures are the 

optimal parameters. MI, as a powerful criterion that measures the dependencies between 
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variables, can be used to characterize how well the transcriptome patterns match with the 

canonical neuroanatomical divisions, thereby a good estimate on how meaningful the 

components are. The advantage of using the normalized MI is that it varies between 0 and 1 with 

values close to zero indicating that the two spatial distributions are independent whereas values 

close to one suggesting that knowledge of one spatial pattern can reduce the uncertainty of the 

other and thereby dependent. 

In specific, MI is first calculated between the spatial distribution of each gene network 

and the reference atlas. Given a continuous variable X that contains the spatial distribution of one 

gene network, discretization is performed via histogram with an empirically selected 32 equally 

divided bins. Let categorical variable Y represent the labels in the reference atlas. The MI can be 

calculated as: 

𝐼(𝑋, 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (3.4) 

where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the 

marginal probability distribution functions of X and Y respectively. 

Then the uncertainty is obtained from: 

𝑈(𝑋, 𝑌) =
2 ∗  𝐼(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 (3.5) 

where H(X) and H(Y) are the marginal entropies. For a particular λ and number of dictionaries, 

the average AUC of all GCNs is used for comparison. 

Another important measurement to examine the DLSC performance is the degree of 

density measured by the percentage of non-zero-valued elements in the coefficient matrix. As we 

are search for a set of dictionaries that are rich in representation power so that a compact code 

can be achieved, a relatively low value is expected.  As discussed in section 2.2.2, the density is 
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Table 3. 1. Reconstruction errors on slice 27 using different λ and gene-dictionary ratios. The number in 

parentheses in the first column is the corresponding number of dictionaries. 

 

Table 3. 2. AUCs between the obtained dictionaries and the annotation map on slice 27 using different λ 

and gene-dictionary ratios. 

 

regulated by λ. In most cases, increasing λ will give rise to more zero entries in the coefficient 

matrix. It should be noted that there is no exact monotonic relation between λ and the density of 

the solution (Mairal et al., 2010). Therefore, it would be helpful to monitor λ during the 

parameter selection process.  

gene-   λ 

dictionary          

ratio 

0.1 0.3 0.5 0.7 0.9 

10(284) 0.031 0.086 0.174 0.299 0.453 

20(142) 0.038 0.096 0.185 0.310 0.459 

30(95) 0.043 0.101 0.19 0.314 0.461 

40(71) 0.047 0.105 0.194 0.318 0.463 

50(57) 0.050 0.107 0.196 0.321 0.464 

60(48) 0.052 0.110 0.198 0.323 0.465 

70(41) 0.054 0.112 0.200 0.324 0.466 

80(36) 0.056 0.113 0.202 0.326 0.466 

90(32) 0.058 0.115 0.204 0.327 0.467 

100(29) 0.059 0.116 0.205 0.329 0.467 

110(26) 0.061 0.118 0.206 0.329 0.368 

gene-   λ 

dictionary          

ratio 

0.1 0.3 0.5 0.7 0.9 

10(284) 0.303 0.332 0.351 0.365 0.366 

20(142) 0.309 0.354 0.372 0.384 0.382 

30(95) 0.328 0.375 0.392 0.400 0.394 

40(71) 0.339 0.384 0.395 0.406 0.398 

50(57) 0.353 0.395 0.404 0.402 0.399 

60(48) 0.359 0.399 0.413 0.400 0.395 

70(41) 0.358 0.399 0.421 0.412 0.401 

80(36) 0.364 0.396 0.417 0.418 0.411 

90(32) 0.372 0.398 0.426 0.414 0.411 

100(29) 0.379 0.400 0.434 0.433 0.424 

110(26) 0.377 0.408 0.419 0.423 0.427 
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Table 3. 3. The percentage of non-zero entries in the coefficient matrix obtained from DLSC on slice 27 

using different λ and gene-dictionary ratios. 

 

Having set up the three criteria, a grid search was performed on slice 27. This slice was 

chosen due to its good anatomical coverage of various brain regions. As different number of 

genes were expressed in different slices, the number of dictionaries for each slice should change 

accordingly. Instead of fixing the number of dictionaries, a gene-dictionary ratio was used to 

determine the optimal ratio between the number of genes expressed and the number of 

dictionaries required to achieve a good representation. 55 combinations of λ and gene-dictionary 

ratios were considered with 5 choices of λ and 11 different gene-dictionary ratios (Table 3. 1, 

Table 3. 2, Table 3. 3). The results obtained from 55 different combinations of parameters are 

available at http://mbm.cs.uga.edu/mouse/gcn/para_select/slice.html. As the final goal of 

parameter selection is to choose a set of parameters that result in a sparse and accurate 

representation of the original signal, which is translated to a low reconstruction error, a high 

AUC and a low coefficient density, λ=0.5 and gene-dictionary ratio of 100 is the best option 

among 55 parameter combinations and chosen as the optimal parameters. 

gene-   λ 

dictionary          

ratio 

0.1 0.3 0.5 0.7 0.9 

10(284) 0.026 0.011 0.007 0.004 0.003 

20(142) 0.050 0.023 0.014 0.009 0.005 

30(95) 0.070 0.033 0.021 0.014 0.007 

40(71) 0.089 0.043 0.028 0.018 0.009 

50(57) 0.106 0.053 0.034 0.023 0.011 

60(48) 0.121 0.062 0.040 0.027 0.013 

70(41) 0.136 0.071 0.047 0.032 0.015 

80(36) 0.150 0.078 0.052 0.036 0.017 

90(32) 0.164 0.086 0.058 0.040 0.019 

100(29) 0.176 0.094 0.064 0.044 0.020 

110(26) 0.190 0.104 0.071 0.049 0.023 

http://mbm.cs.uga.edu/mouse/gcn/para_select/slice.html
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3.4 Comparative analysis with Weighted Gene Correlation Network Analysis (WGCNA) 

WGCNA was applied on the same dataset to validate findings generated by DLSC. 

WGCNA (Langfelder & Horvath, 2008) is an unbiased, unsupervised framework to identify 

coexpressed gene modules.  In the framework, genes are viewed as nodes in a weighted network. 

To achieve a robust and sensitive measure of the interaction between genes, the proximity 

measure between genes, - namely Topological Overlap Measure (TOM), considers not only the 

direct connection strength between two genes but also the connection strengths these two genes 

share with other "third party" genes. Then based on TOM, genes are clustered into multiple 

modules using average linkage hierarchical clustering. The module eigengene, defined as the 

first principal component of the standardized expression profiles of the module is used as a 

succinct representation of the gene expression profiles of the module. In this study, a signed 

network is used to avoid the “anti-reinforcing” connection strength that might occur in the 

unsigned network. For clarity, the groups identified by WGCNA and DLSC are denoted as 

modules and GCNs respectively. 

To quantitatively compare the found networks, both methods were applied on the gene 

expressions of the same slice – slice 27. Default parameters of WGCNA resulted in 14 modules 

while the DLSC gave 29 GCNs. To get a more balanced comparison between the two methods, 

we increased the number of modules extracted by WGCNA by tuning three parameters: the soft 

thresholding power beta, deepSplit, and minModuleSize. Multiple combinations of these 

parameters have been tested and the highest number of modules WGCNA was able to get was 25 

modules with one additional module for unassigned genes. The parameters used in the 

experiment were: beta =18, deepSplit=4 (highest) and minModuleSize=15. Also, we changed the 

number of GCNs from the optimal 29 to 26 to ensure a fair comparison.  
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Then the number of shared genes were counted for groups identified by both methods. 

Besides quantification, another intuitive way to compare the two methods is by comparing the 

obtained spatial maps (Figure 3. 2). Similar gene groups are likely to show similar spatial maps. 

In DLSC, the dictionary atom encodes the network spatial patterns. In WGCNA, the spatial 

distributions are represented by the spatial pattern of the eigen-gene of that module. 

4 Brain-Wide GCN Construction 

4.1 Brain-wide GCNs construction 

To construct brain-wide coexpression networks, we need to consider the gene interactions 

on all coronal slices. First, gene similarity on each slice, denoted as the local similarity, was 

calculated from the coefficient matrix α with the coefficients as the feature of each gene. Let v1, 

v2 be the coefficient vectors of gene1 and gene 2. The gene similarity measure is defined as the 

overlap rate OR, as below: 

𝑂𝑅(𝑣1, 𝑣2) = 2
|min (𝑣1, 𝑣2)|

|𝑣1| + |𝑣2|
 (3.6) 

where |*| is the ℓ1  norm of the feature vector.  

As each slice has missing data for different genes, the interactions of these missing genes 

on a particular slice should not be considered in the global similarity matrix construction. 

Therefore, the global gene similarity, i.e., the similarity measure that considers interactions on all 

slices, is measured by the median of the local similarities of genes with sufficient data. The 

rationale of adopting a global similarity matrix instead of simply aggregating the coefficients 

matrices on each slice is to mitigate the influence of missing data as well as the artifacts 

generated during data acquisition. 
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In the constructed global similarity matrix, 91 genes showed zero similarity to any other 

genes. The very low similarity was caused by the lack of data, evidenced by that these 91 genes 

were present in at most 5 out of 67 slices. The separation of these genes that suffered from heavy 

data loss demonstrates the effectiveness of similarity matrix over the original α matrix and also 

reflects OR as an appropriate measure for gene similarity in this situation. 

4254 out of 4345 genes were used to derive the brain-wide GCNs. The global similarity 

matrix is the input to the subsequent DLSC. The goal of performing DLSC on the similarity 

matrix is to assign network membership to genes by their associations to all the other genes. We 

assume that if two genes display a similar relationship to all the other genes, these genes should 

belong to the same group. The network memberships were encoded in the resulted sparse 

coefficient matrix α.  

4.2 Parameter selection 

The parameter selection of decomposing the global similarity matrix is guided by the 

knowledge from the slice-based study that each network contains on average 185 genes and each 

gene participates in 1.85 networks. Using these criteria, we performed a grid search of λ and 

dictionary numbers and selected λ as 0.3 and dictionary number 50, which resulted in an average 

of 189 genes per network and a slightly larger 2.21 networks for one gene.    

4.3 Fuse 3D spatial pattern of GCNs 

As described in section 3.2, the dictionaries trained in each slice encode the spatial 

distribution of GCNs. Intuitively, we can fuse the dictionaries of each slice to study the 3D 

spatial pattern of brain-wide GCNs. First, the similarities between brain-wide GCNs and slice-

wide GCNs were calculated. Then, we scaled slice-wide dictionaries based on the similarity and 

integrated them into a 3D volume. Specifically, the similarity was calculated based on the OR of 
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the coefficient matrix defined in section 4.1. Slightly different from the previous definition, here 

the similarity was calculated between GCNs instead of genes. Also, before comparison, each 

feature vector was normalized so that the maximum value equals to 1. 

4.4 Gene ontology analysis of brain-wide GCNs 

Brain-wide GCN characterization was made based on common gene ontology (GO) 

categories (Molecular Function, Biological Process, Cellular Component), Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways using Database for Annotation, Visualization and 

Integrated Discovery (DAVID) (Dennis et al., 2003). Enrichment analysis was performed by 

cross-referencing with published lists of genes (Miller et al., 2011) related to cell type markers, 

known and predicted lists of disease genes, specific biological functions etc. Significance was 

assessed using one-sided Fisher’s exact test with a threshold of 0.01. 

5 Slice-Wide GCN Analysis 

First, we constructed GCNs on each slice. With slice 27 as an example, the slice-based 

GCNs were validated first by a visual inspection against raw ISH data where the GCNs were 

derived and then by a comparative study with one of the most widely used methods – WGCNA 

as well as a matrix factorization method principal component analysis (PCA). On the side as an 

application, we demonstrated that the learned dictionaries, 100-fold shorter in length than the 

gene expressions, can be a relevant and compact feature for brain parcellation. 

Slice 27 was analyzed due to its good anatomical coverage of various brain regions. 

Results of all other slices are available at 

http://mbm.cs.uga.edu/mouse/gcn/allslices/all_slice_anatomy_overview.html. The detailed 

information including the genes and spatial distributions of modules identified by WGCNA can 

also be found at http://mbm.cs.uga.edu/mouse/gcn/wgcna_s27_adj/overview.html. 
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5.1 Comparative analysis with WGCNA 

Both DLSC and WGCNA were applied on the gene expressions data of slice 27. 

Although a larger number of modules (from 14 to 25) were obtained by tuning the parameters of 

WGCNA, the number of genes in a module vary significantly. Specifically, the top three 

modules (module 1, 2 and 3) consist of 783, 240 and 136 genes respectively and modules 15-25 

all contain fewer than 60 genes, indicating the genes were not well separated. The observation of 

a single large module together with multiple small modules was also seen when the default 

WGCNA parameters were used.14 modules were obtained with the largest module containing 

over 1000 genes. In contrast, the number of genes in the GCNs was more balanced. The top three 

GCNs contain 609, 543 and 406 genes even though some genes have been counted multiple 

times. In this sense, the DLSC gives better coexpression networks as it is able to separate genes 

into more balanced groups when the number of groups is relatively large. 

To test whether DLSC provides an improved view of co-expressed genes, we measured 

the correspondence at the level of network/module pairs by quantifying the number of shared 

genes. We used a brown arrow pointing from a GCN to a module to denote that the GCN 

containing over 50% of the genes in that module. Similarly, a blue arrow pointing from a module 

to a GCN indicates a module containing over 50% of genes in that GCN. If the number of shared 

genes is above 50% of the genes in the module as well as the GCN, a green double arrow was 

used.  By laying out the spatial maps of the GCNs and the eigen-genes of WGCNA modules 

(Figure 3. 2), it is evident that the spatial maps of GCNs and modules sharing over 50% are 

either very similar (e.g. GCN17 and M20, GCN4 and M11, GCN8 and M6) or have large spatial 

overlaps (e.g. GCN22 and M16, GCN19 and M5, GCN7 and M2). Overall, the spatial maps of 
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the groups generated by WGCNA and DLSC are on the same scale. For each spatial map of the 

module, we can find one or more similar spatial maps of the GCNs. 

 

Figure 3. 2. Comparison between spatial distributions of GCNs and eigen-genes of WGCNA modules on 

slice 27. For clarity, the groups identified by WGCNA and DLSC are denoted as modules and GCNs 

respectively. The number of overlapping genes between a GCN and a module was counted. At the bottom 

of each image is the name of the networks/modules. ‘M’ represents a module generated by WGCNA and 

GCN represents a co-expression network generated by DLSC. The number in the parentheses are the 

number of total genes in that module/network. Brown arrows indicate that the GCN includes over 50% 

genes of that module. Blue arrows indicate that the module has over 50% of the same gene of the GCN. 

Green double arrows indicate that the GCN and module share 50% of their own genes. The black boxes 
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highlight the GCN/module compared in detail in Figure 3. 3 and Figure 3. 4. The background color for 

modules and GCNs are fixed to -0.05 and 0. 

 

Then we focus on the genes in the GCNs/modules. Most GCNs have more genes than the 

respective module that share the similar spatial pattern, indicated by the considerably more 

brown arrows than the blue arrows (Figure 3. 2). Relatedly, there are many modules small in size 

given that roughly half of the genes are assigned to module 1 and module 2. 

 

Figure 3. 3. Comparisons of genes in GCN18 and module 15 on slice 27. For each gene (a-f) we showed 

the raw ISH image together with the normalized energy matrix. On the left are three representative genes 

only found by DLSC. On the right are the three genes only found by WGCNA. (A-C, D-F) are the spatial 

distributions of selected GCNs and the eigen-genes of selected modules. The number in the parentheses of 

GCNs/modules denotes the number of genes in the module/GCN. The long red arrows show the module 

assignment made by WGCNA. The green arrows show the GCN assignment made by DLSC. DLSC 

offers a weight that measures the degree to which the gene expression conforms to the coexpression 

pattern. These weights are the values above the respective green arrows. 

 

There are multiple pairs that share over 50% of their genes (Figure 3. 2 green arrows). 

One example is GCN 18 and module 15, whose spatial patterns are quite similar (Figure 3. 3A, 

B). The number of genes in GCN 18 is 83 and module 15 has 59 genes. It turns out 52 out of 83 
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genes were shared by both GCN18 and module15. 31 genes were found only by GCN18 and 7 

genes were found only by module 15. We first examined the raw ISH data of genes that were 

only found by DLSC. The spatial map of GCN 18 featured high activations at cortex layer 5 and 

6, covering the cingulate area (Figure 3. 3A white arrow), motor area (Figure 3. 3A yellow 

arrow) and somatosensory area (Figure 3. 3A pink arrow). Three genes were selected for 

illustration from those only found by DLSC (Figure 3. 3a-c). The weight above the green arrow 

is a measure of the degree to which a gene conforms to the coexpression patterns. With a 

decreasing weight, the resemblance of the raw data to the spatial map became weaker. All three 

genes showed strong signals in layer 5 and 6 and agree with the overall shape of the GCN 18 

(Figure 3. 3 red arrows). However, Scg3 displayed additional activations at medial preoptic area 

(Figure 3. 3c, f yellow arrow) and lateral septal nucleus (Figure 3. 3c black/white arrow) and 

thus was assigned a lower weight of 0.202. By examining the normalized energy matrix as well 

as the raw ISH, we were convinced that these genes have similar spatial distributions to the 

GCN18 and that the assignment is correct.  

Interestingly, 27 out of the 37 genes that were assigned to GCN18 but not assigned to 

Module 15, including the Limch1, Loc381765 and Scg3, were assigned to module 1 (Figure 3. 

3C) by WGCNA, which featured the entire cortex layer from layer 1 to layer 6 and the 

expression peaks at the anterior cingulate area and the motor area and gradually decreases in the 

primary and supplementary somatosensory regions. Despite some similarities, the absence of 

expressions in the outer layer of cortex and the fairly homogeneous expression across cingulate, 

motor and somatosensory regions (Figure 3. 3a-f red arrows) suggest the expression pattern a 

better consistency to GCN18. 
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We also looked at the genes found only by WGCNA (Figure 3. 3d-f). These genes were 

given zero weights by DLSC in GCN18, meaning they were not part of GCN18. It should be 

noted that the weights are comparable between GCNs because the entire alpha matrix was 

learned altogether during the matrix factorization. Although the raw data showed some 

similarities with the spatial map of M15, we believe the assignments made by DLSC a better fit. 

For example, Gng2 was assigned to GCN10 (Figure 3. 3D) with a high weight of 0.449. The 

peak expressions at the endopiriform nucleus (Figure 3. 3d, red arrows) and relatively weaker 

expressions at the cortex regions (Figure 3. 3d black arrows) showed more resemblance to the 

spatial pattern of GCN10 than that of module 15.  As to the second gene Agpat4, its raw ISH 

shows enhanced signals at the medial preoptic nucleus (Figure 3. 3e black arrows), the piriform 

area (Figure 3. 3e yellow arrows), as well as all outer layers of cingulate areas (Figure 3. 3e red 

arrows). These patterns were absent in M15 but featured in GCN12. The high weight of 0.378 

also suggests a good agreement between Agpat4 and GCN12. The last WGCNA-only gene is 

Taldo1. The similarity to module 15 is low as evidenced by the weak activations in cortex layers 

(Figure 3. 3f red arrows) and the enhanced signals in septal nucleus (Figure 3. 3f black arrows). 

DLSC assigned the gene to GCN1 which has wider yet lower activations throughout the slice 

with a low weight of 0.172. The energies from the three WGCNA only genes were found 

diverged from the spatial map of represented by the eigen-gene of M15. 

Following the same strategy, we examined another pair of networks where GCN includes 

over 50% of genes in the corresponding module, GCN17 and M20. This pair displays very 

similar spatial patterns that feature high expressions at lateral preoptic area and substantia 

innominata (Figure 3. 4D,E red arrows) and extends to piriform area with lower expressions 

(Figure 3. 4D-E white arrows). There were 95 genes in GCN17 and 40 genes in M20. Among 
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them, 35 genes were shared. 5 genes were WGCNA-only, and the other 60 genes were DLSC-

only. Five DLSC-only genes with different weights were presented. With the decreasing weights, 

the resemblance to the spatial map of GCN17 decreased. Interestingly, both Elfn1 and Tmem22 

were assigned to M17, which showed a better match at isocortex in comparison with that of 

GCN 17 (Figure 3. 4a,b yellow arrows). sncq was assigned to module 5, presumably due to the 

similarity of the overall activations at hypothalamus although there was a mismatch of the degree 

of activation at medial preoptic area (Figure 3. 4c yellow arrows). In contrast, the high 

activations at the lateral preoptic area is more consistent with GCN17 (Figure 3. 4c red arrows). 

Spp1 and sgpp2 both showed broad activations in addition to the enhanced signals at the lateral 

preoptic area (Figure 3. 4d,e red arrows). They were left unassigned by WGCNA (M0 is the 

unassigned module). 

Then we examined all the WGCNA-only genes. The expression of kcnk13 peaked at the 

medial preoptic area (Figure 3. 4f red arrows) and was more consistent to GCN 22 (Figure 3. 4F) 

than M20. Dner showed enhanced signals at piriform areas (Figure 3. 4g yellow arrows) and 

extended further to isocortex (Figure 3. 4g green arrow), thalamus (Figure 3. 4g black/white 

arrow) and hypothalamus (Figure 3. 4g red arrow) with lower expressions. The expression 

pattern was captured by both GCN 23 (Figure 3. 4r) and GCN 22 (Figure 3. 4s) with the degree 

of consistency of around 0.2. Stc1 showed strong signals at piriform area (Figure 3. 4h yellow 

arrows), but not as strong at lateral preoptic area (Figure 3. 4h red arrows). This pattern was 

more consistent with GCN23 (Figure 3. 4G). A similar case was also seen in Dmwd (Figure 3. 

4i). Finally, the expressions of Slc25a3 almost spanned the entire slice, with enhanced signals at 

the cortex (Figure 3. 4j yellow arrows) and preoptic areas (Figure 3. 4j red arrows). The 

expression pattern was better captured by GCN21 (Figure 3. 4I). 
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Figure 3. 4. Comparisons of genes in GCN17 and module 20 on slice 27. For each gene (a-j), the raw ISH 

image together with the normalized energy matrix were shown. (a-e) are five representative genes only 

found by DLSC. (f-j) are five genes only found by WGCNA. (A-D) are the spatial distributions of the 

eigen-genes of selected modules. M0 is the module for unassigned genes. (E-I) are the spatial 

distributions of selected GCNs. The number in the parentheses of GCNs/modules denotes the number of 

genes in the GCN/module. The long red arrows show the module assignment made by WGCNA. The 

green arrows show the GCN assignment made by DLSC. DLSC offers a weight that measures the degree 

to which the gene expression conforms to the coexpression pattern. These weights are the values above 

the respective green arrows. 

 

By analyzing the gene parcellations using WGCNA and DLSC on slice 27 in depth, we 

showed a very good consistency between the results obtained by WGCNA and DLSC. The 

discrepancy in the gene assignment was also demonstrated, which arises from different 

interpretation of the coexpression relationships. Thus, DLSC can provide a complementary 

perspective to other framework for gene coexpression network construction.  
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Notably, DLSC is robust to parameter selections as the result shown above were ran 

using sub-optimal parameters. When dictionary number is reduced from 29 to 26, most spatial 

patterns remain the same with slight changes to adapt for the reduced number of dictionaries 

(data not shown). Among 26 GCNs, 24 of them have over 50% the same genes as the counterpart 

in the GCNs derived using 29 dictionaries.   

5.2 Comparative analysis with Principal Component Analysis 

To compare with other matrix factorization method, we performed principal component 

analysis (PCA) on slice 27. Data was first centered by subtracting column means. Singular value 

decomposition algorithm was used as the solver. For visualization we projected each individual 

mode back to the brain space. The first 13 modes account for ~95% of variance while the top 3 

modes explain ~90% of the total variance. The first mode has a very broad distribution across the 

brain, with slightly higher expressions at the isocortex region (Figure 3. 5a). The second mode is 

also broadly distributed with distinctly high amplitude in caudoputamen (Figure 3. 5b). In 

contrast, the third mode features an absence of caudoputamen and is prominent in the 

hypothalamus (Figure 3. 5c). Overall, PCA is able to extract correlated structures that correspond 

to the broad anatomical regions, such as caudoputamen (Figure 3. 5b) and isocortex (Figure 3. 

5d). Yet with the additional modes that account for much less variance, the correspondence to 

the classical anatomy becomes increasingly weaker. On the other hand, with the goal of finding 

the coexpression patterns regardless of directions, PCA is not the best model for the problem 

because the modes are designed to capture the variance of the data instead of the common 

patterns of the data. Further, the orthogonal constraint keeps the model from finding meaningful 

overlapping coexpression patterns. One example is GCN 22 and GCN 19 (Figure 3. 2). Both 

GCNs show enhanced activations at the bed nuclei of the stria terminalis and were reported by 



 

60 

DLSC and WGCNA. Using PCA, only mode 3 was found (Figure 3. 5c). Another example is 

GCN 3 (Figure 3. 2), GCN 26 (Figure 3. 2) and GCN16 (Figure 3. 2), which show distinct 

patterns at caudoputamen. All 3 GCNs were identified by both DLSC and WGCNA, while for 

PCA only mode 2 is most related to caudoputamen (Figure 3. 5b). Additionally, since our goal is 

to cluster genes with similar coexpression patterns, there requires an extra step of clustering 

analysis for PCA because with no sparsity constraint on the coefficients, the representation for 

the new bases is dense and the group assignment of genes is not readily available as DLSC. One 

last disadvantage of using PCA for GCN construction is that PCA generates negative numbers. 

The interpretation of the negative values does not appear immediately obvious in the context of 

gene expression patterns.  

 

Figure 3. 5. Visualization of the first 26 modes obtained from principal component analysis. The values in 

the parentheses are the percentage of total variance explained by the mode. 

5.3 Gene Coexpression Network and Brain Parcellation 

Existing literature have shown that transcriptional profiles reflect the gross brain 

anatomical structures (Ed S. Lein et al., 2004). Since DLSC is also a dimension reduction step 
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that reduces the transcriptional profile consisting of ~3500 features into a feature vector 

composed of ~35 dictionaries for a single voxel, we hypothesized that the learned dictionaries 

can preserve the (dis)similarities between two regions defined by their transcriptional profiles, 

thus serving as a very relevant and compact feature for brain delineation. Additionally, since 

parcellation agreement is used as an objective in the parameter optimization that is only 

performed on slice 27, we want to validate whether the selected parameters can result in good 

performance on other slices, by examining the features with reduced dimensionality. To quantify 

the level of correspondence between clustered voxels and the ARA on each slice we used 

normalized mutual information that is also used in parameter optimization. As seen in Figure 3. 

6, voxels resulted from spectral clustering form a set of spatially contiguous clusters partitioning 

the slice. The formation of these single tight clusters agrees with the previously identified brain’s 

organizational principle that transcriptome similarities are strongest between anatomical 

neighbors (Bernard et al., 2012). The delineations are in general symmetric and match major 

canonical brain regions including the hippocampus (Figure 3. 6 blue arrows), hypothalamus 

(Figure 3. 6 red arrows), thalamus (Figure 3. 6 magenta arrows) etc. The good correspondence is 

also reflected in the high normalize mutual information. The values are comparable to 0.6 which 

is the mutual information obtained from slice 27 (Figure 3. 6), suggesting the parameters are 

close to optimal for other slices. The most striking and principal features are the laminar and 

areal patterning that are seen in almost all slices (Figure 3. 6a-e yellow and orange arrows). The 

patterning defined by the abrupt changes in gene expression, has been discovered in mammalian 

brains such as mouse (Mike Hawrylycz et al., 2010) and human and is known crucial to the 

formation of specialized brain anatomical and functional areas (O’Leary, Stocker, & 

Zembrzycki, 2007). Within a dominant layered organization, layer-specific areal patterning is 
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also apparent. For instance, isocortex layers are further divided into motor areas (Figure 3. 6 

green arrows), somatosensory area (Figure 3. 6 orange arrows), piriform area (Figure 3. 6 pink 

arrows), retrosplenial area (Figure 3. 6 dark green arrows), auditory area (Figure 3. 6 purple 

arrows), and visual area (Figure 3. 6 black arrows). It is worth mentioning the level of coherence 

in the partitioning across slices. Some subregions with potentially stable gene expression patterns 

are consistently found in adjacent slices despite of the slice-to-slice variations in anatomical 

structures and that DLSC and spectral clustering are performed separately on each slice. One 

 

Figure 3. 6. Representative anatomical divisions based on the GCN features. Eight panels correspond to 

eight selected slices. In each panel, top row: slice number; second row: brain parcellation obtained from 

spectral clustering with dictionaries as feature vector; third row: number of regions in the slice obtained 

by brain parcellation; fourth row: visualization of Nissl stain image (left) and brain ontology (right) of the 

corresponding slice downloaded from ABA. Fifth row: normalized mutual information between brain 

divisions and ARA in that slice. Color code of each region is shown on the right. 
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example is slice 39 and slice 40. Some major canonical regions such as ventricles (Figure 3. 6 e-f 

white arrows), hippocampus (Figure 3. 6 e-f blue arrows), thalamus (Figure 3. 6 e-f magenta 

arrows), retrosplenial area (Figure 3. 6 e-f dark green arrows) are consistently identified in both 

slices. The consistent and legitimate segmentations not only demonstrate the validity of DLSC in 

succinctly representing the transcriptome profile, but also provides strong evidence that the 

observed networks are reproducible and that there exist unique and robust genetic signatures for 

different brain structures. 

6 Brain-Wide GCN Ontology and Spatial Analysis 

Having established the slice-wide GCNs, this section focuses on the construction of 

global GCNs by integrating the gene-gene interactions on all slices. Along with the spatial 

distributions of the GCNs, we showed that the obtained GCNs are biologically meaningful by 

comparing with the known gene ontologies and the published gene lists. 

Comparisons with the published lists of genes related to cell type markers, specific 

biological functions and known lists of disease genes reveal exciting biological insights for the 

constructed GCNs. A complete summary of each brain-wide GCN is available at 

http://mbm.cs.uga.edu/mouse/gcn/globalGCN/Global_GCNs_overview.html. Multiple brain-

wide GCNs are consistently identified enriched in a certain functional category by several 

distinct studies using different types of data and different methods for analysis. For example, a 

comparison with the gene lists generated using purified cellular population (Cahoy et al., 2004) 

indicates that GCN 5, 16, 23, 30, 43, 45 are enriched with markers of astrocyte. Among them, 

GCN30 and GCN43 are consistently confirmed as astrocyte-enriched by the lists generated using 

WGCNA on microarray data and gene lists generated using Anatomic Gene Expression Atlas 

(AGEA) (Ng et al., 2009) on ISH data. Similarly, the significant enrichment of markers of 

http://mbm.cs.uga.edu/mouse/gcn/globalGCN/Global_GCNs_overview.html
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oligodendrocyte is reproducibly identified in GCN 24 and GCN 12, 18, 20, and 22 are 

significantly enriched with markers of neuron. The consistency of the biological interpretations 

of the obtained GCNs corroborated by studies using different data types and different analysis 

methodologies indicate that the GCNs reflect the intrinsic transcriptome organization instead of 

data-specific or method-specific patterns. Among the major cell types, several GCNs are 

identified to be enriched in neuron subtypes including pyramidal neurons, GABAergic neurons 

and Glutamatergic neurons (Sugino et al., 2006). The gene lists for these neuron subtypes are 

derived from separated populations using retrograde tracing and fluorescent labeling at different 

regions of adult mouse forebrain (Sugino et al., 2006). Other networks such as GCN 11, 15, 20 

and GCN 12, 41 describe mitochondrial, ribosomal functions. Literature suggested that the 

upregulated or downregulated expressions in these networks can be associated with aging and 

brain diseases (Blalock et al., 2004; Lu et al., 2004).  

The biological meaning of the GCNs has been not only confirmed by existing literature 

but also corroborated by the GO terms using DAVID. For example, two significant GO terms in 

GCN24 are myelination (p=7.7×10-7) and axon ensheathment (p=2.5×10-8), which are featured 

functions for oligodendrocyte, with established markers including Plp1 (proteiolipid protein), 

Mbp (myelin basic protein), Pmp22 (peripheral myelin protein 22), and Ugt8a (UDP 

galactosyltransferase 8A). DAVID also suggests that GCN41 are significantly enriched in the 

KEGG ribosome pathway (p=2.5×10-6), agreeing with the other studies in human and mouse 

(Table 3. 4). Also consistent with the enrichment of mitochondrial function, DAVID suggests 

that GCN 11 is highly enriched in the KEGG oxidative phosphorylation pathway (p=4.9×10-7) 

and significant BPs include generation of precursor metabolites and energy (1.2 ×10 -6) and ATP 

metabolic process (5.1×10-6). 
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A visualization of the spatial map also offers a useful complementary information source 

(Figure 3. 7). For example, the fact that GCN 5 (Figure 3. 7ii) locates at ventricle, where the 

subventricular zone is rich with astrocytes (Quinones-Hinojosa & Chaichana, 2007), confirms its 

enrichment in astrocyte markers. GCN 7 (Figure 3. 7v) is mainly distributed in the deeper layers 

of neocortex, which is reminiscent of the distribution of glutamatergic projection neurons in 

layer V (Molyneaux et al., 2007). GCN 23, located mainly at cerebellar region (Figure 3. 7vi) 

and the indicated enrichment in GABAergic neurons pointed to a potential enrichment of 

GABAergic subtype neuron - the Purkinje cells. Quite a number of genes found in GCN 23 

coincided with the genes that only labeled Purkinje cells (Wright, Ng, & Guillozet-Bongarts, 

2007), including Id2, Creg1, Cpne2, Pcsk6, 0610007P14Rik, Grid2, Itpr1, Baiap2 etc. The 

presence of a considerable number of genes with restricted expressions in Purkinje cell layer 

provided strong evidence for the enrichment of Purkinje cells markers in this GCN. Additionally, 

genes that are enriched in interneurons and Bergmann Glia cells within Purkinje cell layer 

(Wright et al., 2007) are also found in GCN 23. 

In addition to cell-type specific GCNs, we also found some GCNs remarkably selective 

for particular brain regions, such as GCN 27 (Figure 3. 7x) in field CA1, GCN 4 (Figure 3. 7xi) 

in field CA3, GCN 38 (Figure 3. 7xii) in Dentate gyrus, GCN 45 (Figure 3. 7xiii) in cerebellum, 

GCN 21 (Figure 3. 7xiv) in medulla, GCN 1 (Figure 3. 7xv) in thalamus, and GCN 28 (Figure 3. 

7xvi) in caudoputamen.  The region-specific GCNs presumably reflect unique and coherent 

expression responsible for the functions of specific neuronal types in these regions. The unique 

expression signatures are the foundation of inferring brain genoarchitecture. Since the 3D GCN 

patterns are derived from multiple 2D slice-wide GCNs, the smooth and continuous 3D patterns, 

in turn, validates the reliability of slice-wide GCNs. 
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Table 3. 4. Brain-wide GCN enrichment analysis based on cross-referencing with published lists of genes 

related to cell type markers, known and predicted lists of disease genes, specific biological functions etc. 

GCNs that are reproducibly identified enriched in certain category across references are bolded. 

Categories of cell type markers and biological functions GCNs (p-value<0.01) 

Astrocyte (Lein, Ed S. et al., 2007) 13,24,30,35,43 

Astrocyte (Cahoy et al., 2004) 5,16,23,30,43,45 

Astrocyte (Oldham et al., 2008) 30,43 

Astrocyte (Miller, Horvath, & Geschwind, 2010) 5,30,43 

Oligodendrocyte (Ed S. Lein et al., 2004) 24 

Oligodendrocyte (Cahoy et al., 2004) 24 

Oligodendrocyte (Oldham et al., 2008) 24 

Oligodendrocyte (Miller et al., 2010) 24 

Neuron (Lein, Ed S. et al., 2007) 3,12,17,18,20,22,26,29,35,41 

Neuron (Oldham et al., 2008) 12,18,20,22,37 

Neuron (Miller et al., 2010) 3,10,11,12,13,17,18,20,22,26,29, 

36,37,40,41,50 

Pvalb Interneurons (Oldham et al., 2008) 1,10,33 

Pyramidal Neurons (Winden et al., 2009) 3,20,22,29,37 

GABAergic Neurons (Sugino et al., 2006) 23,33,41 

Glutamatergic Neurons (Sugino et al., 2006) 2,7,44 

Mitochondria Human (Miller et al., 2010) 3,11,13,18,20,22,29,41,50 

Mitochondria Mouse (Miller et al., 2010) 11,20,29,37,40,41,50 

Mitochondria down in AD patients (Blalock et al., 2004) 3,11,12,18,20,22,29,37,40,41,50 

Mitochondria down in aging human brains (Lu et al., 2004) 2,11,17,18,20,26,44,50 

Ribosome Human (Miller et al., 2010) 12,41 

Ribosome Mouse (Miller et al., 2010) 12,41,50 

Ribosome (Oldham et al., 2008) 41 

 

It should be mentioned that there is no one-to-one mapping between the GCNs and the 

cell types or biological functions. In fact, many GCNs are enriched in multiple categories and 

that explains why the top weighted gene is sometimes not the known markers of the listed 

function (Figure 3. 7). One example is GCN 20. The top weighted gene Ptp4a1 (protein tyrosine 

phosphatase 4a1) of GCN is not a marker for pyramidal neuron, but a marker for a neuron. As 

seen in Table 3. 4, besides pyramidal neuron markers, this network is also enriched for neuron 

markers and mitochondrial-related genes. In other cases where the top weighted genes were not 

involved in any of the characterized functions, these genes might suggest potential direct or  
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Figure 3. 7. Visualization of the spatial distribution of brain-wide GCNs significantly enriched for major 

cell types, particular brain regions, and biological functions. In each sub-figure, top row: sub-figure index 

and brain-wide GCN ID. Second row: 3D spatial maps of axial (left) and two selected coronal slices 

(right) of GCN. The location of each slice is highlighted in the 3D spatial map and the slice index is listed 
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in the top right corner. Third row: sub-category. Fourth row: highly weighted genes in the sub-category 

following the DLSC weight. The functionally enriched genes previously reported in the literature are 

highlighted in red. 

 

indirect link with the known functions. For instance, Tgfbr2 (transforming growth factor, beta 

receptor II) is not an astrocyte marker. Research has shown that TGFβ pathway is relevant to the 

optic nerve head astrocyte migration (Miao, Crabb, Hernandez, & Lukas, 2010). 

7 Discussion and Conclusion 

We have presented a data-driven framework that can derive biologically meaningful 

GCNs from the gene expression data. The motivation of the method comes from the recent 

success of applying DLSC for image denoising, demosaicing etc (Elad & Aharon, 2006). The 

sparse constraint on the coefficients can encourage dictionaries to capture the most common 

structures in images so that a parsimonious representation is possible. On the other hand, it is 

reported that most genes are expressed in a small percentage of cells (Lein, Ed S. et al., 2007). 

We assume this notion can be captured by imposing a sparsity constraint that limits the number 

of voxels that a gene can be active on. To this end, DLSC can serve as a useful tool to extract the 

coexpression patterns. Using the spatially-resolved ISH AMBA data, we have shown that a set of 

networks significantly enriched for major cell type markers, specific brain regions, and 

biological functions. Thus, we have contributed a new way of generating the coexpression 

networks by considering the transcriptome sparseness. The proposed DLSC method is capable of 

visualizing the spatial distributions of the GCNs while knowing the gene constituents and the 

weights they carry in the network. The precise gene distribution carries complementary 

information that helps identify, visualize and in the future manipulate different types of neurons. 

Besides, we find that the learned dictionaries can serve as a very relevant and compact feature 
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representing transcriptome profile for each voxel. The brain parcellations based on the learned 

dictionaries match well with the canonical neuroanatomy.  

In contrast to many approaches that require input of gene-gene similarity matrix, DLSC 

can take both the gene expression profiles and gene-gene similarity matrix as inputs. In this 

paper, we have demonstrated the applicability of DLSC on both inputs. We first constructed 

slice-based GCNs using the gene expression profiles. Then during the brain-wide GCN 

construction, the global similarity matrix was first calculated by integrating the local similarity 

matrices on all slices and then input to DLSC. The extra step of slice-based GCNs is to resolve 

the potential loss of information in genes with missing values and the artifacts associated with 

data acquisition. Ideally, if gene information is complete and the data acquisition is perfect, this 

method can be directly applied to the gene expression profiles consisted of all slices to form the 

brain-wide GCN. The capability of taking two common types of inputs affords more flexibility 

and robustness to handle noisy data and to incorporate/be integrated into promising methods 

since many GCN constructions methods are based on gene-gene associations. 

The GCNs outputted by DLSC are not traditional networks with nodes and edges. In the 

slice-wide GCNs, nodes are the tested genes and edges are not explicitly indicated. In DLSC, a 

set of coexpression patterns is learned from the data. At the same time, we also obtain a 

coefficient matrix detailing how similar the expression patterns of each gene to each of these 

coexpression patterns although no information is provided on the association between any of the 

two genes in the network. However, the pairwise gene-gene similarity can still be readily 

estimated from the coefficients using various metrics. One example is the successful construction 

of global similarity matrix from the slice-wide GCNs. 
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In addition to the presented GCNs that reflect neuronal diversity and region specificity, 

many GCNs are much more difficult to interpret. Comparisons with the published lists show that 

numerous GCNs are enriched with multiple neuronal cell types. Other GCNs are significantly 

associated with biological functions. One explanation to the challenges of GCN interpretation is 

that the coexpression relationship can come from multiple biological sources such as 

mechanisms that synchronously regulate transcriptions of multiple genes and mRNA degradation 

as well as non-biological sources such as batch processing effects (Gaiteri et al., 2014). The 

changes brought by these sources are not mathematically distinguishable. Additionally, it is 

widely known that gene coexpression can be dynamically regulated by neural development, 

aging, environment, and diseases (S. Dong, Li, Wu, Tsien, & Hu, 2007; Jiang et al., 2001; 

Rampon et al., 2000). Since the gene expression profiles used is limited to one set of conditions, 

we should be cautious when interpreting the GCNs biologically.  
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CHAPTER 4 

VOLUME COMPLETION OF 3D IN SITU HYBRIDIZATION GRID USING FULLY 

CONVOLUTIONAL NEURAL NETWORK 3 

 

  

                                                 
3  Yujie Li, Heng Huang, Hanbo Chen, Tianming Liu, 2018, Deep Neural Networks for Exploration of 

Transcriptome of Adult Mouse Brain, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in 

press. 
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1 Abstract 

Missing value estimation for microscopy images becomes important when the subsequent 

analysis depends on complete data. Here we present a novel training scheme that successfully 

adapts the U-net architecture to the problem of volume recovery. By analogy to denoising 

autoencoder, we hide a portion of each training sample so that the network can learn to recover 

the missing voxels from the context. With Allen Mouse Brain Atlas (AMBA), we show that the 

volume recovery network is successful in completing the large missing region on a slice as well 

as one or two consecutive missing slices, visually and quantitatively. A comparison with 

different training schemes showed the importance of designing the right strategy that fits to the 

missing data patterns. The completed spatially resolved AMBA enables many following 

statistical and analytical tools that rely on complete data. 

2 Background and Motivation 

Incomplete data has been a problem frequently encountered to image data analysis 

(Criminisi, Perez, & Toyama, n.d.; Pathak, Krahenbuhl, Donahue, Darrell, & Efros, 2016; Sun, 

Yuan, Jia, & Shum, 2005). This is a much severe yet more important problem for microscopic 

images because of the challenging and time-consuming data acquisition process. On one hand, 

any mistreatment of tissue slice, loss of focus during imaging, or misalignment during 

registration could result in the corresponding data loss. On the other hand, the acquired data are 

often limited and thus requires that we make use of data as much as we can in further data 

analysis. Therefore, there is a great need for algorithms that can complete microscopic images. 

The simplest solution to incomplete data is to ignore them. In one of our prior works (Li, 

Chen, Jiang, Li, Lv, Peng, et al., 2017), we worked around the problem by first studying the 

coexpression networks slice-wise and then infer the gene-gene interactions by considering only 
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the slices with data. Using two steps, we focus on the known interactions. Yet the strategy is only 

applicable to a specific problem and an extra step is required for data integration.  

Alternatively, it is possible to use image inpainting methods for missing value estimation 

because ISH volumes are directly image structures. Classical inpainting methods (Criminisi et 

al., n.d.; Sun et al., 2005) restore the image based on either local or non-local information. Most 

existing methods require continuous textures or contours across the known and missing region. 

However, this assumption is often not true, especially when the missing region is large and in 

arbitrary shape. Other methods resort to external database for a possible match for the missing 

region (Hays & Efros, 2008). Failures occur when the test image is significantly different from 

the database. Recently, learning-based methods have shown superior performance in image 

completion problem (Mairal et al., 2008; Xie, Xu, & Chen, 2012). Instead of hand-designing 

features for patch editing or matching, dictionaries or a neural network are learned from data 

(Mairal et al., 2008; Xie et al., 2012). Deep neural networks have shown great promise in filling 

large missing regions in images, a more challenging task that requires a deeper understanding of 

the image. These models provide a plausible completion by learning the semantic meaning 

(Pathak et al., 2016; Yeh et al., 2017). However, all the above-mentioned methods are limited to 

two dimensional images and not directly applicable for 3D volume completion. 

Inspired by the rapid rise and revolutionary performance of deep learning algorithms, we 

propose volume recovery network (VRN), a convolutional neural network that completes 3D 

volume data. VRN borrows the idea from denoising autoencoder (DA) (Thomas, Price, Paine, & 

Richards, 2002). Instead of feeding the network data with manually added noises and teaching 

the network to undo noises, we hide a portion of each training sample so that the network can 

learn to recover missing voxels from the context.  
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    The architecture of VRN follows that of the U-net (Ronneberger, Fischer, & Brox, 

2015). It is essentially an autoencoder with skip connections between mirrored layers of encoder 

and decoder. The addition of skip connections between encoder and decoder is crucial for 

localizing high-resolution features. The training strategies of which part of volume to hold out is 

key to the performance of VRN. Using Allen Mouse Brain Atlas (AMBA) as an example dataset, 

we showed that the tailored strategy is effective in training the network to learn from adjacent 

slices as well as the surrounding voxels. The completed spatially resolved AMBA enables a 

holistic investigation for many statistical and analytical tools that depend on complete data. 

3 Volume Recovery Network 

3.1 Training strategy  

VRN borrows the idea from DAs. Instead of adding noise to the inputs to teach the 

network to undo the noise, we hide some data of each training data to teach the network to 

recover the missing voxels from the context. By observation, the data loss for AMBA are usually 

one or more slices along coronal axis. This loss pattern is a result of the acquisition step when 

the brain tissues were sectioned along coronal axis and then digitally processed, stitched, 

registered, gridded, and quantified (Lein, Ed S. et al., 2007). 

Based on the patterns of missing data, we designed three strategies on which portion of 

data to hold out. First, we hide a random slice by setting all voxels on the slice to -1, which 

represents missing values. Second, we randomly pick two consecutive slices to hide. Third, we 

random pick a slice and sample from existing missing data patterns on that slice and mask out 

part of the slice. To make sure the third strategy does not overlap with the first situation, we set a 

range of 10 to 80 to the percentage of allowed missing data on that slice. The three ways of 
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simulation of missing data render the network to learn to recover missing data from the previous 

and the subsequent slices as well as the same slice.  

 

Figure 4. 1. Volume recovery network architecture. Each training sample is a volume of size 72×48×64. 

(a) We designed three schemes of holding out data, hide partial slice, hide a single slice and hide two 

consecutive slices. (b) The volume is first corrupted by one of the three ways before it is inputted to the 

network. (c) The output is the predicted volume of the same size of the input. MSE loss is calculated 

between the predicted volume and the raw input. (d) VRN consists of an encoder and decoder and the 

mirrored layers are connected via skip layers. The type of the layer, number and size of kernels are 

denoted in the box. (e,f) axial view of three raw ISH volumes and respective completed volumes. 

 

The choice for partial slice mask is important. Previously the frequently used image 

masks for face/natural image completion are central square mask or random blocks (Pathak et al., 

2016). Here the AMBA brings dozens of existing missing slice masks. Instead of arbitrarily 
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generating the partial slice masks, these masks are sampled from existing data because they 

come from the exact distribution of the data to be completed. On average, each slice has about 

135 different masks with 10-80 percent of voxels of the slice missing. As we will show later, the 

inclusion of the partial masks is essential to prevent the network from learning the low-level 

features latching onto the boundaries. Additionally, the limitation on the percent of missing 

voxels is also essential in preventing the slice training from degrading to strategy 1. 

3.2 Network Architecture 

Figure 4. 1 shows the architecture of our network, a 3D U-net architecture (Ronneberger 

et al., 2015). It consists of an encoder and a decoder. In the contracting path, repeated 

convolutions using 3×3×3 filters followed by a Rectified Linear Unit (ReLU) and 2×2×2 pooling 

layers are used to aggregate features and increase the size of the receptive field. In the expansive 

path, the 2×2×2 deconvolutional layers are used to propagate context information to higher 

layers. The skip layers between the encoding and decoding path ensure that high resolutions 

features are retained and localized (Ronneberger et al., 2015). The architecture is fully 

convolutional, which means the network allows the input volume in arbitrary shape.  

The training is achieved by regressing to the ground truth content of the entire volume, 

including the held-out region. Mean squared error (MSE) loss is used as our reconstruction loss 

function. As the ground truth volume might contain missing values, only the losses of the voxels 

with ground truth were counted. 

The model was implemented using Keras package (François Chollet, 2015). The initial 

learning rate was 10-6 and decay rate is 10-6. Adam (Kingma & Ba, 2015) was used as the 

optimizer. To ensure a seamless tiling of the output, each training sample is padded on each side 

and the full volume is of size 72×48×64. The number of training samples is 3300 and the number 
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of validation samples is 330, which consists of 85% of the data. The remaining 15% of data is 

used for testing. During training, we consider all three strategies for each training sample and 

each time only one strategy is applied. Assuming that each volume has 57 coronal slices in use, 

then the first two strategies generate 57×2=114 ways of corruption. For the third strategy, the 

average number of partial mask for each slice is 135 and with 57 coronal slices there are 

135×57=7695 ways of corruption. Putting it altogether, for each volume we can generate ~7800 

new samples. Therefore, no data augmentation is required. Each epoch took about 40 hours on a 

12GB Nvidia Geforce GPU. 

3.3 Evaluation 

In addition to MSE, we use two more metrics to evaluate the quality of the predictions. 

The first metric is structural similarity index (SSIM) (Z. Wang, Bovik, Sheikh, & Simoncelli, 

2004). SSIM estimates the holistic similarity between two images and has been used as a useful 

metric for evaluating algorithms designed for image compression, image reconstruction, 

denoising and super-resolution. The second one is the peak signal-to-noise ratio (PSNR) which 

directly measures the difference in pixel values. The evaluation scheme corresponds to the 

training strategy, which consists of conditions of one slice missing, two consecutive slices 

missing and partial slice missing. Instead of using entire volume, we only evaluate the metrics on 

the completed slice(s) against the ground truth. For partial slice missing, to reduce computations, 

we estimate the performance by using the same randomly selected ten missing masks for each 

slice. 

3.4 Volume recovery by mean estimation from neighbors (MEN) 

Missing values were estimated as the mean of the foreground voxels in its 26 

neighborhood. In each iteration, mean calculations were performed for each missing voxel. For a 
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voxel whose surrounding voxels are all missing, it is skipped from filling for the current 

iteration. The estimation stops when all missing values were filled. MEN is an effective simple 

method and it is used as the baseline model. 

3.5 Volume recovery by three-dimensional convolutional autoencoder (3D CAE) 

We also compared the results obtained from 3D CAE (Du et al., 2017). The network of a 

3D CAE is same to that of U-net except for that all the skip connections are removed. All 

hyperparameters, loss functions and the training strategies remain the same to those of VRN. 

3.6 Experimental materials  

The dataset used for the experiment is the ISH volumes from AMBA. Please refer to 

Section 1.4 in Chapter 1 for details. 

4 Comparison with 3D CAE and MEN 

To demonstrate that VRN is able to complete missing data, we manually hide a portion of 

volume and then compare the results predicted by VRN, CAE and MEN. In the first and second 

experiment, part of slice 24 were masked (Figure 4. 2b,c). The masks were sampled from 

existing missing data patterns of the AMBA. As shown, the missing regions predicted by VRN 

and CAE preserves the gradient of expressions at isocortex layers. The gradient is smoothed out 

by MEN. The visual differences are also reflected in MSE, SSMI and PSNR in both cases 

(Figure 4. 2b,c). Then we tested on masking out the entire slice of 24 (Figure 4. 2d). A blurry 

isocortex layers remained for MEN. In contrast, the performance by VRN and CAE did not 

deteriorate. The predicted slice 24 emulates the patterns of the raw energies, suggesting the deep 

models use the previous and subsequent slices for prediction. For CAE, the middle gradient in 

the isocortex generated is not as sharp as that of VRN (Figure 4. 2d white arrows). Next, we 



 

79 

evaluated the performance of both methods on predicting slice 24 when the previous slice 

(Figure 4. 2e) or the subsequent slice (Figure 4. 2f) is also missing. In both cases, the missing 

slice filled by VRN are sharper and the layer gradient remains clear. In contrast, the slice filled 

by CAE and MEN lost the details around somatosensory and motor regions. Overall, the VRN is 

able to preserve the high-resolution details that are not captured by either MEN or CAE during 

missing voxels recovery. 

 

Figure 4. 2. Comparison of the volume completion by VRN, CAE and MEN. The gene acronym is syt7. 

The input is the entire volume. Only slice 23, 24 and 25 are shown. White parts indicate regions with 

missing values. In all cases, slice 24 is predicted. (a) Ground truth for slice 23, 24 and 25. Input volume is 

corrupted by hiding (b)(c) part of slice 24, (d) the entire slice 24. (e) slice 23 and 24, (f) slice 24 and 25. 

 

Then we also made comparison among the three methods for all transcripts (Table 4. 1). 

In all three conditions where one or two slices miss or partial slice miss, the predictions made by 

VRN is consistently better than MEN as well as CAE. The performance improvement is 

VRNSlice 24 Slice 25 MENSlice 23

Input Slice 24 prediction

... ...

(a)

(b)

(c)

(d)

(e)

(f)

MSE: 0.15
SSMI: 0.99
PSNR: 38.85

MSE: 0.24
SSMI: 0.92
PSNR: 36.75

MSE: 0.08
SSMI: 0.97
PSNR: 41.39

MSE: 0.46
SSMI: 0.91
PSNR: 33.79

MSE: 0.18
SSMI: 0.93
PSNR: 38.06

MSE: 0.60
SSMI: 0.88
PSNR: 31.87

MSE: 0.91
SSMI: 0.86
PSNR: 30.52

MSE: 0.33
SSMI: 0.91
PSNR: 35.43

MSE: 0.99
SSMI: 0.83
PSNR: 29.13

MSE: 0.25
SSMI: 0.91
PSNR: 35.60

CAE

MSE: 0.14
SSMI: 0.95
PSNR: 38.36

MSE: 0.28
SSMI: 0.97
PSNR: 35.95

MSE: 0.34
SSMI: 0.90
PSNR: 35.18

MSE: 0.67
SSMI: 0.86
PSNR: 32.40

MSE: 0.44
SSMI: 0.88
PSNR: 33.36
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confirmed by all evaluation metrics. The comparison also confirmed the importance of skipping 

connections in maintaining the details in the volume data. 

Table 4. 1. Performance comparison between VRN, CAE and MEN. The average of three metrics on all 

slices are presented. 

  one slice missing two slices missing partial slice missing 

  MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR 

VRN 
train 1.42 0.87 23.30 2.07 0.81 20.78 0.54 0.94 29.28 

test 1.32 0.88 23.21 1.98 0.82 20.29 0.50 0.94 28.88 

CAE 
train 2.10 0.81 21.77 3.30 0.75 19.59 0.82 0.93 27.80 

test 1.82 0.83 21.39 2.87 0.79 19.28 0.73 0.92 27.96 

MEN 
train 2.71 0.82 18.80 4.71 0.75 18.09 1.02 0.93 26.97 

test 2.31 0.86 18.78 3.81 0.79 17.82 0.88 0.94 27.36 

 

5 Importance of Including Partial Slice Training 

It is worth noting the importance of incorporating the partial slice training into the 

training strategy. To demonstrate this point, we trained a network without the strategy of hiding 

only part of a slice. As a baseline we first compare the performance of both networks when the 

entire slice is missing. As seen in Figure 4. 3f,g,m,n, the completed slices by both networks are 

close to the ground truth and they are very similar to each other. Quantitatively, the SSMI are 

both 0.98 and PSNR are about 33. The MSEs are ~0.6. The performance deviates in the case 

where only part of the slice is missing. The performance of the network with partial slice training 

shows improvements (Figure 4. 3j) or remains at a similar level (Figure 4. 3c), probably due to 

the extra information on the slice. In contrast, for the network trained without partial slice 

training, the voxels near the boundaries of the slice mask showed obvious cracks (Figure 4. 3d, k 

black arrows). The discontinuities are also reflected in a much higher MSE and a lower SSMI 
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and PSNR. For slice 32, even though over half of the slice is given, the MSE is almost the same 

as that of the case where the entire slice is hidden. The performance on slice 22 is even worse 

because the MSE of the prediction on a portion of slice is over five times higher (3.46) than that 

of the prediction on the entire slice (0.63). The results here indicate that without partial slice 

training, the information on the same slice does not help the network complete the missing 

region but makes it more complex. The incorporation of partial slice training is essential as it 

helps train the filters to integrate the information from the previous and subsequent slice as well 

as the information on the slice.  

 

Figure 4. 3. Illustration of the importance of incorporating partial slice corruption. Slice 22 (row 1) and 32 

(row 2) of gene Itfg1 are presented. First image(a,h) is the ground truth. Partial slice (b,i) is corrupted 

with sampled masks. Missing region is denoted in white. Then we show the completed slices with(out) 

partial slice training when part of slice is missing (c,d,j,k) or the entire slice is corrupted (f,g,m,n). 

6 Discussion and Conclusion 

The architecture of VRN is a convolutional autoencoder with skip layers linking the 

encoder and decoder. The skip layers are essential for maintaining high-resolution details as they 

pass image details from the convolutional layers to deconvolutional layers. These high-resolution 

details that are important for gene expression data. For example, the expression gradient is a key 
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feature associated with how genes regulate brain functions. Many of the differences reported 

between functionally distinct cortical regions is not due to the selective expression in 

functionally discrete regions but rather discontinuous sampling across a gradient (Sansom & 

Livesey, 2009). 

The right training strategy is also essential for the performance of VRN. The scheme of 

hiding a single slice or partial slice can effectively train the convolutional filters learn from 

previous and subsequent slices as well as the surrounding voxels on the same slice. The strategy 

of hiding two consecutive slices trains the network to integrate higher-level semantic meanings 

from regions further apart. Due to these novel and effective designs, the performance of VRN is 

superior in comparison with mean estimation from neighbors and CAE. A full dataset is usually 

the prerequisite for many statistical and analytical tools. The completed spatially resolved 

AMBA enables many subsequent potent computational approaches that depend on complete data 

and offers more possibilities to understanding the cortex at the level of its underlying genetic 

code. 

 

  



 

83 

 

 

 

CHAPTER 5 

EXPLORING TRANSCRIPTOME ARCHITECTURE OF ADULT MOUSE BRAIN VIA 

RESTRICTED BOLTZMANN MACHINE AND DEEP BELIEF NETWORK 4 

 

  

                                                 
4  Yujie Li, Heng Huang, Hanbo Chen, Tianming Liu, 2018, Deep Neural Networks for Exploration of 

Transcriptome of Adult Mouse Brain, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in 

press. 

© 2018 IEEE. Reprinted with permission from publisher. 
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1 Abstract 

Transcriptome in brain plays a crucial role in understanding the cortical organization and 

the development of brain structure and function. In this work, I show that Restricted Boltzmann 

Machines (RBMs) can be used to infer co-occurrences among voxels, providing foundations for 

dividing the cortex into discrete subregions. As we stack multiple RBMs to form a deep belief 

network (DBN), we progressively map the high-dimensional raw input into abstract 

representations and create a hierarchy of transcriptome architecture. A fine-to-coarse 

organization emerges from the network layers. This organization incidentally corresponds to the 

anatomical structures, suggesting a close link between structures and the genetic underpinnings. 

Thus, we demonstrate a new way of learning transcriptome-based hierarchical organization using 

RBM and DBN. 

2 Introduction 

Transcriptome in brain plays a crucial role in understanding the cortical organization. 

Previous research has revealed extensive regional heterogeneity of transcriptome. For instance, 

laminar-specific genes have been identified through gene expression studies comparing 

subregions of neocortex (Liu, Dwyer, & O’Leary, 2000; Zhong et al., 2004). Relatedly, 

microarray analysis of purified populations of neuronal subtypes identified many cell-type 

enriched genes (Cahoy et al., 2004; Winden et al., 2009). These findings have also been 

confirmed by large-scale in situ hybridization studies (Ed S. Lein et al., 2004), where the 

restricted expressions due to specific cell populations are directly visualized. However, how to 

analyze the genomic-neuroanatomic relationship remains challenging because of the 

combinatorial complexity of gene expression patterns.  
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Unsupervised machine learning methods have shown advantages in discovering 

transcriptome architecture. Similarity-based clustering (Bohland et al., 2010; Ng et al., 2009) and 

non-linear embedding techniques (Mahfouz et al., 2015) have been applied on gene expression 

data, revealing areal and laminar structures in the mouse neocortex (Mike Hawrylycz et al., 

2010). Singular value decomposition (Grange et al., 2014) and matrix factorization methods are 

also popular approaches in identifying genes with similar coexpression patterns (Li, Chen, Jiang, 

Li, Lv, Li, et al., 2017; Li, Chen, Jiang, Li, Lv, Peng, et al., 2017; Thompson et al., 2008). As 

helpful they are in reducing the dimensionality, they are all linear shallow mappings and 

inadequate for inferring complex non-linear structures of data. For example, it is reported that 

features captured by principal components can sometimes degrade cluster quality (Yeung & 

Ruzzo, 2001). Relatedly, Barnes-Hut Stochastic Neighbor Embedding(BH-SNE) is shown 

superior than linear methods because of its ability of capturing non-linear relations (Mahfouz et 

al., 2015). However, the BH-SNE still failed to produce voxel clusters corresponding to brain 

structures when no prior dimension reduction was performed (Mahfouz et al., 2015).  

 Deep models such as deep neural networks (DNNs) show a larger representation power 

through composition of many nonlinearities. For instance, DAs have been used to learn a 

compact representation of yeast microarray expression profiles (Gupta, Wang, & Ganapathiraju, 

2015). The clusters obtained from the learned codes is more consistent with the pre-assigned 

ground truth labels in comparison with those obtained via clustering the raw data. Relatedly, an 

ensemble of DAs proves effective in extracting stable expression signatures from public gene 

expression data with diverse experiments (Tan et al., 2017).  In addition to the expression power, 

DNNs have a hierarchical structure in which higher-level features are obtained by composing 

lower-level ones. This compositional hierarchies are also seen in many natural signals such as 
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signaling systems of cells (Xu & Lan, 2015). In several recent publications, DNNs have been 

successfully used to simulate the cellular signaling system (L. Chen, Cai, Chen, & Lu, 2015, 

2016). 

For the above reasons, we consider Restricted Boltzmann Machines (RBMs) and deep 

belief network (DBN), for modelling the transcriptome data of adult mouse brain. RBMs are fit 

for inferring the transcriptome-based brain parcellation because through training it learns which 

units in the visible layer tend to co-occur and then record the significant activation in the hidden 

layer. The co-occurrences of voxels provide foundations for dividing the cortex into discrete 

subregions. As we stack multiple RBMs to form a DBN, we progressively map the high-

dimensional raw input into abstract representations and create a hierarchical data-driven 

transcriptome architecture, presumably revealing how brain subregions interact with one another 

in a hierarchical manner. 

DBN is a multilayer generative model. It is formed by stacking multiple layers of 

Restricted Boltzmann Machines (RBMs). Both RBMs and DBNs have been demonstrated 

effective in extracting features from various modalities including text (Srivastava & 

Salakhutdinov, 2012), video, audio (Ngiam et al., 2011), gene microarray data (L. Chen et al., 

2016)  and neuroimages (Devon et al., 2015).  

3 Methods  

3.1 Experimental materials  

The dataset used for the experiment is the ISH volumes from AMBA. Please refer to 

Section 4 in Chapter 1 for details. 
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Figure 5. 1. Illustration of (a) Restricted Boltzmann Machine and (b) deep belief network. 

3.2 Restricted Boltzmann Machine 

An RBM (G. E. Hinton, 2002) is a probabilistic energy-based model and the objective is 

to fit a probability distribution model over a set of visible random variables to the observed data. 

As shown in the definition, the model restricts the interactions in the Boltzmann energy function 

to only those between visible neurons and hidden neurons. An RBM can be graphically 

represented as a bipartite graph (Figure 5. 1a). For binary visible units v ∈ {0,1} and h ∈ {0,1}, 

the energy function is defined as follows: 

𝐸(𝒗, 𝒉;  𝜽) =  − ∑ 𝑎𝑖𝑣𝑖

𝑖∈𝑣𝑖𝑠𝑏𝑙𝑒

− ∑ 𝑏𝑗ℎ𝑗 − ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗

𝑖,𝑗𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛

 (5.1) 

where 𝜃={W,a,b} are the model parameters, weights W connect the visible units (v) and the 

hidden units (h) and a and b are their biases. 

The joint distribution over the visible and hidden units can be obtained via the energy 

function: 

𝑃(𝒗, 𝒉; 𝜽) =
1

𝑍(𝜃)
e−𝐸(𝒗,𝒉;𝜽) (5.2) 

where Z is the normalization term. It is given by summing over all possible pairs of visible and 

hidden vectors and thus intractable. 
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The probability that the network assigns to a visible vector, v, is given by summing over 

all possible hidden vectors (5.3) and the objective of a RBM is to maximize the log likelihood of 

all data points. 

𝑃(𝒗; 𝜽) =
1

𝑍(𝜃)
∑ e−𝐸(𝒗,𝒉;𝜽)

ℎ

 (5.3) 

Following equation (5.3), the model updates can be obtained from the derivatives of the 

log likelihood given a set of observations v. As shown in the equation, there are two ways to 

adjust the probability that the network assigns to a training image. First is by adjusting the 

weights and biases to lower the energy of that image. Alternatively, we can raise the energy of 

other images, which results an increase to the partition function. 

1

𝑁
∑

𝜕 log 𝑃(𝑣𝑛; 𝜃)

𝜕𝑊𝑖𝑗

𝑁

𝑛=1

=  〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 −  〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 (5.4) 

where the angle brackets denote the expectation with respect to the specified distribution.  

Sampling unbiasedly from 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎  is easy because there are no direct connections 

between hidden units or visible units. However, getting an unbiased sample of 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙  is 

difficult because of the long computation for Gibbs sampling. This problem is solved by 

‘contrastive divergence’ (G. E. Hinton, Osindero, & Teh, 2006), whose key ideas are to 1) 

initialize the Markov chain with a distribution close to the training data and 2) use samples from 

a few steps of Gibbs sampling as a close approximation. 

In our work, the observed expression energies are real-valued v ∈ RD. We use a variant of 

RBM, the Gaussian-binary RBM (G. Hinton, 2010), for modelling real-valued vectors. The 

model assumes that each visible unit have independent Gaussian noise. Given real-valued visible 

units v ∈ RD, and h ∈ {0,1}F, the energy function is defined as:  
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𝐸(𝒗, 𝒉;  𝜽) =  ∑
(𝑣𝑖 − 𝑎𝑖)

2

2𝜎𝑖
2

𝑖∈𝑣𝑖𝑠𝑏𝑙𝑒

− ∑ 𝑏𝑗ℎ𝑗 − ∑
𝑣𝑖

𝜎𝑖
ℎ𝑗𝑤𝑖𝑗

𝑖,𝑗𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛

 (5.5) 

where 𝜎𝑖 is the standard deviation of the Gaussian noise for visible unit i. 

The conditional probability of the visible unit given the hidden units is modeled by a 

Gaussian distribution, whose mean is a function of the hidden units. 

𝑃(𝒗|𝒉; 𝜽) = ∏ 𝑝(𝑣𝑖|ℎ)

𝐷

𝑖=1

 , with 𝑣𝑖|ℎ ~ 𝑁(𝑏𝑖 + 𝜎𝑖  ∑ 𝑊𝑖𝑗ℎ𝑗 , 𝜎𝑖
2𝐹

𝑗=1 ) (5.6) 

The update of model parameters takes a very similar form to the RBM with binary visible 

unit. 

1

𝑁
∑

𝜕 log 𝑃(𝑣𝑛; 𝜃)

𝜕𝑊𝑖𝑗

𝑁

𝑛=1

=  〈
𝑣𝑖

𝜎𝑖
ℎ𝑗〉𝑑𝑎𝑡𝑎 −  〈

𝑣𝑖

𝜎𝑖
ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 (5.7) 

3.3 Deep Belief Network 

Unlike RBM with a single layer, DBN captures the features using multiple layers in a 

stochastic manner (G. E. Hinton et al., 2006). The top two layers with undirected connections 

form an RBM and the lower layers have directed connections (Figure 5. 1b). The training for 

each RBM was performed layer-wise in a greedy manner. The hidden units in the first RBM 

(hidden layer 1) are taken as the visible units of the second RBM. The hidden units of the second 

RBM (hidden layer 2) are fed as the visible units into the third RBM. It has been shown that each 

addition of a RBM can improve the variational lower bound on the log probability of the training 

data (G. E. Hinton et al., 2006). 

In this work, the deepnet (https://github.com/nitishsrivastava/deepnet), a public available 

package, was applied to train the RBM and DBN. To handle real-valued data, Gaussian visible 

units were used. Each Gaussian visible unit was set to have unit variance (σi = 1) which was kept 

fixed and not learned. The DBN for exploring the voxel co-occurrences consists of 60144 
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Gaussian visible units followed by 1024 binary hidden units in the first hidden layer, 256 hidden 

units in the second hidden layer, 64 in the third hidden layer. Each layer of weights was trained 

using CD with the number of times running CD, i.e. k=1 (G. E. Hinton et al., 2006). 

The learning rates in all hidden layers are set initially to 0.001 and decrease as the inverse 

of time with a decay half-life of 5000. The activation function used is tangent hyperbolic 

function. The initial and final momentum are 0.5 and 0.9 with the change step to be 5000. The 

batch size is 100. The weights are initialized as a zero-mean Gaussian distribution with a 

standard deviation of 0.01. We want the weights to be sparse because most genes are expressed 

in a small percentage of cells (Lein, Ed S. et al., 2007). Thus, we add a regularization term, the 

ℓ1 norm of the weights to induce the weight sparsity in each RBM. We found that the ℓ1value of 

0.1 works well in practice over multiple experiments. It has been reported that the ℓ1 constraint 

does not dominate RBM learning results (Devon et al., 2015). 

4 RBM to infer single-level transcriptome architecture  

An RBM serves as a helpful learning tool as it models the density of visible variables by 

introducing a set of conditionally independent latent variables. In the context of unveiling the 

transcriptome organization based on gene expression profiles, it is trained to learn which 

foreground voxels in the visible layer tend to co-occur for the given set of gene expression 

patterns and then record the significant activation in the hidden layer. We assume that the co-

occurred voxels should belong to the same region and these co-occurring patterns are 

fundamental and intrinsic to the transcriptome data. For the convenience of future discussion, we 

denote the spatial map of each presented weight as a weight map. 
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Figure 5. 2. Visualization of weight maps learned by RBMs. Results were obtained from an RBM with 

1024 hidden units. In each subfigure, three views including axial view, sagittal and coronal view were 

shown. 

 

To discover voxel co-occurrence, we set the number of hidden units to 1024. The trained 

weights were linearly projected to the input space for intuitive interpretation of the 

representations. The weight maps help us understand how much each foreground voxel 

contributes to a specific activation pattern. By visual inspection, most spatial distributions of 

these weights form tight continuous clusters. This clustering patterning agrees with the brain’s 

organizational principle that transcriptome similarities are strongest between spatial neighbors, 

both between cortical areas and between cortical layers (Bernard et al., 2012). The delineations 

are in general symmetric and match major canonical brain regions including caudoputamen 

(Figure 5. 2a), hippocampus (Figure 5. 2b), isocortex (Figure 5. 2f-i), thalamus (Figure 5. 2j), 

hypothalamus (Figure 5. 2k), medulla (Figure 5. 2l), midbrain (Figure 5. 2m) as well as 

ventricular systems (Figure 5. 2n) and fiber tracts (Figure 5. 2o). Interestingly, the features 
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learned often correspond to a finer breakdown of known brain regions. For instance, field CA1, 

field CA3, and dentate gyrus (DG) and subiculum are identified individually (Figure 5. 2b-e). 

The isocortex is further divided into primary somatosensory area (Figure 5. 2g), primary visual 

area (Figure 5. 2h) and primary motor area (Figure 5. 2i). We also made comparisons with the 

clustering results obtained using K-means and hierarchical clustering (results not shown here). 

The clusters obtained by RBM and DBN are more coherent and robust to noise. 

5 DBN to infer a hierarchy of transcriptome architecture  

One superior advantage of deep neural networks over other shallow models is that they 

can capture the hierarchy of features. As we stack multiple RBMs to form a DBN, we create a 

hierarchy of transcriptome architecture. We use Figure 5. 3 to demonstrate this hierarchy. A 

visualization of the weight maps of DBN shows that the features learned in the first levels are 

generally localized and clustered and, in this case, mostly correspond to subregions of 

caudoputamen or the nearby regions such as olfactory tubercle and striatum (Figure 5. 3 green 

shadow). Yet the differences among the patterns are discernable. As we go to the second layer, 

these fine anatomical subregions learned at the first layer started to merge into larger areas 

(Figure 5. 3 blue shadow). Intuitively, the weight maps are more likely to merge with those with 

similar spatial distributions because the second RBM learns the co-occurrences of subregions 

identified in the first RBM. Indeed, all weight maps that were combined show spatial overlaps. 

For example, the weight map 292 (Figure 5. 3f) in the first layer shows strong signals at medial 

caudoputamen and it is combined with weight map 764 (Figure 5. 3g) that is activated at caudal 

part of caudoputamen. In addition to the merge of subregions, it is common to see the merge of 

regions spatially adjacent. The weight map 776 (Figure 5. 3m) features high values at olfactory 

tubercle and the weight map 519 (Figure 5. 3l) shows higher weights at rostral nucleus 
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accumbens. Both weight maps are summarized by the weight map 227 (Figure 5. 3d) in the 

second hidden layer. It is worth noting that one lower layer weight map can have connections 

with multiple higher-level weight maps. For example, the layer-1 weight map 519 (Figure 5. 3l) 

that shows high values at the rostral nucleus accumbens is used by both layer-2 weight map 199 

(Figure 5. 3e) and 227 (Figure 5. 3d). At the third layer, we saw further combinations of weight 

maps in layer 2, obtaining a layer-3 weight map spanning the entire caudoputamen, nucleus 

accumbens, olfactory tubercle as well as piriform area and substantia innominate, etc. (Figure 5. 

3a).  

6 Discussion and Conclusion 

The objective of the work is to understand the organization of brain structure from the 

transcriptome’s point of view. This objective is achieved by exploring a public dataset called 

Allen Mouse Brain Atlas using data-driven methods RBM and DBN. To handle the high 

dimensionality of data, we showed that RBM and DBN are effective tools in studying the 

transcriptome architecture. Specifically, RBM can learn the co-occurrences patterns among 

voxels, providing a transcriptome-based anatomy. The 3D visualizations of the weight maps 

show that the voxel clusters match well with the classical neuroanatomy. This provides strong 

evidence of a close link between transcriptome and brain structure. It should be noted that the 

input to RBMs are not constrained to image data. If each visible node is a transcript, then RBM 

can learn the co-occurrence among genes, i.e. the coexpression patterns.  
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Figure 5. 3. Visualization of a hierarchy of transcriptome architecture learned by DBN. In each subfigure, 

three views including axial view (left), sagittal (right top) and coronal view (right bottom) are shown. The 

weight maps of hidden layer 1, hidden layer 2, hidden layer 3 are colored in green, blue and orange 

respectively. The index of the weight in the respective layer is noted under each subfigure. For the hidden 

units, their weights were visualized as a weighted linear combination of the weights of the Gaussian 

RBM. Here four layer-2 weight maps were selected and for each of the layer-2 weight map, two layer-1 

maps were selected for presentation. The arrows indicate a compositional relationship. The weight in the 

next layer is a sum of weighted linear combination of the weights in the previous layers. 

 

Another reason for the choice of RBM is that RBMs are the building block for more 

complex deeper models like DBN. These deep models can capture features that are not possible 

for a shallow model. Having validated the clusters obtained from RBMs, we stack the RBMs into 
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a three-layer DBN and create a hierarchy. The components learned on lower levels are localized 

and match with subregions of canonical neuroanatomy. It agrees with the principle of brain 

organization that transcriptome similarities are the strongest between anatomical neighbors. At 

higher levels, these localized features merged and interacted with adjacent groups. Overall, a 

fine-to-coarse organization emerges from the network layers, and we show how the subregions 

merge and interact with one another. It is found that the organization incidentally correspond to 

the anatomical structures well, suggesting a close link between brain structures and the genetic 

underpinnings. Thus, we demonstrated a new way of learning transcriptome-based hierarchical 

organization of mouse brain using RBM and DBN. 

The transcriptomic similarity provide useful hints for the similarities in structures (Mike 

Hawrylycz et al., 2010; Ed S. Lein, Belgard, Hawrylycz, & Molnár, 2017; Thompson et al., 

2008) and functions (Toledo-Rodriguez et al., 2004) as well as brain connectivity (Fakhry & Ji, 

2015; French & Pavlidis, 2011). In future work, we will extend current framework by including 

other image modalities such as diffusion tensor image, neuronal tracing data or functional 

magnetic resonance image. A joint representation of micro-scale gene expression and macro-

scale neuroimages can possibly reveal the correlations across different scales and modalities, 

thus providing deeper understanding of the organization architecture of the brain.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

1 Summary of contribution 

 In this thesis, I systematically study the relationship between gene expressions and 

neuroanatomy on mouse brain. My contributions are summarized as follows. 

To answer whether the gene expressions can refine the anatomic regions, I put forward 

two data-driven methods that derive the spatial correlations among gene expressions. The first 

method formats the voxel clustering problem as a sparse representation problem (Chapter 2). The 

key assumption is that voxels that use the same dictionary for representation should belong to the 

same brain region. The resulted clusters align well with the classic neuroanatomy. Genes that are 

enriched in fiber tracts and ventricular systems have been reported for the first time. The second 

method considers a probability-based model RBM and its extension DBN, which consists of 

three layers of RBMs (Chapter 5). The RBM fits a distribution model to the voxels, which 

summarizes the co-occurrence patterns. A visualization of the co-occurrence patterns showed 

tight clusters corresponding to neuroanatomy. Further with DBN, we build a hierarchical data-

driven transcriptome architecture. A fine-to-coarse organization emerges from the network, 

revealing how brain subregions interact with one another in a hierarchical manner. 

The other side of the genomic-neuroanatomy relationship is the relations among the 

genes that are spatially correlated. These genes are usually analyzed via networks. I provide a 

new way of generating the coexpression networks using DLSC. The motivation of the method 

lies in the observations that neurons encode sensory information using a small number of active 
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neurons. We presume gene expressions also follows a sparse coding strategy. By comparing with 

the most popular method of deriving the coexpression networks -- WGCNA, we have shown that 

DLSC is able to summarize the structures that best represent the gene expression features into 

dictionaries so that much finer and more balanced coexpression networks in comparison to 

WGCNA can be achieved. In addition to a finer gene parcellation, another benefit that DLSC 

offers is soft clustering, i.e. multiple assignment is possible for one gene. Such set-up considers 

the multiple roles of genes in the regulatory domains. Rather than simply assigning each gene to 

a network, DLSC also provides a quantitative measure on the extent to which a gene conforms to 

the coexpression patterns. The quantification can serve as a useful feature in identifying 

important genes via regression with external data modalities.  

A standing problem for the above work is missing data. In chapter 4, I proposed a deep 

learning based network for 3D volumetric data completion. The proposed network is fully 

convolutional and takes a 3D volume as input and outputs a completed 3D volume. The rationale 

of the network for volume completion is similar to a denoising autoencoder. By covering up a 

portion of slice of choice, we teach the network to reconstruct the concealed regions from 

context. We show that designing a training strategy fit for the data is essential to a good 

completion. Quantitatively and visually, the completed 3D volumes resemble the ground truth 

with high-resolution details preserved.  

2 Future directions 

The future work of this research topic has two general directions. The first direction is 

multi-modal studies. An integration of transcriptome data with other modalities including various 

properties of neurons and macroscale imaging modalities like magnetic resonance images (MRI), 

will facilitate a thorough understanding of the functional circuit from multiple perspectives. For 
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example, adding a systematic examination of transcriptome data to the investigation of many 

neurological disorders, along with the medical images, can shed light on the causes of the 

abnormalities. The key challenge of multimodal learning lies in the distinct form of 

representations and correlation structure for different modalities. It makes it very difficult to 

discover relationship across modalities. One ongoing effort is cell typing of neurons. Existing 

evidence shows that cell classification requires consideration of features from different 

perspectives. Yet how to link the cell types defined by transcriptome to the types defined by 

morphology, electrophysiology and/or connectivity, remains a grand challenge and awaits 

solutions. 

The second direction is the spatiotemporal analysis. Transcriptome only provides a 

snapshot of the cell status at a time point. How the cell machinery changes over developmental 

stages or during evolution can only be revealed by adding the temporal axis. The observations 

over time is specifically useful for studying transcription factors, whose role varies by time. 

Many transcription factors are reported to participate in different biological processes at different 

developmental stages. The development process offers us a window to investigate numerous 

important events such as neurogenesis, neuron differentiation, cell migration and differentiation, 

synaptogenesis etc. as well as how these events are regulated via transcriptome (Borodinsky et 

al., 2015).   
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