
 

 

 

GRADUATE TEACHING ASSISTANTS’ MATHEMATICAL UNDERSTANDING FOR 

TEACHING TRIGONOMETRY 

by 

HEE JUNG KIM 

(Under the Direction of Patricia S. Wilson) 

 This study described the mathematical understanding, exhibited by graduate teaching 

assistants in a Department of Mathematics (GTA-Ms), that is useful for teaching trigonometry. 

The following two research questions guided this study: (1) To what extent do GTA-Ms exhibit 

an understanding of trigonometric concepts when solving and explaining trigonometry 

problems? (2) What understanding of trigonometry do GTA-Ms use in analyzing and responding 

to students’ mathematical thinking about concepts of trigonometry in hypothetical teaching 

contexts? 

 I used the framework of Mathematical Understanding for Secondary Teaching (MUST) 

developed by the Situations Project of the Mid-Atlantic Center for Mathematics Teaching and 

Learning (MAC-MTL) at Pennsylvania State University and the Center for Proficiency in 

Teaching Mathematics (CPTM) at the University of Georgia. This framework was a useful guide 

for designing task items and a good tool for analysis of the data collected from three task-based 

interviews with each participant because it helped me systemically organize, categorize, and 

describe the mathematical understanding that emerged from the participants’ mathematical work. 

In this study, I considered fundamental concepts of trigonometry to mean the basic core 

concepts that underlie teaching and learning trigonometry. The findings from this study showed 



 

that the participants exhibited a mathematical understanding characterized in most of the strands 

of the MUST framework. Although GTA-Ms exhibited proficiency with advanced mathematical 

concepts, they showed a lack of conceptual understanding of some fundamental concepts useful 

for teaching mathematics when solving and explaining trigonometry problems.  

Given a hypothetical teaching context describing students’ mathematical thinking, the 

participants tended to use their mathematical understanding to respond in formal ways, such as 

providing rigid definitions, deductive reasoning, and conventional manipulations of 

mathematical symbols. In particular, their explanations of both advanced and fundamental 

concepts were more procedural than conceptual, equation-oriented, and definition-based. The 

findings from this study suggested that mathematical concepts–fundamental as well as advanced 

concepts–within courses that GTA-Ms teach should be revisited and conceptually developed as 

part of their preparation for teaching.  
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CHAPTER 1 

INTRODUCTION 

 Because of today’s competitive educational environment, universities are quite interested 

in improving the quality of their undergraduate education. A particularly important aspect of this 

goal is the necessity of providing undergraduates learning mathematics with an academically 

strong, educational experience. Offering a high quality mathematics program is additionally 

important to a university system because mathematics is seen as a foundational discipline for 

many other programs in science, business, and even in the arts in this technological age. 

 One very common trend in major universities is the employment of graduate teaching 

assistants for introductory undergraduate mathematics courses in the Department of 

Mathematics. At the time of their employment, graduate teaching assistants bring various 

backgrounds to the department. In addition, their knowledge, beliefs, and experience developed 

along the way, while carrying out their instructional roles, appear to be influential in the quality 

of undergraduate mathematics education. Therefore, it is necessary to pay attention to what they 

know, learn, experience, believe, and think when they serve as college mathematics instructors. 

In this study, I focused on what they know and sought to understand the nature of their 

mathematical understanding for teaching undergraduate mathematics, such as precalculus. 

Background  

 There are some prevailing erroneous beliefs about university instruction deeply rooted in 

school and society. These beliefs impede the improvement of undergraduate mathematics 

education (Alsina, 2001; National Research Council [NRC], 1991). One such belief claims that 
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because mathematicians have expertise in the field of mathematics, they are sufficiently qualified 

to teach mathematics. However, research on K-12 mathematics education (e.g., Begle, 1979; 

Monk, 1994) shows that knowledge of advanced mathematics does not guarantee effective 

teaching of mathematics. This belief may result in students suffering from ineffective teaching 

by experts in mathematics.  

 Another academic belief is that undergraduate mathematics teaching does not require 

special training for teaching. Instead, all that is required for the successful teaching of 

mathematics is on-the-job, accumulated experience, clear presentation, and solid content 

knowledge (Alsina, 2001). In fact, college mathematics instructors including graduate teaching 

assistants have limited opportunities to participate in specific training for teaching or to learn 

about existing mathematics education research. They tend to construct models for teaching 

primarily based on their prior learning experiences during their own school years, including 

undergraduate and graduate years, as well as their own teaching experience (Alsina, 2001; NRC, 

1991; Speer, Gutmann, & Murphy, 2005). However, researchers (e.g., Bass, 1997; Speer et al., 

2005) suggested that professional development for college instructors including graduate 

teaching assistants in the Department of Mathematics is indeed necessary to improve the quality 

of undergraduate mathematics education.  

 A third popular belief argues that pedagogy in undergraduate mathematics education 

merely consists of the need for a clear and logical presentation of content (Selden & Selden, 

1993). Because of this belief, undergraduate mathematics courses have a lecture-mastery 

paradigm. The predominant perspective for undergraduate mathematics teaching remains that of 

knowledge transmission or apprenticeship (Alsina, 2001; Prosser & Trigwell, 1999), although 

Tall (1991) noted, “Current approaches to undergraduate teaching tend to give students the 
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product of mathematical thought rather than the process of mathematical thinking….A logical 

presentation may not be appropriate for the cognitive development of the learner” (p. 3).  

Departments of Mathematics are one of the largest employers of graduate teaching 

assistants (GTAs) among U.S. colleges and universities (Henderson, 1997). Graduate teaching 

assistants in Departments of Mathematics (GTA-Ms) play various roles in undergraduate 

mathematics education (Speer et al., 2005). Their roles include grading homework and quizzes, 

solving problems in recitation sessions, and providing tutoring services for mathematics courses 

(Speer et al., 2005). However, their role becomes more significant in undergraduate mathematics 

education when they teach undergraduate courses, such as lower-division mathematics courses or 

content courses for prospective teachers, as instructors of record (Speer et al., 2005). A recent 

survey reported that about one-half of all GTA-Ms serve as instructors of record and teach 6-

14% of the sections at the precollege-level (remedial), introductory-level, and calculus-level 

undergraduate mathematics courses at U.S. colleges and universities (Belnap & Withers, 2008; 

Lutzer, Rodi, Kirkman, & Maxwell, 2005). From 2000 to 2005, the percentage of precollege-

level sections taught by GTA-Ms increased from 9.5 to 14.6%; the percentage of sections of 

introductory-level courses (including college algebra, precalculus, mathematics for liberal arts, 

etc.) taught by GTA-Ms increased from 10.4 to 10.5%; and the percentage of calculus-level 

sections taught by GTA-Ms increased from 6.4 to 7.6% (Lutzer et al., 2005). In Departments of 

Mathematics that offer a Ph.D. program in mathematics, approximately 35% of the sections 

(excluding distance learning) of introductory-level courses (including college algebra and 

precalculus) were taught by GTA-Ms in 2005 (Belnap & Withers, 2008; Lutzer et al., 2005). 

These statistics show that not only has the level of involvement of GTA-Ms in undergraduate 
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mathematics education been increasing, but also their potential impact on undergraduate 

students’ learning of mathematics has become greater (Speer et al., 2005). 

Rationale  

Study of GTA-Ms 

 In the 1980s, increasing concerns about students’ learning of undergraduate mathematics 

stimulated research on undergraduate mathematics education, which has become active since 

then (Speer et al., 2005; Speer, Murphy, & Gutmann, 2009). The early focus of research on 

undergraduate mathematics education was placed primarily on student learning (Hart, 1999; 

Speer et al., 2005). As researchers became aware of the significant involvement of GTA-Ms in 

undergraduate mathematics education, they began to pay attention to GTA-Ms “as current and 

future key players” (Speer et al., 2005, p.76) in the field of undergraduate mathematics education 

because some GTA-Ms were seen the potential mathematics faculty members of the future 

(Belnap, 2005). The National Science Foundation [NSF] (1996) report on undergraduate 

education in Science, Mathematics, Engineering and Technology recommended that college and 

university governing boards and administrators provide opportunities for graduate students to 

learn about effective teaching strategies as part of their graduate programs. Resources (e.g., 

materials, activities, or programs) for the professional development of GTA-Ms became 

abundantly available in the 1980s and 1990s (Speer et al., 2009). Speer et al. (2009) explained 

that these resources were developed from “various groups’ collective wisdom from practical 

experience about key issues in learning to teach,” (p. 5) but were not based on research about 

issues related to GTA-Ms and their professional development. Therefore, research-based inquiry 

on GTA-Ms’ learning to teach broke new ground in the late 1990s. At present, however, there is 

still only a limited body of “groundwork research” (Speer et al., 2005, p. 78) about GTA-Ms as 
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college instructors, compared to a substantial body of research about K-12 teachers (Speer et al., 

2005). GTA-Ms’ characteristics, such as what they know, think, believe, experience, and need in 

relation to undergraduate mathematics teaching and learning, remain relatively unknown, 

although research is in progress (Harris, Froman, & Surles, 2009; Hart, 1999; Speer et al., 2005; 

Speer et al., 2009; Speer, Smith III, & Horvath, 2010). Lack of research about GTA-Ms as 

college instructors could restrict our understanding of their teaching practices and professional 

development for teaching preparation (Speer et al., 2010). Therefore, this study of GTA-Ms’ 

characteristics, in particular, of their mathematical understanding for teaching, was conducted to 

fill a gap in the current research literature.  

Study of GTA-Ms’ Mathematical Understanding for Teaching 

 Teachers’ mathematical knowledge has been an important issue in K-12 mathematics 

education because knowledge and understanding of mathematics to teach is integral to teaching 

and is influential in students’ learning (Fennema & Franke, 1992). The National Council of 

Teachers of Mathematics [NCTM] (2000) highlighted the importance for teachers’ mathematical 

knowledge by noting, “To be effective, teachers must know and understand deeply the 

mathematics they are teaching and be able to draw on that knowledge with flexibility in their 

teaching tasks” (p. 17).  

In past decades, researchers (e.g., Begle, 1972; Grossman, Wilson, & Shulman, 1989; 

Monk, 1994; Monk & King, 1994) attempted to find the relationship between teachers’ 

mathematical knowledge and student performance quantitatively. They used, for example, test 

scores, the number of undergraduate mathematics courses taken, or grade point averages as 

indicators of teachers’ mathematical knowledge. However, researchers failed to find a consistent 

correlation between teachers’ mathematical knowledge and students’ mathematics achievement. 
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Such failure provided researchers with new insight into the complex aspects of teacher 

knowledge, which could not be quantified with numbers (Grossman et al., 1989). Researchers 

began to explore various aspects of teacher knowledge from, for example, its nature, form, 

organization, and content (Grossman et al., 1989). 

 Inspired by Shulman and his colleagues’ work (Shulman, 1986; Grossman et al., 1989) 

for categorizing content-related teacher knowledge, researchers (e.g., Ball, Hill, & Bass, 2005; 

Ball, Thames, & Phelps, 2008; Even, 1990; Grossman, 1990; Hill, Ball, & Schilling, 2008; Ma, 

1999) proposed theoretical models of the dimensions of teacher knowledge and identified the 

nature and the effect of teacher knowledge on teaching practice and on student learning. 

Researchers (e.g., Ball & McDiarmid, 1990; Fennema & Franke, 1992) found that neither 

prospective nor practicing teachers had good mathematical preparation. They also showed a lack 

of adequate mathematical knowledge for teaching. Therefore, researchers began to turn their 

attention to teachers’ mathematical preparation in teacher education and in professional 

development. As a result of continuous active research about this area (e.g., Brown & Borko, 

1992; Fennema & Franke, 1992), the body of research on K-12 teacher knowledge became 

extensive and substantial. Therefore, its findings have served to improve K-12 mathematics 

education as a foundation not only for K-12 teacher development models and programs but also 

for research about effects of the programs on teaching practice. 

Even though professional development programs for GTA-Ms became widespread, most 

existing programs including activities and materials were designed by experienced instructors 

(Speer et al., 2009; Speer et al., 2010). Although the resources might be useful and valuable for 

novice college instructors, they were not based on GTA-Ms research, such as research about 

their knowledge or beliefs (Speer et al., 2005; Speer et al., 2010).  
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GTA-Ms are different from K-12 teachers in the sense that GTA-Ms form a unique group 

of “teachers,” who are young mathematicians teaching undergraduate mathematics with little or 

limited systemic teaching training (Li, 2009). However, they are similar to K-12 teachers in the 

sense that GTA-Ms, as college instructors, go through a similar developmental process to 

become effective teachers (Belnap, 2005; Li, 2009; Speer et al., 2005). Therefore, researchers 

inspired by K-12 research on mathematics education suggested that research-based K-12 teacher 

development should be a model for research on GTA-Ms’ professional development (Speer et al., 

2005; Speer et al., 2009; Speer et al., 2010). Speer and her colleagues (2005) asserted,  

The similarities [of GTA-Ms and K-12 teachers] may point to ways in which the existing 

research base on K-12 teacher development can be applied to TAs [mathematics teaching 

assistants]. Differences may help identify areas where additional research is especially 

needed. In both situations, making use of and building on what is known from research in 

K-12 teacher development could be an important component of design and 

implementation of professional development for TAs. (p. 78) 

Although findings from research on K-12 teacher knowledge have served as a foundation 

of K-12 teacher development (e.g., Ball et al., 2001; Cooney, Shealy, & Arvold, 1998), very little 

empirical research has explored GTA-Ms’ knowledge for teaching (Li, 2009; Speer et al., 2005). 

Kung (2010) said, “Teacher knowledge at the college level remains a largely an unexplored 

subject, despite the importance for such knowledge to college teaching and the preparation of 

future teachers at the high school and college level” (p. 143). Only a few recent studies have 

investigated GTA-Ms’ knowledge of student thinking or learning (Kung, 2010; Kung, Speer, & 

Gucler, 2006; Speer, Strickland, & Johnson, 2005) and knowledge of students’ strategies and 

difficulties (Speer, Strickland, Johnson, & Gucler, 2006). 
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Stein, Baxter, and Leinhardt (1990) highlighted the importance for research on teacher 

knowledge of subject matter: “In order to build a solid understanding of how teacher knowledge 

relates to instructional practice, we need to develop and draw upon detailed, qualitative 

descriptions of how teachers know, understand, and communicate their subject matters” (p. 640). 

However, because it was assumed that GTA-Ms have a strong understanding of the mathematics 

to be taught, their mathematical understanding for teaching has been given less attention than 

other domains of teacher knowledge: 

Even fewer–virtually none [italics added], in fact–have studied the knowledge required 

for teaching by university mathematicians….Moreover, research mathematicians are 

unlikely [italics added] to lack mathematical content knowledge, and as a result, there 

may be much for the mathematics education research community to learn about the other 

[italics added] kinds of knowledge required for effective reform-minded teaching. 

(Wagner, Speer, & Rossa, 2007, p. 248) 

I found similar statements related to the assumption in the literature about GTA-Ms. For example, 

“Little [italics added] concern has been raised regarding these TAs’ depth of understanding of the 

content knowledge, yet they often experience significant challenges teaching undergraduate 

students for other [italics added] reasons” (Chae, Lim, & Fisher, 2009, p. 246).  

However, Ball (2003) asserted that mathematical knowledge for effective teaching is 

different from that needed by mathematicians. Although most GTA-Ms are mathematicians who 

are considered as having mathematical expertise, “knowing something for oneself or for 

communication to an expert colleague is not the same as knowing it for explanation to a student” 

(Bass, 1997, p. 19). Results of K-12 research have supported such an argument. For example, 

Begle’s (1972) study showed that teacher effectiveness did not directly relate to further advanced 
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mathematics coursework or majoring in mathematics. He highlighted the importance for teachers’ 

understanding of the content they teach: 

Teacher understanding of modern algebra (groups, rings, and fields) has no [italics added] 

significant correlation with student achievement in algebraic computation or in the 

understanding of ninth grade algebra….However, teacher understanding of the algebra of 

the real number system does [italics added] have significant positive correlation with 

student achievement in the understanding of ninth grade algebra. (1972, p. 8)  

Regarding the result of the Begle’s study (1972), Ball et al. (2001) made the following plausible 

conjecture: 

One explanation might rest with the increasing compression of knowledge that 

accompanies increasingly advanced mathematical work, a compression that may interfere 

with the unpacking of content that teachers need to do (e.g., Ball & Bass, 2000; Cohen, in 

preparation). (p. 442)  

Cuoco (2001) suggested that teachers should “develop the habit of ‘mining’ the topics they teach 

for substantial mathematics” (p. 170) because knowledge of advanced undergraduate 

mathematics is not easily connected with the school mathematics they teach. Researchers (e.g., 

Conference Board of the Mathematical Sciences [CBMS], 2001; Ma, 1999) also suggested that 

teachers should develop a deeper and more specialized understanding of the mathematical 

concepts they teach, which might not be naturally acquired from learning advanced mathematics.  

  Many GTA-Ms undergo significant academic training by striving to learn the advanced 

and specialized mathematical knowledge that they need to be research mathematicians in their 

degree programs. In contrast, they have relatively little preparation to be college instructors 

before or while they are teaching (Li, 2009). The content of introductory-level undergraduate 
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mathematics, which most GTA-Ms are assigned to teach, might not be difficult for GTA-Ms. 

However, the assumption that their understanding of any concept of a subject that they teach is 

sufficient for effectively communicating the content for teaching is not always warranted, even if 

they “know” the content. Ball et al. (2005) argued, “Knowing mathematics for teaching demands 

a kind of depth and detail that goes well beyond what is needed to carry out the algorithm 

reliably” (p. 21). In this study, I used the term understanding as more than knowledge and as 

knowing and using at a deeper level in a dynamic sense. Therefore, this research was conducted 

to understand the nature of GTA-Ms’ mathematical understanding of the subject of 

undergraduate mathematics they teach, which might provide insight into their teaching practices 

and, further, their teaching preparation. In particular, this study chose trigonometry for the 

subject. 

Study of Trigonometry  

 Trigonometry is a complex and interrelated subject in school mathematics (Brown, 

2005). Understanding trigonometry is fundamental to understanding topics in mathematics, such 

as calculus, and other branches of science, such as physics and astronomy. For example, the 

concept of trigonometry connects to the study of polar coordinates, complex numbers, vectors, 

rotations, and modeling periodic phenomena within and outside mathematics (Brown, 2005; Fi, 

2003; Weber, 2005). Talley (2009) found that college calculus instructors believe that calculus 

students’ prior knowledge of algebra and trigonometry is essential for successful learning of 

calculus. Although trigonometry is an integral part of mathematics courses, such as precalculus 

(CBMS, 2001), it is known as a difficult concept for both students and teachers (Brown, 2005; 

Fi, 2003; Moore, 2010a). As explained by the CBMS (2001),  
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Although there is a geometric basis for the subject of trigonometry, right triangle, and 

periodic-function aspects of that topic have been traditionally taught in a separate high 

school course and as part of pre-calculus studies. This may be one of reason why 

prospective high school mathematics teachers often have some technical proficiency in 

the trigonometry of right triangles when they come to undergraduate studies, but lack 

deep understanding of the core geometric principles that make trigonometry possible. (p. 

132) 

 Despite its significance in mathematics education, trigonometry did not draw sufficient 

attention from researchers over the past decades (Akkoc, 2008; Fi, 2003). Therefore, little 

research has been conducted on teaching and learning of trigonometry; in particular, empirical 

research on teachers’ knowledge of trigonometry is rare (Akkoc, 2008; Fi, 2003). In addition, 

research on GTA-Ms’ mathematical knowledge of the trigonometry they teach was not found. 

  As reported by a CBMS survey (2005), total enrollment, including distance-learning 

enrollment, in the undergraduate introductory-level courses teaching trigonometry (e.g., 

precalculus, college algebra, trigonometry, and combined courses of college algebra and 

trigonometry) increased from 59 to 70% over the 15 years from 1990 to 2005. The report showed 

that not only was there a significant increase in students taking those courses over this period, 

but in 2005, GTA-Ms in doctoral-level mathematics departments taught about 43% of the 

sections of trigonometry courses (excluding distance learning), 29% of the sections of combined 

courses, and 40% of the sections of precalculus courses. The statistics also indicated that the 

instructional responsibility of GTA-Ms for teaching trigonometry to undergraduate students has 

increased. Therefore, it is important to understand GTA-Ms’ knowledge of the trigonometry they 

teach because their knowledge influences both their teaching ability and their students’ learning 
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of the concepts (Ball et al., 2001; Even, 1990; Ma, 1999; McDiarmid, Ball, & Anderson, 1989). 

Therefore, this research was conducted to understand the nature of GTA-Ms’ mathematical 

understanding of the subject of the trigonometry they teach, in most cases, in a precalculus 

course. 

Purpose of the Study and Research Questions 

 It may be the case that GTA-Ms’ mathematical knowledge of the content that they teach 

has not been researched because they are regarded as content knowledge “experts.” However, I 

assert that advanced mathematics coursework and research in a specific mathematical domain do 

not necessarily guarantee that GTA-Ms have an understanding of fundamental undergraduate 

mathematics that is useful for teaching in a conceptual manner. It is plausible that GTA-Ms’ 

mathematical understanding of the subjects they teach could vary by concepts and could 

contribute to the variation of their teaching practices. The lack of research on GTA-Ms’ 

mathematical understanding of a subject for teaching is problematic because such research could 

serve as groundwork for developing research-based effective professional development for their 

teaching preparation. 

 The purpose of this study was to explore the nature of GTA-Ms’ mathematical 

understanding of trigonometry for teaching undergraduate students. I conducted this study to 

answer the following two research questions:  

1. To what extent do GTA-Ms exhibit an understanding of trigonometric concepts when 

solving and explaining trigonometry problems?  

2. What understanding of trigonometry do GTA-Ms use in analyzing and responding to 

students’ mathematical thinking about concepts of trigonometry in hypothetical teaching 

contexts? 
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Significance of the Study 

 This study offers two major contributions to research on GTA-Ms’ mathematical 

understanding of teaching trigonometry. First, this study provides an understanding of GTA-Ms’ 

knowledge, proficiencies, and ideas about teaching that could serve as one piece of the 

groundwork for developing effective research-based teaching development activities, materials, 

or programs (Speer et al., 2005). Findings from this study may provide professional developers 

and policy makers with insight into the nature of GTA-Ms’ understanding of the mathematics 

they teach in undergraduate mathematics courses. This study suggests that GTA-Ms’ 

mathematical understanding of fundamental concepts as well as advanced concepts of a subject 

that they teach should be developed in their teaching preparation. 

 Second, this study demonstrates the usefulness of the Mathematical Understanding for 

Secondary Teaching (MUST) framework developed by the Center for Proficiency in Teaching 

Mathematics and the Mid-Atlantic Center for Mathematics Teaching and Learning.
1
 The 

framework was significant in designing the study and in the analysis of the data. In particular, the 

framework was useful for organizing and categorizing the participants’ mathematical 

understanding for teaching exhibited and observed in their written and verbal work. Although the 

framework is still evolving and improving, this study provides an example of how to use it as a 

lens through which further studies on teachers’ knowledge of content for teaching might be 

examined. 

 

 

 

                                                 
1
 This study was partially supported by the Center for Proficiency in Teaching Mathematics funded by the National 

Science Foundation under Grant No. 0227586. Any opinions, findings, and conclusions or recommendations 

expressed are those of the author and do not necessarily reflect the views of the National Science Foundation. 
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Definition of Terms 

Graduate teaching assistants in the Department of Mathematics. In this study, the term 

graduate teaching assistants in the Department of Mathematics (GTA-Ms) refers to graduate 

students seeking a doctoral degree in mathematics, who are employed on a basis of a temporary 

contract (possibly renewed per semester or academic year) by the Department and assist in 

teaching or teach, as instructors of record, undergraduate mathematics courses. This term 

includes those who also hold both research and teaching assistantships, and those who have 

taught an undergraduate mathematics course including recitation sessions as GTA-Ms, but 

currently became research assistants.  

 Teachers and college instructors. In this study, the label teachers refers to prospective or 

practicing teachers at the K-12 level. In contrast, the label college instructors refers to those who 

serve as instructors of record for a course at institutions of higher education. Many GTA-Ms 

teach undergraduate mathematics as college instructors.   

Overview of the Study 

Chapter 1 has presented the background and rationale for the study, and explained the 

purpose of the study including two research questions. This was followed by the significance of 

the study and definitions of terms. Chapter 2 presents the theoretical foundation and framework 

for this study. Chapter 3 offers the context of the study and a description of the participants, and 

details the study’s design, including data collection and analysis. Limitations of the study are 

also discussed. Chapter 4 presents the findings according to the three components of the MUST 

framework. Chapter 5 discusses the nature of GTA-Ms’ mathematical understanding for teaching 

trigonometry from the findings. Chapter 6 includes a summary and conclusions of the study, the 

methodological contributions, and implications for future research. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL FRAMEWORK 

Graduate Teaching Assistants 

Research on Graduate Teaching Assistants 

 In the late 1800s, universities began offering graduate teaching assistantships in all fields 

as a source of graduate financial support to recruit and retain students in graduate programs 

(DeFranco & McGivney-Burelle, 2001; McGivney-Burelle, DeFranco, Visonhaler, & Santucci, 

2001). Originally, graduate teaching assistants (GTAs) were expected to assist professors in 

teaching lower- and upper-division courses by taking attendance, grading, or preparing class 

materials (DeFranco & McGivney-Burelle, 2001). As the number of large classes at many 

institutions increased during the 1960s and 1970s, so did the number of supplemental sessions 

conducted by GTAs (Nyquist, Abbott, Wulff, & Sprague, 1991). Today, the instructional 

services by GTAs are integral to undergraduate education (Speer et al., 2005) and a considerable 

portion of undergraduate courses are taught by GTAs at many institutions (DeFranco & 

McGivney-Burelle, 2001; Luo, Bellows, & Grady, 2000). For example, GTAs teach more than 

one-half of the undergraduate courses offered at Yale University (Luo et al., 2000).  

As the instructional roles and duties of GTAs have increased, some educational concerns 

about GTAs for undergraduate education have been raised (DeFranco & McGivney-Burelle, 

2001). First, departments generally hire and financially support GTAs based on consideration of 

their potential as graduate students of their disciplines, not on their teaching competence 

(Henderson, 1997; Sprague, 1992). As a consequence, some new GTAs begin teaching with little 
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or no prior teaching experience or formal training for teaching, and tend to primarily rely on their 

prior learning experiences as a source for ideas about teaching (Belnap, 2009; Li, 2009; 

McGivney-Burelle et al., 2001; Speer et al., 2005). In fact, researchers found that GTAs often 

lack support and guidance in making the transition from learners to college instructors of their 

particular academic disciplines (Childs, 2008).  

Second, GTAs are most likely assigned to teach introductory-level undergraduate 

courses. Therefore, they are often regarded as the representatives of the department of the 

academic discipline. Because undergraduate students typically learn the course content through 

interactions with GTAs, the students may develop perspectives including values and beliefs 

about the discipline from their learning experiences with GTAs (Daly, 1992).  

Third, many current GTAs are prospective faculty members. Teaching is an important 

function they will perform at institutions of higher education upon graduation. Golde and Dore 

(2001) surveyed doctoral students in 11 arts and sciences disciplines including mathematics, 

from 27 universities with doctoral education. The survey showed that approximately 60 to 90% 

of the doctoral students surveyed (except for molecular biology and chemistry) had a faculty 

career in mind. In particular, 75% of the mathematics doctoral students surveyed showed interest 

in a faculty career after graduation. The survey also showed that 83% of the doctoral students 

surveyed across disciplines, selected a factor of “enjoyment of teaching” as the one positively 

influencing their decision to pursue a faculty career. Therefore, it is plausible to say that GTAs 

will bring their teaching experiences and preparation into their future professions, which makes a 

long-term effect on undergraduate education.  

 To address such growing concerns, since the 1980s, numerous GTA preparation 

programs have sprung up and been developed at universities and departments; such programs 
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include GTA orientation as university-wide training and departmental seminars designed to 

enhance the teaching skills of GTAs (Belnap & Withers, 2008; Childs, 2008). Therefore, over 

the past decades, research focused on describing methods and strategies for effective GTA 

preparation or training. For example, researchers suggested GTA workshops or faculty 

supervision and mentoring through classroom observations and feedback (Bass, 1997; Johnson, 

2001). Most professional development programs for GTAs have been designed from experienced 

instructors’ practical knowledge, and provided GTAs with institutional and departmental 

policies, a laundry list of basic routine instructional duties, and “how-to-do-it” teaching skills, 

such as communication skills or classroom management (Galvin, 1992; Shannon, Twale, & 

Moore, 1998). 

On the other hand, research investigating the effects of existing GTA teaching training 

has recently begun (Childs, 2008; Shannon et al., 1998). Researchers found that, despite 

university efforts for GTA training, GTAs preparation programs do not significantly impact 

GTAs’ teaching practices. In addition, they also found that GTAs perceive that the university 

provides limited support in helping them prepare to teach and, as a result, tend to depend upon 

teaching models shaped by their learning experience (Defranco & McGivney-Burelle, 2001; 

Golde & Dore, 2001; Shannon et al., 1998). Therefore, numerous researchers (Daly, 1992; 

Saroyan, Amundsen, McAlpine, Weston, Winer, & Gandell, 2004) asserted that discipline-free 

and skill-based training programs are generally ineffective to improve teaching because teaching 

always happens in a context that interacts with perspectives, knowledge, and actions. They 

highlighted that effective workshops for teaching at the postsecondary level require an 

understanding of the relevance of general pedagogies to a particular discipline in a teaching 

context. They also suggested that research on GTAs should explore the process of preparing 
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GTAs in a specific discipline rather than across disciplines because different content domains 

require distinctive knowledge and methods for teaching. 

Research on Graduate Teaching Assistants in the Department of Mathematics 

Reports on failure in producing positive effects of GTA’s teaching preparation programs 

(Defranco & McGivney-Burelle, 2001; Golde & Dore, 2001; Shannon et al., 1998) suggested a 

new direction of research focus in relation to the preparation of graduate teaching assistants’ in 

the Department of Mathematics (GTA-Ms’) (Speer et al., 2005). Researchers in undergraduate 

mathematics education began to pay attention to fundamental aspects involved in GTA-Ms’ 

learning to teach. Influenced by literature on K-12 teacher development, they attempted to 

identify aspects of their development as college instructors, which might not have been 

considered or supported by existing teaching training programs (Speer et al., 2009). Because it 

has been shown at the K-12 level that teacher knowledge is one of critical factors that impact 

teaching practice and development of teacher knowledge in professional development programs 

is essential for effective teacher training (Fennema & Franke, 1992), researchers applied and 

extended ideas of research on K-12 teacher knowledge to research GTA-Ms’ knowledge for 

teaching (Speer et al., 2009). Their goal was to provide research-based guidance for designing 

new professional development programs as seen in research on K-12 teacher development, and 

consequently, to help GTA-Ms improve teaching practices. At present, although research on 

GTA-Ms is still young, it is in progress (Speer et al., 2005; Speer et al., 2009). 

Research studies about GTA-Ms’ knowledge for teaching are rare (Speer et al., 2005). 

Because GTA-Ms are studying advanced mathematics, researchers paid more attention to GTA-

Ms’ knowledge for teaching in relation to student thinking than their mathematical understanding 
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of the content that they teach. Roach, Roberson, Tsay, and Hauk (2010) explained the nature of 

GTA-Ms’ knowledge:  

The knowledge of MTAs [meaning by GTA-Ms] about tackling the highest level of task, 

“doing math” (Stein et al.’s term), is densely packed and routinely used as implicit 

knowledge in their own graduate course. That is, helping instructors [GTA-Ms] learn to 

“unpack” their knowledge and ways of knowing is a different challenge in the 

professional development of MTAs than for in-service teachers. (p. 11) 

Researchers investigated GTA-Ms’ knowledge of student thinking for concepts of 

calculus to identify the nature of their knowledge (Speer, Strickland et al., 2005; Speer et al., 

2006). The findings showed that although GTA-Ms exhibited conceptual understanding and 

procedural fluency with the concepts when they solved the tasks, they had difficulties describing 

students’ strategies and providing explanation about students’ difficulties. Speer and colleagues 

(2005, 2006) noted that this difficulty was an indicator of limited ideas about student thinking. 

The GTA-Ms could not offer other solution approaches that students might use other than those 

that the GTA-Ms had generated as optimal solutions. For example, when they were asked for any 

other possible solutions, they responded, “Well, I always imagine a student would do exactly 

what I would do” (Speer, Strickland et al., 2005, pp. 3-4). The findings indicated that GTA-Ms’ 

strong understanding of content did not ensure a comparable understanding of student solution 

strategies and student difficulties. Speer and colleagues (2005, 2006) suggested that GTA-Ms’ 

professional development should be designed so that GTA-Ms’ knowledge of student thinking 

could be developed.  
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Trigonometry 

Overview of the History of Trigonometry 

 Over 2000 years ago, the Greeks coined the term trigonometry by combining two words 

trigonon (triangle) and metria (measurement), which means triangle measurement (Swokowski 

& Cole, 2009). Trigonometry originally served as a tool to solve practical application problems 

in the field of astronomy where researchers needed to perfect astronomical calculations. For this 

reason, circle trigonometry emerged from the astronomic study of the heavens prior to the birth 

of triangle trigonometry (Bressoud, 2010).  

 Triangle trigonometry was not fully developed until the 11th century, even though its 

initial development began with the question of how to determine a shadow’s length of a vertical 

stick in the 2nd century (Bressoud, 2010; Scott, 1960). From the mid-16th century, a ratio 

definition of trigonometric functions emerged and began to be applied to calculation problems to 

determine the unknown sides of right triangles (Bressoud, 2010). Since the 17th century, 

trigonometry was no longer considered as just a tool for astronomy, but developed as an 

independent branch in mathematics. The ratio definition of trigonometric functions in a triangle 

context became predominant in the 19th century (Bressoud, 2010). 

 The development of trigonometry was related to the development of angle measurement. 

A degree measure of an angle was initially defined as the length of an arc subtended by the angle, 

which depends on the length of the radius of the circle, and later in the late 19th century, as a 

fractional part of a complete revolution (Bressoud, 2010; Cooke, 1997). Currently, one degree is 

defined by 1/360th of the full turn corresponding to 360º (Bressoud, 2010). The focus of the 

early study of trigonometry was placed on the computation of the length of the chord. A chord is 

a line segment formed by connecting the endpoints of an arc. Since then, the chord functions 
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have evolved to trigonometric functions per se (Scott, 1960). For example, if the chord subtends 

an arc whose length is 2θ along the circle of radius r, half the chord length is rsin(θ) (Bressoud, 

2010). Therefore, the term sine means half-chord. When the argument of the trigonometric 

functions shifted from an arc length to a fraction of a complete revolution in the late 19th century, 

a unit of angular measure called radians appeared, although it is uncertain who first coined the 

term (Bressoud, 2010).   

Research on Learning and Teaching of Trigonometry 

 Trigonometry, as an important high school subject, has served practical and theoretical 

purposes over the past centuries. Trigonometry is a powerful tool for science and engineering. 

For example, the fields of navigation and surveying use trigonometry as a tool for calculation, 

and identifying periodic real-world phenomena, such as heart rhythms or earthquakes, requires 

trigonometric models. Mathematical topics such as vectors, polar coordinates, or complex 

numbers, are all related to trigonometric ratios (NCTM, 1989).  

 Trigonometry has proven an essential component of mathematical knowledge needed to 

successfully learn calculus (Talley, 2000) and has also proven to be useful for modeling periodic 

phenomena (NCTM, 1989, 2000). However, findings from research exploring students’ 

understanding of trigonometry showed that the subject is difficult for students to learn (Brown, 

2005; Moore, 2010a). Pritchard and Simpson (1999) agreed and explained that trigonometry is 

“the confluence of a number of streams of mathematical difficulties” (p. 81). In fact, evidence 

revealed that, in general, students’ understanding of trigonometry is incomplete and fragile. For 

example, students’ understanding of the sine and cosine functions, conceptions of angle measure 

and the radius as a unit for measuring an angle were weak and fragmented (Brown, 2005; Moore, 

2010a, 2010b; Moore, LaForest, Kim, 2012).  
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 Bressoud (2010) attributed the students’ difficulties to a dichotomy of teaching 

approaches: 

The study of trigonometry suffers from a basic dichotomy that presents a serious obstacle 

to many students. On the one hand, we have triangle trigonometry, in which angles are 

commonly measured in degrees and trigonometric functions are defined as ratio of sides 

of a right-angle triangle. On the other hand, we have circle trigonometry, in which angles 

are commonly measured in radians and trigonometric functions are expressed in terms of 

the coordinates of a point on the unit circle centered at the origin. Faced with two such 

distinct conceptual approaches to trigonometry, it is any wonder that so many of our 

students get confused? (p. 107) 

 Moore (2010a) asserted that students’ difficulty in trigonometry may result from 

difficulty in reasoning necessary for comprehending trigonometry, and also from a lack of other 

fundamental conceptions, such as radian measurement, that support understanding trigonometry. 

For example, an understanding of trigonometric functions requires mathematical reasoning 

without using algebraic formulae or direct numerical manipulation, which might make it seem 

difficult to students (Weber, 2005). Bressoud (2010) noted the difficult nature of the concept of 

radians in learning trigonometric functions:  

The degree becomes 1/360
th

 of a full turn, forcing practitioners to devise a name for the 

unit being used when 2 corresponding to a full turn….It is no wonder that students have 

difficulty comprehending radians. One 360
th

 of a “full turn” makes sense….Few students 

can conceptualize what one 2th of a full turn might be. Of course, 1/(2) is a fraction 

that is mathematically meaningful, but it is also  conceptually difficult. (pp. 111-112) 
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 Researchers asserted that the disconnection between pictorial images of the trigonometric 

situation and symbolic manipulation (Pritchard & Simpson, 1999) and a lack of coherence of 

trigonometric representations between secondary school and college textbooks might also be 

potential sources of student difficulties in learning trigonometry (Byers, 2010). Pritchard and 

Simpson (1999) argued that student difficulty in learning trigonometry is a consequence of using 

unidirectional reasoning patterns to reach solutions. They found that students had difficulty 

“moving flexibly between images of trigonometric situations and algebraic/numerical 

symbolism” (p. 81). For example, when asked to find the angle x such that cos(x) = 0.24, a 

student replied with “0.24 divided by cos,” which indicated evidence of misinterpreting cos(x) as 

the product of “cos” and x and misapplying the algebraic procedure to this trigonometric 

situation (p. 85). 

 Research on student difficulties in learning trigonometry suggested a need to improve 

teaching methodologies. Several researchers have discussed appropriate pedagogical 

considerations for effective teaching of trigonometry. Weber (2005) found that a lecture-based 

traditional teaching method is ineffective for developing an understanding of trigonometric 

functions. Calzada and Scriano (2006) suggest that teachers should introduce trigonometry by 

beginning with concrete concepts from algebra and geometry, such as the concepts of area and 

the Pythagorean Theorem.  

 Since the mid-19th century, as the instructional focus shifted from circle trigonometry to 

triangle trigonometry, a common belief that triangle trigonometry should be taught before 

introducing circle trigonometry has been developed (Bressoud, 2010). Bressoud (2010) and 

Kendal and Stacey (1998) compared two approaches to introducing trigonometric functions 

based on the historical development of trigonometry–ratio method and unit circle method. The 
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ratio method describes trigonometric functions as ratios of pairs of sides of a right triangle. The 

ratio definition of trigonometric functions fits into applications for measurement as well as 

surveying. The ratio method was generally used to introduce trigonometric functions until the 

1960s when another method emerged, the unit circle method. This method defines cosine and 

sine as the x and y coordinates of a point on a unit circle, and highlights the nature of 

trigonometric functions as functions of a real variable. The unit circle definition of trigonometric 

functions fits into applications related to periodic phenomena.  

 Some researchers discussed the pedagogical pros and cons of each of the methods for 

effective teaching of trigonometry. Akkoc (2008) and Bressoud (2010) asserted that prior 

learning of trigonometric functions as ratios might hinder the shift to viewing the argument of 

trigonometry functions as an arc length and the functions as lengths. They also argued that the 

concrete and precise meaning of trigonometric functions comes from an understanding of the 

unit circle and radian measurement. On the other hand, Kendal and Stacey (1998) found the ratio 

method more effective, resulting in better student performance on trigonometric problems, such 

as finding an unknown length of a given right triangle. Therefore, Kendal and Stacey (1998) 

suggested a combined method, where teachers introduce unit circle definitions first and make a 

connection with ratio definitions in order to adopt the techniques of the ratio method for triangle 

problems. As the title, Returning to the beginnings of trigonometry–the circle–has implications 

for how we teach it, of Bressoud’s article (2010) implies, he suggested restructuring the 

curriculum of teaching trigonometry based on a historical point of view: 

We would do well to introduce trigonometry by imitating the astronomers who first 

discovered and explored these functional relationships by seeing them as connecting 

lengths of arcs and lengths of line segments….If trigonometric functions are first 
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introduced as lengths of line segments in a circle of radius 1, then they have a concrete 

meaning….For students who first memorize trigonometric functions as ratios, making the 

transition to seeing them as lengths much harder. (p. 112) 

Research on Teacher Knowledge of Trigonometry 

 The NCTM (2007) recommended that teachers should develop a conceptual 

understanding of trigonometry from the geometric view point as well as a procedural 

understanding so that teachers can in turn apply the concept of trigonometry to solving problems 

involving calculus. Research findings related to teacher knowledge of trigonometry has been 

consistent with those of teacher knowledge of other mathematical subjects, such as functions. 

For example, the CBMS (2001) reported that prospective teachers tend to lack an understanding 

of the core geometric principles related to trigonometry and often show only procedural fluency 

in triangle trigonometry. Fi (2003) found that prospective mathematics teachers did not have a 

good, comprehensive understanding of the radian measure of angles, inverse trigonometric 

functions, reciprocal functions, periodicity, or co-functions. For example, none of his participants 

could accurately define a radian angle measure in terms of a ratio of the length of arc and the 

radius of a given circle.  

 Some researchers (e.g., Akkoc, 2008; Topçu, Kertil, Akkoç, Yilma, & Önder, 2006) 

discussed teachers’ concept images in trigonometry, which refer to the total cognitive structure 

associated with the concept or “the set of all the mental pictures associated in the student’s mind 

with the concept name, together with all the properties characterizing them” (Vinner & Dreyfus, 

1989, p. 356). They found that prospective and practicing teachers have weaker concept images 

of the radian concept than they do of the degree concept in trigonometry. They asserted that this 

imbalance of the concept images might hinder the teachers from perceiving a radian as a real 
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number and, furthermore, trigonometric functions as functions of real numbers. On the other 

hand, the teachers with strong concept images of the radian made appropriate conceptual 

connections among concepts in trigonometry. 

 Many GTA-Ms, as college instructors, are responsible for undergraduate students’ 

learning of trigonometry when they teach introductory-level mathematics courses. Despite its 

importance, as of now, there is no previous empirical research on GTA-Ms’ mathematical 

understanding of trigonometry for teaching, although other topics were considered for research 

on GTA-Ms’ knowledge for teaching, such as limits or derivatives (Kung et al., 2006; Speer et 

al., 2005).  

Teacher Knowledge of Subject Matter 

Research on Teacher Knowledge 

 Teacher knowledge is defined as “the total knowledge that a teacher has at his or her 

disposal at a particular moment...which underlies his or her actions” (Carter, 1990, as cited in 

Verloop, Driel, & Meijer, 2001, p. 445). It is well known that teacher knowledge is one of the 

key factors influential in teaching and student learning (Fennema & Franke, 1992). Therefore, it 

is an important aspect for consideration in professional development, when referring to teacher 

preparation for prospective teachers and to the development of practicing teachers: “professional 

development must provide opportunities for professional growth…and motivate them to develop 

the knowledge, skills, and dispositions they need to teach mathematics well….Professional 

growth is…marked by change in teachers’ knowledge, beliefs, and instructional strategies” 

(Sowder, 2007, pp. 160-161). Researchers (e.g., Porter, Desimone, Birman, & Yoon, 2001; 

Sowder, 2007; Verloop et al., 2001) asserted that preparing teachers without addressing teacher 

knowledge in a meaningful way results in ineffective preparation.  
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 Some of the early research in the 1970s on teaching focused on identifying teaching 

behaviors and procedures that could effectively promote student learning. These research 

findings have been employed in teacher education and teacher evaluation for the purpose of 

teachers’ developing effective teaching skills (Fenstermacher & Richardson, 2005; Shulman, 

1986). When researchers failed to find a consistent relationship with what teachers knew and 

what students learned in a quantitative way, they turned their research focus to the nature of 

teacher knowledge and its roles in teaching (Grossman et al., 1989). Coinciding with the shift in 

focus of research, the perspective of teaching also shifted from skillful performance or 

knowledge transmission to “a highly complex, context-specific, interactive activity in which 

differences across classrooms, schools, and communities” (Cochran-Smith & Lytle, 1990, p. 3). 

 After a long period of neglect concerning the “content dimension of teaching” (p. 6) in 

the research community, Shulman (1986) described its absence as the “‘missing paradigm’ 

problem” (p. 6) in research on teaching. He asserted that teachers’ content knowledge for 

teaching needs more attention as an important topic of research on teaching and teachers because 

teaching is knowledge-based professional work that requires content-specific pedagogy. He 

classified teachers’ content knowledge for teaching into three domains: (1) content knowledge, 

(2) pedagogical content knowledge, and (3) curricular knowledge.  

Research on Teacher Knowledge of Subject Matter  

Overview. Shulman (1986) defined content knowledge as “the amount and organization 

of knowledge per se in the mind of the teacher” (p. 9). Leinhardt and Smith (1985) refined 

Shulman’s definition as, “Subject matter knowledge includes concepts, algorithmic operations, 

the connections among different algorithmic procedures, the subset of the number system being 

drawn upon, the understanding of classes of student errors, and curriculum presentation” (p. 
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247). Inspired by Shulman’s work of identifying teacher knowledge domains over the past 

decades, numerous researchers (e.g., Ball, 1990; Ball & Feiman-Nemser, 1988; Ball et al., 2005; 

Brown & Borko, 1992; Even, 1990; Grossman et al., 1989; Leinhardt & Smith, 1985; Ma, 1999) 

explored teacher knowledge of subject matter and its impact on lesson planning and teaching 

practices.  

Nature of teacher knowledge of subject matter. Many researchers noted that knowledge 

of subject matter for teaching is different from knowledge of subject matter for the discipline 

(Bass, 1997; Grossman et al., 1989). Grossman and her colleagues (1989) argued,  

While some of what teachers need to know about their subjects overlaps with the 

knowledge of scholars of the discipline, teachers also need to understand their subject 

matter in ways that promote learning. Teachers and scholars have different goals. 

Scholars create a new knowledge in the discipline. Teachers help students acquire 

knowledge within a subject area. These differing goals require related but distinct 

understandings [italics added] of the subject matter. (pp. 24–25) 

Researchers also showed that knowledge of advanced mathematics was not correlated towards 

improving student performance (Begel, 1979; Monk, 1994). Because knowledge of advanced 

undergraduate mathematics is not easily connected with the school mathematics they teach, 

teachers should develop a deeper and more specialized understanding of the mathematical 

concepts taught, which might not be naturally acquired from learning advanced mathematics 

(e.g., CBMS, 2001; Cuoco, 2001; Ma, 1999). 

Research (e.g., Ball, 1990; Ma, 1999) found teachers’ fragmented knowledge of subject 

matter, which affected the instructional content, process, and pedagogical decisions—what they 

teach and how they teach it—and ultimately, student learning. Researchers (Grossman et al., 
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1989; Brown & Borko, 1992; Shulman, 1986) asserted that teacher knowledge of subject matter 

is influenced by other domains of teacher knowledge and can transform and grow through the 

continual process of preparing and teaching over extended periods of time.   

Importance for teacher knowledge of subject matter in relation to pedagogical 

knowledge. Shulman (1986, 1987) coined the term pedagogical content knowledge as another 

domain of teacher knowledge that might be influential in teaching practice and student learning. 

He defined it as the integration of content and pedagogy, a pedagogical understanding of subject 

matter, or an understanding of how to represent the content in efficient ways to make the subject 

comprehensible to students with diverse interests and abilities. It also includes knowledge of 

student difficulty in learning as well as typical perceptions and misconceptions.   

 Shulman’s conception of pedagogical content knowledge continues to be refined because 

of its ambiguous characteristics (Marks, 1990). Several researchers (e.g., Bennett & Turner-

Bisset, 1993; McEwan & Bull, 1991; Marks, 1990) asserted that Shulman’s distinction between 

subject matter content knowledge and pedagogical content knowledge is not only ambiguous but 

also impossible to detect because all teacher knowledge is pedagogical in various ways, 

especially in the context of teaching. In a quantitative study, Neubrand, Seago, Agudelo-

Valderrama, DeBlois, and Leikin (2009) found that teacher knowledge of subject matter and 

pedagogical content knowledge are highly correlated. Moreover, some aspects of pedagogical 

content knowledge are deeply rooted in teacher knowledge of subject matter, such as explaining 

mathematical concepts (Marks, 1990).  

Impact of teacher knowledge of subject matter on teaching practice. Several researchers 

investigated how teacher knowledge of subject matter relates to teaching practice. Ball (1988) 

asserted that how teachers understand and think about subject matter, as well as what they know, 
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are important for teaching. Shulman (1987) found that a teacher with a poor understanding of the 

content taught in a less flexible and less interactive manner, which implies that, “teaching 

behavior is bound up with comprehension and transformation of understanding” (p. 18). He 

argued that a weak knowledge of content is a reason for ineffective teaching. Van Dooren, 

Verschaffel, and Onghena (2002) found that a lack of prospective teachers’ understanding of the 

content could limit their ability to assess student learning properly because this makes it difficult 

for them to deal with students’ various ideas and methods to reach solutions. Stein et al. (1990) 

found that a teacher’s limited understanding of the content narrowed his or her teaching practice 

in the following sense: “the lack of provision of groundwork for future learning in this [the given] 

area, overemphasis of a limited truth, and missed opportunities for fostering meaningful 

connections between key concepts and representations” (p. 659). Researchers (e.g., Even, 1990; 

Grossman et al., 1989; Leinhardt & Smith, 1985) asserted that teacher knowledge of subject 

matter is influential in the ability to critique textbooks, select material or examples, formulate 

explanations and demonstrations, structure lessons, conduct instruction, and pedagogical 

decisions, such as asking questions or facilitating activities.  

  Impact of teacher knowledge of subject matter on teacher education. Research findings 

on teacher knowledge of subject matter indicated that subject matter preparation of K-12 

teachers should be an essential element in teacher education (Ball & McDiarmid, 1990; Ball et 

al., 2005; NCTM, 2007). Sowder (2007) noted that “developing mathematical content 

knowledge” (p. 162) is one of several goals of professional development. Because “the 

knowledge of subject matter that is central to teaching is also knowledge that is central to 

‘knowing’ a discipline” (Grossman et al., 1989, p. 24), it is suggested that teachers should 

develop proficiency in mathematics, such as conceptual understanding, procedural fluency, 
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strategic competence, adaptive reasoning, and productive disposition (NRC, 2001). Ma (1999) 

suggested that elementary school teachers should achieve a “deep, vast, and thorough” (p. 120) 

understanding of the mathematical topics beyond simply knowing the content that they teach so 

that they can use solid basic ideas, make disciplinary connections, have multiple perspectives, 

and be aware of longitudinal coherence.  

 Although numerous studies support the importance for teacher knowledge of subject 

matter in K-12 teacher education, GTA-Ms’ professional development programs tend to 

overlook it and are designed to inform GTA-Ms of their basic routine duties and provide 

teaching strategies and discuss pedagogical issues. Developing “deep, vast, and thorough” 

knowledge (Ma, 1999, p. 120) of the content they teach is also essential in their professional 

development as college instructors. 

Knowledge and understanding. Even and Tirosh (2002) noted that “A rather frustrating 

phenomenon, often described by both researchers and teachers, is that students who are known to 

have all the knowledge that is needed to solve a problem are unable to employ this knowledge to 

solve unfamiliar problems” (p. 225). The phenomenon could be similarly observed in research 

on the area of teacher knowledge of subject matter. For example, one of Ball’s participants 

(1990), a prospective teacher, said, “Like long division–I can do it–but I don’t know if I could 

really teach it because I don’t know if I really know it” (p. 449). Ball commented, “Although she 

can do the mathematics, she may not have the kind of mathematical understandings she will need 

in order to help students learn” (p. 450). The major research focus in her study was not to 

determine if the prospective teachers possessed the knowledge to be able to solve the problems 

themselves but to see the degree to which they possessed knowledge about the meaning of the 

mathematical concept. The study found that they failed in “unpacking” (p. 454) the meaning of 
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mathematical concepts and showed their “narrow understanding” (p. 457) of the subject. As seen 

in this example, quite often many researchers use the terms knowledge and understanding 

interchangeably in literature on teacher knowledge of subject matter, and what they mean by 

knowledge and understanding varies greatly.  

Therefore, Silverman and Thompson (2005) suggested that teacher knowledge of subject 

matter should be refined to be more useful. Regarding knowledge, Ma (1999) developed a notion 

of profound understanding of mathematics with “depth, breadth, and thoroughness” (p. 121) 

because how such knowledge is held by teachers is important for their teaching practice (NCTM, 

2007). She claimed that teachers should develop such understanding for effective teaching. 

McDiarmid et al. (1989) suggested that novice teachers should develop a “flexible, thoughtful, 

and conceptual understanding” of subject matter to be taught (p. 198), which is necessary for 

cultivating students’ understanding of subject matter. In particular,  

Mason and Spence (1999) discussed types and degrees of knowledge using the term 

“knowing” instead of “to know” to emphasize its “dynamic, situated, and evolving” aspects (p. 

140). They argued that “knowing-that” (“factually”) does not warrant “knowing-how” (“to 

perform acts”) or “knowing-why” (“having stories to account for phenomena and actions”) when 

the knowledge is fragmented (p. 137). They discussed the variation of each knowing: “knowing-

that” ranging from discrete to integrated knowing; “knowing-how” ranging from simple to 

complex; “knowing-why” ranging from the intuitive to the rigorous (p. 139). They identified a 

group of the three kinds of knowing as “knowing-about,” and suggested a fourth kind of 

knowing, which is “knowing-to act,” which refers to “knowledge that enables people to act 

creatively….[and that] can be used or called upon when required” (p. 136, p.138). With their 

notion of knowing, they argued that literature on teacher knowledge impacting teaching practices 
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and student learning is discussed “from a static, possessive stand rather than from a dynamic and 

evolving one” (p. 139).  

Pirie and Kieren (1994) referred to mathematical understanding as “a constant, consistent 

organization of one’s knowledge structures: a dynamic process, not an acquisition of categories 

of knowing” (p. 187). They developed a model of eight non-linear, embedded rings for the 

growth of mathematical understanding from the level of primitive knowing to the level of 

inventising: primitive knowing, image making, image having, property noticing, formalizing, 

observing, structuring, and inventising (p. 167). Hiebert and Carpenter (1992) defined 

understanding mathematical ideas, procedures, or facts as coherently making a connection 

between its mental representation and an existing internal network of representations. According 

to their notion, the frequency and the strength of connection determine the degree of 

understanding. They described a building process of understanding as follows:  

Networks of mental representations are built gradually as new information is connected 

to existing networks or as new relationships are constructed between previously 

disconnected  information....Understanding can be rather limited [italics added] if only 

some of the mental representations of potentially related ideas are connected or if the 

connections are weak. Connections that are weak [italics added] and fragile [italics 

added] may be useless in the face of conflicting or nonsupportive situations. 

Understanding increases as networks grow and as relationships become strengthened with 

reinforcing experiences and tighter network structuring. (p. 69) 

In this dissertation study, my definition of understanding followed Hiebert and 

Carpenter’s notion of understanding because meaningful and conceptual mental connections 

were considered an important feature of understanding in the analysis of data. Based on Hiebert 
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and Carpenter’ description, I used the terms of weak understanding or limited understanding in 

the analysis. 

Theoretical Framework 

Developing a theoretical framework for understanding teacher knowledge is 

indispensable to understand the essence of teaching (Silverman & Thompson, 2008). 

Frameworks are useful for conceptualizing, identifying, or analyzing teacher knowledge and also 

applicable for systemic improvement in teacher quality (Hill et al., 2008; Silverman & 

Thompson, 2008). For decades, extensive research has been conducted for the purpose of 

establishing useful frameworks for teacher knowledge in the area of mathematics at the K-12 

level.  

Research on Theoretical Framework of Teacher Knowledge 

Shulman (1986) classified teachers’ content knowledge within a discipline into three 

categories: (1) subject matter content knowledge, (2) pedagogical content knowledge, and (3) 

curricular knowledge. In his notion, subject matter content knowledge includes understanding of 

the structure, as well as the facts or procedures within a discipline. Ball (1991) elaborated 

Shulman’s dimensions of subject matter content knowledge within the discipline of mathematics. 

She noted that understanding mathematics means a mixture of  “propositional and procedural 

knowledge of mathematics,” such as an understanding of the relationships between concepts, and 

“knowledge about mathematics,” such as an understanding of the history of mathematics (1991, 

p. 6).  

As an expansion of Shulman’s initial conception of teachers’ content knowledge, Ball 

and her colleagues (Hill et al., 2008) developed a theoretical model of the structures of 

mathematical knowledge for teaching elementary mathematics. They defined mathematical 
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knowledge for teaching as the mathematical knowledge needed to teach mathematics, which is 

distinct from mathematical knowledge needed by other professions. In their model, they further 

divided Shulman’s notion of subject matter content knowledge into the three subcategories: (1) 

common content knowledge, (2) specialized content knowledge, and (3) horizon content 

knowledge (p. 403). Figure 1 shows the framework’s domains. Common content knowledge 

refers to the mathematical knowledge and skills used in a wide variety of settings other than 

teaching. In contrast, specialized content knowledge is the mathematical knowledge and skills 

unique to teaching. However, they acknowledged that it can be difficult to discern among the 

categories due to ambiguity of the definition of each category (Ball et al., 2008). For example, it 

might be difficult to distinguish specialized content knowledge from common content knowledge 

or from knowledge of content and students in specific teaching situations.  

 
 

Figure 1. Mathematical knowledge for teaching (Hill et al., 2008, p. 377). 

 

  Ma (1999) characterized the mathematical knowledge that elementary teachers should 

possess for teaching mathematics conceptually. She called such knowledge profound 

understanding of fundamental mathematics (PUFM) (p. 120). By “profound” she meant “deep, 

vast, and thorough” (p. 120). In the teaching of teachers who possess PUFM, four features can be 

observed–connectedness, multiple perspectives, identifying basic ideas, and longitudinal 
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coherence (p. 122). Teachers with PUFM make connections among concepts and procedures, 

have multiple approaches to problem solving, are knowledgeable about the “simple but powerful 

concepts and principles of mathematics” (p. 122), and can help students make meaningful 

connections between what they already know and what they will learn.  

Schoenfeld and Kilpatrick’s provisional framework (2008) consists of several dimensions 

that characterize proficiency for teaching mathematics. The domains include: (1) Knowing 

school mathematics in depth and breadth, (2) knowing students as thinkers, (3) knowing students 

as learners, (4) crafting and managing learning environments, (4) developing classroom norms an 

supporting classroom discourse as part of “teaching for understanding,” (5) building 

relationships that support learning, and (6) reflecting on one’s practice (p. 322). Ma’s notion of 

PUFM is aligned with the domain, “knowing school mathematics in depth and breadth,” because 

it is described as “broad and connected knowledge of the content at hand, deep knowledge of 

where the content comes from and where it might lead, an understanding of ‘big ideas’ or major 

themes” (p. 327).  

Furthermore, PUFM is closely related to the five components of mathematical 

proficiency identified for successful learning proposed by the National Research Council [NRC] 

(2001):  

 Conceptual understanding: comprehension of mathematical concepts, operations, and 

relations 

 Procedural fluency: skills in carrying out procedures flexibly, accurately, efficiently, 

and appropriately 

 Strategic competence: ability to formulate, represent, and solve mathematical 

problems 
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 Adaptive reasoning: capacity for logical thought, reflection, explanation, and 

justification 

 Productive disposition: habitual inclination to see mathematics as sensible, useful, 

and worthwhile, coupled with a belief in diligence and one’s own efficacy (p. 116) 

The components are not disjoint but interrelated as seen in Figure 2. When applying them to a 

teacher’s mathematical proficiency for teaching, a teacher with PUFM can show the proficiency 

proposed by the framework to help students’ successful learn mathematics.  

 

Figure 2. Five strands of mathematical proficiency (NRC, 2001, p. 117).
2
 

 Even (1990) also claimed that students’ meaningful understanding of subject matter relies 

on teachers’ robust knowledge of subject matter. She developed an analytic framework for 

teacher knowledge of a specific mathematical topic at the secondary level with the following 

components of teacher knowledge of subject matter: Essential features, basic repertoire, 

knowledge and understanding of a concept, different representations, alternative ways of 

approaching, the strength of the concept, and knowledge about mathematics. Teachers who 

                                                 
2
 Reproduced with permission from Adding it up: Helping children learn mathematics, 2001, by the National 

Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C. 
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understand essential features of a concept can reason from the definitions of the concept, and 

correctly distinguish between examples and non-examples. Teachers, who have an understanding 

of the basic repertoire, can show powerful specific examples that illustrate important principles 

or properties. Teachers with knowledge and understanding of a concept can dynamically use 

both conceptual knowledge and procedural knowledge for problem-solving. Teachers should 

understand different representations of a concept and their relationships because such an 

understanding makes understanding of the concept “better, deeper, more powerful, and more 

complete” (p. 524). Teachers should know not only a main approach but also alternative ways of 

approaching a complex concept across the areas of mathematics or other disciplines. Teachers, 

who have knowledge of the strength of a concept, are familiar with unique aspects of the concept 

and are able to utilize sub-topics or sub-concepts with any other concepts. Knowledge about 

mathematics is a general knowledge about the discipline, and teachers with this knowledge have 

an understanding of the nature, structure, and development of mathematics.   

The components of Even’s framework are related to the five strands of mathematical 

proficiency (NRC, 2001) as shown in Table 1. To understand essential features and basic 

repertoire of a concept requires conceptual understanding of the concept. Knowledge and 

understanding of a concept involve both conceptual understanding and procedural knowledge. 

Uses of different representations and alternative ways of approaching a concept relate to strategic 

competence for problem solving. Strength of the concept requires adaptive reasoning. Finally, 

knowledge about mathematics relates to productive disposition of mathematics. 
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Table 1 

Comparison Between Even’s Framework and Mathematical Proficiency Framework 

Even’s Framework Mathematical Proficiency 

Framework 

Essential Features  

Conceptual Understanding Basic Repertoire 

Knowledge and Understanding of a 

Concept Procedural Fluency 

Different Representations  

Strategic Competence Alternative Ways of Approaching 

The Strength of the Concept Adaptive Reasoning 

Knowledge about Mathematics Productive Disposition 

 

Framework for Mathematical Understanding for Secondary Teaching 

Background. In the Situations Project of the Mid-Atlantic Center for Mathematics 

Teaching and Learning (MAC-MTL) at Pennsylvania State University and the Center for 

Proficiency in Teaching Mathematics (CPTM) at the University of Georgia, researchers 

developed a framework for Mathematical Understanding for Secondary Teaching (MUST 

framework) over a period of several years. A purpose for developing this framework was to 

conceptualize teachers’ mathematical knowledge that adequately promotes students’ 

mathematical proficiency at the secondary level. When taking an initial step of developing the 

framework, researchers in this project were inspired by other researchers’ work developing 

frameworks of teacher knowledge for teaching (e.g., Ball et al. 2008; Even, 1990; NRC, 2001). 

To reflect a more dynamic characteristic of mathematical knowledge, the designers collected 

mathematical classroom events that took place in secondary school courses or collegiate courses 

that prepared secondary teachers of mathematics. The events were often interesting questions 

posed by students or provocative statements made by teachers. The following is an example of a 

classroom mathematical event in which a student’s question about the concept of an exponent 

was involved (MAC-MTL & CPTM, 2012, p. 9). 
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In an Algebra II class, students had just finished reviewing the rules for exponents. The 

teacher wrote x
m
 • x

n  
=  x

m+n
 on the board and asked the students to make a list of values 

for m and n that made the statement true. After a few minutes, one asked, “Can we write 

them all down? I keep thinking of more.”  

Selected events were analyzed and organized with specific pieces of mathematics and 

mathematical thinking, which were critical for helping students build mathematical 

understanding, were identified and organized. The researchers in this project called each of the 

mathematical events a “Situation.” In the process of describing the Situations, pertinent aspects 

of mathematical understanding useful to teachers were constructed and refined.  

Over the course of their work, the title of the framework evolved from Mathematical 

Proficiency for Teaching (MPT) to Mathematical Understanding for Secondary Teaching 

(MUST) because the mathematics that is useful to secondary teachers is not only about 

mathematical proficiency (i.e., knowing and doing mathematics), but also about the work of 

teaching others to become mathematically proficient. Here, understanding is more than 

knowledge; it includes knowing and using mathematical knowledge, as well as helping others to 

know and use mathematics.  

There are four unique features of the MUST framework (MAC-MTL & CPTM, 2012). 

First, the framework was developed from actual classroom mathematical events and not previous 

literature, although previous literature influenced the MUST framework. When over 50 

Situations were examined and analyzed, the strands of the framework were determined. Second, 

the framework reflected the dynamics and situated nature of teacher knowledge which shifts, 

grows, and deepens in the teaching context. It seems very compatible with Mason and Spence’s 

(1999) argument that teacher knowledge tends to be discussed “from a static, possessive stand 
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rather than from a dynamic and evolving one” (p. 139). This dynamic feature of the framework 

also indicates that the development of the framework is still in progress. Third, the framework is 

specialized for secondary teaching. Therefore, the framework focused on secondary school 

mathematics and characterized the mathematical understanding useful to secondary mathematics 

teachers. Fourth, the framework provided a unique perspective of teachers’ mathematical 

understanding for teaching because the development of the framework was based on teaching 

practices of practicing teachers and student teachers in various teaching contexts. 

Components and strands. There are three components within the MUST framework: (1) 

Mathematical Proficiency, (2) Mathematical Activity, and (3) Mathematical Work of Teaching 

(MAC-MTL & CPTM, 2012). The components are not completely separable, but quite 

interrelated and overlapped (Figure 3). Each component consists of several strands (Figure 4). 

 
Figure 3. Three components of mathematical understanding for secondary teaching (MAC-MTL 

& CPTM, 2012, p. 7). 
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Mathematical Proficiency (MP) 

 Conceptual Understanding   

 Procedural Fluency   

 Strategic Competence  

 Adaptive Reasoning   

 Productive Disposition  

 Historical and Cultural Knowledge  

 

Mathematical Activity (MA) 

 Mathematical Noticing  

o Observing Structure of Mathematical Systems  

o Discerning Symbolic Forms 

o Detecting the Form of an Argument 

o Connecting within and outside Mathematics   

 Mathematical Reasoning  

o Justifying/Proving 

o Reasoning when Conjecturing and Generalizing 

o Constraining and Extending 

 Mathematical Creating  

o Representing  

o Defining 

o Modifying/Transforming/Manipulating  

 Integrating Strands of Mathematical Activity 

 

Mathematical Work of Teaching (MWT) 

 

 Analyze Mathematical Ideas  

 Access and Understand the Mathematical Thinking of Learners  

 Know and Use the Curriculum  

 Assess the Mathematical Knowledge of Learners  

 Reflect on the Mathematics in One’s Practice 

Figure 4. The components and strands of the MUST framework (MAC-MTL & CPTM, 2012, p. 

5). 

 

Mathematical Proficiency can be thought of as “knowing mathematics.” This component 

consists of the five strands of mathematical proficiency by NRC (2001) with an additional 

strand, Historical and Cultural Knowledge, which is an understanding of the historical origin and 

cultural influence on mathematics. This component includes deep and thorough understanding to 

help students be able to develop students’ proficiency in mathematics. 
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Mathematical Activity can be defined as “doing mathematics.” This component of 

teachers’ mathematical understanding is required, especially, when they engage their students in 

mathematical activities. Teachers, who are proficient in mathematical activities, are more likely 

to be able to facilitate students’ doing and experiencing mathematics. This component consists of 

the four strands: (1) Mathematical Noticing, (2) Mathematical Reasoning, (3) Mathematical 

Creating, and (4) Integrating Strands of Mathematical Activity. Mathematical Noticing involves 

observing mathematical structures, discerning symbolic forms, detecting the forms of 

mathematical arguments, and connecting within and outside mathematics. Mathematical 

Reasoning includes justifying or proving mathematical arguments in logical ways, reasoning in 

the context of conjecturing and generalizing, and constraining and extending domains, 

arguments, or classes of objects. Mathematical Creating is the process of producing new 

mathematical entities through the mathematical activities of representing, defining, and 

modifying/transforming/manipulating. Because the three strands are intertwined, an ability to 

integrate the three strands of Mathematical Activity forms a strand of Mathematical Activity. 

  Mathematical Work of Teaching can be thought as “teaching mathematics.” This 

component is unique to the mathematics teaching profession. This component consists of the five 

strands: (1) Analyze Mathematical Ideas, (2) Access and Understand the Mathematical Thinking 

of Learners, (3) Know and Use the Curriculum, (4) Assess the Mathematical Knowledge of 

Learners, and (5) Reflect on the Mathematics in One’s Practice. 

Use of the framework. The MUST framework focuses on teachers’ mathematical 

understanding of the content at the secondary level. In this study, however, I employed the 

MUST framework for designing task items and analyzing GTA-Ms’ mathematical understanding 

for teaching trigonometry in a post-secondary mathematics teaching context. I did so for the 
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following reasons. First, most introductory-level undergraduate mathematics topics are parallel 

to those taught in mathematics courses at the secondary level, such as trigonometry in 

precalculus. Second, the range of majors for undergraduate students taking introductory-level 

undergraduate mathematics courses is very wide. Therefore, the mathematics topics taught in 

these courses are rather general and not specific to any particular major. Third, the MUST 

framework can be seen as both comprehensive and overarching because it reflected a body of 

literature and other theoretical frameworks of K-12 teacher knowledge (Wilson & Conner, 2009). 
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CHAPTER 3 

METHODOLOGY 

 The purpose of this study was to explore and understand the nature of mathematical 

understanding for teaching trigonometry exhibited by graduate teaching assistants in the 

Department of Mathematics (GTA-Ms). In this qualitative study, a sequence of task-based 

interviews was conducted to investigate the research questions: (1) To what extent do GTA-Ms 

exhibit an understanding of trigonometric concepts when solving and explaining trigonometry 

problems? (2) What understanding of trigonometry do GTA-Ms use in analyzing and responding 

to students’ mathematical thinking about concepts of trigonometry in hypothetical teaching 

contexts? Each task-based interview was conducted while each participant explained his/her 

work for a given mathematical task consisting of several mathematical problems, called task 

items, on trigonometry. This method was useful for this study because “task-based interviews 

can serve as research instruments for making systemic observations in the psychology of 

learning mathematics and solving mathematical problems” and “they also can be adapted as 

assessment tools for describing the subject’s knowledge [italics added]” (Goldin, 2000, p. 520). 

In addition, this method was chosen to make the mathematical processes more salient. Goldin 

(2000) explained: 

In comparison with conventional paper-and-pencil test-based method, task-based 

interviews make it possible to focus research attention more directly on the subjects’ 

processes of addressing mathematical tasks [italics added], rather than just on the 

patterns of correct and incorrect answers in the results they produce. (p. 520)  
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This chapter presents the site of research and the participants as well as describes how I designed 

the data sources, collected data, and analyzed the data. 

Site of Research 

Department of Mathematics 

This study took place at a university in the southern region of the United States. The 

student population was approximately 26,000 undergraduate and 8,200 graduate students when 

the study was conducted. The Department of Mathematics at the university offers four degrees in 

Mathematics: Bachelor of Science (B.S.), Master of Arts (M.A.), Master of Applied 

Mathematical Science (M.A., M.S.), and Doctor of Philosophy (Ph.D.). There were about 50 

graduate students and about 60 full-time faculty members. Approximately 20 graduate students 

served as teaching assistants (GTA-M) during fall and spring semesters, and approximately 10 

GTA-Ms teach during the summer sessions. GTA-Ms were usually appointed to teach 

MATH1113 (Precalculus) or MATH2200 (Analytic Geometry and Calculus). Only a few GTA-

Ms were assigned to teach MATH2250 (Calculus I for Science and Engineering) or MATH2260 

(Calculus II for Science and Engineering). Novice GTA-Ms usually teach MATH1113 

(Precalculus) during their first semester of teaching and MATH2200 (Analytic Geometry and 

Calculus) the following semester under departmental supervision. Native English speaking GTA-

Ms were expected to teach their own course by fall semester of their second year. And all other 

GTA-Ms are expected to teach their own course by fall semester of their third year.  

According to the teaching guidelines and policy of the department, all new GTA-Ms 

assigned to teach are required to take MATH7005 (teaching seminar for first-time MATH1113 

instructors), MATH9005 (teaching seminar for first-time MATH2200 instructors), and a 
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discipline specific section of GRSC7770 (the graduate teaching seminar). These three seminars 

are credit courses offered by the department for GTA-Ms’ teaching preparation.  

Participants 

 The targeted subjects for this study were graduate students in the Department of 

Mathematics who had taught the course MATH1113 (Precalculus). I selected this course because 

it covered trigonometry as one of the major content areas. I considered graduate students who 

had previously taught the course at the university because I assumed they would feel more 

comfortable solving and explaining the tasks on trigonometry during the task-based interviews.  

When I recruited participants for this study, I sent an invitation email to nine graduate 

students in the Department of Mathematics. The selection of these nine people was based on my 

previous experience recruiting GTA-Ms for projects for a qualitative research class. It is difficult 

for GTA-Ms to find time to participate in any project that moves them beyond the study of pure 

mathematics. Therefore, for this study, I decided to invite graduate students who I expected 

might be highly interested in participating in a mathematics education study and thinking about 

teaching. Five of the nine invitees were the recipients of the University Outstanding Teaching 

Assistant Award. Four of the invited GTA-Ms agreed to participate in the study and signed a 

consent form; three were the recipients of the teaching award and the fourth was a person who 

helped me with a previous mathematics education project. Each participant was paid $200 after 

completing the procedures for this study.  

The participants consisted of four GTA-Ms, one female and three males. Their names 

(pseudonyms) were Gloria, Kyle, Leo, and Micah. Table 2 summarized the participants’ 

academic backgrounds. They had similar academic backgrounds and teaching experiences for the 
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department. The list of courses in the table provides only the courses that the participants took or 

taught at the university where the study occurred. 

Table 2 

Participants’ Academic Backgrounds 

 Gloria Kyle Leo Micah 

Education B.S. in Math B.S. in Math B.S. in Molecular 

Biology 

B.S. in Math 

B.S. in Physics  

M.S. in Math M.S. in Math M.A. in Math M.A. in Math 

Status 5
th
 year  

doctoral student 

4
th
 year  

doctoral student 

5
th
 year  

doctoral student 

6
th
 year  

doctoral student 

Recipient of 

outstanding 

teaching award 

 

Yes 

 

No 

 

Yes 

 

Yes 

Math courses 

taught 

M1113 

(Precalculus) 

M1113 

(Precalculus) 

M1113 

(Precalculus) 

M1113 

(Precalculus) 

M2200 

(Analytic 

geometry and 

calculus) 

M2200 

(Analytic 

geometry and 

calculus) 

M2200 

(Analytic 

geometry and 

calculus) 

M2200 

(Analytic 

geometry and 

calculus) 

 

 

 

 

M2250 

(Calculus I  

for science and 

engineering) 

M2250 

(Calculus I  

for science and 

engineering) 

 

 

 

 

M5001 

(Arithmetic and 

problem solving) 

  M5001 

(Arithmetic and 

problem solving) 

M5030 

(Geometry and 

Measurement for 

Middle School 

Teachers) 

   

Number of 

graduate math 

courses taken  

 

5 

 

 

10 

 

 

19 

 

 

13 

Number of math 

education courses 

taken  

 

5 

 

 

0 

 

 

2 

 

 

0 

Teaching 

development  

M7005/9005 

(Doctoral 

graduate student 

teaching seminar)   

M7005/9005 

(Doctoral graduate 

student teaching 

seminar)   

M7005/9005 

(Doctoral graduate 

student teaching 

seminar)   

M7005/9005 

(Doctoral graduate 

student teaching 

seminar)   

GRSC7770 

(GTA seminar) 

GRSC7770 

(GTA seminar) 

GRSC7770 

(GTA seminar) 

GRSC7770 

(GTA seminar) 
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 VIGRE Teaching 

seminar 

EMAT9700 

(Teaching 

observation 

seminar) 

MEFT 

(Mathematicians 

Educating Future 

Teachers) 

 

Data Sources 

 

 Designing mathematical tasks was a crucial stage before collecting data because a major 

portion of the data was collected by observing the participants’ mathematical problem-solving 

process through task-based interviews. Each task consisted of several mathematical problems, 

called task items, on trigonometry. This section explains how the tasks items were designed and 

how the theoretical framework influenced the design. The participants’ written and verbal data 

were generated during three task-based interviews in three interview sessions. To gain a better 

understanding of the participants and their teaching and learning experiences, supplementary 

data were gathered for each participant through (1) a background information sheet, (2) a pre-

task interview, and (3) a post-task interview. 

Main Data Sources: Tasks 

Framework. The task design was guided by the Mathematical Understanding for 

Secondary Teaching (MUST) framework because I planned to analyze the data through the lens 

of the framework to explore GTA-M’s mathematical understanding for teaching trigonometry. 

Because the MUST framework consisted of three components, three tasks were considered. Each 

task item was written to address the components and strands of the framework (see Appendix A). 

Task I was designed to explore the participants’ mathematical proficiency in understanding of 

concepts of trigonometry, Task II was designed to explore their mathematical activities when 

solving and explaining trigonometric problems. Task III was designed to explore how the 

participants use their mathematical understanding in the hypothetical mathematical work of 

teaching contexts in which they respond to students’ ideas or arguments involving 
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misconceptions of trigonometry. Each task consisted of a series of task items on trigonometry. 

Each item was designed to address specific strands of a component (or components) of the 

framework. For example, item Task I.1 was aligned with Conceptual Understanding of the first 

component–Mathematical Proficiency; item Task II.1 was aligned with Mathematical Noticing 

(Observing structure of mathematical system) and with Mathematical Creating (Defining) in the 

second component–Mathematical Activity; and item Task III.1 was aligned with Mathematical 

Noticing (Detecting the form of an argument) in the component, Mathematical Activity and with 

Analyze Mathematical Ideas in the third component–Mathematical Work of Teaching (see Table 

3). 

 Table 3 

Example of Alignment of the Task with the MUST Framework 

 

 

Concepts. It was necessary to select some specific concepts among various concepts of 

trigonometry to design the tasks. The concepts were selected from the Faculty Course Outline of 

Precalculus of the Department of Mathematics at the university where the research was 

conducted because the participants had taught precalculus according to the course outline (see 

Appendix B) in the department. The course outline categorized trigonometry as “elementary 

trigonometry” or as “advanced trigonometry” depending upon the concepts covered. The course 

coordinator said that this classification was set so that students could take an examination 

assessing elementary topics before they took the examination assessing advanced topics. Table 4 

shows the contents for each section of chapters 5, 6, and 7 (Swokowski & Cole, 2009) and 

Task MUST Framework  

I.1 MP: Conceptual Understanding 

II.1 

 

MA: Mathematical Noticing: Observing Structure of Mathematical Systems 

MA:  Mathematical Creating: Defining  

III.1 MA: Mathematical Noticing: Detecting the Form of an Argument 

MWT: Analyze Mathematical Ideas 
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indicates the level of the section. The department designated sections of 5.1, 5.2, 5.3, and 5.4 of 

the textbook as “elementary trigonometry,” and sections of 5.5, 5.6, 5.7, 6.2, 6.3, and 6.4 as 

“advanced trigonometry.” I included the additional sections of 6.6, 7.1, and 7.2 designated as 

“future study of trigonometry” and “advanced trigonometry.” Table 5 shows a list and 

frequencies of the trigonometric concepts that appeared in the task items. 

Table 4 

The List of the Sections of Trigonometry in the Textbook  

 Chapter 5 

The trigonometric 

functions 

Chapter 6 

Analytic trigonometry 

Chapter 7 

Applications of 

trigonometry 

 

Section 1 

5.1 

 

Angles 

 

6.1  

 

Verifying trigonometric 

identities 

7.1  

 

The law of sines 

 

 

Section 2 

5.2  

 

Trigonometric functions 

of angles 

 

6.2  

 

Trigonometric equations 

7.2  

 

The law of cosines 

 

 

Section 3 

5.3  

 

Trigonometric functions 

of real numbers 

 

6.3  

 

The addition and 

subtraction formulas 

 

 

 

Section 4 

5.4  

 

Values of the 

trigonometric functions 

 

6.4  

 

Multiple-angle formula 

 

 

 

Section 5 

5.5  

 

Trigonometric graphs 

6.5  

 

Product-to-sum and sum-

to-product formulas 

 

 

 

 

Section 6 

5.6  

 

Additional trigonometric 

graphs 

 

6.6 

 

The inverse 

trigonometric functions 
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Table 5 

 

The Concepts of Trigonometry Involved in the Tasks  

Concepts Task I  

(8 items) 

Task II  

(7 items) 

Task III  

(10 items) 

Angle measure/Radians/Degree I.1, I.2, I.3 II.1, II.2 III.1, III.4, III.5 

Circumference formula I.2  III.5 

Arc length formula I.4 II.1, II.2 III.1, III.4 

Sine/Cosine functions  I.5, I.6, I.7 II.2, II.3, II.4, 

II.5, II.6 

III.2, III.8, III.9, 

III.10 

Units/Unit conversion I.6 II.1 III.1, III.4 

Unit circle trigonometry and  

right triangle trigonometry 

I.8 II.3 III.10 

Inverse trigonometric functions  II.2 III.6, III.8 

Composite functions  II.4, II.5 III.2, III.6, III.8 

Periodic functions/Periods  II.5 III.7 

Addition formula for sine/cosine 

functions 

 II.7 III.9 

Unit circle   III.3 

Co-function formula   III.9 

Modeling of trigonometric 

functions 

 II.6  

 

Sources for the task items. The task items for the three tasks were mathematical problems 

on trigonometry. These task items were mainly designed by selecting some problems from the 

book Pathways to Calculus: A Problem Solving Approach (Carlson & Oehrtman, 2009), 

developed by the Project Pathways. Some other task items were also designed from class 

materials used in a mathematics education class for prospective secondary teachers of 

mathematics.
3
 Permission to use the textbook problems and materials from class to design the 

task items was granted by Dr. Marilyn P. Carlson at Arizona State University and Dr. Kevin C. 

Moore at the University of Georgia, respectively. In addition, I also referred to research papers 

on mathematics education and internet book chapters on trigonometry. For example, a research 

                                                 
3
 Materials were prepared by Dr. Kevin C. Moore who used Pathways to Calculus: A Problem Solving Approach for 

his class.  
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paper (Thompson, Carlson, & Silverman, 2007, p. 417) provided me with the idea of designing a 

hypothetical situation between a college instructor and two students for Task III.2. A modeling 

problem of a sine function in Task II.6 was extracted from an internet book chapter on 

trigonometry (www.aw-bc.com/scp/lial_hornsby.../LIALMC06_0321227638.pdf, p. 566).  

The webpage (https://www.rationalreasoning.net/products.php) for the online text of the 

book Pathways to Calculus: A Problem Solving Approach (Carlson & Oehrtman, 2009) 

described itself as offering “Research based educational products, supporting teachers and 

educating students.” The overview of the book from the same website stated,  

This text was designed to develop students’ conceptual knowledge, problem solving 

abilities and skills that are foundational for success in calculus….Teacher support 

materials include cognitively scaffolded worksheets (with detailed teacher notes) that are 

designed to keep students’ minds active in making critical connections for understanding 

the course’s key ideas.  

To achieve these goals, the book consisted of various research-based conceptual precalculus 

problems to promote students’ mathematical problem solving. In particular, Module 7 (entitled 

Angle Measure and Introduction to Trigonometric Functions in the Context of the Unit Circle) of 

the book contained conceptual problems related to the selected trigonometric concepts for this 

study. Therefore, some problems in Module 7 were selected or modified as task items for this 

study.  

Formats. After collecting some trigonometric problems from several sources, such as 

textbooks and papers, I sorted them by guessing a reasonable time to complete each task. I 

designed Task I to consist of eight task items, Task II seven task items, and Task III ten task 

items. The format for the items of each task was determined by considering the components of 



 

54 

the framework. To investigate the participants’ mathematical proficiency or mathematical 

activity, the task items for Tasks I and II were open-ended mathematical problems of 

trigonometric concepts to explore the participants’ problem-solving process. For example, Task 

II.4 asked the participants to find a function to represent the relationship between the given 

mathematical quantities in a real-world situation.  

After finishing Tasks I and II, respectively, the participants were asked to rate the 

difficulty level and importance for each task item. An intention to design ratings was to collect 

data about their use of mathematical understanding to analyze each item from the perspective of 

teaching and student learning. On the first page of Tasks I and II, the following instructions 

about rating the difficulty level and importance for each task item were provided: 

After you finish explaining each task item, please classify the level and rate the 

importance for each task item with reasons. 

o Please classify each item as easy (E), medium difficulty (M), or difficult (D) for you 

(as an instructor) and for your students, explaining the reason for your classification. 

o Please rate (1: less important; 2: important; 3: most important) the importance for 

each item for you (as an instructor) to know and for your students to know, explaining 

the reason for your rating. 

 

Table 6 shows an example of the rating table that was provided on the last page of Tasks I and II 

respectively.  

Table 6 

 

Tables for Rating the Difficulty Level and Importance for a Task Item  

 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For 

students 
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For Task III, there were two kinds of task items: (1) seven task items (Task III.1–III.6 

and III.10) involving hypothetical teaching situations between a college instructor and students 

and (2) three task items (Task III.7, III.8, and III.9) about "test" problems. For both kinds of 

items, the participants were supposed to respond to several subsequent questions related to the 

situations or to the given test problems. The hypothetical teaching situations in Task III.1 

through III.6 and III.10 were created for the purpose of observing how well the participants 

could identify the students’ misconceptions or misunderstandings and how well they could help 

their students understand mathematical concepts key to the situations. This design was based on 

Biza, Nardi, and Zachariades’ (2007) suggestion that tasks involving situation-specific contexts 

should be useful tools to explore teacher knowledge: 

By asking the teacher to engage with a specific (fictional yet plausible) student response 

that is characterised by a subtle mathematical error we can explore not only whether the 

teacher can identify the error but probe into its causes and grasp the didactical 

opportunity it offers (and the fruitful cognitive conflict it has the potential to generate). 

(p. 303) 

Types of questions. To collect rich data on the participants’ mathematical understanding 

for teaching trigonometry, I used several types of questions identified by Zazkis and Hazzan 

(1999): performance questions, construction tasks, “give an example” tasks, reflection questions, 

and “twist” questions. Most of the items for Tasks I and II could be identified as performance 

questions. For example, the question for Task I.3, “Describe how to use the arc length and 

circumference of the circle displayed below to determine how many of the “mystery” angle 

measure units mark off (or cut off) any circle’s circumference,” was an example of a 

performance question that requests an explanation of “how the answer was found, why an action 
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or procedure was chosen and how a decision was reached" (Zazkis & Hazzan, 1999, p. 431). The 

question for Task II.4, “Define a function that relates the measure of the angle (in radians) swept 

out by the fan blade as a function of time elapsed,” was an example of a construction task that 

required “building mathematical objects which satisfy certain properties” (Zazkis & Hazzan, 

1999, p. 431). One of the subsequent questions for Task III.1, “What questions or examples 

would you ask or use to help students better understand the mathematical ideas/concepts 

involved in this situation?” was an example of a “give an example” question, which could be 

useful to gain an insight about the participant’s understanding of a situation from the examples 

s/he generated (Zazkis & Hazzan, 1999). Some questions in the Task III items involving 

hypothetical teaching situations could be identified as reflection questions because they were 

designed for the participant “to distance himself/herself from the personal performance by 

responding to someone else’s ideas” and to “shift the focus to the reason for the [someone else’s] 

solution, rather than to the solution itself” (Zazkis & Hazzan, 1999, p. 434). For example, one of 

the subsequent questions in Task III.4, “What might be possible sources of his/her conception?” 

was an example of a reflection question. Zazkis and Hazzan (1999) identified “twist” questions 

as a type of question that “presents a variation on a familiar situation” (p. 432). For example, the 

question for Task III.10, “How would you respond to each student’s question?” was a twist 

question because the question was given in a situation in which students asked how the 

mnemonic device “SOA-CAH-TOA” could be used in a general context, such as for obtuse 

angles, not just in the right triangle context.  

Task-based interviews. According to Goldin (2000), 

Structured, task-based interviews for the study of mathematical behavior involve 

minimally a subject (the problem solver) and an interviewer (the clinician), interacting in 
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relation to one or more tasks (questions, problems, or activities) introduced to the subject 

by the clinician in a preplanned way. The latter component justifies the term task-based 

italics added], so that the subjects’ interactions are not merely with the interviewers, but 

with the task environments. (p. 519) 

 In this study, the participants had three task-based interviews conducted individually in 

the same fashion as follows. In the beginning of a task-based interview, task material was 

presented to the participants as an “interview script” (Goldin, 2000, p. 518). The scripts had 

several pages, with a task item written and blank space for the participants’ mathematical work. 

The task items for each task-based interview are listed in Appendix C. The interview started with 

me reading the instructions on the first page of the interview script. I asked them to act as college 

instructors and consider me as one of their students who came to ask the questions in the task 

items during their office hours. I also encouraged the participants to “‘think out loud’ during 

problem solving….Thus, the interview contingencies were almost unstructured, but important 

structures were imposed in the choices of structured tasks and the thinking-aloud procedure” 

(Goldin, 2000, p. 521).  

During the interviews, my intervention was minimal as Goldin described above. If 

possible, I attempted not to interrupt while they were thinking out loud. If necessary, I asked 

additional “why” and “how” questions, such as “How or why did you do (find, say, etc.) that?” 

to help them articulate their ways of thinking or clarify their explanations. I asked such questions 

at the moment they made a short pause in the middle or end of their explanation. During the task-

based interviews, my major roles, as an interviewer, included recording the participants’ verbal 

mathematical work through audiotaping; observing their mathematical work, such as explaining, 
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writing, or drawing; asking them follow-up questions, when necessary; and collecting their 

written work on the interview script.  

Supplementary Data Sources 

Background information sheet. A background information sheet (see Appendix D) was 

utilized for collecting the participants’ demographic and educational background data, including 

a personal history of teaching and training experience for teaching undergraduate mathematics. 

Pre-task interview. Before conducting task-based interviews, the participants had a pre-

task interview (see Appendix E), a 30-minute interview about their backgrounds (e.g., education, 

TA experiences) and their thoughts about learning and teaching trigonometry. For example, they 

were asked to answer a question such as “Tell me five things related to trigonometry that you 

want your students to remember even after finishing the course.” 

Post-task interview. After completing the third task-based interview, the participants 

completed a 15-minute post-task interview (see Appendix F) designed to provide them with an 

opportunity to reflect on the experiences that they had during this study. For example, they were 

asked to answer a question, such as “What do you think about the task items?”  

Data Collection 

The data collection was completed during the second and third weeks of November 2011. 

Each meeting took approximately two hours, which was longer than I expected. Table 7 shows 

the meeting schedule with the participants and Table 8 shows the data collection for each 

interview session. 
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Table 7 

Meeting Schedule with the Participants (November) 

Sun Mon Tues Wed Thu Fri 

6 

Kyle I 

 

7 

 

8 

     Gloria I 

 

9 

      Kyle II 

 

10 

        Leo I 

 

11 

Leo II 

Gloria II 

 

13 

Micah I 

 

14 

  Gloria III 

 

15 

   Micah II 

 

16 

 

 

17 

       Leo III 

 

18 

Micah III 

Kyle III 

 

 

Table 8 

Interview Sessions for Data Collection 

Interview Session The Participants did… 

 

Session I 

Background information sheet 

Pre-task interview 

Task-based interview with Task I 

Session II Task-based interview with Task II 

Session III Task-based interview with Task III 

Post-task interview 

 

To collect data, each participant had three interview sessions. During the first interview 

session, each participant completed a background information sheet and a pre-task interview for 

collecting data about their teaching and learning backgrounds. It took approximately 40 minutes, 

as planned. After completing the pre-task interview, the participants achieved the first task-based 

interview by responding to the written task items for Task I. Every time they finished a task item, 

they were asked to rate the level of difficulty and importance for each task item. During the 

second session, they completed another task-based interview with Task II. Finally, during the last 

session, they concluded the third task-based interview with Task III. During the three task-based 

interviews, the participants showed similar reactions to the interviews. They appeared 

comfortable when explaining their mathematical work and were willing to spend considerable 
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time to compete each task, although it took longer than I anticipated. Table 9 shows a 

comparison of the planned time periods and actual duration of time periods for each participant’s 

completion of each task- based interview. This demonstrates their persistence in figuring out 

each task item. After finishing the third task-based interview, they completed a short post-task 

interview to reflect on their participation in this study. This interview took approximately 15 

minutes. All the interviews were audio taped and transcribed. 

Table 9 

 

Elapsed Time Periods for Working on Task Items 

 

 Plan Gloria Kyle Leo Micah 

Task I 1 hour 2 hours 17 min 2 hours 4 min 1 hour 18 min 2 hours 3 min 

Task II 1 hour 20 min 4 hours 13 min 2 hours 29min 1 hour 48 min 2 hours 12 min 

Task III 1 hour 20 min 2 hours 7 min 2 hours 16 min 1 hour 45 min 2 hours 41 min 

Total 3 hours 40 min 8 hours 37 min 6 hours 49min 4 hours 51 min 6 hours 56 min 

 

Data Analysis 

 

 According to Glesne (2006), 

Data analysis involves organizing what you have seen, heard, and read so that you can 

make sense of what you have learned. Working with the data, you describe, create 

explanations, pose hypotheses, develop theories, and link your story to other stories. To 

do so, you must categorize, synthesize, search for patterns, and interpret the data you 

have collected….The art of data transformation is in combining the more mundane 

organizational tasks with insight and thoughtful interpretations. (p. 147, p. 154)  

 The MUST framework was utilized as an analysis tool to categorize and organize the data 

collected. This section describes the approach I employed to the data analysis to answer the 

research questions. There were three key stages in the analysis process: (1) Sorting and reducing 
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data by task item for each participant, (2) Reorganizing the data by strand across the participants, 

and (3) Finding patterns/themes and interpreting the data. 

The First Stage: Sorting and Reducing Data by Task Item for Each Participant 

 During this initial stage, I scrutinized the transcripts of the three task-based interviews for 

each participant using the lens of the strands of the three components of the MUST framework. I 

sorted the data by identifying specific pieces of data that corresponded to each strand. This 

sorting work was processed by scrutinizing the written and verbal data derived from each 

participant’s responses to each task item. 

 To categorize and organize the data, key ideas of the description for each strand of each 

component were important. For example, the participants’ comments about formal definitions, 

illustration of properties (Essential Features of Even’s framework), or use of examples (Basic 

Repertoire of Even’s framework) were counted as a good indicator for showing their Conceptual 

Understanding of the component–Mathematical Proficiency.  

 A lens of the framework helped me closely examine the raw data and discover more 

underlying strands than I originally expected. For example, Task I.1 was designed to see the 

strand, Conceptual Understanding, for Mathematical Proficiency. However, I found that Kyle’s 

raw data showed two more strands– Procedural Fluency of Mathematical Proficiency and Know 

the Curriculum of Mathematical Work of Teaching. Figure 5 is part of my note that shows how 

Kyle’s raw data from Task I.1 were categorized and organized according to the framework. I 

summarized what I learned from the raw data with selected quotations to exemplify the 

participants’ explanations. I displayed the summary data with labeling, for example, K.I.1 (i.e., 

Kyle’s Task I.1 item), and with the relevant strand and the component. Additionally, I included 
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raw data as evidence, when necessary. I quoted what the participants said from the raw data and 

included the task item number along with the participant’s pseudonym for further reference.  

 Kyle 

 

o Task I.1 

 

K.I.1 

<MP: Conceptual Understanding-Essential Features> 

His meaning of one degree measure is one of the 360 equal parts along the 

circumference. On the other hand, to explain the meaning of the radian measure 

he converted the given 2.3 radians to the number of degrees. He thinks, “Degrees 

are nicer to think about because they are more intuitive…you could easily…see 

how big that angle is” (Task I.1, Kyle). 

 

<MP: Procedural Fluency> 

He fluently converted 2.3 radians to the number of degrees using a conversion 

factor from the fact that π radians are the same as 180 degrees. In the computation 

of 2.3 rad × 180º/ rad, he used the unit cancellation by saying, “the radians 

cancelling out here we are going from radians to degrees” (Task I.1, Kyle).  

 

<MWT: Know the Curriculum> 

He thinks that knowing radians is important because it is used to define 

trigonometric functions on the real numbers. 

 

Figure 5. Example of data organization for an interview. 

 

 At the end of this stage, I tabulated the strands observed from each participant’s raw data 

(see Appendix G). The tables were useful to compare the strands that I expected, assisting me to 

see the strands that I actually observed. The tables also allow comparison of the strands by task 

item across all the participants. For example, Table 10 shows the expected and observed strands 

from the participant’s responses to Task I.1 item.  

 

 

 

 

 

 

 

 



 

63 

Table 10 

 

Expected Strands and Observed Strands in Task I.1 Across the Participants 

 

Task Expected Strands  Observed Strands  

GI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

        Historical Knowledge 

MWT: Know the Curriculum 

KI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

        Historical Knowledge 

MWT: Know the Curriculum 

LI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Basic Repertoire) 

        Historical Knowledge 

MI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

MWT: Know the Curriculum 

 

The Second Stage: Reorganizing Data by Strand Across the Participants 

 The classification completed for each participant during the first stage was reorganized 

with respect to each strand for the framework across the participants during the second stage. 

With respect to a strand of a component, I arranged the data pieces together to form “data 

clumps” (Glesne, 2006, p. 152) across the task items and the participants. The data labeling 

completed during the first stage was useful for identifying and organizing the data relevant to 

each strand. The data corresponding to a strand were displayed by task item, which made it 

easier to compare the data across the participants. Figure 6 shows an example of how the data 

were reorganized from the organization completed during the first stage. It appears like a data 

clump consisting of all data corresponding to a specific strand, saying, Access and Understand 

the Mathematical Thinking of Learners, of Mathematical Work of Teaching, across the task 

items and the participants.  
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 Mathematical Work of Teaching (MWT) 

 

o Access and Understand the Mathematical Thinking of Learners  

 

GIII.1 

< MWT: Access and understand the mathematical thinking of learners> 

She thinks that the student’s argument is related to the idea of the definition of the 

radian measure in some sense that the radian measure can be taken as the arc 

length given by an angle of a circle with radius 1. She attempted to understand 

what the student was doing. She focused on what the student was possibly doing 

right rather than what he/she was doing wrong. 

 

L.III.1 

<MWT: Access and understand the mathematical thinking of learners> 

He said that the student’s argument is not “generally accepted…so this is not a 

general mathematical convention” (Task III.1, Leo). Hence, he said that the 

argument could be mathematically right, if it is corrected to say that the arc length 

on a circle of radius 1 associated to the angle is 1.7 inches.  

 

GIII.2 

<MWT: Access and understand the mathematical thinking of learners> 

She used the typical cosine graph to show the outputs of the cosine function are 

real numbers, not angles to correct student A because he/she misinterpreted the 

output of the cosine as degrees, and supported the argument of student B who 

argued that the result must be a real number. But, she explained that it is possible 

to convert the given real number into an angle in degrees. 

 

GIII.3 

<MWT: Access and understand the mathematical thinking of learners> 

She said that student A is partially right and should be more careful about dealing 

with 1 unit. She would explain to student A how to make a unit circle out of 2.8 

feet with a radius. She thinks that the student’s difficulty in understanding 1 unit 

of a unit circle came from not placing a unit on the drawing of a unit circle, in 

general.  

 

M.III.3 

<MWT: Access and understand the mathematical thinking of learners> 

He thinks that it would be difficult for students to deal with the units concretely 

and understand that the unit you choose does not matter in the concept of a unit 

circle. For example, making a circle 2.8 feet a unit circle and making your units 

2.8 feet could probably confuse students. On the other hand, if unit feet are 

chosen, the circle is not a unit feet circle. 
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M.III.6 

<MWT: Access and understand the mathematical thinking of learners> 

He thinks that the student did not understand the rules of function algebra such as 

function composition. So, showing a counterexample using the same function 

may not be helpful. He would provide an example to distinguish between the 

function composition and function multiplication from the standard functions: “If 

f of x is x
2
 and g of x is x

3
, then this is that [the composition] which is x to the 6

th
. 

But this [the multiplication] is x to the 5
th

” (Task III.6, Micah). 

 

M.III.7 

<MWT: Access and understand the mathematical thinking of learners> 

Students might easily forget the condition of the minimality of the period 

regarding the length, if they understand a period only as some section on which 

the function repeated itself. 

 

GIII.9 

<MWT: Access and understand the mathematical thinking of learners> 

For students’ better understanding, she could give students an arbitrary point at 

the angle, t, on the unit circle without providing specific coordinates and ask them 

to locate the point at the angle, π/2 – t, to determine where they would become 

confused this problem.  

 

M.III.9 

<MWT: Access and understand the mathematical thinking of learners> 

When P of t is the constant point (4/5, 3/5), he thinks that students easily make a 

mistake for P of π/2 – t as (π/2 – 4/5, π/2 – 3/5), which may come from a lack of 

understanding of parametric equations and function composition. 

 

Figure 6. Example of a data clump corresponding to a strand.  

For the strand, Conceptual Understanding, of Mathematical Proficiency, additional work 

had to be completed at the second stage of data analysis. Because data about the participants’ 

conceptual understanding formed a relatively large data clump, it was important to refine my 

categorization based on concepts. In other words, the data regarding each strand were 

reorganized according to the concepts I considered when I designed the task items. For this 

additional work, the chart (see Table 5) of the concepts embedded in the task items was useful 

for arranging and further organizing the data. Figure 7 shows an example of the organization of 
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the data about Conceptual Understanding of the concept “unit circle trigonometry and right 

triangle trigonometry.” 

 Mathematical Proficiency (MP) 

 

o Conceptual Understanding 

 

 Unit circle trig and right triangle trig 

 

G.I.8 Unit circle trig and right triangle trig 

<MP: Conceptual Understanding>  

<MP: Historical Knowledge> 

For the problem I.8 asking about historical development of unit circle and 

right triangle trigonometry, as well as connection of trigonometry with inside 

and outside of mathematics, she said that she has no ideas of history, but 

thinks that unit circle trigonometry is a generalization of right triangle 

trigonometry “by allowing side lengths to be negative and by relating the 

obtuse angles to its unique reference triangle.” (Task I.8, Gloria)  

 

K.II.3 Sine/cosine function; Unit circle trig and right triangle trig 

<MP: Conceptual Understanding> 

He connected right triangle trigonometry with unit circle trigonometry by 

thinking of the length of the hypotenuse as the radius of a circle. He used the x 

coordinate of the point which is a vertex of the given right triangle to find the 

value of the cosine function because he said that the definition is the x 

coordinate. He corrected himself that the x coordinate is the radius times the 

cosine.  

He said that the circle is not the unit circle because the radius is 5. He said, 

“Let me take that circle and shrink it down by a factor of 5. I’ll get the unit 

circle. Nothing has changed in the picture just smaller now. Everything has 

been divided by 5… this is 1 this [the x coordinate] is 4/5 this [the y 

coordinate] is 3/5 and so the point that we’re looking at is 4/5, 3/5 now you 

can see that these number are what we have found to be the cosine or the sine” 

(Task II.3, Kyle). 

He confirmed the definition of the cosine and sine function on the unit circle 

using the right triangle with radius 1, the length x for the base, the length y for 

height. Without making reference to triangle he had no idea how to define the 

sine and cosine functions with unit circle trigonometry. 
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L.II.3 Sine/cosine function; Unit circle trig and right triangle trig 

<MP: Conceptual Understanding> 

<MA: Mathematical Noticing: Observing structure of Mathematical 

Systems> 

When asked to find the cosine value in unit circle trigonometry, he rescaled 

down the size of the given right triangle by dividing each side by 5 and 

obtained a similar triangle. He placed the right triangle inside the unit circle 

using the hypotenuse as the radius of 1. The vertex A for the right triangle 

became a point on the circle and the coordinates are (4/5, 3/5). He picked the x 

coordinate as the cosine of θ. 

 

M.II.3 Sine/cosine function; Unit circle trig and right triangle trig 

<MP: Conceptual Understanding> 

<MA: Mathematical Noticing: Observing Structure of Mathematical 

Systems> 

He saw the connection between right triangle trigonometry and unit circle 

trigonometry. He overlapped the given right triangle and a circle with radius 5 

which matches with the length of hypotenuse of the triangle. The vertex A of 

the triangle became a point (4, 3) on the circle and the vertex C became the 

origin. He found the cosine value from the x coordinates of A which is 5 

cosine θ.  

 

Figure 7. Example of a data clump corresponding to a strand and a concept. 

 

The Third Stage: Finding Patterns/Themes and Interpretation  

 

During this last stage of data analysis, I synthesized, analyzed, and searched for patterns 

and themes within each organized and classified data clump corresponding to each strand. I 

frequently returned to the raw data (both written and verbal data) to understand the original 

context. This stage was the analysis phase for me to “think with” my data, “reflecting upon 

what” I “have learned, making new connections and gaining new insights, and imagining how 

the final write-up” would “appear” (Glesne, 2006, p. 154). Therefore, I was able to begin writing 

the findings from the data and interpretation in this stage, which will be discussed in the next two 

chapters. 
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Limitations 

This section identifies some of the limitations of the methodology utilized in this study. 

First, this study used only one major method to collect data, individual task-based interviews. 

The data for the second research question were collected from the participants’ responses to 

hypothetical teaching situations without observing the participants’ actual classroom teaching. 

Due to this limitation, I could not find any evidence of their Reflection on Mathematics in One’s 

Practice of the third component–Mathematical Work of Teaching.  

Second, Task III was designed to explore how the participants thought about and 

responded to students’ difficulties and misunderstandings. The hypothetical situations in Task III 

consisted of short dialogues between one or two students and a college instructor. The short 

lengths of the situation descriptions for the task items limited the participants’ responses to their 

mathematical understanding related to the situations, instead of their thinking about student 

thinking. Their responses also might have been led by the sub-questions for the task items, such 

as “How would you describe mathematical concepts key to the situation?” Due to this limitation, 

although Task III was designed to reveal the strands of the third component–Mathematical Work 

of Teaching, data from Task III provided more information about the other two components of 

the MUST framework.  

Third, the vocabulary “radians” misused in four task items unintentionally. For example, 

the first question for Task I.6 contained the term “radians,” which was intended to mean “radius 

lengths” or “radii.” The question was stated as follows: 

What is the general form of (x rad, y rad) as the ordered pair in radians, of any point on a 

circle of radius r kilometers that forms an arc length of s kilometers as illustrated on the 

diagram? Why?  
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 In this question, (x rad, y rad) should be corrected to (x radii, y radii) because x and y represent 

the values for distance. Because when a radius length is used as a unit of angle measure, the unit 

is referred to as a radian (Carlson & Oehrtman, 2009), I mistakenly assumed that the two terms 

could be used interchangeably. Although they are conceptually related, these terms should be 

mathematically distinguished because the term “radians” is used only for angles. This 

terminological error confused the participants, who claimed that a radian measure is only for 

measuring an angle not distance.  

 Fourth, although it was not planned, three out of the four participants in this study were 

recipients of the University Outstanding Teaching Assistant Award. This participant group in this 

study might be considered special because such GTA-Ms are generally perceived as “good” 

college instructors by students, peers, and professors.  

 

 

 

  



 

70 

 

 

CHAPTER 4 

  FINDINGS 

The purpose of this chapter is to report the findings focusing on the participants’ 

mathematical understanding for teaching trigonometry. The data were organized and coded using 

three components and several strands of the Mathematical Understanding of Secondary Teaching 

(MUST) framework. Therefore, this chapter presents the findings according to the three 

components of the framework–Mathematical Proficiency, Mathematical Activity, and 

Mathematical Work of Teaching (MAC-MTL & CPTM, 2012).   

Mathematical Proficiency 

Mathematical Proficiency can be thought of as “knowing mathematics.” This includes 

teachers’ deep and thorough understanding of mathematics, which helps students develop 

proficiency in mathematics (MAC-MTL & CPTM, 2012).   

Because it was not easy to have direct access to people’s mathematical understanding and 

to organize it explicitly, I referred to Even’s framework (1990) for teacher knowledge of subject 

matter along with the strands of Mathematical Proficiency in the MUST framework (see Chapter 

2). Even’s framework provided insight and helped me recognize and describe Mathematical 

Proficiency from the data. However, I used the titles of the strands from the MUST framework to 

organize the findings.  
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Conceptual Understanding 

Conceptual understanding refers to comprehension of mathematical concepts, operations, 

and relations (NRC, 2001). The data about the participants’ conceptual understanding were 

collected through three task-based interviews. In this section, I organize and present the findings 

of conceptual understanding that the participants exhibited by concept. 

Angle measures. Traditionally, the meaning of an angle is not discussed in trigonometry 

class because it is assumed that students already know it. However, Leo and Micah mentioned 

the meaning of an angle. Leo briefly described an angle as a place “where two lines intersect” 

(Interview 1, Task I.1) and drew an angle using two rays. Micah mathematically articulated an 

angle saying, “An angle θ whose vertex is at the circle’s center cuts off s [the arc length] inches 

of the circle’s circumference as the terminal side of the angle opens in a counterclockwise 

direction from the initial side,” and drew an angle in a circle using two rays (Interview 1, Task 

I.4).  

When the participants were asked to discuss the meaning of 10 degrees and 2.3 radians, 

they interpreted the question in terms of how big is the openness of the angles. They had no 

problem figuring out how big an angle of 10 degrees was when placed within a circle. To 

determine the openness of an angle of 2.3 radians, Kyle converted radians to degrees, Gloria and 

Leo approximated the values of /2 and , respectively, and Micah used the fraction of 2.3/2 of 

the circumference (Figure 8). None of the participants, except for Micah, discussed the degree or 

radian angle measure as a fractional part of the circumference of a circle that has its center at the 

vertex of the angle in Task I. However, Gloria described the degree measure as, “A degree is…a 

ratio of something….One degree is 1/360
th

 of a circle” in Task III (Interview 3, Task III.2). 
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Figure 8. Micah’s and Leo’s explanation of an angle of 2.3 radians. 

Unit circles. The participants showed a dual conception of the unit circle. One conception 

was a common concept of the unit circle. They perceived the radius as a unit of measurement and 

claimed that every circle is a unit circle. For example, Gloria explained what a unit is in the 

definition of the unit circle saying, “It is completely up to every individual as to what a unit 

is….A unit is not a unique object….What is one unit? It’s precisely this distance (indicating the 

radius length of a circle she drew)” (Interview 3, Task III.3). She identified the circle with a 

radius of 2.8 feet as a unit circle by defining the radius of 2.8 feet as one unit. Interestingly, she 

drew the unit circle separately from the original circle, although she claimed that they are the 

same (Figure 9). When I asked why she drew them separately, she answered, “Because I want to 

make a point that this is my one unit but this right here is 2.8 feet” (Interview 3, Task III.3).  

 

Figure 9. Gloria’s unit circle as a separate circle. 
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Another conception was that a unit circle should be accompanied by a specific unit, such 

as a unit of an inch. For example, Kyle claimed that any circle is a unit circle with a choice of 

unit of measure and said, “A unit circle is a pair of a circle and a unit of measurement….Every 

circle can be made into a unit circle by choosing the appropriate unit of measurement” (Interview 

3, Task III.3). For the circle of a radius of 2.8 feet, he argued that it could or could not be a unit 

circle depending upon the choice of the unit of measure. In a similar sense, Micah mentioned that 

it did not make sense to ask whether a circle is a unit circle without specifying a unit saying, “A 

circle of radius 12 inches is not a unit inch circle and is a unit circle of the unit of 12 inches” 

(Interview 3, Task III.3). Kyle and Micah also discussed rescaling the size of a circle to have a 

unit circle and drew a unit circle by changing the length of the radius from the original circle 

(Figure 10). 

           

Figure 10. Kyle’s and Micah’s drawings of unit circles as rescaled from the original circle. 

Sine or cosine functions. The participants knew that the inputs of sine or cosine functions 

are angles in radians or real numbers and that the outputs are real numbers. When they were 

asked about the interpretation of the input and output of the sine function sin(1.1) ≈ 0.891 in a 

given Ferris wheel context (Figure 11), they easily responded that the input of 1.1 is the angle 
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measure in radians from the 3 o’clock position. Kyle interpreted the meaning of the angle of 1.1 

radians as how wide it opens, just as he did in Task I.1. To figure it out, he converted it to the 

degree measure using the conversion factor of 180º/, which showed his consistent reasoning 

while working on radians.  

To interpret the output of 0.891, Gloria represented the y-coordinate of a point on a circle 

as the sine function y = rsinθ and demonstrated that 0.891 is the unitless ratio of the height above 

the 3 o’clock position to the radius of the Ferris wheel, by explaining: 

The input value is the angle measurement in radians….So, it’s the angle measurement 

from the 3 o’clock position through a measurement through an angle 1.1 radians….It 

[0.891] is the scale factor…. y is equal to r times sine of θ, y over r would be sine of θ. 

So, maybe the best way to say…is .0.819 is the ratio of the height above the 3 o’clock 

position with the Ferris wheel radius….This [1.1] is a real number….I have a hard time.  

I don’t like thinking about the output of…a sine function having a unit…It [1.1] is 

unitless [italics added]…. I never [italics added] use radians as a unit. (Interview 1, Task 

I.7) 

Although she considered the output as the ratio of the vertical height with respect to the radius, 

there was no evidence of her perception of the output as one being measured in radius lengths. 

Kyle explained that multiplying the number 0.891 by the radius length is the actual height 

of the bucket above the horizontal diameter of the Ferris wheel. Micah clarified the unit of the 

output by saying, “This number [0.891] is really unitless….The unit lives there (indicating the 

radius length of 46.7 feet)” when he wrote “Height = 46.7(ft)·(0.891)” (Interview 1, Task I.7). 

Leo said, “1.1 corresponds to an angle…If there are no units, always assume it’s radians” 

(Interview 1, Task I.1). However, Leo made a minor mistake in connecting the context and the 
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given sine function. Although he interpreted 0.891 as a vertical distance above the bucket when 

it started to move, he answered 0.891 “feet,” because he thought that the unit of the output value 

of the given sine function depends upon the given unit of the radius. 

John is sitting in a bucket of a Ferris wheel. He is exactly 46.7 feet from the center and is at the 3 

o’clock position as the Ferris wheel starts turning.  

 

 
 

I.7.1 What does the input value of the sine function sin(1.1) ≈ 0.891 represent in this context? 

I.7.2 What does the output value of the sine function sin(1.1) ≈ 0.891 represent in this context? 

Figure 11. Task I.7. 

  

In another problem regarding the input and output of trigonometric functions, I identified 

evidence of the participants’ struggles. When they had a given value of cos(sin(35º))  48.125º in 

Task III.2, they expressed unfamiliarity with the symbolic notation of the output in degrees. For 

example, Gloria said, “I don’t think that I like this problem at all because…this is bad 

notation…this whole expression…would be outputting a real number. But a degree isn’t a real 

number” (Interview 3, Task III.2). They argued that the output of the cosine function should be a 

real number because they said that the cosine function is a real-valued function. For example, 

Leo disagreed with the idea of treating a length as an angle in degrees because he said, “No 

matter what, it [the cosine function] is always going to spit out a real number. It’s never going to 

give you a degree. It’s always going to give you a real number. So that’s sort of a confusing 

question” (Interview 3, Task III.2). He represented the cosine or sine value of an angle as the 
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length of the base or height of a right triangle with a hypotenuse of one. Additionally, he argued 

that the unit of the cosine or sine value might be in any linear measure but could not possibly be 

in degrees (Figure 12).  

 

Figure 12. Leo’s representation of the cosine and sine values. 

Inverse trigonometric functions. The participants were very familiar with the definitions, 

properties, and graphs of inverse trigonometric functions. They had no problem discerning the 

mathematical symbol for the inverse function compared to the reciprocal function. They clearly 

stated the restricted domain between -π/2 and π/2 of the sine function for the existence of the 

inverse sine function and drew its graph by flipping the sine function with respect to the line y = 

x. They knew that the range of the sine inverse is the domain of the sine. Kyle, for example, 

explained it, 

When we do this reflection across the x and y axis, what we are really doing is we are 

switching x coordinate for y coordinate on each point. And so, our axes are going to be 

switched as well when we do that. I’m just assuming some facts about inverse functions, 

like here, the domain of the inverse is a range of the function. (Interview 3, Task III.8) 

He added that for the existence of the inverse sine function the sine function should be one-to-

one, meaning that the function does not repeat itself and that the restricted domain could vary as 

long as it is as large as possible with no repetitive outputs.  

Micah described the same idea in a different way, saying “Where are you going to cut its 

domain?....In some sense, it doesn’t really matter where you cut its domain as long as you cut its 
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domain somewhere…it passes the horizontal line test” (Interview 3, Task III.8). Leo articulated 

the formal definition of the inverse function: “It exists if f inverse composed with f of x gives me 

back x and f of f inverse of x also gives me back x” (Interview 3, Task III.6). 

Periodic functions/Periods. The participants had no problem presenting the formal 

definition of a periodic function. They recognized that the sine function y = sin(x
2
) is not periodic 

because they used the definition of a period and found no constant c satisfying f(x) = f(x + c) for 

all x. Gloria said that many variables were involved in finding the constant c, which made it 

impossible to find c for all x. When asked if 2π is the period because of sin(x
2 

+ 2π) = sin(x
2
), she 

responded that 2π could not be a period because 2π did not satisfy the condition of the definition 

of a period. All the participants, except for Kyle, successfully sketched a rough graph of y = 

sin(x
2
) by plotting several x-intercepts using the square root function and considering the 

maximum and the minimum values. Their graphs oscillated between 1 and -1 and oscillated 

faster as x increased. Kyle also had a similar idea and drew a graph oscillating. However, he did 

not pay attention to the critical idea of the extreme values of the function and behaviors of the x-

intercepts from the argument of x
2
. Therefore, his graph was not right because it illustrated that 

the x-intercepts were getting farther away and the maximum and minimum values varied (Figure 

13). 

 

 

Figure 13. Kyle’s graph of y = sin(x
2
). 
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Unit circle trigonometry and right triangle trigonometry. The participants had no trouble 

connecting right triangle trigonometry with unit circle trigonometry by thinking of the length of 

the hypotenuse as the radius of a circle, the length of the base as x, and the height as y. They 

noticed that the definitions in the unit circle context and in the right triangle context were 

compatible. They fluently represented any point on a circle as a pair of the cosine and sine 

functions (rcosθ, rsinθ) and used the representation in various problem contexts (Figure 14). 

                        ↔                

Figure 14. Micah’s connection of the right triangle to a circle context.   

Co-functions. The participants understood the sine and cosine functions as co-functions 

of each other. Given a point P(t) on the unit circle corresponding to the angle t between 0 to 2, 

they had no difficulty finding the coordinates for the point P(/2 – t) by using the addition and 

subtraction formula for sine and cosine. In addition, they explained that /2 – t is the 

complementary angle of t, hence the coordinates for P(/2 – t) could be found by using the co-

function formula. They drew right triangles in the unit circle to explain the relationship between 

the co-function pair of sine and cosine. Leo, for example, explained it this way:  

Another fancier way to do…is to know that the cosine of an angle is actually equal to the 

sine of the compliment of that angle. That’s where the name comes from….If I want to 

know the cosine of π/2 – t,…that’s the compliment of t, that has to be the sine. (Interview 

3, Task III.9)  
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Micah, however, misunderstood the function P(t) = (4/5, 3/5) as a constant parametric 

description of the circle and failed to remember that the description consisted of the cosine and 

sine functions of t on the unit circle for an angle t. Therefore, he responded in an incorrect way:  

P of t is the constant point (4/5, 3/5), so in other words, this description of how I’m 

running around the circle says I’m just standing here forever. So where am I standing at 

π/2 – t, well, I never moved so I’m still standing there. So P of π/2 – t is (4/5, 3/5). P of 

anything is (4/5, 3/5), in other words, this is constant in t. (Interview 3, Task III.9) 

Procedural Fluency 

Procedural fluency is a skill in carrying out mathematical procedures flexibly, accurately, 

efficiently, and appropriately (NRC, 2001). The participants showed procedural fluency in 

algebraic computations for solving task items in trigonometry, in most cases, with meaningful 

explanations. For example, they had no problem converting one angle measure to another angle 

measure using a conversion factor. In the conversion process, they utilized a traditional method 

of unit cancellation. For example, to convert 2.3 radians into degree measure, Kyle explained, 

“The radians are cancelling out. Here we are going from radians to degrees” (Interview 1, Task 

I.1) in the computation of “2.3 rad × 180º/ rad.” Leo asserted that unit cancellation is important 

for calculation and said, “If the units cancel out correctly, then…you are doing things in the right 

direction and it’s not upside down….The units guide you of which way I should write this way 

or that way….I always try to use these things because I think it makes it less tricky for them 

[students]” (Interview 2, Task II.1).  

They were good at using the arc length formula, circumference formula, and equivalence 

of ratios of parts to the whole to solve problems involving angles. Their fluent algebraic work 

involved not only the Pythagorean Theorem and the mnemonic device “SOA-CAH-TOA” in a 
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right triangle context but also a general symbolic representation (rcosθ, rsinθ) of a point on a 

circle in a circle context. Their algebraic manipulations for modeling trigonometric functions 

from a real world application problem were also skillful. They did not show any difficulty in 

algorithmic work with inverse functions and their restricted domains.  

Strategic Competence  

Strategic competence refers to proficiency in formulating, representing, and solving 

problems using mathematical strategies (NRC, 2001). It is a skill that concerns more than just 

“knowing how” because it involves creativity and flexibility. The participants were good at 

dealing with unknown variables and formulating or representing problems mathematically. Their 

problem-solving strategies were similar with slight differences depending upon task items. For 

example, when formulating Task I.3 (Figure 15), they all used either part to the whole ratios or 

ratios of angles to arc lengths. For this problem, no participant set up and explained equations 

using the concept of an angle as a subtended arc or as a fraction of a circle’s circumference. For 

example, (s/C)·x = 7 or (7/x)·C = s, where s is the length of the arc subtended by the angle, C the 

circumference, and x the total number of the “mystery” units. 

A student measured the angle displayed below and determined that its measure was 7.  

However, he did not label the units in which he measured the angle. The unit he measured in is 

not grads, radians, or degrees. Describe how to use the arc length and circumference of the circle 

displayed below to determine how many of the “mystery” angle measure units mark off any 

circle’s circumference.  

 

 

 

 

 

 

 

Figure 15. Task I.3. 
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The participants also showed similar strategies to represent functions graphically or 

symbolically. To sketch a graph, they all plotted special points, such as the outputs of some 

special angles, the x-intercepts, and/or the extreme values, and connected the points smoothly 

(e.g., Figure 16).  

            

Figure 16. Leo’s sketch of the graph of y = sin(x
2
). 

 When the participants had item Task III.2 (Figure 17), they all agreed with student B and 

struggled with the assumption that the instructor’s representation of the cosine function as an 

angle in degrees was true because they thought that the cosine value should be a real number, not 

an angle. 

Instructor (You): The answer for computing cos(sin(35º)) is 48.125º. 

Student A: I put my calculator in the degree mode and then sin(35) produced 0.5736 and 

cos(0.5736) produced 0.9999. The answer is 0.9999º.  

Student B: I think that the answer 48.125º could be wrong because the value for cos(sin(35º)) 

must be a real number. 

 

 How would you compute cos(sin(35º))? 

 How would you help the students derive 48.125º? 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources for their error or conception? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

Figure 17. Task III.2. 

 

Despite their discomfort, they patiently attempted to figure out the item. They generated a 

strategy in which they attempted to associate a real number with an angle. For example, Gloria 

explained her strategy as follows (Figure 18): 
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Student B says that 48.125 degrees could be wrong because the [cosine] value should be 

a real number. I actually agree with the student on that….That [48.125 degrees] just 

seems sort of weird to me because a cosine does spit out a real number….Any real 

number, such as .840 [= cos(sin(35º))] can be thought of as a radian because you can take 

your circle of radius one and you could trace out what’s an arc length if you will be of 

.840 and that would be your corresponding angle. So to this arc length of .840 you would 

get an angle measurement, which you could then measure in terms of degrees. (Interview 

2, Task III.2) 

               
 

Figure 18. Gloria’s strategy. 

 

She claimed that the association between the real number and the angle does not mean that they 

are the same but that there is a one-to-one correspondence. For the item, she identified the real 

number of .840 as an angle of .840 radians and converted it to an angle in degrees using the 

conversion factor of 180º/, which was the same way Kyle approached the item. Although 

Micah also generated and used the same strategy to figure out the item, he was not satisfied with 

the approach. 

You are thinking of the map that goes from the numbers to the angles. And then I take the 

degree measurement of that corresponding angle….To me that is just a very convoluted 

thing to do. I don’t understand why one would do that….Certainly the only thing that this 

could possibly mean is you get some number you now think of that number 
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[cos(sin(35º))] as a radian measurement and I convert that radian measurement to degrees 

and….I should get that angle [48.125º]. But to me it is very unnatural to think of the 

output of the cosine function to be an angle. That’s very unnatural to me….In fact I think 

it’s safe to say that until this moment I have never thought of the output of the cosine as 

an angle. (Interview 2, Task III.2) 

Adaptive Reasoning 

 

Adaptive reasoning refers to capacity for logical thought, reflection, explanation, and 

justification including intuitive, deductive, and inductive reasoning based on patterns or analogy 

(NRC, 2001). This proficiency helps a person place facts, concepts, procedures, and solution 

methods together in a meaningful way (NRC, 2001).  

Even when the participants misunderstood task questions, they attempted to reason 

accordingly. For example, when they were asked to “interpret” the circumference formula C = 

2r, they attempted to figure out “where it came from.” Kyle and Micah, for example, guessed 

the origin of the number  as half of the circumference of the unit circle. And then they used the 

similarity of circles and generalized their definition to the circumference formula for any circle 

of the radius of r using r as an expanding or shrinking factor. 

 Although the participants showed no difficulty sketching trigonometric functions, their 

reasoning about the smoothness and concavity of the curve made sense but was intuitive. For 

example, to graph a sine function Gloria plotted some points, connected them smoothly, and 

explained that the height of an object in a circular motion was changing as a continuous motion. 

She reasoned about the concavity of the sine curve in a sense of rate of change as follows: 

I would have…to sort of measure this distance [the height] and then as you get closer and 

closer to the top you can see that the distance is not changing as much like this distance is 
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really close to that distance and so that implies that as you’re really close up here you are 

not growing all that fast. So you would have a certain concavity. When you are down 

here though that angle measurement from here to here whatever that is, that’s going to 

make a bigger difference in the growth from here to here maybe. And just kind of show 

them that by looking at that in try to plot it you can see you can almost kind of see how 

the concavity has to go by looking at sort of the speeds and the changes of the 

distances…. We look at the rate of change of distances to get concavity. (Interview 1, 

Task I.5) 

Leo and Micah justified their informal arguments using contradiction. Leo mentioned that 

talking about concavity requires knowledge of derivatives, and that motions in the real world are 

nice and smooth most of time, except for some cases. He said, “It [the curve] has to slowly come 

up here,” because otherwise [italics added] at the maximum value “that would be a sharp 

turn….It [the bug] is not like it gets to here and suddenly jumps back down that way” (Interview 

1, Task I.5). Micah asserted, 

This bug’s motion is completely smooth. I never sort of stop and then drastically sort of 

speed up or slow down….Whereas, if maybe you were worried that this thing was 

concave up…if I get there right and now I’ve got to start decreasing again all of a 

sudden…I’m going to get some sort of weird point if I try to do that, so maybe intuitively 

it makes more sense for this function to be nice and smooth. (Interview 1, Task I.5) 

The participants’ reasoning about the unit circle was similar. Although they perceived the 

radius as a unit of measure for the concept of the unit circle, they also talked about a unit circle 

depending upon the choice of a unit. Therefore, I could observe that they drew the unit circle as a 

separate or a different circle from a given circle (see Figures 9 and 10). In most cases, they 
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regarded the radius length as a scaling factor to shrink or enlarge the original circle to the unit 

circle, keeping the linear unit of the radius of the original circle. They reasoned about the concept 

of the unit circle in a similar sense of proportionate properties of similar triangles. For example, 

Gloria stated that the unit circle is “a scaled-down version” (Interview 2, Task II.3)–a smaller or 

bigger circle of radius “one,” using a scaling factor of 1/r for the given circle with radius r. 

 I observed reasoning by analogy in the participants’ work. One of the examples was 

Gloria’s analogy of “a rubber stamp” to explain the concept of the period of the function. She 

illustrated that each chunk of stamp should be connected, have the shortest distance, and not 

overlap as stamping along.  

Productive Disposition 

Productive disposition refers to a positive attitude toward and beliefs about mathematics 

including self-efficacy (NRC, 2001). Through task-based interviews, I found that the participants 

seemed to already have “habits of mind” (Cuoco, Goldenberg, & Mark, 1996) as 

mathematicians. For example, after Kyle finished a task item on a proof, he said that proving was 

fun for him. They also put forth a great deal of effort to think about, do, and explain the task 

items. For example, for one of the task items in Task I, Gloria misunderstood what the task item 

asked and became lost. She attempted a couple of ways but failed to figure it out. After 

completing all other items for Task I, she wanted to return to the task item and patiently try it 

again from a fresh perspective. She finally figured it out when she realized that her confusion 

came from her misunderstanding of the question and that the item was not that complicated. She 

spent about 20 minutes on the task item in total. This occurred not only to her, but also to the 

other participants. Table 9 in Chapter 3 showed the amount of time the participants spent 

completing each task, which also demonstrates their persistence in figuring out each task item. 
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They did not mind taking a great deal of time and were willing to finish the tasks, although the 

length of time elapsed was longer than the participants and anticipated originally. 

I observed that Leo tended to show more non-negotiable attitudes toward mathematical 

facts that he believes to be correct than the other participants. This is evident in his working time, 

which was relatively shorter than the other participants’ (see Table 9). For example, in Task III.2 

(Figure 17) all the participants wondered how the cosine value could be expressed as an angle in 

degrees, which they did not agree. Different from Gloria, Kyle, and Micah who attempted to 

think about a way to figure it out, Leo refused to consider the cosine value as a degree measure, 

making the following argument: 

I don’t think this [48.125º] is the answer….This doesn’t make sense to me….Cosine is a 

length….It’s sort of where the fuzzy line between length units switching to degrees. And 

how that sort of fuzzy line when we say things like the cosine of the sine of 35 degrees, 

well, this is a length but now we are suddenly treating it like it’s an angle measure. So we 

are kind of fuzzying the line between length and angle measure. (Interview 3, Task III.2) 

Historical and Cultural Knowledge 

The MUST framework added historical and cultural knowledge to the five strands of 

mathematical proficiency identified in Adding it Up (NRC, 2001) because understanding the 

origins and conventions in mathematics can foster an understanding of mathematical ideas in a 

more conceptual way. The participants frankly said that they did not know the history of 

trigonometry well and that their knowledge of the history of trigonometry was limited. 

Therefore, they attempted to guess the history of trigonometry when asked about the historical 

background of trigonometry. For example, Gloria guessed that the origin of degree measurement 

might be related to a nautical term without further explanation. Although the origin of the degree 
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as a unit of angles is unknown, it is known that ancient astronomers used a degree when 

concerning the ecliptic path of the sun (Scott, 1960). Kyle said that astronomy might provide the 

historical background for trigonometry. Interestingly, they all guessed that trigonometry involved 

only angles and triangles in the beginning, hence triangle trigonometry developed first followed 

by circle trigonometry, which is not true in the history of trigonometry.  

The participants were able to articulate the mathematical conventions regarding angles. 

They mentioned that the conventional direction of angle rotation is counterclockwise and the 

absence of the unit for an angle conventionally means the radian measure. With this 

understanding, they could recognize, for example, sin(3) ≠ sin(3º) because “3” in sin(3) denotes 

the radian angle. Gloria asserted that mathematical convention makes mathematics work in a 

coherent way. Through the data, I could not observe any evidence of their knowledge of 

trigonometry from a cultural perspective.  

Mathematical Activity 

Mathematical Activity can be thought of as the process of “doing mathematics,” which 

involves teachers’ mathematical actions to notice, reason, create, or integrate mathematical ideas 

(MAC-MTL & CPTM, 2012). This component consists of three strands–Mathematical Noticing, 

Mathematical Reasoning, and Mathematical Creating. Because these strands are intertwined, 

adding another strand–Integrating Strands of Mathematical Activity–was unavoidable. 

Mathematical Noticing 

 Mathematical noticing involves recognizing similarities and differences in mathematical 

structures, mathematical symbolic conventions, argumentation, and connections of mathematical 

entities in varied mathematical areas or other fields (MAC-MTL & CPTM, 2012). 
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Observing structure of mathematical systems. Teachers need to recognize the structural 

similarities or differences in mathematical systems, which helps them flexibly deal with 

mathematical objects in varied systems (MAC-MTL & CPTM, 2012). The participants noticed 

the connection between right triangle trigonometry and unit circle trigonometry by associating 

the hypotenuse of a right triangle with the radius of a circle. However, they did not perceive the 

length of the hypotenuse of the triangle as a unit of measure so that they could consider the circle 

as a unit circle. When asked to find a cosine value in Task II.3, they rescaled the length of the 

hypotenuse to one for “their” unit circles and other lengths by using the same scaling factor (e.g., 

Figure 10). Their understanding of the connection of the two structures–right triangle 

trigonometry and unit circle trigonometry–was also observed in their responses to Task III.2 

(Figure 17). For this task item, they all disagreed with the instructor and agreed with student B. 

Their responses to the instructor’s solution, 48.125º, were similar. They claimed that the output 

of the cosine function should be a real number, not an angle in degrees. For example, Gloria said 

that writing 48.125º in degrees for the output value of the composite function was “bad notation” 

(Interview 3, Task III.2). Leo was concerned about “fuzzying the line between length and angle 

measure” (Interview 3, Task III.2). Micah mentioned that it would be “very dangerous to blur the 

distinction between numbers and angles” (Interview 3, Task III.2).  

Although they identified the hypotenuse of a right triangle with the radius of a circle to 

make a connection between right triangle trigonometry and unit circle trigonometry, I could not 

find evidence that they interpreted the cosine value known as the ratio of one length (adjacent to 

a given angle) over the hypotenuse as a proportional length to the circle’s radius or considered 

the unit of the cosine value to be in radius length. Such interpretation makes it possible to find a 

corresponding angle in degrees to an arc whose length is a fraction of the circle’s circumference 
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in the following sense: cos(32.864º) = 0.834 means that cos(32.864º) is a length of 0.834 of the 

circle’s radius. Because the circle’s radius is 1/2 of the circle’s circumference, cos(32.864º) 

corresponds to an arc whose portion is 0.834/2 of the circle’s circumference. If an angle of one 

degree is defined as an arc whose length is 1/360
th

 of the circle’s circumference, cos(32.864º) 

corresponds to an angle of (0.834/2)·360º  48.125º (Thompson et al., 2007). Bressoud (2010) 

expressed the radius of a circle in degrees, “If the circumference is 360º, then the radius should 

be 360º/2  57.3º” (pp. 109-110). Because cos(32.864º) has a unit of radius lengths, a length of 

0.834 of the circle’s radius, cos(32.864º)  0.834·57.3º provides as an angle in degrees. 

Discerning symbolic forms. Teachers need to be aware of symbolic forms so that they can 

identify and explain the mathematical meanings behind the symbolic rules (MAC-MTL & 

CPTM, 2012). The participants were good at dealing with symbolic representations, such as the 

representation of an arbitrary point on a circle as (rcosθ, rsinθ). They also noticed the symbolic 

differences between the reciprocal of a number and the inverse of a function. For example, 

Gloria and Leo pointed out that the notational idea of the exponent to -1 in between “number 

mathematics” and “function mathematics” should be distinctively interpreted as the reciprocal of 

a number and the inverse of a function respectively. Kyle mentioned that the superscript -1 

notation for inverse trigonometric functions is ambiguous and confusing because it can be 

interpreted as either its reciprocal or its inverse function. He suggested that, to indicate an 

inverse trigonometric function, it could be appropriate to use the terminology “arc” instead of 

using the superscript -1, which might be a way to avoid students’ confusion. Micah said that it is 

“a matter of convention” for cosine to the -1 of x to “mean the function inverse not the inverse in 

the range” (Interview 3, Task III.6). He emphasized the importance for notation in mathematics 

saying, “I would say…notation is everything” (Interview 3, Task III.6). 
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Regarding rules related to symbols, the participants were aware of students’ common 

mistakes. For example, Leo responded that cancelling “cos” in cos  is “an illegal 

cancellation” and “we cannot do this against the rules” (Interview 3, Task III.6). Gloria remarked 

that cos  = 1 might come from the confusion between the composition and multiplication 

of functions. Kyle was aware that students easily take constants out of trigonometric functions, 

such as sin(2x) = 2sin x.  

Detecting the form of an argument. Teachers need to notice the form of mathematical 

arguments generated by textbooks or students so that they can identify a missing or repeated 

portion of the arguments (MAC-MTL & CPTM, 2012). I expected to see this strand from the 

items of Task III in which some of students’ arguments in hypothetical teaching situations were 

stated. However, due to the short length of the descriptions of the situations in the task items, the 

participants focused on explaining more about mathematics related to the situations rather than 

analyzing the students’ arguments. 

Interestingly, the participants attempted to avoid directly judging the students’ arguments 

in the task items and to understand their thinking even when the arguments were not 

mathematically correct. For example, when responding to Task III.1 (Figure 19), they all noticed 

that the student’s argument came from his/her misconception of the arc length formula.  

 

 

 

 

 










xcos

1










xcos

1



 

91 

Instructor (You): Can an angle’s openness be measured with a linear unit of measure, such as in 

inches? 

Student: Yes.  

Instructor (You): Why? 

Student: For example, the measure of an angle is 1.7 “inches” as an angle measure when the arc 

length is 1.7 inches on the circle of radius 1 inch. 

 

 How would you describe the mathematical concepts key to the situation? 

 What might be possible sources of his or her conception? 

 How would you correct the student’s answer, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

 Figure 19. Task III.1. 

 

However, they did not agree that the student’s argument was completely invalid. Rather, 

Gloria attempted to support the student’s argument. She reasoned that the student’s thinking 

could imply generalizing a concept of the radian measure and “theoretically…a well-defined 

angle measure…this method would consistently measure angles in an appropriate way” 

(Interview 3, Task III.1). She demonstrated that, as the radius changes, she could rescale the 

radius down by a scaling factor onto a circle with a one-inch radius. Leo mentioned that it would 

be okay for him as a mathematician to redefine an angle as an object “assigned a unit length of 

1.7 inches if the arc length…associated to the angle is 1.7 inches long on a circle of radius 1,” 

although the student’s argument was not “generally accepted…so this is not a general 

mathematical convention” (Interview 3, Task III.1). Micah agreed with the student’s argument 

and claimed that an angle in a linear measurement could be well defined as long as a unit of 

length is given because he defined an angle by a point on the unit circle. Their descriptions might 

be partially correct as long as the angle was represented in the coordination of a 1.7-inch arc 

length with a one-inch radius and a new measurement of the arc length had to be taken when the 

radius of the circle changed. However, no participant argued that it is impossible to measure an 

angle’s openness in a linear measurement because the angle measure unit should convey the 
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fractional part of a circle’s circumference and be consistent regardless of the size of the circle 

(Carlson & Oehrtman, 2009). 

 In this study the terminology “radians” was incorrectly used in some task items in place 

of the terminology “radius lengths” or “radii.” The participants’ responses to the unplanned 

misuse of the term were categorized into their mathematical noticing of the form of an argument 

because their first reaction was to say that the task items had something wrong mathematically. 

The first question for Task I.5 was an example (Figure 20). 

Imagine a bug sitting on the end of a blade of a fan as the blade revolves in a counter-clockwise 

direction. The bug is exactly 2.6 feet from the center of the fan and is at the 3 o’clock position as 

the blade begins to turn.  

 
 

I.5.1 Sketch a graph of a function f over the input interval from 0 to 2 to illustrate how the 

bug’s vertical distance (in radians) above the horizontal diameter co-varies with the measure of 

the angle swept out the bug’s fan blade (in radians). Justify the shape of the graph. 

I.5.2 Determine symbolic representations of the function f in part I.5.1. 

Figure 20. An example task item containing an incorrect use of the term “radians.”  

At first, the participants attempted to figure out the shape of a graph representing the 

relationship between the angle and the vertical distance without paying attention of the 

designated unit of the vertical distance, which was supposed to be “in radius lengths” not “in 

radians.” When asked about the unit of the height, they noticed the given unit in the first 

question. They did not agree with “distance in radians” and considered it weird in mathematics. 

For example, Kyle responded, “Well, I don’t know. I can’t see what it would mean to measure 

this distance in radians….That’s what I did here except for the fact that there is… a wrong 
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[italics added] unit” (Interview 1, Task I.5). When Leo noticed the wrong terminology, which 

was not mathematically acceptable to him, he argued: 

You can’t [italics added] talk about vertical distance in radians because radian is not a 

distance. So, you can only talk about…it would be bug’s vertical distance in feet. To talk 

about it in radians is like saying something along the lines of what time is it in inches….I 

would say this problem is worded incorrectly [italics added] and…that mathematically 

[italics added] this doesn’t make sense…. That just seems strange to me….as a math 

person….That is kind of confusing [italics added]. (Interview 1, Task I.5)  

Connecting within and outside mathematics. Teachers need to be able to flexibly connect 

mathematical entities within varied mathematical areas. In addition, they need to seek and notice 

mathematical applications in fields other than mathematics (MAC-MTL & CPTM, 2012).  

Few of the participants mentioned connections within or outside mathematics when they 

were completing the task items. Gloria offered a few descriptions in regard to this strand. She 

noticed that the unit conversion could be used in other fields, such as chemistry for calculations 

involving moles or atoms and made the following comments: “How different trig functions 

behave as compositions” can be used “for applied math a lot…with waves, and so these are the 

compositions of graphs like these are the ones that come up a lot, I think, in nature” (Interview 2, 

Task II.5). 

Mathematical Reasoning 

Mathematical reasoning involves reasoning in the context of justifying/proving, 

conjecturing/generalizing, and constraining/extending mathematical arguments.  

Justifying/Proving. Teachers need to be proficient in justifying and proving mathematical 

arguments or claims formally or informally in logical ways. They should be aware of the 
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assumptions underlying arguments and familiar with various approaches to justification or proof 

(MAC-MTL & CPTM, 2012). 

The participants showed the step-by-step logical procedures necessary to reach solutions 

or conclusions through the task items because they seemed to be well trained in their major field, 

mathematics. However, their main approach to their explanations was algebraic. For example, in 

Task II.1 (Figure 21) they set up proportions and performed algebraic work by placing units and 

unit cancellation in computations to justify the unit for their final answer (e.g., Figure 22).  

The grad is a unit of angle measure that is sometimes used in France, where every circle’s 

circumference is 400 grads. 

II.1.1 Determine  in grads in the following figure. 

 

 
 

II.1.2 If a circle has a radius 7.1 inches, what is the arc length in inches of the angle of 3 grads? 

II.1.3 How many radians are equivalent to 10.2 grads?  

II.1.4 Name your own unit of angle measure and define how many of these units mark off the 

circumference of a circle so that you can create a protractor to measure any angle in your unit. 

Describe the meaning of an angle of 18.2 (name of your unit). 

II.1.5 Define a function that converts a number of grads to a number of your unit. Explain the 

meaning of the formula.  

Figure 21. Task II.1. 

 

Figure 22. Gloria’s work using proportions and unit cancellation. 
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In some task items the participants reasoned by analogy. They used various kinds of 

analogies in an effort to make their explanations clearer and simpler. For example, Leo explained 

the meaning of the unit conversion factor of 400 grads/2π radians (or 2π radians/400 grads) as a 

comparison or an identity by using an analogy of units of money. He provided an example of 100 

pennies to a dollar and 5 nickels to a dollar because both 2π radians and 400 grads indicate a full 

circle. Gloria used an analogy of decimals versus percentages to explain radians versus degrees 

in computation and explained that multiplying by a conversion factor is similar to multiplying by 

100 or 1/100. She said that although percentages are easy to conceptually understand, the 

decimal form is required when solving a problem, such as an interest rate problem. She 

explained that as percentage does not play with real numbers, degrees do not play with the real 

numbers nicely, but the radians do. She also explained that the ratio of the circumference to the 

diameter being constant is similar to the ratio of the perimeter of squares to the side length being 

constant. She also used an analogy of a “stamp” to explain the concept of the period of the 

function as noted earlier. Micah explained the angle function θ(t) = (3/15)·t with respect to time t 

using an analogy of the distance formula, which states that the distance equals rate times time. 

He said, “It was this same kind of idea. If I have some measurement divided by seconds and I 

multiply it by time, then I get the amount of measurement it went” (Interview 2, Task II.4). Kyle 

explained with an analogy of the semi-upper parts of two circles to justify that the number of 

radius lengths that the circumference has does not depend upon the radius length although the 

length of the leftover part is longer for a bigger circle. He demonstrated that although the arc 

length of the bigger circle is longer than that of the smaller one, the fraction of the 

circumference, 1/2, is the same for both circles. He also used the case of two similar triangles 

whose lengths might change while their proportions remained the same. 
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 The participants also demonstrated awareness of assumptions of problems. For example, 

when a rate of 3 radians every 15 seconds was given in a task item, Gloria and Kyle made sure 

that it should be constant. Gloria mentioned that an angle in her work was assumed measured in 

a counterclockwise direction when the direction of the angle was not shown in the given figure. 

 When the participants were asked to geometrically prove the trigonometric identity 

sin(x + y) = sin(x)cos(y) + cos(x)sin(y) in Task III.7, their common strategy was to draw several 

auxiliary lines to form right triangles labeled with the necessary variables in the figure. Gloria 

and Kyle remarked that finding the “right” right triangles and seeing their connections was the 

key to its proof of the task item.  

Reasoning when conjecturing and generalizing. Teachers need to be able not only to 

construct conjectures but also to test them. Generalizing requires reasoning about some 

mathematical properties from one class of mathematical entities to another. Creating counter-

instances could be a way to reason about the application of conjectures or to generalize to the 

domain that is extended (MAC-MTL & CPTM, 2012).   

When the participants were asked to sketch the graph of the function y = sin(x
2
), they 

conjectured that the function might be non-periodic because the argument of x
2
 is non-linear, and 

they justified it by the definition of a periodic function. Their algebraic work was based on the 

definition, and they could not find a constant c such that sin(x
2
) = sin(x + c)

2 
for all x because c 

turned out to depend upon the choice of x. After justifying that the function was not periodic, 

they also conjectured that the graph would still oscillate between 1 and -1 and repeat more 

quickly as the input values increase. Using the square root functions, their conjecture was 

justified by plotting several x-intercepts, which became closer as x increased. They explained 

that the graph became tighter because the augment x
2
 grew faster as x increased.  
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The participants attempted to use the simplest possible examples or counterexamples 

when the students’ thinking appeared overgeneralized and, hence, mathematically incorrect. For 

example, Leo said that he often provided students with counterexamples using the special angles 

to correct the students’ incorrect work involving overgeneralization. For example, he used the 

pair x = π/2 and y = π/2 for a student work “sin(x + y) = sin x + sin y” to justify why the linearity 

of the sine function does not generally work and the value of x = π/4 for “cos(1/(cos(x)) = 1/x” to 

justify why the cancellation of “cos” does not make sense. 

For Task III.2 (Figure 17), the participants struggled with the cosine value in degrees. To 

figure it out, they used a strategy of identifying the real value with an angle in radians and 

converting it to an angle in degrees. To justify their strategy, they made a conjecture that a real 

number could correspond to an angle in radians and attempted to prove it. Each participant 

showed slightly different reasoning processes to generalize the relationship between real 

numbers and angles in radians. For example, Gloria proposed a generalized correspondence 

between a real number x and an angle θ in radians whose arc length has the length of the real 

number x on the unit circle (Figure 23): 

If you were to give me any real number and call it x, I know what x is supposed to 

represent as soon as I have a number line. So, as soon as I label out one, that determines 

what my x is, so maybe here is my x here. Again, I can imagine taking a string and 

placing it and marking off the length of x, and I could take my circle. I want this circle to 

have a length of one measured from the real number line that I drew, and I could draw an 

arc length. I could put this dot here and, then, traced it out on the circle until I reached the 

length of x. So, as soon as I do that, I traced out an angle and there is a correspondence 

between this arc length which I’m calling x, and this angle θ….They are not the same, but 



 

98 

there is a one-to-one correspondence…it’s precisely that one-to-one correspondence that 

allows us to describe angles as real numbers. (Interview 3, Task III.2) 

 
 

Figure 23. Gloria’s depiction of a correspondence of a real number to an angle. 

 

She did not rigorously explain how the correspondence could be one-to-one or what happens 

when x is negative or large. Although she asserted that a real number x and the corresponding 

angle θ are not the same, she identified real numbers with angles in radians without justification 

for solving and explaining Task III.2.  

Kyle’s attempt to generalize the relationship between real numbers and angles was 

similar to Gloria’s. The only difference was that he considered a circle of radius r, instead of the 

unit circle. Although he mentioned that “dividing by r” was necessary, he did not discuss how 

“dividing by r” was applied when solving Task III.2. He identified the cosine value with an angle 

in radians as Gloria did (Figure 24). 

I’m identifying in some way an angle being measured in radians with a real 

number….Because for radians, that is what we do…to define the measure of an angle in 

radians is exactly to look at the arc length. So, when I say that this angle is /2 radians, 

I’m identifying this angle with this real number, which is the length of that arc. So, this is 

/2. I would say every real number represents an angle measured in radians. And, how do 

you know given a real number what is that angle? Well, you would take…any circle with 

any radius that you want, and…you would take your real number and see what arc length 
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it cuts off, and I guess divide by r, and that’s what we would call this angle. So, to every 

real number, you can associate an angle in radians with the same measure…. I’m not 

even mentioning the trig functions when I say when I make this definition. You take your 

real number and any circle, and you go along a certain distance, and you look at that 

angle, and that gives you the correspondence between the real numbers and the angles. I 

haven’t mentioned sine or cosine or anything. That is the correspondence. (Interview 3, 

Task III.2) 

 

 
 

Figure 24. Kyle’s work identifying the real number with an angle in radians. 

 

Micah’s unique view that the other participants did not mention was that he thought of 

angles as points on the unit circle. He argued, “You have things like e
iθ 

and you know it’s 

certainly why I think of angles as points on the complex plane cause, then you can make sense 

out of this angle being a number” (Interview 3, Task III.1). He described that what it means for 

an angle to be a number is the pre-image under the map t  e
it
 from the real line to the unit 

circle (Figure 25). 

 
 

Figure 25. Micah’s mapping. 
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His construction and justification for a mapping to make a connection between real numbers and 

angles in radians was reasonably close to the idea of construction of the wrapping function (see 

Figure 30) shown in Chapter 5: 

What does it mean for θ to equal a number?...What is an angle?...I would say a point on 

the unit circle in the complex plane….There is a well-defined map from the real lines to 

the unit circle. And what do I mean by measuring an angle by a number, I mean, an angle 

is a point on the unit circle….Angle I am measuring by this number is this image under 

this map…where the e
iθ

 is. (Interview 3, Task III.1) 

I think if I was asked to be formal about what it means to measure an angle in radians, I 

would say it’s that map [t  e
it
]. This map is what I mean by measuring angles in 

radians. So, it’s not the identity…..That’s a t and then I would say that this angle…θ has 

radian measure t…. that angle is a point on the circle. I’m just calling it by many names, 

and the set of names that I’m calling it as the pre-image of this point on the circle on this 

map. And so, I have a bunch of these dots, and I can call this angle by any one of those 

numbers. (Interview 3, Task III.2) 

Although the participants attempted to construct a mapping that represented a 

relationship between a real number and an angle in radians, their justification was not 

mathematically rigorous; in other words, they did not discuss how their generalization could 

work and make sense for any real number or for any angle in radians. On the other hand, Leo 

continued to argue that the radian measurement is unitless and considered it a real number 

without justification, hence he did not talk about the correspondence as did the other participants. 

Constraining and extending. Mathematical domains, arguments or classes of objects can 

be constrained or extended for new mathematics. Teachers need to be aware of the consequences 
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of the effects of constraining or extending mathematical assumptions, ideas, concepts, or 

properties (MAC-MTL & CPTM, 2012).   

 The participants exhibited a good understanding of the inverse trigonometric functions 

and, in particular, their restricted domains and ranges. They explained the one-to-one function as 

the condition for the sine function to have its inverse mathematically. Leo described the one-to-

one function as follows: 

I hit it exactly once. I don’t repeat myself….I can sort of limit myself to and on this little 

portion on the sine graph. It’s exactly everything is one-to-one. For every y value, there is 

one x value; for every x value, there is one y value….So we can talk about…one of the 

rules for sine inverse. (Interview 3, Task III.8)  

Micah and Kyle remarked that the sine function is not injective on its domain and that the 

domain should be cut, although it does not matter where it is cut as long as it passes the 

horizontal line test; the mathematical convention is to restrict the domain to -π/2 to π/2 for its 

inverse sine function. Kyle described a one-to-one function as a function that “does not repeat 

itself.” At first, he said that the interval for a full period of the graph makes the sine invertible, 

but he recognized his mistake and corrected himself. Gloria also clearly stated the restricted 

domain and the range of the inverse sine function and briefly sketched its graph by flipping the 

sine function with respect to the line y = x. Kyle illustrated the meaning of the reflection of the 

graph across the line y = x as follows. 

What we are really doing is we are switching the x coordinate for y coordinate on each 

point…assuming some facts about inverse functions….The domain of the inverse is a 

range of the function. So, the domain of arcsine is the range of sine. It’s between -1 and 

1. So my x values are between -1 and 1. And, similarly, the range of the sine inverse is 



 

102 

the domain of sine. But we have restricted the domain to make it invertible. And, the 

domain that I chose here it was -π/2 to π/2. So, that’s my domain. Alright. That’s the 

graph of the arcsine. (Interview 3, Task III.8)  

Mathematical Creating 

 There are several creative activities in doing mathematics such as representing, defining, 

modifying, transforming, or manipulating, through which teachers can construct new 

mathematical entities.   

Representing. Creating representations involves selecting a useful form that can convey 

important strands of mathematical entities with consideration of mathematical structures, 

constraints, and properties. It is useful to create examples, non-examples, and counterexamples 

(MAC-MTL & CPTM, 2012). The participants were fluent in dealing with symbolic 

representations. For example, to formulate the relationship between a number of grads and a 

number of a new unit called mats, Micah started with different symbols (θ grads and  mats) for 

variables and solved an equation of two proportions (θ grads/400 grads =  mats/100 mats) to 

obtain a conversion function ( = θ/4) from grads to mats. His symbolic representation of the 

function was simple and clear. 

For Task II.7, Gloria and Kyle labeled various lengths in symbolic forms, figured out the 

relationships among symbolic expressions and proved the trigonometric identity sin(x + y) = 

sin(x)cos(y) + cos(x)sin(y) (e.g., Figure 26). 
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Figure 26. Kyle’s manipulation of symbolic expressions. 

The participants had no difficulty in representing any point on a circle in terms of 

trigonometric functions. For example, they used the general symbolic representation (x, y) = 

(rcosθ, rsinθ) of a point on a circle with radius r and angle θ to figure out the angles and the 

coordinates of the given point (x, y) in Task II.2 (Figure 27). 

Given the following circle and undetermined angle measures of α and θ radians, answer the 

following questions. 

 
II.2.1 What is the value of θ in radians, the measure of the angle indicated in the figure above? 

II.2.2 How many kilometers did an object sweep out a counterclockwise angle beginning from 

the position (5, 0) along the circle and ending at the position (4.8273, 1.3028)? 

II.2.3 Determine values for the coordinate point (x km, y km) as the ordered pair in kilometers. 

Figure 27. Task II.2. 
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Defining. Teachers need to be able to appeal to definitions to solve problems and reason 

from definitions (MAC-MTL & CPTM, 2012). The participants were good at reasoning from 

definitions. They accurately described formal definitions and attempted to convey what a formal 

definition meant. They tended to refer to formal definitions when they began explaining task 

items. For example, when Leo was asked to identify key concepts in a given hypothetical 

situation in Task III, he articulated the formal definition of an inverse function as follows: “If it 

exists such that f inverse composed with f of x gives me back x and f of f inverse of x also gives 

me back x” (Interview 3, Task III.6).  

On the other hand, Micah’s approach was somewhat opposite that of Leo’s for the same 

task item. He did not start his solution with the formal definition of period. Instead, he attempted 

to explain its meaning when testing each graph to see if it was periodic.  

I would say start somewhere at the left most point of the bold section, and you want to 

just trace through the bold section till you get back to where you started. And, then, what 

you want to ask yourself is, am I about to do the exact same thing as I just did? And, if 

that is true, then it’s a period. And, if it’s false, then it’s not a period. So, let’s test this 

one. I am going to start here. I’m going to go until I get back to where I started. Now, am 

I about to do exactly the same thing? Well, yes. So, A is periodic. (Interview 3, Task 

III.7) 

He also used the term “pattern repetition” for the period and briefly described its meaning as “the 

smallest number that you can add to the argument so that you get the same thing” (Interview 2, 

Task II.5). After testing each graph, he introduced the formal definition of period as “the smallest 

number p so that f of x + p is f of x for every x” (Interview 2, Task II.5). 
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For the definition of an angle in a linear unit of measure generated by a student in Task 

III.1 (Figure 19), the participants’ responses were similar. No one disagreed with the student’s 

definition. For example, Leo pointed out that the definition is neither conventional nor generally 

accepted in mathematics because the angle measure depends upon the size of the circle. And he 

suggested revising the definition to make it understandable. He showed partial agreement with 

the student’s definition. 

You can’t really measure this angle, can’t really be measured in inches, only the arc 

length can be measured in inches. So, if we assume the radius is one, then that sort of 

makes sense. But…you would want to correct to say the arc length on a circle of radius 

one associated to your angle is 1.7 inches. This would be more mathematically 

correct….This statement [the student’s definition] is not exactly true because…for 

different size circles we have different lengths of things like that. So…if we want to 

define…an angle can be assigned a unit length of 1.7 inches if the arc length…associated 

to the angle is 1.7 inches long on a circle of radius one….If you want to define it this way 

and lock it in this way then as a mathematician, I’m completely ok with that. However, 

this is not generally accepted….So, this is not a general mathematical convention, but if 

you want to define this, then we can do that. (Interview 3, Task III.1)  

The other three participants agreed with the student’s definition in the same manner that Leo 

described it. 

The participants showed a dual concept of the meaning of “one” in the definition of a unit 

circle, a circle with radius one. For them, it could be either any radius length or a unit length in 

linear measurement, such as an inch. They provided inconsistent answers in their responses to a 

question asking whether a given circle is a unit circle. For example, although Gloria agreed that 
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every circle is a unit circle by using the given radius as a unit of measure, she also said that the 

unit should be redefined each time when considering a unit circle. Micah’s dual conception was 

shown in the following description. 

It doesn’t make sense to ask whether or not something is a unit circle without specifying 

what you are talking about. And if they are supposed to be implying by the fact that these 

two units were being measured in feet, then what they mean is, the circle of radius 2.8 

feet is not a feet unit circle. That is a true statement….But, to say that it’s not a unit 

circle, to me, is a stronger statement than there is no unit for which this is a unit circle. 

And, that’s a false statement. That’s a unit circle in the unit 2.8 feet. (Interview 3, Task 

III.3) 

Modifying/transforming/manipulating. Symbolic manipulation is an example of 

transformations that convey particular mathematical ideas (MAC-MTL & CPTM, 2012). The 

participants showed fluency in symbolic manipulation regardless of minor computational errors, 

in particular when they represented a real world application problem. I observed that they 

exhibited various symbolic manipulations in their work for Task II.4 (Figure 28).  
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Wind turbines, or windmills, are currently used in an attempt to produce green energy. The wind 

turbine rotates at a rate of 3 radians every 15 seconds. Let h be the height (measured in meters) 

between the horizontal diameter of the turbine and the ground, so the tip of the fan is h meters 

away from the ground when it is at the 3 o’clock position. Let r be the turbine’s radius (in 

meters). 

 

 
 

II.4.1 Define a function that relates the measure of the angle (in radians) swept out by the fan 

blade as a function of time elapsed. 

II.4.2 Define a function f  that represents the distance of the fan blade’s tip (in meters) of the 

windmill above the ground as a function of the number of seconds that have elapsed since the fan 

started rotating from the 3 o’clock position. 

II.4.3 Define a function g that represents the distance of the fan blade’s tip (in radians) of the 

windmill above the ground as a function of the number of seconds that have elapsed since the fan 

started rotating from the 6 o’clock position. 

Figure 28. Task II.4. 

For example, Gloria started the item by labeling unknowns in the picture before finding their 

relationship as a function. She represented “one second corresponds to 1/5
th

 of a radian” as an 

angle function R(x) = (1/5)x and θ = (1/5)t, saying, “you input the time and it outputs the radian” 

(Interview 2, Task II.4). When representing the vertical distance of the fan blade’s tip of the 

windmill above the ground from the 3 o’clock position, she used the sine function and composed 

the sine function with the angle function to obtain a function representing the distance function 

with respect to the time. She drew the right triangle to represent and formulate the function 

starting from the 6 o’clock position (Figure 29). 
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Figure 29. Gloria’s symbolic representation. 

Leo used a symbol, T6, to indicate the starting time at the 6 o’clock position distinct from 

the conventional 3 o’clock position. He formulated the equation f(T6) = h + rsin(T6/5) = h – r 

from the function f(t) = h + rsin(t/5), where the starting time, T6,  was negative 5/2, saying “this 

is our new time element” (Interview 2, Task II.4). He used a different function notation (f tilde of 

t) because it was slightly modified from f of t. In the modification of the function f, he hesitated 

as to whether he should use (t + (-5/2)) or (t – (-5/2)), but finally selected t + (-5/2) from the 

initial condition that the height should be h – r at time t = 0 at the 6 o’clock position. 

Integrating Strands of Mathematical Activity 

 Mathematical modeling requires bringing a real world situation into a formal 

mathematical system, and in the modeling process, teachers can use all strands of mathematical 

activity (MAC-MTL & CPTM, 2012).   

 The participants’ fluency in modeling was observed when they solved a problem on 

modeling temperatures for Task II. They were familiar with the formal mathematical terms 

related to a translation of trigonometric functions and fluently explained the meaning for each 

constant in the function y = asin[b(x – d)] + c. In addition, they described the effects of the 
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constants on the standard sine function when they found the values of the constants. For 

example, Micah found the constant c by using a line of symmetry and explained, “That is telling 

us we are shifting this graph up” (Interview 2, Task II.6). He described the meaning of a by the 

using the term “amplitude” and also explained a way to find it saying, “How much does the 

temperature swing?...It’s measured from…the center line,…from the average temperature. 

What’s the swing? We need to know what this line of symmetry is” (Interview 2, Task II.6). He 

drew the standard sine function to explain the meanings for each unknown constant by 

comparing it to the given graph. He said that one of the most confusing aspects of the graph 

translations is the constants b and d in the argument. He explained that b causes the period to 

expand and contract, hence makes the graph oscillate faster or slower and d shifts the graph left 

or right relative to the original sine function. He mistakenly thought that b was the period of the 

function but later corrected himself using algebraic work from bx = 2π.  

Mathematical Work of Teaching 

Mathematical Work of Teaching can be thought of as the “knowing of teaching 

mathematics” based on teachers’ understanding of mathematical content and activities. The goal 

of teachers’ mathematical work of teaching is to facilitate students’ development of “knowing” 

and “doing” mathematics so that students can improve their mathematical understanding (MAC-

MTL & CPTM, 2012).    

Analyze Mathematical Ideas 

 Teachers need to be able to analyze complex and condensed mathematical objects and 

ideas by investigating them and pulling them apart using content knowledge and doing 

mathematical activities (MAC-MTL & CPTM, 2012).  When the participants analyzed students’ 

mathematics occurring in hypothetical situations, they were good at pointing out key concepts, 
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errors, difficult features for students, possible sources for misconception, or related examples. 

For example, Gloria explained that a possible source for a student’s mistake shown in his or her 

work of cos(sec(x)) = cos 








xcos

1
 = 1 in Task III was confusion of the distinction between 

“number math” and “function math” saying, 

This is something that a lot of students actually do struggle with because they are sort of 

like number math, so to speak, and function math. So for instance if I were to do 2
-1

 that 

means 1/2, that means take the reciprocal. In function math f 
-1

 means the inverse of the 

function f. (Interview 3, Task III.6)  

In addition, she pointed out that the difference between the composition (f of g) and 

multiplication (f times g) would also be difficult for students and provided an example using 

non-trigonometric functions such as f(x) = x
2
, g(x) = x

1/3 
+ 1 to show the difference between the 

results of the two function operations.  

Access and Understand the Mathematical Thinking of Learners 

Teachers need to be able to understand what students understand and learn by accessing 

their work. They need to know how to interpret students’ mathematically incorrect explanations 

and how to help them correct these explanations and guide them to essential mathematical 

concepts. This proficiency requires a comprehensive understanding of mathematical concepts, 

reasoning processes, conventions and terminology (MAC-MTL & CPTM, 2012).   

Although the participants could not have access to actual students in the hypothetical 

teaching situations I posed, the participants viewed the students’ definitions or arguments 

carefully through a mathematical lens and expressed their mathematical ideas appropriately in 

mathematical language. For example, as a response to a student’s argument about an angle 

measure in linear measurement, Leo pointed out that it is not “generally accepted…so this is not 
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a general mathematical convention” (Interview 3, Task III.1) and suggested that it should be 

redefined so that the argument could be mathematically correctly.  

In the situation that involved the unit circle in Task III, Gloria and Micah noted that it 

would be difficult for students to deal with the units concretely and to understand that the chosen 

unit does not matter in the concept of a unit circle. They perceived that the students’ difficulty in 

understanding “one unit” of a unit circle might be a result of instructors’ not including a unit on 

drawings of a unit circle, in general.  

For the student who argued that sec x is the inverse function of cos(x) because sec(x) =  

cos
-1

(x) and cos(sec(x)) = cos 








xcos

1
 = 1, Micah thought that the student did not understand the 

basic rules of function algebra, such as function compositions, and said that showing a 

counterexample using the same function might not be helpful for the student. He provided an 

example to make a distinction between the function composition and function multiplication 

using simple polynomial functions: “If f of x is x
2
 and g of x is x

3
, then this is that [the 

composition] which is x to the 6
th

. But this [the multiplication] is x to the 5
th

” (Interview 3, Task 

III.6). 

Know and Use the Curriculum 

Teachers need to be equipped with knowledge to make the curriculum meaningful, 

connected, and useful so that they can help students achieve curricular goals. They should be 

able to identify foundational and prerequisite concepts that enhance and support current and 

future learning (MAC-MTL & CPTM, 2012).    

Because I did not observe the participants’ teaching practice, it was impossible to collect 

data about their knowledge of how to use the curriculum. Instead, from the activity for rating the 

task items in Tasks I and II, I observed their understanding of the curriculum or curricular goals. 
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The participants showed similar curricular knowledge of angles. They believed that an 

understanding of how angles are measured is fundamental in trigonometry and that students 

should be able to work fluently with angles in both measurements–degrees and radians. When 

Gloria rated the level of difficulty and the importance for Task I.1, she highlighted the usefulness 

and importance for students to know the angle measures. 

For the students I would say it [Task I.1] is medium [difficulty], maybe even difficult 

because the conversion between degrees and radians or the conversion/difference 

between degrees and radians isn’t natural, it’s not an easy concept for them….You must 

know both ways of thinking about angles and for the students the same thing, especially, 

because both conventions exist and are used in different contexts. If they are ever going 

to have any hope of actually working fluently with angles in either an algebraic context 

you would probably need radians or in a geometric you probably want to use degrees. So 

knowing both is important. And going between the two is also important.  

In addition, they agreed that understanding radian measure is important because it is used to 

define trigonometric functions on the real numbers. They also said that a radian measure is useful 

for calculus because it works a lot better than degrees in calculus. Despite its importance, Leo 

thought that the concept of radians could confuse many students because it was mathematically 

“made up out of nowhere” (Interview 1, Task I.1).  

 Regarding the arc length formula, they thought that deriving the formula could provide 

motivation for learning the definition of radians because the usual content order in curricula or in 

precalculus textbooks is that the arc length formula is followed by the radian measure. Despite 

this, they agreed that students might have trouble reasoning why the arc length formula is true. 
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Therefore, they believed that knowing how to use the formula for computations is more 

important than knowing the theory at the level of precalculus.  

 All the participants valued word problems in real world contexts for trigonometry 

because they thought that these problems might provide students a physical interpretation of the 

functions and require them to use intuition, critical thinking, and knowledge. They agreed that 

solving real world application problems in trigonometry would be a good way to make students 

think about what mathematics really means in some concrete cases. In addition, Gloria 

demonstrated that graph transformations are essential to precalculus students, and a modeling 

trigonometric problem is “a good way to test their understanding of graph transformations with 

respect to different families of graphs” (Interview 2, Task II.6). 

The participants understood the subject of trigonometry in connection with calculus and 

advanced mathematics in a general sense. Gloria said that trigonometry could be used in 

calculus, differential topology, geometry, and analysis. Micah commented that trigonometric 

polynomials and trigonometric expansions are used in advanced mathematics, such as Fourier 

analysis. Leo listed detailed examples of applications of trigonometry: 

Trigonometry is especially helpful…in further mathematics when you are doing 

calculus….There are a lot of things you want to figure out like how fast balloons are 

rising and…how fast like a plane is moving….You could use trigonometry a lot of 

times…for surveying, for example, if you want to know how tall a mountain is….And 

they use it…when a cop pulls you over for speeding they actually use lasers and it figures 

out how fast the angle went there. (Interview 1, Task I.8) 

Kyle and Micah mentioned that trigonometry is useful in integral calculus because, for example, 

trigonometric substitution is a useful method for integral computations.  
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The participants showed some understanding of how right triangle trigonometry and unit 

circle trigonometry are connected in related task items, such as Task II.3, and discussed their 

importance. Micah asserted that understanding the relationship between right triangle 

trigonometry and unit circle trigonometry is “the heart of trigonometry” and “all of trigonometry 

is based on these two ideas” (Interview 2, Task II.3). In addition, he emphasized its importance 

for teaching: “I think it would be hard to teach trigonometry well without understanding, you 

know, this relationship between triangles and circles” (Interview 2, Task II.3). Gloria described 

the relationship as follows: 

Right triangle trigonometry just measures the ratios of sides of triangles. But right 

triangles can’t have obtuse angles trying to generalize sine cosine tangent etc. So, trying 

to generalize sine cosine and tangent to obtuse angles leads to the idea of reference 

triangles or reference angles which lead to reference triangles. So the unit circle is really 

just a generalization of right triangle trig by allowing side lengths to be negative and by 

relating the obtuse angle to its unique reference triangle. (Interview 1, Task I.8) 

Leo observed that “SOH-CAH-TOA” (i.e., Sine: Opposite/Hypotenuse-Cosine: 

Adjacent/Hypotenuse-Tangent: Opposite/Adjacent) works only for acute angles, and can be 

generalized to any angle using the concept of reference angles and knowing the change of the 

signs for the values of trigonometric functions. He mentioned that the mnemonic “All-Students-

Take-Calculus and this says that All…is positive, Sine is positive, Tangent is positive, Cosine is 

positive” (Interview 3, Task III.10). Gloria explained that “All-Students-Take-Calculus” helps 

students remember how to associate the negative signs with the four quadrants. She remarked 

that unit circle trigonometry enables students to find the value of trigonometric functions for any 
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angle, such as cos(π/2), using the representation (cosine of the angle, sine of the angle) of a point 

on a unit circle. 

 The participants believed that knowledge of the history of mathematics is valuable for 

teachers because talking about historical background might motivate students to learn and 

increase their interest and enjoyment of the subject. However, they did not think that it is 

essential for students to know the history of mathematics to learn trigonometry. In fact, they said 

that they do not talk about the historical aspects of mathematics in their classes unless students 

ask about it. 

Assess the Mathematical Knowledge of Learners 

Assessing students’ understanding includes a teacher’s proficiency to evaluate not only 

what students understand and learn but also how they use and connect essential mathematical 

ideas. Teachers also need to be attentive to common student errors and identify students’ stages 

in the learning trajectory to determine students’ mathematical progress (MAC-MTL & CPTM, 

2012).    

The participants noticed and discussed several misconceptions that students had in 

hypothetical teaching situations. For example, Leo talked about an illegal cancellation– 

cancelling “cos” in cos 








xcos

1
 = 1 and said that it happens remarkably often in students’ work. 

He suggested that, sometimes, it is more convincing for students to use the example that they 

generate and then to explain why it does not work. He also noted that students may easily 

attempt to cancel the sine and the sine inverse in the expression 
















2
sin

2

1
sin 1 

by saying, “The 

reason you can’t so…is you don’t get an answer this way, which means you must have done 

something wrong somewhere” (Interview 3, Task III.8). He did not explain the mathematical 
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thinking behind the students’ work in either of the examples. In contrast, Kyle explained that 

factoring 1/2 out and the cancellation of the sine and the sine inverse in 
















2
sin

2

1
sin 1 

 

might 

occur in students’ work because many students tend to consider composition and multiplication 

of functions as the same thing. 

The participants also commented on specific difficulties that students had in the process 

of doing mathematics. For example, Micah remarked that students usually have a difficult time 

placing labels or unknowns on figures when solving word problems and sketching or interpreting 

functions, especially composed functions, such as y = sin(x
2
) would be difficult or abstract for 

students. Gloria recognized that many students struggle with making a distinction between 

number mathematics and function mathematics; for example, they confuse the reciprocal of a 

number and the inverse of a function due to confusing the superscript notation of -1. Kyle stated 

that this is why students easily think of the inverse sine of π/2 as 1 over sine of π/2.  

The participants also understood and identified difficulty in mathematics learning in a 

general sense. Leo said, “Students often freeze when they don’t see how to do the whole problem 

at the beginning” (Interview 2, Task II.6). Gloria also explained that even if the concept of a 

problem is not that difficult for students as a standard problem, when they do not know “how to 

get started…they might have a hard time….But once they see it they understand it” (Interview 3, 

Task III.9).  

To correct students’ misconceptions or errors, the participants identified two major 

approaches–asking questions or providing counterexamples. For example, in the situation where 

a student argued that an angle could be measured in linear measurement, Gloria and Kyle chose 

to respond by asking the student a question to help him or her think about how the definition that 

the student generated works in the case of a radius other than 1. She said that she could ask, “If 



 

117 

this is your circle of radius 5… how would you determine this angle here?” (Interview 3, Task 

III.1). Leo drew two circles with radius one and two at the same center and showed that the angle 

should not be measured in inches because it changes depending upon the size of the circle as 

shown in the drawing. In the task item, Micah did not want to correct the student’s argument. 

Instead of responding to the argument, he attempted to demonstrate his understanding of what 

the student meant by measuring an angle. 

Reflect on the Mathematics in One’s Practice 

 Teachers need to reflect on, analyze, and assess their teaching practice using a 

mathematical lens to improve their teaching for better student learning (MAC-MTL & CPTM, 

2012). In this study I used only hypothetical teaching situations in Task III and did not observe 

the participants’ teaching practices in the classroom. There was not an authentic way to gather 

data for this strand. 
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CHAPTER 5 

DISCUSSION 

In this study about mathematical understanding of graduate teaching assistants for 

teaching trigonometry in the Department of Mathematics (GTA-Ms), I examined the 

mathematical proficiency that they exhibited when responding to various mathematical questions 

and to students’ mathematical thinking in hypothetical teaching situations involving 

trigonometry. This study was guided by the following research questions: 

1. To what extent do GTA-Ms exhibit an understanding of trigonometric concepts when 

solving and explaining trigonometry problems?  

2. What understanding of trigonometry do GTA-Ms use in analyzing and responding to 

students’ mathematical thinking about concepts of trigonometry in hypothetical teaching 

contexts? 

This chapter includes responses to the two research questions, based on my analysis and 

interpretation of the findings.  

Response to the First Research Question 

Ma (1999) described fundamental mathematics as mathematics that is elementary, 

foundational, and primary: “It is elementary because it is the beginning of mathematics learning. 

It is primary because it contains the rudiments of more advanced mathematical concepts. It is 

foundational because it provides a foundation for students’ further mathematics learning” (p. 

124).  She highlighted teaching with a “profound understanding of fundamental mathematics 

(PUFM),” because teachers with PUFM reinforce “simple but powerful” basic ideas, make 
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connections among concepts, and have multiple perspectives and longitudinal coherence (p. 120, 

p. 122).  

According to the Faculty Course Outline of Precalculus of the Department of 

Mathematics (see Appendix B), the concepts of trigonometry in the textbook belong to one of 

two kinds of trigonometry–“elementary trigonometry” or “advanced trigonometry.” Borrowing 

Ma’s perception of elementary mathematics as fundamental mathematics (1999), I interpret 

fundamental concepts as not only the concepts of elementary trigonometry described in the 

course outline, but also as basic core mathematical concepts for teaching and learning 

trigonometry. 

 In this study, the participants’ approaches to explaining task items reflected their 

conceptual understandings of a variety of concepts in trigonometry. This study found that the 

four participants’ explanations and responses to task items were similar to each other’s, differing 

only slightly depending upon the task item. As described in the summary of the findings, they 

showed a good understanding of the selected concepts of trigonometry, which should be no 

surprise to many people who think of GTA-Ms as mathematical content “experts” and 

“qualified” mathematics instructors.  

 However, this study provided evidence that although the participants showed great 

mathematical fluency with advanced concepts, they struggled with fundamental concepts of 

trigonometry. In particular, the findings identified certain issues concerning their understanding 

of some fundamental concepts, which is consistent with the results of previous research on 

student learning and teaching of concepts of trigonometry. In this section, I will discuss the 

nature of GTA-Ms’ mathematical understanding for teaching trigonometry in terms of their 

proficiency in advanced concepts and fundamental concepts as well as challenges they had with 
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some fundamental concepts. I will show examples exhibiting the participants’ proficiency as 

well as areas where they seemed less knowledgeable. 

Advanced Concepts of Trigonometry 

This section discusses the participants’ proficiency with some advanced concepts of 

trigonometry, which include graphing and modeling trigonometric functions, inverse 

trigonometric functions, and co-functions. 

Graphs of trigonometric functions. The participants had no difficulty graphing the 

trigonometric functions. When asked to sketch a graph of the composition function y = sin(x
2
), 

they used a common strategy of observing the graphical behavior of how the graph hits the x axis 

(which are the x-intercepts) from the argument x
2
 and the extreme values of the sine function.  

Modeling trigonometric functions. The participants showed considerable fluency in 

dealing with trigonometry functions for modeling real world situations. When they were asked to 

determine unknown constants in the sine function y = asin[b(x – d)] + c to model the average 

monthly temperature in a city, they fluently found the constants and explained the meaning and 

the effect of each constant on the standard sine function graph. They fluently used formal 

mathematical terminology, such as amplitude for the variable a in the function, related to a 

translation of trigonometric functions. 

Inverse trigonometric functions. The participants displayed a strong understanding of 

inverse trigonometric functions. They were familiar with the definitions and properties of the 

inverse trigonometric functions, and conceptually explained the graphical features of the inverse 

trigonometric functions as the reflection of the original function about the line y = x.  

  



 

121 

They showed no evidence of confusion with inverse symbols such as cos
-1

x or with 

reciprocals of trigonometric functions such as sec x. In addition, they easily distinguished 

between multiplication and the composition of trigonometric functions. They even noticed that 

students easily made the mistake of using the linearity property for trigonometric functions.  

Co-functions. The participants had a good understanding of the relationship between sine 

and cosine functions as co-functions of each other. To find the coordinates of the point P(/2 – t) 

for a given point P(t) on the unit circle that corresponds to the angle t, they flexibly used not only 

the addition and subtraction formulas for sine and cosine but also the co-function formula.  

These findings demonstrate the participants’ considerable proficiency in the advanced 

concepts of trigonometry, which contrasted with Fi’s (2003) findings about pre-service 

secondary mathematics teachers’ knowledge of trigonometry. His participants showed a weak, 

segmented understanding of these concepts of trigonometry.  

Fundamental Concepts of Trigonometry 

Brown (2005) observed students’ difficulties with the fundamental concepts of 

trigonometry, which involved the understanding of the three representations of sine and cosine as 

ratios of sides of a reference triangle, coordinates of a point on the unit circle, and the directed 

horizontal and vertical distance in unit circle trigonometry, and also of the relationship among 

these. However, this study revealed that the participants showed considerable proficiency in 

dealing with these representations of sine and cosine and successfully solved related task items. 

However, this finding does not mean that they showed the same level of proficiency in all the 

fundamental concepts of trigonometry.  

 



 

122 

Hiebert and Carpenter (1992) defined understanding mathematical ideas, procedures, or 

facts as coherently making a connection between its mental representation and an existing 

internal network of representations. When focusing on the feature of meaningful, conceptual 

connections in their theoretical notion of understanding, I found that the participants showed a 

weak understanding of some other fundamental concepts of trigonometry. Therefore, this section 

will focus more on discussing the challenges that the participants encountered as they worked 

with some fundamental concepts, such as interpreting formulas, angle measures, inputs and 

outputs of trigonometric functions, and unit circles.  

Interpreting formulas. In this study, the participants had difficulty conceptually 

interpreting or explaining the meaning of some formulas. The first example was the 

circumference formula. When asked to interpret the circumference formula, no one meaningfully 

interpreted it in a way that all circles have a circumference length of 2 radius lengths (for C = 

2r) or that 2 ≈ 6.28 is the number of radius lengths that mark off the circle’s circumference 

(for C/r = 2). Instead of interpreting the circumference formula, they attempted to describe the 

symbolic representation or explain the origin or history of the real number  as the ratio of the 

circumference to the diameter. Gloria explained the division (C/r) as “the ratio of the 

circumference over a radius” (Interview 1, Task I.2). She understood this interpretation question 

as a why-question and responded to it that the formula is “organic” in a sense that “it came from 

nature” and could be “observed from lots of examples” (Interview 1, Task I.2). She rated its 

interpretation as medium-difficult because the formula is “organic” and “the reasoning isn’t as 

clear maybe to define” (Interview 1, Task I.2). Kyle interpreted C = 2r as, “This formula is 

telling you how to find the length of going around any circle if you are given…the radius” 

(Interview 1, Task I.2). Micah described the meaning of the formula from the definition of :  
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I think the definition of  is…half the circumference of the unit circle….So, the fact that the 

circumference of the unit circle is 2π is really just the definition of π. And then what this formula 

says is that if I scale the circle’s radius then I’m scaling the circumference by the same 

amount….I would say this [problem] is difficult for me…because it’s not clear what “interpret” 

means. (Interview 1, Task I.2) 

Another example of the participants’ difficulty interpreting formulas involved the arc 

length formula. When asked the meaning of the formula, no one conceptually explained it in 

terms of the multiplicative relationship among the three quantities as follows: 

 The formula θ = s/r describes an angle measure θ (in radians) as representing the number 

of radius lengths r needed to make up the arc length s of that circle’s circumference.  

 The formula s = rθ conveys that a specific length of any arc subtended by the rays of an 

angle θ can be determined by the radius length times as long as the angle measure θ.  

Gloria responded to the question of what θ = s/r means: “The…length of the arc is given 

by angle θ divided by…or the proportion…the arc length over the radius” (Interview 1, Task 

I.4), which was consistent with her response when asked the question about what C/r meant. 

Because the arc length formula was related to the definition of the radian measurement, a weak 

ability to interpret the meaning of the arc length formula was connected to a weak conceptual 

understanding of radians, in particular, perceiving the length of the radius as the unit of measure. 

Kyle did not show a conceptual interpretation of the arc length formula either. He responded, 

That s is just the product of r times θ [s = r·θ]….With the radius 1, the definition of the 

radians tells us that this length (indicating the arc length corresponding to the angle θ) 

from here to there is θ. To obtain this picture (indicating a circle with radius of r), I am 

stretching everything by a factor of r. The radius gets stretched by r, and, therefore, this 
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length gets stretched by r. So, s…is going to be r times this length, which is θ. So, that’s 

where that comes from. (Interview 1, Task I.4) 

Micah repeated the same thing without a meaningful explanation when asked the 

meaning of the division θ = s/r: “The radian measure of an angle is the ratio of the arc length to 

the radius. So, in other words, what do you mean by θ? Well, you mean s over r, that means s 

equals rθ” (Interview 1, Task I.4). Although all of the participants argued that the arc length 

formula was related to the definition of the radians, they did not relate the argument to justify 

why radians are unitless. It is noticeable that only Micah briefly mentioned that the radian 

measure is unitless because he said that it is defined as a ratio s/r of the arc length to the radius 

length, both have the same units. The other participants used the radian measurement being 

unitless as a fact without sufficient explanations. 

Their weak ability to interpret the formulas (the circumference formula and the arc length 

formula) seemed related to their limited understanding of the radius length as a unit for 

measuring the angle in the ratios (2π = C/r, θ = s/r). Simon and Blume’s study (1994) on 

prospective teachers’ understanding of the concept of a ratio showed that prospective elementary 

teachers had difficulty identifying a ratio as a measure of an attribute or as a representation of a 

quantitative relationship. For example, the prospective teachers were unlikely to perceive the 

ratio of height to base, such as 3:2, of a box as indicating the height is 1.5 times the length of the 

base (p. 195). Simon and Blume (1994) further argued that because “ratio-as-measure” (which 

refers to “identifying a ratio as the appropriate measure of a given attribute” (p. 184)) “involves 

the expression of a quantitative relationship between two quantities as ratio” (p. 191), the ability 

to explain a meaning of the ratio as representation of the relationship requires an understanding 

of “what it means for a mathematical expression to represent a physical relationship” in a more 
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general sense (p.191). Their notion of “ratio-as-measure” indicates that the participants’ limited 

ability to interpret the ratios (2π = C/r, θ = s/r) might be caused by a weak understanding of the 

multiplicative relationship between the two quantities. 

Angle measures. A unit of measurement for the openness of an angle (or arc length) 

should convey the fractional part of a circle’s circumference cut off by the angle’s two rays, 

keeping the vertex of the angle located at the circle’s center because the measurement does not 

depend upon the circle’s size (Carlson & Oehrtman, 2009).  An angle in degrees means the 

length of an arc subtended by the angle measured in units of 1/360
th

 of a circle’s circumference. 

Researchers (e.g., Carlson & Oehrtman, 2009; Moore, 2010a, 2010b; Thompson et al., 2007) 

have asserted that it is more convenient and beneficial to measure angles using a radius length as 

a unit of angle measure than degrees because a radian measure describes a multiplicative 

comparison between an arc length and the radius length. In addition, Thompson et al. (2007) 

argued that a unit of an angle in radius lengths allows inputs and outputs of trigonometric 

functions to be measured in the same unit. Because 2 radius lengths measure every circle’s 

circumference, an angle measure of one radius length cuts off an arc that is the fractional part 

(1/2) of the circle’s circumference. Therefore, it makes sense to use this radius length as a unit 

of angle measure, which is commonly referred to as a radian (Carlson & Oehrtman, 2009).  

Thompson et al. (2007) found that “using a circle's radius as a unit of length for measuring arcs” 

along with "thinking of arc length as angle measure” was beneficial for teachers to “build a 

coherent system of meanings” of angles and trigonometric functions (pp. 420-421).  

The participants did notice the importance for the concept of angle measurement in 

trigonometry, especially the radian measure. For example, Micah pointed out, “I think that 

understanding how we measure angles is the fundamental thing in trigonometry….It’s very 
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important for instructors to know this…because I think a lot of students have trouble with 

radians” (Interview 1, Task I.1). In particular, he emphasized the importance for understanding 

the radian measure for future study, such as calculus, saying, 

There is no geometric meaning for degrees, whereas a radian has a very specific 

geometric meaning. It’s…measuring angles by lengths on the unit circle. And I think this 

is particularly important to remember it [radian] because when you get to calculus and 

you start doing things with trigonometry in calculus,…sine and cosine…are in radians. 

And…that [radian] is…the more natural way to measure angles. So, I think this is 

particularly important if you are going to go onto calculus so you really should…forget 

degrees. (Pre-interview) 

However, the participants showed a lack of conceptual understanding of angle measures. 

Their understanding of the nature of angle measures as the fractional part of the circumference of 

any circle centered at the vertex was not exhibited in their work on the task items. Their 

responses to the meaning of radian measures were to explain how wide it was by converting it to 

degree measures using the conversion factor. For Task III.1 about angle measurement, the 

participants partially agreed with the student’s wrong argument that an angle can be measured in 

a linear measure, such as 1.7 inches. In fact, if a linear unit, such as inches, is used to measure an 

angle, the measurement will depend upon the size of the circle centered at the vertex of the angle 

and, hence, does not convey the fractional part of the circle’s circumference regardless of the 

size of the circle in which the angle is embedded (Carlson & Oehrtman, 2009). However, the 

participants suggested that the student would be correct if the angle is represented by the 

coordination of a 1.7-inch arc length with a one-inch radius. No one argued that the student’s 

definition is impossible based on the nature of angle measures.  



 

127 

The findings that the participants showed a lack of conceptual understanding of angle 

measures confirmed findings from other studies on angle measures. For example, research (e.g., 

Akkoc, 2008) has shown that a weak understanding of angle measures leads students and 

teachers to difficulties in learning and teaching trigonometry. Moore (2010) identified 

precalculus students’ multiple incoherent meanings of angle measures. Some researchers (e.g., 

Akkoc, 2008; Topçu et al., 2006) found that both pre-service and in-service teachers have weak 

concept images of the concept of radian measurement. Fi (2003) found that although pre-service 

teachers were good at converting between degrees and radians, they did not show a deep 

understanding of what a radian measure means because they were not able to describe it as a 

ratio of the arc length to the radius length.  

Inputs and outputs of trigonometric functions. Fi (2003) examined pre-service teachers’ 

abilities to figure out the effect of transformations on the domain and the range of trigonometric 

functions. His study assumed that the trigonometric functions are real-valued functions. He 

found that his participants showed a strong understanding of the domain but a lack of 

understanding of the range of trigonometric functions.  

In contrast with Fi’s findings (2003), the participants in this study had no difficulty 

dealing with either the domain or the range of trigonometric functions as real valued functions. 

For example, when asked the meaning of the input and output values of the sine function in the 

Ferris wheel context, the participants easily figured out that the input of 1.1 corresponds to an 

angle in radians and the output of 0.891 corresponds to a length or height and claimed the units 

of the input and output are unitless.  

In connection with the concept of radian measurement, however, they showed a limited 

understanding of inputs and outputs of trigonometric functions, which confirms the findings 
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from other research (e.g., Moore, 2010a, 2010b; Thompson et al., 2007). Although Gloria 

considered the output as the ratio of the vertical height with respect to the radius, there was no 

evidence of her perception of the output as the one measured in radius lengths. The participants’ 

limited understanding of the input and output of trigonometric functions evidently was reflected 

in their responses to cos(sin(35º))  48.125º in Task III.2 (Figure 17). This task item required a 

coherent understanding of a measure of an angle as a measurement of the length of arc subtended 

by the angle, as a fraction of the circumference, or as the number of radii, and the inputs and 

outputs of a trigonometric function as a measurement in units of a circle’s radius. The 

participants’ understanding of the radian as a “unitless” measurement and of the inputs and 

outputs of sine or cosine functions as “real numbers” was not meaningfully connected with an 

understanding of a unit of radius length. Because their limited understanding of the angle 

measure inhibited them from seeing the radius lengths as units for the input and output values of 

sine and cosine, they struggled with the related task items. 

Unit circles. The concept of the unit circle as a geometric object is fundamental in 

trigonometry. It can be used also as a major organizing tool in trigonometry to generate, for 

example, the trigonometric values of arguments in the quadrants (Fi, 2003). A unit circle is 

defined as a circle of radius “one.” A key idea in this definition is to understand what a unit is. 

The unit circle has a radius equal to one unit, hence “one unit” is equal to the radius of the unit 

circle regardless of the measurement of the length of the radius in any measure. However, the 

participants in this study exhibited a weak understanding of the connection between the concept 

of the unit circle and a unit of radius lengths. Their explanations for a unit circle were 

inconsistent due to their limited understanding of the meaning of “one.” For example, Kyle 

demonstrated the concept of the unit circle as follows. 



 

129 

It’s kind of a paradox [italics added].…If you use one unit of measurement like feet then 

you would say this [a circle with radius of 12 inches] is a unit circle. But…the student is 

confused because if you say 12 inches, that doesn’t have radius one [italics added]. It has 

radius 12 [italics added]. So, they are confused about what a unit circle means because 

they are missing the fact that you have to keep track of the unit of measurement that you 

are using….With one unit of measurement it is a unit circle and with another one it is not. 

(Interview 3, Task III.3) 

In fact, he expressed his confusion about the concept by calling it a “paradox” and was unable to 

clearly explain what “one” in the definition meant. The other participants also showed a similar 

limited understanding. Gloria responded: 

Interviewer (I): Then, is it fair to say that every circle is a unit circle? 

Gloria: Sure. But then you would be redefining the unit every time….What does it mean 

to have one unit? It would be precisely one would equal the radius. Or, one unit would 

always equal the radius measurement of the circle, or your favorite measurement of your 

choice to use. (Interview 3, Task III.3) 

The participants’ work on Task II.3 was another piece of evidence of their limited 

understanding of the unit circle. To determine the value of cos() in unit circle trigonometry 

(Figure 30), the participants used a scaling factor of 1/5. Kyle said,  

This [the given circle in the figure] is not [italics added] the unit circle; obviously, this is 

a circle of radius 5. But let me take that circle and shrink [italics added] it down by a 

factor of 5. I’ll get the unit circle; nothing has changed in the picture, just smaller now. 

Everything has been divided by 5. (Interview 2, Task II.3)  
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Although they fluently used the hypotenuse and the radius interchangeably when asked 

the connection between unit circle trigonometry and right triangle trigonometry, no one 

determined cos(θ) in unit circle trigonometry in relation to right triangle trigonometry in a 

conceptual way such that cos(θ) is “the percentage of the radius length made by the length of the 

side adjacent to the origin in the embedded right triangle” (Thompson et al., 2007, p. 417); 

therefore, cos(θ) equals 4/5.  

II.3.1 Determine cos(θ) (without determining the value of ) in right triangle trigonometry.  

II.3.2 Determine cos(θ) (without determining the value of ) in unit circle trigonometry. 

 

 

Figure 30. Task II.3. 

The participants drew separate circles to represent the unit circle by scaling the radius down or 

up to one (see Figure 10). Even when Gloria regarded the given radius length as one unit, she 

drew a separate circle for a unit circle (see Figure 9). These findings were consistent with the 

recent findings from other studies showing that both students and teachers showed limited 

understandings of concepts of the radians and the unit circle (e.g., Akkoc, 2008; Moore, 2009, 

2010a, 2010b; Moore, LaForest, & Kim, 2012).  

Response to the Second Research Question 

 When the participants responded to students’ thinking in the hypothetical teaching 

contexts, they exhibited some similar tendencies. For example, they tended to use more 

procedural fluency than conceptual understanding. Their explanations were equation-oriented 

and definition-based. They were very good at justifying by manipulating symbolic 
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representations for their logical explanations when they responded to students’ arguments. A 

related example was their frequent use of unit cancellation. As another way of justifying their 

explanations, they reasoned from formal definitions of concepts. In this section, I will discuss the 

nature of GTA-Ms’ mathematical understanding for teaching trigonometry in terms of their 

tendencies when responding to students’ thinking in hypothetical teaching situations. 

Mathematical Proficiency: Procedural Fluency  

The participants’ challenge with the interpretation of the circumference formula was 

shown in Task III.5 (Figure 31). Kyle said, “This is not easy to explain for me” in the beginning 

of his explanation (Interview 3, Task III.5). The challenge seemed to be related to their tendency 

to explain in a procedural way using symbolic representations rather than in a conceptual way 

because they showed a strong ability to manipulate mathematical symbols through the task items. 

Instructor (You): Tell me about the relationship between the size of a circle and the length of a 

radius of any circle. 

Student A: I think that the larger a circle is, the more radius lengths the circumference has. 

Student B: I agree with him/her because the leftover portion on the circumference (where the 

arrows are pointing in the diagrams below) is longer for a larger circle than the one for a smaller 

circle. 

 

    
 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources of his/her conception? 

 How would you correct the students’ answers, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

Figure 31. Task III.5. 
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For example, to correct the students’ answers, Gloria explained using the equalities L/R = 2π – 6 

= l/r, where L is the length of the leftover of the bigger circle with radius R and l is for the 

smaller circle with radius r. Leo also used the equalities CL/rL = 2π = Cs/rs, where CL is the 

circumference of the bigger circle with radius rL and Cs is the circumference for the smaller circle 

with radius rs.  

Another piece of evidence of the participants’ procedural approaches was found in their 

explanation of periods of a sine function. In a modeling problem for a sine function, the 

participants almost perfectly described what each constant meant, how it was evaluated, and how 

each constant affected and transformed the standard sine graph. However, when asked why the 

coefficient b of x in the function y = asin[b(x – d)] + c could be obtained by 2π over the period of 

12 of the function, they responded in multiple ways which were algebraic rather than conceptual. 

For example, Gloria and Leo demonstrated that the period should be 2π/b because 2π/b makes 2π 

appear inside the sine function. Gloria explained in detail with a slightly modified sine function y 

= Asin[Bx + C]: 

The period is given by 2π/B…because if you were to…write this as a function of x, plug 

in the value of 2π/B, you get A sine of B times 2π/B + C, and you get A sine the B is 

cancelled 2π + C…sine of 0 is equal to a sine of B times 0 + C, so you get A sine of C 

sine is a periodic function and…we go from C to C + 2π exactly when we plug in 2π/B. 

(Interview 2, Task II.6) 

Micah responded in an algorithmic way:  

How do you figure this out?…Sine of x has period 2π and the sine of 2x has a period of 

π…because when b was 1, it was 2π, and when b was 2, it was π. So that [the period] is 

2π divided by b. (Interview 2, Task II.6)  
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The participants did not connect the coefficient of x (the slope) with the concept of a rate 

of change for a meaningful explanation. Therefore, no one conceptually explained the 

relationship of b with the period using the concept of the rate of change in such a way that the 

coefficient b of x represents the argument change by 2π when the input changes by 12, which 

gives a rate of change of 2π/12. 

Mathematical Reasoning: Justifying 

When the participants were asked to help the students obtain the value 48.125º in a 

hypothetical situation in Task III.2, they did not like the expression cos(sin(35º))  48.125º 

because they argued that the outputs of trigonometric functions should be real numbers with no 

unit. However, they reluctantly chose a way to consider the outputs of the sine and cosine 

functions as angles in radians and converted to angles in degrees. To justify their method, they 

conjectured and attempted to construct a mapping possibly representing the relationship between 

real numbers and angles in radians. Although their construction of the mapping was not 

complete, their mapping was close to what the wrapping function (which “wraps” a real number 

line with origin at (1, 0) around the unit circle) says (Figure 30). It is known that the wrapping 

function allows “mathematicians to define trigonometric functions with domain and range 

consisting of real numbers using the radian measure” (Akkoc, 2008, p. 858).  
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Figure 32. The wrapping function 

(http://www.mhhe.com/math/precalc/barnettpc5/graphics/barnett05pcfg/ch05/others/bpc5_ch05-

01.pdf). 

 

For the wrapping function to make sense, there are three assumptions to be considered: 

(1) a point on the unit circle should be considered as an angle, (2) an angle measure should be 

defined in terms of the length of arc formed by the distance from (1, 0) to a point on the unit 

circle, and (3) the radius of the unit circle should be used as the unit for measuring the arc length. 

Therefore, any real number x possibly corresponds to an angle represented by a point P on the 

unit circle whose arc length is |x| units (Figure 30). Here, |x| units would be the distance equal to 

|x| times the radius length of the unit circle because the unit circle has a radius equal to one unit. 

The concept of the wrapping function makes it possible to think that the angles in radians 

can be considered real numbers as a number of radius lengths, and any real number can be 

associated with an angle in radians on the unit circle. Because there was no evidence showing 

http://www.mhhe.com/math/precalc/barnettpc5/graphics/barnett05pcfg/ch05/others/bpc5_ch05-01.pdf
http://www.mhhe.com/math/precalc/barnettpc5/graphics/barnett05pcfg/ch05/others/bpc5_ch05-01.pdf
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that the participants exhibited such an understanding in this study, it was not surprising that the 

participants could not properly construct the wrapping function to explain the relationship 

between real numbers and angles in radians measured by radius lengths, although they frequently 

mentioned angles in radians as real numbers. This finding concerning their limited understanding 

of inputs and outputs of trigonometric functions was consistent with Thompson et al.’s finding 

(2007) showing that teachers did not develop a coherent understanding of the concepts of angle 

measure and sine and cosine functions. 

Mathematical Creating: Defining  

 Definitions of mathematical concepts are known to play a crucial role in mathematics. 

Typically, advanced mathematics courses are presented in the form of a sequence of definition-

theorem-proof, which might influence one’s thinking about the way mathematics is taught 

(Vinner, 1991). The participants, as mathematicians, articulated and showed a considerable 

proficiency in dealing with definitions in their explanations. When they encountered students, 

who had misconception in hypothetical teaching situations, they tended to emphasize the 

definition and often started explanations with formal definitions.  

 For example, for Task II.5, the participants highlighted the formal definition of a periodic 

function. Gloria’s response to a follow-up question was a typical example. 

Interviewer (I): If a student asks you that it [y = sin(x
2
)] could be a periodic function 

because sine x squared plus 2π equals sine x squared, then how would you respond? 

Gloria: The answer is no because the definition of periodic [italics added] means that 

there is a constant c so that f of x is equal to f of x plus c for all x. So that means that you 

can literally take this graph and shift it….With our function, I’m going to use a functional 

notation here. What is f of x plus c? Well, that’s sine of x + c quantity squared because of 
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the way of the composition of functions work, so that is equal to sine of x
2
 + 2xc + c

2
. 

(Interview 2, Task II.5) 

When I asked a similar question to Leo, he also started with the definition, as Gloria did. 

Interviewer (I): This is an additional question. If a student asks, without looking at the 

graph, whether this [y = sin(x
2
)] is periodic or not, then how will you answer? 

Leo: Well, I would say, well, periodic by definition [italics added] means that if we have 

to look up what that means [italics added], what it means is that there is a number I’ll call 

it p such that f of x + p equals f of x for all x. (Interview 2, Task II.2) 

In another problem on periods in Task III, he explained the definition and then its graphical 

meaning.  

The first thing [italics added] that we would talk about is what is a period of a 

function….If f has a period, then f of t + p equals f of t for all t…this is an algebraic thing. 

But, pictorially… the graph can be covered by exact copies of the period by laying them 

next to one another….without overlap. (Interview 3, Task III.7)  

When asked what questions or examples would be helpful to a student who was confused 

between the reciprocal and the inverse of a trigonometric function, Kyle responded, 

For instance, let’s do one example what is here is…f of x equal to x….What is the inverse 

of that function? Well, if you apply the same reasoning [as the student did], here you 

would say that the inverse is one over x. Now let’s ask that question, are these two 

functions inverses of each other? Well, what’s the definition of being an inverse? [italics 

added] That means that when you compose them you get x in either order. So if I do f of 

g of x or g of f of x if these truly are inverse functions then in both cases I’m going to get 

x. Let’s see. So f of g of x would be f of one over x. But f doesn’t do anything to its input 
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so this is just one over x. And particularly this is not x. So these are not inverse functions. 

(Interview 3, Task III.6) 

Even when Kyle reflected on how he performed in the task items in the post-task interview, he 

attributed his challenges to doing and constructing definitions carelessly:  

I now am not comfortable with how good I am at explaining things. Even though I 

understand them, I cannot explain them sometimes because I just had never thought of 

very carefully doing definitions [italics added] and constructing all the functions out of 

those definitions. (Final reflection interview) 

However, Micah had a different opinion about the role of definitions in teaching, saying,  

Would I ever tell a student [struggling with concepts] that they…actually don’t know a 

definition for angle? No, I don’t think I would ever say that to a student because that only 

is going to confuse them. It’s only going to make them doubt that they know what they 

are doing. (Interview 3, Task III.3)  

When he explained a solution of the task item on periods, he did not begin with a formal 

definition of the period. Instead, he explained the meaning in terms of graphs as “A period isn’t 

just some section on which the function repeated itself, it’s the smallest section of which the 

function will always repeat itself” (Interview 3, Task III. 7) to test if each graph is periodic. He 

introduced the formal mathematical definition of the period at the end to confirm the features of 

the period. 

 Keiser (2000) argued that in many cases definitions alone cannot answer students’ 

questions. She explained, “All definitions, by their precise, exclusive nature, may limit [italics 

added] exploration and prohibit questioning because they offer an authoritative ‘last word’” (p. 

510). She observed that sharing and challenging classmates’ ideas and images of a given concept 
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helped her students construct a broader and more complete concept image that they could use in 

other mathematical contexts. She suggested that students should develop definitions by getting 

actively involved in the defining process. Therefore, GTA-Ms should learn that providing 

students with formal definitions might not always be the best way to help them and think about 

how they could form their class as “an intellectual community” (p. 511) in which students are not 

passive recipients of the existing definitions, but have ownership of learning and are able to 

construct and refine their understandings in the defining process.  

At this point, it is noteworthy that the tendency that the participants showed regarding the 

use of definitions in teaching was likely influenced by the “cultural climate in which 

mathematicians work” (Speer et al., 2005, p. 78). Speer et al. called this phenomenon “the 

[GTA-Ms’] issue of enculturation” (p. 78), for example, a conflict of teaching styles (e.g., 

teacher-centered and student-centered). They explained a plausible origin of the issue as follows: 

Pressures to become part of existing culture are strong. Even TAs who arrive in graduate 

school with substantial concern for undergraduate education and strong motivation to 

teach may find that holding on to those ideals is incompatible with success as defined by 

their departments, their faculty mentors, and the discipline as a whole. (p. 78)  

Therefore, they suggested that “proper [italics added] support and enculturation” are necessary 

for GTA-Ms’ development of “good intentions and practice” in their work of teaching (p. 78). 

Mathematical Creating: Manipulating  

The participants showed fluency in manipulating mathematical symbols and units, which 

seemed to support the frequent use of logical explanation for students or their responses to 

students’ thinking in hypothetical situations. One of their common ways to manipulate symbols 

was to use unit cancellation. Unit cancellation (or dimensional analysis) is commonly used to 
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convert one measure in the given unit to an equivalent measure in the desired unit in 

mathematics, engineering, and physics (Moore, LaForest, & Kim, 2012). The participants 

showed considerable procedural fluency in converting from one unit of angle measure to another 

using a conversion factor. Their dominant approach to conversion was setting up a proportion 

and solving it by unit cancellation to justify the resulting unit in a solution. For example, Figure 

21 showed Gloria’s work using a proportion and unit cancellation to convert 10.2 grads to radian 

measures for Task II.3. However, I did not observe any participants who responded to this 

problem in a conceptual way without unit cancellation. An alternative, more conceptual, method 

is that the angle measure of 10.2 grads is 10.2/400 of a circle’s circumference in length, and 

because a circumference has 2π radius lengths (or radians), 10.2 grads is (10.2/400) times as long 

as 2π radians (i.e., (10.2/400)· 2π), which obviously is in radians without using unit cancellation.  

The participants claimed that unit cancellation is important for calculation. For example, 

Leo said, 

This unit thing really helps a lot….If the units cancel out correctly then…you are doing 

things in the right direction and it’s not upside down…the units guide you of which way I 

should write this way or that way…I always try to use these things because I think it 

makes it less tricky for them [students]… .It’s a good thing. But this trusty trick [unit 

cancellation] right here is what I use all the time. (Interview 2, Task II.1) 

Micah highlighted placing units in each step of computation to justify the unit of the final answer 

by saying, 

Let’s write inches just to make sure we are keeping track of units…and be explicit about 

all of our units… Notice that those grads will cancel and what I end up with is inches and 



 

140 

that matches with the fact that we were trying to compute a length. (Interview 2, Task 

II.1)  

However, different from the participants’ positive opinions about unit cancellation for teaching, 

some researchers (e.g., Reed, 2006; Thompson, 1994) found that although unit cancellation 

might be useful to check procedures after an equation has been constructed (as the participants 

did in this study), unit cancellation is of little help to improve students’ quantitative 

understanding. In fact, Thompson (1994) pointed out that unit cancellation is a mechanical 

device that does not require students’ conceptual understanding of the procedure, as his critique 

below makes clear: 

We should condemn dimensional analysis, at least when proposed as “arithmetic of 

units,” and hope that it is banned from mathematics education. Its aim is to help students 

“get more answers,” and it amounts to a formalistic substitute for comprehension. (p. 

226) 

He argued that teachers need to understand that unit cancellation might hinder students’ 

conceptual understanding of the unit conversions and lead to only mechanical computations. 

Therefore, they need opportunities to think about teaching unit conversion in conceptual ways.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 This chapter consists of three sections. The first section overviews this study and includes 

the purpose of the study, the research questions, research methodology for collecting and 

analyzing data, and a brief summary of the findings. In the second section, I present conclusions 

of this study. In the last section, I make some recommendations based on the findings of this 

study for future research on graduate teaching assistants in the Department of Mathematics and 

for their professional development.  

Summary  

Graduate teaching assistants in the Department of Mathematics (GTA-Ms) play 

significant instructional roles in undergraduate mathematics education (Speer et al., 2005). The 

purpose of this study was to explore their mathematical understanding for teaching trigonometry 

because it is known that how teachers understand the mathematical content they teach is integral 

to teaching and is influential in students’ learning (Fennema & Franke, 1992). I conducted this 

study to answer the following two research questions:  

1. To what extent do GTA-Ms exhibit an understanding of trigonometric concepts when 

solving and explaining trigonometry problems?  

2. What understanding of trigonometry do GTA-Ms use in analyzing and responding to 

students’ mathematical thinking about concepts of trigonometry in hypothetical teaching 

contexts? 
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The participants in this study were four GTA-Ms who have taught trigonometry as 

college instructors in the Department of Mathematics at the university where they were pursuing 

their PhD in mathematics. The data were collected from three task-based interviews with each 

participant. Each task-based interview was conducted while each participant showed and 

explained his/her work for given mathematical tasks consisting of several mathematical 

problems, called task items, on trigonometry. This method was useful because it exposed the 

mathematical understanding that GTA-Ms exhibited in their written and verbal mathematical 

work while they solved and explained the task items.  

The data collected from task-based interviews were analyzed using the Mathematical 

Understanding for Secondary Teaching (MUST) framework, which characterizes teachers’ 

mathematical understanding useful for teaching mathematics. The findings in this study showed 

that the participants were proficient in understanding and using advanced concepts of 

trigonometry, but struggled with some of the fundamental concepts. All participants exhibited an 

understanding of trigonometry described in the three overarching components of the framework.  

The first component–Mathematical Proficiency–is based on the idea that teachers with a 

deep and thorough understanding of mathematical content are better able to help students 

develop mathematical proficiency in the process of learning mathematics. It includes Conceptual 

Understanding, Procedural Fluency, Strategic Competence, Adaptive Reasoning, Productive 

Reasoning, and Historical and Cultural Knowledge (MAC-MTL & CPTM, 2012).     

The participants showed a good understanding of most of the selected concepts for 

trigonometry. They computed accurately and satisfactorily when solving the task items, which 

showed their procedural fluency in algebraic and algorithmic work. In addition, they were able to 

clearly explain why and how the procedures worked. They were good at formulating and 
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representing problems mathematically. They showed similar problem-solving strategies with 

slight differences depending upon the task items. They used adaptive reasoning in their logical 

explanations for justifications or proofs of the task items. They even corrected themselves when 

they found errors or mistakes. There was no doubt from their efforts and persistence in 

completing task items that they, as mathematicians, had a productive disposition toward 

mathematics. However, they did not exhibit much historical or cultural knowledge of 

trigonometry, although they claimed that knowledge of the history of mathematics is valuable for 

teaching. When they were asked about the history of unit circle trigonometry and right triangle 

trigonometry, they all guessed that triangle trigonometry developed first and circle trigonometry 

came afterward, which was not historically true. Their thinking seemed to reflect the order of 

content in current textbooks of trigonometry in which triangle trigonometry is commonly 

followed by unit circle trigonometry. Historically, circle trigonometry emerged for astronomical 

calculations prior to the birth of triangle trigonometry, not fully developed until the 11
th

 century 

(Bressoud, 2010). Polya (1981) suggested that an understanding of the historical development 

could help teachers gain an insight into structuring a curriculum.  

The second component–Mathematical Activity, can be thought of as the process of 

“doing mathematics,” which involves teachers’ mathematical actions to notice, reason, create, or 

integrate mathematical ideas. The three strands of Mathematical Activity–Mathematical 

Noticing, Mathematical Reasoning, and Mathematical Creating–contain several sub-strands that 

focus on teachers’ mathematical actions taken, when dealing with mathematical objects (MAC-

MTL & CPTM, 2012).      

The participants noticed symbolic differences in different mathematical systems. They 

easily distinguished the notation of the raised -1in the system of numbers from that of the system 
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of functions. They also differentiated between the multiplication and composition of two 

trigonometric functions. They made a connection between right triangle trigonometry and unit 

circle trigonometry by identifying the hypotenuse of a right triangle as the radius of a circle. 

However, I did not observe evidence that this connection led to their perception of the length of 

the hypotenuse of the triangle as a unit of measure for the sine and cosine values. Through the 

task items, they showed step-by-step logical procedures for their work, conjectures, and 

generalization. To justify their arguments, they used analogies, examples, and counterexamples. 

They showed a tendency to explain concepts more algebraically than conceptually, for example, 

to determine the coefficient of x in the argument of a sine function. They were good at 

formulating and representing mathematical objects, such as the symbolic and graphic 

representations of functions or verbal representations using mathematical terminologies. They 

were familiar with and often mentioned the abbreviation “SOH-CAH-TOA,” which stands for 

Sine equals Opposite over Hypotenuse, Cosine equals Adjacent over Hypotenuse, and Tangent 

equals Opposite over Adjacent, as the definition of the trigonometric functions of an acute angle 

of a right triangle. In fact, the abbreviation was introduced in the official textbook that the 

participants used for teaching in the department as follows: “A mnemonic device for 

remembering the top row in the definition is SOH CAH TOA, where SOH is an abbreviation for 

Sin(θ) = Opp/Hyp, and so forth” (Swokowski & Cole, 2009, p. 372). They accurately stated 

formal definitions and often reasoned from them. The value that they placed on mathematical 

definitions was implied by the fact that they often referred to them as they began to explain task. 

The participants’ fluency in modeling by modifying, transforming, and manipulating a sine 

function was evident when they solved an application trigonometric problem in a real world 

setting. 
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The third component–Mathematical Work of Teaching, is teachers’ proficiency in 

mathematical teaching based on their robust understanding of mathematical content and 

mathematical actions. Teachers should have this proficiency so that they can enhance students’ 

mathematical understanding (MAC-MTL & CPTM, 2012).      

Although the participants had to deal with students’ mathematical understanding 

occurring in written hypothetical teaching situations during the task-based interviews, they did 

exhibit the key strands of Mathematical Work of Teaching in the framework. They were good at 

analyzing students’ mathematical ideas or arguments, and understood how to interpret students’ 

misconceptions and errors. Specifically, they recognized students’ possible difficulties or errors. 

To correct students’ misconceptions or errors, the participants used two major approaches–

asking questions and providing counterexamples. They agreed that trigonometric word problems 

in a real world setting might provide students with a physical interpretation of the functions and 

would necessitate intuition, critical thinking, and knowledge. The participants recognized how 

trigonometry was connected with other subjects in mathematics, such as calculus and advanced 

mathematics 

Although the participants in this study showed a good understanding of selected concepts 

on trigonometry that they teach and exhibited all the strands of the MUST framework, they 

struggled with concepts foundational to learning trigonometry, such as the radian measure and 

the unit circle. For example, their weak understanding of radius length as a unit of measure 

created difficulty for them to explain the meaning of “one” in the definition of the unit circle and 

interpreting the circumference formula.    

When the participants used their mathematical understanding in responding to 

hypothetical student thinking, the findings showed that GTA-Ms tended to use formal definitions, 
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justify arguments using logical, deductive statements, and illustrate ideas by manipulating 

mathematical symbols. In particular, their explanations tended more procedural than conceptual, 

and more equation-oriented and definition-based when explaining concepts–not only advanced 

ones but also fundamental ones–and when responding to students’ mathematical thinking that 

involved misconceptions. For example, they tended to start explaining with a formal definition 

and use unit cancellation when converting units or justifying the unit of the final answer.  

Conclusions 

The GTA-Ms in this study were proficient in solving trigonometric problems and using 

formal approaches to explain trigonometric concepts. Three of the four participants were 

university outstanding teaching award recipients, who were recognized as “good” instructors by 

professors, students, and peers. They were thoughtful about their teaching. However, they also 

struggled with fundamental concepts that may have interfered with their ability to move beyond 

formal explanations in their approach to address students’ misconceptions. For example, the 

GTA-Ms valued unit cancellation, but Thompson (1994) argued that teachers need to understand 

that unit cancellation might hinder students’ conceptual understanding of the unit conversions 

and lead to only mechanical computations. In many cases, Keiser (2000) found that definitions 

alone cannot answer students’ questions because providing definitions might limit students’ 

mathematical exploration. She suggested that teachers should help students become engaged in 

the defining process to construct more complete concept images, instead of providing formal 

definitions. 

Both mathematics teachers and mathematicians need substantial mathematics and 

mathematical proficiency (NRC, 2001). However, their purposes for this need are different (Ball, 

2003; Bass, 1997; Ferrini-Mundi & Findell, 2001; Grossman et al., 1989). Mathematics teachers 
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need mathematical knowledge to use it “to make curriculum decisions, plan lessons, understand 

their students’ work,” and facilitate and monitor students’ mathematical learning (CBMS, 2001, 

p. 39). In contrast, mathematicians need mathematical knowledge to pursue a deeper and more 

professional level of mathematics. They continue to explore and investigate mathematical 

structures of numbers and spaces, as well as the dynamics of core mathematics; they view 

mathematics not only as a tool to use for problem-solving but also as a dynamic object that can 

be explored, created, and justified (Bass, 1997). 

Researchers also noted that knowledge of advanced undergraduate mathematics is not 

easily connected with the school mathematics that teachers teach, and suggested that teachers 

should develop a deeper and more specialized understanding of the mathematical concepts 

taught, which might not be naturally acquired from learning advanced mathematics (e.g., CBMS, 

2001; Cuoco, 2001; Ma, 1999). The findings from this study confirmed researchers’ arguments 

that knowing advanced mathematics does not always mean knowing mathematics for teaching 

(Ball, 2003; Bass, 1997; Ferrini-Mundi & Findell, 2001; Grossman et al., 1989).  

There is a Chinese proverb, “To give a student a cup of water, a teacher should have a 

bucket of water.” People have various interpretations of this saying, but I interpret it from this 

perspective: To teach knowledge of a concept to a student, a teacher should have knowledge far 

beyond the knowledge that the student will learn. Therefore, the teacher should have a broad, 

deep, and thorough understanding of the concepts they teach (Ma, 1999).  

GTA-Ms, as college instructors, play significant roles and have considerable 

responsibilities in undergraduate mathematics education. Because being a content expert in a 

field does not always imply having content expertise for teaching, this study suggests that, for 
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quality teaching, GTA-Ms should develop a deep mathematical understanding of the subjects of 

undergraduate mathematics they teach. 

Recommendations 

Based on the findings of this study, I offer recommendations in two areas. I make 

recommendations for the kinds of studies that would advance research on GTA-Ms, and for 

methodological approaches. I also make recommendations for planning and implementing 

professional development for GTA-Ms. 

Recommendations for Future Research  

This section presents some recommendations for future research on GTA-Ms’ 

mathematical understanding for teaching in terms of selecting of topics and participants and 

using the MUST framework.  

Selection of topics and participants. In this study, I chose the subject of trigonometry 

because it is rare to find empirical studies on teachers’ understanding of trigonometry (Akkoc, 

2008; Fi, 2003). Furthermore, studies on GTA-Ms’ mathematical understanding of trigonometry 

for teaching are absent. Currently, GTA-Ms are assigned to teach a variety of undergraduate 

courses, and, in particular, the percentage of sections of introductory-level courses (including 

college algebra, precalculus, mathematics for liberal arts, etc.) taught by GTA-Ms has been 

increasing as enrollments continue to increase (Lutzer et al., 2005; Speer et al., 2005). Because 

this study found that the participants showed less proficiency in some fundamental concepts than 

they did in advanced concepts, a future study should explore their mathematical understanding of 

topics in the areas of introductory-level undergraduate mathematics, such as college algebra, for 

teaching. 
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In this study, three of the participants were recipients of the outstanding teaching assistant 

award. Although they were “good” college instructors officially acknowledged by students, peers, 

and professors, this study found evidence of their struggles with some fundamental concepts in 

explaining task items on trigonometry. However, to explore the nature of “general” GTA-Ms’ 

mathematical understanding for teaching, a future study should take the number and 

backgrounds of GTA-Ms into consideration, when recruiting. The number should be more than 

four and their backgrounds should be more diverse including international or novice GTA-Ms. 

Methodological approaches. I offer some recommendations regarding research 

methodology for future research on GTA-Ms’ mathematical understanding for teaching. First, 

facilitating focus group discussions with mathematical tasks could be an avenue to observe how 

GTA-Ms might mathematically react to other GTA-Ms’ explanations or reasoning processes 

while sharing mathematical solutions, strategies, and approaches in a focus group setting. Data 

from such focus group discussions could reinforce data collected from task-based interviews 

with mathematical tasks because more mathematical understanding for teaching might be 

exhibited in a multi-directional setting than in a solving-and-explaining setting.  

Second, it would be helpful to conduct task-based interviews with mathematical tasks 

involving hypothetical teaching situations for a future study. To prompt GTA-Ms to deeply think 

about mathematics in response to students’ mathematical thinking in the hypothetical context, 

descriptions of teaching situations in tasks should be elaborated with well-posed open sub-

questions. Data from class observation of GTA-Ms’ actual classroom teaching practices and 

interactions with their students might supplement or enforce data collected from participants’ 

responses to hypothetical teaching situations and make it easier to describe their mathematical 

understanding for teaching within the third component–Mathematical Work of Teaching–in the 
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MUST framework, when using the MUST framework. Visiting classes covering selected 

concepts for a study and observing review sessions for tests would be useful to collect data about 

how they use their mathematical understanding to introduce the concepts, pose questions, and 

respond to students’ questions related to the concepts.  

Third, semi-structured interviews with GTA-Ms before and after lessons or grading tests 

could provide useful data about the participants’ mathematical understanding in relation to 

student thinking. In particular, interviews before they grade students’ mathematical work could 

help to investigate how they use their mathematical understanding to anticipate and access 

students’ mathematical thinking or misconceptions; interviews after they grade students’ 

mathematical work could help to how they use their mathematical understanding to analyze and 

assess students’ mathematical thinking or misconceptions. In addition, rubrics for grading tests 

that participants construct as well as their feedback on students’ work could be also useful data to 

investigate their mathematical understanding that can be exhibited in relation to students’ 

learning and thinking. 

Fourth, the MUST framework is a useful guide for designing task items and a good tool 

for data analysis for a future study on GTA-Ms’ mathematical understanding for teaching, 

although there is room for the framework to evolve and improve. In this study, the framework 

helped designing tasks, each of which addresses designated components and strands in the 

framework. However, data analysis showed that more components or strands were found in each 

task than I expected to observe as well as the components or strands that I anticipated. The tables 

for comparisons of the strands that I expected to observe and the strands that I actually observed 

in all the task items are listed in Appendix G. In this study, the framework also facilitated 

systematic organization and categorization of the mathematical understandings that were 
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exhibited from the participants’ responses to mathematical task items during task-based 

interviews. 

Some observations can be made about the framework after using it for this study. For the 

first component–Mathematical Proficiency, I also considered using Even’s framework for 

teacher knowledge of subject matter because both referred to mathematical content knowledge; 

in particular, Even’s Essential Features and Basic Repertoire provided me with insight into 

Conceptual Understanding in the MUST framework. Table 11 compares the strands of 

Mathematical Proficiency in the MUST framework and the aspects of Even’s framework.  

Table 11 

Comparison Between Mathematical Proficiency in the MUST Framework and Even’s 

Framework 

Mathematical Proficiency 

in the MUST framework 

Even’s Framework 

 

Conceptual Understanding 

Essential Features 

Basic Repertoire 

Knowledge and Understanding of a 

Concept Procedural Fluency 

Strategic Competence Different Representations 

Alternative Ways of Approaching 

Adaptive Reasoning The Strength of the Concept 

Productive Disposition Knowledge about Mathematics 

Historical and Cultural Knowledge 

 

Because the strands of Mathematical Proficiency are interrelated and intertwined, some 

data were categorized into more than one strand simultaneously. For example, data showing a 

participant’s Strategic Competence also exhibited his or her Conceptual Understanding and 

Procedural Fluency because problem-solving requires both kinds of knowledge. It was not easy 

to make a distinction between Adaptive Reasoning in the first component–Mathematical 

Proficiency–and Mathematical Reasoning in the second component–Mathematical Activity. 
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Therefore, data about reasoning were categorized under both strands during data analysis. The 

strand Productive Disposition was observed throughout the task-based interviews. Therefore, it is 

suggested that data about this strand should be collected deliberately through the process of 

collecting data in future studies rather than by asking a few task items. 

Among the strands for the second component–Mathematical Activity, Mathematics 

Noticing was not easy for me to observe because it occurs internally. For example, Discerning 

Symbolic Forms is recognizing symbolic forms to identify potential symbolic rules with those 

forms, which is distinguished from symbolic manipulation for Mathematics Creating. Therefore, 

it could not be easy to make a clear-cut distinction between the participants’ discerning symbolic 

forms and manipulating mathematical symbols that were exhibited in their mathematical work. 

The third component–Mathematical Work of Teaching–distinguishes between 

mathematics teachers and mathematicians. In this study, the participants’ responses to the 

hypothetical teaching situations in a written form provided limited data about their mathematical 

understanding for teaching within the third component. Therefore, this component could be more 

useful for analyzing data from GTA-Ms’ planning, teaching, and reflecting on lessons.  

Recommendations for Professional Development 

The findings from this study, describing the nature of GTA-Ms’ mathematical 

understanding of trigonometric concepts for teaching, could serve as a baseline or groundwork 

for designing professional development. Those designing professional development for GTA-Ms 

could provide better preparation of GTA-Ms as college instructors if they included a focus on 

fundamental concepts, attention to developing conceptual understanding, and tasks involving 

hypothetical teaching situations. Based on the findings from this study, I offer the following 

recommendations. 
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First, professional development programs should enhance and deepen GTA-Ms’ 

mathematical understanding of fundamental concepts of the subject they teach. Although the 

participants demonstrated a strong understanding of the advanced concepts of trigonometry, the 

findings showed that their understandings of some fundamental concepts were limited and not 

meaningfully connected. When considering that an understanding of fundamental concepts they 

teach might not naturally be constructed or acquired from studying advanced mathematics, it is 

essential that professional development programs should help GTA-Ms develop fundamental 

concepts of the topics in the subject area that they teach. 

Second, GTA-Ms should acquire a conceptual understanding of the mathematics that they 

teach which will enable them to teach more than mathematical procedures. Professional 

development should involve the GTA-Ms in developing teaching strategies that go beyond 

demonstrating procedures. In this study, despite proficiency in advanced concepts, the 

participants’ approaches to explaining task items tended to be procedural rather than conceptual. 

One example was their frequent use of unit cancellation. In the conversion process, they often 

utilized a traditional method of unit cancellation to justify the unit for their final answer (e.g., 

Figure 22). Leo, for example, claimed that “unit cancellation is important for calculation.…I 

always [italics added] try to use these things because I think it makes it less tricky for them 

[students]” (Interview 2, Task II.1). However, researchers (e.g., Reed, 2006; Thompson, 1994) 

argued that teachers need to be cautious to use unit cancellation because algorithmic 

computations of unit cancellation might hinder students from developing conceptual 

understanding of unit conversion.  
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The participants in this study agreed with the importance for GTA-Ms’ acquiring 

conceptual understanding for teaching. The following remark from Gloria reflects her belief that 

teaching requires more than possession of knowledge of the content taught. 

I think if you are teaching anything, you have to have a deep knowledge [italics added] of 

the material….You have to be willing to expect unexpected questions and when you have 

unexpected questions…you need to rely on a really thorough understanding [italics 

added] of the material to give a justified answer….So, you need to have an understanding 

of something to justify it. (Final reflection interview)   

Therefore, one of foci in GTA-Ms’ teaching preparation should be placed on developing their 

conceptual understanding.  

Third, professional development programs should use task items similar to those used in 

this study. In this study, task items–both those involving teaching situations and conceptual task 

items–used during task-based interviews prompted the participants’ mathematical thinking and 

had the potentials to broaden and deepen their mathematical understanding.  

Although the participants in this study were not exposed to actual teaching situations, the 

items involving hypothetical teaching situations prompted the participants to think about 

mathematics in relation to students’ mathematical thinking. Biza et al. (2007) explained the 

importance of such tasks:  

The tasks offer an opportunity to explore and develop teachers’ sensitivity to student 

difficulty and needs…as well as an ability to provide adequate…feedback to students. 

Particularly by asking the teacher to engage with a specific (fictional yet plausible) 

student response that is characterized by a subtle mathematical error we can explore not 
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only whether the teacher can identify the error but probe into its causes and grasp the 

didactical opportunity it offers. (p. 303) 

The participants in this study also mentioned that they had an opportunity to think about 

what they had not thought about by solving and explaining some conceptual task items. For 

example, when Kyle talked about the unit circle, he asked himself, “What is this ‘one’ [in the 

definition of the unit circle]? What unit is that ‘one’ measured in? I’ve never thought of that” 

(Interview 1, Task I.1). In the final reflection interview after completing the task-based 

interviews, he added, “Most of these [task items] were very…creative questions. I think that 

really made me think [italics added]….Many of these questions I had never thought about…were 

just unexpected to me. They were not standard questions” (Final reflection interview). Micah 

also noted, “I’ve learned that trig questions can be much more difficult than they are in our 

course. And I think it would be great to get to a place where these were the kinds of questions 

that we were asking” (Final reflection interview). 

This study also found that the participants improved their explanations through doing the 

task-based interviews. For Task I, for example, Gloria explained the degree measure by dividing 

the circumference by 360 tick marks and counting tick marks along the circumference, which 

was not a conceptual interpretation of degree measures in terms of the fractional amount of a 

circle’s circumference. However, for Task II, she described the degree measure in this way: “A 

degree is…the angle swept out by going 1/360
th

 of a circle’s circumference,” (Interview 2, Task 

II.4), which was more conceptual. She seemed to make self-improvement as she struggled with 

the meaning of angle measure, while working on the task items. Leo also showed some 

improvement in his interpretation of the circumference formula because he provided a better and 
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conceptual explanation of it for Task III than he did for Task I. For Task I.2, his interpretation of 

the circumference formula was the following:  

The meaning of this [the circumference formula] is saying that…if you want to know 

how far this distance [the circumference] is,…we could take a piece of string and 

measure around here, but we can’t do that very easily. So, we are going to have this 

formula instead, which always…tells us…this is always true for any circle in the whole 

world, we know the distance around here is 2r. (Interview 1, Task I.2) 

However, when he was forced to think about the meaning of the division (C/r = 2) in Task III.5, 

he explained it conceptually as follows: 

Interviewer (I): Related to this division, could you explain how we could have six marks 

off here? 

Leo: This idea of division is…that…I’m going to split this into a number of pieces equal 

length pieces….This piece is one and this is a set length [italics added]. And this is 

another piece of length and this is another piece of length and I just go around I count and 

so it is like 1, 2, 3, 4, 5, 6 and then I have this little bit extra which is the 

remainder….What I’m doing is I’m actually starting with a set length which is the radius 

[italics added] and then I’m seeing how many times can I make it around the whole 

circle….It’s always six and a little bit more. And no matter what, it’s always…the same. 

(Interview 3, Task III.5) 

His description showed that he seemed to perceive the radius as a unit of measure and 2π (“6 and 

a little more”) as the number of radius lengths measuring the length of the circumference of any 

circle. 
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Although this study investigated the trigonometric understanding of talented GTA-Ms, 

the findings offer points to be considered in designing professional development for GTA-Ms 

preparing to teach other topics in mathematics. GTA-Ms, who understand fundamental concepts, 

value conceptual learning as well as procedural learning, and have studied hypothetical teaching 

situations, are likely to develop the deep mathematical understanding needed to enhance the 

learning of the undergraduate students they teach. 
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APPENDIX A 

CONCEPTS AND MUST FRAMEWORK FOR EACH TASK ITEM 

 

Task II 

II.1 Angle measure/Radians/Degree 

Arc length formula 

Units/unit conversion 

MA: Mathematical Noticing 

 Observing Structure of Mathematical 

Systems 

         Mathematical Creating 

 Defining  

II.2 Angle measure/Radians/Degree 

Arc length formula 

Sine/cosine functions  

Inverse trig functions 

MP: Procedural Fluency  

        Strategic Competency  

 

MA: Mathematical Noticing 

 Discerning Symbolic Forms 

II.3 Sine/cosine functions  

Unit circle trig and right triangle 

trig  

MA: Mathematical Noticing 

 Observing Structure of Mathematical 

Systems 

 Connecting within and outside Math  

II.4 Sine/cosine functions  

Composite functions 

MA: Mathematical Creating 

 Representing  

 Modifying/Transforming/Manipulating  

Task 

Items 

Concepts Expected Strands 

 

Task I 

I.1 Angle measure/Radians/Degree MP: Conceptual Understanding 

I.2 

 

Angle measure/Radians/Degree 

Circumference formula 

MP: Conceptual Understanding 

 

I.3 Angle measure/Radians/Degree MP: Procedural Fluency 

       Adaptive Reasoning 

I.4 Arc length formula MP: Conceptual Understanding 

I.5 Sine/cosine functions  MP: Conceptual Understanding 

I.6 Sine/cosine functions  

Units/unit conversion 

MP: Conceptual Understanding 

 

I.7 Sine/cosine functions  MP: Conceptual Understanding 

1.8 Unit circle trig and right 

triangle trig 

MP: Historical and Cultural Knowledge 
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II.5 Sine/cosine functions  

Composite functions 

Periodic functions/Period 

 

MP: Adaptive Reasoning  

 

MA: Mathematical Reasoning  

 Constraining and Extending 

 Conjecturing and Generalizing 

II.6 Sine/cosine functions  

Modeling trigonometric 

functions 

MA: Integrating Strands of Mathematical    

         Activity 

II.7 Addition formula for sine 

functions 

MA: Mathematical Reasoning 

 Justifying/Proving 

 

Task III 

III.1 Angle measure/Radian/Degree 

Units/unit conversion  

Arc length formula  

MA: Mathematical Noticing  

 Detecting the Form of an Argument 

 

MWT: Analyze Mathematical Ideas 

III.2 Sine/cosine functions  

Composite functions 

MA: Mathematical Noticing 

 Detecting the Form of an Argument 

 Observing Structure of Mathematical 

Systems 

 

MWT: Analyze Mathematical Ideas 

            Assess the Mathematical Knowledge of 

            Learners 

            Know and Use the Curriculum 

III.3 Unit circle MA: Mathematical Noticing 

 Detecting the Form of an Argument 

 

MWT: Know and Use the Curriculum 

            Assess the Mathematical Knowledge of 

            Learners 

III.4 Angle measure/Radian/Degree 

Units/unit conversion  

Arc length formula 

MA: Mathematical Noticing 

 Detecting the Form of an Argument 

 

MWT: Assess the Mathematical Knowledge of  

            Learners 

III.5 Angle measure/Radian/Degree 

Circumference formula 

MA: Mathematical Noticing 

 Detecting the Form of an Argument 

 

MWT: Assess the Mathematical Knowledge of  

            Learners 

III.6 Inverse trig functions 

Composite functions 

MA: Mathematical Noticing 

 Detecting the Form of an Argument 

 Discerning Symbolic Forms  
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MWT: Assess the Mathematical Knowledge of  

            Learners 

III.7 Periodic functions/Period 

 

MWT: Assess the Mathematical Knowledge of 

            Learners 

III.8 Inverse trig functions 

Composite functions 

Sine/cosine functions  

MA: Mathematical Noticing 

 Discerning Symbolic Forms  

 

MWT: Assess the Mathematical Knowledge of 

            Learners 

III.9 Sine/cosine functions  

Co-function formula 

Addition formula for 

sine/cosine functions 

MA: Mathematical Noticing 

 Discerning Symbolic Forms  

 

MWT: Assess the Mathematical Knowledge of  

            Learners 

III.10 Sine/cosine functions  

Unit circle trig and right 

triangle trig 

MWT: Know and Use the Curriculum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

177 

 

 

APPENDIX B 

FACULTY COURSE OUTLINE OF MATH1113 (PRECALCULUS) 

 

Text: Swokowski-Cole, Precalculus: Functions and Graphs, 12th ed., Cengage Publishing 

Remark: there is the regular text from Cengage and our custom-printed text which has fewer 

chapters and it is cheaper (comparing new to new) to students. 11th edition is also acceptable. 

 

Unit 1: The Cartesian plane, interval notation, midpoint and distance formula, circles (including 

complete the square), graphs of equations, their intercepts and symmetry tests; lines and linear 

models, the definition of function,  identifying functions, computing function values, function 

domains and ranges, difference quotients, linear functions, modeling functions ( find geometry 

figures on back endpaper of text, PLUS they should know a box and rectangles of course) 

Sections  2.1, 2.2, 2.3, 2.4 

The text HW 2.2 doesn’t have many symmetry tests—do that in WebAssign 

 

Unit 2: Graphs of functions, even/odd functions, shifts, reflections, or stretching/compressing of 

graphs; (opt: greatest integer function and) absolute value functions (complete list/pix of fns we 

expect students to be familiar with on p. 790-791, appendix I), quadratic functions (general and 

standard forms, completing the square to get to standard form),  extreme values of quadratics 

(some word problems here), operations on functions, modeling and interpreting function models, 

one-to-one functions and their inverses (graphically and symbolically) Sections (1.4), 2.5, 2.6, 

2.7, 4.1 

 

Unit 3: Exponential and Logarithmic functions and applications. Definitions, domain/range and 

graphs (including shifts and reflections), the number e, using exponential models, definition of 

log functions, exponential and logarithm properties, modeling with exponential and logarithmic 

functions, including business models, and solving equations involving exponentials and 

logarithms. (We don’t do the logistic curve or limit-type questions) NOTE: we do ONLY $-type 

applications first, then after 4.6 we look at additional models and see the same principles at 

work. Sections 4.2, 4.3, 4.4, 4.5, 4.6 

 

Unit 4: Elementary trigonometry: Angle measure using degrees and radians, arc length and 

sector area (no angular motion), right triangle trigonometry and extension to arbitrary angles 

(using P(x,y) on the terminal side), reciprocal and Pythagorean identities, trigonometric functions 

of real numbers (a brief mention of the unit circle), graphs of the six trigonometric functions and 

domain/range, computation of trigonometric functions of arbitrary special angles via reference 

angles (no mention of that word on assignments). Some applications using trigonometric 

functions. Sections 5.1, 5.2, 5.3, 5.4 
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Unit 5: Advanced trigonometry: Analyze and modeling functions of the form y = Asin(bx+c) 

(or cosine). Applications involving right triangle trigonometry, depression/elevation, triangle 

area (this is an addition here because it is covered in LOS/LOC section, but we do early). 

Solving trigonometric equations (special angle answers), addition and double angle formulas for 

sine and cosine. Sections 5.5,(5.6),5.7, 6.2, 6.3, 6.4 

 

Additional study before the final exam: Inverse trigonometric functions, the graphs, 

domains/ranges, properties, computations, and uses for solving trigonometric equations 

(arctan(5) type answers), Laws of Sines and Cosines and their applications (bearings covered 

here). Sections 6.6, 7.1, 7.2  

 

Addendum: Intensive Precalculus sections 

Additional content covered from sections 1.1-1.4 of the text: real numbers and interval notation, 

definition of and working with absolute value, order of operations and laws of exponents, 

operations involving exponents: radicals and fractional exponents, definition of polynomials, 

factoring polynomials, solving linear, quadratic, and rational equations. Most of these concepts 

are introduced as needed within the context of the content studied in the individual units of the 

precalculus course.  

 

Testing Information: Tests are taken outside of class time, in Room 222 or 324. Students sign up 

on the 1113 webpage. See the 1113 webpage for a general description of test protocol: 

calculators, ID, scratch, honor code, no phones/hats, etc. Each test is 12 questions in 75 min. The 

final exam is 24 questions in 165 minutes. Coach your students to use WebAssign effectively 

during a test: 1. you can minimize the timer if it is worrisome 2. Submit each part of each 

question separately, since you can repair errors and minimize your penalty 3. WebAssign is 

CASE SenSiTivE, and can’t read your misspellings correctly (x for p, for example), but you the 

teacher can override such an error later (should you so choose). 4. Never use the Back Button. 

 

Test 1 content items: Working with distance and midpoint formulas, finding/using equations of 

circles, completing the square to find centers/radii, intercepts of graphs, observing symmetry 

(just observing, not computational yet), linear equations from information, parallel/perpendicular 

lines, finding/comparing/using slopes, finding/using  intercepts of lines, horizontal/vertical lines, 

linear models, function computations: graphical, tabular, numeric like f(2) and symbolic f(1/x), 

difference quotients, domains of functions, building a functional model. Special notes: quadratic 

equations at this point lend themselves to solving without the quadratic formula (although you 

can of course), and some problems involve multiple-step algebra, as we are preparing students 

for calculus. There are 3 word problems, one linear, one experiential, one unseen by students (so 

watch what you show them–please stick to the hw and wq problems). The content is in order, 

except all word problems are at the end of test. Note that kids tend to memorize problem solution 

types rather than methods and this can be a problem, as they will memorize the answer to a 

cylinder problem and see a cylinder with new information (volume fixed instead of area, for 

example). This is a good thing to point out, as “there are many questions you can ask about this 

cylinder/cone/box, so don't expect that the image is only attached to the problem you drew this 

time.” 
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From the testing coordinator:  

Some testing protocol. In this case, “we” means my proctors.  

 

1.  Students will need to remember their username/password.  A lot of these kids save their login 

information on their computers and thus do not type these information regularly.  They will not 

be able to reset their passwords because email (or any email server for that matter) is blocked.  If 

they come in not knowing their password, I send them away.  

 

2.  We accept the following forms of photo identification: student ID, state licensed drivers 

license, federally issued passports. Pretty much anything that has a photo identification.  

 

3.  We will not be allowing any handheld calculators of any kind.  If your student does not want 

to use the computerized vti-83, then they can make do without a calculator.  

 

4.  We will not be providing syntax help on WebAssign or calculator tips during the exam.  

Please stress this fact to your students that they need to be practicing both WebAssign inputs and 

ti-83/ti-84 keystrokes.  

 

5.  Like their webquizzes, students get multiple tries on their test. However, there is no third try 

for tests. I've had a few students in the past asking about this. Remember its full credit for the 

first submission, 75% credit on the second submission.  

 

6.   Students will need to regularly submit their work. Any un-submitted work that is lost for any 

reason (computer freezing, power outages, etc.) is unrecoverable.  

 

Makeup Exam protocol:  

1.  It is up to you to decide whether a student should be allowed to take his/her test outside of the 

two days that they are scheduled to do so.  This normally means that they provide you with a 

written note.  Students can take their test after their scheduled test days, but not before.  

 

2.  If you deem that a student has valid reasons for taking a makeup test, I will need a notification 

from you.  The easiest way to do this is by email.  Something along the lines of: “Please allow 

John Doe to make up Test n.” Your student will then need to contact me as soon as possible so 

that we can schedule his/her makeup test.  

 

3.  Makeups are generally given the four school days immediately after Group 2's second day.  I 

will let you know the hours I'm available to administer these exams as the semester progresses.  

 

4.  I'll repeat this again later, but any student that misses Test 5 will have to take it AFTER 

Thanksgiving Break.  Rules 1, 2, and 3 still apply; we will not be administering exams before 

their scheduled days.  Students in group 2 that book their flights early will have to suck it up.  

They will also need your permission and it will be your call whether or not skipping town early 

is a valid reason for missing their test. 
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APPENDIX C 

TASKS USED FOR THE TASK-BASED INTERVIEWS 

Task I 

  

Date: _____________________                                   Name_________________________ 

 

Instruction 

 

 Task I consists of 8 problems.  

 

 Suppose each question were in a textbook and you as an instructor needed to explain it to 

students. Please tell me how you would approach explaining an ideal answer to a student.  

 

 After you finish explaining each problem, please classify the level and rate the 

importance for each task item with reasons. 

 

o Please classify each item as easy (E), medium difficulty (M), or difficult (D) for you 

(as an instructor) and for your students, explaining the reason for your classification. 

 

o Please rate (1: less important; 2: important; 3: most important) the importance for 

each item for you (as an instructor) to know and for your students to know, explaining 

the reason for your rating. 

 

I.1 

I.1.1 What does it mean for an angle to have a measure of 10 degrees? 

I.1.2 What does it mean for an angle to have a measure of 2.3 radians? 

 

I.2 

Interpret the circumference formula C = 2r, where r is the radius length of any circle. 
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I.3 

A student measured the angle displayed below and determined that its measure was 7.  

However, he did not label the units in which he measured the angle. The unit he measured in is 

not grads, radians, or degrees. Describe how to use the arc length and circumference of the circle 

displayed below to determine how many of the “mystery” angle measure units mark off (or cut 

off) any circle’s circumference.  

 

 

 

 

 

 

I.4 

A circle has a radius of r inches. An angle θ whose vertex is at the circle’s center cuts off s 

inches of the circle’s circumference as the terminal side of the angle opens in a counter 

clockwise direction from the initial side of the angle.  

Write a formula that conveys the relationship between the radius length r (in inches), the angle 

measure θ (in radians), and the arc length s (in inches).  

Explain the meaning of the formulation of the relationship between three quantities.  

 

I.5 

Imagine a bug sitting on the end of a blade of a fan as the blade revolves in a counter-clockwise 

direction. The bug is exactly 2.6 feet from the center of the fan and is at the 3 o’clock position as 

the blade begins to turn.  

 
 

I.5.1 Sketch a graph of a function f over the input interval from 0 to 2 to illustrate how the 

bug’s vertical distance (in radians) above the horizontal diameter co-varies with the measure of 

the angle swept out the bug’s fan blade (in radians).
4
 Justify the shape of the graph. 

I.5.2 Determine symbolic representations of the function f in part I.5.1.   

 

 

 

                                                 
4
 This wording should be changed to in radius lengths or in radii to clarify the intent. 
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I.6 

 

 
 

I.6.1 What is the general form of (x rad, y rad) as the ordered pair in radians,
5
 of any point on a 

circle of radius r kilometers that forms an arc length of s kilometers as illustrated on the 

diagram? Why? 

I.6.2 What is the general form of (x km, y km) as the ordered pair in kilometers, of any point on a 

circle of radius r kilometers that forms an arc length of s kilometers as illustrated on the 

diagram? Why? 

 

I.7 

John is sitting in a bucket of a Ferris wheel. He is exactly 46.7 feet from the center and is at the 3 

o’clock position as the Ferris wheel starts turning.  

 

 
 

I.7.1 What does the input value of the sine function sin(1.1) ≈ 0.891 represent in this context? 

I.7.2 What does the output value of the sine function sin(1.1) ≈ 0.891 represent in this context? 

 

I.8 

I.8.1 Tell me about the historical development of unit circle trigonometry and right triangle 

trigonometry. 

I.8.2 Tell me about how trigonometry connects with areas within and outside mathematics. 

 

 

 

                                                 
5
 This wording should be changed to in radius lengths or in radii to clarify the intent. 
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Please rate the level and the importance for each problem with reasons. 

 

I.1 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

I.2 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

I.3 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

I.4 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     
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I.5 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

I.6 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

I.7 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

I.8 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     
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Task II 

  

Date: _____________________                                   Name_________________________ 

 

Instruction 

 

 Task II consists of 7 problems.  

 

 Suppose each question were in a textbook and you as an instructor needed to explain it to 

students. Please tell me how you would approach explaining an ideal answer to a student.  

 

 After you finish explaining each task item, please classify the level and rate the 

importance for each task item with reasons. 

 

o Please classify each item as easy (E), medium difficulty (M), or difficult (D) for you 

(as an instructor) and for your students, explaining the reason for your classification. 

 

o Please rate (1: less important; 2: important; 3: most important) the importance for 

each item for you (as an instructor) to know and for your students to know, explaining 

the reason for your rating. 

 

II.1 

The grad is a unit of angle measure that is sometimes used in France, where every circle’s 

circumference is 400 grads. 

II.1.1 Determine θ in grads in the following figure. 

 

 
 

II.1.2 If a circle has a radius 7.1 inches, what is the arc length in inches of the angle of 3 grads? 

II.1.3 How many radians are equivalent to 10.2 grads?  

II.1.4 Name your own unit of angle measure and define how many of these units mark off the 

circumference of a circle so that you can create a protractor to measure any angle in your unit. 

Describe the meaning of an angle of 18.2 (name of your unit). 

II.1.5 Define a function that converts a number of grads to a number of your unit. Explain the 

meaning of the formula. 
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II.2 

Given the following circle and undetermined angle measures of α and θ radians, answer the 

following questions. 

 
 

II.2.1 What is the value of θ in radians, the measure of the angle indicated in the figure above? 

II.2.2 How many kilometers did an object sweep out a counterclockwise angle beginning from 

the position (5, 0) along the circle and ending at the position (4.8273, 1.3028)? 

II.2.3 Determine values for the coordinate point (x km, y km) as the ordered pair in kilometers. 

II.2.4 Determine values for the coordinate point (x rad, y rad) as the ordered pair in radians.
6
 

 

II.3 

II.3.1 Determine cos(θ) (without determining the value of θ) in right triangle trigonometry.  

II.3.2 Determine cos(θ) (without determining the value of θ) in unit circle trigonometry. 

 

 
  

 

 

 

 

 

 

 

                                                 
6
 This wording should be changed to in radius lengths or in radii to clarify the intent. 
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II.4 

Windmills are currently used in an attempt to produce green energy. The windmill rotates at a 

rate of 3 radians every 15 seconds. Let h be the height (in meters) between the horizontal 

diameter of the windmill and the ground, so the tip of the fan is h meters away from the ground 

when it is the 3 o’clock position. Let r be the turbine’s radius (in meters). 

 

 
 

II.4.1 Define a function that relates the measure of the angle (in radians) swept out by the fan 

blade as a function of time elapsed. 

II.4.2 Define a function f  that represents the distance of the fan blade’s tip (in meters) of the 

windmill above the ground as a function of the number of seconds that have elapsed since the fan 

started rotating from the 3 o’clock position. 

II.4.3 Define a function g that represents the distance of the fan blade’s tip (in radians)
7
 of the 

windmill above the ground as a function of the number of seconds that have elapsed since the fan 

started rotating from the 6 o’clock position. 

 

II.5 

Sketch the graph of the function y = sin(x
2
) for x ≥ 0. 

Hint: You may use the following line of reasoning. The sine function has a period of 2π, which 

means that it goes through a full cycle whenever its argument varies by 2π.  

For example, sin(3x + 5) will repeat whenever the argument 3x + 5 varies by 2π. So sin(3x + 5) 

will repeat whenever x varies by 2π/3.  

(Thompson, Carlson, & Silverman, 2007, p. 420) 

 

 

 

 

                                                 
7
 This wording should be changed to in radius lengths or in radii to clarify the intent. 
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II.6 

The maximum average monthly temperature in New Orleans is 82°F and the minimum is 54°F. 

The table shows the average monthly temperatures. The scatter diagram for a 2-year interval in 

the figure below strongly suggests that the temperatures can be modeled with a sine curve. 

  
To model the average monthly temperature in New Orleans, determine a function of the form 

 

f(x) = asin[b(x – d)] + c 

 

where a, b, c, and d are constants, and x represents the month, with January corresponding to  

x = 1. 

(www.aw-bc.com/scp/lial_hornsby.../LIALMC06_0321227638.pdf, p. 566) 

  

II.7 

Consider the following image of the unit circle with angles of measure x, y, and x + y.  

 

 
 

Prove the trigonometric identity sin(x + y) = sin(x)cos(y) + cos(x)sin(y) geometrically. 

 

 

 

 

 

 

 

http://www.aw-bc.com/scp/lial_hornsby.../LIALMC06_0321227638.pdf
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Please rate the level and the importance for each problem with reasons. 

 

II.1 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

II.2 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

I.3 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

II.4 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     
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II.5 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

II.6 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     

 

II.7 

Level E M D Reason 

For you     

For 

students 

    

 

Importance 1 2 3 Reason 

For you     

For students     
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Task III 

  

Date: _____________________                                   Name_________________________ 

 

Instruction 

 

 Task III consists of 10 problems.  

 

 Assume that some situations (III.1 – III.6, III.10) between you and your student(s) 

happened in your class or during office hours. In III.7, III.8, and III.9, test questions were 

given to your students. Please respond to questions for each task problem. 

 

III.1  

Instructor (You): Can an angle’s openness be measured with a linear unit of measure such as in 

inches? 

Student: Yes.  

Instructor (You): Why? 

Student: For example, the measure of an angle is 1.7 “inches” as an angle measure when the arc 

length is 1.7 inches on the circle of radius 1 inch. 

 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources of his or her conception? 

 How would you correct the student’s answer, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

  

III.2 

Instructor (You): The answer for computing cos(sin(35º)) is 48.125º. 

Student A: I put my calculator in the degree mode and then sin(35) produced 0.5736 and 

cos(0.5736) produced 0.9999. The answer is 0.9999º.  

Student B: I think that the answer 48.125º could be wrong because the value for cos(sin(35º)) 

must be a real number. 

 

 How would you compute cos(sin(35º))? 

 How would you help the students derive 48.125º? 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources for their error or conception? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

(Thompson, Carlson, & Silverman, 2007) 
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III.3 

Instructor (You): Can anyone give an example of a unit circle? 

Student A: I think that a circle with radius of 1 foot is a unit circle, but a circle with radius of 2.8 

feet is not a unit circle.  

Student B: I agree. But I am confused about whether a circle with radius of 12 inches is a unit 

circle or not because 12 inches is 1 foot. 

 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources of their conception? 

 How would you correct the student’s answer, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

 

III.4 

Instructor (You): How many meters does the object travel when it sweeps out 47 degrees on the 

circular path? 

 

Student: That’s easy. Using the formula s = r·θ, I can have the arc length s = (4.2)47 = 197.4 

meters. 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources of his/her conception? 

 How would you correct the student’s answer, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 
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III.5 

Instructor (You): Tell me about the relationship between the size of a circle and the length of a 

radius of any circle. 

Student A: I think that the larger a circle is, the more radius lengths the circumference has. 

Student B: I agree with him. As you can see in the diagrams below, the leftover portion on the 

circumference where the arrows are pointing is longer for a larger circle than the one for a 

smaller circle. 

 

    
 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources of their conception? 

 How would you correct the students’ answers, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 

 

III.6 

Instructor (You): Tell me about the inverse function of the cosine function. 

Student: I think that sec x is the inverse function of cos(x) because sec(x) = cos
-1

(x) and  

 

cos(sec(x)) = cos 








xcos

1
 = 1. 

 

 How would you describe mathematical concepts key to the situation? 

 What might be possible sources of his or her conception? 

 How would you correct the student’s answer, if necessary? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this situation? 
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III.7 

Test Question: Below is a graphical representation of a periodic function, in a certain domain. In 

each drawing a part of the graph is bold. Write ‘Yes’ next to a drawing in which you think the 

bolded part is a period of the function and ‘No’ next to a drawing in which you think the bolded 

part is not a period of the function. 

 

 
 

 How would you explain a solution to students? 

 How would you describe mathematical concepts key to this question? 

 What might be plausible causes of students’ incorrect choices? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this test question? 

(Shama, 1998) 

 

III.8 

Test Question: Find the exact value of the expression if it is defined.  

 


















2
sin

2

1
sin 1 

 

 

 How would you explain a solution to students? 

 How would you describe mathematical concepts key to this question? 

 Any possible students’ incorrect solutions? 

 What might be plausible causes of the incorrect solutions? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this test question? 
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III.9 

Test Question: Let P(t) be the point on the unit circle that corresponds to t for [0, 2).  

 

If P(t) = (4/5, 3/5), find P  t
2
 . 

 

 How would you explain a solution to students? 

 How would you describe mathematical concepts key to this question? 

 Any possible students’ correct solutions that are different from the way you solve? 

 Any possible students’ incorrect solutions?  

 What might be plausible causes of the incorrect solutions? 

 What questions or examples would you ask or use to help students better understand the 

mathematical ideas/concepts involved in this test question? 

 

III.10 

Student A: A book introduced SOH (Sine equals Opposite over Hypotenuse)-CAH (Cosine 

equals Adjacent over Hypotenuse)-TOA (Tangent equals Opposite over Adjacent) as a way to 

memorize the sine, cosine, and tangent values using ratios of the lengths and hypotenuse of a 

right triangle. But I am just wondering how I can find the value of cos(/2) using it.  

Student B: I also got the same question. In addition, what about the values of the trigonometric 

functions of any other angles than acute angles? 

 

 How would you respond to each student’s question? 

(Thompson, Carlson, & Silverman, 2007) 

 

  

http://www.mathwords.com/h/hypotenuse.htm
http://www.mathwords.com/a/adjacent.htm
http://www.mathwords.com/h/hypotenuse.htm
http://www.mathwords.com/a/adjacent.htm
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APPENDIX D 

BACKGROUND INFORMATION SHEET 

Instructions: Information provided on this sheet remains strictly confidential. If you feel 

uncomfortable answering any of the questions, then you may leave them blank. Thank you for 

your time. 

 

 Name:________________________________ 

 Email:________________________________ 

 Phone number: _________________________ 

 Are you a full time graduate student in the Department of Mathematics at UGA? Yes__ No__ 

 Degree that you are pursuing in mathematics at UGA: _______________________ 

 You are currently TA___ or RA____ or both____ this semester. 

 Number of years as a graduate student in the program:__________________ 

 Number of semesters as a teaching assistant in the department:___________ 

 

 Mathematics course(s) you are teaching or have taught at UGA  

Course name Year/semester 

  

  

  

  

 

 Have you ever taught trigonometry prior to coming to UGA? Yes_____ No______ 

 

      If yes, please provide the details below.  

 

Course name Year/semester School/College/Institution 

   

   

   

 

 Have you ever received any formal training (such as taking education courses) prior to 

teaching precalculus? Yes_____ No_____  

If yes, please provide the details below.  

 

Course/Program name Year/Semester School/College/Institution 
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 Please check () mathematics graduate courses you are taking and have taken at UGA  

      (The list is cited from http://www.math.uga.edu/graduate/gradcourses.html.) 

 
Foundations 
( ) 7900 Foundations for Graduate Mathematics An intensive review of techniques and material essential for graduate study in mathematics, 

including background in calculus and linear algebra. Emphasis is on small group study and presentations. Topics include proofs, induction, the 
metric Observing Structure of the reals, the Bolzano-Weierstrass theorem, and the diagonalization theorem. 

 
Algebra/Group Theory  
( ) 6000 Modern Algebra and Geometry I An introduction to the ideas and constructs of abstract aglebra, emphasizing geometric motivation 

and applications.  Beginning with a careful study of integers, modular arithmetic, the Euclidean algorithm, the course moves on to fields, 

isometries of the complex plain, polynomials, splitting fields, rings, homomorphisms, field extensions and compass and straightedge 
constructions.  

( ) 6010    Modern Algebra and Geometry II More advanced abstract algebraic Observing Structure s and concepts, such as groups, symmetry, 

group actions, counting principles, symmetry groups of the regular polyhedra, Burnside's Theorem, isometries of R3 , Galois theory, affine and 
projective geometry.  

( ) 6050    Advanced Linear Algebra Orthogonal and unitary groups, spectral theorem; infinite-dimensional vector spaces; Jordan and rational 

conconical forms and applications.  
( ) 6080    Advanced Algebra  A course in linear algebra, grouops, rings, and modules, intermediate in level between MATH 6010 and MATH 

8000.  Topics include the finite-dimensional spectral theorem, group actions, classification of finitely generated modules over principal ideal 

domains, and canonical forms of linear operators.  
( ) 8000    Algebra  A course in groups, fields and rings, designed to prepare the student for the algebra prelims.  Some topics covered include the 

Sylow theorems, solvable and simple groups, Galois theory, finite fields, Noetherian rings and modules.  

( ) 8010    Representation Theory of Finite Groups Irreducible and indecomposable representations, Schur's Lemma, Maschke's theorem, the 
Wedderburn Observing Structure  theorem, characters and orthogonality relations, induced representations and Frobenius reciprocity, central 

characters and central idempotents, Burnside's theorem, Frobenius normal p-complement theorem.  

( ) 8020    Commutative Algebra  Localization and completion, Nakayama's lemma, Dedekind domains, Hilbert's basis theorem, Hilbert's 
Nullstellensatz, Krull dimension, depth and Cohen-Macaulay rings, regular local rings.  

( ) 8030    Topics in Algebra This course will present topics in abstract algebra at the level of current research.  

( ) 8080    Lie Algebras Nilpotent and solvable Lie algebras, Observing Structure  and classification of semisimple Lie algebras, roots, weights, 
finite-dimensional representations  

 
Analysis  
( ) 6100    Real Analysis  Metric spaces and continuity; differentiable and integrable functions of one variable; sequences and series of functions.  

( ) 6110    The Lebesgue Integral and Applications The Lebesgue integral, with applications to Fourier analysis and probability.  

( ) 6120    Multivariable Analysis The continuation of MATH 4100 to the multivariable setting: the derivative as a linear map, inverse and 
implicit function theorems, change of variables in multiple integrals; manifolds, differential forms, and the generalized Stokes' Theorem.  

( ) 6150    Complex Variables  Differential and integral calculus of functions of a complex variable, with applications.  Topics include the 

Cauchy integral formula, power series and Laurent series, and the residue theorem.  
( ) 8100    Real Analysis I Measure and integration theory with relevant examples from Lebesgue integration, Hilbert spaces (only with regard to 

L2 ), L2 spaces and the related Riesz representation theorem.  Hahn, Jordan and Lebesgue decomposition theorems, Radon-Nikodym Theorem 

and Fubini's Theorem.  
( ) 8110    Real Analysis II Topics including:  Haar Integral, change of variable formula, Hahn-Banach theorem for Hilbert spaces, Banach 

spaces and Fourier theory (series, transform, Gelfand-Fourier homomorphism).  

( ) 8150    Complex Variables I The Cauchy-Riemann Equations, linear fractional transformations and elementary conformal mappings, 
Cauchy's theorems and its consequences including: Morera's theorem, Taylor and Laurent expansions, maximum principle, residue theorem, 

argument principle, residue theorem, argument principle, Rouche's theorem and Liouville's theorem.  

( ) 8160    Complex Variables II Topics including Riemann Mapping Theorem, elliptic functions, Mittag-Leffler and Weierstrass Theorems, 
analytic continuation and Riemann surfaces.  

( ) 8170    Functional Analysis I  Introduction to Hilbert spaces and Banach spaces, spectral theory, topological vector spaces, comvexity and its 

consequences including the Krein-Milman theorem.  
( ) 8180    Functional Analysis II Introduction to operator theory, spectral theorem for normal operators, distribution theory, the Schwartz 

spaces, topics from C*-algebras and von Neumann algebras.  
( ) 8190    Lie Groups Classical groups, exponential map, Poincare-Birkhoff-Witt Theorem, homogeneous spaces, adjoint representation, 

covering groups, compact groups, Peter-Weyl Theorem, Weyl character formula.  

 
Applied Mathematics and Differential Equations  
( ) 6700    Qualitative Ordinary Differential Equations Transform methods, linear and nonlinear systems of ordinary differential equations, 

stability, and chaos.  
( ) 6720    Introduction to Partial Differential Equations The basic partial differential equations of mathematical physics: Laplace's equation, 

the wave equation, and the heat equation. Separation of variables and Fourier series techniques are featured.  

( ) 6780    Mathematical Biology Mathematical models in the biological sciences: compartmental flow models, dynamic system models, discrete 
and continuous models, deterministic and stochastic models.  

( ) 8700    Applied Mathematics: Applications in Industry Mathematical modeling of some real-world industrial problems. Topics will be 

selected from a list which includes air quality modeling, crystal precipitation, electron beam lithography, image processing, photographic film 
development, production planning in manufacturing, and optimal control of chemical reactions.  

( ) 8710    Applied Mathematics: Variational Methods/Perturbation Theory Calculus of variations, Euler-Lagrange equations, Hamilton's 

principle, approximate methods, eigenvalue problems, asymptotic expansions, method of steepest descent, method of stationary phase, 

http://www.math.uga.edu/graduate/gradcourses.html
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perturbation of eigenvalues, nonlinear eigenvalue problems, oscillations and periodic solutions, Hopf bifurcation, singular perturbation theory, 

applications.  
( ) 8740    Ordinary Differential Equations Solutions of initial value problems: existence, uniqueness, and dependence on parameters, 

differential inequalities, maximal and minimal solutions, continuation of solutions, linear systems, self-adjoint eigenvalue problems, Floquet 

Theory.  
( ) 8750    Introduction to Dynamical Systems  Continuous dynamical systems, trajectories, periodic orbits, invariant sets, Observing Structure 

of alpha and omega limit sets, applications to two-dimensional autonomous systems of ODE's, Poincare-Bendixson Theorem, discrete dynamical 

systems, infinite dimensional spaces, semi-dynamical systems, functional differential equations.  
( ) 8770    Partial Differential Equations  Classification of second order linear partial differential equations, modern treatment of characteristics, 

function spaces, Sobolev spaces, Fourier transform of generalized functions, generalized and classical solutions, initial and boundary value 

problems, eigenvalue problems.  

 
Algebraic Geometry  
( ) 6300    Introduction to Algebraic Curves Polynomials and resultants, projective spaces. The focus is on plane algebraic curves: intersection, 
Bezout's theorem, linear systems, rational curves, singularities, blowing up.  

( ) 8300    Introduction to Algebraic Geometry An invitation to algebraic through a study of examples. Affine and projective varieties, regular 

and rational maps, Nullstellensatz. Veronese and Segre varieties, Grassmannians, algebraic groups, quadrics.  Smoothness and tangent spaces, 
singularities and tangent cones.  

( ) 8310    Geometry of Schemes The language of Grothendieck's theory of schemes. Topics include the spectrum of a ring, “gluing” spectra to 

form schemes, products, quasi-coherent sheaves of ideals, and the functor of points.  

( ) 8320    Algebraic Curves The theory of curves, including linear series and the Riemann Roch theorem. Either the algebraic (variety), 

arithmetic (function field), or analytic (Riemann surface) aspect of the subject may be emphasized in different years.  

( ) 8330    Topics in Algebraic Geometry Advanced topics such as algebraic surfaces, or cohomology and sheaves.  

 
Topology/Geometry  
( ) 6200    Point Set Topology Topological spaces, continuity; connectedness, compactness; separation axioms and Tietze extension theorem; 
function spaces.  

( ) 6220    Differential Topology Manifolds in Euclidean space:  fundamental ideas of transversality, homotopy, and intersection theory; 
differential forms, Stokes' Theorem, deRham cohomology, and degree theory.  

( ) 6250    Differential Geometry An introduction to the geometry of curves and surfaces in Euclidean space:  Frenet formulas for curves, 

notions of curvature for surfaces; Gauss-Bonnet Theorem; discussion of non-Euclidean geometries.  
( ) 8200    Algebraic Topology The fundamental group, van Kampen's theorem, and covering spaces.  Introduction to homology:  simplicial, 

singular, and cellular.  Applications.  

( ) 8210    Topology of Manifolds Poincar duality, deRham's theorem, topics from differential topology.  
( ) 8220    Homotopy Theory Topics in homotopy theory, including homotopy groups, CW complexes, and fibrations.  

( ) 8230    Topics in Topology and Geometry Advanced topics in topology and/or differential geometry leading to and including research level 

material.  
( ) 8250    Differential Geometry I Differentiable manifolds, vector bundles, tensors, flows, and Frobenius' theorem.  Introduction to Riemannian 

geometry.  

( ) 8260    Differential Geometry II Riemannian geometry:  connections, curvature, first and second variation; geometry of 
submanifolds.  Gauss-Bonnet theorem.  Additional topics, such as characteristic classes, complex manifolds, integral geometry.  

 
Number Theory  
( ) 6400    Number Theory Euler's theorem, public key cryptology, pseudoprimes, multiplicative functions, primitive roots, quadratic reciprocity, 

continued fractions, sums of two squares and Gaussian integers.  

( ) 6450    Cryptology and Computational Number Theory Recognizing prime numbers, factoring composite numbers, finite fields, elliptic 
curves, discrete logarithms, private key cryptology, key exchange systems, signature authentication, public key cryptology.  

( ) 8400    Algebraic/Analytic Number Theory I The core material of algebraic number theory: number fields, rings of integers, discriminants, 

ideal class groups, Dirichlet's unit theorem, splitting of primes; p-adic fields, Hensel's lemma, adeles and ideles, the strong approximation 
theorem.  

( ) 8410    Algebraic/Analytic Number Theory II A continuation of Algebraic and Analytic Number Theory I, introducing analytic methods: the 

Riemann Zeta function, its analytic continuation and functional equation, the Prime number theorem; sieves, the Bombieri-Vinogradov theorem, 
the Chebotarev density theorem.  

( ) 8430    Topics in Arithmetic Geometry Topics in Algebraic number theory and Arithmetic geometry, such as class field theory, Iwasawa 

theory, elliptic curves, complex multiplication, cohomology theories, Arakelov theory, diophantine geometry, automorphic forms, L-functions, 
representation theory.  

( ) 8440    Topics in Combinatorial/Analytic Number Theory Topics in combinatorial and analytic number theory, such as sieve methods, 

probabilistic models of prime numbers, the distribution of arithmetic functions, the circle method, additive number theory, transcendence 

methods.  

( ) 8450    Topics in Algorithmic Number Theory Topics in computational number theory and algebraic geometry, such as factoring and 

primality testing, cryptography and coding theory, algorithms in number theory and arithmetic geometry.  

 
Numerical Analysis  
( ) 6500    Numerical Analysis I Methods for finding approximate numerical solutions to a variety of mathematical problems, featuring careful 
error analysis. A mathematical software package will be used to implement iterative techniques for nonlinear equations, polynomial interpolation, 

integration, and problems in linear algebra such as matrix inversion, eigenvalues and eigenvectors.  

( ) 6510    Numerical Analysis II Numerical solutions of ordinary and partial differential equations, higher-dimensional Newton's method, and 
splines.  
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( ) 8500    Advanced Numerical Analysis I Numerical solution of nonlinear equations in one and several variables, numerical methods for 

constrained and unconstrained optimization, numerical solution of linear systems, numerical methods for computing eigenvalues and 
eigenvectors, numerical solution of linear least squares problems, computer applications for applied problems.  

( ) 8510    Advanced Numerical Analysis II Polynomial and spline interpolation and approximation theory, numerical integration methods, 

numerical solution of ordinary differential equations, computer applications for applied problems.  
( ) 8520    Advanced Numerical Analysis III Finite difference and finite element methods for elliptic, parabolic, and hyperbolic partial 

differential equations convergence and stability of those methods, numerical algorithms for the implementation of those methods.  

( ) 8550    Special Topics in Numerical Analysis Special topics in numerical analysis, including iterative methods for large linear systems, 
computer aided geometric design, multivariate splines, numerical solutions for pde's, numerical quadrature and cubature, numerical optimization, 

wavelet analysis for numerical imaging. In any semester, one of the above topics will be covered.    

 
Probability, Stochastic Processes and Combinatorics  
( ) 6600    Probability Discrete and continuous random variables, expectation, independence and conditional probability; binomial, Bernoulli, 

normal, and Poisson distributions; law of large numbers and central limit theorem.  
( ) 6630    Mathematical Analysis of Computer Algorithms  Discrete algorithms (number-theoretic, graph-theoretic, combinatorial, and 

algebraic) with an emphasis on techniques for their mathematical analysis.  

( ) 6670    Combinatorics Basic counting principles: permutations, combinations, probability, occupancy problems, and binomial 
coefficients.  More sophisticated methods include generating functions, recurrence relations, inclusion/exclusion principle, and the pigeonhole 

principle. Additional topics include asymptotic enumeration, Polya counting theory, combinatorial designs, coding theory, and combinatorial 

optimization.  

( ) 6690    Graph Theory Elementary theory of graphs and digraphs. Topics include connectivity, reconstruction, trees, Euler's problem, 

hamiltonicity, network flows, planarity, node and edge colorings, tournaments, matchings, and extremal graphs. A number of algorithms and 

applications are included.  
( ) 8600    Probability Probability spaces, random variables, distributions, expectation and higher moments, conditional probability and 

expectation, convergence of sequences and series of random variables, strong and weak laws of large numbers, characteristic functions, infinitely 

divisible distributions, weak convergence of measures, central limit theorems.  
( ) 8620    Stochastic Processes Conditional expectation, Markov processes, martingales and convergence theorems, stationary processes, 

introduction to stochastic integration.  
( ) 8630    Stochastic Analysis Conditional expectation, Brownian motion, semimartingales, stochastic calculus, stochastic differential equations, 

stochastic control, stochastic filtering. 

Education 
( ) 7040   Basic Ideas of Calculus I Survey of one-variable calculus in preparation for teaching calculus at the secondary level: combines review 
of basic techniques with careful study of underlying concepts. This is MATH 2400H for graduate students in Mathematics Education. 

( ) 7050   Basic Ideas of Calculus II A continuation of Basic Ideas of Calculus I focusing on functions of several variables. This is MATH 

2410H for graduate students in Mathematics Education. 
( ) Other (Please list them.) ___________________________________________________________________________________________ 
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APPENDIX E 

THE PRE-TASK INTERVIEW PROTOCOL 

1. Tell me about your experience in learning trigonometry during your K-12 and/or college 

years. 

2. Tell me about your experience with graduate teaching assistants during your college years, if 

applicable. 

3. What roles of graduate teaching assistants are important for teaching undergraduate 

mathematics? 

4. Tell me about your experience of the first semester as a teaching assistant in the department. 

5. Think of a time when you had difficulties/challenges in teaching trigonometry to 

undergraduates and tell me about that. How did you resolve such problems? 

6. Tell me what you think graduate teaching assistants need to know to teach trigonometry. 

7. How did the teaching seminar influence your teaching of trigonometry? 

8. How did teaching trigonometry influence your ideas about teaching trigonometry? 

9. In what ways might you improve your teaching of trigonometry to undergraduates? 

10. Why do you think undergraduate students should learn trigonometry in precalculus? 

11. What are the most important ideas to understand in trigonometry? 

12. Tell me five things related to trigonometry that you want your students to remember even 

after finishing the course. 
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APPENDIX F 

THE POST-TASK INTERVIEW PROTOCOL 

 

1. Tell me about your experience of participating in this research project. 

2. What do you think about the task items? 

3. What project activities did you like? Why? 

4. What project activities did you not enjoy? Why? 

5. What do you think about your knowledge of trigonometry for teaching? 

6. What do you think about the relationship between your knowledge of trigonometry and your 

teaching?  

7. What did you learn from the project activities? 

8. What are your comments about this research project? Is there anything else that would be 

helpful for me to know? 
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APPENDIX G 

 

COMPARISONS OF EXPECTED STRANDS AND OBSERVED STRANDS 

 

Task I 

 

Gloria 

 

Task  Expected Strands Observed Strands 

GI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

        Historical Knowledge 

MWT: Know the Curriculum 

GI.2 MP: Conceptual Understanding MP: Conceptual Understanding (Basic Repertoire) 

        Historical Knowledge 

MWT: Know the Curriculum 

GI.3 MP: Procedural Fluency 

       Adaptive Reasoning 

MP: Procedural Fluency 

MWT: Know the Curriculum 

GI.4 MP: Conceptual Understanding MP: Conceptual Understanding (Basic Repertoire) 

        Adaptive Reasoning 

MWT: Know the Curriculum 

GI.5 MP: Conceptual Understanding MP: Adaptive Reasoning (Strength of the Concept) 

GI.6 MP: Conceptual Understanding MP: Strategic Competence (Different 

                                             Representation) 

        Positive Disposition 

GI.7 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

GI.8 MP: Historical and Cultural 

Knowledge 

MP: Conceptual Understanding 

        Historical Knowledge 

MWT: Know the Curriculum 
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Kyle 

 

Task  Expected Strands Observed Strands 

KI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

        Historical Knowledge 

MWT: Know the Curriculum 

KI.2 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

        Historical Knowledge  

MWT: Know the Curriculum 

KI.3 MP: Procedural Fluency 

        Adaptive Reasoning 

MP: Procedural Fluency 

        Adaptive Reasoning 

KI.4 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

MWT: Assess the Mathematical Knowledge of  

            Learners 

KI.5 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning  

        Strategic Competence (Different  

                                              Representations) 

MWT: Know the Curriculum 

KI.6 MP: Conceptual Understanding MP: Procedural Fluency 

        Adaptive Reasoning 

KI.7 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

KI.8 MP: Historical and Cultural 

        Knowledge 

MP: Historical Knowledge 

MWT: Know the Curriculum 

 

 

 

 

 

 

 



 

204 

Leo 

 

Task  Expected Strands Observed Strands 

LI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Basic Repertoire) 

        Historical Knowledge 

LI.2 MP: Conceptual Understanding MP: Conceptual Understanding (Basic Repertoire) 

        Historical Knowledge 

MWT: Know the Curriculum 

LI.3 MP: Procedural Fluency 

       Adaptive Reasoning 

MP: Strategic Competence (Alternative Ways of  

                                              Approaching) 

        Historical Knowledge 

LI.4 MP: Conceptual Understanding MP: Conceptual Understanding  

        Strategic Competence (Alternative Ways of  

                                              Approaching) 

        Adaptive Reasoning  

        Historical Knowledge 

MWT: Know the Curriculum 

LI.5 MP: Conceptual Understanding MP: Strategic Competence  

        Adaptive Reasoning  

MWT: Know the Curriculum 

LI.6 MP: Conceptual Understanding MP: Procedural Fluency 

LI.7 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Historical Knowledge 

MWT: Know the Curriculum 

LI.8 MP: Historical and Cultural 

Knowledge 

MP: Historical Knowledge 

MWT: Know the Curriculum 
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Micah 

 

Task  Expected Strands Observed Strands 

MI.1 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

MWT: Know the Curriculum 

MI.2 MP: Conceptual Understanding MP: Adaptive Reasoning 

        Historical Knowledge 

MI.3 MP: Procedural Fluency 

MP: Adaptive Reasoning 

MP: Procedural Fluency 

MWT: Know the Curriculum 

MI.4 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Historical Knowledge 

MI.5 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Strategic Competence 

  MP: Adaptive Reasoning (Strength of the Concept) 

MWT: Know the Curriculum 

MI.6 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

MI.7 MP: Conceptual Understanding MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

MI.8 MP: Historical and Cultural 

Knowledge 

MP: Historical Knowledge 

MWT: Know the Curriculum 
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Task II 

Gloria 

 

Task  Expected Strands Observed Strands 

GII.1 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Creating: Defining  

 

 

MA: Mathematics Noticing: Connect outside Math  

         Mathematical Reasoning: Justifying 

                                                   Extending 

                                                   Generalizing 

         Mathematical Creating: Defining 

MWT: Know the Curriculum 

GII.2 MP: Procedural Fluency 

 

MP: Strategic Competency 

 

MA: Mathematical Noticing: Discerning 

Symbolic Forms 

MP: Historical knowledge 

        Productive Disposition  

MA: Mathematical Noticing: Discerning Symbolic  

                                                Forms 

                                                Connecting within Math 

         Mathematical Reasoning: Justifying 

                                                   Constraining 

         Mathematical Creating: Representing 

                                                Defining 

GII.3 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Noticing: Connecting 

within and outside mathematics  

MA: Mathematical Reasoning: Justifying 

GII.4 MA: Mathematical Creating: Representing 

 

MA: 

Modifying/Transforming/Manipulating  

MP: Conceptual Understanding 

        Adaptive Reasoning 

        Historical Knowledge  

        Productive Disposition  

MA: Mathematical Reasoning: Justifying  

         Mathematical Creating: Representing 

                                                Manipulating 

MWT: Analyze Mathematical Ideas 

GII.5 MP: Adaptive Reasoning 

 

MA: Mathematical Reasoning: 

Conjecturing and Generalizing 

 

MA: Mathematical Reasoning: 

Constraining and Extending 

MP: Conceptual Understanding (Essential Features) 

MA: Mathematical Noticing: Connecting within and 

                                                outside Math  

        Mathematical Reasoning: Justifying/Proving 

MWT: Analyze Mathematical Ideas 

GII.6 MA: Integrating Strands of Mathematical 

Activity 

MP: Procedural Fluency  

MA: Mathematical Reasoning: Justifying  

         Mathematical Creating: Manipulating 

                                                Transforming 

         Integrating Strands of Mathematical Activity 

 

MWT: Know the Curriculum 

 

GII.7 MA: Mathematical Reasoning: 

Justifying/proving 

MA: Mathematical Reasoning: Justifying/Proving 
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Kyle 

 

Task  Expected Strands Observed Strands 

KII.1 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Creating: Defining  

MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency  

MA: Mathematical Noticing: Observing Structure of 

                                                Mathematical Systems 

MA: Mathematical Reasoning: Justifying  

                                                  Generalizing 

KII.2 MP: Procedural Fluency 

 

MP: Strategic Competency 

 

MA: Mathematical Noticing: Discerning 

Symbolic Forms 

MP: Conceptual Understanding 

        Procedural Fluency 

        Adaptive Reasoning  

MA: Mathematical Noticing: Discerning Symbolic  

                                                Forms  

        Mathematical Reasoning: Constraining 

KII.3 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Noticing: Connecting 

within and outside mathematics  

MP: Conceptual Understanding 

        Procedural Fluency 

         

KII.4 MA: Mathematical Creating: Representing  

MA: 

Modifying/Transforming/Manipulating  

MP: Procedural Fluency  

MA: Mathematical Reasoning: Justifying  

         Mathematical Creating: Manipulating 

MWT: Know the Curriculum 

KII.5 MP: Adaptive Reasoning 

 

MA: Mathematical Reasoning: 

Conjecturing and Generalizing 

 

MA: Mathematical Reasoning: 

Constraining and Extending 

MP: Conceptual Understanding  

MA: Mathematical Reasoning: Justifying 

                                                   Conjecturing 

KII.6 MA: Integrating Strands of Mathematical 

Activity 

MP: Procedural Fluency 

        Strategic Competence (Knowledge and 

                                              Understanding of Concept) 

        Adaptive Reasoning-Strength of the Concept  

MA: Mathematical Creating: Manipulating  

        Integrating Strands of Mathematical Activity 

KII.7 MA: Mathematical Reasoning: 

Justifying/proving 

MP: Productive Disposition  

MA: Mathematical Reasoning: Proving 

         Mathematical Creating: Manipulating 
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Leo 

 

Task  Expected Strands Observed Strands 

LII.1 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Creating: Defining  

MP: Procedural Fluency  

MA: Mathematical Reasoning: Justifying 

LII.2 MP: Procedural Fluency 

 

MP: Strategic Competency 

 

MA: Mathematical Noticing: Discerning 

Symbolic Forms 

MA: Mathematical Reasoning: Constraining    

         Mathematical Creating: Representing 

MP: Conceptual Understanding 

        Procedural Fluency 

        Strategic Competence 

LII.3 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Noticing: Connecting 

within and outside mathematics  

MP: Conceptual Understanding 

        Procedural Fluency  

MA: Mathematical Noticing: Observing Structure of  

                                                Mathematical Systems 

MWT: Know the Curriculum 

LII.4 MA: Mathematical Creating: Representing  

 

MA: 

Modifying/Transforming/Manipulating  

MA: Mathematical Reasoning: Justifying 

         Mathematical Creating: Representing 

                                                Modifying/Manipulating 

LII.5 MP: Adaptive Reasoning 

 

MA: Mathematical Reasoning: 

Conjecturing and Generalizing 

 

MA: Mathematical Reasoning: 

Constraining and Extending 

MP: Conceptual Understanding (Essential Features) 

MA: Mathematical Reasoning: Justifying 

                                                   Extending 

LII.6 MA: Integrating Strands of Mathematical 

Activity 

MP: Procedural Fluency 

        Strategic Competence (Knowledge and  

                                              Understanding of Concept) 

MA: Mathematical Reasoning: Justifying 

         Mathematical Creating: Manipulating 

         Integrating Strands of Mathematical Activity 

LII.7 MA: Mathematical Reasoning: 

Justifying/proving 

MA: Mathematical Noticing: Discerning Symbolic 

                                                Forms  

        Mathematical Reasoning: Justifying/Proving 

        Mathematical Creating: Representing 
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Micah 

 

Task  Expected Strands Observed Strands 

MII.1 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Creating: Defining  

MP: Conceptual Understanding 

        Procedural Fluency  

MA: Mathematical Reasoning: Justifying 

MWT: Know the Curriculum 

MII.2 MP: Procedural Fluency 

 

MP: Strategic Competency 

 

MA: Mathematical Noticing: Discerning 

Symbolic Forms 

MP: Conceptual Understanding 

        Procedural Fluency 

        Strategic Competence   

        Adaptive Reasoning  

MWT: Mathematical Reasoning: Constraining 

MII.3 MA: Mathematical Noticing: Observing 

Structure of Mathematical Systems 

 

MA: Mathematical Noticing: Connecting 

within and outside mathematics  

MP: Conceptual Understanding  

        Procedural Fluency  

MA: Mathematical Noticing: Observing Structure of  

                                                Mathematical Systems 

MWT: Know the Curriculum 

MII.4 MA: Mathematical Creating: Representing  

 

MA: Mathematical Creating: 

Modifying/Transforming/Manipulating  

MP: Strategic Competence 

        Adaptive Reasoning  

MA: Mathematical Reasoning: Justifying 

        Mathematical Creating: Manipulating 

MWT: Assess the Mathematical Knowledge of Learners 

MII.5 MP: Adaptive Reasoning 

 

MA: Mathematical Reasoning: 

Conjecturing and Generalizing 

 

MA: Mathematical Reasoning: 

Constraining and Extending 

MA: Mathematical Noticing: Connecting within and 

                                                outside Mathematics  

         Mathematical Reasoning: Justifying/Proving 

MWT: Analyze Mathematical Ideas 

MII.6 MA: Integrating Strands of Mathematical 

Activity 

MP: Procedural Fluency  

MA: Mathematical Creating:   

         Modifying/Transforming/Manipulating 

         Integrating Strands of Mathematical Activity 

MWT: Assess the Mathematical Knowledge of Learners 

MII.7 MA: Mathematical Reasoning: 

Justifying/proving 

MA: Mathematical Reasoning: Proving 
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Task III 

 

Gloria 

 

Task  Expected Strands Observed Strands 

GIII.1 MA: Mathematical Noticing: 

Detecting the form of an argument  

 

MWT: Analyze Mathematical Ideas 

 

MP: Conceptual Understanding (Essential Features) 

MA: Mathematical Noticing: Detecting the Form of 

                                                Argument 

         Mathematical Creating: Defining 

MWT: Access and Understanding the  

            Mathematical Thinking of Learners 

            Assess the Mathematical Knowledge of  

            Learners 

GIII.2 MA: Mathematical Noticing: 

Observing Structure of Mathematical 

Systems 

 

MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Analyze Mathematical Ideas 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

MP: Procedural Fluency 

        Strategic Competence (Knowledge and  

                                       Understanding of Concept) 

        Adaptive Reasoning 

MA: Mathematical Noticing: Observing Structure  

                                          of Mathematical Systems 

         Mathematical Reasoning: Justifying/Proving 

MWT: Access and Understand the Mathematical 

            Thinking of Learners 

GIII.3 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

MP: Conceptual Understanding (Essential Features) 

        Conceptual Understanding (Basic Repertoire) 

MA: Mathematical Creating: Defining 

MWT: Access and Understand the Mathematical 

            Thinking of Learners 

            Know the Curriculum 

GIII.4 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MA: Mathematical Reasoning: Justifying/Proving 

MWT: Analyze Mathematical Ideas 

            Assess the Mathematical Knowledge of  

            Learners 

GIII.5 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Analyze Mathematical Ideas  

            Assess the Mathematical Knowledge of  

            Learners 
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GIII.6 MA: Mathematical Noticing: 

Detecting the form of an argument 

  

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding-Essential Features 

MA: Mathematical Noticing: Discerning Symbolic 

                                                Forms  

         Mathematical Creating: Defining 

MWT: Analyze Mathematical Ideas  

            Assess the Mathematical Knowledge of  

            Learners 

GIII.7 MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Basic Repertoire)  

MA: Mathematical Reasoning: Justifying/Proving 

MWT: Analyze Mathematical Ideas 

            Assess the Mathematical Knowledge of  

            Learners 

GIII.8 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

MA: Mathematical Reasoning: Constraining 

MWT: Analyze Mathematical Ideas  

            Assess the Mathematical Knowledge of  

            Learners 

GIII.9 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Strategic Competence 

MWT: Access and Understand the Mathematical 

            Thinking of Learners  

            Assess the Mathematical Knowledge of  

            Learners 

GIII.10 MWT: Know and Use the 

Curriculum 

MWT: Analyze Mathematical Ideas 

            Know the Curriculum 
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Kyle 

 

Task  Expected Strands Observed Strands 

KIII.1 MA: Mathematical Noticing: 

Detecting the form of an argument  

 

MWT: Analyze Mathematical Ideas 

MP: Conceptual Understanding (Essential Features) 

        Conceptual Understanding (Basic Repertoire) 

        Adaptive Reasoning  

MA: Mathematical Noticing: Detecting the Form of 

                                                Argument  

         Mathematical Creating: Defining 

MWT: Analyze Mathematical Ideas 

KIII.2 MA: Mathematical Noticing: 

Observing Structure of Mathematical 

Systems 

 

MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Analyze Mathematical Ideas 

 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

MA: Mathematical Noticing: Observing Structure  

                                          of Mathematical Systems  

         Mathematical Noticing: Detecting the Form 

                                                of Argument 

KIII.3 

 

MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

MP: Conceptual Understanding (Essential Features) 

        Conceptual Understanding (Basic Repertoire) 

        Adaptive Reasoning 

MWT: Assess the Mathematical Knowledge of  

            Learners 

KIII.4 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MA: Mathematical Reasoning: Justifying  

MWT: Analyze Mathematical Ideas 

            Assess the Mathematical Knowledge of 

            Learners 

KIII.5 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

 

 

MP: Adaptive Reasoning  

MA: Mathematical Reasoning: Justifying 
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KIII.6 MA: Mathematical Noticing: 

Detecting the form of an argument 

  

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Basic Repertoire) 

MA: Mathematical Noticing: Discerning  

                                                Symbolic Forms 

        Mathematical Reasoning: Justifying 

MWT: Assess the Mathematical Knowledge of 

            Learners 

KIII.7 MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

        Conceptual Understanding (Basic Repertoire) 

MA: Mathematical Creating: Defining 

KIII.8 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features)  

MA: Mathematical Noticing: Discerning 

                                                Symbolic Forms 

         Mathematical Reasoning: Justifying   

                                                   Constraining  

MWT: Assess the Mathematical Knowledge of  

            Learners 

KIII.9 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MA: Mathematical Creating: Manipulating 

MWT: Know the Curriculum 

KIII.10 MWT: Know and Use the 

Curriculum 

MP: Historical knowledge 

MWT: Know the Curriculum 
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Leo 

 

Task  Expected Strands Observed Strands 

LIII.1 

 

MA: Mathematical Noticing: 

Detecting the form of an argument  

 

MWT: Analyze Mathematical Ideas 

 

MP: Conceptual Understanding (Essential Features) 

MWT: Analyze Mathematical Ideas 

            Assess the Mathematical Knowledge of 

            Learners 

            Access and Understand the Mathematical  

            Thinking of Learners 

LIII.2 

 

MA: Mathematical Noticing: 

Observing Structure of Mathematical 

Systems 

 

MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Analyze Mathematical Ideas 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

 

MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

MA: Mathematical Noticing: Observing Structure 

                                          of Mathematical Systems 

LIII.3 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

 

MP: Conceptual Understanding (Essential Features) 

        Conceptual Understanding (Basic Repertoire)  

MWT: Analyze Mathematical Ideas 

LIII.4 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MA: Mathematical Reasoning: Justifying 

MWT: Analyze Mathematical Ideas 

LIII.5 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MP: Conceptual Understanding (Essential Features) 

        Historical Knowledge 

MA: Mathematical Reasoning: Justifying 
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LIII.6 MA: Mathematical Noticing: 

Detecting the form of an argument 

  

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

MA: Mathematical Noticing: Discerning 

                                                Symbolic Forms 

        Mathematical Creating: Defining 

        Mathematical Reasoning: Justifying 

MWT: Know the Curriculum 

LIII.7 MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

        Conceptual Understanding (Basic Repertoire) 

MA: Mathematical Creating: Defining 

LIII.8 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MA: Mathematical Noticing: Discerning 

                                                Symbolic Forms  

         Mathematical Reasoning: Justifying 

                                                   Constraining 

         Mathematical Creating: Manipulating 

MWT: Know the Curriculum 

LIII.9 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features)  

MA: Mathematical Creating: Manipulating 

MWT: Know the Curriculum 

LIII.10 MWT: Know and Use the 

Curriculum 

MWT: Know the Curriculum 
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Micah 

 

Task  Expected Strands Observed Strands 

MIII.1 MA: Mathematical Noticing: 

Detecting the form of an argument  

 

MWT: Analyze Mathematical Ideas 

 

MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

MA: Mathematical Creating: Defining 

MWT: Analyze Mathematical Ideas  

            Know the Curriculum 

MIII.2 

 

MA: Mathematical Noticing: 

Observing Structure of Mathematical 

Systems 

 

MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Analyze Mathematical Ideas 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

 

MP: Conceptual Understanding (Essential Features)  

        Procedural Fluency  

        Adaptive Reasoning  

MA: Mathematical Noticing: Observing Structure 

                                          of Mathematical Systems 

MWT: Analyze Mathematical Ideas 

MIII.3 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

 

MWT: Know and Use the 

Curriculum 

MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

MWT: Analyze Mathematical Ideas 

            Access and Understand the Mathematical  

            Thinking of Learners 

MIII.4 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

        Procedural Fluency 

MA: Mathematical Reasoning: Justifying 

MWT: Analyze Mathematical Ideas 

MIII.5 MA: Mathematical Noticing: 

Detecting the form of an argument 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

        Adaptive Reasoning 

MIII.6 MA: Mathematical Noticing: 

Detecting the form of an argument 

  

MWT: Assess the Mathematical 

Knowledge of Learners 

MA: Mathematical Noticing: Discerning  

                                                Symbolic Forms 

MWT: Access and Understand the Mathematical  

            Thinking of Learners 
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MIII.7 MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Essential Features) 

MA: Mathematical Creating: Defining 

MWT: Access and Understand the Mathematical  

            Thinking of Learners 

MIII.8 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MP: Conceptual Understanding (Basic Repertoire) 

MA: Mathematical Reasoning: Constraining 

MWT: Know the Curriculum 

MIII.9 MA: Mathematical Noticing: 

Discerning Symbolic Forms 

 

MWT: Assess the Mathematical 

Knowledge of Learners 

MA: Mathematical Noticing: Discerning  

                                                Symbolic Forms 

MWT: Access and Understand the Mathematical  

            Thinking of Learners 

MIII.10 MWT: Know and Use the 

Curriculum 

MWT: Know the Curriculum 

 

 

 

 


