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ABSTRACT 

 Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been widely 

studied as a cancer imaging tool that provides information about blood volume and 

microvascular permeability by tracking the exchange of contrast agent between the vascular 

space and extravascular extracellular space. To quantitatively analyze the DCE-MRI data, 

concentration of the contrast agent in the blood plasma, the so-called arterial input function 

(AIF), has a very important role in estimating pharmacokinetic parameters accurately. However, 

the AIF is usually unknown, and it remains very difficult to obtain such information 

noninvasively. In this study, a reference region (RR) model that does not require information of 

AIF is used to analyze the kinetic parameters. However, the RR model usually depends on 

kinetic parameters found in previous studies of a reference region and may generate errors if 

wrong values are assigned from previous studies for the reference region. In this work, we 

proposed two pharmacokinetic parameter ratios between the tissue of interest (TOI) and the 

reference region to overcome these problems. To more accurately analyze DCE-MRI data, an 

analytical approach is introduced. This analytical method can estimate parameters more 

accurately than numerical analysis over various SNRs and temporal resolutions.  



 

In the studies of tumor segmentation using MR data, partial volume effect (PVE) is one 

of the major difficulties and may result in inaccurate segmentation results due to inherent low 

spatial resolution of images. In this study, we introduced the temporal independent component 

analysis (ICA) to solve partial volume effect (PVE) in tumor segmentation.  
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CHAPTER 1 

INTRODUCTION 

  

This chapter introduces the dynamic contrast enhanced magnetic resonance imaging 

(DCE-MRI) and describes the structure and significance of each study of this dissertation. This 

dissertation consists of six chapters: an introductory chapter, a literature review, three journal 

article style chapters, and a concluding chapter. 

DCE-MRI has been widely studied as a cancer imaging tool with a low molecular weight 

contrast agent. DCE-MRI provides a way of  tracking of these low molecular weight contrast 

agents through blood vessels. Angiogenesis is the physiological process in growth and 

development of a tumor through which new blood vessels form from pre-existing vessels. These 

new blood vessels in the tumor are permeable, which improves the perfusion of nutrients into the 

tumor. This vascular permeability in tumors can be examined by DCE-MRI (1). When a contrast 

agent is injected into the body, it circulates through the blood stream and then perfuses into the 

tumor and normal tissues. Pharmacokinetic parameters such as Ktrans and kep, which is the rate of 

perfusion of the contrast agent into the tumor from capillaries (Ktrans) and out of the tumor back 

to the capillaries (kep), can be estimated using DCE-MRI. By analyzing the pharmacokinetics of 

how the contrast agent going into a specific tumor, it is possible to measure alterations in blood 

flow and extracellular volumes including vascular permeability. This is very important in the 

development of cancer drugs that inhibit new blood vessel formation or disrupt existing blood 

vessels. However, there are a couple of problems in current DCE-MRI studies about accurately 



 

2 

estimating AIF, i.e., modeling for better estimation of  the kinetic parameters, and imaging with 

both high temporal and spatial resolution. Among the two problems, estimating  AIF is the most 

important issue in the current DCE-MRI studies. When analyzing DCE-MRI data to estimate the 

kinetic parameters, accurate knowledge of AIF is essential but it is usually unknown and it 

remains very difficult to obtain such information noninvasively. Several approaches have been 

studied to estimate accurate AIF such as measurements from the blood samples or directly 

estimate  AIF from the DCE-MRI data itself (2). However, these approaches are still technically 

challenging and they present a significant source of variability in estimating physiological 

parameters. 

An alternative approach to estimate pharmacokinetic parameters without information of 

AIF was introduced, based on a reference region model (3). The reference region model usually 

uses kinetic parameters found in previous studies of a reference region (e.g., muscle). However, 

both the assignment of reference region parameters and the selection of the reference region 

itself may confound the results obtained by the reference region model. The purpose of this study  

is to study tumors without pre-assignment of any pharmacokinetic parameters in the reference 

region. As a result, new pharmacokinetic parameter ratios, KR and VR, between TOI and RR, are 

introduced and studied both in simulation and in vivo datasets (4) to overcome this problem.  

In quantification of DCE-MRI, quantitative physiological parameters can be estimated by 

fitting dynamic contrast-enhanced MRI data to an appropriate pharmacokinetic model (5). 

Numerical analysis method has long been used in the quantification of pharmacokinetic 

parameters (3). However, a numerical analysis usually produces systematic errors especially 

when temporal resolutions are low (6,7). For the goal of this study, an analytical approach on the 

analysis of DCE-MRI data is proposed and compared with numerical analysis to estimate 
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parameters without introducing systematic errors from numerical analysis. With a high 

sensitivity, DCE-MRI has been widely applied to improve tumor detection and diagnosis (8). In 

particular, tissue classification and anatomical segmentation are increasingly studied through 

MRI. Due to a growing amount of MRI data, an automated method is required to develop 

accurate and reliable image analysis for classifying image regions. As a result, several automated 

computer-aided methods are proposed such as the region-growing method to segment lesions (9), 

automated segmentation methods based on artificial intelligence techniques (10), segmentation 

based on statistical pattern recognition techniques (11), a semiautomatic algorithm based on the 

fuzzy c-means clustering (12), a user-interaction-threshold method to extract the region of 

interest (ROI) (13), and a detection of deviations from normal brains using a multi-layer Markov 

random field framework (14), etc. 

In the studies of tumor segmentation using MR data, partial volume effect (PVE) is one 

of the major difficulties which may result in inaccurate segmentation results due to inherent low 

spatial resolution of images (15). PVE occurs when more than one tissue type present in a voxel 

and it blurs the intensity distinction at the border of two tissues such as the tumor and normal 

tissues. In chapter 5, in order to segment tumor and overcome PVE problem, an automated 

segmentation using temporal independent component analysis (ICA) is introduced and compared 

with spatial ICA method and an expert’s manual delineation method.  
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CHAPTER 2 

LITERATURE REVIEW 

  

2.1 Magnetic Resonance Imaging (MRI) 

MRI stands for magnetic resonance imaging that is a medical imaging technique using a 

powerful magnetic field, radio frequency pulses, and a computer to visualize detailed internal 

body structures such as organs, soft tissues, blood vessels, and bones. Different from ultrasound 

scan, computed tomography (CT), and CAT scanning, MRI does not use a sound wave or x-ray 

but still can provide us with much higher detail in the soft tissues. MR images allow physicians 

to better evaluate various parts of the body and determine the presence of certain diseases or 

monitor treatment for conditions such as brain tumors (1), lung cancers (2), certain types of heart 

problems (3), diseases of the liver (4), diseases of the kidney (5) breast cancer and implants (6) 

fetal assessment in pregnant women (7), etc. The benefits of an MRI scan, which is a 

noninvasive, clinical imaging technique, relate to its high accuracy in detecting structural 

abnormalities of the body without known side effects.  

For MRI studies, there are various methods that provide additional information. Some 

specialized MRI techniques include, but are not limited to, diffusion MRI, DCE-MRI, functional 

MRI (fMRI), magnetic resonance angiography (MRA), and magnetic resonance spectroscopy 

(MRS). Diffusion MRI is a method that allows mapping of diffusion process of molecules, 

generally water molecules, in biological tissues. It provides information of the microstructure of 

the tissue either in a normal or an abnormal state. This method has been used primarily with 



 

8 

brain pathology. DCE-MRI is a noninvasive, clinical imaging technique that uses a continuous 

series of images taken before, during and after injection of low molecular weight contrast agent 

(CA) and provides the tracking of a CA through blood vessels. It is applied to access the 

microvascular status of tumor tissue and characterize tumor response to antiangiogenic 

treatment. fMRI is another type of MRI technique that can be used to study the change in blood 

flow related to neural activity in the brain. It allows us to detect  brain areas that are involved in a 

process, a task, or an emotion. In addition to the anatomical information, fMRI provides 

information about biological function by measuring the blood-oxygenation-level-dependent 

(BOLD) signal. MRA is a type of MRI scan that can image blood vessels. It is used to generate 

images of the arteries in or near the brain, neck, abdomen, or legs and find the problems with the 

blood vessels that may be causing reduced blood flow. MRS is used to measure the levels of 

different metabolites in body tissues. 

In 1820, Hans Christian Oersted (1777-1851 Danish) discovered that electric currents 

create magnetic fields (8). He demonstrated that a compass needle deflected from magnetic north 

when a wire carrying an electric current. There are two sources that magnetism arises. One is 

from moving electric charges and the other is from nonzero intrinsic magnetic moments in many 

particles. When some materials or substances placed in a magnetic field, they get magnetized 

with various degree of magnification. This degree refers to the magnetic susceptibility of a 

substance, which is a measure of how magnetized they get, and it is defined as 

χ = M
H

, or M = χH           [2.1] 

where M is the magnetization of the substance and H is the magnetic field strength. Some 

materials with unpaired electrons will have a net magnetic field and will react more to an 

external field. In MRI, there are three different types of substances, paramagnetism, 
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diamagnetism, and ferromagnetism, which have different magnetic susceptibility. Paramagnetic 

materials are attracted to external magnetic fields and have a small, positive susceptibility. When 

the external field is removed, paramagnetic material does not retain the magnetic properties. 

Diamagnetic materials are slightly repelled by a magnetic field and have a weak, negative 

susceptibility to magnetic fields. Also, it does not retain the magnetic properties when the 

external field is removed. Diamagnetic materials have no unpaired orbital electrons while 

paramagnetic materials have unpaired orbital electrons. Ferromagnetic materials are strongly 

attracted by a magnetic field and have a large positive susceptibility. Ferromagnetic materials 

retain the magnetic properties even when the external field is removed. 

In 1922, O. Stern (1888-1969 German) and W. Gerlach (1889-1979 German) performed 

an experiment, called Stern-Gerlach experiment, on the deflection of particle that is often used to 

illustrate basic principle of quantum mechanics (9). In the Stern-Gerlach experiment, a beam of 

silver (Ag) atoms was sent through an inhomogeneous magnetic field produced by a pair of pole 

pieces, and meanwhile their deflection was observed. The intrinsic angular momentum of the 

silver atom is associated a magnetic moment, proportional to the spin. The observation showed 

that the silver atoms were deflected upwards or downwards, according to the component of their 

spin. This demonstrates that particles possess an intrinsic angular momentum that takes only 

certain quantized values. In MRI, all tissues are made up of atoms with nuclei containing protons 

and neutrons. The atoms are characterized by the atomic number and the mass number. Atomic 

number is the number of protons in the nucleus of an atom and the mass number is the total 

number of protons and neutrons in the nucleus. Normally, the number of neutrons and protons in 

a nucleus are balanced so that the mass number is an even number but in some case, there are 

slightly more or fewer neutrons than protons. These atoms are called isotopes and they result in 
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an odd mass number, which is important in MRI. In general, hydrogen turns out to be the most 

important element for MRI because of its nuclear properties that it consists of a single proton, 

and has a significant magnetic moment, and because of its abundance in the human body. 

 In 1929, Isidor Rabi (1898-1988 American) began studying the magnetic properties of 

atomic nuclei, and further developed Stern’s molecular beam method to great precision for the 

nuclear spin of atoms, including hydrogen and deuterium (10). Magnetic moments tend to align 

either parallel or antiparallel to an external magnetic field and precess about the direction of the 

magnetic field with a frequency that depends on the magnetic field strength and the atom’s 

nuclear magnetic moment. In quantum theory, atomic nuclei have specific energy levels related 

to spin quantum number S. In hydrogen, a proton has two energy states, which aligned in 

opposite directions, i.e., -½ and ½. They can generate a net magnetic field or a magnetic dipole 

moment to the nucleus when unpaired proton exists (i.e., odd number of protons), and they are 

spinning about their axis. Each of those nuclei with an odd number of protons can be used for 

MRI. The ratio between the angular momentum and the magnetic moment gives us a constant 

known as the gyromagnetic ratio (in unit of rad s-1T-1), which is specific to each magnetically 

active nucleus. 

In 1937, Rabi predicted that the magnetic moments of nuclei could be induced to flip 

their orientation if they absorbed energy from an electromagnetic wave of the same frequency, 

and they can also emit this amount of energy if falling back to the lower energy orientation. In 

1938, Rabi observed the first magnetic resonance absorption with beam of lithium chloride 

molecules (11). This magnetic resonance method became the basis for magnetic resonance 

imaging. 
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In 1946, Felix Bloch (1905-1983 Swiss) and Edward Purcell discovered the magnetic 

resonance phenomena independently and were awarded the Nobel Prize in 1952. They found that 

certain nuclei absorbed energy when they were placed in a magnetic field and emit this energy 

when the nuclei returned to their original equilibrium state (12,13). Purcell’s group used a two-

pound block of paraffin wax as their hydrogen source, while Bloch’s group used a few drops of 

water contained in a glass sphere for their experiments. Their experiments demonstrated what is 

technically known as nuclear magnetic resonance in condensed matter as distinguished from 

Rabi’s discovery of molecular beam magnetic resonance. 

In order to perform MRI, we first need a strong external magnetic field B0 (in unit of 

Tesla). Once a subject or patient lies on a scanning table in a magnetic field B0, unpaired 

spinning protons in the body will line up with this magnetic filed B0. For a proton, there are two 

possible spin energy states in an external magnetic filed, spin-up and spin-down. At thermal 

equilibrium under a normal room temperature, there are slightly more spins in the lower state.  

This small portion of property produces the net magnetization M0 in the direction of B0 (Figure 

2.1). 

 

Figure 2.1 The proton spins (a) in the absence of an external magnetic filed B0 and (b) in the 
presence of an external magnetic field B0. Once B0 is applied, the net magnetization M0 is 
produced and aligned with the external magnetic filed B0. 
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In order to observe the net effect of the magnetization M0, we need to introduce radio 

frequency (RF) field B1 to excite the spins. In MRI, an RF pulse need to be applied perpendicular 

to B0 and applied at the resonant frequency of the spins. When an RF pulse is applied into the 

patient in a specific frequency, then some spins will change their alignment. As a result, in the 

rotating frame at this frequency, M0 will move towards the transverse plane (x-y plane) as shown 

in Figure 2.2.  

 

 

Figure 2.2 (a) The net magnetization M0 has the same direction as the external magnetic field 
B0. (b) After 90° RF pulse applied, the entire magnetization M0 is flipped into the x-y plane, 
which is called a 90° flip. 
 

 

The RF pulse is applied at a specific frequency, referred to as Larmor frequency, which is the 

same as the precessional frequency of proton. The Larmor frequency is proportional to the 

external magnetic field and given as Eq. [2.2], 

ω = γ B0             [2.2] 
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where ω is an angular frequency of proton, γ is a gyromagnetic ratio, and B0 is the external 

magnetic field. After the RF pulse is turned off, the magnetization will return to their original 

alignment (z-direction) from the x-y plane. The time from a non-equilibrium state to the 

equilibrium state is called relaxation time and there are two different types of relaxation times 

corresponding to the recovery of the z component and x-y component of the magnetization. T1 

relaxation involves recovery of the z component of the magnetization while T2 relaxation 

involves decay of a coherence of the transverse nuclear spin magnetization. 

 In 1950, Erwin L. Hahn (1921- American) discovered spin-echo effect that is the 

refocusing of spin magnetization by a pulse of resonant electromagnetic radiation, and further 

developed a method to study molecular diffusion in liquids by the spin-echo method (14). In 

1971, Raymond Damadian (1936- American) measured T1 and T2 relaxation times of normal and 

cancerous tissue and found that tumor and normal tissue can be distinguished by their different 

relaxation time. 

The magnetization M as a function of time can be calculated with the longitudinal 

relaxation time, denoted by T1 which is the decay constant for the recovery of the z component 

of the proton spin magnetization, Mz, and the transverse relaxation time denoted by T2, the x-y 

component of the magnetization, Mxy (or M⊥). This can be expressed as a Bloch equation, 

dM(t)
dt

= M(t)×γ B(t)− M⊥ (t)
T2

−
Mz(t)−M 0

T1
ẑ        [2.3] 

where M(t)=(Mx (t), My (t), Mz(t)), B(t)=(Bx(t), By(t), B0+ΔBz(t)), and M⊥=(Mx, My). It is noted 

that this Bloch equation is not for describing the equation of motion of individual nuclear 

magnetic moments. It is a macroscopic equation that describes the motion of macroscopic 

nuclear magnetization obtained in the bulk sample. 
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 For the longitudinal relaxation, the magnetization, Mz, can be calculated by following 

equation: 

Mz (t) = M 0 − M 0 −Mz (0)( )e− t /T1          [2.4] 

For the case of a 90°-flip (i.e., when M has been tilted into the x-y plane, Mz(0)=0), 

Mz (t) = M 0 1− e
− t /T1( )           [2.5] 

The T1 relaxation time is also called spin-lattice relaxation time, which is the time it takes for the 

longitudinal magnetization to recover about 63% of its initial value after being flipped into the x-

y plane (Figure 2.3). Different tissues have different T1 values. For instance, water based tissues 

are in the 400~1200 ms range and fat based tissues are in the 100~150 ms range.  

 For the transverse relaxation, the magnetization, Mxy, can be calculated by following 

equation: 

Mxy(t) = Mxy(0)e
− t /T2           [2.6] 

The T2 relaxation time is also called transverse relaxation time or spin-spin relaxation time, 

which is the time it takes for the transverse component of the magnetization to reach about 37% 

of its initial value after being flipped into the transverse plane (Figure 2.4). The T2 relaxation 

results from an intrinsic process that corresponds to a decoherence of the transverse nuclear spin 

magnetization. In real MRI experiment, the transverse magnetization decays much faster due to 

inhomogeneities in the main external magnetic field B0. The external magnetic field 

inhomogeneity makes protons in different locations precess at different frequencies and these 

small differences in frequency result in spin dephasing. This relaxation rate can be denoted by 

T2
*  and written by 

1
T2
* =

1
T2

+ 1
′T2
            [2.7] 
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Figure 2.3 The T1 relaxation or longitudinal relaxation curve. 

 

 

 

 

 

Figure 2.4 The T2 relaxation or transverse relaxation curve. 
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where 1/ ′T2 represents the relaxation rate due to magnetic field inhomogeneities. After the RF 

transmitter is turned off, the signal vector is continuously decaying in magnitude as it is 

precessing around the x-y plane and the net magnetization returns to equilibrium. This process is 

called a free induction decay (FID).   

 So far, we have discussed the concept of dephasing with a single RF pulse. In distinction 

to the FID with a single RF pulse, we will talk about a spin echo (SE), which is the refocusing of 

spin magnetization by an additional 180° RF pulse. The first 90° RF pulse flips the spins into the 

x-y plane and generates an FID signal. The FID will rapidly diphase due to the T2
*  effect. If we 

apply a second 180° RF pulse at time τ after the first pulse, the magnetic resonance signal will 

reappear at time 2τ as a spin echo. We call 2τ the echo delay time or time to echo (TE) and the 

180° RF pulse is called a refocusing or rephrasing pulse. 

 In the 1970s, Paul C. Lauterbur (1929-2007 American) contributed to the development of 

MRI by introducing gradients in the magnetic field that allows for determining the origin of the 

radio waves emitted from the nuclei of the object. This spatial information is encoded to make 

two-dimensional images. Spatial encoding uses magnetic field gradients in x, y and z direction to 

obtain spatial information in that direction. Depending on their orientation axis they are called 

the slice-select gradient, the frequency-encoding gradient, and the phase-encoding gradient. This 

effect is achieved by using a gradient coil that produces magnetic field that varies over the 

volume of the object in a linear manner.  

In 1975, Richard Ernst described the use of Fourier transform of phase and frequency 

encoding to reconstruct 2D images. Fourier transform is a fundamental mathematic tool widely 

used in signal analysis including MR image formation. Joseph Fourier (1768-1830 French) 

initiate the investigation of Fourier series and Fourier transform was named in his honor. In MRI, 
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Fourier transform converts the signal from the time domain to the spatial-frequency domain. 

Basically, the Fourier transform represents a function in the frequency domain whose amplitude 

varies with the frequencies present in the signal. This technique is the basis of today’s MRI.  

 

2.2 Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) 

 Recent molecular understanding of the processes of tumor development and metastasis 

has led to a number of new targets being identified for potential anti-cancer treatments (15). 

DCE-MRI techniques combines the use of low molecular contrast media with optimized image 

acquisition techniques. DCE-MRI has been widely studied as a cancer imaging tool, which is a 

noninvasive, clinical imaging technique that is applied to access the microvascular status of 

tumor tissue and characterize tumor response to antiangiogenic treatment (16,17). DCE-MRI is 

performed by obtaining sequential MRI images before, during, and after the injection of a 

contrast agent. Basically, DCE-MRI provides the tracking of a contrast agent between the 

vascular space and extravascular extracellular space (EES), and provides information about 

blood volume and microvascular permeability.  

 

2.3 Contrast Agent in MRI 

 The contrast agents in MRI are a group of contrast media used to improve the visibility of 

internal body structures in MR images. There are two different types of contrast agents based on 

the effect on the values of T1 and T2. The most commonly used T1-based compounds for contrast 

enhancement are gadolinuium diethylene triamine pentaacetate (Gd-DTPA). The characteristics 

of Gd-DTPA was described and introduced as the first Gadolinium-based contrast agent in MRI 

in 1987 (18). It is a paramagnetic low molecular weight contrast agent that increases the intensity 



 

18 

of the tissue on T1-weighted MR images. In general, gadolinium-based contrast media are used 

to shorten T1 relaxation time of protons located nearby. Different Gd-based compounds have 

different tumbling rates affecting the T1 relaxation rate. This is referred to as the relaxivity of the 

contrast agent and measured in unit of mM-1s-1. Normally, Gd-DTPA has longitudinal relaxivity 

values in plasma of around 4 mM-1s-1 at 1.5 T (19). The most commonly used T2-based contrast 

agents are superparamagnetic iron oxide nanoparticles that have a much higher T2 relaxation rate 

than T1-based contrast agents. This contrast agents increase the T2 relaxation rate and best used 

with T2 weighted imaging. 

 

2.4 Pharmacokinetic Modeling 

Pharmacokinetics models are simple mathematical schemes that represent the 

mechanisms of absorption and distribution of an administered drug or agent. The most 

commonly used pharmacokinetic models are the one-compartment model and two-compartment 

model developed by Tofts. In addition to Tofts model (20,21), several other models are also 

available (20,22,23). It was investigated which model can be used in a clinical setting by 

simulating a range of sampling rates and noise levels. For a one-compartment model, all drugs 

initially distribute into a central compartment before distributing into the peripheral 

compartment. One-compartment model can use only one volume term, the apparent volume of 

distribution, if a drug rapidly equilibrates throughout the tissue compartment. 

The most widely used model in DCE-MRI is the two-compartment model, which uses 

pharmacokinetic parameters to describe the exchange of contrast agent between the blood plasma 

and the extravascular extracellular space (EES) (24). A simple two-compartment model is shown 
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in Figure 2.5. In this model, contrast agent diffuses from the blood plasma into EES for the tissue 

of interest (TOI). 

 

 

 

Figure 2.5 A two-compartment model in DCE-MRI. Cp(t) and CTOI(t) represent the 
concentration of the contrast agent in blood plasma and the tissue of interest, respectively. Ktrans 
and kep represent the volume transfer constant and flux rate constant, respectively. 
 

Pharmacokinetic parameters can be estimated from DCE-MRI data using a differential equation 

for this two-compartment model defined and standardized by Tofts: 

dCt

dt
= KtransCp − kepCt           [2.8] 

where Ct and Cp are the concentration of the contrast agent in the EES and plasma space, 

respectively, and Ktrans and kep represent the volume transfer constant and flux rate constant, 

respectively. 

 

2.5 Data Acquisition and Analysis 

DCE-MRI relies on MRI sequences and is obtained before, during, and after the rapid 

intravenous administration of a contrast agent. Each image acquired corresponds to one time 
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point, and each pixel in each image set gives rise to its own time course. DCE-MRI is aimed at 

investigating such contrast agent effects over time. The pharmacokinetic parameters and intrinsic 

tissue properties may be extracted by fitting these time courses. The first step of quantitative 

DCE-MRI data acquisitions is to obtain a map of the native T1 before administration of the 

contrast agent. In a multiple flip angles method, the signal intensity as a function of the flip angle 

is given by 

S = S0
sinθ 1− e−TR/T1( )e−TE /T2*
cosθ 1− e−TR/T1( )

⎛

⎝
⎜

⎞

⎠
⎟          [2.9] 

where θ is the flip angle, S0 is a constant describing the proton density, TR is the repetition time, 

TE is the echo time, and T2
* is the transverse relaxation time due to both molecular interactions 

and inhomogeneities in the external magnetic field. In general, TE << T2
* so that the final 

exponential term can be approached to 1. The Multiple flip angles method can be used for 

obtaining a map of T1 before administering the contrast agent. Alternatively, a pre-contrast T1 

map can be obtained using gradient or spin echo images obtained by multiple repetition times 

(25). Once the pre-contrast T1 map is acquired, dynamic T1-weighted images need to be acquired 

before and after the administration of the contrast agent.  

The two-compartment model in pharmacokinetics is the most widely used model in DCE-

MRI to estimate pharmacokinetic parameters such as blood volume and permeability that are 

associated with tumors (20,26). In this model, it is commonly assumed that within each 

compartment, capillory and tissue of interest, the contrast agent is homogeneously distributed 

(27). Pharmacokinetic parameters such as Ktrans and kep can be estimated by Eq. [2.8]. Ktrans is the 

volume transfer constant representing diffusion of the contrast agent from capillaries to the TOI. 

Similarly, kep is the flux rate constants from the TOI back to the capillaries. 
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2.6 Arterial Input Function (AIF)  

To estimate the kinetic parameters derived from the pharmacokinetic model, accurate 

knowledge of concentration of the contrast agent in the blood plasma as a function of time, Cp(t), 

is very important. The Cp(t) is also known as the arterial input function (AIF). However, the AIF 

is usually unknown, and it remains very difficult to obtain such information noninvasively.  

In general, there are three approaches to estimate the AIF in DCE-MRI. The first 

approach is the sampling method using an arterial catheter, which involves sampling blood 

during the imaging process (29,30). There is an advantage and disadvantage of this approach. 

The advantage of this sampling method is that the AIF obtained by each arterial blood sample 

can be estimated from standard chemical analytic method allowing for very accurate 

characterization of the AIF. However, there are disadvantages due to its invasive nature, poor 

temporal resolution, and inaccurate drawn blood sampling time. A second approach uses an 

averaged AIF from the small cohort of subjects using the blood sampling method and then uses 

this averaged AIF for subsequent studies by assuming that the AIF is similar for all subjects 

(31,32). Since this method uses an averaged AIF for all subjects, it is very simple in both data 

acquisition and data analysis. However, this approach has a disadvantage of the influences of 

both inter- and intra-subject variations in AIF that may introduce large errors in AIF 

characterization and pharmacokinetic analysis (32). A third approach is that the AIF can be 

estimated directly from the DCE-MRI data and several studies for this approach have been 

proposed (33,34). These methods have advantages of measuring the AIF on an individual basis 

and it is completely noninvasive. However, it requires the presence of a large vessel within the 

field of view (FOV). Also, determining the AIF can be technically challenging, and can be a 

significant source of variability in the physiological parameters estimated from DCE-MRI 
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results. In addition to these approaches to estimate accurate AIF, as an alternative approach, 

there is a reference region (RR) model that does not require the AIF and instead uses the 

concentration of the CA in the reference region, such as muscle, to estimate pharmacokinetic 

parameters (27,35). Without knowledge of the AIF, reference region (RR) model can be applied 

by using literature values for the reference region to analyze the kinetic parameters. However, 

this method has a systematic error in estimating the kinetic parameters caused by incorrect 

assignments of the parameters for the reference regions. To overcome this problem, new 

pharmacokinetic parameter ratios, KR and VR, between TOI and RR can be used for the reference 

region model without the information about the AIF (36).  

  

2.7 Applications of DCE-MRI 

DCE-MRI can be used to assess treatment response of angiogenesis inhibitors that 

involves the study of tumor angiogenesis (37) and in the development and trial assessment of 

antiangiogenic and vascular disrupting compounds (38). Also, the studies of DCE-MRI includes, 

but are not limited to, noninvasive assessment of tumor microenvironment (39), predictors of 

clinical outcomes including treatment response to chemotherapy (40,41), detection of rheumatoid 

arthritis (42,43), differentiation of tumor histopathology (44,45), and analysis of the 

pharmacokinetic parameters (36). There are several DCE-MRI studies combined with other 

imaging techniques. Recently, the studies have shown that DCE-MRI with fluorodeoxyglucose 

positron emission tomography computed tomography (FDG-PET/CT) could assess the 

evaluation of response to chemotherapy with bevacizumab (46).  

Combination of the diffusion weighted imaging (DWI) and DCE-MRI provides higher 

sensitivity in diagnosing prostate cancer than either technique alone (47). Also, DCE-MRI with 
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diffusion tensor imaging (DTI) has been studied to improve accuracy in prostate cancer 

diagnosis (48).  

 

2.8 References 

1. Jia Z, Geng D, Xie T, Zhang J, Liu Y. Quantitative analysis of neovascular permeability 

in glioma by dynamic contrast-enhanced MR imaging. J Clin Neurosci 2012;19(6):820-3. 

2. Kelly RJ, Rajan A, Force J, Lopez-Chavez A, Keen C, Cao L, Yu Y, Choyke P, Turkbey 

B, Raffeld M and others. Evaluation of KRAS mutations, angiogenic biomarkers, and 

DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin 

Cancer Res 2011;17(5):1190-9. 

3. Biglands J, Magee D, Boyle R, Larghat A, Plein S, Radjenovic A. Evaluation of the 

effect of myocardial segmentation errors on myocardial blood flow estimates from DCE-

MRI. Phys Med Biol 2011;56(8):2423-43. 

4. Saito K, Ledsam J, Sourbron S, Otaka J, Araki Y, Akata S, Tokuuye K. Assessing liver 

function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging 

protocol. J Magn Reson Imaging 2012. 

5. Lietzmann F, Zollner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR. DCE-

MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J 

Magn Reson Imaging 2012;35(4):868-74. 

6. Schmidt MA, Borri M, Scurr E, Ertas G, Payne G, O'Flynn E, Desouza N, Leach MO. 

Breast dynamic contrast-enhanced examinations with fat suppression: Are contrast-agent 

uptake curves affected by magnetic field inhomogeneity? Eur Radiol 2012. 



 

24 

7. Anblagan D, Deshpande R, Jones NW, Costigan C, Bugg G, Raine Fenning N, Gowland 

PA, Mansell P. Measurement of Fetal Fat in Utero in Normal and Diabetic Pregnancy 

using Magnetic Resonance Imaging. Ultrasound Obstet Gynecol 2013. 

8. Ørsted HC. Electricity and magnetic needles. Philosophy 1820;16(4):273-276. 

9. Gerlach W, Stern O. Das magnetische moment des silberatoms. Zeitschrift für Physik A 

Hadrons and Nuclei 1922;9(1):353-355. 

10. Rabi I. Refraction of beams of molecules. Nature 1929;123:163-164. 

11. Rabi I, Millman S, Kusch P, Zacharias J. The Molecular Beam Resonance Method for 

Measuring Nuclear Magnetic Moments. Phys. Rev 1938;53(495):318. 

12. Bloch FH, W.; Packard, M.;. Nuclear infraction. Phys rev 1946;69:127. 

13. Purcell ET, H.; Pound, R.;. Resonance absorption by nuclear magnetic moments in a 

solid. Phys rev 1946;69:37-8. 

14. Hahn EL. Spin Echoes. Physical Review 1950;80(4):580-594. 

15. Buolamwini JK. Novel anticancer drug discovery. Curr Opin Chem Biol 1999;3(4):500-

9. 

16. Padhani AR, Leach MO. Antivascular cancer treatments: functional assessments by 

dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 

2005;30(3):324-41. 

17. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: 

applications and potential for drug development. J Natl Cancer Inst 2005;97(3):172-87. 

18. Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of Gadolinium-Dtpa 

Complex - a Potential Nmr Contrast Agent. American Journal of Roentgenology 

1984;142(3):619-624. 



 

25 

19. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of 

magnetic properties of MRI contrast media solutions at different magnetic field strengths. 

Invest Radiol 2005;40(11):715-724. 

20. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee 

TY, Mayr NA, Parker GJ and others. Estimating kinetic parameters from dynamic 

contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and 

symbols. J Magn Reson Imaging 1999;10(3):223-32. 

21. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and 

leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 

1991;17(2):357-67. 

22. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. 

Pharmacological Reviews 1951;3(1):1-41. 

23. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic 

parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 

1991;15(4):621-8. 

24. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson 

Imaging 1997;7(1):91-101. 

25. Gossmann A, Helbich TH, Kuriyama N, Ostrowitzki S, Roberts TP, Shames DM, van 

Bruggen N, Wendland MF, Israel MA, Brasch RC. Dynamic contrast-enhanced magnetic 

resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in 

a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 2002;15(3):233-

40. 



 

26 

26. Tofts PS, Kermode AG. Measurement of the Blood-Brain-Barrier Permeability and 

Leakage Space Using Dynamic Mr Imaging .1. Fundamental-Concepts. Magnetic 

Resonance in Medicine 1991;17(2):357-367. 

27. Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, Price RR, Gore JC. 

Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input 

function: a reference region model. Magn Reson Imaging 2005;23(4):519-29. 

28. Aad G, Abbott B, Abdallah J, Abdel Khalek S, Abdelalim AA, Abdesselam A, Abdinov 

O, Abi B, Abolins M, Abouzeid OS and others. Search for Pair Production of a New 

b^{'} Quark that Decays into a Z Boson and a Bottom Quark with the ATLAS Detector. 

Physical Review Letters 2012;109(7):071801. 

29. Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB. 

Quantitation of blood-brain barrier defect by magnetic resonance imaging and 

gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 

1990;16(1):117-31. 

30. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O. 

Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward 

quantitative perfusion imaging. Magn Reson Med 1996;36(2):225-31. 

31. Weinmann HJ, Laniado M, Mutzel W. Pharmacokinetics of GdDTPA/dimeglumine after 

intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 

1984;16(2):167-72. 

32. Simpson NE, Evelhoch JL. Deuterium NMR tissue perfusion measurements using the 

tracer uptake approach: II. Comparison with microspheres in tumors. Magn Reson Med 

1999;42(2):240-7. 



 

27 

33. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A. Method for 

quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn 

Reson Imaging 2001;14(4):457-63. 

34. van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ. Measuring the 

arterial input function with gradient echo sequences. Magn Reson Med 2003;49(6):1067-

76. 

35. Yang C, Karczmar GS, Medved M, Stadler WM. Estimating the arterial input function 

using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental 

concepts and simulations. Magn Reson Med 2004;52(5):1110-7. 

36. Lee J, Platt S, Kent M, Zhao Q. An analysis of the pharmacokinetic parameter ratios in 

DCE-MRI using the reference region model. Magn Reson Imaging 2012;30(1):26-35. 

37. Zwick S, Strecker R, Kiselev V, Gall P, Huppert J, Palmowski M, Lederle W, Woenne 

EC, Hengerer A, Taupitz M and others. Assessment of vascular remodeling under 

antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imaging 

2009;29(5):1125-33. 

38. O'Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical 

evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 2007;96(2):189-

95. 

39. Jansen JF, Schoder H, Lee NY, Wang Y, Pfister DG, Fury MG, Stambuk HE, Humm JL, 

Koutcher JA, Shukla-Dave A. Noninvasive assessment of tumor microenvironment using 

dynamic contrast-enhanced magnetic resonance imaging and 18F-fluoromisonidazole 

positron emission tomography imaging in neck nodal metastases. Int J Radiat Oncol Biol 

Phys 2010;77(5):1403-10. 



 

28 

40. Evelhoch J, Garwood M, Vigneron D, Knopp M, Sullivan D, Menkens A, Clarke L, Liu 

G. Expanding the use of magnetic resonance in the assessment of tumor response to 

therapy: workshop report. Cancer Res 2005;65(16):7041-4. 

41. Ahmed A, Gibbs P, Pickles M, Turnbull L. Texture analysis in assessment and prediction 

of chemotherapy response in breast cancer. J Magn Reson Imaging 2012. 

42. Workie DW, Dardzinski BJ, Graham TB, Laor T, Bommer WA, O'Brien KJ. 

Quantification of dynamic contrast-enhanced MR imaging of the knee in children with 

juvenile rheumatoid arthritis based on pharmacokinetic modeling. Magn Reson Imaging 

2004;22(9):1201-10. 

43. Li X, Yu A, Virayavanich W, Noworolski SM, Link TM, Imboden J. Quantitative 

characterization of bone marrow edema pattern in rheumatoid arthritis using 3 Tesla 

MRI. J Magn Reson Imaging 2012;35(1):211-7. 

44. Zhao Q, Lee S, Kent M, Schatzberg S, Platt S. Dynamic contrast-enhanced magnetic 

resonance imaging of canine brain tumors. Vet Radiol Ultrasound 2010;51(2):122-9. 

45. Selnaes KM, Heerschap A, Jensen LR, Tessem MB, Schweder GJ, Goa PE, Viset T, 

Angelsen A, Gribbestad IS. Peripheral zone prostate cancer localization by 

multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to 

histopathology. Invest Radiol 2012;47(11):624-33. 

46. De Bruyne S, Van Damme N, Smeets P, Ferdinande L, Ceelen W, Mertens J, Van de 

Wiele C, Troisi R, Libbrecht L, Laurent S and others. Value of DCE-MRI and FDG-

PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab 

for colorectal liver metastases. Br J Cancer 2012;106(12):1926-33. 



 

29 

47. Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined 

diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis--

correlation with biopsy and histopathology. J Magn Reson Imaging 2006;24(1):108-13. 

48. Kozlowski P, Chang SD, Meng R, Madler B, Bell R, Jones EC, Goldenberg SL. 

Combined prostate diffusion tensor imaging and dynamic contrast enhanced MRI at 3T--

quantitative correlation with biopsy. Magn Reson Imaging 2010;28(5):621-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

 

CHAPTER 3 

AN ANALYSIS OF THE PHARMACOKINETIC PARAMETER RATIOS IN DCE-MRI 

USING THE REFERENCE REGION MODEL1 
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3.1 Abstract 

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is performed by 

obtaining sequential MRI images, before, during, and after the injection of a contrast agent. It is 

usually used to observe the exchange of contrast agent between the vascular space and 

extravascular extracellular space (EES), and provide information about blood volume and 

microvascular permeability. To estimate the kinetic parameters derived from the 

pharmacokinetic model, accurate knowledge of the arterial input function (AIF) is very 

important. However, the AIF is usually unknown, and it remains very difficult to obtain such 

information noninvasively. In this paper, without knowledge of the AIF, we applied a reference 

region (RR) model to analyze the kinetic parameters. The RR model usually depends on kinetic 

parameters found in previous studies of a reference region. However, both the assignment of 

reference region parameters (inter-subject variation) and the selection of the reference region 

itself (intra-subject variation) may confound the results obtained by RR methods. Instead of 

using literature values for those pharmacokinetic parameters of the reference region, we 

proposed to use two pharmacokinetic parameter ratios between the tissue of interest (TOI) and 

the reference region. Specifically, one parameter KR is calculated as the ratio between the 

volume transfer constant Ktrans of the TOI and RR. Similarly another parameter VR is calculated 

as the ratio between the extravascular extracellular volume fraction ve of the TOI and RR. To 

investigate the consistency of the two ratios, the Ktrans of the RR was varied ranging from 0.1 to 

1.0 min-1, covering the cited literature values. A simulated dataset with different levels of 

Gaussian noises and an in vivo dataset acquired from five canine brains with spontaneous 

occurring brain tumors were used to study the proposed ratios. It is shown from both datasets 

that these ratios are independent of Ktrans of the RR, implying that there is potentially no need to 
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obtain information about literature values from the reference region for future pharmacokinetic 

modeling and analysis. 

 

3.2 Introduction 

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been widely 

studied as a cancer imaging tool. It is a noninvasive, clinical imaging technique that is applied to 

access the microvascular status of tumor tissue and characterize tumor response to 

antiangiogenic treatment (1,2). Applications of DCE-MRI include, but are not limited to, 

detection of rheumatoid arthritis (3), differentiation of tumor histopathology (4), noninvasive 

assessment of tumor microenvironment (5), and predictors of clinical outcomes, including 

treatment response to chemotherapy (6). 

DCE-MRI require repeated acquisition of T1-weighted images of a particular region-of 

interest (ROI) before, during and after an intravenous administration of a bolus of a 

paramagnetic contrast agent (CA), typically a low-molecular-weight gadolinium (Gd) 

compound. The MR signal in a ROI or voxel can reveal information about blood flow, capillary 

leakage, and related physiological parameters such as the volume transfer constant (Ktrans) and 

extravascular extracellular volume fraction (ve). These parameters are usually extracted by fitting 

DCE-MRI data to a model (7,8). Several pharmacokinetic models have been proposed to analyze 

DCE-MRI (9-11). The most widely used model in DCE-MRI is the two-compartment model 

(11,12), which uses pharmacokinetic parameters (13) to describe the exchange of contrast agent 

between the blood plasma compartment and extravascular extracellular space (EES). In this 

model, contrast agent enters through the vascular space by perfusion, and diffuses between the 

vascular space and EES of the tumor. 
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In a typical DCE-MRI study, analysis of the data requires knowledge of the concentration 

of the CA in the blood plasma as a function of time, denoted Cp, also referred to as arterial input 

function (AIF). It is difficult to estimate the kinetic parameters such as the Ktrans and ve without 

knowledge of the AIF. Traditionally AIF is obtained by direct blood sampling from an artery 

(14). However, this procedure is very difficult and invasive. Furthermore, because of the 

characteristics of blood, direct measurement of the arterial blood concentration of contrast is not 

always accurate. Many efforts have been made to estimate the AIF for obtaining accurate 

pharmacokinetic parameters without the invasive procedure of sampling the blood. One approach 

is that AIF can be obtained from the DCE-MRI data sets (15) by measuring signal intensity 

changes in both the blood and tissue. Other approaches for estimating the AIF include modeling 

(16,17), temporal fitting methods (18), perfusion measurement based methods (19), multiple 

reference region methods (7), phase-based methods (19-21), and extraction of an AIF from 

various parts of the body in DCE-MRI (22).  However, errors in these methods arise from many 

factors, including T2
* effects (23), partial volume effects (24), low signal to noise ratio (SNR) 

when sampling smaller arteries, and the fast flow of blood in the artery (7). Also a major artery 

may not be in the field of view (FOV) in most DCE-MRI studies (25) .  

 To overcome the problem associated with direct measurement of the AIF, a reference 

region model was introduced (1,7,8,26-29). This method uses a reference region, such as muscle, 

to estimate pharmacokinetic parameters without obtaining the information that the AIF has to 

offer. For example, the reference region method proposed by Yankeelov et al. (8) used a single 

reference region to extract quantitative estimates of the pharmacokinetic parameters. Yang et al. 

applied multiple reference regions in the analysis (28). Further improvements of the reference 

region model include incorporation of the effects of transcytolemmal water exchange (30) and a 
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vascular term in the reference region model (29). The results from the estimation of the kinetic 

parameters using the reference region model accord well with the pharmacokinetic parameters 

obtained using the AIF (31). Furthermore, the reference region model has been used for 

quantitative pharmacokinetic analysis in positron emission tomography (PET) (32). 

One limitation of the reference region model is that it requires information about the 

Ktrans value for reference regions. The Ktrans parameter can vary from subject to subject even for 

a well characterized reference region (8). In this paper, without knowledge of the AIF, we 

applied the reference region model to analyze the kinetic parameters. Instead of using literature 

values for the reference region, we proposed two pharmacokinetic parameter ratios between the 

tissue of interest (TOI) and a reference region (RR). Specifically, the first ratio KR is calculated 

by using the volume transfer constant Ktrans of the TOI and RR, and similarly the second ratio, 

VR, is calculated by using the extravascular extracellular volume fraction ve of the TOI and RR. 

To investigate the consistency of the two ratios, Ktrans of the RR was varied ranging from 0.1 to 

1.0 min-1, covering the cited literature values. A simulated dataset and in vivo data sets acquired 

from five canine brains with spontaneous occurring brain tumors were analyzed to calculate the 

proposed pharmacokinetic parameter ratios. 

 

3.3 Theory 

The two-compartment model (11,12) is the most widely used kinetic model for DCE-

MRI to estimate pharmacokinetic parameters such as blood volume and permeability that are 

associated with tumors. A simple two-compartment model is shown in Fig. 3.1. In this model, 

CA diffuses from the blood plasma into EES for the TOI and the RR, respectively. 

Pharmacokinetic parameters that can be estimated from DCE-MRI data were defined and  
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Figure 3.1 A two-compartment model diagram for the reference region model. Cp(t), CTOI(t), and 
CRR(t) represent the concentration of the contrast agent in blood plasma, the tissue of interest and 
the reference region, respectively. Ktrans and kep represent the volume transfer constant and flux 
rate constant, respectively. Contrast agent from the blood plasma diffuses from the intravascular 
space to the extravascular-extracellular space of the tissue of interest and vice versa. 
 

 

standardized by Tofts et al. by using a differential equation for this two compartment model (13) 

as 

transt
p ep t

dC K C k C
dt

= −           [3.1] 

where Ct and Cp are the concentration of the contrast agent in the EES and plasma space 

respectively, and the flux rate constant, kep = Ktrans/ve. Similarly, differential equations for a 

multiple region system (i.e. the TOI and RR) are given as Eq. [3.2] and [3.3];   

,
,

( ) ( ) ( )trans TOI
p ep

TO
T

I
TOIOI

dC t K C t k C t
dt

= −         [3.2] 

 ,
,

( ) ( ) ( )trans RR
p ep RR

RR
RR

dC t K C t k C t
dt

= −        [3.3] 

where CTOI and CRR are the concentrations of contrast agent in the TOI and the RR. Ktrans,TOI and 
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Ktrans,RR are the volume transfer constants, representing diffusion of the contrast agent from 

capillaries to the TOI and the RR, respectively. Similarly, kep,TOI and kep,RR are the flux rate 

constants from the TOI and the RR back to the capillaries,  respectively. We can eliminate the CP 

term by combining these two equations. The combined equation, Eq. [3.4], and the solution for 

this combined equation can be expressed in the following form, 

, , ,

, , ,

, ,

,
,

( )( ) e e ( )e
trans TOI trans TOI trans TOI

e RR e RR e RR

K K Kt t t
v v vTOI

TOI

trans TOI trans TOI

trans RR
e RR

RR
dC td K KC t C t

dt K dt v

⎡ ⎤
⎢ ⎥⋅ = +
⎢ ⎥⎣ ⎦

   [3.4] 

( )
( )

,

,
,

 

, 0
( ) ( ) ( )e

trans TOI

e RR
TOI R RR R ep RR ep TOI

K t t

RR

t vC t K C t K k k C t dt
′− −

′= ⋅ + − × ∫     [3.5] 

where KR is defined as a ratio between the two volume transfer constants, Ktrans,TOI  and Ktrans,RR. 

Note that we cannot measure Ct, the concentration of CA, directly from the intensity of a DCE-

MRI image. However, when the Ct is relatively low, there is a linear relationship between the 

concentration of CA and the longitudinal relaxation rate constant 1.  

 1 1 10tR rC R= +            [3.6] 

where R1 = 1/T1, r1 is the relaxivity (in mM-1s-1), and R10 is the ‘native’ relaxation rate (i.e., the 

value of R1 without presence of the CA). The final solution with Eq. [3.6] is given as Eq. [3.7] 

(8). 

, ,

1, 1, 1,
,

0
,

,2

1 exp ( )
trans RR trans TOI

TOI R RR R RR
e TOI e RR

t

R ep TOI
R

K KR K R K V R k t t dt
v V v

⎛ ⎞
′ ′ ′ ′ ′⎡ ⎤= + − × − −⎜ ⎟ ⎣ ⎦⎜ ⎟⎝ ⎠

∫    [3.7] 

where 1, 1, 10,TOI TOI TOIR R R′ = −  and 1, 1, 10,RR RR RRR R R′ = − . Similar to the above defined KR, 

VR is the ratio between ve for the TOI and the RR. The two ratios, KR and VR, can be derived 

through a curve fitting procedure using Eq. [3.7]. To investigate consistency of the two ratios, we 

used a simulated data set and in vivo data sets acquired from five canine brains with spontaneous 



 

37 

occurring brain tumors. In the following, Ktrans,RR was assigned a value ranging from 0.1 to 1.0 

min-1, covering the values reported by other groups (33). 

 

3.4 Methods 

 Simulated datasets 

 We simulated the AIF curve using the following Eq. [3.8] (8). 

( )( ) 1B t D t E t
pC t A t e C e e− ⋅ − ⋅ − ⋅= ⋅ ⋅ + −          [3.8] 

where A = 0.6 mMmin-1, B = 0.18 min-1, C = 0.45 mM, D = 0.5 min-1, and E = 0.013 min-1. This 

AIF curve agrees with that of Simpson et al.34. The Ct curves were then generated for the TOI 

and RR using the following Eq. [3.9] (6)  

( )
0

( ) ( )e eptrans
t

t
P

t k tC t K C t dt′− − ′= ∫          [3.9] 

where Ktrans = 0.20 min-1 and ve = 0.20 were assigned for the Ct,RR and Ktrans = 0.3 min-1 and ve = 

0.40 were assigned for the Ct,TOI. The curves are shown in Fig. 3.2 (a) where the time scale was 

discretized with 1 min temporal resolution, range from 0 to 40 min. The Ct curves were then 

converted to R1 curves using Eq. [3.6], where R10 for the TOI and the RR was assigned a value 

of 0.7 s-1 and 0.55 s-1 , and r1 was assigned the value 3.6 mM-1s-1. The R1 curves are shown in 

Fig. 3.2 (b).  

Direct input of simulated R1 data from TOI and RR into Eq. [3.7] was attempted but it 

turned out that the results had a lot of variation due to bad fitting. Instead a nonlinear regression 

analysis was adopted for modeling and analyzing variables. We applied the nonlinear regression 

analysis on the simulated R1 data for the reference region, and then the regression model to Eq. 

[3.7] for the TOI. The detailed procedure is: first, substituting the Eq. [3.8] and Eq. [3.9] into Eq.  
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Figure 3.2 Simulation study, where the simulated time curve for the concentration of CA in the 
blood plasma (Cp), TOI (Ct,TOI), and RR (Ct,RR) is displayed in (A) and the R1 time curve 
converted from the simulated Cp time curve using Eq. [3.6] in (B). 
 

 

[3.6] to get the R1 model (see Appendix) 
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where A1, A2, A3, A4, A5, A6, and A7 are parameters that can be extracted from a nonlinear 

regression analysis using a least square method. Next, we applied this R1 model to Eq. [3.7] and 

then applied a curve–fitting routine to extract the pharmacokinetic parameters, Ktrans and ve for 

the TOI, and ve for the RR, while Ktrans for the RR was assigned from 0.1 min-1 to 1.0 min-1. 

Then we calculated the ratios KR and VR between the TOI and the RR. To further test the 

accuracy of the model, 2%, 5%, and 10% random Gaussian noise were added to the R1 TOI 

curves. The noise level is defined as, n% noise = (mean R1 TOI value) × (n/100), where the mean 

R1 TOI was obtained by averaging the R1 TOI dataset while a maximum value of R1 TOI was 

employed in the reference (8). The noise corrupted R1 curves are shown in Fig. 3.3. In Fig. 3.3, 

the dotted curve is the simulated R1 TOI by plugging the Eq. [3.8] into Eq. [3.9] and then to Eq. 

[3.6]. And the red curve is obtained from putting Eq. [3.10] into Eq. [3.7] with a curve fitting in a 

nonlinear regression framework. 

 

Experimental datasets 

Five canine brains with spontaneous occurring brain tumors were imaged using a 3.0 Tesla GE 

SIGNA HDX MR scanner (GE Medical Systems, Milwaukee, WI) and a transmit/receive coil. A 

spoiled gradient echo sequence with variable flip angles of 150, 300, 450, 600 and 750 was 

scanned before contrast agent was injected at the repetition time (TR) of 400 ms and echo time 

(TE) of 2.24 ms. The paramagnetic contrast agent, gadopentetate dimeglumine or Gd-DTPA, 

was injected intravenously (IV) as a bolus (0.2 mMol/kg) after the first acquisition pulse. The 

DCE-MRI protocol employed a standard T1-weighted, 2-D Gradient refocused echo (GRE) 
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Figure 3.3 R1 simulation curve for the TOI, the RR and the results of fitting the RR model to 
simulated TOI curves, respectively. Gaussian noise is added to the simulated R1 TOI curves at 
different levels, with (A) 0%, (B) 5%, and (C) 10%. 
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sequence to obtain 41 serial images. TR was 34 ms, TE was 2.78 ms with a 350 flip angle, slice 

thickness of 3 mm, and NEX=1. The matrix size is 192×192, with a field of view (FOV) of  

182.25 cm2.  

The acquired variable flip angle data was used to estimate the initial R10 map. The signal 

as a function of the flip angle is given by Eq. [3.11] and the values for the R10 before the 

injection of the CA can be obtained using following Eq. [3.11] with the variable flip angle data. 

( ) ( )1 1
*
2

0
/( ) 1 sin / 1 cosE R RT T R TT Re e eρ θ ρ θ θ⋅− ⋅− −⎡ ⎤= − −⎣ ⎦                [3.11] 

where θ is flip angle and 0ρ is proton density. By assuming that TE << T2
* 8, the term exp(-TE  

/T2
*) can be neglected from Eq. [3.10] and it can be rewritten into Eq. [3.12] 

( ) ( )1 1
0( ) 1 sin / 1 cosR R RT TRe eρ θ ρ θ θ⋅−⋅−⎡ ⎤= − −⎣ ⎦                 [3.12] 

Then relaxation time courses were estimated by using the R10 map. The Relaxation time courses 

are given by Eq. [3.13] (35) 

R1(t) =
1
TR
ln ρ0 sinθ − ρ(t)cosθ( ) / ρ0 sinθ − ρ(t)( )⎡⎣ ⎤⎦               [3.13] 

where 0ρ  represents fully relaxed magnetization for a given voxel and is obtained from Eq. 

[3.14] 

ρ0 = ρss 1− e−TR⋅R10 cosθ( ) / 1− e−TR⋅R10( )⎡⎣ ⎤⎦                 [3.14] 

where ρs  is the steady-state voxel-averaged intensity before CA was injected. 

Thirty voxels were selected manually from suspected lesion tissue as the TOI and thirty 

voxels from normal brain tissue as the RR, respectively, for dataset 1 through 4, and twelve 

voxels were selected for dataset 5 because of a smaller size of lesion compared to other datasets. 

First, the R1 datasets are generated by Eq. [3.13] for lesion tissue and normal brain tissue. We 
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then applied a nonlinear regression analysis to the R1 dataset for the reference region to 

substitute in place of the raw R1 dataset so that a model, Eq. [3.15], could be applied to the 

reference region model. Eq. [3.15] is a nonlinear regression model used to obtain a regularized, 

well-behaved R1,RR(t) curve from Eq. [3.13]. In other words, Eq. [3.15] is acquired by 

parameterized curve fitting in a nonlinear regression framework. For the experimental data 

analysis, we use the equation as a model from the signal enhancement equation from Brix et. al. 

(13,18,36). 

3 4 2 4( ( )1
1,

)

2 3

( ) C t C C t C
RR

CR t e e
C C

− −− −⎡ ⎤= −⎣ ⎦−
                 [3.15] 

where C1, C2, C3, and C4 are parameters replaced from the flux rate constants on the signal 

enhancement equation from Brix et. al. (13,18,36). These parameters can be extracted from a 

nonlinear regression analysis. This R1 model was substituted into the reference region model Eq. 

[3.7], and a least square method was applied to Eq. [3.7] to estimate pharmacokinetic parameters, 

Ktrans and ve for the TOI, and ve for the RR, while Ktrans for the RR was varied between 0.1 and 

1.0 min-1. 

Since the distribution of the canine lesion datasets is unknown, the Kruskal Wallis test 

(37), a non-parametric method for testing equality of population medians among groups was 

used to determine if the lesions differed significantly from each other by using the proposed two 

ratios. The Kruskal-Wallis test starts by arranging the data of all samples in a single series in 

ascending order to assign rank according to the KR and VR values. It then substitutes that rank 

into the overall data set for each KR and VR value. In this Kruskal-Wallis one-way analysis of 

variance (ANOVA), the chi-square statistic is used to evaluate differences in mean ranks to 

assess the null hypothesis that the populations, from which the samples originate, have the same 

median. The purpose of ANOVA is to find out whether data from five canine datasets have a 
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common mean or not. In the ANOVA table, several parameters are usually given including sum 

of square (SS), degree of freedom (df), mean square (MS), chi-square which is one of the most 

widely used probability distributions in inferential statistics, and probability.  In this manuscript, 

the mean values of KR and VR were used, where the different values of KR and VR were obtained 

by varying Ktrans from the RR for each voxel. The sum of the ranks is calculated for each group 

then the test statistic is calculated. Following the Kruskal Wallis test, a two-sample Kolmogorov-

Smirnov test (KS test) was used to determine if any two lesions differed significantly. The KS 

test, a non-parametric pairwise method, does not require the assumption about the distribution of 

data. A p-value equal or close to 1 implies the two datasets of the ratios compared come from the 

same distribution, while a p-value of zero implies that they have different distributions. 

 

3.5 Results 

Simulations 

The ratios KR and VR were calculated based on the simulated datasets and are shown in Fig. 3.4. 

We applied a curve-fitting routine written in MATLAB software program to extract three 

parameters, Ktrans and ve for the TOI, and ve for the RR, while Ktrans for the RR was assigned 

from  0.1 min-1 to 1.0 min-1. For the dataset without noise, the results from the simulation gave 

the ratios KR=1.497 and VR= 2.000 compared to the known values of KR=1.5 and VR= 2.0. Then, 

5% and 10% noise was added to the data to check the two ratios' sensitivity to noise. For the 5% 

noise case, the ratios are KR=1.339 and VR= 1.996. For the 10% noise case, the ratio are 

KR=1.144 and VR=1.995. Fig. 3.4 shows these values with KR and VR as the slope of fitted lines. 

In Fig. 3.4 (a) for the case of zero noise, KR was shown to have a slope very close to the 

calculated value of 1.5. For the case of added noise, there is a small difference between the 
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Figure 3.4 A plot of the ratio between Ktrans in the TOI and in the RR calculated from the 
simulated data. Ktrans,TOI was extracted, while Ktrans,RR in the RR value was assigned from 0.1 to 
1.0 min-1. (A) The ratio KR is 1.497 in the absence of noise, 1.340 when 5% noise was added and 
1.144 when 10% noise was added. (B) The calculated ratio VR is 2.000 without noise, 1.996 in 
5% noise data and 1.995 in 10% noise data. 
 

 

values. In Fig. 3.4 (b), the values of VR are very close to the calculated value, no matter noise 

was added or not. 
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Experiments 

 For the in vivo experiments, representative R1 curves of a single voxel from the five brain 

lesion datasets were analyzed and shown in Fig. 3.5. In Fig. 3.5, a red dot represents an R1,TOI 

data point and a blue star denotes an R1,RR data point. The dashed line indicates an R1,RR model 

created by regression analysis and the solid line represents the results of the fitting routines. The 

time scale, discretized with a temporal resolution of approximate 8 seconds, had a range from 0 

to 320 seconds. The R1 curves in the TOI rapidly increased while the R1 curves in the RR were 

almost flat in most of the canine brain lesion datasets. 

The data were analyzed on a voxel-by-voxel basis to construct pharmacokinetic 

parameters Ktrans,TOI, ve,TOI, and ve,RR while Ktrans,RR was assigned a value ranging from 0.1 to 1.0 

min-1. Then, KR and VR were calculated and the results are shown in Fig. 3.6. The mean and 

standard deviations of KR and VR are listed in Table 3.1.  

Fig. 3.7(a) displays box plots for KR of the five lesion datasets. It shows that there is a 

significantly different KR value between the five datasets except for data 1, data 3, and data 4. In 

Fig. 3.7(b), there is a significantly different VR value between the five datasets except for data 1 

and data 5.  The Kruskal Wallis analysis of variance result is listed in Table 3.2, where the value 

of probability is close to zero for both KR and VR, implying that there is a significant difference 

among all five datasets.  

The results for the KS test are shown in the Table 3.3, where each component in the table 

is a p-value. The p-values for KR between data 1 and data 3, data 1 and data 4, and data 3 and 

data 4 are 0.2667, 0.34020, and 0.5372, respectively, implying that there is no significant 

difference between data 1, data 3, and data 4.  The p-values for VR between datasets have a value 

of zero or < 0.05 implying that they come from different distribution.  
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Figure 3.5 The results of the RR model fitting to data from the TOI using the five in vivo canine 
datasets. Each curve is plotted from one representative voxel randomly selected from the dataset. 
The red dot and the blue star represent the R1,TOI dataset and the R1,RR dataset, respectively, 
whicle the solid line indicates the R1,TOI model and the dotted line indicates the R1,RR model 
created by regression analysis. The r2 values of the curves for the TOI and the RR are (A) 0.71 
and 0.09, (B) 0.93 and 0.21, (C) 0.91 and 0.16, (D) 0.94 and 0.17, and (E) 0.71 and 0.03, 
respectively. 
 

 

3.6 Discussion 

Several pharmacokinetic models have been previously proposed to analyze DCE-MRI 

data. However, they require information about the concentration of the CA in the blood plasma. 

Alternatively, methods using reference regions were proposed without direct measurement of the 

AIF. In the reference region model, two assumptions are required. First, the AIF in both RR and 

TOI should be the same. Variations in AIFs of the two regions will make estimation errors. 

Second, both pharmacokinetic parameters, Ktrans,RR and ve,RR, are required from the previous  
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Figure 3.6 The plot for the pharmacokinetic parameter ratio between the RR and the TOI of the 
five canine datasets. (A) The ratio KR is between Ktrans in the RR and the TOI. (B) The ratio VR 
is between ve in the RR and the TOI. 
 

literature. However, both simulations and experimental data revealed that systematic error in the 

kinetic parameters of some TOI may be caused by incorrect assignments of the parameters for 

the reference regions. This is because both intra- and inter-subject (animal or human) variation in 
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RR parameter values may introduce errors. The assignment of reference region parameters 

(inter-subject variation) and the selection of the reference region itself (intra-subject variation) 

may confound the results obtained by traditional reference region methods. 

 In this paper, we have presented a method that calculated pharmacokinetic parameter 

ratios, KR and VR, between the TOI and the RR. The first attempt of direct input of simulated R1 

data from TOI and RR into Eq. [3.7] failed due to the fitting difficulty. We next adopted a 

regression analysis on the simulated R1 data for the reference region, and then applied this 

regression model to the reference region model for the TOI. This gave us very good results as 

shown in Fig. 3.3 when no noise was involved. The regression model for the simulation comes 

directly from Eq. [3.8] and it fits well  the data. For the experimental data, the regression model 

was adopted from the signal enhancement equation from Brix et al. (13,18,36) since this model 

works very well for the experimental datasets. In Fig. 3.5, it is seen that the R2 values look 

normal for the R1, TOI data, but are very low for the R1, RR curves. This is because the R1_TOI 

curves are showing a regular enhancing pattern, but the R1_RR curves have a slow enhancing 

trend, instead they are almost flat in most of the datasets. Our results obtained from both 

simulation and in vivo datasets indicated that the parameter ratios KR and VR are independent of 

parameters of the reference regions, Ktrans,RR and ve,RR. This allows one to eliminate the 

requirement of a given value from the literature when considering the ratios. 

It is noted here that relative Ktrans and ve maps were previously proposed by Yankeelov et al. (8). 

This could potentially reduce systematic error from incorrect RR parameter assignments. 

According to their method, by replacing Ktrans,TOI/Ktrans,RR with R1, Ktrans,RR/ve,RR with R2, and  
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Figure 3.7 The box plot for the five canine datasets using the Kruskal-Wallis test for (a) KR and 
for (b) VR indicating the smallest observation (minimum), lower quartile (25th percentiles), the 
median (red horizontal line), upper quartile (75th percentiles), and the largest observation 
(maximum). There is a significant difference between the datasets for KR and VR. 
 

 

Ktrans,TOI/ve,TOI with R3, Yankeelov et al, used the reference region model [3.7] to provide a three-

parameter fit to DCE-MRI time courses to extract R1, R2, and R3. They extracted the three 
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Table 3.1. Canine brain lesions analysis results of KR and VR  

Ratio Canine brain tumor 

Data 1 Data 2 Data 3 Data 4 Data 5 

KR 1.6980 ±0.2749 3.1085 ±0.3767 1.7695 ±0.4106 1.7492 ±0.4324 0.6269 ±0.2658 

VR 4.8038 ±1.2831 19.1557 ±2.1316 13.5476 ±1.6953 10.6719 ±2.3525 3.7552 ±1.4142 

 

 

 

relative parameters directly from the fitting algorithm, and then the reference region model [3.7] 

was used to conduct a full four parameter fit, subject to the results of the relative parameter 

values. They suggested that this might eliminate the requirement for assumptions on the RR.  

In the present study similar kinetic parameter ratios were proposed with the assignment 

of various Ktrans,RR values. Different from the work in 8, in our method we assign the Ktrans,RR 

value from 0.1 to 1.0 min-1 and extract three parameters (Ktrans,TOI, ve,TOI, and ve,RR) to calculate 

pharmacokinetic parameter ratio KR and VR. We have shown that these ratios KR and VR are very 

consistent with various Ktrans,RR values. As seen from the simulation results (Fig. 3.4), the  

 

Table 3.2. Kruskal Wallis ANOVA Table for KR and VR 

Parameter Source SS df MS Chi-sq Prob 

 Columns 212520.2 4 53130.05 112.6 2.030×10-23 

KR Error 68702.3 145 473.81   

 Total 281222.5 149    

 Columns 249203.3 4 62300.8 132.04 1.429×10-27 

VR Error 32019.2 145 220.8   

 Total 281222.5 149    
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Table 3.3. KS test for KR 

Canine lesion Data 1 Data 2 Data 3 Data 4 Data 5 
Data 1 1 0 0.2667 0. 3420 0 
Data 2 0 1 0 0 0 
Data 3 0.2667 0 1 0. 5372 0 
Data 4 0. 3420 0 0. 5372 1 0 
Data 5 0 0 0 0 1 

 

Two-sample KS test were performed. Each component in the table is a P-value that implies the 
two datasets of the ratios compared come from the same distribution if a value is equal to 1 or 
close to 1, while a value of zero implies that they have different distributions. 
 

 

estimated pharmacokinetic parameter ratios KR and VR are very close to the true values when no 

noise is present. As the noise is increased to 5% and 10%, the KR degrades gradually but the VR 

has little change. 

From the results obtained by applying the Kruskal Wallis test to the pharmacokinetic 

parameter ratios KR and VR, a significant difference was found for all data sets analyzed in this 

work. We then applied a pair-wise two-sample Kolmogorov Smirnov test (KS test) to determine 

if any two lesions differed significantly. Similar to the Kruskal Wallis test, the KS test does not 

need any assumption about the distribution of data. Since the KS test is sensitive to differences in 

both location and shape of the empirical cumulative distribution function of two samples, it is 

one of the most useful and general nonparametric methods for comparing two samples. We can 

conclude that there is a significantly difference between any two given data distributions. Given 

these results, it might be possible to assist a differentiation of tumor histopathology from the 

pharmacokinetic parameter ratios KR and VR. Future studies will be conducted to verify the 

correlation between tumor histopathology and the pharmacokinetic parameter ratios KR and VR. 
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Table 3.4. KS test for VR 

Canine 
Lesion 

Data 1 Data 2 Data 3 Data 4 Data 5 

Data 1 1 0 0 0 0.0044 
Data 2 0 1 0 0 0 
Data 3 0 0 1 0 0 
Data 4 0 0 0 1 0 
Data 5 0.0044 0 0 0 1 

 

 

One drawback of the proposed method is that the regression model for the reference  

region data cannot fit the R1 curve in the TOI well, when the R1 curves of the TOI and the 

reference region do not follow the same trend (both increasing or decreasing). This is likely due 

to the cases when the TOI and reference regions do not share the same artery for blood supply. In 

this case, the kinetic parameter ratios will fail to represent the true information. 

 In conclusion, we have proposed pharmacokinetic parameter ratios, KR and VR, between 

TOI and RR using the reference region model without the information about the AIF. We have 

shown that the pharmacokinetic parameter ratios KR and VR have a slight variation among cases 

of different level of noises.  It was shown that, from both simulation and in vivo data sets, the 

ratios are independent of Ktrans,RR, implying that there is potentially no need to acquire the 

information about literature values from reference regions for future pharmacokinetic modeling.  
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3.8 Appendix 

 This appendix gives an outline of the mathematical details for the R1 model (Eq. [3.10]) 

obtained from Eq. [3.6], Eq. [3.8], and Eq. [3.9]. Eq. [3.10] is a 7-parameter curve-fitting of the 

raw R1, RR (t) curve in the nonlinear regression framework solved with a least squares approach. 

To obtain it, first plug Eq. [3.8] into Eq. [3.9] as follows 

 

( ) ( )752 4
6 10 3( ) 1 eA tA t A tt A t

t
tC t A A t e A e e dt′′ ′ ′−− ⋅− ⋅ − ⋅ −⎡ ⎤′ ′= ⋅ ⋅ + −⎣ ⎦∫                 

          
( )7 6 5 62 4

6 1 30 0
e e 1 eA tA t At tA t t tA A tA A t e dt A e e dt′′ ′ − ⋅− ⋅ ′ ′⋅− −⎡ ⎤′ ′ ′= ⋅ + −⎢ ⎥⎣ ⎦∫ ∫    

          
( )6 6 2 6 54

7 1 3
( ) ( )

0 0
e e 1 eAt tA t A A t A A ttA A t dt A e dt′ ′− − −′− ⋅⎡ ⎤′ ′ ′= ⋅ + −⎢ ⎥⎣ ⎦∫ ∫             [A3.1] 

where A1, A2, A3, A4, and A5 are the parameters replaced from A, B, C, D, and E in Eq. 

[3.8]. A6 and A7 were replaced from Ktrans and kep, respectively.  

The first integral in Eq. [A3.1] is 

2 7 2 7 27( ) ( ) (

2

)

0
0 7

0
7 2

1e e e
( ) ( )

t
t tA A t A A t A A ttt dt dt

A A A A
′ ′ ′− − −′′ ′ ′⋅ = −

− −∫ ∫                 

( )7 2 7 2( ) )
2

(

7 2 7 2

1e 1
( ) ( )

A A t A A tt e
A A A A

− −= − −
− −

             [A3.2] 

and the second integral in Eq. [A3.3] is 

( ) 7 5 7 5 7 4 54 ( ) ( ) ( )

0 0 0
1 e e e

t t tA A t A A t A A A tA te dt dt dt′− ′ ′ ′− − −⋅ −′ ′ ′− = −∫ ∫ ∫              [A3.3] 

( ) ( )7 5 7 4 5( (

7 5 7

)

4 5

)1 11 1A A t A A A te e
A A A A A

− − −= − − −
− − −

           [A3.4] 

 Now, we can express the R1 model in terms of the parameters A1, A2,…, and A7 by 

substituting the results from Eq.[A3.2] and Eq.[A3.4] into Eq.[A3.1] and then by substituting 
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Eq.[A3.1] into Eq. [3.6] 

( )7 7 2 7 2( (1
1 1 6 2

7 2

) )

7 2

1( ) 1
( )

t A A t A A tA A tR t r A e e e
A A A A

⋅ −− −⎡ ⋅= ⋅ ⋅ − −⎢ − −⎣
     

( ) ( )7 5 7 4 5)( (3 3
10

7

)

5 7 4 5

1 1A A t A A A tA Ae e R
A A A A A

− − − ⎤
+ − − − +⎥− − − ⎦

            [A3.5] 

where R10 was assumed to be zero for this simulation. 
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CHAPTER 4 

COMPARISON OF ANALYTICAL AND NUMERICAL ANALYSIS OF THE REFERENCE 

REGION MODEL FOR DCE-MRI1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
1 Lee J, Cárdenas J, Platt S, Kent M, Pagel M, and Zhao Q. Submitted to Magn Reson Imaging 
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4.1 Abstract 
This study compared three methods for analyzing DCE-MRI data with a reference region (RR) 

model: a linear least-square fitting with numerical analysis (LLSQ-N), a nonlinear least-square fitting 

with numerical analysis (NLSQ-N), and an analytical analysis (NLSQ-A). The accuracy and precision of 

estimating the pharmacokinetic parameter ratios KR and VR using each analysis method was assessed 

using simulations under various signal-to-noise ratios (SNRs) and temporal resolutions (4s, 6s, 30s, and 

60s). Seven in vivo DCE-MRI datasets from spontaneously occurring canine brain tumors were analyzed 

with each method. For the simulations, when no noise was added and the temporal resolution was 

decreased from 4s to 60s, the mean percent error (MPE) of KR and VR for LLSQ-N and NLSQ-N all 

increased, while the NLSQ-A method maintained a very high accuracy. When noise was added and the 

temporal resolution was decreased, both numerical analysis methods degraded more severally by 

underestimating ratios KR and VR than the analytical counterpart. In vivo results correlated well with this 

trend at a similar SNR level between 10 and 20. In this study, we have shown that the NLSQ-A method 

can estimate pharmacokinetic parameter ratios more accurately than the NLSQ-N and LLSQ-N methods 

over various SNRs and temporal resolutions.  
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4.2 Introduction 

 Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to study the 

exchange of a contrast agent (CA) between the vascular space and extravascular extracellular 

space (EES), and it provides information about blood volume and microvascular permeability 

(1). It can be applied to access the microvascular status of tumor tissue and characterize tumor 

response to antiangiogenic treatment (2,3). DCE-MRI is also used for the differentiation of 

tumor histopathology (4), detection of rheumatoid arthritis (5), noninvasive assessment of tumor 

microenvironment (6) and prediction of clinical outcomes, including treatment response to 

chemotherapy (7). 

 DCE-MRI requires a serial acquisition of T1-weighted images of a selected tissue of 

interest (TOI). As the CA is transported into the TOI, the MR signal intensity in the TOI changes 

and reveals information about blood flow, capillary leakage and related physiological parameters 

such as the volume transfer constant (Ktrans) and extravascular extracellular volume fraction (ve) 

by analyzing the MR signal time course. Quantitative physiological parameters can be estimated 

by fitting dynamic contrast-enhanced MRI data to an appropriate pharmacokinetic model (1). 

However, obtaining the arterial input function (AIF) by direct blood sampling from an artery (8) 

is very difficult and invasive.  Several approaches for estimating AIF directly from the DCE-

MRI data have been proposed (9,10). These methods have advantages of measuring the AIF on 

an individual basis. As an alternative approach, a reference region (RR) model does not require 

the AIF, and instead uses the concentration of the CA in the reference region, such as muscle, to 

estimate pharmacokinetic parameters (11,12). 

A nonlinear least squares method with a numerical analysis (NLSQ-N) has been widely 

used for the analysis of DCE-MRI data using the RR model, (11,13-15). A linear least squares 
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method with a numerical analysis (LLSQ-N) was recently introduced and compared with the 

NLSQ-N method (15,16). This LLSQ-N method can estimate the kinetic parameters faster than 

the NLSQ-N method. However, both LLSQ-N and NLSQ-N method produce systematic error 

when temporal resolution is low (16,17). Planey et al. recommended a temporal resolution faster 

than 35.6 seconds to observe an error that is less than 20% in the estimated parameter using the 

reference region model with NLSQ-N (18). 

Evaluations of the accuracy and precision of various analysis methods are critically 

needed to properly implement the RR model for DCE-MRI studies.  The numerical analysis 

method has long been used in the quantification of pharmacokinetic parameters in DCE-MRI. 

However, a numerical analysis produces systematic error especially when temporal resolutions 

are low. An analytical analysis can estimate pharmacokinetic parameters accurately without 

representing systematic errors over various temporal resolutions (18,19). In this study, we 

compared LLSQ-N and NLSQ-N with an analytical nonlinear least squares method (NLSQ-A). 

These methods were tested with both simulation and in vivo DCE-MRI datasets. Simulated MR 

data were generated using an AIF model with various signal-to-noise ratios (SNRs) and temporal 

resolutions. In vivo DCE-MRI data were acquired from an in vivo canine model of 

spontaneously occurring brain tumors. 

 

4.3 Theory  

 Details of the RR model have been explained previously (11,12,19). Briefly, the 

differential equation to estimate pharmacokinetic parameters for the two-compartment model is 

described by Eq. [4.1] (20,21). 

transt
p ep t

dC K C k C
dt

= −           [4.1] 
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where Ct and Cp are the concentrations of the contrast agent in the EES and plasma space 

respectively, and kep is the flux rate constant (kep = Ktrans/ve). For the RR model, two differential 

equations of CTOI (concentration in the TOI) and CRR (concentration in the RR) are combined to 

eliminate the Cp term. The combined differential equation and its solution can be expressed in 

the following form: 

dCTOI (t)
dt

= K
trans,TOI

K trans,RR
dCRR(t)
dt

+ K
trans,TOI

ve,RR
CRR(t)− kep,TOICTOI (t)      [4.2] 

CTOI (t) = KR ⋅CRR(t)+ KR kep,RR − kep,TOI( ) CRR( ′t )e
−kep ,TOI (t− ′t ) d ′t

0

t

∫     [4.3] 

where KR is defined as a ratio between the two volume transfer constants, Ktrans,TOI  and Ktrans,RR 

(19). The concentration of CA, Ct, can be converted to the longitudinal relaxation rate constant 

using a linear relationship [3.4]. 

1 1 10tR rC R= +             [4.4] 

where R1 = 1/T1, r1 is the relaxivity (in mM-1s-1) of the CA, and R10 is the ‘native’ relaxation rate 

(i.e., the value of R1 without presence of the CA). We assumed that r1 was the same in both the 

TOI and RR. Substituting Eq. [4.4] into Eq. [4.3] results in the final solution for the nonlinear 

reference region model: 

′R1,TOI (t) = KR ′R1,RR(t)+ KRVR
K trans,RR

ve,TOI
− 1
VR
2
Ktrans,TOI

ve,RR

⎛

⎝⎜
⎞

⎠⎟
′R1,RR( ′t ) ⋅e

−kep ,TOI (t− ′t ) d ′t∫   [4.5] 

where 1, 1, 10,TOI TOI TOIR R R′ = −  and 1, 1, 10,RR RR RRR R R′ = − . Similar to KR, VR is the ratio between ve for 

the TOI and the RR (19). The two ratios, KR and VR, can be derived through a nonlinear least-

square curve fitting (NLSQ) according to Eq. [4.5]. Alternatively, a LLSQ-N method can be used 

to estimate the two ratios. The linear model for the reference region model can be obtained by 

integrating both side of Eq. [4.2] with Eq. [4.4] 
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′R1,TOI (t) = KR ′R1,RR(t)+
Ktrans,TOI

ve,RR
′R1,RR( ′t )d ′t

0

t

∫ − kep,TOI ′R1,TOI ( ′t )d ′t
0

t

∫     [4.6] 

This linear reference region model, Eq. [4.6], can be given in a matrix form as 

 

A =

B ⋅

C  

where 

 


A =

′R1,TOI (t1)
′R1,TOI (t2 )


′R1,TOI (tn )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, 

 


B =

KR

K trans,TOI

ve,RR
kep,TOI
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⎜
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C =

′R1,RR(t1) ′R1,RR( ′t )d ′t
0

t1∫ − ′R1,TOI ( ′t )d ′t
0

t1∫
′R1,RR(t2 ) ′R1,RR( ′t )d ′t

0
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0
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0
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⎟
⎟

 [4.7] 

 

4.4 Methods 

Simulation  

 We used simulated data sets to investigate the accuracy and precision of all three fitting 

methods in calculating KR and VR. First, we simulated the AIF using the following equation (11): 

Cp (t) = A ⋅ t ⋅e
−Bt +C 1− e−Dt( )e−Et         [4.8] 

where A=30.0 mM min-1, B=4.0 min-1, C=0.65 mM, D=5.0 min-1 and E=0.04 min-1 (18). The Ct 

curves for TOI and RR were then generated using Eq. [4.9]. 

Ct (t) = K
trans Cp ( ′t ) ⋅e

−kep ,TOI (t− ′t ) d ′t
0

t

∫          [4.9] 

where Ktrans=0.25 min-1 and ve=0.4032 were assigned for the CTOI, and Ktrans=0.10 min-1 and 

ve=0.10 were assigned for the CRR (9). This results in a value of 2.50 for KR and 4.03 for VR. The 

simulated Cp and Ct for the TOI and RR are shown in Fig. 4.1A, and R1 time curves converted 

from the simulated Cp using Eq. [4.4] are shown in Fig. 4.1B.  
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Figure 4.1 Simulated DCE-MRI data. (A) Simulated time curve for the concentration of CA in 
the blood plasma (Cp) of the TOI and RR, and the concentrations of CA in the TOI (Ct,TOI), and 
RR (Ct,RR), and (B) the R1 time curve for TOI and RR converted from the Cp time curve. 
 

 

To test precision of the three methods, we conducted the simulation process with three 

temporal resolutions and four signal-to-noise ratios (SNR). The original AIF and Ct curves were 
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discretized with a sampling rate of 4, 6, 30, and 60 seconds, respectively.  The SNR was set at 

50, 20, 10, and 7 where SNR = µ /σ , µ  is the signal mean and σ  is the standard deviation of the 

noise. For each setting this entire process was repeated one hundred times to produce means and 

standard deviations for the two ratio parameters. To investigate the effect of temporal resolutions 

on accuracy, we also evaluated the mean percentage error (MPE) for KR and VR.  

 MPE = 1
N

P̂j − P
Pj=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ ×100%         [4.10] 

where P̂j  and P are the estimated and known values of KR and VR, and N=100 is the number of 

simulations performed.  

 The linear reference region model method (Eq. [4.6]) estimates the two ratio parameters, 

KR and VR, using LSQ methods and numerical integration with the trapezoidal rule. The 

nonlinear reference region model method (Eq. [4.5]) extracts the two ratio parameters by using 

NLSQ integrated with either a numerical analysis or an analytical analysis. For the NLSQ-A 

method, we first applied the nonlinear regression analysis on the simulated R1 data for the RR. 

The relaxation rate, R1, for RR can be obtained by substituting Eq. [4.8] into Eq. [4.9] and then 

into Eq. [4.4] 

R1(t) = r1 ⋅A6 ⋅e
−A7 ⋅t A1 ⋅ t

A7 − A2
e(A7−A2 )t − 1

(A7 − A2 )
2

⎡

⎣
⎢  

× e(A7−A2 )t −1( ) + A3
A7 − A5

e(A7−A5 )t −1( )         [4.11] 

− A3
A7 − A4 − A5

e(A7−A4−A5 )t −1( )⎤
⎦
⎥  

where A1 through A7 are parameters that can be extracted from a nonlinear regression analysis 

using a NLSQ method. Next, we applied this R1 model to Eq. [4.5] and then applied a curve-
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fitting routine to extract the parameters Ktrans and ve for the TOI and ve for the RR, while Ktrans for 

the RR was assigned a value of 1.0 min-1. Then we calculated the ratios KR and VR between the 

TOI and the RR. The details about this NLSQ-A method were introduced and explained 

previously (19).  

 

In vivo Experiments 

 Seven canines with spontaneous occurring brain tumors were imaged using a 3.0 Tesla 

GE SIGNA HDX MR scanner (GE Medical Systems, Milwaukee, WI, USA). A spoiled gradient 

echo sequence was scanned before contrast agent was injected to measure tissue relaxation rate, 

R10, with the following parameters: variable flip angles of 150, 300, 450, 600 and 750, repetition 

time (TR) of 400 ms and echo time (TE) of 2.24 ms. The DCE-MRI protocol employed a 

standard T1-weighted, 2-D gradient refocused echo sequence to obtain dynamic serial images 

with the following parameters: TR of 34 ms, TE of 2.78 ms, 35° flip angle, matrix size of 

192×192, field of view (FOV) of 182.25 cm2, a total of 5 slices, slice thickness of 3 mm, and 

NEX=1, scan time of 5.9 minutes (a total of 41 acquisitions and a temporal resolution of 8.7 

seconds). The relaxation time courses were estimated by using the R10 map, given by the 

following Eq. [4.12] (22).  

R1(t) =
1
TR
ln ρ0 sinθ − ρ(t)cosθ( ) / ρ0 sinθ − ρ(t)( )⎡⎣ ⎤⎦       [4.12] 

where ρ  is signal intensity and ρ0  is fully relaxed magnetization for a given voxel. 

For six of the seven datasets, thirty voxels were selected manually from suspected lesion 

tissue as the TOI and thirty voxels from bilateral normal brain tissue as the RR, respectively. For 

dataset 4, twelve voxels were selected because the lesion had a small size. The temporal 
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resolution was approximately 8.7 seconds and the MR scan took 5 minutes 56 seconds for the 

first 5 datasets and 5 minutes 4 seconds for the last 2 datasets. The average SNR was 14.1 for all 

in-vivo datasets. 

 The Kruskal-Wallis test (KW) test (23), a nonparametric method for testing equality of 

population medians among groups, was used to determine whether the methods differed 

significantly from each other using the two ratios, KR and VR, for in vivo datasets by comparing 

the distribution of all voxel within the ROI. Following the KW test, a nonparametric pairwise 

two-sample Kolmogorov-Smirnov (KS) test was used to determine whether any two methods 

differed. The null hypothesis for this test is that two datasets are from the same continuous 

distribution, implying that two datasets from each method are not different. 

 

4.5 Results 

Simulations 

 Values of KR and VR were estimated using each method with five SNR levels (infinitive, 

50, 20, 10, and 7, where the infinitive SNR represents that no noise was included in the 

simulated signal) and three temporal resolutions (4 sec, 6 sec, 30 sec, and 60 sec) (Fig. 4.2). For 

the dataset without noise and at a high temporal resolution of 4 seconds, KR was estimated to be 

2.47, 2.44, and 2.50 by the LLSQ-N, NLSQ-N, and NLSQ-A methods, respectively, which all 

agreed well with the value of 2.50 used in construct the simulated data.  Similarly, VR was 

estimated to  
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Figure 4.2 The pharmacokinetic parameter ratios KR (first column) and VR (second column) were 
estimated from the simulation study as a function of various temporal sampling rates of 4 sec. 
(first row), 6 sec. (second row), 30 sec. (third row), and 60 sec. (fourth row) and SNR levels. The 
x-axis displays the SNR levels (SNR decreases from left to right), where  “Inf” represents that no 
noise was added.  The horizontal solid line labeled as “true value” represents the value used to 
construct the simulation. 
 

be 3.98, 3.95, and 4.03 by the LLSQ-N, NLSQ-N, and NLSQ-A methods, respectively, which 

were close to the value of 4.032 that was used in the simulations. For comparison, at a low 

temporal resolution of 60 seconds without noise, KR was estimated to be 2.22, 1.71, and 2.50, 

and VR was estimated to be 3.42, 2.98, and 4.03 by the respective methods.  This result indicated 

that only the NLSQ-A method was insensitive to temporal resolution. 

To investigate the precision of the three methods at various noise levels and temporal 

resolutions, we evaluated the results in terms of the mean value and the standard deviation (Table 

4.1).  The estimated values of KR and VR using NLSQ-A were very close to the original assigned 

values of 2.5 and 4.03, respectively. This trend persisted over the studied temporal resolutions 

from 4 seconds to 60 seconds, respectively.  The results for the LLSQ-N and NLSQ-N shows 

that the numerical method systematically underestimated the ratios KR and VR, and these 

systematic errors increased as the temporal resolution was decreased. The MPE was calculated 

for the case without added noise to investigate the systematic error and was shown in the last 

column of Table 4.1.  For the high temporal resolution of 4 sec., MPE of KR and VR for LLSQ-N 

were 1.20 % and 1.29 %, respectively. For the low temporal resolution, 60 sec., MPE of KR and 

VR for LLSQ-N were 11.20 % and 15.14 %, respectively. The NLSQ-N method has the highest 

MPE of KR and VR among the three methods, while the NLSQ-A method has the lowest values of 

MPE for both KR and VR, which are less than 7.0×10-5 % for all temporal resolutions.  
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Table 4.1 Results of simulated dataset for KR (Table 4.1A) and VR (Table 4.1B), with different 
SNRs (in columns) and temporal resolutions (in rows) 
 

Table 4.1A  
 
Temporal 
resolution 

Ratio No noise SNR 50 SNR 20 SNR 10 SNR 7 MPE (%) 
LLSQ-N 

4 sec. KR 2.47 2.46± 0.04 2.40± 0.11 2.29± 0.24 2.07± 0.38 1.20 
6 sec. KR 2.45 2.45± 0.04 2.41± 0.10 2.30± 0.22 2.22± 0.29 2.00 

30 sec. KR 2.32 2.33± 0.05 2.35± 0.12 2.43± 0.22 2.49± 0.31 7.20 
60 sec. KR 2.22 2.27± 0.07 2.46± 0.19 2.70± 0.31 2.83± 0.35 11.20 

 NLSQ-N 
4 sec. KR 2.44 2.43± 0.02 2.42± 0.05 2.41± 0.08 2.00± 0.49 2.50 
6 sec. KR 2.41 2.40± 0.02 2.40± 0.04 2.40± 0.08 2.12± 0.28 3.60 

30 sec. KR 2.07 2.06± 0.03 2.06± 0.06 2.05± 0.12 1.83± 0.36 17.20 
60 sec. KR 1.71 1.70± 0.06 1.69± 0.13 1.65± 0.23 1.28± 0.58 31.60 

 NLSQ-A 
4 sec. KR 2.50 2.50± 0.03 2.50± 0.08 2.50± 0.16 2.43± 0.28 3.5×10-5 
6 sec. KR 2.50 2.50± 0.03 2.50± 0.09 2.48± 0.16 2.46± 0.24 3.6×10-5 

30 sec. KR 2.50 2.50± 0.04 2.48± 0.10 2.44± 0.19 2.46± 0.27 4.5×10-6 
60 sec. KR 2.50 2.50± 0.04 2.47± 0.11 2.46± 0.23 2.42± 0.31 3.3×10-5 

 
Table 4.1B 
 
Temporal 
resolution 

Ratio No noise SNR 50 SNR 20 SNR 10 SNR 7 MPE (%) 
LLSQ-N 

4 sec. VR 3.98 3.98± 0.12 3.99± 0.34 3.97± 0.50 3.90± 0.77 1.29 
6 sec. VR 3.96 3.96± 0.05 3.97± 0.12 4.03± 0.43 4.18± 1.28 1.74 

30 sec. VR 3.69 3.69± 0.02 3.70± 0.05 3.71± 0.09 3.75± 0.13 8.44 
60 sec. VR 3.42 3.42± 0.02 3.42± 0.04 3.44± 0.07 3.47± 0.26 15.14 

 NLSQ-N 
4 sec. VR 3.95 3.95± 0.08 3.94± 0.14 4.02± 0.31 3.86± 0.96 2.02 
6 sec. VR 3.91 3.91± 0.03 3.91± 0.06 3.92± 0.10 3.84± 0.30 2.98 

30 sec. VR 3.46 3.46± 0.01 3.46± 0.03 3.46± 0.05 3.40± 0.18 14.14 
60 sec. VR 2.98 2.98± 0.03 2.97± 0.07 2.96± 0.12 2.81± 0.32 26.05 

 NLSQ-A 
4 sec. VR 4.03 4.04± 0.04 4.05± 0.12 4.19± 0.36 4.20± 0.82 4.2×10-5 
6 sec. VR 4.03 4.03± 0.04 4.07± 0.13 4.10± 0.29 4.19± 0.54 4.3×10-5 

30 sec. VR 4.03 4.03± 0.01 4.03± 0.03 4.03± 0.07 4.04± 0.09 6.4×10-5 
60 sec. VR 4.03 4.03± 0.01 4.03± 0.03 4.03± 0.06 4.05± 0.08 6.8×10-5 

 
The mean percentage error (MPE) listed in the last column was only evaluated for the case when 
no noise was added (the 3rd column). 
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For the case of added noise, there is a small difference between the three methods in 

terms of standard error as shown in Table 4.1. Regarding the performance when realistic levels 

of noise are included, e.g. at SNR level of 10, the numerical methods in the simulation study 

showed that there is a big difference between high temporal resolution and low temporal 

resolution (regarding KR, 16.0% differencefor LLSQ-N and 37.0% difference for NLSQ-N; 

regarding VR, 15.8% difference for LLSQ-N and 27.9% difference for NLSQ-N), while 

analytical method does not have such a difference between high and low temporal resolutions 

(0.008% and 0.034% differences for KR and VR, respectively). 

 

In vivo Experiments 

 For the in vivo experiments of seven canine brain lesions, the data were analyzed on a 

voxel-by-voxel basis to calculate KR and VR. Fig. 4.3 shows images of the seven canine brain 

lesions, indicated with arrows, and Fig. 4.4 shows the representative R1 curves of the TOI and 

RR corresponding to each in vivo dataset. The SNR of the seven datasets ranged from 10 to 18 

for the TOI and RR of the all datasets, and this range was within the SNRs tested in the 

simulation study.  

The KR and VR obtained from NLSQ-A have a higher value than those from the other two 

methods, except the values of KR and VR estimated from dataset 5 (Table 4.2A). Specifically, KR 

estimated from the numerical analysis methods has a much smaller value than the KR estimated 

from the analytical analysis method, which is consistent with the simulation using different Cp 

curves. VR from LLSQ-N has a much smaller value than the VR from the NLSQ-N and NLSQ-A.   
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Figure 4.3 Seven canine brain images with 3 cases (A, C, and D) of presumptive glioma, 2 cases  
(B and D) of presumptive meningloma, 1 case  (E) of meningloma, and 1 case  (G) of 
multilobulated tumor of bone. The enhanced tumor area in each case was pointed with an arrow. 
The presumptive diagnosis was reached based on the MRI characteristics of the lesion including 
anatomic location, discrete margins, singal intensity on T1-weighted images, and enhancement 
pattern after administration of contrast medium. Data 1 through Data 7 in Table 3 correspond to 
Fig. 3A through Fig. 3G. 

 

 

The results for the Kruskal-Wallistest test, where the p-value is close to zero for both KR 

and VR, indicates that there is a statistically significant difference among the three methods 

(Table 4.2B). A Kolmogorov-Smirnov test showed that the p-values for both KR and VR between 

three methods for all datasets are less than 0.05, indicating that the methods are statistically 

different with a 5% significance level. 
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Figure 4.4 Representative R1 curves corresponding to each canine dataset for TOI and RR in 
Fig. 3 (A~G). Each R1 curve is plotted from one representative voxel randomly selected from the 
dataset. 
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4.6 Discussion 

 Several models have been developed for the analysis of DCE-MRI data including 

reference region model (11,24-26). In this study, we compared three different methods, LLSQ-N, 

NLSQ-N, and NLSQ-A, for analyzing the kinetic parameter ratios, KR and VR. For different 

temporal resolutions, the results from our simulations indicated that both LLSQ-N and NLSQ-N 

method produce a systematic error, and the error increases when temporal resolution is 

decreased.  Meanwhile, the NLSQ-A method does not show this systematic error. When the 

temporal resolution is low (60 sec.), the NLSQ-N method has the biggest systematic error for 

both KR and VR.  

 One drawback of the NLSQ-A method is that a regression model with the proper form of 

the AIF for the TOI and RR is required to accurately estimate the kinetic parameter ratios KR and 

VR.  In this study, we have performed the simulation based on a biexponential AIF form (Eq. 

[4.8]) from a low-molecular-weight contrast agent such as the gadolinium diethylenetriamine 

pentaacetic acid (Gd-DTPA), which is in widespread clinical use. This biexponential form was 

used to find regression model (Eq. [4.11]). If a macromolecular contrast agent such as albumin-

(Gd-DTPA) is used, a monoexponential form should  be used to find a different regression model 

(27-29). Also, when R1 curves of the TOI and the RR do not follow the same trend, for example 

one curve increasing while another one decreasing, the resulting reference region model cannot 

fit the R1 curve of the TOI well. This is likely for cases when the TOI and reference regions do 

not share the same artery for blood supply, or the same AIF.  
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Table 4.2 Results of KR and VR and Kruskal-Wallis test for in vivo dataset 

Table 4.2A. Results of in vivo dataset 
 

Data 
sets SNR KR VR 

LLSQ-N NLSQ-N NLSQ-A LLSQ-N NLSQ-N NLSQ-A 
Data 1 10.80 ± 

1.13 
0.81 ± 
0.06 

0.52 ± 
0.13 

1.70 ± 
0.27 

1.48 ± 
0.12 

3.63 ± 
0.47 

4.80 ± 
1.28 

Data 2 11.43 ± 
0.91 

0.28 ± 
0.08 

0.26 ± 
0.18 

3.11 ± 
0.98 

2.43 ± 
1.47 

19.59± 
2.09 

19.16± 
2.13 

Data 3 13.80± 
1.82 

0.47 ± 
0.12 

0.01 ± 
0.05 

1.77 ± 
0.41 

2.31 ± 
0.21 

12.23± 
1.47 

13.55± 
1.70 

Data 4 13.39± 
1.82 

0.67 ± 
0.06 

0.66 ± 
0.18 

1.75 ± 
0.43 

2.02 ± 
0.30 

9.26 ± 
1.84 

10.67± 
2.35 

Data 5 13.11± 
1.28 

0.91 ± 
0.08 

0.12 ± 
0.08 

0.63 ± 
0.27 

1.58 ± 
0.13 

2.85 ± 
0.44 

2.82 ± 
0.46 

Data 6 17.98± 
1.88 

1.10 ± 
0.11 

1.29 ± 
0.11 

2.44 ± 
0.53 

2.02 ± 
0.17 

2.75 ± 
0.29 

7.73 ± 
1.73 

Data 7 17.98 ± 
2.02 

0.65 ± 
0.06 

0.41 ± 
0.17 

1.08 ± 
0.27 

2.56 ± 
0.11 

8.31 ± 
0.56 

9.12 ± 
0.76 

 
 
Table 4.2B. Kruskal-Wallis test for in vivo dataset 
 

 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 

KR χ 2  78.4 71.8 78.4 59.3 25.5 56.1 70.5 
p 9.3×10-18 2.6×10-16 2.6×10-17 1.3×10-13 2.9×10-6 6.8×10-13 5.0×10-16 

         

VR χ 2  73.5 28.6 74.7 62.3 24.6 73.0 66.9 
p 1.8×10-16 6.2×10-7 5.9×10-17 3.0×10-14 4.5×10-6 1.4×10-16 2.9×10-15 

 
Chi-squared ( χ 2 ) distribution and p-values are listed for KR and VR for each in vivo dataset, 
respectively. 
 

 

For in vivo experiments, the estimated ratios from the numerical analyses were lower 

than those from the analytical analysis. Particularly, the KR from the numerical analyses has a 

much smaller value than the KR from the analytical analysis. This is similar to the simulation 

results, with the exception of dataset 5 (which seems to be an outlier). Also, it is noted that the 
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VR from the LLSQ-N has a much smaller value than the VR from NLSQ-A methods, but the VR 

from the NLSQ-N is close to the VR from the NLSQ-A. In dataset 5, the KR from NLSQ-A is 

0.63, which is smaller than the KR from LLSQ-N; in addition, the VR from NLSQ-N has a higher 

value than the other two methods. There might be several factors that may contribute to these 

errors. For example, the dataset 5 did not show a complete enhancing curve due to the short total 

scan time. Another possibility is that the TOI and RR may not share the same artery (i.e., leading 

to different Cp). 

In summary, we have compared three different methods to analyze the DCE-MRI data and 

estimate pharmacokinetic parameter ratios on a voxel-by-voxel basis using both simulation and 

in vivo studies. We have shown that the NLSQ-A method can estimate pharmacokinetic 

parameter ratios KR and VR more accurately than the numerical methods, without representing 

systematic errors over various temporal resolutions and SNRs. The major limitation for the 

NLSQ-A, however, is that it requires a proper regression model for the RR to analyze the data 

accurately. 
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CHAPTER 5 

TUMOR SEGMENTATION USING TEMPORAL INDEPENDENT COMPONENT 

ANALYSIS FOR DCE-MRI1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
1 Lee J, Kent M, Platt S, and Zhao Q. To be submitted to NeuroImage 
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5.1 Abstract 

Purpose: To introduce the temporal independent component analysis (ICA) to solve partial 

volume effect (PVE) in brain tumor segmentation. Also, the performance of the temporal ICA is 

compared to spatial ICA and expert’s manual delineation of tumor. 

Theory and Methods: Comparison was performed based on three methods: percent volume 

overlap or Dice’s coefficient, percent volume difference, and Pearson correlation coefficient 

between two areas in size. Seven in vivo DCE-MRI datasets from a canine model of 

spontaneously occurring brain tumors were segmented with each method.  

Results: Pearson’s correlation coefficient between the lesion areas segmented by spatial ICA and 

the expert’s manual delineation, between temporal ICA and manual delineation, and between 

spatial ICA and temporal ICA were 0.9957, 0.9937, and 0.9844, respectively. The results of each 

method were also compared using the percent volume overlap and the percent volume difference 

between two regions. The mean values of percent volume overlap and percent volume difference 

were, respectively, 76.00% and 38.07% between spatial ICA and manual segmentation; 81.11% 

and 24.84% between temporal ICA and manual segmentation; and 79.44% and 29.94% between 

the two ICA segmentation methods.  

Conclusion: The performance of two ICA methods for segmenting tumor is very close to that of 

the expert’s delineation method. However, the temporal ICA has the benefit over the spatial ICA 

method in its ability to separate independent tissue signals in a voxel containing two or more 

types of tissues. 

Key Words: 

DCE-MRI; Independent component analysis; temporal ICA; spatial ICA; Brain tumors 

 



 

85 

5.2 Introduction 

Dynamic Contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used in a 

cancer-imaging tool. It is a noninvasive, clinical imaging technique that involves the study of 

tumor angiogenesis (1) and in the development and trial assessment of antiangiogenic and 

vascular disrupting compounds (2). Also, the studies of DCE-MRI includes, but are not limited 

to, noninvasive assessment of tumor microenvironment (3), predictors of clinical outcomes 

including treatment response to chemotherapy (4,5), detection of rheumatoid arthritis (6,7), 

differentiation of tumor histopathology (8,9), and analysis of the pharmacokinetic parameters 

(10). With a high sensitivity of MRI, it has been widely applied to improve tumor detection and 

diagnosis (11). In particular, the tissue classification and anatomical segmentation are 

increasingly studied through MRI. Due to a growing the amount of MRI data, the automated 

method is required to develop accurate and reliable image analysis for classifying image regions. 

As a result, many automated computer-aided methods are proposed such as the region-growing 

method to segment lesions (12), automated segmentation methods based on artificial intelligence 

techniques (13), segmentation based on statistical pattern recognition techniques (14), a 

semiautomatic algorithm based on the fuzzy c-means clustering (15), a user-interaction-threshold 

method to extract the region of interest (ROI) (16), and a detection of deviations from normal 

brains using a multi-layer Markov random field framework (17). Recently, independent 

component analysis (ICA) has been introduced to the field of DCE-MRI for the detection and 

characterization of breast lesions (18), and  identification of breast lesions as separate 

hemodynamic sources (19). 

In DCE-MRI, it requires repeated acquisition of T1-weighted images of a particular tissue 

of interest (TOI) before, during and after an intravenous administration of a bolus of a 
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paramagnetic contrast agent (CA), typically a low-molecular weight gadolinium (Gd) compound. 

The contrast uptake curves in a TOI or voxels are often fitted using a pharmacokinetic model to 

give physiological information about blood flow, capillary leakage and related physiological 

parameters. In general, tumor tissues show a high and fast contrast uptake due to abundance of 

angiogenic microvessels in tumor tissues and normal tissues or benign tissues show no 

enhancement curves or slow sustained enhancement curves. In the studies of the detection and 

classification of tumor on DCE-MRI data, the independent component analysis (ICA) methods 

were recently used to identify breast tumor (19). Also, application of ICA on DCE-MRI includes 

calculation of intravascular signal (20), removing undersampling artifacts (21), and assessment 

of cerebral blood perfusion (22). 

Independent component analysis (ICA) is a special case of blind source separation (BSS) 

that separates a set of signals from a set of mixed signals without information of the source 

signals. During the last decade, ICA becomes one of the most widely used statistical and 

computational method that can separate a multivariate signal into the original source signals by 

assuming that components are both statistically independent and nongaussian. Several different 

algorithms have been proposed from different approach such as the maximum likelihood 

estimation (MLE) that is a method of estimating the parameters of a statistical model, nonlinear 

PCA (NLPCA) algorithm that is the nonlinear equivalent of classical PCA, and reduces the 

observed variables to a number of uncorrelated principal component developed by Karhunen and 

Joutsensale (1994) and Oja (1995), the information maximization algorithm (infomax algorithm) 

by Bell and Sejnowski (23), Joint approximate diagonalization of eigen-matrices (JADE) that is 

equivalent to informatics approaches and employs approximate joint diagonalization of fourth-

order cumulant matrices proposed by Cardoso and Souloumiac (24), and FastICA that is an 
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efficient and popular algorithm based on fixed-point iteration and maximizing non-Gaussianity 

proposed by Aapo Hyvärinen (25).  

In the studies of tumor segmentation using MR data, partial volume effect (PVE) is one 

of the major difficulties and may result in inaccurate segmentation results due to inherent low 

spatial resolution of images (26). PVE occurs when more than one tissue type presents in a voxel 

and it blurs the intensity distinction at the border of two tissues such as the tumor and normal 

tissues. Previously, ICA has been used to solve the PVE on large blood vessel (27) and arterial 

input function (28) in microPET. 

In this study, seven in vivo DCE-MRI datasets from a canine model of spontaneously 

occurring brain tumors were used with ICA. There are two complementary ways in ICA to 

decompose signals into original source signals, spatial ICA and temporal ICA. The Spatial ICA 

finds a set of mutually independent spatial images such as tumor or normal tissue (29), while 

temporal ICA finds a set of independent time courses such as enhancing time curves in DCE-

MRI (23,30-32). To resolve this difficulty presented by PVE in the segmentation of the canine 

brain tumor, this study uses temporal ICA, which intends to separate two intrinsic tissues at the 

border. Although ICA has been used to discriminate source signals from biological mixture 

signals for DCE-MRI data (20), to the best of our knowledge temporal ICA has never been 

implemented in the segmentation of DCE-MRI. The temporal ICA method was also compared 

with the spatial ICA and the manual delineation of the lesions by an expert was taken as a 

reference standard in evaluating the methods.  
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5.3 Theory  

 ICA is a statistical and computational technique that extracts individual source signals 

from the measured mixture signals by means of statistical independence of the non-Gaussian 

source signals. A simple form of the ICA problem can be expressed by the following linear 

model:  

xi = ai1s1 + ai2s2 + ...+ ainsn , (i = 1, 2, . . . , n)      [5.1] 

where s1, … , sn are the original source signals, aij (j = 1,…,n) are weighting coefficients, and xi 

is the mixture signal which is weighted sums of the sj. In this basic ICA model, we assume that 

each mixture xi and each independent component si is a random variable. To simplify the method 

and algorithm without loss of generality, we can perform centering the observable variables by 

subtracting their sample mean so that both the mixture variables and the independent 

components have zero mean. Another useful technique that is called whitening was performed as 

preprocessing using principal component analysis (PCA) and eigenvalue decomposition (EVD). 

The purpose of whitening is to make the components uncorrelated and their variances to be unity 

(31). For the convenience, we can rewrite this model into vector-matrix notation 

X = AS             [5.2] 

where X is the m × n measured data matrix and both A and S are unknown, and need to be 

estimated using ICA under the assumption that the component sj are statistically independent. 

We can obtain the independent component simply by 

Y =WX             [5.3] 

where Y is the estimated independent source signals and W is the unmixing matrix, and Y can be 

estimated by setting up a cost function which either maximizes the nongaussianity of the 

calculated sj or minimizes the mutual information. In this study, we have used the fastICA 
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method, which use a fixed-point algorithm and the negentropy as a cost function to estimate the 

original signals. 

 

5.4 Material and Methods 

MRI data acquisition 

 Seven canine brains with spontaneous occurring brain tumors were imaged using a 3.0 

Tesla GE SIGNA HDX MR scanner (GE Medical Systems, Milwaukee, WI) and a 

transmit/receive coil. The paramagnetic contrast agent, gadopentetate dimeglumine or Gd-

DTPA, was injected intravenously as a bolus (0.2 mMol/kg) after the first acquisition pulse. The 

DCE-MRI protocol employed a standard T1-weighted, 2-D gradient refocused echo sequence to 

obtain dynamic serial images with the following parameters: TR of 34 ms, TE of 2.78 ms, 35° 

flip angle, matrix size of 192×192, field of view (FOV) of 182.25 cm2, a total of 5 slices, slice 

thickness of 3 mm, and NEX=1, scan time of 5.9 minutes (a total of 41 acquisitions and a 

temporal resolution of 8.7 seconds).  

 

Manual segmentations by expert 

The most clearly visible contrast enhanced tumor image was selected for the manual 

segmentation. An expert (MK, an experienced neurologist) manually traced the outline of the 

seven brain lesions. The size of image is 256 × 256 with a 256-gray level. In this study, we take 

the manual delineation by an expert as a standard reference and compared with the temporal ICA 

and the spatial ICA, respectively.  
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Segmentations using spatial ICA 

In this study, we have selected the whole brain region as a mixture and assumed that 

there are three spatially independent components: normal brain tissue, tumor tissue, and noise. A 

three-source example of Eq. [5.1] can be rewritten as 

xi = ai1s1 + ai2s2 + ai3s3  , (i = 1, 2, and 3)      [5.4] 

where s1, s2, and s3 are spatially independent source components, respectively. The measured 

mixture data x1, x2, and x3 were sampled from the dynamic series at three different points in time. 

First, the preprocessing was performed to make xi a zero-mean variable by centering xi. 

Whitening was performed as a preprocessing by transforming the observed vector xi linearly so 

that its components are uncorrelated and their variances to be unity. Then, each frame of the 

mixture images, xi (i = 1, 2, and 3), was converted into a 1D row vector. The matrix form can be 

expressed as Eq. [5.2] 

where  
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The estimated independent component of the matrix form can be expressed as Eq. [5.3]  

where 
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The estimated independent component can be obtained by iteratively updating the 

unmixing matrix W.  Each row vector yi is then reformed into 2D image to construct the 

independent component map. To differentiate between normal brain tissue and tumor tissue, we 
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calculated standard deviations, σ, of the background signals randomly selected from x1 (i.e., 

independent component map of tumor), and then we chose the 3σ as the threshold of the 

background signals based on the three-sigma rule (33), which indicates that most of the signals 

(about 99.7%) of the background lie within three standard deviations of the mean for a normal 

distribution.  

 

Segmentations using a temporal ICA 

Regarding MR data, brain tissue segmentation is usually complicated by PVE because a 

voxel may contain two tissue types. DCE-MRI data is measured over a period of time, where a 

dynamic contrast-enhanced time curve is acquired from each voxel of the image. It is assumed 

that the observed time curve signal is a linear mixture of different source signals, e.g., tumor 

tissue and normal brain tissue. In a partial volume voxel, the signal intensity can be determined 

by the following linear mixture 

Svoxel =αSA + βSB            [5.7] 

where α and β are weighted coefficient, and SA and SB represent signal intensity of tissue A and 

tissue B, respectively.  

In the temporal ICA of the DCE-MRI data, we have selected a region covering brain 

tumor as a ROI, and assumed that there are two independent components: tumor tissue and 

background signal that is normal brain tissue. A two-source example of Eq. [5.1] can be 

rewritten as 

xi = ai1s1 + ai2s2   (i = 1, 2)        [5.8] 

where s1 and s2 are temporally independent source components, respectively.  
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The measured mixture data x1 was sampled from a voxel in TOI and x2 was sampled from 

each voxel in entire image. The matrix form of Eq. [5.7] can be expressed as Eq. [5.2] 

where  

X =
x1
x2
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The estimated independent component of the matrix form for a two-sample case can be 

expressed as Eq. [5.3]  

where 
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The estimated independent component Y can be obtained by iteratively updating the 

inverse of the mixing matrix W = A-1, also known as the unmixing matrix by means of statistical 

independent properties. We have set y1 as a TOI signal and y2 as a normal brain tissue signal. A 

mixing matrix A was then converted from the unmixing matrix W and then obtained the a11 map, 

where a11 is the weighting coefficient of s1 from each voxel in the frame.  

The segmentation threshold was determined based on the binary mask map created from 

comparing the weighting coefficient ratio between a11 and a12. If the weighting coefficient ratio 

a11/a12 of a certain voxel is greater than one, then that voxel was assigned the value of one as 

TOI, otherwise zero as a normal brain tissue. The final segmented TOI mask was calculated by 

maximizing the Pearson’s correlation coefficient between the tumor sizes from an a11 map and a 

binary mask map. In this way, an incorrect assignment of the voxel at the background when the 

weighting coefficient ratio is close to one will be removed based on the threshold that is obtained 

from the Pearson’s correlation coefficient with a11 map. 
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Figure 5.1 The results of each segmentation method: (a1~g1) expert’s delineation segmentation, 
(a2~g2) spatial ICA segmentation, and (a3~g3) temporal ICA segmentation.  
and Pearson correlation coefficient between two areas in size as defined in Eq. [5.13] (34). 



 

94 

Comparison 

 The segmented area estimated by the temporal ICA was compared with the area extracted 

by the spatial ICA. Comparison was performed based on three methods: percent volume overlap 

or Dice’s coefficient as defined in Eq. [5.11], percent volume difference as defined in Eq. [5.12],  

O A1,A2( ) = A1∩ A2
1
2 A1 + A2( ) ×100%          [5.11] 

where A1∩ A2  means an overlapped area between two regions from each method. The 

maximum value of 100 represents that they overlapped perfectly. It is noted that the overlap 

coefficient between two different areas can be slightly decreased by the spatial location shifts. 

We have also calculated area difference between two regions, which is insensitive to spatial shift. 

D A1,A2( ) = A1 − A2
1
2 A1 + A2( ) ×100%         [5.12] 

For the identical volume size, D(A1,A2) will have the value of zero indicating that there is no 

difference between two area in volume. To measure the correlation between two areas in volume 

size, we performed Pearson’s correlation coefficient. 

ρ A1,A2( ) = cov A1,A2( )
σ A1

σ A2

          [5.13] 

where cov(A1,A2) is the covariance of the two areas and σ is the standard deviation. 

5.5 Results 

Segmentation of the lesion volumes using spatial ICA and temporal ICA were compared 

to an expert’s manual delineation. Figure 5.1 represents the results of the manual, spatial ICA, 

and temporal ICA segmentation, respectively, for all seven canine objects used in this study. The 

first column represents the manual segmentation and the second and third columns represent the 

segmentations from spatial ICA and temporal ICA, respectively.  
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Figure 5.2 (a) Original canine brain tumor image. (b) A small frame that contains tumor and 
normal brain tissue. (c) a11 map from temporal ICA. (d) Binary map from the weighting 
coefficient ratio, a11/a12, which is bigger than 1. (e) Final segmented mask from temporal ICA. 
(f) a11 profile plot at the horizontal center of TOI showing that the values of the coefficient of 
tumor tissue a11 have high values and low values at the normal brain tissues. 

 

 

Figure 5.2 shows an example of one original canine brain tumor image (a), a11 map (b), 

and binary map (c). The incorrect assignment of the voxel at the background and final segmented 

mask after the threshold are shown in Figure 5.1(d) and (e), respectively. Figure 5.1(f) represents 

a11 profile of the TOI at the center as a function of a11 value vs. horizon location in the frame.  

a11 profile plot at the horizontal center of TOI showing that the values of the coefficient of tumor 

tissue a11 have high values and low values at the normal brain tissues. The a11 profile of the TOI 

at the horizontal and vertical cross section of another two more homogeneous tumor cases are 

shown in Figure 5.3. It is shown that the values of a11 at the border between tumor and normal 
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brain tissues increase or decrease gradually indicating that the PVE occurs at the border of 

tumors. By comparing coefficients of each source (tumor or normal brain tissue), the tumor 

borderline can be determined from the coefficient ratio a11/a12 of each voxel, where the values of 

the ratio bigger than 1 belong to tumor tissues and the values of the ratio less than 1 belong to 

normal tissues. 

 

 

 

 

Figure 5.3 a11 profile plots at the horizontal and vertical cross section of TOI for dataset 2 (a~c) 
and dataset 3 (d~f).  It is shown that the values of a11 at the border between tumor and normal 
brain tissues increase or decrease gradually indicating that the PVE occurs at the border of 
tumors. 
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Table 5.1. Segmented Area 
 

Datasets Segmentation Method 
Spatial ICA (cm2) Temporal ICA (cm2) Manual (cm2) 

Data 1 1.74 1.76 2.79 
Data 2 0.66 1.13 1.01 
Data 3 1.04 1.02 1.09 
Data 4 0.92 1.02 0.96 
Data 5 0.68 0.71 1.18 
Data 6 0.63 2.70 2.23 
Data 7 17.84  11.62 17.47 

 
 
 

Sizes of each segmented area are shown in Table 5.1. The differences between the 

automated method and expert’s manual delineation are analyzed using the Pearson’s correlation 

coefficient and summarized in Table 5.2. Pearson’s correlation coefficient between the lesion 

areas segmented by spatial ICA and the expert’s manual delineation was 0.9957 and the 

Pearson’s correlation coefficient between the lesion areas segmented by temporal ICA and the 

manual delineation was 0.9937. These results indicate that the areas from each method are highly 

correlated without a significant difference in volume size. The Pearson’s correlation coefficient  

 

Table 5.2. Overlap (%), Difference (%), and Pearson Correlations between three methods  
 

 sICA and Manual tICA and Manual sICA and tICA 
 O(A1,A2) D(A1,A2) O(A1,A2) D(A1,A2) O(A1,A2) D(A1,A2) 

Data 1 74.15 46.46 72.10 45.39 88.42 1.13 
Data 2 77.64 42.58 90.45 2.39 76.59 40.29 
Data 3 90.27 4.97 89.68 6.47 93.05 1.50 
Data 4 85.04 3.67 81.25 13.46 90.46 17.11 
Data 5 72.73 54.55 77.44 44.10 86.11 11.11 
Data 6 40.55 112.14 83.62 21.83 44.82 96.19 
Data 7 91.58 2.10 73.25 40.23 76.60 42.24 

Mean & 
STD 

76.00±17.33 38.07±39.63 81.11±7.34 24.84±18.30 79.44±16.57 29.94±33.68 

Pearson 
Correlations 0.9957 0.9937 0.9844 

sICA and tICA represent spatial and temporal ICA, respectively. 
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between the spatial ICA and temporal ICA was 0.9844, indicating that both spatial and temporal 

ICA methods are highly correlated. 

The results of each method were also compared using two indexes, the percent volume 

overlap or Dice’s coefficient (Eq. [5.11]) and the percent volume difference between two regions 

(Eq. [5.12]). Table 5.2 summarizes these results, including the mean value and the standard 

deviation. The mean values of percent volume overlap and percent volume difference between 

spatial ICA and manual segmentation were 76.00% and 38.07%, respectively.  The mean values 

of percent volume overlap and percent volume difference between temporal ICA and manual 

segmentation were 81.11% and 24.84%, respectively. Between the two ICA segmentation 

methods, the percent volume overlap and percent volume difference were 79.44% and 29.94%, 

respectively. According to these results, the overlap volume percentage between temporal ICA 

and manual segmentation has a slightly higher percentage rate than that between spatial ICA and 

manual segmentation. Meanwhile, the percent volume difference between temporal ICA and 

manual segmentation has a smaller percentage rate than that between spatial ICA and manual 

segmentation. 

 

5.6 Discussion 

DCE-MRI has been widely used in the study of tumor assessment, diagnosis, and 

angiogenesis. In DCE-MRI, malignant tumors show faster and higher enhancement than normal 

tissue. In general, no enhancement curves or slow sustained enhancement curves are typically 

associated with normal or benign tissues. Rapid initial and stable late enhancement curves can be 

classified as suspicious, and rapid initial and decreasing late enhancement curves can be 

classified as malignant. In this study, spatial ICA and temporal ICA methods were used for the 
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segmentation of canine brain tumors using spatial and temporal independency of tumor 

characteristics shown in the DCE-MRI data. 

ICA was originally proposed to solve the blind source separation (BSS) problems and it 

finds the independent components by using statistical independence (35). The application of ICA 

has been found in many areas such as electrical recordings of brain activity as given by an 

electroencephalogram (EEG) device, analysis of functional MRI (fMRI), feature extraction, and 

medical image processing (36-38). For application of the ICA in DCE-MRI, spatial ICA was 

commonly used to detect and classify tissue types by assuming the spatial independence of 

different types of tissues. In this paper, we have used 3σ of the background signals from the 

independent component map of tumor as a threshold for the spatial ICA for the purpose of the 

segmentation, and compared results with that of manual segmentation by an expert as well as 

that by temporal ICA method. For temporal ICA, the segmentation threshold was determined by 

the mixing matrix, or equivalently, weighting coefficients of estimated source signals. The 

difference of the two methods is that spatial ICA can provide spatial information by separating 

the DCE-MRI data into physiologically meaningful components, while temporal ICA can 

provide temporal information from the corresponding time courses. In addition, temporal ICA is 

potentially capable of solving the problem of PVE, one of the major difficulties in tumor 

segmentation. The difficulty with PVE is that it blurs the intensity distinction at the border of the 

tumor and normal tissues.  In a voxel with PVE (i.e., two tissues reside in one voxel), the MR 

signal results from both tissues and signal intensity of this voxel can be expressed as the sum of 

the signal from each tissue, as shown in the PVE model (Eq. [5.7]). In principle, ICA can 

separate this mixed signal into individual tissue signals, if they are statistically independent, to 
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Figure 5.4 (a) Three enhancing curves from tumor, muscle, and normal brain tissues. (b) The 
scatter plot of the independent components S1 (tumor) and S2 (normal brain tissue). (c) The 
scatter plot of the independent components S1 and S3 (muscle tissue). 
 

 

resolve this PVE. If the two signals do not meet the statistical independency condition, this 

method will likely fail.  



 

101 

One drawback of the temporal ICA method for segmentation is that one has to identify 

the actual number of source signals in advance. In this work, we have selected a small frame that 

only contains two different tissue types, i.e., tumor and non-tumor tissues, so that we can limit 

the number of source signals to two. If one needs to further segment non-tumor tissues, the 

number of source, i, should be increased in Eq. [5.8]. In this case, the size of the unmixing matrix 

will be i × i and this could make segmentation more difficult and current study only confirms 

that the number of source signals are limited to two for the feasibility of the temporal ICA 

segmentation. The reason for this is that the enhancing curves of tumor and muscle tissues look 

similar to each other and there might be some correlation between them. Figure 5.4 shows that 

the scatter plot of the independent components S1 (enhancing curve from tumor) and S2 

(enhancing curve from normal brain tissue) has a small correlation coefficient (0.08±0.07) while 

the scatter plot of the independent component S1 and S3 (enhancing curve from muscle tissue) 

has a high correlation coefficient (0.85±0.03). Five voxels were selected from each tissue (tumor, 

muscle, and normal brain tissue), respectively, from data 2. Mean values and standard deviations 

of correlation coefficients are calculated from 25 possible pairwise combinations and listed in 

Table 5.3. 

 
 
Table 5.3. Pearson’s correlation coefficient between two enhancing time curves 
 

 S1 – S2 S1 – S3 

Pearson’s correlation coefficient 

0.07, 0.01, 0.19, 0.10, 0.04 0.87, 0.89, 0.89, 0.84, 0.83 
0.08, 0.04, 0.18, 0.09, 0.05 0.88, 0.89, 0.88, 0.84, 0.83 
0.06, 0.01, 0.19, 0.08, 0.05 0.86, 0.90, 0.88, 0.82, 0.82 
0.06, 0.01, 0.20, 0.11, 0.02 0.84, 0.88, 0.86, 0.78, 079 
0.08, 0.01, 0.22, 0.13, 0.02 0.86, 0.88, 0.86, 0.81, 0.82 

Mean / Standard deviation 0.08 ± 0.07 0.85 ± 0.03 
 
S1, S2, and S3 represent the independent component of the time enhancing curve from tumor, normal 
brain, and muscle tissue, respectively. 
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In summary, we have applied the temporal ICA method for the segmentation of the brain 

tumor using the DCE-MRI data, and conducted the spatial ICA method for segmentation as well. 

These two ICA methods were compared with an expert’s manual delineation, which was used as 

a standard reference. We have shown that the performance of two ICA methods for segmenting 

tumor is very close to that of the expert’s delineation method. For the two ICA methods, we have 

shown that the temporal ICA has the benefit over the spatial ICA method because of its ability of 

separating independent tissue signal in a voxel that contains two or more types of tissues. 
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CHAPTER 6 

CONCLUSIONS 

  

The  primary purpose of the studies discussed in this dissertation was to develop new 

methodologies in both quantification and segentation of brain tumors in DCE-MRI. Specifically, 

the first study introduced new pharmacokinetic parameter ratios, KR and VR, to overcome the 

problem that the traditional reference region model requires literature values of pharmacokinetic 

parameters of reference region tissues; the second study presented an analytical approach to 

reduce systematic errors caused by traditional numerical analysis; lastly, the third study 

introduced temporal ICA algorithm to resolve partial volume effect (PVE) in the studies of the 

segmentation of brain tumors.  

 

6.1 An analysis of the pharmacokinetic parameter ratios in DCE-MRI 

The reference region model has been used to estimate the pharmacokinetic parameters 

without the information of AIF. However, the original RR method sometimes generates 

systematic errors in estimating the kinetic parameters with incorrect assignments of the 

parameters for the reference regions. To improve the reference region model approach, the new 

pharmacokinetic parameter ratios, KR and VR, between tissue of interest (TOI) and RR were 

introduced in this study. The results from both simulation and in vivo studies of canine brain 

lesions revealed that the ratios are independent of Ktrans,RR, implying that acquiring the 

information about literature values from reference regions may not be needed for future 
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pharmacokinetic modeling. Kruskal-Wallis test and Kolmogorov-Smirnov test were conducted to 

determine whether any two lesions differed significantly. According to the statistical tests, there 

is a significant difference between any two given data distributions. These results may 

potentially assist physicians in the differentiation of tumor histopathology and correlate them 

with the pharmacokinetic parameter ratios KR and VR. A potential problem of the proposed 

method is that the regression model for the reference region data cannot fit the R1 curve in the 

TOI well, when the R1 curves of the TOI and the reference region do not follow the same trend 

(one increasing while the other one  decreasing). This is likely due to the cases when the TOI and 

reference regions do not share the same artery for blood supply. In this case, the kinetic 

parameter ratios will fail to represent the true information. Additionally, future studies are 

needed to verify the correlation between tumor histopathology and the pharmacokinetic 

parameter ratios KR and VR. 

 

6.2 Analytical vs. Numerical analysis of DCE-MRI 

In this study, we compared three different methods, LLSQ-N, NLSQ-N, and NLSQ-A, 

for the analysis of the kinetic parameter ratios, KR and VR . As we have shown from our 

simulation studies , the numerical methods produce a systematic error with various temporal 

resolutions while the analytical method does not. A regression analysis was used for the NLSQ-

A method; however, this regression model requires the proper form of the AIF for the TOI and 

RR in order to accurately estimate the kinetic parameter ratio KR and VR . In the simulation study, 

the biexponential AIF form was generated based on a low-molecular-weight contrast agent, 

gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), which is in widespread clinical use. 

The regression analysis was used to find the regression model (Eq. [4-11]) based on this 
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biexponential form. However, this model would not be appropriate for analyses using other 

contrast agents; in other words, finding the proper model is essential.   

To summarize, The NLSQ-A method of estimating pharmacokinetic parameter ratios KR 

and VR was found to be more accurate than the numerical methods in that the latter methods 

created systematic errors over various temporal resolutions and SNRs.  

 

6.3 Tumor Segmentation using temporal ICA for DCE-MRI 

In this study, temporal ICA was introduced to segment canine brain tumor in DCE-MR 

images. In medical images,  PVE  occurs when more than one tissue type is present in the same 

voxel, and this blurs the intensity distinction at the border of two tissues such as the tumor and 

normal tissues. In the studies of tumor segmentation using MR data, PVE is one of the major 

difficulties that may result in inaccurate segmentation due to inherent low spatial resolution of 

images. The MR signal intensity of a voxel with two tissues can be expressed as the sum of the 

signal from each tissue (Eq. [5-7]). If the two tissue signals are statistically independent, then the 

ICA can resolve this PVE.  

Additionally, we conducted the spatial ICA method for segmentation. The temporal and 

spatial ICAs were compared with an expert’s manual delineation as the standard reference. It 

was demonstrated that although the performance of the two ICA methods for segmenting tumor 

is very close to that of the expert’s delineation method, the temporal ICA has the advantage  over 

the spatial ICA method in its ability to separate independent tissue signals in a voxel with PVE. 

One potential problem of the temporal ICA method for segmentation is that one has to identify 

the actual number of source signals in advance. In this study, we have selected a small ROI that 

only contains two different tissue types, i.e., tumor and non-tumor tissues, so that we can limit 
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the number of source signals to two. The reason for this is that the enhancing curves of tumor 

and muscle tissues look similar to each other and there might be some correlation between them. 

In conclusion, the studies presented in this dissertation may potentially contribute to 

DCE-MRI field by introducing new parameter ratios to improve the reference region model, and 

by introducing the analytical method for analysis of DCE-MRI data. Also, temporal ICA was 

introduced to solve PVE in brain tumor segmentation. 

 

 

 

 

 

 
 

 

 

 

 

 


