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ABSTRACT 

 The presence of Salmonella in poultry continues to be a problem in the industry. We 

evaluated the effect of 2-nitro-1-propanol (NP) on the recovery of Salmonella from the internal 

organs of layers and broilers as well as on the ileum immune response to Salmonella infections. 

In the first experiment, laying hens were orally challenged with a nalidixic acid resistant 

Salmonella Enteritidis (SENR) and supplemented with different levels of NP. Although there 

were numerical decreases in the number and prevalence of SENR in the L/GB, spleen, ovary, ceca 

and fecal samples, the difference among the treatments was not statistically significant. NP 

supplementation at both levels downregulated (P < 0.05) the mRNA expressions of TLR-4 and 

IL-6 in the ileum of the hens. In the second experiment, broilers were challenged with a nalidixic 

acid resistant Salmonella Typhimurium (STNAR) and supplemented with different levels of NP. 

Bird performance was not significantly different among the treatments at any point during the 

21-day trial. Supplementation with 200 ppm NP resulted in a decline (P < 0.05) in fecal shedding 

at 6 dpi. No significant difference in STNAR prevalence was detected in the L/GB and spleen 

samples, but 200 ppm NP supplementation showed a (P < 0.05) reduction in STNAR numbers in 



ceca collected on day 11. Although the mRNA expressions of TLR-4, IL-1β and IL-10 were 

detected in all treatment groups at the end of the study, there was no statistically significant 

difference in the expression of these genes by 100 ppm of NP supplementation. However, the 

mRNA expression of IL-6 was upregulated (P < 0.05) by 200 NP of supplementation compared 

to positive control. Overall, NP showed a bactericidal effect against Salmonella by decreasing (P 

< 0.05) STNAR presence in the ceca and feces of broilers, and it downregulated (P < 0.05) the 

mRNA expressions of TLR-4, IL-6, INF-Ƴ and IL-10 playing vital roles in the ileum immune 

response to SENR infection in hens. However, the mechanism of actions and effective dose needs 

to be determined by further research in order to provide the industry with another method to 

inhibit Salmonella infections in poultry. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

 Salmonellosis is a worldwide health concern and the majority of human 

salmonellosis has been linked to the consumption of contaminated products including meat and 

eggs from poultry. Although numerous studies have been conducted to improve our 

understanding of Salmonella ecology and pathogenicity, the microorganism continuously gives 

rise to new food safety challenges and remains one of the major food-borne pathogens in the 

world. The natural microflora of animal’s intestinal tract can contain Salmonella; therefore, 

controlling Salmonella in food-producing animals is problematic and leads to the high rate of 

food contamination. Although vaccination and hygienic precautions can decrease the 

contamination rates, a major concern is contamination of chicken houses on commercial farms. 

Prebiotics, probiotics and organic acids are commonly used to reduce Salmonella infections in 

poultry, with the rate of success based on the additive used; however, alternative feed additives 

are still needed to create a sustainable reduction or even elimination of Salmonella in the 

industry. The additive dietary effects of nitrocompounds against food-borne pathogens such as 

Salmonella, Campylobacter, Listeria and E. coli have been tested in previous in vivo and in vitro 

studies. These compounds have shown a great potential due to its bactericidal effect against 

above-mentioned pathogens. We report a variety of effects of NP supplementation of diets 

against Salmonella colonization in laying hens and broiler chicks. 
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LITERATURE REVIEW 

Salmonella history and taxonomy 

 Salmonella was named after Daniel E. Salmon when he first isolated “Bacillus 

choleraesuis” from porcine intestines in 1884. Lignieres changed this name to “Salmonella 

choleraesuis” in 1900 (John-Brooks, 1934; Salmon and Smith, 1885; Smith, 1894). Salmonella, 

a genus in the family of Enterobacteriaceae, are gram-negative, facultative anaerobe, oxidase 

negative, catalase positive, non-spore forming motile (peritrichous flagella) rods which cause 

human illness- except the two poultry pathogens Salmonella enterica serovar Gallinarium and 

Salmonella enterica serovar Pullorum (Andrews, 1993; D’Aoust and Purvis, 1998; Lopes et al., 

2016; Schofield, 1945). Although the optimal growth temperature for Salmonella spp. is 37 °C, 

growth has been recorded at 54°C as well (Adley and Ryan, 2016). Hydrogen sulfide production, 

inability to hydrolyze urea, lysine and ornithine decarboxylation are some of the biochemical 

characteristics of Salmonella (D’Aoust and Maurer, 2007). 

 The Salmonella genus consists of two species: S. enterica and S. bongori, with S. enterica 

being divided into six subspecies (I, S. enterica subsp. enterica; II, S. enterica subsp. salamae; 

IIIa, S. enterica subsp. arizonae; IIIb, S. enterica subsp.  diarizonae; IV, S. enterica subsp. 

houtenae; and VI, S. enterica subsp. indica) (Brenner et al., 2000; Issenhuth-Jeanjean et al., 

2014; Popoff et al., 1998). Salmonellae leading to human diseases are split into a limited number 

of human-restricted typhoidal serotypes (S. Typhi and S. Paratyphi A) and over 2600 non-

typhoidal Salmonella (NTS) serotypes with a wide range of hosts, causing diarrheal diseases. 

Some NTS serotypes such as S. Gallinarium or S. Pullorum are host-specific as is seen in poultry 

(Feasey et al., 2012).  

 Serotyping is a procedure that differentiates strains of microorganisms into various 

groups according to their antigenic composition. Antigenic classification of Salmonella is based 

on antibody reaction with 3 types of surface antigens: somatic O antigens, flagellar H antigens 

and Vi capsular antigens. The O antigen designates the serogroup the Salmonella isolate belongs 

to and the H antigen specifies the serovar. The O antigen, a heat stable polysaccharide, is 

attached on the outer surface of the lipopolysaccharide. The Vi capsular antigen commonly 

presents in S. Typhi, but it was also identified in S. Dublin and S. Paratyphi C. H antigens are 

comprised of flagellin subunits and are filamentous part of the flagella (Agasan et al., 2002; 

D’Aoust and Maurer, 2007; Nataro et al., 2011).  
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Epidemiology of Non-Typhoidal Salmonella (NTS) 

  NTS infections continue to be a critical concern in the public health of industrialized and 

developing countries. Salmonella infections can cause severe gastrointestinal problems such as 

gastroenteritis, typhoid fever and paratyphoid fever, or result in death of children and elderly 

people (Cui et al., 2008; Li et al., 2014; Liang et al., 2015). Over 93 million cases of 

gastroenteritis because of Salmonella spp. result in approximately 155,000 deaths every year. As 

reported by Salm-Surv (a food-borne disease surveillance network supported by World Health 

Organization), S. Enteritidis was the most common serotype (65% of the isolates), followed by S. 

Typhimurium (12%) and S. Newport (4%) in the world from 2001 to 2005. S. Enteritidis and S. 

Typhimurium accounted for 26% and 25% of the isolates, respectively in Africa. In Asia, Europe 

and Latin America/Caribbean, S. Enteritidis was the most common isolate (38%, 87% and 31%, 

respectively). S. Typhimurium represented 29% of the isolates, followed by S. Enteritidis (21%) 

and other Salmonella spp. (21%) in North America (Galanis et al., 2006; Majowicz et al., 2010; 

Su et al., 2002; Westrell et al., 2009). 

 According to data reported by FoodNet from 1996 to 2005, NTS infections have been the 

major cause of death (39%) from foodborne bacterial pathogens and produced the highest 

mortality in adults over 65 years old and children under 5 years old (Barton Behravesh et al., 

2011). CDC reported many cases of salmonellosis in the US between 2005 and 2010 due to 

Salmonella outbreaks related to contaminated raw ingredients, poor storage or inadequate 

cooking of foods (Lynch et al., 2006). Chickens, ducks, sheep, goats, pigs, reptiles, amphibians, 

birds, rodents, dogs, cats and various wild animals can be a reservoir for NTS (Dione et al., 

2011; Jardine et al., 2011; Ombui et al., 2017; Siembieda et al., 2011; Swanson et al., 2007; 

Wacheck et al., 2010). One of the most serious multistate outbreaks occurred in January 2010, 

caused by S. Enteritidis-contaminated eggs and lasted one year with approximately 1939 

reported illnesses (CDC, 2010). In 2017, CDC declared another multistate outbreak report 

related to Salmonella infections (caused by S. Hadar, S. Braenderup, S. I 4, [5],12: i-, 

S. Enteritidis, S. Infantis, S. Indiana, S. Litchfield, S. Mbandaka, S. Muenchen and S. 

Typhimurium) linked to live poultry in backyard flocks, resulting in 1120 cases, 249 

hospitalizations and 1 death (CDC, 2017). 
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Pathogenicity 

The main characteristics of the pathogenesis of salmonellae are host cell invasion and 

survival as an intracellular microorganism. As infection localization develops, salmonellae are 

usually restricted to the mesenteric lymph nodes. The gastric acidity and the bile salts of the 

small intestine, which have bactericidal properties, are the first defense mechanisms of the host 

against infection. Salmonella attach to the intestinal mucosa in the small intestine and move 

through the lymphoid follicles of the ileum. The presence of M cells and the absence of the 

mucus-secreting cells characterize this part of the intestine. Fimbriae (adhesins) favor the 

recognition and attaching of Salmonella to Peyer’s plaques (Thorns and Woodward, 2000; Vimal 

et al., 2000). 

The type III secretion systems mediate the entrance of Salmonella into the Peyer plaques. 

The pathogenesis of Salmonella spp. is characterized by virulence factors that are expressed by 

several genes clustered on the chromosome and classified as Salmonella pathogenicity islands 

(SPI) (Bonny et al., 2011). The primary virulence characteristics of S. enterica are provided by 

SPI1 and SPI2 encode type III secretion systems (Boko et al., 2013). SPI1 takes part in the 

invasion of host cells and inflammation of phagocytic or non-phagocytic cells of the intestinal 

mucosa as well as hosting the invasion invA gene found in most Salmonella strains. SPI2 is 

required to encode the proteins which function in intracellular survival and replication in 

phagocytes. The spiC gene in SPI2 encodes for structural parts and secretion, contributes to the 

production of mediators with a significant role in the virulence of Salmonella and in the 

expression of flagella components. Salmonella has other virulence factors that are not present on 

the SPI and are found on other mobile genetic elements such as plasmids. The Salmonella 

virulence plasmid includes five genes (spvRABCD) that contribute to the systemic spread and 

facilitate the replication of the microorganism in extra-intestinal areas (Brenner et al., 2000; 

Brisabois, 2001). 

Salmonella in poultry and poultry products 

Salmonella has been known as a causative agent for human diseases such as food 

poisoning, typhoid, paratyphoid, septicemia, and sequelae. Although a considerable amount of 

research has been completed to enhance the understanding of Salmonella ecology and 

pathogenicity in humans, the microorganism continuously displays new food safety challenges 

and remains one of the major food-borne pathogens throughout the world. Ingested bacteria 
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proliferate in the small intestine, colonize and invade intestinal tissues, inducing an inflammatory 

response. After a 12 to 72-hour incubation period, infected individuals may have abdominal 

pains, vomiting, diarrhea, and fever. Healthy individuals recover from salmonellosis within 2 to 

7 days; however, the disease can lead to more severe prognoses in young children, the elderly, 

pregnant women, and immunocompromised people (Hannah, 2007; Humphrey, 2004).  

Food producing animals are a common reservoirs for many zoonotic pathogens, including 

Salmonella (Korsgaard et al., 2009; Santos et al., 2008), because of the ability of salmonellae to 

persist in the intestine or translocate to and invade other internal tissues (Humphrey, 2004). 

Invasive diseases pose a massive food safety threat because bacteria reach the interior of food 

products such as with the salmonellosis pandemic caused by S. Enteritidis contamination in table 

eggs (Humphrey, 2004). The egg related salmonellosis is mainly due to the consumption of raw 

or undercooked eggs (De Buck et al., 2004; Louis et al., 1988; Lynch et al., 2006; Palmer et al., 

2000) that are contaminated with S. Enteritidis (De Reu et al., 2006; Gantois et al., 2008; Greig 

and Ravel, 2009; Guard-Petter, 1998). Egg contents may be contaminated with S. Enteritidis 

through either the trans-shell or -ovarian route, even though it is not clear which is most critical 

(Gantois et al., 2009; Humphrey, 1994). Infection of the reproductive tissues (ovary and oviduct) 

is widely considered as an underlying cause of contaminated eggs (De Buck et al., 2004; Keller 

et al., 1995; Miyamoto et al., 1997). Laying hens are generally infected with S. Enteritidis by oral 

ingestion from an environmental source which leads to colonization of the reproductive tract 

(Gast et al., 2007; Kinde et al., 1996). After intestinal colonization, the bacteria can invade the 

reproductive tissues through systemic infection or from the cloaca. Although Salmonella has 

been recovered from the ovary and oviduct of laying hens, the specific site and mechanism of 

bacterial colonization is not clearly known (De Buck et al., 2004; Gantois et al., 2009). 

Salmonella has been recovered from the reproductive tissues of experimentally infected hens in 

various studies (Gast et al., 2007; Howard et al., 2005; Miyamoto et al., 1997). The permeability 

of the capillary endothelia in the ovary has been linked to bacterial colonization (Bell and 

Freeman, 1971). 

S. Enteritidis is a critical food safety problem for the table egg industry (Garber et al., 

2003; Mollenhorst et al., 2005), since it is a major human pathogen contaminating eggs, and the 

relationship between egg contamination and laying hen infection has been well elucidated. 

However, controlling S. Enteritidis is an issue for producers as there are numerous factors 



 

6 

 

including environmental contamination, niches for bacterial proliferation, and horizontal 

transmission within a facility (Guard‐Petter, 2001; Mollenhorst et al., 2005). Laying hens 

infected with S. Enteritidis typically show no clinical signs of illness; therefore, efforts by 

producers are not able to reveal whether the eggs are contaminated (Guard‐Petter, 2001). The 

infection route of S. Enteritidis begins with environmental contamination of the housing facility. 

Flies (Holt et al., 2007; Olsen and Hammack, 2000), rodents (Garber et al., 2003; Meerburg and 

Kijlstra, 2007), humans (Guard‐Petter, 2001), and wild birds (Craven et al., 2000) have been 

identified as potential sources for Salmonella transmission. After contaminating a housing 

facility, S. Enteritidis must adapt to and proliferate within the environment. It has been reported 

that the survival of Salmonella through the food chain is likely due to its ability to, with the aid 

of a complex regulatory system, respond efficiently to environmental changes (Humphrey, 

2004). Upon these stages, laying hens ingest the bacteria and become infected with S. Enteritidis. 

Following colonization, S. Enteritidis can be shed through the feces and contaminate an entire 

flock. Risk factors linked to horizontal transmission of S. Enteritidis infection are housing 

system, flock size, and airborne transmission (Mollenhorst et al., 2005). The National Animal 

Health Monitoring System conducted the Layer ’99 study to estimate the prevalence of S. 

Enteritidis in commercial laying houses in the U.S., and 7% of the surveyed houses were positive 

for S. Enteritidis (Garber et al., 2003).  

The prevalence of S. Enteritidis in eggs produced by naturally infected hens is relatively 

low. Studies reported S. Enteritidis prevalence in egg content as 0.55 and less than 0.06%, 

respectively (Humphrey et al., 1991; Poppe et al., 1992). In U.S. laying hens and eggs, it was 

estimated that one in every 20,000 (0.005%) eggs produced annually would be contaminated 

with S. Enteritidis. According to previous estimation, of the 77.7 billion table eggs produced in 

the U.S. in 2009, approximately 3.88 million eggs would have been contaminated with S. 

Enteritidis (Ebel and Schlosser, 2000). There were 997 outbreaks of S. Enteritidis reported in the 

U.S. from 1985-2003, which resulted in 33,687 illnesses, 3,281 hospitalizations, and 82 deaths. 

Of the 439 (44%) cases, 329 (75%) were egg based or contained egg ingredients (Braden, 2006). 

Since 2012, reduction in S. Enteritidis infection has been one of five high-priority objectives for 

the U.S. Department of Health and Human Services (Crim et al., 2014). 

S. Enteritidis is not the only serovar known to colonize the reproductive tissues of laying 

hens and contaminate the internal content of eggs. S. Typhimurium, S. Hadar, S. Gallinarium, 



 

7 

 

and S. Pullorum have also been recovered from the reproductive tissues and eggs of infected 

hens (Keller et al., 1997; Okamura et al., 2001a; Okamura et al., 2001b; Snoeyenbos et al., 

1969). When laying hens were intravenously inoculated with S. Enteritidis, S. Typhimurium, S. 

Infantis, S. Hadar, S. Heidelberg, and S. Montevideo, S. Enteritidis was recovered from the ovary 

and preovulatory follicles (7 dpi) at significantly greater (P <0.05) rates than S. Typhimurium 

and S. Hadar (Okamura et al., 2001a).  

Salmonella Typhimurium (S. Typhimurium) is one of the main causes of self-limiting 

diarrhea. S. Typhimurium has a broad-host range and can cause disease in humans, cattle, pigs, 

horses, sheep, poultry, and rodents (Salyers and Whitt, 2002). Additionally, S. Typhimurium is 

found in water, soil, insects, food plants, animal feces, and raw foods (Food and Administration, 

2004). The natural microflora of an animal’s intestinal tract can contain S. Typhimurium; 

therefore, controlling Salmonella in food-producing animals is a huge concern due to the high 

rate of contamination. S. Typhimurium was the most common serotype associated with 

foodborne disease outbreaks in the United States before 1970 (Olsen et al., 2001; Tauxe, 1991). 

Nowadays, besides S. Typhimurium, S. Enteritidis, S. Heidelberg, S. Newport, and S. Hadar are 

common Salmonella serotypes recovered from commercially produced chickens, turkeys, quail 

and ducks. The Centers for Disease Control (CDC) has reported that the aforementioned 

Salmonella serotypes are responsible for human salmonellosis in the United States (Olsen et al., 

2000). Since chicken is commonly purchased as cut-up parts, USDA-FSIS conducted a survey of 

raw chicken parts in 2012 and reported an estimated 24% prevalence of Salmonella. In 2013, 

USDA-FSIS announced its Salmonella Action Plan indicating that USDA-FSIS will conduct a 

risk assessment and improve performance standards for poultry parts during 2014, among other 

key activities (Crim et al., 2014). To reduce the transmission of Salmonella to humans through 

the food chain, it is crucial to determine potential sources of contamination within the poultry 

production system.  

The presence of Salmonella at the farm level has been investigated in varied studies to 

determine prevalence in breeder houses, hatcheries, and broiler farms (Bailey et al., 2001; Byrd 

et al., 1999; Liljebjelke et al., 2005). In a study that focused on Salmonella prevalence in 

Arkansas, Alabama, Georgia, and North Carolina, it was reported that 88% of the 49 breeder 

farms sampled were Salmonella positive (Berghaus et al., 2012). In another study conducted 

from July 1995 to May 1996 in Texas, researchers found that S. Heidelberg and S. Kentucky 
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accounted for 50% of the Salmonella isolates (n=30) from 5 hatcheries and 59.6% of the 

Salmonella isolates (n=94) from 13 broiler houses (Byrd et al., 1999).  

Immune response against Salmonella infections in chickens 

Bacterial infections of chicken continue to be a concern of the poultry industry due to 

their impact on both public and animal health. There are various bacterial pathogens in the 

poultry industry and our understanding of the immune response to these pathogens is 

insufficient. However, the foodborne pathogens, particularly S. enterica, have been studied in 

great detail (Wigley, 2013). The history, taxonomy, pathogenicity, prevalence and global burden 

of Salmonella infections were mentioned in previous sections; therefore, this section will focus 

on how the avian immune system develops a response to Salmonella infections. 

The early response of innate immunity and the subsequent adaptive immune response 

mediates the defense against microbial infections in mammals and birds. Innate immunity, also 

called native immunity, is the initial step in the defense against microbes and is composed of 

cellular and biochemical mechanisms occurring even before infections (Abbas et al., 2015). The 

major elements of innate immunity are physical or chemical barriers, such as epithelial surfaces; 

phagocytic cells (neutrophils, macrophages) and natural killer (NK) cells; blood proteins, 

including parts of the complement system and other mediators of inflammation; and proteins 

called cytokines that mediate most of the activities in the cells of innate immunity (Liu, 2012).  

Salmonella commonly infects chickens via the fecal–oral route with spread starting from 

the intestinal tract at the distal ileum and ceca of the bird (Barrow et al., 2012). Invasion is an 

inflammatory process stimulating the expression of proinflammatory cytokines and the 

chemokines CXCLi1 and CXCLi2, regarded as the equivalent of mammalian IL-8 (Matulova et 

al., 2013; Setta et al., 2012; Withanage et al., 2004; Withanage et al., 2005). This induces an 

influx of heterophils and monocytic phagocytes to the gut causing inflammation and 

deterioration such as fusion and flattening of the villi. Although there is an enteropathogenic 

response, diarrhea rarely develops. While the bacterium itself leads to cellular changes and 

inflammation by its SPI1 Type III secretion system, the main event in the process seems to be the 

recognition of flagellin via toll-like receptor 5 (TLR 5). This is elucidated by the fact that the 

non-flagellate avian-adapted serovars produce less inflammation during epithelial invasion in 

vitro or in vivo, and that mutations in the flagellin gene of S. Typhimurium results in a more 

immediate invasion with lower initial levels of inflammatory signal. (Chappell et al., 2009; Iqbal 
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et al., 2005; Kaiser et al., 2000). The result of stimulation of innate immunity is mainly an influx 

of heterophils, the avian polymorphonuclear cell, and macrophages to the intestine. These not 

only can cause inflammatory damage, but also greatly limit the invasive disease. Our 

comprehension of the biology and role of heterophils is essentially from Salmonella infection 

studies. Depletion of heterophils affects S. Enteritidis by changing the type of the infection, from 

a gastrointestinal to systemic which emphasizes the key role of heterophils in early immunity 

(Kogut et al., 1994).  

Polymorphonuclear leukocytes (PMNs) are key cellular elements of innate immunity and 

their function is killing pathogenic microbes by phagocytosis. Heterophil, the avian equivalent to 

the mammalian neutrophils, are the main PMNs in poultry and plays a role in the phagocytosis of 

invasive microbes and unknown particles or molecules (Kogut et al., 2003). Heterophils have an 

array of TLRs (Kogut et al., 2012) and are effective phagocytes which develops extracellular 

traps to facilitate this process (Chuammitri et al., 2009). Eleven TLRs have been identified in 

humans and mice and each of them recognize and respond to different microbial elements. Birds 

have 10 known TLRs; 5 of them are orthologous to both birds and mammals. Chicken TLRs are 

linked to varied functions: TLR-2, TLR-5 and TLR-21 recognizes peptidoglycan, flagellin and 

unmethylated cytidine phosphate guanosine (CpG) DNA, respectively. In addition, TLR-4 binds 

lipopolysaccharides (LPS) and has been attributed to resistance to S. Typhimurium infections 

(Keestra et al., 2010; Leveque et al., 2003; Temperley et al., 2008). In addition, avian heterophils 

depend more on antimicrobial peptides for bacterial killing unlike mammalian neutrophils 

(Kannan et al., 2009), and even though they generate nitric oxide and oxidative responses to 

Salmonella, they do not have the myeloperoxidase pathway (Maxwell and Robertson, 1998). 

Research on the interaction of Salmonella with primary cultures of heterophils along with 

primary and continuous macrophage lines has been crucial in our comprehension of pattern 

recognition receptors in the chicken, including TLR5 as explained above. This can be clearly 

observed in TLR4 where variation in macrophage responses to S. Typhimurium challenge has 

identified both changes in levels of TLR4 expression and polymorphism in the receptor 

sequences between chicken lines. This can indicate that responsiveness to LPS in chicken, which 

is generally lower than in mammals, is managed by variation in both levels of expression of the 

receptor and its structure (He et al., 2006; Higgs et al., 2006). There is no mammalian equivalent 

to chicken TLR21, though it functions similar to mammalian TLR9 in recognition of 
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unmethylated (or CpG) sequences. Although the identification of the role of TLR21 was 

discovered in the studies related to the response to Campylobacter jejuni infections (Keestra et 

al., 2010), our understanding of the response to CpG motifs became clear with the developments 

of these sequences as immunostimulatory molecules to help control Salmonella (He et al., 2007; 

Xie et al., 2003). 

Monocytes/macrophages are the sensors and scavengers of microbial invasion, have roles 

in cytokine release and T-cell activation, and trigger nitric oxide (NO) production which is 

crucial for bactericidal activity; therefore, they are essential mediators in both innate and 

acquired immunity (Bogdan et al., 2000; O'Mahony et al., 2008; Yamate et al., 2000). Avian 

macrophages differ slightly from mammalian macrophages in terms of structure and/or function 

by displaying a series of TLRs; expression of MHC Class II; and phagocytic action; and 

antimicrobial activity. It has not been elucidated whether avian macrophages are M1 or M2 

phenotypic. The interaction between macrophages, dendritic cells and Salmonella is a crucial 

step in the progression of systemic infection (Chappell et al., 2009). The use of chicken models 

has concluded that the genetic locus SAL1 displayed a phenotype of resistance to systemic 

salmonellosis (Mariani et al., 2001). Macrophages obtained from these birds showed enhanced 

oxidative killing and immediate expression of key inflammatory and TH1-associated cytokines 

(Wigley et al., 2006; Wigley et al., 2002).  

Cytokines are soluble, intermediary and low-molecular-weight proteins that are secreted 

by many cells, particularly by T cells, of the innate and adaptive immune systems. Cytokines can 

facilitate homeostasis by acting as chemical mediators within the immune system as well as 

communicating with cells in other systems (Coico and Sunshine, 2015). Various names are used 

to describe cytokines such as lymphokine (produced by lymphocytes), monokine (produced by 

monocytes), chemokine (cytokines with chemotactic functions), and interleukin (produced by 

one leukocyte and interacting with other leukocytes) (Zhang and An, 2007).  

Studies of cytokines and chemokines expression in vitro have shown that paratyphoid 

species give rise to significant mRNA expression levels of proinflammatory IL-6, inducible 

nitric oxide synthase (iNOS) and chemokines (Setta, 2011). In a study, it was proposed that host 

gene expression and differences between chicken lines, with respect to the host responses to the 

Salmonella infection, are host dependent (van Hemert et al., 2006).  
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Low quantities of enteric bacteria have been detected inside macrophages when the 

chicken cecal immune response was studied. These results suggest that paratyphoid Salmonella 

serovars have the capability to invade the cecal mucosa, influencing the level and character of 

the immune response. The expression of IL-12, IL-18, TNF-α (tumor necrosis factor alfa), and 

iNOS in the cecum was associated with the invasiveness of the serovars in the lamina propria. In 

contrast, IL-2 mRNA expression, differences in the numbers of TCR2 (T-cell receptor 2) and 

CD4+ cells seem to be more dependent on the infection in the intestinal epithelial cells (Berndt et 

al., 2007). Researchers developed the idea that chickens respond to natural colonization of cecum 

by an elevated expression of IL-8 and IL-17 in the first week of life. It was also determined in 

this study that chickens infected with S. Enteritidis before, during and after the IL-8 and IL-17 

induction, responded by Th1 (T helper cell subset 1) stimulating IL-8 and IL-17, while birds 

infected after this point responded through the Th17 (T helper cells subset 17) branch of the 

immune response. These results suggest that the gut microbiota and expression of some 

cytokines advance the resistance to S. Enteritidis infection (Crhanova et al., 2011). 

The effects of Salmonella infection on gene expression in poultry 

The biology of avian Salmonella infection is very diverse even though common broad-

host range Salmonella serovars colonize the lower gastrointestinal tract of chickens. Some 

serovars, especially S. Typhimurium and S. Enteritidis, may manifest a weak systemic infection 

mitigated by cellular immunity within two to three weeks (Barrow et al., 2004; Beal et al., 2004). 

Colonization by these serovars usually triggers an inflammatory response in the ileum and ceca 

(Setta et al., 2012; Withanage et al., 2005). Studies concluded that salmonellosis promotes a 

strong Th1 response which is, along with the clearance of Salmonella, dependent on age and 

cellular development of chickens. Salmonella infection leads to an increase of γδ lymphocytes 

and upregulation of IFN-γ, IL-12, and IL-18, inducing activation of the TH1 response (Berndt 

and Methner, 2001; Berndt et al., 2006).  

Studies have shown that Salmonella infections in birds can result in the expression of 

proinflammatory cytokines and the chemokines CXCLi1 and CXCLi2, which are regarded as the 

equivalent of mammalian IL-8 (Matulova et al., 2013; Setta et al., 2012; Withanage et al., 2004; 

Withanage et al., 2005). This leads to an increased number of heterophils and monocytic 

phagocytes in the gut producing inflammation and damage to the villi. The genetic locus SAL1, 

identified in chickens (Mariani et al., 2001), displayed phenotypic resistance to systemic 
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Salmonella infection because the derived macrophages generate immediate expression of 

inflammatory and TH1-associated cytokines (Wigley et al., 2006; Wigley et al., 2002). Induction 

of pro-inflammatory cytokines upon Salmonella infection has been well elucidated (Hu et al., 

2015). Early studies reported that infection with Salmonella could substantially elevate the 

expression of inflammatory cytokines and other innate immune genes in the chicken cecal tonsils 

(Haghighi et al., 2008), spleen (Zhou and Lamont, 2007), macrophages (Zhang et al., 2008) and 

heterophils (Chiang et al., 2008). 

Researchers reported that S. Typhimurium infection in chickens up-regulated some 

cytokines and chemokines in macrophages, the cecal tonsils, ileum, spleen and liver (Beal et al., 

2004; Withanage et al., 2004). IL-6, a well-known pro-inflammatory cytokine, was up-regulated 

in the ileum and spleen on days one and three dpi with S. Typhimurium. However, IL-6 was up-

regulated in cecal tonsils by 21 dpi. This late expression during the infection may demonstrate 

that this cytokine does not have a role in producing an inflammatory response to S. Typhimurium 

(Withanage et al., 2005). The up-regulation of IL-10 cytokine has been detected in the tissues of 

Salmonella infected birds (Cheeseman et al., 2007). IL-12 gene expression in cecal tonsils of 

chickens was significantly elevated on days one and five post infection with S. Typhimurium 

(Haghighi et al., 2008).  

Based on these studies, it has been shown that there is a correlation between cytokine 

expression profiles in the bird and resistance to S. Typhimurium (Haghighi et al., 2008). The 

authors concluded that there is a relationship between Th1 cytokines, IFN-γ down-regulation and 

IL-12 up-regulation and inhibition of S. Typhimurium colonization in the intestinal lumen. 

Among these cytokines, IL-12, IFN-γ and IL-18 had a role in Salmonella inhibition, while IL-4 

and IL-10 are crucial to lessen subsequent inflammatory responses (Beal et al., 2004; Eckmann 

and Kagnoff, 2001; Withanage et al., 2005).  

Use of Nitrocompounds as an intervention strategy 

Nitrocompounds, with a structural formula described as R-NO2, can be described as the 

derivative of hydrocarbons, alcohols, and/or fatty acids, in which there is separation for one or 

more hydrogen atoms by a nitro (-NO2) group. Nitrocompounds have been divided into aliphatic 

and aromatic nitrocompounds based on the presence of different alkyls; they have also been 

categorized into unitary, binary, and multiple nitrocompounds according to their number of nitro 

groups (Zhang et al., 2017).  
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2-nitro-1-propanol (NP) is an alternative electron acceptor utilized by Denitrobacterium 

detoxificans (Anderson et al., 2000) and has been safely administered intraruminally to cattle 

(Majak and Clark, 1980) and chicks (Jung et al., 2004b). The toxicity of NP is relatively 

unknown. In monogastric animals such as rats, the LD50 of the regiochemical isomer 3-nitro-1-

propanol is 77 mg/kg body weight (BW) when administered orally (Majak et al., 1983). 

Secondary nitroalkanes such as 2-nitropropane and 2-nitrobutane have been shown to cause 

damage to rat liver DNA and RNA and to be mutagenic in their ionized form when tested by the 

Ames Salmonella assay; however, primary nitroalkanes and nitrocarbinols such as NP were not 

reported to be carcinogenic or mutagenic (Conaway et al., 1991a; Conaway et al., 1991b). 

Furthermore, toxic effects were not observed in rats following a 2-year chronic inhalation 

exposure to 100- or 200-ppm nitroethane (Griffin et al., 1988). The position of the nitro group 

greatly affects the toxicity of the nitrocompounds since the oral LD50 of NP to 1- week-old 

chicks were shown to be more than 1,300 mg/ kg BW. Although adverse biological effects were 

not seen in the chick when administered orally, no lethal dose of NP for poultry has not been 

determined (Jung et al., 2004b). In addition, these compounds are not registered as feed additives 

or in the list of GRAS (Generally Recognized as Safe) due to certain characteristics such as 

disturbing odor and skin irritation.  

Nitrocompounds such as nitroethane, 2-nitroethanol, 2 nitro-1-propanol (NP), 3-

nitrooxypropanol, 3- nitro-1-propanol, and 3-nitro-1-propionic acid have been reported to show 

an inhibitory effect on methanogenesis in ruminants by as much as 90% in vitro (Anderson et al., 

2003; Anderson et al., 2010; Anderson et al., 2008; Božic et al., 2009; Saengkerdsub et al., 2006; 

Zhang and Yang, 2011a; Zhang and Yang, 2011b) and more than 69% in vivo (Anderson et al., 

2006; Brown et al., 2011). The effect of the addition of nitroethane and nitroethanol at 21.8 mM 

in swine fecal slurries decreased the production of skatole, an odor pollutant in livestock waste, 

after 24 h (Beier et al., 2009). NP and 2-nitroethanol exhibited bactericidal activity against S. 

Typhimurium and E. coli during 24 h of incubation in porcine fecal suspensions (Anderson et al., 

2007).  

It has been revealed that selected short chain nitrocompounds exhibited antimicrobial 

activity against populations of Salmonella, E. coli and total coliforms in layer hen manure (Ruiz-

Barrera et al., 2017). A similar approach used in another study indicated that supplementation 

with nitroethanol or NP in broiler diets (up to 33.3 mg/kg) influenced the uric acid degradation 
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and ammonia production in broiler manure while maintaining optimal growth performance 

(Mowrer et al., 2016). Nitrocompounds exhibit potential to reduce ammonia volatilization in 

poultry manure by inhibiting the growth of uric acid–utilizing microorganisms (Kim et al., 

2006).  

Short-chain nitrocompounds such as NP, 2-nitroethanol, nitroethane, and 2-nitro-methyl 

propionate showed an inhibitory activity against Campylobacter jejuni and C. coli in vitro 

(Horrocks et al., 2007). 2-nitroethanol, nitroethane, and, in particular, NP exhibited inhibitory 

activity against L. monocytogenes in vitro (Dimitrijevic et al., 2006). Select food-borne 

pathogens such as S. Typhimurium, E. coli O157:H7 and Enterococcus faecalis were inhibited 

by NP in vitro (Jung et al., 2004a) and S. Typhimurium in the ceca of broiler chicks was reduced 

by NP administration as well (Jung et al., 2004b). Dietary supplementation with nitrocompounds 

(nitroethane and NP) reduced Salmonella colonization in internal organs of laying hens 

(Adhikari et al., 2017). In this study, addition of 200 ppm of NP to the diet resulted in a 

reduction of the cecal colonization by S. Enteritidis. 

In the light of these studies, nitrocompounds appear to be valuable for use either as feed 

additives against Salmonella, Campylobacter, Listeria and E. coli or as strategies to reduce 

ammonia volatilization and methanogenesis in poultry litter. Their mechanism of inhibition, 

toxicity and, possible adverse effects on organisms needs to be elucidated by further in vivo and 

in vitro studies in order to determine if these compounds can safely be used in the poultry 

industry. 
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CHAPTER 2  

THE EFFECT OF 2-NITRO-1-PROPANOL SUPPLEMENTATION ON SALMONELLA 

COLONIZATION IN LAYING HENS 1 
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ABSTRACT 

The presence of Salmonella in laying hens continues to be a problem in the industry. A 

study was conducted to evaluate the effect of 2-nitro-1-propanol (NP) on recovery of Salmonella 

from internal organs of laying hens. Thirty-four White Leghorns were orally challenged with a 

nalidixic acid resistant Salmonella Enteritidis (SENR). Hens were housed individually in wire 

cages and randomly allocated to one of seven dietary treatments: T1 = SENR unchallenged 

(negative control), T2 = SENR challenged with low inoculum dose (106 cfu/ml), T3 = SENR 

challenged with low inoculum dose (106 cfu/ml) + 100 ppm NP, T4 = SENR challenged with low 

inoculum dose (106 cfu/ml) + 200 ppm NP, T5 = SENR challenged with high inoculum dose (108 

cfu/ml), T6 = SENR challenged with high inoculum dose (108 cfu/ml) + 100 ppm NP, and T7 = 

SENR challenged with high inoculum dose (108 cfu/ml) + 200 ppm NP. Fecal samples were 

collected at 3 and 6 days post inoculation (dpi) and assayed for recovery of SENR. Fecal shedding 

in T3 was not different from T2 and, T4 had the least positivity among the low inoculum 

treatments at 3 and 6 dpi. Also, T6 and T7 were not different from T5 on either day, respectively. 

Ceca, liver with gall bladder (L/GB), spleen and ovary samples were collected for recovery of 

SENR at 7 dpi. T3 and T4 reduced cecal SENR count numerically (P > 0.05) compared to T2. 

SENR numbers in ceca were same (4.5 log10 cfu) in both T6 and T7 and greater than T5. There 

was no significant difference in SENR prevalence in the L/GB, spleen and ovary samples. In 

L/GB, 40% of the samples (n=5) from T2 and T7, and 20% of the samples from T6 were SENR 

positive. When the spleens were sampled, 60%, 20% and 40% of the samples from T2, T3 and 

T4 were SENR positive, respectively. All the spleen samples collected from T6 were SENR 

positive, while 40% of the samples were SENR positive in both T5 and T7. As for the ovaries, no 

SENR was detected in the samples collected from T4 and T6, and 20% of the samples were SENR 

positive in T2, T3, T5 and T7. Pro- and anti-inflammatory cytokines playing roles in the immune 

response to Salmonella infection such as interferon (IFN)-Ƴ, interleukin (IL)-6, IL-10 and toll 

like receptors (TLR)-4 mRNA expressions were analyzed in the ileum of hens collected at 7 dpi. 

After SENR challenge, the expression of INF-Ƴ in T2 and T5 were not different from T1. 

However, the mRNA expressions of both IL-6 and IL-10 in T2 and T5 were downregulated (P < 

0.05), and the TLR-4 mRNA expression was lower (P < 0.05) only in T5 compared to T1, 

respectively. NP supplementation at both levels downregulated (P < 0.05) the mRNA 

expressions of TLR-4 and IL-6 in both T3 and T4, but IL-10 mRNA expression was 
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downregulated in only T3 when compared to T2. The mRNA expression of INF-Ƴ was 

downregulated (P < 0.05) in T6 compared to T5. On the other hand, TLR-4 and IL-10 mRNA 

expressions were upregulated (P < 0.05) in T7 compared to T5. Overall, inclusion of NP into 

laying hen diets was effective as an intervention strategy by reducing the cecal count of the 

bacteria and altering the prevalence of SENR in internal organs while stimulating an immune 

response in the ileum by modulating the expressions of pro- and anti-inflammatory cytokines. 

However, the mechanism of effect needs to be elucidated by further research. 
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INTRODUCTION 

Foodborne disease continues to be a health concern in the United States. The Foodborne 

Diseases Active Surveillance Network (Food Net) reported that 19,056 infections, 4,200 

hospitalizations, and 80 deaths were caused by foodborne pathogen infections from 2006 to 

2013. Salmonella Enteritidis was the top serotype isolated among these pathogens (Crim et al., 

2014). Chickens are the most abundantly produced food animal in the world today, and S. 

Enteritidis is one of the most common serotypes found in commercially produced chickens, 

turkeys, quail and ducks in the United States (Lukefahr, 1999; Olsen et al., 2000). Poultry can 

become infected by Salmonella through varied sources such as contaminated feed and water 

(Corry et al., 2002; Heyndrickx et al., 2002; Rose et al., 1999). Although vaccination and 

hygienic precautions can decrease the contamination rates in flocks resulting in a reduction in 

vertical transmission, a major concern is contaminated chicken houses. Routine cleaning and 

disinfection can reduce the risk, but not eradicate Salmonella from the environment completely 

(Van Immerseel et al., 2004). Thus, fecal shedding of Salmonella from laying hens should be 

investigated to reduce the horizontal contamination. 

Feed additives such as prebiotics, probiotics and organic acids are commonly used to 

control Salmonella infections in poultry, with the rate of success based on the additive used 

(Adhikari et al., 2017b; Corrier et al., 1993; Van Immerseel et al., 2005). Inconsistent results 

from anti-Salmonella strategies have been reported in studies over the years. Experiments 

focusing on the efficacy of these strategies often include in vivo bacterial challenges designed in 

different ways. There are varied parameters affecting the outcome of the challenge such as the 

breed and age of the birds, housing facilities, route or dose of inoculation and challenge serovar 

(Marcq et al., 2011). To investigate how anti-Salmonella strategies can provide pathogen control 

in the industry, reliable oral challenge models are needed. A model of Salmonella-challenged 

mature laying hens can be useful to study the efficiency of promising feed additives such as 

nitrocompounds that can find a place in the poultry industry. 

The additive dietary effects of nitrocompounds such as 2-nitro-1-propanol (NP) and 2-

nitroethanol have been studied to reduce Salmonella colonization in the internal organs of laying 

hens (P < 0.05) (Adhikari et al., 2017b). Potential effects of varied nitrocompounds (nitroethane, 

2-nitroethanol, NP and nitropropionic acid) were evaluated on ammonia volatilization in poultry 

manure (Kim et al., 2006). According to the results from this study, nitrocompounds exhibited 
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reduction in ammonia volatilization in poultry manure by inhibiting growth of uric acid–utilizing 

microorganisms. A similar study was conducted to reveal the effects of dietary nitrocompounds 

on bird performance, ammonia volatilization, and changes in manure nitrogen. It demonstrated 

that supplementation of 2-nitroethanol or NP into broiler diets up to 33.3 mg/ kg affects uric acid 

degradation and ammonia production in broiler manure while sustaining optimal growth 

performance (Mowrer et al., 2016).  

The effects of pH on the bactericidal activity of 2-nitro-1-propanol, 2-nitroethanol, 

nitroethane, and 2-nitro-methyl-nitro-proprionate were studied against C. jejuni and C. coli in 

vitro (Horrocks et al., 2007). Results from this study suggested that growth inhibition of C. jejuni 

and C. coli by the nitrocompounds was pH and concentration dependent. In vitro effects of 

incubating an experimental chlorate product, nitrate, or select short-chain nitrocompounds, alone 

or in combination, against experimentally inoculated Salmonella enterica serovar Typhimurium 

and indigenous E. coli in porcine fecal suspensions were tested (Anderson et al., 2007). In this 

experiment, NP and 2-nitroethanol showed bactericidal activity against S. Typhimurium and E. 

coli during 24 h of incubation. Inhibitory effect of select nitrocompounds (2-nitroethanol, 

nitroethane and NP) on growth and survivability of L. monocytogenes in vitro was confirmed  

(Dimitrijevic et al., 2006). Inhibitory activity of NP against S. Typhimurium, E. coli O157:H7 

and Enterococcus faecalis has been reported (Jung et al., 2004a). Same author reported in a 

similar study that NP reduced Salmonella in the ceca of broiler chicks (Jung et al., 2004b).  

The biology of avian Salmonella infection is very diverse even though common broad-

host range Salmonella serovars colonize the lower gastrointestinal tract of chickens. Some 

serovars, especially S. Typhimurium and S. Enteritidis, may manifest a weak systemic infection 

mitigated by cellular immunity within two to three weeks (Barrow et al., 2004; Beal et al., 2004). 

The intestinal epithelium is a physiological and immunological barrier against enteric pathogens. 

The innate immune system is regarded as scavenger system which is in charge of fighting against 

the invading pathogens. Stimulation of the innate immune system is described by the production 

of inflammatory cytokines; however, it is now clear that innate effector cells mediate a specific 

immune response, directing the advanced adaptive immune response (Kaiser, 2010). This 

complicated interaction between the innate and adaptive immune responses is crucial for the 

clearance of Salmonella infection. Previous studies have concluded that cellular immune 

responses are more vital for tissue clearance of Salmonella infection in poultry (Beal et al., 
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2006). Cytokines are immunoregulatory proteins that have a vital role in both innate and 

adaptive immune responses. Cytokine production can be regulated by commensal bacteria in the 

gastrointestinal tracts (Corthay, 2006). In chickens, pro-inflammatory, Th1, and Th2 cytokines 

have also been reported to contribute to the immune response after Salmonella infection in 

chickens (Withanage et al., 2004; Withanage et al., 2005). In the light of these studies, we 

hypothesized that NP can reduce S. Enteritidis in the ceca and in other internal organs and 

decrease the prevalence of the microorganism in feces as well as leading to an immune response 

in the ileum of laying hens. The objectives of the study were first to test a SE challenge model in 

mature laying hens, second to evaluate the inhibitory effect of NP on SE and third to promote an 

immune response to SE infection in the ileum.  

MATERIAL AND METHODS 

Salmonella strain and inoculum preparation 

Nalidixic acid resistant Salmonella Enteritidis (SENR) was used to challenge the 

organism. SENR was stored at -80°C in Nutrient Broth (Acumedia, East Lansing, MI; NB) with 

16% glycerol. SENR was grown and maintained on brilliant green with sulphapyridine agar plates 

(Acumedia, East Lansing, MI; BGS) containing 200 ppm of nalidixic acid (NAL-Sigma 

Chemical Co., St. Louis, MO; BGS Nal) for 24 h at 37°C. Individual colonies were suspended 

into a sterile 0.85% saline solution. The absorbance was adjusted to 0.20 ± 0.01 OD540nm using 

a spectrophotometer (Spect 20, Milton-Roy, Thermo Spectronics, Madison, WI). Culture 

solution was serially diluted and plated onto BGS-NAL plates for enumeration. Hens were orally 

challenged with a 1.0 mL of approximately 1.1 × 106 and 1.8 × 108 cfu SENR based on their 

treatment groups.  

Hens, housing and dietary treatments 

Thirty-four Single-Comb White Leghorns hens (44-week old at the beginning of the 

experiment) were used for the study. Hens were housed individually in wire cages under a 16h 

light: 8h dark lightening program. All hens were fed a corn-soybean standard layer ration for one 

week and then randomly allocated to one of seven dietary treatments: T1 = SENR unchallenged 

(negative control), T2 = SENR challenged with low inoculum dose (106 cfu/ml), T3 = SENR 

challenged with low inoculum dose (106 cfu/ml) + 100 ppm NP, T4 = SENR challenged with low 

inoculum dose (106 cfu/ml) + 200 ppm NP, T5 = SENR challenged with high inoculum dose (108 

cfu/ml), T6 = SENR challenged with high inoculum dose (108 cfu/ml) + 100 ppm NP, and T7 = 
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SENR challenged with high inoculum dose (108 cfu/ml) + 200 ppm NP (Table 2.1). The diet was 

formulated to provide 2, 600 kg/kcal metabolizable energy (ME), 16% crude protein (CP), 4.4% 

Ca and 0.5% available P (NRC, 1994). After one week adaptation period, each hen except the 

ones in T1 was orally challenged with 1.0 mL of 106 or 108 cfu SENR based on treatments. Feed 

was withdrawn from all hens 10 h before challenge and provided right after SENR challenge. 

Hens were divided into five replicates per treatment diet except T1 (n=4). Hens were provided 

water (automatic nipple-type drinkers) and mash feed ad libitum throughout the experiment 

period. The experiment protocol was approved by the Institutional Animal Care and Use 

Committee of University of Georgia. 

Sampling protocol and analyses 

Feces, ceca, L/GB and ovary (bacteriological) 

Fresh fecal samples were collected from each cage at 3 and 6 dpi to be screened for fecal 

shedding. The fecal samples were collected separately into 50 ml-centrifuged tubes, transported 

in an ice chest and processed at Poultry Microbiological Safety and Processing Research 

Laboratory, USDA, Athens, GA. The samples were individually weighed and diluted with 

buffered peptone water (BPW; 3X volume/weight). Afterwards, the samples were pre-enriched 

overnight at 37°C for 24h for S. Enteritidis growth before being streaked for isolation onto BGS-

NAL. The following day, the samples were streaked onto BGS-NAL plates and incubated 

overnight at 37°C for 24h for enrichment. Growth of SENR was observed and recorded as 

positive or negative for the samples. 

All hens were humanely euthanized on 7 dpi. Ceca, L/GB, spleen and ovary samples 

were collected aseptically into sterile stomacher bags (VWR, Radnor, PA). All the samples were 

macerated by a rubber mallet, individually weighed before dilution with buffered peptone water 

(BPW; 3X volume/weight), and stomached (Techmar Company, Cincinnati, Ohio) for 60 s. 

L/GB, spleen and ovaries were pre-enriched overnight at 37°C for 24h before being streaked 

onto BGS-NAL plates for isolation and incubated overnight at 37°C for 24h for enrichment. 

Growth of SENAR was observed and recorded as positive or negative for the samples. Cecal 

samples were analyzed using a modification of Blanchfield method (Blanchfield, et al., 1984). In 

a concise manner, after stomaching for 60 s, two cotton-tipped swabs were dipped and moistened 

in the cecal material for approximately 5 s. One BGS-NAL plate was surface-swabbed (plate A). 

The second swab was transferred into a sterile 9.9 mL BPW dilution tube. The tube was vortexed 
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for approximately 10 s, and a third swab was used to surface-swab a second BGS-NAL plate 

(plate B). The contents of dilution tube were returned to the stomacher bag and incubated with 

the plates at 37°C overnight. All plates together with the cecal samples were incubated overnight 

at 37°C. Negative samples were re-streaked from the overnight pre-enrichments onto a fresh 

BGS-NAL plate (plate C) and incubated overnight at 37°C. Counts were approximated and 

converted to log10 cfu SENR/g of cecal contents. 

RNA isolation, cDNA synthesis and quantitative real-time PCR 

Ileum sections were aseptically excised, immediately frozen in liquid nitrogen and stored 

at -80°C until analyzed for inflammatory cytokines. Total RNA was extracted from 100 mg of 

tissues using Qiazol lysis reagent (Qiazen, Valencia, CA) according to the manufacturer’s 

instruction. The RNA concentration was measured at an optical density of 260nm using a 

NanoDrop 2000 spectrophotometer (Thermo Scienctific, MA, USA). RNA samples were 

normalized to a concentration of 2 μg/μl, and purity was verified by evaluating the optical 

density ratio of 260nm to 280nm. The normalized RNA was reverse- transcribed using a High 

Capacity cDNA synthesis kit (Applied Biosystems, Life Technologies, CA, USA). The house 

keeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize the 

immune cytokines. Real-time quantitative polymerase chain reaction (qRT-PCR) was performed 

using a Step One thermo cycler (Applied Biosystems, Foster City, CA). Primers for chicken 

immune genes such as toll-like receptor (TLR-4), interleukins (IL-6, and IL-10) and interferon 

(IFN)-Ƴ were designed according to National Center for Biotechnology Information (NCBI). 

Pairs of primers used in our study are shown in Table 2.4. Gene expression data were analyzed 

by difference in cycle threshold (CT) method (Livak and Schmittgen, 2001). 

Statistical analyses 

For L/GB, spleen, ovary and feces SENR recovery, the prevalence was analyzed with 

Fisher’s exact test. The mean of log10 viable SENR counts obtained from the ceca was subjected 

to one-way analysis of variance (ANOVA) using the GLM procedure of SAS (SAS, 2001). 

Significant differences between the means of different treatment groups were determined by 

Duncan’s multiple-range test and significant differences were assessed at P < 0.05.  
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RESULTS AND DISCUSSION 

SENR numbers and prevalence 

Ceca and feces 

The SENR numbers in ceca were counted as log10 cfu/g of cecal contents and are shown in 

Figure 1.1. T3 (SENR challenged with low inoculum dose = 106 cfu/ml + 100 ppm NP) and T4 

diets (SENR challenged with low inoculum dose = 106 cfu/ml + 200 ppm NP) reduced the cecal 

SENR count numerically (P > 0.05) compared to T2 (SENR challenged with low inoculum dose = 

106 cfu/ml). However, the SENR numbers in ceca were same (4.5 log10 cfu) in both T6 (SENR 

challenged with high inoculum dose = 108 cfu/ml + 100 ppm NP) and T7 (SENR challenged with 

high inoculum dose = 108 cfu/ml + 200 ppm NP) and higher than in the T5 diet (SENR challenged 

with high inoculum dose = 108 cfu/ml). 

Fecal samples were collected at 3 and 6 days post inoculation (dpi) and assayed for 

recovery of SENR (Table 2.3). There was no significant difference among all treatments in terms 

of SENR prevalence in the feces both sampling days. At 3 dpi, although T3 was not different from 

T2, T4 had the lowest prevalence (40%) among all treatments in terms of shedding. T6 and T7 

were not different from T5 and all the samples collected from these treatments were SENR 

positive. At 6 dpi, 80% and 60% of the fecal samples from T3 and T4 were SENR positive, 

respectively. While all of the fecal samples were SENR positive in T6 as in T5, 80% of the 

samples were SENR positive in T7.  

Salmonella commonly infects chickens via the fecal–oral route with spread starting 

initially from the intestinal tract at the distal ileum and ceca of the bird (Barrow et al., 2012). 

Oral ingestion of Salmonella leads to intestinal colonization (especially in the ceca) and shedding 

of the pathogen in excreted feces. The frequency and duration of intestinal colonization in 

poultry is affected by varied factors such as age, genetic line, immune status of the birds, by the 

strain and dose of Salmonella to which they are exposed. While young birds are more susceptible 

to the infection that can lead to early mortality, mature birds are more resistant and can host 

Salmonella in their intestinal tract without showing clinical signs (Brown et al., 1976). When 

mature laying hens are infected with Salmonella, even at very high doses, the frequency of 

intestinal colonization has a tendency to decrease drastically over time more than is the case for 

young chicks (Gast et al., 2004), but it can sometimes persist for several months (Gast and 

Beard, 1990). We compared our results with previous studies, either in vitro or in vivo, focused 
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on the bactericidal effect of nitrocompounds against Salmonella colonization in the ceca. The 

inhibitory activity of NP against S. Typhimurium in the ceca of 6 days of age broiler chicks was 

tested (Jung et al., 2004b). Two experiments were conducted with 6-day-old broiler chicks 

challenged via oral gavage with approximately 106 cfu (exact inoculum dose was not stated) of a 

novobiocin- and nalidixic acid–resistant S. Typhimurium. In experiment 1, chicks were divided 

into three groups: 0 (control), 6.5, and 13 mg NP per bird. In experiment 2, chicks were divided 

into four treatment groups: 0 (control), 13, 65, and 130 mg NP per bird. S. Typhimurium 

concentrations were reduced by up to 2 log units in the group treated with NP at the 13 mg per 

bird dose at both 24 and 48 h post-treatment relative to untreated controls. When compared with 

controls, mean S. Typhimurium concentrations were similarly reduced in all groups receiving NP 

regardless of dose level (Jung et al., 2004b). In another study, NP and 2-nitroethanol were 

supplemented into diets to reduce S. Enteritidis colonization in internal organs of mature laying 

hens. Inclusion of 100 ppm nitroethanol and 200 ppm NP into laying hen diets reduced cecal 

SENR count (Adhikari et al., 2017b). In the current study, addition of NP at both levels to the 

diets of hens challenged with low inoculum dose (106 cfu/ml) reduced cecal SENR count 

numerically (P > 0.05). As for T6 and T7, the counts of SENR were identical (4.5 log10 cfu) in 

both treatments and higher than T5. In brief, 200 ppm of NP showed its inhibitory activity 

numerically better when the hens were challenged with low inoculum dose of SENR, but NP was 

not effective on the hens challenged with high inoculum dose of SENR. Our results conflicted 

with previous studies; therefore, it can be suggested that the high inoculum dose of SENR (108 

cfu/ml) used in the study might be excessive for NP to exhibit any bactericidal activity against 

Salmonella colonization in the ceca.  

In vitro studies were conducted to reveal the inhibitory effect of nitrocompounds applied 

on fecal suspensions collected from different species. Fecal samples were collected from a 

Holstein cow and analyzed to reveal the inhibitory effect of NP against S. Typhimurium. After 

24 h, concentrations of S. Typhimurium in fecal suspensions (already inoculated with 105- 106 

cfu/ml of the microorganism) containing 10 mM NP were 2.7 log10 cfu lower (P < 0.05) than 

concentrations in control incubations containing no NP. S. Typhimurium concentrations in fecal 

fluid containing 2.5 mM NP were 1.75 log10 cfu lower than concentrations in control 

incubations but this reduction was not significant (Jung et al., 2004a). In vitro effects of 

incubating an experimental chlorate product, nitrate, or select short-chain nitrocompounds, alone 
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or in combination, against experimentally inoculated S. Typhimurium and indigenous E. coli in 

porcine fecal suspensions were tested. In this experiment, 2-nitro-1-propanol and 2-nitroethanol, 

but not necessarily nitroethane, exhibited bactericidal activity against Salmonella Typhimurium 

and E. coli during 24 h of incubation in porcine fecal suspensions. When nitrocompounds are 

incubated with added chlorate, the combined activity of the compounds is markedly enhanced. 

Coincubation of the fecal suspensions with nitrate also markedly enhances the bactericidal effect 

of chlorate against these test bacteria (Anderson et al., 2007). The effect of the addition of 

nitroethane and nitroethanol at 21.8 mM in swine fecal slurries decreased the production of 

skatole, an odor pollutant in livestock waste, in swine fecal slurries at 24 h incubation (Beier et 

al., 2009). In the current study, although NP supplementation showed a potential to reduce SENR 

in feces, there was no significant difference among all treatments on both sampling days. It can 

be concluded that NP supplementation of the diets was not effective to reduce the fecal shedding 

of SENR in our study. It can be suggested that the number of hens per treatment or sample size 

should be increased to obtain better results in order to see the effect of NP against SENR. 

L/GB, spleen and ovary 

There was no significant difference in SENR reduction in the L/GB, spleen and ovary 

samples (Table 2.2). In L/GB, 40% of the samples (n=5) from T2 and T7, and 20% of the 

samples from T6 were SENR positive, but no SENR was detected in T3, T4 and T5. When the 

spleens were sampled, 60%, 20% and 40% of the samples from T2, T3 and T4 were SENR 

positive, respectively. All the spleen samples collected from T6 were SENR positive, while both 

T5 and T7 were 40% positive for SENR. In the ovaries, no recovery of SENR was detected in T4 

or T6, however 20% were positive in T2, T3, T5 and T7, respectively.  

Once Salmonella have been ingested by the chicken, it encounters the acidic conditions 

of the proventriculus, the first barrier which is readily overcome due to the immediate adaptation 

to lower pH, for instance, S. Typhimurium can survive acidic conditions as low as pH 3 (Lee et 

al., 1994). Upon this action, Salmonella is able to colonize the small intestine and the underlying 

lymph tissue; however, the specific site of colonization along the intestinal tract based on the 

serovar (Carter and Collins, 1974; Henderson et al., 1999). As the number of the organism 

increases, Salmonella can invade all tissues of the body due to the bacteria’s ability to proliferate 

within the liver and spleen (Henderson et al., 1999). After intestinal colonization, the bacteria 

can invade the reproductive tissues through systemic infection or infection can be originated 
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from the cloaca. Salmonella has been recovered from the reproductive tissues of experimentally 

infected hens in various studies (Gast et al., 2007; Howard et al., 2005; Miyamoto et al., 1997) 

and it was determined that the permeability of the capillary endothelia in the ovary has a role in 

bacterial colonization (Bell and Freeman, 1971). In the end, Salmonella can be reintroduced via 

the gall-bladder into the small intestine over the course of the infection. (Carter and Collins, 

1974).  

One recent study evaluated the oral (OR) versus intracloacal (IC) challenge route of SENR 

(1 ml of 108 cfu/ml) in mature White Leghorn laying hens (44 wk old) to consistently colonize 

the internal organs (Adhikari et al., 2017a). The frequencies of recovery were greater in hens 

challenged by OR in spleen samples vs. IC, and greater in hens challenged by IC for L/GB vs. 

OR. The frequency of SENR did not differ between the 2 routes for ovaries (Adhikari et al., 

2017a). As for the supplementation of nitrocompounds to diets of hens as an intervention 

strategy, nitroethanol and NP were used to reduce Salmonella infection in hens (45 wk old) 

challenged with 1.0 mL of approximately 1.9 x 108 cfu SENR (Adhikari et al., 2017b). There was 

no difference in SENR reduction in the L/GB or ovary after supplementation with either 

nitroethanol or NP. In L/GB, 50% of cases (n=6) were positive in T2 (SENR challenged control) 

and T6 (SENR challenged + 200 ppm NP), whereas 66% of cases were positive in T4 (SENR 

challenged + 200 ppm Nitroethanol), and 33% in both T3 (SENR challenged + 100 ppm 

Nitroethanol) and T5 (SENR challenged + 100 ppm NP). The recovery of SENR in the ovary by 7 

dpi was 0 except for T3 which had 16.7% positive cases (Adhikari et al., 2017b). In the current 

study, when the L/GB samples were analyzed, 40% of the hens were positive in T2 (SENR 

challenged with low inoculum dose = 106 cfu/ml), but no SENR was detected in T3 (SENR 

challenged with low inoculum dose = 106 cfu/ml) + 100 ppm NP) or T4 (SENR challenged with 

low inoculum dose = 106 cfu/ml + 200 ppm NP). Also, 20% and 40% of the hens were positive 

in T6 (SENR challenged with high inoculum dose = 108 cfu/ml + 100 ppm NP) and T7 (SENR 

challenged with high inoculum dose = 108 cfu/ml + 200 ppm NP), respectively. Surprisingly, 

SENR was detected in T5 (SENR challenged with high inoculum dose -108 cfu/ml). When the 

spleens were sampled, 60%, 20% and 40% of them were SENR positive in T2, T3 and T4. All the 

spleen samples collected from T6 were SENR positive while only 40% were SENR positive in both 

T5 and T7. In the ovaries, no SENR was detected in T4 or T6, and 20% of samples were positive 

in T2, T3, T5 and T7. Based on our results, it seems that NP supplementation of the diets gave 
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rise to changes in the prevalence of SENR in the above-mentioned internal organs. However, as 

the results were inconsistent and the differences among treatments were statistically 

insignificant, further research is necessary to determine the bactericidal dose of NP by designing 

a different challenge model capable of creating a consistent colonization of SENR in the internal 

organs of mature laying hens. In addition, instead of evaluating the organ samples as SENR 

positive or negative to determine the prevalence of the pathogen in the internal organs, other 

microbiological or molecular methods might be used to better determine the microbial load in the 

internal organs in order to find out the inhibitory effect of NP supplementation.  

Ileum immune gene expression 

Pro- and anti-inflammatory cytokines such as interferon (IFN)-Ƴ, interleukin (IL)-6 and 

IL-10 and toll-like receptors (TLR)-4 gene expressions were analyzed in order to determine the 

effects of SENR challenge with or without NP supplementation (Figure 2.2, 2.3 and 2.4). Ileum 

samples from each treatment were collected at 7 dpi. The house keeping gene, GAPDH, was 

used to normalize the immune cytokines. Real-time quantitative polymerase chain reaction 

(qRT-PCR) was performed. Gene expression data were analyzed by difference in cycle threshold 

(CT) method (Livak and Schmittgen, 2001). 

There was a numerical increase (P > 0.05) in the mRNA expression of INF-Ƴ in T2 and 

T5 after Salmonella challenge compared to T1. As for the effect of NP supplementation on this 

cytokine, the expressions of INF-Ƴ in T3 and T4 were numerically lower (P > 0.05) than T2. 

INF-Ƴ mRNA expression was downregulated (P < 0.05) in T6 as compared to T5. IFN-Ƴ, 

produced by T cells, is an indicator cytokine for the activation of macrophages and has a crucial 

role in control of infection and elimination of Salmonella. After Salmonella challenge, 

upregulation of IFN-Ƴ has been reported in experiments conducted in vitro and in vivo (Bao et 

al., 2000; Kano et al., 2009; Kogut et al., 2005). Various studies have evaluated the expression of 

this cytokine after supplementation of diets with feed additives. IFN-Ƴ was upregulated by 

Salmonella challenge, but reduced by supplementing NP to the diets of laying hens (Adhikari et 

al., 2017b). In a study, probiotic treatment to control Salmonella infection downregulated the 

expression of IFN-Ƴ in chicken cecal tonsils (Haghighi et al., 2008). In the current study, the 

INF-Ƴ mRNA expression was downregulated (P < 0.05) in T6 (SENR challenged with high 

inoculum dose = 108 cfu/ml + 100 ppm) compared to T5. This reduction in T6 can be attributed 
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to the potential bactericidal effect of NP against Salmonella so that INF-Ƴ expression decreases 

in the ileum of the hens.  

The expression of IL-10 was downregulated (P < 0.05) in T2 and T5 after Salmonella 

challenge compared to T1. T3 downregulated (P < 0.05) the expression of IL-10 compared to T2. 

In T7, IL-10 mRNA expression was upregulated (P < 0.05) compared to T5. S. Enteritidis has 

lipopolysaccharide (LPS) as a component of its outer membrane. LPS triggers inflammation 

through a variety of immunological changes that stimulate different cells (MacKay and Lester, 

1992; Nakamura et al., 1998) as well as by stimulating IL-10 gene expression in chickens 

(Ghebremicael et al., 2008). IL-10 is a regulatory cytokine having a role in reduction of the 

inflammatory response to Salmonella infection (Eckmann and Kagnoff, 2001), exhibiting a 

negative effect on IFN-Ƴ expression by Th1 cells and promoting the proliferation of Th2 cells 

(Rothwell et al., 2004), and deactivating macrophages (O'Farrell et al., 1998). It was reported 

that oral administration of various lactic acid bacteria reduced the Salmonella invasion and 

inflammation of broiler chicks by elevating the expression of IL-10 in cecal tonsils (Chen et al., 

2012). Effects of supplementing nitrocompounds to the diets on the IL-10 mRNA expression in 

the ileum of laying hens challenged with Salmonella were tested (Adhikari et al., 2017b). In the 

study, IL-10 mRNA expression was upregulated by adding 200 ppm of nitroethanol to the diets 

of laying hens compared to unchallenged control treatment. However, the IL-10 mRNA 

expression was not different from unchallenged control treatment when the diets were 

supplemented with 100 and 200 ppm of NP, respectively (Adhikari et al., 2017b). Although it 

was stated that S. Enteritidis LPS stimulates IL-10 gene expression in chickens (Ghebremicael et 

al., 2008), the expression in T2 and T5 were lower (P < 0.05) than T1 after Salmonella challenge 

in the current study. This difference might be due to the age of the birds. Ghebremicael et al. 

(2008) inoculated 1 d of age birds. These young birds would be more susceptible to infection 

while mature birds would be more resistant and can actually host Salmonella in the intestinal 

tract without clinical symptoms (Brown et al., 1976). In the current study, hens were 46-week 

old at inoculation with and therefore, it can be hypothesized that the inflammation in the ileum 

was not sufficient to stimulate IL-10 expression in the cells at 7 dpi. T3 (SENR challenged with 

low inoculum dose = 106 cfu/ml + 100 ppm NP) downregulated (P < 0.05) the expression of IL-

10 compared to T2; however, the IL-10 mRNA expression was upregulated (P < 0.05) in T7 

compared to T5. It may be deduced from these results that NP as a potential feed additive 
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exhibited a better bactericidal activity when it was used against a low inoculum dose (106 cfu/ml) 

of SENR which resulted in less inflammation to trigger the IL-10 expression in the ileum. 

The expression of IL-6 in T2 and T5 was lower (P < 0.05) than T1, respectively. NP 

supplementation at both levels downregulated (P < 0.05) the expression of IL-6 in T3 and T4 

compared to T2, respectively. NP did not cause any significant difference in the expression of 

IL-6 in T6 or T7 when compared to T5, respectively. IL-6 is a multifunctional cytokine produced 

by different types of cells and has a role in acute-phase responses and immune regulation 

(Wigley and Kaiser, 2003). IL-6 activity has been found in various infectious diseases of 

chickens including salmonellosis and it was reported that induction of IL-6 plays vital role in the 

response to different serovars of Salmonella in chickens (Kaiser et al., 2000). Invasion of 

chicken cells by S. Typhimurium or S. Enteritidis leads to an 8-fold increase of IL-6 mRNA 

which can trigger a strong inflammatory and immune response, limiting the infections to the gut 

and preventing development of systemic disease (Wigley and Kaiser, 2003). It has been reported 

that Salmonella challenge increased the mRNA expression of IL-6 mRNA level in the cecal 

tonsils of hens at 7 dpi (Bai et al., 2014). A significant increase in the IL-6 mRNA expression 

was detected in the ileum of chickens challenged with Salmonella at 1 dpi when compared to an 

uninfected control group (Hu et al., 2015). Supplementation of nitroethanol and NP resulted in a 

downregulation of IL-6 expression in the ileum of laying hens challenged with Salmonella. 

(Adhikari et al., 2017b). In the current study, NP supplementation at both levels downregulated 

(P < 0.05) the expression of IL-6 in T3 (SENR challenged with low inoculum dose = 106 cfu/ml + 

100 ppm NP) and T4 (SENR challenged with low inoculum dose = 106 cfu/ml + 200 ppm NP) 

compared to T2, respectively. However, IL-6 expressions in T6 (SENR challenged with high 

inoculum dose = 108 cfu/ml + 100 ppm NP) and T7 (SENR challenged with high inoculum dose = 

108 cfu/ml + 200 ppm NP) was not statistically different from T5. In brief, addition of NP to the 

diets showed a down-regulatory effect on the expression of IL-6 in the hens challenged with a 

low inoculum dose of SENR. Our data compares favorably to a previous study (Adhikari et al., 

2017b) in which it was stated that NP has the potential to inhibit the expression of pro-

inflammatory cytokines and interact with the host either by modulating the gut microbiome or 

direct interaction with Salmonella.  
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TLR-4 mRNA expression in T5 was lower (P < 0.05) than T1 after Salmonella challenge. 

NP supplementation at both levels downregulated (P < 0.05) the expression of TLR-4 in T3 and 

T4 compared to T2. TLR-4 mRNA expression was upregulated (P < 0.05) in T7 compared to T5. 

The primary function of the immune system is to identify and fight against pathogens. In the 

presence of microorganisms in the gut, toll-like receptor (TLR), also known as pattern 

recognition receptors, may stimulate expression of proinflammatory cytokines such as IL-6 

(Kaiser, 2010) as well as recognizing microbial-associated molecular patterns resulting in a chain 

of reaction that triggers the immune system (Aderem and Ulevitch, 2000). In addition, resistance 

to Salmonella has closely been associated with an upregulation of TLR-4 and different 

chemokines and cytokines (Chaussé et al., 2011; Sadeyen et al., 2006) and aberrant expression of 

TLR-4 has been linked to susceptibility to S. Enteritidis infection in chickens (Gou et al., 2012). 

Addition of 100 ppm NP to the diets of laying hens downregulated the TLR-4 mRNA expression 

in the ileum (Adhikari et al., 2017b). In the current study, NP supplementation at both levels 

downregulated (P < 0.05) the expression of TLR-4 in T3 (SENR challenged with low inoculum 

dose = 106 cfu/ml + 100 ppm NP) and T4 (SENR challenged with low inoculum dose = 106 cfu/ml 

+ 200 ppm NP) compared to T2. This downregulation might be caused by the expected 

inhibitory effect of NP against Salmonella infection resulting in a decrease in the expression of 

TLR-4 in the ileum.  

CONCLUSION 

Challenging mature laying hens with two different inoculum doses of SENR did not serve 

the purpose of revealing the inhibitory effect of NP as a potential feed additive. NP 

supplementation of the diets numerically reduced the counts of SENR in the ceca and affected the 

prevalence of SENR in other internal organs and feces, as well as downregulating the mRNA 

expressions of varied cytokines which play vital roles in the immune response to Salmonella 

infection in the ileum. Further research is needed to determine the mechanism of NP and its 

effects against other Salmonella serovars in order to provide this promising feed additive as an 

intervention strategy for use in the poultry industry.  
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Table 2.1 Diet composition of layer ration supplemented with different levels 2 nitro-1-propanol 

(NP)1 

Item Diets 

Ingredient (% of the diet) T1/T2/T5 T3/T6 T4/T7 

Corn, Grain  59.45 59.44 59.43 

Soybean Meal -48%  25.03 25.03 25.03 

Limestone  9.62 9.62 9.62 

Soybean Oil  2.71 2.71 2.71 

Defluor. Phos.  2.10 2.1 2.1 

DL-Methionine  0.13 0.13 0.13 

Common Salt  0.30 0.30 0.30 

Vitamin Premix2  0.50 0.50 0.50 

Mineral Premix3  0.15 0.15 0.15 

NP  0.00 0.01 0.02 

Calculated composition4 

ME (kcal/kg)  2.85 2.85 2.85 

CP (%)  16 16 16 

Ca (%)  4.4 4.4 4.4 

Available P (%)  0.5 0.5 0.5 

 

1 T1 = SENR unchallenged (negative control), T2 = SENR challenged with low inoculum dose (106 cfu/ml), T3 = SENR 

challenged with low inoculum dose (106 cfu/ml) + 100 ppm NP, T4 = SENR challenged with low inoculum dose (106 

cfu/ml) + 200 ppm NP, T5 = SENR challenged with high inoculum dose (108 cfu/ml), T6 = SENR challenged with high 

inoculum dose (108 cfu/ml) + 100 ppm NP, and T7 = SENR challenged with high inoculum dose (108 cfu/ml) + 200 

ppm NP.                                                                                                                                                                            

2 Supplemented per kg of diet: thiamin mononitrate, 2.4 mg; nicotinic acid, 44 mg; riboflavin, 4.4 mg; D-Ca 

pantothenate, 12 mg; vitamin B12 (cobalamin), 12.0 g; pyridoxine HCl, 4.7 mg; Dbiotin, 0.11 mg; folic acid, 5.5 

mg; menadione sodium bisulfite complex, 3.34 mg; choline chloride, 220 mg; cholecalciferol, 27.5 g; transretinyl 

acetate, 1,892 g; α tocopheryl acetate, 11 mg; ethoxyquin, 125 mg.                                                                               

3 Supplemented as per kg of diet: manganese (MnSO4.H2O), 60 mg; iron (FeSO4.7H2O), 30 mg; zinc (ZnO), 50 

mg; copper (CuSO4.5H2O), 5 mg; iodine (ethylene diamine dihydroiodide), 0.15 mg; selenium (NaSe03), 0.3 mg.    

4 ME = Metabolizable energy; CD = Crude protein 
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a) 

 

b)  

 

Figure 2.1 Presence of Salmonella number in ceca collected at 7 days post-infection (dpi) from laying 

hens fed diets supplemented with different levels of 2 nitro-1-propanol (NP). Hens (n=5/treatment) were 

challenged with Salmonella Enteritidis (SENR). Error bars represent standard errors.                               

a) T2 = SENR challenged with low inoculum dose (106 cfu/ml), T3 = SENR challenged with low inoculum 

dose (106 cfu/ml) + 100 ppm NP, T4 = SENR challenged with low inoculum dose (106 cfu/ml) + 200 ppm 

NP. b) T5 = SENR challenged with high inoculum dose (108 cfu/ml), T6 = SENR challenged with high 

inoculum dose (108 cfu/ml) + 100 ppm NP and T7 = SENR challenged with high inoculum dose (108 

cfu/ml) + 200 ppm NP. 
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Table 2.2 Presence and absence of SENR in liver with gall bladder (L/GB), spleen and ovary in 

laying hens supplemented with 2 nitro-1-propanol (NP)1. 

 

 

1 T1 = SENR unchallenged (negative control), T2 = SENR challenged with low inoculum dose (106 cfu/ml), 

T3 = SENR challenged with low inoculum dose (106 cfu/ml) + 100 ppm NP, T4 = SENR challenged with 

low inoculum dose (106 cfu/ml) + 200 ppm NP, T5 = SENR challenged with high inoculum dose (108 

cfu/ml), T6 = SENR challenged with high inoculum dose (108 cfu/ml) + 100 ppm NP, and T7 = SENR 

challenged with high inoculum dose (108 cfu/ml) + 200 ppm NP. 

2 Hens were 5 per treatment group (n=5) except Treatment 1 (n=4). 

 

 

 

Table 2.3 Presence and absence of SENR in feces collected from laying hens supplemented with 

2 nitro-1-propanol (NP)1. 

 

 

1 T1 = SENR unchallenged (negative control), T2 = SENR challenged with low inoculum dose (106 cfu/ml), 

T3 = SENR challenged with low inoculum dose (106 cfu/ml) + 100 ppm NP, T4 = SENR challenged with 

low inoculum dose (106 cfu/ml) + 200 ppm NP, T5 = SENR challenged with high inoculum dose (108 

cfu/ml), T6 = SENR challenged with high inoculum dose (108 cfu/ml) + 100 ppm NP, and T7 = SENR 

challenged with high inoculum dose (108 cfu/ml) + 200 ppm NP. 

2 Hens were 5 per treatment group (n=5) except Treatment 1 (n=4). 

                                                                      Incidence (%) of SENR – positives2 

Organs T1 T2 T3 T4 T5 T6 T7 

L/GB 0 40 0 0 0 20 40 

Spleen  0 60 20 40 40 100 40 

Ovary 0 20 20 0 20 0 20 

                                                                      Incidence (%) of SENR – positives2 

Days T1 T2 T3 T4 T5 T6 T7 

Day 3 50 80 80 40 100 100 100 

Day 6 50 100 80 60 100 100 80 
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Table 2.4 Chicken cytokines and toll-like receptor primer sequences 

 

 

Gene2 

 

Primer sequence (5′–3′) 

Gene bank 

accession no. 

Fragment 

size, bp 

Annealing 

temperature, °C  

GAPDH F: GCTAAGGCTGTGGGGAAAGT 

R: TCAGCAGCAGCCTTCACTAC 

K01458 116 56 

TLR-4 F: AGTCTGAAATTGCTGAGCTCAAAT 

R: GCGACGTTAAGCCATGGAAG 

AY064697 190 56 

IL-6 F: CAGGACGAGATGTGCAAGAA 

R: TAGCACAGAGACTCGACGTT 

AJ309540 233 59 

IL-10 F: AGCAGATCAAGGAGACGTTC 

R: ATCAGCAGGTACTCCTCGAT 

NM001004414 103 56 

IFN-Ƴ F: CTGAAGAACTGGACAGAGAG 

R: CACCAGCTTCTGTAAGATGC 

NM205149 159 58 

 

2 IL = interleukin; IFN = interferon; TLR = Toll-like receptor; GAPDH = Glyceraldehyde 3-phosphate 

dehydrogenase  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

a)                                                                b)  

  

c)                                                                  d)   

        

 

Figure 2.2 The effect of low and high inoculum dose of SENR challenge on ileal immune gene expression 

of cytokines: a) Toll-like receptor (TLR)-4, b) Interleukin (IL)-10, c) IL-6 and d) Interferon (IFN)-Ƴ. Hens 

were challenged with SENR (n = 5/treatment except T1=4/treatment). Gene expressions were calculated 

relative to housekeeping gene, GAPDH. Error bars represent standard errors. Bars with different letters 

(a, b to c) differ significantly across the treatment groups (P < 0.05). T1 = SENR unchallenged (negative 

control), T2 = SENR challenged with low inoculum dose (106 cfu/ml) and T5 = SENR challenged with high 

inoculum dose (108 cfu/ml). 

 

 

 

 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

T1 T2 T5

F
o
ld

 C
h

a
n

g
e

Dietary Treatments

TLR-4

a a

b

0.00

0.20

0.40

0.60

0.80

1.00

1.20

T1 T2 T5

F
o
ld

 C
h

a
n

g
e

Dietary Treatments

IL-10

a

b

b

0.00

0.20

0.40

0.60

0.80

1.00

1.20

T1 T2 T5

F
o
ld

 C
h

a
n

g
e

Dietary Treatments

IL-6

a

b

c

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

T1 T2 T5

F
o
ld

 C
h

a
n

g
e

Dietary Treatments

IFN-Ƴ



 

58 

 

a)                                                                      b) 

 

 

c)                                                                         d)  

 

 

Figure 2.3 The effect of NP supplementation of diets on ileal immune gene expression of cytokines in hens 

challenged with low inoculum dose of SENR: a) Toll-like receptor (TLR)-4, b) Interleukin (IL)-10, c) IL-6 

and d) Interferon (IFN)-Ƴ. Hens were challenged with SENR (n = 5/treatment). Gene expressions were 

calculated relative to housekeeping gene, GAPDH. Error bars represent standard errors. Bars with 

different letters (a to b) differ significantly across the treatment groups (P < 0.05). T2 = SENR challenged 

with low inoculum dose (106 cfu/ml), T3 = SENR challenged with low inoculum dose (106 cfu/ml) + 100 

ppm NP and T4 = SENR challenged with low inoculum dose (106 cfu/ml) + 200 ppm NP.  
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a)                                                                          b)  

 

c)                                                                          d)  

 

 

Figure 2.4 The effect of NP supplementation of diets on ileal immune gene expression of cytokines in hens 

challenged with high inoculum dose of SENR: a) Toll-like receptor (TLR)-4, b) Interleukin (IL)-10, c) IL-6 

and d) Interferon (IFN)-Ƴ. Hens were challenged with SENR (n = 5/treatment). Gene expressions were 

calculated relative to housekeeping gene, GAPDH. Error bars represent standard errors. Bars with 

different letters (a to b) differ significantly across the treatment groups (P < 0.05). T5 = SENR challenged 

with high inoculum dose (108 cfu/ml), T6 = SENR challenged with high inoculum dose (108 cfu/ml) + 100 

ppm NP and T7 = SENR challenged with high inoculum dose (108 cfu/ml) + 200 ppm NP.  
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CHAPTER 3 

THE EFFECT OF 2-NITRO-1-PROPANOL SUPPLEMENTATION ON SALMONELLA 

COLONIZATION IN BROILERS 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2 O. Yasir Koyun, D.E. Cosby, N.A. Cox and W.K. Kim. To be submitted to Poultry Science Journal 
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ABSTRACT  

The presence of Salmonella in broilers continues to be a problem for the industry. A 

study was conducted to evaluate the effect of 2-nitro-1-propanol (NP) on Salmonella recovery of 

internal organs of broiler chicks. Two-hundred and forty chicks were obtained from a local 

hatchery and 180 were orally challenged with a nalidixic acid resistant Salmonella Typhimurium 

(STNAR). Chicks were housed in battery cages, 60 were assigned to T1= STNAR unchallenged 

(negative control), and the remaining were randomly allocated to one of the three dietary 

treatments: T2 = STNAR challenged (positive control), T3 = STNAR challenged + 100 ppm NP, T4 

= STNAR challenged + 200 ppm NP. Bird weight and feed consumption was recorded on days 

7,14 and 21, and mortality recorded daily. Fecal samples were collected at 3, 6, 9 and 12 days 

post inoculation (dpi) and assayed for recovery of STNAR. Ceca, liver with gall bladder (L/GB) 

and spleen were collected for recovery of STNAR at 4,7,11 and 17 dpi. The mean of log10 viable 

STNAR counts from the ceca and growth performance data were subjected to ANOVA using the 

GLM procedure of SAS. Significant differences between the means of different treatment groups 

were determined by Duncan’s multiple-range test (P < 0.05). The performance of birds was not 

significantly different compared to the control group at any point during the 21-day trial. For 

fecal shedding, L/GB and spleen STNAR recovery, the prevalence was analyzed with Fisher’s 

exact test. At 3 dpi, there was a numerical decrease (P > 0.05) in T4 (STNAR challenged + 200 

ppm NP) compared to T2 (positive control) in terms of fecal shedding. At 6 dpi, a decline (P < 

0.05) in fecal shedding occurred in T4 compared to T2. At 9 and 12 dpi, the fecal samples from 

T2, T3 and T4 were 100% STNAR positive. No significant difference in STNAR prevalence in the 

L/GB and spleen samples was observed. At day 7 and 15, there were numerical decreases in 

prevalence in L/GB samples collected from T3 compared to T2. As for the spleen samples, T3 

showed a reduction at day 7 and, T4 decreased the prevalence at day 21 compared to T2, but no 

significance was observed. All cecal STNAR counts in T2, T3 and T4 showed a trend; peaking at 

day 11 and then going down at days 15 and 21. T4 showed a significant (P < 0.05) reduction, 

from 3.98 to 2.84 log10 cfu/g, in STNAR number in ceca collected on day 11 compared to T2. The 

pro- and anti-inflammatory cytokines, interleukin (IL)-6, IL-1β and IL-10 and toll-like receptors 

(TLR)-4 gene expressions were analyzed. Expression of mRNA for TLR-4, IL-1β and IL-10 was 

detected in all treatment groups at the end of the study, no statistically significant difference in 

the expression rate of these genes in T1 compared to T2 or in T2 compared to T3 was noted. The 
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mRNA expression of IL-6 in T2 was downregulated (P < 0.05) compared to T1 and upregulated 

(P < 0.05) by both T3 and T4 compared to T2 at the end of the study. Overall, NP 

supplementation of the diets did not have an adverse effect on growth performance for the 21 day 

grow-out period but did decrease the prevalence of STNAR in feces and reduced the colonization 

in ceca at specific sampling days during the study. NP did not downregulate the mRNA 

expression of cytokines having vital roles in the ileal response to STNAR infection. Further studies 

need to be carried out in order to find out the effective dose of NP for use in reducing and/or 

eliminating bacterial contamination in the poultry industry. 

INTRODUCTION 

Salmonella has been accepted as a causative agent for human diseases such as food 

poisoning, typhoid, paratyphoid, septicemia, and sequelae. Despite numerous studies and 

researches conducted to improve our understanding of Salmonella ecology and pathogenicity in 

humans, the microorganism continuously gives rise to new food safety challenges and remains 

one of the major food-borne pathogens in the entire world. (Hannah, 2007; Humphrey, 2004). 

Salmonellosis is a worldwide health concern and approximately 95% of human salmonellosis 

cases are linked to the consumption of contaminated products such as meat and eggs from 

poultry (Foley and Lynne, 2008). The US population is one of the large consumers of poultry 

meat, about 12 million tons of broiler meat every year, with a consistent increase of 

approximately 3% per year. The relationship of Salmonella with raw foods obtained from animal 

products, especially poultry products, has become clear. For the industry, poultry products have 

been accepted as one of the major Salmonella reservoirs for decades (Bohorquez, 2007). The 

Center for Disease Control and Prevention reported that more than 2,300 types of Salmonella 

have been identified; however, the two most common are S. Enteritidis and S. Typhimurium, 

which are the causative agent for more than half of  all human infections (Liu, 2012). The 

Foodborne Diseases Active Surveillance Network (Food Net) reported 19,056 infections, 4,200 

hospitalizations, and 80 deaths caused by foodborne pathogen infections from 2006 to 2013. In 

this report, S. Typhimurium was one of the top serotypes among 6,520 Salmonella isolates (Crim 

et al., 2014).  

S. Typhimurium has a broad-host range and can cause disease in cattle, pigs, horses, 

sheep, poultry, and rodents (Salyers and Whitt, 2002) and it can be regarded as ubiquitous due to 

its presence in water, soil, insects, food plants, food animals, animal feces, and raw foods (Food 
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and Administration, 2004). The natural microflora of animal’s intestinal tract may contain S. 

Typhimurium without producing an illness; therefore, controlling Salmonella in food-production 

animals is a huge concern due to the high rate of food contamination (Olsen et al., 2001; Tauxe, 

1991). As a result, the impact of Salmonella spp. on the population can be massive. As 

consumers become more conscious about the risks, control and elimination of Salmonella has 

become an important goal for the poultry industry, particularly at the preharvest phase (Santos, 

2007). Control of Salmonella spp. is a concern from both health and economical aspects; 

therefore, it is crucial to prevent Salmonella colonization in chickens at farm levels to reduce the 

risk of poultry product contamination (Blankenship et al., 1993). In 2011, USDA-FSIS regulated 

their performance standard for Salmonella contamination of whole broiler chickens. Since 

chicken is generally purchased as cut-up parts, USDA-FSIS conducted a survey of raw chicken 

parts in 2012 and reported an estimated 24% prevalence of Salmonella. In 2013, USDA-FSIS 

announced its Salmonella Action Plan indicating that USDA-FSIS will conduct a risk assessment 

and improve performance standards for poultry parts during 2014, among other key activities 

(Crim et al., 2014). To reduce the transmission of Salmonella to humans through the food chain, 

it is crucial to determine potential sources of contamination within the poultry production 

system.  

Feed additives such as prebiotics, probiotics and organic acids have been commonly used 

to control Salmonella infections in poultry, with the rate of success varying based on the additive 

used (Adhikari et al., 2017; Corrier et al., 1993; Van Immerseel et al., 2005). Inconsistent results 

from anti-Salmonella strategies have been reported in studies over the years, so new feed 

additives are needed to reduce Salmonella infections in chickens. The dietary effect of 

nitrocompounds such as 2-nitro-1-propanol (NP) and 2-nitroethanol have been tested for 

reducing Salmonella colonization in the internal organs of laying hens and supplementation with 

these nitrocompounds showed an immune response in the ileum with reduction of expression of 

IFN-Ƴ, IL-6, TLR-4 and IL-10 mRNA (Adhikari et al., 2017). Potential effects of various 

nitrocompounds (nitroethane, nitroethanol, NP and nitropropionic acid) were studied on 

ammonia volatilization in poultry manure. According to the results, use of nitrocompounds 

caused a reduction in ammonia volatilization in poultry manure by inhibiting growth of uric 

acid–utilizing microorganisms (Kim et al., 2006). A similar study was conducted to observe the 

effects of dietary nitrocompounds on bird performance, ammonia volatilization, and changes in 
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manure nitrogen. This study concluded that supplementation of nitroethanol or NP into broiler 

diets up to 33.3 mg/kg affects uric acid degradation and ammonia production in broiler manure 

while sustaining optimal growth performance (Mowrer et al., 2016). In vitro effects of incubating 

an experimental chlorate product, nitrate, or select short-chain nitrocompounds, alone or in 

combination, against experimentally inoculated S. Typhimurium and E. coli in porcine fecal 

suspensions were analyzed. In this experiment, NP and 2-nitroethanol showed bactericidal 

activity against S. Typhimurium and E. coli during 24 h of incubation (Anderson et al., 2007). 

The inhibitory activity of NP against S. Typhimurium, E. coli O157:H7 and Enterococcus 

faecalis was reported (Jung et al., 2004a). The same research group reported in a similar study 

that NP inhibited Salmonella colonization in the ceca of broiler chicks (Jung et al., 2004b).  

In the light of these studies, we hypothesized that NP may reduce S. Typhimurium 

colonization in the ceca and other internal organs of broiler chicks, decrease fecal shedding of S. 

Typhimurium and produce an immune response in the ileum. The objectives of the study were 1) 

to evaluate the inhibitory effect of NP on Salmonella in ceca as well as other internal organs, 2) 

to reduce fecal shedding and 3) to promote an effective immune response in the ileum of broiler 

chicks.  

MATERIAL AND METHODS 

Salmonella strain and inoculum preparation 

Nalidixic acid resistant Salmonella Typhimurium (STNAR) was used as the challenge 

organism. STNAR was stored at -80°C in Nutrient Broth (Acumedia, East Lansing, MI; NB) with 

16% glycerol. STNAR was grown and maintained on brilliant green with sulphapyridine agar 

plates (Acumedia, East Lansing, MI; BGS) containing 200 ppm of NAL (Sigma Chemical Co., 

St. Louis, MO; BGS NAL) for 24 h at 37°C. Individual colonies were suspended into a sterile 

0.85% saline solution. The absorbance was adjusted to 0.20 ± 0.01 OD540nm using a 

spectrophotometer (Spect 20, Milton-Roy, Thermo Spectronics, Madison, WI). Culture solution 

was serially diluted and plated onto BGS-NAL plates for enumeration. Chicks were orally 

challenged with a 0.1 mL of approximately 2.7× 107 cfu STNAR.  

Chicks, housing and dietary treatments 

A total of 240 one-day-old commercial broiler chicks were obtained from a local 

hatchery. The chicks were individually weighed upon arrival to maintain uniformity between 

treatments and were placed in battery cages in a light- and temperature-controlled room at 
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Poultry Research Center, University of Georgia. Chicks were allocated to one of four dietary 

treatments (10 birds/cage; 6 replicated cages per treatment): T1 = STNAR unchallenged (negative 

control), T2 = STNAR challenged (positive control), T3 = STNAR challenged + 100 ppm NP, T4 = 

STNAR challenged + 200 ppm NP. All chicks were fed a standard corn-soybean broiler starter diet 

with or without NP supplementation, based on the treatment group. The diet was formulated to 

provide 3,000 kg/kcal metabolizable energy (ME), 22% crude protein (CP), 0.9% Ca and 0.45% 

available P (Table 3.1). Chicks were provided free access to water and mash feed ad libitum 

throughout the experiment period. At day 4, all chicks broiler except in T1 (negative control) 

group was orally challenged with 0.1 mL of 107 cfu STNAR. Feed was withdrawn from all chicks 

10 h before challenge and returned right after STNAR challenge. The experiment protocol was 

approved by the Institutional Animal Care and Use Committee of University of Georgia. 

Sampling protocol and analyses 

Feces, ceca, L/GB and spleen (bacteriological) 

Fresh fecal samples were collected from each battery cage at 3, 6, 9 and 12 dpi to screen 

for fecal shedding. The individual fecal droppings were collected separately into 50 ml-

centrifuged tubes, transported on ice and processed at the U.S. National Poultry Research Center, 

Athens, GA. The samples were individually weighed and diluted with buffered peptone water 

(BPW; 3X volume/weight). Afterwards, the samples were incubated (pre-enriched) overnight at 

37°C before being streaked onto BGS-NAL for isolation of STNAR. The BGS-NAL plates were 

incubated overnight at 37°C for 24 h. The growth of STNAR were observed and recorded as 

positive or negative for the samples. 

Two chicks from each cage were euthanized and ceca, L/GB and spleen were collected 

on 3, 7, 11 and 17 dpi. Ceca, L/GB and spleen samples were collected aseptically into sterile 

stomacher bags (VWR, Radnor, PA). The organs were sampled for the presence of STNAR by 

growth on BGS-NAL plates. All samples were macerated with a rubber mallet, individually 

weighed and diluted with BPW (3X volume/weight), and stomached (Stomacher 80, Techmar 

Company, Cincinnati, Ohio) for 60 s. L/GB and spleen samples were pre-enriched overnight at 

37°C for 24 h before being streaked onto BGS-NAL plates which were incubated overnight at 

37°C for 24 h for growth. The growth of STNAR was observed and recorded as positive or 

negative for the samples. Cecal samples were analyzed using a modification of the Blanchfield 

method (Blanchfield, et al., 1984). In brief, after stomaching for 60 s, two cotton-tipped swabs 
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were dipped and rotated in the cecal material for approximately 5 s. One BGS-NAL plate was 

surface-swabbed (plate A). The second swab was transferred into a sterile 9.9 mL BPW dilution 

tube. The tube was vortexed for approximately 10 s, and a third swab was used to surface-swab a 

second BGS-NAL plate (plate B). The contents of dilution tube were returned to the stomacher 

bag and all plates together with the cecal samples were incubated overnight at 37°C for 24 h. 

Negative samples were re-streaked from the overnight pre-enrichments onto a fresh BGS-NAL 

plate (plate C) and incubated overnight at 37°C for 24 h. Counts were approximated and 

converted to log10 cfu STNAR /g of cecal contents. 

RNA isolation, cDNA synthesis and quantitative real-time PCR 

Ileum sections were aseptically excised, immediately frozen in liquid nitrogen and stored 

at -80°C until analyzed for inflammatory cytokines. Total RNA was extracted from100 mg of 

tissues using Qiazol lysis reagent (Qiazen, Valencia, CA) according to the manufacturer’s 

instruction. The RNA concentration was measured at an optical density of 260 nm using a 

NanoDrop 2000 spectrophotometer (Thermo Scientific, MA, USA). RNA samples were 

normalized to a concentration of 2 μg/μl, and purity was verified by evaluating the optical 

density ratio of 260 to 280 nm. The normalized RNA was reverse-transcribed using a High 

Capacity cDNA synthesis kit (Applied Biosystems, Life Technologies, CA, USA). The house 

keeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize the 

immune cytokines. Real-time quantitative polymerase chain reaction (qRT-PCR) was performed 

using a Step One thermo cycler (Applied Biosystems, Foster City, CA). Primers for the chicken 

immune genes toll-like receptor (TLR-4), interleukins (IL-1ß, IL-6, and IL-10) and interferon 

(IFN)-Ƴ were designed according to National Center for Biotechnology Information (NCBI). 

Pairs of primers used in our study are shown in Table 3.5. Gene expression data were analyzed 

by the difference in cycle threshold (CT) method (Livak and Schmittgen, 2001). 

Statistical analyses 

For L/GB, spleen and feces STNAR recovery, the prevalence was analyzed with Fisher’s 

exact test. The mean of log10 viable STNAR counts obtained from the ceca was subjected to one-

way analysis of variance (ANOVA) using the GLM procedure of SAS (SAS, 2001). Significant 

differences between the means of different treatment groups were determined by Duncan’s 

multiple-range test and significant differences were assessed at P < 0.05.  
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RESULTS AND DISCUSSION 

Effect of NP on Growth Performance 

Bird weight and feed consumption was recorded at 0,7,14 and 21 days of age, and 

mortality recorded daily. The performance of birds was not significantly different among the 

treatments compared to the control (Table 3.2). When the cumulative results are compared 

within treatments, it can be seen that supplementation of NP did not affect the growth 

performance parameters of broiler chicks. At the end of the study, while the highest feed intake 

(FI) was recorded in T1 (negative control), the highest body weight gain (BWG) was seen in T4 

compared to the rest of the treatments, but these differences were not significant. The FCR 

values for T1 (STNAR unchallenged = negative control), T2 (STNAR challenged = positive 

control), T3 (STNAR challenged + 100 ppm NP) and T4 (STNAR challenged + 200 ppm NP) were 

1.28, 1.26, 1.27 and 1.32, respectively. It can be concluded that addition of 200 ppm of NP into 

the diet increased the feed conversion ratio (FCR), but this elevation was not significant. 

In an earlier work evaluating the inhibitory effects of nitrocompounds on Salmonella 

Typhimurium colonization in the ceca of broiler chicks, there was no negative effect reported on 

growth performance when the chicks were fed up to 130 mg NP per bird (Jung et al., 2004b). 

Another study conducted to assess the effects of dietary nitrocompounds on bird performance, 

ammonia volatilization, and changes in manure nitrogen demonstrated. No significant 

differences in BWG, FI and FCR among the treatments indicating that the addition of up to 33.3 

mg/kg of nitroethanol or NP has no adverse effects on broiler growth performance within 21 

days (Mowrer et al., 2016). In the current study, supplementation of NP did not result in a 

difference in the growth performance parameters of broiler chicks among treatments, but further 

research is needed to determine the effective inoculum dose of NP without growth loss during 

full broiler growth period. 

SE numbers and prevalence 

Ceca and Feces 

The STNAR numbers in ceca were counted and recorded as log10 cfu/g of cecal contents 

are shown in Figure 3.1 and 3.2. T1 (STNAR unchallenged = negative control) remained negative 

throughout the study. The STNAR numbers in the ceca from T3 (STNAR challenged + 100 ppm 

NP) were not different from T2 (STNAR challenged = positive control) on each sampling day. 

However, T4 showed a significant (P < 0.05) reduction, from 3.98 to 2.84 log10 cfu/g, in STNAR 
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number in ceca collected on day 11 compared to T2. All cecal STNAR counts in T2, T3 and T4 

(STNAR challenged + 200 ppm NP) showed a trend throughout the study; peaking at day 11 and 

then declining at days 15 and 21. 

Fecal samples were collected 3, 6, 9 and 12 dpi and assayed for recovery of STNAR (Table 

3.3). At 3 dpi, there was a numerical decrease in fecal shedding in T4 compared to T2, but it was 

not statistically significant. At 6 dpi, T3 and T4 lowered the prevalence of STNAR in feces 

compared to T2, but only T4 had a significant effect (P < 0.05). At 9 and 12 dpi, the fecal 

samples from T2, T3 and T4 were 100% Salmonella positive, so there was no change among 

these treatments.  

Salmonella generally infects chickens via the fecal–oral route with invasion starting from 

the intestinal tract at the distal ileum and ceca of the bird (Barrow et al., 2012). Oral ingestion of 

Salmonella gives rise to intestinal colonization (especially in the ceca) and shedding of the 

pathogen in excreted feces. The frequency and duration of intestinal colonization in poultry is 

affected by varied factors such as age, genetic line, immune status of the birds, by the strain and 

inoculum dose of Salmonella to which they are exposed. While young birds are more susceptible 

to the infection which may lead to early mortality, mature birds are more resistant and can host 

Salmonella in their intestinal tract without showing clinical signs (Brown et al., 1976). We 

compared our results from ceca samples with an earlier work focused on the bactericidal effect 

of nitrocompounds against S. Typhimurium in vivo. In this study, the inhibitory activity of NP 

was studied against S. Typhimurium in the ceca of 6 days of age broiler chicks. Two experiments 

were conducted with 6-day-old broiler chicks challenged via oral gavage with approximately 106 

cfu (exact inoculum dose was not stated) of a novobiocin- and nalidixic acid–resistant S. 

Typhimurium. In experiment 1, chicks were allocated into three groups: 0 (control), 6.5, and 13 

mg NP per bird. In experiment 2, chicks were allocated into four treatment groups: 0 (control), 

13, 65, and 130 mg NP per bird. S. Typhimurium concentrations were reduced by up to 2 log 

units in the group treated with NP at the 13 mg per bird inoculum dose at both 24 and 48 h post-

treatment relative to untreated controls. When compared with control treatments, S. 

Typhimurium concentrations were similarly reduced in all groups receiving NP regardless of 

dose level (Jung et al., 2004b). NP and 2-nitroethanol were supplemented into diets to reduce S. 

Enteritidis colonization in internal organs of mature laying hens. Inclusion of 100 ppm 

nitroethanol and 200 ppm NP into laying hen diets reduced cecal S. Enteritidis count (Adhikari et 
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al., 2017). In our study, we obtained a similar result compared to above-mentioned studies in 

which NP was used against Salmonella colonization the ceca of the birds. T4 (STNAR challenged 

+ 200 ppm NP) showed a significant (P < 0.05) reduction, from 3.98 to 2.84 log10 cfu/g, in 

STNAR number in ceca collected on day 11 compared to T2.  

In vitro studies have been conducted to reveal the inhibitory effect of nitrocompounds 

applied on fecal suspensions collected from different species. Additionally, the bactericidal 

activity of NP against select food-borne pathogens were tested in vitro. Fecal samples collected 

from a Holstein cow and were analyzed to reveal the inhibitory effect of NP against S. 

Typhimurium. After 24 h, concentrations of S. Typhimurium in fecal suspensions (already 

inoculated with 105 - 106 cfu/ml) containing 10 mM NP were 2.7 log10 cfu lower than 

concentrations in control incubations containing no NP. S. Typhimurium concentrations in fecal 

fluid containing 2.5 mM NP were 1.75 log10 cfu lower than concentrations in control 

incubations but this reduction was not significant (Jung et al., 2004a). In vitro effects of 

incubating an experimental chlorate product, nitrate, or select short-chain nitrocompounds, alone 

or in combination, against experimentally inoculated S. Typhimurium and indigenous E. coli in 

porcine fecal suspensions were tested. In this experiment, 2-nitro-1-propanol and 2-nitroethanol, 

but not necessarily nitroethane, exhibited bactericidal activity against S. Typhimurium and E. 

coli during 24 h of incubation in porcine fecal suspensions. When nitrocompounds are incubated 

with an added chlorate, the combined activity of the compounds is markedly enhanced. 

Coincubation of the fecal suspensions with nitrate also markedly enhanced the bactericidal effect 

of chlorate against these test bacteria (Anderson et al., 2007). The effect of the addition of 

nitroethane and nitroethanol at 21.8 mM in swine fecal slurries decreased the production of 

skatole, an odor pollutant in livestock waste, in swine fecal slurries at 24 h incubation (Beier et 

al., 2009). In the current study, our result was similar to previous studies in which NP was 

effective in reducing Salmonella presence in fecal samples. T4 (STNAR challenged + 200 ppm 

NP) lowered (P < 0.05) the prevalence of STNAR in feces compared to T2 (STNAR challenged = 

positive control) at 6 dpi.  
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L/GB and spleen 

 L/GB and spleen samples were assayed for the recovery of STNR at day 7,11,15 and 21 

(Table 3.4). There were numerical decreases in STNAR prevalence in L/GB and spleen samples 

on varied days, but the difference among treatments was not significant compared to T2. 

Salmonella after ingestion by the chicken, encounters the acidic conditions of the proventriculus, 

the first barrier which is easily overcome by Salmonella which has an immediate adaptation to 

lower pH. S. Typhimurium can survive acidic conditions with a pH as low as 3 (Lee et al., 1994). 

Salmonella is able to colonize the small intestine and the underlying lymph tissue; however, the 

specific site of colonization along the tract based on bacteria serovars (Carter and Collins, 1974; 

Henderson et al., 1999). As the number of the organism increases, Salmonella is able to invade 

other body tissues after proliferation within the liver and spleen (Henderson et al., 1999). In the 

end, Salmonella is reintroduced via the gall-bladder into the small intestine (Carter and Collins, 

1974). Supplementation of nitroethanol and NP to the diets of hens as an intervention strategy 

was used to reduce Salmonella prevalence in internal organs challenged with a 1 ml of 

approximately 1.9 x 108 cfu SENR. There was no difference in SENR reduction in L/GB samples 

after supplementation with either nitroethanol or NP (Adhikari et al., 2017). In the current study, 

although there were numerical decreases in STNAR prevalence in L/GB and spleen samples on 

various days, the differences among treatments were not significant compared to T2 (STNAR 

challenged = positive control). 

Ileum immune gene expression 

The pro- and anti-inflammatory cytokines interleukin (IL)-6, IL-1β and IL-10 and toll-

like receptors (TLR)-4 gene expressions were analyzed in our study (Figure 3.3). Ileum samples 

from each treatment were collected at the end of the experiment. The house keeping gene, 

GAPDH, was used to normalize the immune cytokines. Real-time quantitative polymerase chain 

reaction (qRT-PCR) was performed. Gene expression data were analyzed by difference in cycle 

threshold (CT) method (Livak and Schmittgen, 2001).  

Although mRNA expression of TLR-4, IL-6, IL-1β and IL-10 was detected in all 

treatment groups at the end of the study, there was no statistically significant difference in the 

expression of these genes between T1 (STNAR unchallenged = negative control), T2 (STNAR 

challenged = positive control) and T3 (STNAR challenged + 100 ppm NP). However, only the 

mRNA expression of IL-6 was upregulated (P < 0.05) in T4 (STNAR challenged + 200 ppm NP). 
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The primary function of the immune system is to identify and fight pathogens. In the 

presence of microorganisms in the gut, toll-like receptor (TLR), also known as pattern 

recognition receptors, may stimulate expression of proinflammatory cytokines such as IL-6 

(Kaiser, 2010) as well as recognizing microbial-associated molecular patterns resulting in a chain 

of reaction triggering immune system (Aderem and Ulevitch, 2000). In addition, resistance to 

Salmonella has closely been associated with an upregulation of TLR-4 (Chaussé et al., 2011; 

Sadeyen et al., 2006) and abnormal expression of TLR-4 has been linked to susceptibility to S. 

Enteritidis infection in chickens (Gou et al., 2012). Components of the bacterial cell wall such as 

lipopolysaccharide stimulates TLR in host cells, which in turn triggers an inflammatory response 

in tissues, characterized by the production of cytokines (Young et al., 2002). IL-1β is released 

primarily by monocytes and macrophages during an infection, invasion, and/or inflammation 

(Copray et al., 2001). IL-6 is a multifunctional cytokine produced by different types of cells and 

has a role in acute-phase responses and immune regulation (Wigley and Kaiser, 2003). IL-6 

activity has been found in various infectious diseases of chickens including salmonellosis and it 

has been proposed that induction of IL-6 may play a vital role in the response to different 

serovars of Salmonella in chickens (Kaiser et al., 2000). Invasion of chicken cells by S. 

Typhimurium leads to an 8-fold increase of IL-6 mRNA beginning a strong inflammatory and 

immune response, limiting the infections to the gut and preventing development of systemic 

disease (Wigley and Kaiser, 2003). It has been reported that S. Typhimurium challenge increased 

the mRNA expression of IL-6 mRNA level in the cecal tonsils of hens at 7 dpi (Bai et al., 2014). 

IL-10, a regulatory cytokine which has a role in inhibition of inflammatory response to 

Salmonella infection (Eckmann and Kagnoff, 2001), exhibits a negative effect on IFN-Ƴ 

expression by Th1 cells, promotes proliferation of Th2 cells (Rothwell et al., 2004), and 

deactivates macrophages (O'Farrell et al., 1998).  

A study conducted to test the effects of probiotics on cytokine gene expression in chicken 

cecal tonsils following Salmonella infection demonstrated that although the IL-10 was expressed 

at all time points and in all treatment groups, there was no significant difference in the 

expression rate among the various treatments (Haghighi et al., 2008). Another study reported that 

oral administration of a combination of lactic acid bacteria reduced the Salmonella invasion and 

inflammation of broiler chicks by elevating the expression of IL-10 in cecal tonsils and the 

expression level of the IL-6 gene increased significantly in Salmonella (106 cfu/mL)-challenged 
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broiler chicks, but was downregulated by the probiotic treatment on 6 dpi (Chen et al., 2012). An 

increase in the expression of IL-6 was detected in the ileum of chickens challenged with S. 

Typhimurium (104 cfu/0.25ml) only and other groups treated with Lactobacillus on 1 dpi when 

compared to uninfected control group (Hu et al., 2015). The effect of supplementing 

nitrocompounds into the diets on the mRNA expression of TLR-4, IL-1β, IL-10 and IL-6 in the 

ileum of hens challenged with S. Enteritidis was tested (Adhikari et al., 2017). In this study, IL-

10 mRNA expression was upregulated by adding 200 ppm of nitroethanol to the diets compared 

to unchallenged control treatment. However, IL-10 mRNA expression was not different from the 

unchallenged control treatment when the diets were supplemented with 100 and 200 ppm of NP, 

respectively. Addition of 100 ppm NP to the diets downregulated TLR-4 mRNA expression. 

Supplementation of nitroethanol and NP resulted in a downregulation of IL-6 expression in the 

ileum of hens challenged with S. Enteritidis. It was stated that NP has a potential to inhibit the 

expression of pro-inflammatory cytokines and interacts with the host either by modulating the 

gut microbiome or direct contact with S. Enteritidis (Adhikari et al., 2017). In the current study, 

it appears that NP supplementation as a potential intervention strategy against STNAR challenge 

was not effective to downregulate the expressions of TLR-4, IL-1β, IL-10 and IL-6 so it could 

not reduce the inflammation in the ileum caused by the infection. In addition, the inoculum dose 

(107 cfu/0.1 ml) of STNAR used in the experiment might be excessive or the supplementation 

levels of NP to the diets might be too low to adequately test the potential inhibitory activity of 

NP against STNAR infection. 

CONCLUSION 

NP supplementation of the diets did not have an adverse effect on growth performance 

for the 21 day grow-out period but did decrease the prevalence of STNAR in feces and reduced the 

colonization in ceca at specific sampling days during the study. NP did not downregulate the 

mRNA expression of cytokines having vital roles in the ileal response to STNAR infection. 

Further studies need be conducted to reveal the effective dose of NP to obtain a consistent or 

sustainable inhibition against bacterial infections in poultry. 
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Table 3.1. Diet composition of broiler ration supplemented with different levels 2 nitro-1-

propanol (NP)1 

Item  Diets 

Ingredient (% of the diet) T1/T2 T3 T4 

Corn, Grain  62.27 62.26 62.25 

Soybean Meal -48%  31.00 31.00 31.00 

Limestone  0.65 0.65 0.65 

Soybean Oil  1.04 1.04 1.04 

Defluor. Phos.  1.74 1.74 1.74 

DL-Methionine  0.33 0.33 0.33 

Common Salt  0.30 0.30 0.30 

Vitamin Premix 2 0.25 0.25 0.25 

L-Lysine HCl 0.32 0.32 0.32 

Threonine 1.35 1.35 1.35 

Mineral Premix 3 0.08 0.08 0.08 

Sand 0.67 0.67 0.67 

NP  0.00 0.01 0.02 

Calculated composition 

ME (kcal/kg)  3000 3000 3000 

CP (%)  22 22 22 

Ca (%)  0.9 0.9 0.9 

Available P (%)  0.45 0.45 0.45 

Met + Cys (%)  0.98 0.98 0.98 

Met (%) 0.64 0.64 0.64 

Lysine (%) 1.32 1.32 1.32 

  

1 T1 = STNAR unchallenged (negative control), T2 = STNAR challenged (positive control), T3 = STNAR challenged + 

100 ppm NP, T4 = STNAR challenged + 200 ppm NP. 2 Supplied per kilogram of diet: vitamin A, 5511 IU; vitamin 

D3, 1102 ICU; Vitamin E, 11.02 IU; vitamin B12, 0.01 mg; Biotin, 0.11 mg; Menadione, 1.1 mg; Thiamine, 2.21 

mg; Riboflavin, 4.41 mg; d-Pantothenic Acid, 11.02 mg; Vitamin B6, 2.21 mg; Niacin, 44.09 mg; Folic Acid, 0.55 

mg; Choline, 191.36 mg. 3 Supplied per kilogram of diet: Mn, 107.2 mg; Zn, 85.6 mg; Mg, 21.44 mg; Fe, 21.04; Cu, 

3.2 mg; I, 0.8 mg; Se, 0.32 mg. 4 ME = Metabolizable energy; CP = Crude protein. 
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Table 3.2. 0-21 days growth performance values of broilers fed diets supplemented with 

different levels of 2 nitro-1-propanol (NP)1  

                                                                      Diets 

Item3 T1 T2 T3 T4 P- value 

BWG (g/bird) 558.34 576.53 574.53 613.24 0.7998 

FI (g/bird) 4526 4419 4479 4360 0.9429 

FCR (g:g) 1.28 1.26 1.27 1.32 0.3243 

 

1 T1 = STNAR unchallenged (negative control), T2 = STNAR challenged (positive control), T3 = STNAR 

challenged + 100 ppm NP, T4 = STNAR challenged + 200 ppm NP. 

2 Chicks were 12 per treatment group (n=12)                                                                                                 

3 BWG = Body weight gain; FI = Feed intake; FCR = Feed conversion ratio   

 

 

Table 3.3 Presence and absence of STNAR in feces collected from broilers fed diets supplemented 

with different levels of 2 nitro-1-propanol (NP)1. 

 

                                                 Incidence (%) of STNAR – positives2 

                         Treatments                 

 T1 T2 T3 T4 

Day 3 0 83 100 50 

Day 6  0 100 83 67 

Day 9  0 100 100 100 

Day 12 0 100 100 100 

 

1 T1 = STNAR unchallenged (negative control), T2 = STNAR challenged (positive control), T3 = STNAR 

challenged + 100 ppm NP, T4 = STNAR challenged + 200 ppm NP 

2 Chicks were 12 per treatment group (n=12) 
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Table 3.4 Presence and absence of STNAR in liver with gall bladder (L/GB) and spleen in broilers 

fed diets supplemented with different levels of 2 nitro-1-propanol (NP)1. 

 

                                                                                  Incidence (%) of STNAR – positives2 

Organs  L/GB Spleen 

 
Days Day 7 Day 11 Day 15 Day 21 Day 7 Day 11 Day 15 Day 21 

         
Treatments         

T1 0 0 0 0 0 0 0 0 

T2 58 100 92 42 17 58 42 58 

T3 50 100 75 84 8 67 50 75 

T4 58 100 92 50 25 58 67 50 

 

1 T1 = STNAR unchallenged (negative control), T2 = STNAR challenged (107 cfu/ml), T3 = STNAR challenged (107 

cfu/ml) + 100 ppm NP, T4 = STNAR challenged (107 cfu/ml) + 200 ppm NP. 

2 Chicks were 12 per treatment group (n=12) 

 

Table 3.5 Chicken cytokines and toll-like receptor primer sequences 

 

Gene2 

 

Primer sequence (5′–3′) 

Gene bank 

accession no. 

Fragment 

size, bp 

Annealing 

temperature, °C  

GAPDH F: GCTAAGGCTGTGGGGAAAGT 

R: TCAGCAGCAGCCTTCACTAC 

K01458 116 56 

TLR-4 F: AGTCTGAAATTGCTGAGCTCAAAT 

R: GCGACGTTAAGCCATGGAAG 

AY064697 190 56 

IL-6 F: CAGGACGAGATGTGCAAGAA 

R: TAGCACAGAGACTCGACGTT 

AJ309540 233 59 

IL-10 F: AGCAGATCAAGGAGACGTTC 

R: ATCAGCAGGTACTCCTCGAT 

NM001004414 103 56 

IL-1ß F: CACAGAGATGGCGTTCGTTC 

R: GCAGATTGTGAGCATTGGGC 

NM204524 118 56 

 

2 IL = interleukin; TLR = Toll-like receptor; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase 
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a)                                                                        b)  

                                       

c)                                                                         d)  

  

 

Figure 3.1 The comparison of T2 with T3 in terms of STNAR counts in ceca (n=12) collected on days 7, 11, 

15 and 21. Broilers were fed diets supplemented with different levels of 2 nitro-1-propanol (NP). Chicks 

were challenged with Salmonella Typhimurium (STNAR). Error bars represent standard errors. Dietary 

treatments: T1 = STNAR unchallenged (negative control), T2 = STNAR challenged (positive control) and T3 

= STNAR challenged + 100 ppm NP.                                                                                                                                                                          

a) Day 7, b) Day 11, c) Day 15, d) Day 21.  
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a)                                                                              b)  

 

c)                                                                               d)  

  

 

Figure 3.2 The comparison of T2 with T4 in terms of STNAR counts in ceca (n=12) collected on days 7, 11, 

15 and 21. Broilers were fed diets supplemented with different levels of 2 nitro-1-propanol (NP). Chicks 

were challenged with Salmonella Typhimurium (STNAR). Error bars represent standard errors. Bars with 

different letters (a to b) differ significantly across the treatment groups (P < 0.05). Dietary treatments: T1 

= STNAR unchallenged (negative control), T2 = STNAR challenged (positive control) and T4 = STNAR 

challenged + 200 ppm NP.                                                                                                                                                                          

a) Day 7, b) Day 11, c) Day 15, d) Day 21.  
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a)                                                                                    b)  

  

 

c)                                                                                                        d) 

 

 

Figure 3.3 Ileal immune gene expressions of cytokines: a) Toll-like receptor (TLR)-4, b) Interleukin (IL)-

6, c) IL-1β and d) IL-10. Chicks were fed diets supplemented with different levels of 2 nitro-1-propanol 

(NP) and challenged with Salmonella Typhimurium (STNAR). Error bars represent standard errors. Bars 

with different letters (a to b) differ significantly across the treatment groups (P < 0.05). Dietary 

treatments: T1 = STNAR unchallenged (negative control), T2 = STNAR challenged (positive control, T3 = 

STNAR challenged + 200 ppm NP and T4 = STNAR challenged + 200 ppm NP.  
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CHAPTER 4 

CONCLUSION 

Salmonellosis is a worldwide health problem with the majority of human salmonellosis 

associated with the consumption of contaminated poultry products such as meat and eggs. 

Research has been conducted to improve our understanding of Salmonella ecology and 

pathogenicity; however, Salmonella still causes new food safety challenges in the poultry 

industry and remains one of the major food-borne pathogens in the world. Therefore, controlling 

Salmonella in food animals is a huge concern due to high rate of contamination. Numerous feed 

additives have been used to reduce Salmonella infections in poultry, with the rate of success 

based on the additive used; however, alternative feed additives are still needed to create a 

sustainable inhibition or even elimination of Salmonella in the industry. In this study, we 

evaluated the effect of 2-nitro-1-propanol (NP) supplementation on the colonization of 

Salmonella in mature laying hens and broilers. 

In the first study, challenging mature laying hens with two different inoculum doses of 

SENR served the purpose of revealing the inhibitory effect of NP as a potential feed additive. NP 

supplementation of the diets numerically reduced the counts of SENR in the ceca and altered the 

prevalence of SENR in other internal organs and feces. Also, it significantly downregulated the 

mRNA expressions of varied cytokines playing vital roles in the immune response of the ileum 

to S. Enteritidis infection in mature laying hens. 

In the second study, NP supplementation of the diets against STNAR infection in broilers 

did not show adverse effects on growth performance within 21 days and significantly decreased 

the prevalence of STNAR in feces as well as reduction of colonization in the ceca. However, NP 

supplementation of the diets did not downregulate the mRNA expression of cytokines playing 

crucial roles in the ileum response to S. Typhimurium infection in broilers.  

Further research is needed to determine the effective dose of NP to reveal its multifaceted 

effects against Salmonella infections so that a sustainable inhibition against bacterial infections 

can be achieved in the poultry industry. 


