UNDERSTANDING MATHEMATICAL CONCEPTS: THE CASE OF THE
LOGARITHMIC FUNCTION

by
SIGNE E. KASTBERG
Under the direction of Dr. James W. Wilson
ABSTRACT

The purpose of this study was to describe students’ understanding of the
logarithmic function, changes in their understanding, and ways of knowing they useto
investigate problems involving the logarithmic function. Understanding is defined as a
student’ s beliefs about a mathematical concept. Four categories of evidence (conception,
representation, connection, and application) were used to make conjectures about the
students’ beliefs over three instructional phases (preinstruction, instruction, and
postinstruction). Nine interviews were conducted over atwo-month period with students
(3female, 1 male) from two college algebra classes at arural southeastern two-year
college. Case studies were developed based on evidence gathered from
phenomenological interviews, clinical interviews, participant observation, student
constructed maps, and drawings.

The students’ understanding contained a central theme: the logarithmic function
as acollection of problemsto do. Four categories of beliefs (level of difficulty, problem
types, tools, character of the function) associated with the theme were identified in all
three phases of the study. The static nature of the categories suggests students
understanding of a mathematical concept is influenced by their beliefs about mathematics
and understanding. The changes in the content of the beliefs were the result of
instruction and the reconstructive nature of memory. A modified theory of understanding
using beliefs about mathematics and understanding and four categories of evidenceis
suggested for further research.

Four ways of knowing (number patterns, successive approximation, More A —
More B, and responses to inconsi stencies) were used by the students to investigate
problems involving the logarithmic function. These ways of knowing are suggested as a
starting point for the teaching of logarithmic functions.
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CHAPTER 1: DEFINING THE PROBLEM AND CRAFTING A SOLUTION PATH
Rationale

“One of the most widely accepted ideas within the mathematics education
community is the idea that students should understand mathematics’ (Hiebert &
Carpenter, 1992, p. 65). This fundamental assumption was the basis for thisstudy. Asa
teacher, | cameto believe that students should understand mathematics. A teacher often
assumes a student understands a concept that has been presented and finds, in a
subsequent class, the student cannot recall it. This experience with students occurred
each term | taught college algebra.

In college algebra the most frustrating concept for me to teach was the
logarithmic function. Even those students | thought understood the concept could not
remember or use its properties in subsequent courses. This absence of memory motivated
me to ask why. Why did my students fail to remember what they had seemed to know so
well just afew months earlier? Did they really understand the concept in the first place?
As ateacher | had to assume something was wrong. | wanted to know the nature of the
problem and how to attack it. Thisreport isthe result of aquestion | posed as a
mathematics teacher: Why can’t my students remember the definition of, properties of,
and how to use the logarithmic function?

| tried to understand my question. | believed if my students understood the
logarithmic function they would remember it. If | taught the concept differently, |
reasoned, students would understand. So | searched for the perfect curriculum. My
search produced a collection of materials based on approaches that included the
traditional introduction of the logarithmic function as the inver se of the exponential
function. Two other approaches also seemed effective: historical (Toumasis, 1993; Katz,
1995) and the logarithmic function as an area (School Mathematics Study Group, 1965). |

focused on finding the curriculum that would produce understanding in my students.



After reading and analyzing the historical development of logarithms over the
course of several months, | suddenly realized the focus of my research was not the
logarithmic function but students' understanding of the logarithmic function. This shift
gave my research the focus | had been looking for. My question became what does it
mean for students to understand the logarithmic function? Now | needed to be more
precise. | turned to the literature for definitions and theories about students
understanding of mathematical concepts.

Several theories of understanding seemed helpful (Hiebert & Carpenter, 1992;
Pirie & Kieren, 1992; Sierpinska, 1994; Skemp, 1987). The theories agreed on one point,
the location of understanding isin the mind of the individual. Two of the theories
(Sierpinska, 1994; Skemp, 1987) explicitly stated the individual can, at times,
consciously control his or her understanding. Despite situating the locus of control for
understanding within the individual, none of the researchers had asked the individuals
what they understood. This omission appeared inconsistent to me. | assumed if
understanding was occurring within the individual, he or she could tell the researcher
about it. Thisassumption proved to be afairly strong one. | realized that students might
not share my definition of understanding, but I initially failed to consider that they might
not be using their verbally described definitions. Indeed, how someone defines
understanding might not involve personal action. But as Bruner (1990) explained,
meaning lies somewhere between a person’s actions during an experience and the
person’s explanations of hisor her actions. Hence, if | gathered students’ definitions of
understanding, their reflections on understanding and not understanding mathematical
concepts, and saw them in action, | might discover their meaning of the term. Students
meanings and reflections could then help me interpret their actions and the understanding
that resulted from them. Using my observations and interpretations | could build
descriptions of students' understanding of the logarithmic function. Realizing that |

wanted to ask the students about their own understanding did not help me define the term.



All of the theoriesin the literature seem plausible, but no single theory seemed to explain
what it meant for a student to understand a mathematical concept.

When | began thinking about students' understanding of the logarithmic function,
my goal was to find away to teach the concept so students would remember it. Asl
pursued the goal, | took various paths. | no longer studied curriculum, looking for what
might work. Instead, | studied students, their ways of knowing, and their explanations of
their ways of knowing in a mathematical context. The purpose of the study was threefold:
to develop descriptions of students’ understanding of the logarithmic function, of changes
in their understanding of the function, and of ways of knowing that they use to investigate
problems involving the logarithmic function.

Theoretical Framework

Before | present my definition of understanding, | would like to clarify the
assumptions on which the study was based. First, | assumed the goal of mathematics
teaching is student understanding. Second, | assumed a student’ s understanding of a
mathematical concept existsin hisor her mind. Third, | was aware | could not know
precisely what was in a student’s mind, but assumed | could infer the workings of the
mind from external evidence (Goldin, 1998a; Skemp, 1987). Fourth, | assumed that
when students try to solve mathematics problems, they are trying to make senseto and
for themselves (self-referencing). Finally, | assumed a student’ s understanding is
qualitatively richer and quantitatively larger than external evidence and ultimately my
descriptions can indicate. Hence although my descriptions may not match students
understanding, they provide useful information for those who teach the logarithmic
function, design curriculum to be used in the teaching of the logarithmic function, and
investigate students' understanding of mathematical concepts.

Understanding
Understanding can change. A student’ s understanding of a mathematical concept
may become either more or less consistent with standard mathematical views of the

concept, but the most powerful mediator of understanding is a student’s prior knowledge.



“One observation that assumes near axiomatic status in cognitive science is that student’s
prior knowledge influences what they learn and how they perform” (Hiebert & Carpenter,
1992, p. 80). When amathematical concept is presented to a student, he or she attempts
to make sense of it using prior knowledge of the concept, mathematics, strategies, and
available resources. The presentation and what the student thinks he or sheistrying to
learn influence these attempts. Isit how to do a problem, how to simplify an expression,
or what the concept is? Student’ s attempts at sense making result in a collection of
beliefs about the mathematical concept. According to Stavy and Tirosh (2000), such
collections have been referred to in mathematics and science education literature as
“misconceptions, naive conceptions, alternative conceptions, intuitive conceptions, and
preconceptions” (p. i). | will refer to these privately held beliefs as the student’s
understanding of a mathematical concept.

A Definition of Understanding

A student’ s understanding of a mathematical concept is his or her collection of
privately held beliefs about the concept. This definition does not imply that a student
with a collection of beliefs about a concept understandsit. Certainly a person who
believes the logarithmic function is a number such as e or 1t does not understand the
logarithmic function. Instead, having beliefs implies that a student has an understanding
of the concept. | draw adistinction between a declaration that a student understands and
that he or she has an understanding. Mathematics teaching is meant to encourage the
growth of a system of beliefs within the student that are consistent with culturally
accepted beliefs. A student is said to understand a mathematical concept when, based on
an analysis of available evidence, the system of beliefs attributed to the student is
consistent with culturally accepted beliefs about the concept. It is evidence of
consistency that is used to decide whether or not a student under stands a mathematical
concept. My purpose is not to answer such a question, but to analyze the available
evidence and describe the collections of beliefs | attribute to the student. | will cal this

collection of beliefs the student’ s under standing of the logarithmic function. From the



descriptions of the students and their beliefs each reader can judge for him- or herself if
the students portrayed understood the logarithmic function.

A collection of beliefs might seem arather odd definition of understanding, but is
less so if we reflect on how we behave when a new mathematical concept is presented to
us. We quickly attempt to give meaning (Sfard, 2000) to a concept by applying our
existing beliefs about mathematics and our knowledge of mathematical concepts. Reports
of novice-expert studies (Chi, Feltovich, & Glaser, 1981; Glaser, 1984) describe
differences in what the two groups view as important. If beliefs are different,
understanding will be different. Schoenfeld (1988) found students' beliefs about
geometry were largely the result of their experiences with the subject. For example, they
believed most geometry proofs could be done in avery few minutes. The students
experience became the basis for the theory they acted on. If they could not do a proof in
afew minutes, they gave up. A student’s understanding of a mathematical concept is
much the same: his or her collection of beliefs about a concept is used to decide when, if,
and how a concept isused. Thusit is students beliefs about mathematics and specific
beliefs about concepts that govern their learning and form their understanding of
concepts.

Cateqgories of Evidence

| will base my inferences about students’ beliefs on four categories of evidence:
conception, representation, connection, and application. A conception isastudent’s
communicated feelings and ideas about the concept. A representation is a symbol the
student uses to communicate the concept. A connection is arelationship between
representations. An application isa use of the concept to solve aproblem. After
defining and giving an example of each of these categories of evidence, | will explain
why they are indications of students’ theories about a mathematical concept.

Conception.

A student’ s conception of a mathematical concept is hisor her communi cated

feelings and ideas about the concept. For example, a student may describe the



logarithmic function as a collection of letters or “frustrating.” These are expressions of
the student’ s conception of the function. Conceptions may be the result of various factors
including, but not limited to, a student's goals for his or her mathematical activity.

A student’s conception of a mathematical concept can affect his or her future
attempts to learn more about or apply the concept (Sierpinska, 1994; Skemp, 1987). Itis
human nature to attempt to categorize objects we perceive. Mathematical objects are no
exception to thisrule. When a student sees mathematical notation for a function, he or
she will try to make sense of it based on past experiences with mathematics. Research on
students’ classifications of function illustrates this point. If a student believesal
functions are linear, when faced with a coordinate axes on which several points are
plotted and asked to draw as many function as possible through the points, what will the
student draw? Lines. A student’s conception affects how the concept is applied. Hence
his or her conception is evidence of his or her understanding of the concept.

Representation.

A student’ s representation of a mathematical concept consists of symbols the
student uses to think about the concept and communicate it to others. In the study, |
focused on four modes of representation: written, pictorial, tabular, and oral. Briefly, a
written representation is a collection of letters and numerals, a pictorial representation
consists of an image, atabular representation is a compilation of numerical datain a
table, and an oral representation is spoken. A student islikely to use a combination of
these four modes when thinking or communicating about a concept.

Written representations are notations students use to think about and communicate
amathematical concept in writing. The written representations discussed in this report
are names, notations, maxims, and descriptions. Names are terms that refer to
mathematical objects, procedures, and collections of the two. One example of anameis
the term base. Notations are definitions, properties, and examples of mathematical
concepts written using mathematical symbols: log, 1 = 0 and log,a = 1 are examples of

notation. Maxims are short statements meant to serve as mathematical rules or guides.



One example is the common: logarithms are exponents. Descriptions are explanations of
procedures, outcomes of procedures, mathematical objects, and relationships. “A
function is a collection of letters and numbers’ is one example of a description.

Pictorial representations are images students use to think about and communicate
amathematical concept visually. An example of a pictorial representation often used in
the exploration of the logarithmic function is the graph of y = log, X, as shown in Figure

1:

17

Figure 1. Graph of y=log, x.

Tabular representations are tables of numerical data students use to think about
and communicate a mathematical concept. An example of atabular representation of y =

log, x is shown below:

1 1 1 5
X 4 2
log, x -2 -1 0 1

Oral representations are spoken words and expressions students use to talk about a
mathematical concept. Aswith written representations, oral representations are names,
notations, maxims, and descriptions. The definitions for these terms are the same except
they are spoken not written. An example of an oral representation is: “Log of oneis
zero.”

Representations play arolein al mathematical communication. They are used to
convey an approximation of our thinking. The theories of understanding cited in this

report (Hiebert & Carpenter, 1992; Pirie & Kieren, 1989, 1994a, 1994b; Sierpinska,




1994; Skemp, 1987) use representation. Although the understanding of a mathematical
concept exists in the mind of the individual, how a student uses symbols to represent the
concept is evidence of his or her beliefs about the concept. For example, if astudent
attempts to approximate log, 2 by graphing the function, thisis evidence of the student’s
belief that alogarithm is associated to the graph of the logarithmic function. On the other
hand if the student uses his or her calculator and the change of base formulas, then we
might conjecture the student sees alogarithm as an algebraic computation. Students
uses of representations are indications of their understanding of a mathematical concept.

Connection.

If a student tranglates a representation from one mode to another or transforms a
representation to another in the same mode (Lesh, Post, & Behr, 1987), | will say he or
she has connected the two representations. For example, if a student can identify the
graph of alogarithmic function (see Figure 2), he or she has translated a representation in

the pictorial

/ 2 3 i s
-1

Figure 2. Example of a question designed to investigate connections.
mode to one in the written mode. The student has connected the graph, a pictorial
representation, and its algebraic expression, awritten representation. If a student rewrites

the written representation y = log, x asy = :2% , he or she has also trandated the

representation. Hence, there is a connection within the written mode.
According to Hiebert and Carpenter (1992), “the degree of understanding is
determined by the number and strength of connections’ (p. 67). The connections referred

to are internal ones between representations, but Hiebert and Carpenter also note that



evidence of a connection can be observed when a student relates two or more external
representations. That connections are evidence of understanding is not a new idea, as
Hiebert and Carpenter explain: “It is atheme that runs through some of the classic works
within mathematics education literature” (p. 67). The connections | have defined and
described are limited to external ones, but they provide evidence of students' beliefs
about a mathematical concept.

Application.

An application of amathematical concept is the use of the concept to help solve a
problem. If astudent uses a mathematical concept to solve a problem, he or she has
linked the problem to the concept. This link indicates an understanding of how the
concept can be used. For example, a student’ s ability to find log, 8, givenlog,2 is
evidence of the student’s beliefs about the logarithmic function.

The ability to apply a mathematical concept in an unfamiliar situation is probably
the most widely used test of understanding. According to Brown, Bransford, Ferrera, and
Champion (1983) “We are reluctant to say that someone has learned elementary physics
or mathematicsiif they can solve only the problemsthey have practiced in class’ (p. 143).
If astudent can apply a concept to anovel problem situation, he or she understands

something about both the problem and the concept. What a student knows can be

. . . 1.
extracted from his or her actions. If a student can transform the function f (x) = — into
X

linear form, | would conjecture that he or she knows more about the logarithmic function
than a student who cannot. The application is evidence of the student’s beliefs about the
function.

Changes in Understanding

When the term understanding is used in colloquial speech, it generally means a
static quantity, but teachers of mathematics know that a student’ s understanding of a
mathematical concept changes over time. Students study and develop their beliefsin and

out of class, and hence how their understanding changes is not always clear. Pirie and
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Kieren (1994b) have hypothesized that these changes are occur in a processinvolving
various levels of abstraction, indicating the development of understanding is orderly.
They are careful to point out that their theory is based on conjectures of an observer. To
an observer the student’ s actions appear in sequence or like a process, but the experience
for the student is often very different. He or she may experience understanding as
changesin their beliefs based on their experiences during various activities. For the
student the understanding is not a process.

| do not claim that understanding is a process. In my own attempts at
understanding | impose a structure on my activities to make the experience of learning
feel less chaotic, but it does indeed feel chaotic (Halmos, 1985; Poincaré, 1946). The
most | can claim about a student’ s understanding of a mathematical concept isthat it
changes. In this study, changesin students' understanding of a concept were seen as
changesin their beliefs about the concept. The second purpose of the study wasto
identify changes in students' understanding of the logarithmic function.

Ways of Knowing

When a student tries to solve a problem, he or she does not always approach the
problem the way | would. | have often been surprised at the approaches a student takes.
For example, given the sequence 1, 2, 4, 8, ... some students explain the action in the
geometric sequence as multiplying each term by two to get the next term and coordinated
(Smith & Confrey, 1994) this action with adding 1 in the arithmetic sequence 0, 1, 2, 3....
Describing the relationship between the two sequences as amap of multiplication by 2 to
addition by 1 allows the students to predict terms in the arithmetic sequence that
correspond to nonnegative integer powers of 2, but is not flexible enough to allow the
student to make predictions about arithmetic corresponding with terms such as V2.1
will call students approachesways of knowing. Hence, students’ ways of knowing are
defined as operations and strategies they use to investigate problems they are asked to

solve.
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The students’ ways of knowing can be used as the basis for future understanding,
but they can also be constraining (Skemp, 1987). If a student sees the relationship
between the two sequences as a map where multiplication by 2 in one sequence

corresponds to adding 1 in the other, he or she may have an extremely difficult time
reversing the relationship to find what % inserted in the geometric sequence, maps to.

Despite the constraints a student’ s way of knowing may create, they are sources
of meaning. As sources of meaning, the constraints have the potential to be what
Sierpinska (1994) calls the basis (chapter 2) for the student’ s understanding. For me a
student’ s ways of knowing provides insight into how a student’ s understanding of the
logarithmic function can grow.

Research Questions

The primary purpose of this study was to describe students' understanding of the
logarithmic function. Hence, the first two questions were about understanding. The first
was about understanding the logarithmic function, and the second was about changesin
understanding. The secondary purpose was to identify ways of knowing used by the
students that could be used as a basis for growth of understanding. Hence, the third
guestion was posed to look beyond what students understand and toward what they might
be able to understand.

1. What is students understanding of the logarithmic function?

2. What changes occur in students' understanding of the logarithmic function during the
instructional process?

3. What ways of knowing do students use to investigate problems that include a

representation of the logarithmic function?



CHAPTER 2: DISCUSSION OF RELEVANT LITERATURE

The purpose of this chapter isto summarize and discuss my interpretation of an
conversation among educational researchers about understanding. The participantsin the
conversation were selected because of their influence on my view of understanding, the
design of the study, and the data analysis.

In this chapter | outline four theories of mathematical understanding proposed in
the last 25 years. Each of the theories was developed from a different perspective and
uses a different definition of understanding. However, as | will show, these theories have
common elements | used to investigate and describe students' understanding.

In the data analysis phase of the study, it was useful to examine the effects of
students' beliefs about mathematics and understanding on their understanding of the
logarithmic function. Some literature illustrating the connection between students
actions and their beliefs is discussed.

In the rationale for this study | noted my own dismay at the students' failure to
remember either the definition of the logarithmic function, the basic properties of the
function, or the graph. In addition, during the collection of data, students themselves
remarked about either being able to remember or not remember. Hence, research on the
connection between remembering and understanding is discussed.

Finally, the historical development of the concept of logarithms sheds some light
on how the tasks in the study were developed. A historical development of the concept
of logarithm is presented, and Smith and Confrey’s (1994) work on both the exponential
function and the logarithmic function is discussed.

Theories of Understanding

Skemp’s Theory of Understanding

In 1976, Richard Skemp marked the beginning of the study of understanding in

mathematics education research. His classic article entitled “ Relational and | nstrumental

12
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Understanding” sought to define and describe these two types of understanding and to
explain why so many teachers felt instrumental understanding was a type of
understanding. Skemp credited Stieg Mellin-Olsen with the coining and definition of the
terms. According to Skemp, relational understanding is “knowing what to do and why,”
whereasinstrumental understanding is “rules without reasons’ (p. 152). The emphasis
on knowing what and why in Skemp’s article gives one the impression he associates
understanding with the type of knowing it produces (Sierpinska, 1990). A bit more
reading reveals an expansion and revision of Skemp’s categories of understanding.

Following the publication of Skemp’s (1976) article in Mathematics Teaching,
debate about the definitions and categories of understanding Skemp described ensued
(Backhouse, 1978; Buxton, 1978; Byers & Herscovics, 1977; Tall, 1978). This
discussion prompted Skemp to revise his definitions of and to include a new type of
understanding he called formal understanding. Skemp (1987) elaborated on these new
definitions attributed to Byers and Herscovics:

Instrumental understanding is the ability to apply an appropriate

remembered rule to the solution of a problem without knowing why the

rule works.

Relational understanding is the ability to deduce specific rules or

procedures from more general mathematical relationships.

Formal understanding ...is the ability to connect mathematical symbolism

and notation with relevant mathematical ideas and to combine these ideas

into chains of logical reasoning. (p. 166)
The language of “knowing” found in Skemp’s (1976) original work regarding
instrumental and relational understanding is replaced in this excerpt with “ability.”
Hence, for Skemp, understanding is linked to abilities. The question remains, how does
one acquire these abilities?

In his book the Psychology of Learning Mathematics, Skemp writes “To

under stand something means to assimilate it into an appropriate schema” (p. 29). We
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can unravel this sentence a bit if we know what assimilate and schema mean. By
schema, Skemp means a group of connected concepts, each of which has been formed by
abstracting invariant properties from sensory motor input or from other concepts. The
concepts are connected by relations or transformations. An example of how a schema
worksis given by Skemp:

When we see some particular car, we automatically recognizeit asa

member of the class of private cars. But this class-concept is linked by

our mental schemas with avast number of other concepts, which are

available to help us behave adaptively with respect to the many different

situations in which a car can form a part. Suppose the car isfor sale. Then

all our motoring experience is brought to bear, reviews of performance

may be recalled, questions to be asked (m.p.g.?) present themselves. (p.

24)

This characterization does not mean schemas are used only when we have had
some previous experience with a situation: they are also used in problem situations with
which we have no experience. For example, if one has never solved alogarithmic
eguation, but has solved linear equations, various techniques and information about
solving linear equations might come to mind as one tried to solve the logarithmic
equation. According to Skemp, “ The more schemas we have available, the better our
chance of coping with the unexpected” (p. 24).

As Skemp points out his definition of understanding is not based on finding the
appropriate schema, but an appropriate schema. This distinction explains why students
may think they understand a concept when they do not. Suppose for example a student
thinks the notation f(X) means f - x. The student may believe he or she understands the
notation. Itisassimilated into hisor her schemafor multiplication and will be
detrimental to his or her understanding of the concept of function. The student can
reconstruct a schemaif he or she encounters situations for which his or her existing

schemas are not adequate. Skemp notes that this process is not easy or comfortable,
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because of the strength of existing schema. “If situations are then encountered for which
they are not adequate, this stability of the schemas becomes an obstacle to adaptability”
(p. 27).

Instrumental understanding is understanding. The problem isthat to use such
understanding the student must be able to identify the problem type and associate it with
a solution procedure. Unfortunately, there are many types of problems a particular
mathematical concept can be used to solve and memorizing al of them would be both
difficult and inefficient. Nevertheless, many students memorize procedures and problem
types, some with the encouragement of their teachers. Skemp notes the connection
between the procedures and problem typesislikely to deteriorate rather quickly, leaving
the student unable to match the problem with the concept. Hence, instrumental
understanding fails to have two qualities of relational understanding: adaptability and
integration. A student who attempts to understand relationally will try to link a new
concept with other concepts he or she has developed and then reflect on the similarities
and differences between the new concept and those previously understood. The student
then has resources to draw on when he or she gets stuck in a problem.

Logica understanding, according to Skemp, is what allows a student to
communicate mathematically and be understood by others. Although a student might
solve a problem correctly and understand it, that is no guarantee he or she could prove
formally that the sequence of actionsis based on a series of logical inferencesused in
mathematical proof. The following example illustrates how a student may have
instrumental and relational understanding, but not logical understanding. A student may
be able to find f(4) given f(x) = log, x, by proceeding as follows (example adapted from
Skemp, 1987, p. 170):

f(x) =log, x=10g, 4 = 2.
When asked why he or she wrote this expression the student might respond, “To find any
range value that corresponds with a given domain value for a given function f, one simply

evaluates the function at the given domain value.” This explanation indicates that the
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student has relational understanding, but what he or she has written indicates aflaw in
logic, namely, that the range of the function, f(x), could equal a particular range value,
f(4). Although Skemp (1987) was able, with the help of his colleagues, to propose the
construct of logical understanding, he was, as he put it, “working in his own frontier
zone” when it came to describing “what kind of schema areinvolved in” (p. 171) this
kind of understanding. His hypothesis was that schema involved were built from
concepts consisting of classes of statements connected by logical implications. Hence,
Skemp and his colleagues saw formal logical mathematical argumentation as part of
understanding.

Skemp’ s view on understanding expressed in his 1976 articleisavery brief
introduction to his theory of learning mathematics. Knowing how and knowing what are
by-products of learning, or schema building, whereas understanding is part of the schema
building process.

Pirie and Kieren's Theory of Understanding

Pirie and Kieren's (1994b) theory of understanding (Pirie-Kieren theory) is based
on their belief that “mathematical understanding is a process, grounded within a person,
within atopic, within a particular environment” (p. 39). The theory was developed in
response to what Pirie (1988) saw as the inadequacies of category theories like Skemp’s
for explaining children’ s understanding of mathematical concepts. Pirie (1988) explained
how a student, Katie, who had in previous interviews constructed an understanding of the
division of afraction by afraction using pie diagrams, in alater interview could not give
apictorial representation for her symbolic action. Katie was able to divide fractions
effortlessly using the standard algorithm but could not recall her previous way of
operating with fractions. Inthefinal interview, Katie illustrated how she divided
fractions by inserting shaded pie pieces for the number symbols. Any researcher who
observed this demonstration would conclude Katie did not understand the division of

fractions but was simply following an algorithm. However, the interviewer having seen



17

Katie'sactionsin previous interviews, asked her if 50 divided by % would be bigger or

smaller than 50. According to Pirie (1988), Kati€' s instant response that the answer
would be bigger was evidence she had an understanding of the division of fractions. The
guestion was what understanding did she have? Into which of Skemp’s categories did
Katie's understanding fit? Pirie noted that extreme care should be used in labeling
students’ understanding. Obviously the researcher’ s experience with Katie allowed her to
have an insider’ s perspective on changes in Katie' s understanding. This context altered
the meaning the researcher gave to Katie' s actions.

Shortly after the appearance of Pirie’s (1988) article, Pirie and Kieren (1989)
published “A Recursive Theory of Mathematical Understanding.” In this article, they
describe a theory of understanding and illustrate how the theory can be used to explain a
student’ s understanding of a mathematical concept. Their theory is one of transcendent
recursion. Itistranscendent in that each level of knowing, while compatible with prior
levels, transcends those levelsin sophistication. It isrecursivein that the structure of the
understanding at one level is similar to the structure of the understanding at another, and
one level of understanding can call into action a previous understanding. For example, if
aconflict occurs at a current level of understanding, the student has access to previous
ways of knowing that can be used to help resolve the conflict. Theresult of this
perspective is the following definition of understanding:

Mathematical understanding can be characterized as leveled but non-

linear. It isarecursive phenomenon and recursion is seen to occur when

thinking moves between levels of sophistication.... Indeed each level of

understanding is contained within succeeding levels. Any particular level

is dependent on the forms and processes within and further, is constrained

by those without. (Pirie & Kieren, 1989, p. 8)
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In addition to a definition of understanding, Pirie and Kieren (1994a) developed a
pictorial representation of their theory highlighting eight levelsin the process of the

growth of understanding (see Figure 3).

Observing

Property
Noticing

Image Having

Image Making

Figure 3. Pirie and Kieren’s pictorial representation of understanding (1994a, p. 167).
Although the representation is static, the intention is that it be used as atool for
mapping an individual’ s changes in understanding of a mathematical concept over time.
When such amap is completed, according to Pirie and Kieren (1992), it represents the
student’ s process of understanding. In general, the inner levels of understanding leading
up to formalizing are context dependent. The particular problems the student does and
actions he or she takes will enable and constrain the properties he or she abstracts from
them. Formalizing marks the beginning of reflections on mental objects free of the
contexts from which they were derived and also marks the development and proof of
theorems regarding these mental objects. Detailed definitions of each of the levels can be

found in Pirie and Kieren (1992).
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Thereisamagjor problem with the Pirie-Kieran theory. It isunclear how it was
developed. Thereisno evidence in published articles (Kieren & Pirie, 1991; Pirie, 1988;
Pirie & Kieren, 1989, 1992, 1994a, 1994b) that the model was adapted over time using
the results of investigations with students. The theory is used to describe students’
understanding, but there has been no critique of it by the authors. Unless a theory of
understanding is tested and modified using data collected from students who perform
both standard and nonstandard tasks, it is an opinion rather than atheory.

Sierpinska’ s Theory of Understanding

Sierpinska’ s (1994) theory is based on understanding an “act of grasping
meaning” (1990, p. 27). She callsthese act of understanding. Each act of understanding
is composed of four components: the understanding subject, the object of understanding,
the basis of understanding, and mental operations that link the object with the basis.

The understanding subject that Sierpinska (1994) refersto is not the psychological
subject one teacher hasin his or her class, but rather is the epistemic subject referred to
by Beth and Piaget (1961). This subject isacompilation of all subjects who have
grasped various meanings of mathematical concepts. For example, the epistemic subject
developing the concept of real numbers would encounter difficulty with both the concept
of zero and the negative integers. Historically in the development of the real numbers,
both of these concepts were met with resistance, hence the epistemic subject would
experience these concepts as obstacles. Called epistemological obstacles or “barriers to
changesin frame of mind” (Sierpinska, 1994, p. 121), they become opportunities for the
occurrence of an act of understanding. Sierpinska provides the following justification for
her focus on the epistemic subject:

If we want to speak about understanding of some mathematical topicin

normative terms this notion of sujet épistémigue comesin handy. To be

exact, it is not the way ‘a certain concrete Gauss' has developed his

understanding between one work and another that will give us some

guidance as to what acts of understanding have to be experienced or what
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epistemological obstacles have to be overcome in today’ s students. We

have to know how a notion has developed over large periods of time, and

in what conditions (questions, problems, paradoxes) were the great

breakthroughs in this development brought about. This, and not historical

facts about exactly who did what and when, can be instructive in

designing our teaching and facilitating understanding processes in our

students. (p. 40)

Hence, though observations of a single subject and his or her acts of understanding may
help an individual teacher working with a concrete student, the construction of an
epistemic subject can help any teacher working with any student.

Despite the inclusion by Sierpinska of the understanding subject, this subject has
none of the human features of the studentsin our classrooms. The students we teach
bring to their study of mathematics obstacles in mathematics, mathematical thinking, and
obstaclesin their beliefs and goals. They often believe they understand what was taught
despite a mismatch with instructional goals set by the teacher. According to Skemp
(1987), this belief of the student can shut the door to further examination of a
mathematical concept. A student who feels he or she has failed to understand can be
motivated to conduct further investigation whereas a student who feels he or she
understands often terminates his or her investigation. Hence an investigation of
understanding should include both the researcher’ s interpretation of understanding and
the student’s.

The second, third, and fourth components (object, basis, and mental operations) of
Sierpinska’s (1994) theory of understanding provide a picture of how a student attempts
to construct meaning. These three components work together to produce an act of
understanding. First, thereis amental operation of identification: “ldentification isthe
main operation involved in acts of understanding ... actsthat consist in a re-organization
of the field of consciousness so that some objects’ (p. 57) that were in the background are

now in the foreground. Other mental operations identified and defined by Sierpinska are
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discrimination, generalization, and synthesis. Discrimination is the identification of
differences between objects. Seeing an object as a particular case of a situation is defined
as generalization. Synthesisisthe “search for acommon link” (p. 60) between
generalizations.

Once an object isidentified, the subject searches for abasis for his or her
understanding. How can the object be given meaning? Objects are connected using
mental operations. The existing object is called the basis for understanding the new
object. Intermsof the questions at hand, how does a student’ s understanding of the
logarithmic function change? In Sierpinska’ sterms, if astudent is able to identify the
logarithmic function as an object to understand and can find abasis for it, he or she will
understand. We must ask: What bases can there be for understanding the logarithmic
function? To answer this question we must look at studentsin action.

Hiebert and Carpenter’s Theory of Understanding

Hiebert and Carpenter (1992) propose a cognitive science perspective on students
understanding of mathematics. They conjecture the existence of networks of internal
representations. The “number and strength” (p. 67) of the connections between
representations is used as a measure of the degree of understanding. Hence a student
who has an internal representation for the logarithmic function connected to the definition
of function and to the graph of the function will have a stronger understanding than a
student who has simply heard of the function. The theory is based on three assumptions:
“Knowledge is represented internally and these internal representations are structural” (p.
66). Thereisarelationship between internal representations and external ones. And
internal representations are connected. Hiebert and Carpenter further explain that internal
representations and connections can be inferred from analyzing a student’ s external
representations and connections.

An example of the connection between internal and external representation is
provided by Lawler (1981). He presented his daughter, Merriam, with three tasks he

viewed as involving the same computation, adding 75 and 26. First, Lawler presented the
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problem orally, then in terms of money (75 cents and 26 cents), and finally on paper. In
each case, Merriam used a different method of computation. Context (external
representation) made a difference in Merriam’ sthinking. In terms of Hiebert and
Carpenter’ s definition of understanding, the external representations were related to
Merriam’s mental (internal) ones.

What then are these mental representations and connections? Although
mathematics educators do not know how a student is representing mathematical concepts
internally or the nature of these representations, according to Hiebert and Carpenter, the
student’ s solution to a problem is influenced by external representations (physical
materials, pictures, symbols, etc.) in the problem. Problems solved both in and out of
school affect the internal representations and help form networks. Hiebert and Carpenter
contend these mental representations are needed to “think about mathematical ideas’ (p.
66).

Hiebert and Carpenter (1992) propose two metaphors for these networks of
representations. First, networks are structured like vertical hierarchies. Representations
are details of other more overarching representation. Hence if a student has a menta
representation of function, in terms of a vertical hierarchy, an associated representation
would be alinear function. Second networks are structured like webs. Representations
of information form nodes connected to other nodes. Connections, according to Hiebert
and Carpenter, are formed in one of two ways: by noting similarities and differences, and
by inclusion. A new ideais compared with other ideas already represented mentally.
Once similarities and differences are cataloged, a student can connect his or her mental
representation of the idea to existing structures.

Hiebert and Carpenter (1992) explain the growth of understanding in terms of
adjoining and reorganizing existing networks. Adjoining may occur when a student
becomes aware of a mathematical ideafor the first time. In an attempt to make sense of
the idea the student searches for connections to existing mental representations. One

result of this processis the connection of new ideas to unrelated mental representations.
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For example, consider the addition of logarithms: log 4 + log 5. A student might connect
this representation to his or her knowledge of the distributive property. This connection
will result in the following calculation: log 4 + log 5 = log 9. Hence theideais adjoined,
but the connection is not useful. This connection can be modified through a process that
Hiebert and Carpenter call reorganization. Reorganization can occur when a student
reflects on his or her thinking and is aware of an inconsistency. For example, if a student
subsequently seeslog 4 + log 5 = log 20, he or she may have cause for reorganization.
The new information is not consistent with current mental representations for adding
logarithms.

Noting the importance placed on the communication and understanding of
mathematics in both school and society, Hiebert and Carpenter (1992) explain how
written symbols can be understood by students. If asymbol isto carry some meaning for
astudent, it “must be represented internally as a mathematical object” (p. 72). Hencein
order for a student, to understand log 4, for example, he or she must represent the
notation as mathematical object rather than a collection of symbols.

Common Elementsin the Four Theories of Understanding

The four theories of understanding have five elements in common: obstacles to
understanding, modification for efficiency or to overcome obstacles, basis for
understanding, mental representation, and connections. Although the language and
perspectives of the researchers' theories differ, each of the theories makes use of these
five elements.

Obstacles to Understanding and Modification

Each theory of understanding contains the ideas of obstacle and of modifications
in the face of obstacles. Skemp does not use the term obstacle; instead, he notes that a
student may encounter a situation for which his or her schemas are not adequate. In this
situation, “this stability of the schemas become an obstacle to adaptability” (p. 27) and
the schemas must be reconstructed (modified) “before the new situation can be

understood” (p. 27). Naturally thereis no guarantee a student will successfully
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reconstruct his or her schema. Skemp notes that if an effort at reconstruction fails, then
“the new experience can no longer be successfully interpreted and adaptive behavior
breaks down — the individual can not cope” (p. 27).

An obstacle in the Pirie-Kieren theory is simply a problem that cannot be solved.
“When faced with a problem or question at any level, which is not immediately solvable,
one needs to fold back to an inner level in order to extend one’s current, inadequate
understanding” (19944, p. 173). If the student cannot solve the problem, it is an obstacle
to the growth of understanding. Folding back is the terminology Pirie and Kieren use to
illustrate how students behave when they encounter an obstacle. Students return to inner
levels of understanding to generate information and new ways of operating that will help
them overcome the obstacles. This return to and modification of inner levels of
understanding results in growth of understanding.

Epistemological obstacles are amajor feature of understanding in Sierpinska’s
(1994) theory. Obstaclesto the historical development of mathematical ideas indicate
mathematical concepts that might be obstacles for students. Obstacles are overcome by
what Sierpinska calls reorganizations. “Every next stage starts with a reorganization, at
another level, of ways of understanding constructed at the previous stage, the
understandings of the early stages become integrated into those of the highest levels’ (p.
122). These reorganizations result in modification of the student’s beliefs about a
mathematical concept.

In the Hiebert-Carpenter (1992) theory of understanding, a network of mental
representations grows as new and varied problem situations are presented. Growth will
be inhibited if the problem types and contexts are of a very limited nature. For example,
if students only encounter the logarithmic function as arule for solving exponential
eguations, they will have difficulty finding log 8 givenlog 2. A student’s limited
network of mental representations is an obstacle to solving novel problems. Changesin
understanding occur as the networks grow and connections are strengthened, or as

networks are modified.
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The construction of new relationships may force a reconfiguration of
affected networks. The reorganizations may be local or widespread and
dramatic, reverberating across numerous related networks.
Reorganizations are manifested both as new insights, local or global, and
astemporary confusions. Ultimately, understanding increases as the
reorganizations yield more richly connected, cohesive networks. (p. 69)
Hence, the obstacles in the Hiebert-Carpenter theory are the limited experiences of the
students and the modification is the change in existing networks of mental
representations.

Basis for Understanding

The third common element in the four theories of understanding is the basis for
understanding. A student logically associates what he or she is presented in class with
other concepts. These associated concepts are what Sierpinska (1994) calls the basis for
the student’ s understanding of the presented concept.

For Skemp the basis of understanding is existing schema. For example, if a
student understands the exponential function and inverse functions, these two concepts
could be the basis for understanding the logarithmic function. The logarithmic function
could be seen as a special case of an inverse function and be assimilated into the inverse
function schema and connected to the exponential function schema.

In the Pirie-Kieren theory, primitive knowing is the basis for understanding.
Primitive knowing is the understanding the student uses to build his or her understanding
of anew concept. In the example in the last paragraph, a student’ s understanding of the
exponentia function and inverse functions could serve as primitive knowing for the
student’ s understanding of the logarithmic function. Hence in the Pirie-Kieren theory, the
basis for understanding a new mathematical concept is a previous understanding.

The basis for understanding in the Hiebert-Carpenter theory of understanding is
the existing network of mental representations and connections. For example, if an

external representation of the logarithmic function such as the graph of y=1log xis
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compared with the graph of y = 10%, the two functions can be identified asinverse
functions based on the symmetry of the graphs about the line y = x. Hence the basis for
understanding the graph of the logarithmic function becomes the graph of the exponential
function.

Mental Representations and Connections

The final common elements of the four theories of understanding are mental
representations and connections. These two elements play a particularly important rolein
the development of understanding in each of the theories.

According to Skemp (1987), a mental representation of common properties
abstracted from experiences, either mental or physical, isreferred to as a concept. Hence
in aschemait isthe concept that is the mental representation. 1f we want to be able to
use our experiencesin the future, they cannot be represented exactly as they have
occurred. Instead, they are examined in search of regularities. These regularities can then
be adapted to new situations we encounter. Concepts must be connected to form
schemas. Connections for Skemp take the form of relations and transformations. A
relation is a common idea connecting two concepts. For example, if one considers the
following pairs of functions: f(x) = 2*, f(x) = log, X; g(X) = 3*, g*(x) = log,X; h(x) =5*, h
'(x) = log, X, the relation between the two would be “is the inverse function of.” A
transformation “arises from our ability to ‘turn one ideainto another’ by doing something
toit” (p. 23). For example,
8=2° - log, 8 = 3isatransformation. Both relations and transformations help form
connections between existing concepts and new concepts.

In the Pirie-Kieren theory, when a student is at the level of image making, the
images may be either external or internal, but when the image having level is attained, the
images areinternal. The general quality of the images made has been abstracted. These
images are one form of mental representations included in the Pirie-Kieren theory. At
subsequent levels, operations are performed that abstract qualities from mental images

and generalize them. The generalizations are also represented internally.
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Both the understanding of concepts and levels of knowing are connected in the
Pirie-Kieren theory. Connections between understandings of concepts can be seen in the
“fractal like quality” (Pirie & Kieren, 19944, p. 172) of atheory of astudent’s
understanding. “Inspection of any particular primitive knowing will reveal the layers of
inner knowings® (p. 172). Connections within a particular concept are formed as
commonalties and are abstracted from the results of mental and physical action. For
example, suppose a student has constructed the graph of y = log x and the graph of y =In
xon hisor her calculator. The student may abstract an image of an increasing function
from these two made images. This abstraction, although incorrect, is a noticed property
of these two graphs.

Sierpinska also features mental representations and connections in her theory of
understanding. She describes mental representation as a possible basis for understanding
and as one source of obstacles. For example, consider the abstraction made by the
hypothetical student in the previous paragraph. Based on two graphs, he or she
abstracted the idea that the logarithmic function isincreasing. This abstraction may
prove to be an obstacle when the student tries to determine the limit of y = log,, X as x
approaches 0 If amental representation does form the basis of a student’ s understanding
of amathematical concept, according to Sierpinska, it is connected to the object of
understanding by mental operations. The Hiebert-Carpenter definition and theory of
understanding is built on representations, internal and external, and connections between
representations.

Conclusion

Obstacles and modification, basis, and representations and connections were used
in various waysin this study. First, idea of the existence of obstacles and modification
was used in the development of the tasks and during the interviews. In particular
epistemological obstaclesin the historical development of the logarithmic function were
considered as | developed thetasks. During the interviews, | pressed students when they

considered their own thinking. For example, | always encouraged the students to justify
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their answers. On many occasions, attempts to justify their responses lead students to
modifications their original approaches.

Second, | used the idea of the basis of understanding during the data analysis.
During the data analysis | often asked myself what the student’ s basis was for
understanding the logarithmic function. Thinking the evidence through using this
construct clarified my findings. Third, representations and connections were essential
elements of my own theory because they play arolein each of these theories and because
of the role representations have played in my own mathematical thinking.

Beliefs

The release of the statistics reported in the Third National Assessment of
Educational Progress (NAEP) motivated mathematics educators to study the existence of
a connection between students performance and their beliefs about mathematics.
According to Carpenter, Lindquist, Matthews, and Silver (1983), the NAEP data
illustrated that “students felt very strongly that mathematics always gives arule to follow
to solve problems” (p. 656). These findings prompted researchers to study the
connection between students’ beliefs and their behavior. The results of such studies
(Kloosterman, 1991; Schoenfeld, 1989,1992; Underhill, 1988) indicated there was a
relationship between students' beliefs about mathematics and how they thought about and
did mathematics.

Affect is aterm used by mathematics educators as a catch-all for emotions,
attitudes, and beliefs (McLeod, 1988). McLeod defines affect as“all of the feelings that
seem to be related to mathematics learning” (p. 135). Although there seemsto be
consensus that belief is an affective factor, in the mathematics education community
there islittle agreement as to the word’ s definition (Pehkonen & Furinghetti, 2001). Cobb
(1986) defined beliefs as “ assumptions about the nature of reality that underlie goal-
oriented activity” (p. 4). This definition is the most useful one in terms of my approach to
the research questions and my discussion of the findings. | chose this definition, first

because it does not use the term under standing to define belief and second because it was
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consistent with my assumptions about students' understanding: it occurs within the
individual, student’s own opinions of their understanding are important, and it may be
inconsistent with correct mathematics.

Using Cobb’ s definition, | took views that students expressed about what it meant
to understand a mathematical concept as evidence of their beliefs about mathematics and
understanding. Students described mathematics as a collection of rules and procedures
they must learn to achieve their performance goals and understanding. This view of
mathematics among students and teachers has been well documented and shown to
influence action (Dossey, 1992; Schoenfeld, 1989).

Although links between beliefs, understanding, and learning have been explored
by some researchers (Schoenfeld, 1989; Szydlik, 2000), those studying understanding
have focused their energy on describing the cognitive factorsinvolved in its
development. The theories proposed fail to address students’ about mathematics beliefs,
which Schoenfeld (1992) noted “ shape their behavior in ways that have extraordinarily
powerful (and often negative) consequences’ (p. 359). Each of the theories discussed in
this chapter, assumes understanding occurs within the mind of the individual. It isnot
clear how an individual’ s beliefs about mathematics and understanding might influence
his or her understanding.

The results of this study illustrate the importance of beliefs in the development of
students’ understanding of mathematical concepts. Much like those who have studied
preservice teachers' beliefs in attempts to explain their practice (Cooney, 1997; Dossey,
1992) | have found beliefs to be atool to make sense of students' understanding of
mathematical concepts.

Representations

Since Janvier’s (1987) summary of research and theories on the role of
representation in the learning of mathematics, debate has continued regarding how the
term might be defined, how internal and external representations are related, and what

can be learned from the study of representations (Goldin, 1998b). Some mathematics
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education researchers (Goldin, 1998a; Goldin & Kaput, 1996) claim that representations
are a system we use to learn mathematics. In this study, representations provide evidence
of students’ understanding.

Sfard (2000) hypothesized the symbol referent pair is dynamic, the use of one
influences how the other is seen. For example, the use of the representation log 3, and
how and when it is used influence what a student sees as the referent for the
representation. Often when anew concept is introduced to students, it is through
representations. The student then strives to become proficient with the representation and
itssyntax. Although that sort of proficiency is not all the understanding mathematics
educators hope for, syntactic proficiency is an understanding. External representations
may enable a student to develop internal representations of the concept, and they may
constrain his or her understanding of the concept.

Remembering and Understanding

A magjor revolution in experimental psychology was born with Bartlett’s (1932)
research on remembering. This seminal work illustrated the reconstructive nature of
remembering. Since then, some psychol ogists who choose mathematics as a context in
which to study memory have ignored this function. The result of this oversight has been a
focus on students’ errors as “bugs’ (Brown & Burton, 1978). and the popular term used
today misconceptions. Much of what is labeled misconceptions in mathematics could
simply be attributable to the reconstructive function of memory. One good example of
this function of memory are overgeneralizations (Byers & Erlwanger, 1985) made by
students studying the notation of a new concept such as the sum property of logarithms.
The students remember this property aslog, A+ log,B = log,(A+B), an
overgeneralization of the distributive law. Much of what students are asked to do in
college algebrais based on remembering rather than understanding.

In 1985, Byers and Erlwanger called for more research on the role of
remembering in understanding. They noted that very little work in mathematics education

had focused on how remembering impacted students’ understanding. In particular, they
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pointed out distortionsin students’ thinking. They called these changes in memory
transformations. One such transformation is reported to have occurred in the daughter of
one of the authors. “Her school topic in arithmetic was “carrying” and she was doing
beautifully — until the Christmas break. After the break she started to produce
consistently wrong answers’ (p. 275). Her wrong answers were produced because the
child was ‘carrying’ the ones and recording the tens. Another example of transformation
was the example given by Pirie (1988) of Katie, who after learning the algorithm for
dividing fractions, could no longer produce drawings that represented division of
fractions. Byers and Erlwanger called for research that might explain these
transformations and how and when they occur. Neither research focusing on retention
nor research on organization, according to Byers and Erlwanger, had been able to
accomplish this task.

Both the idea that memory is reconstructive, as suggested by Bartlett, and that
remembering can result in errors, as suggested by Byers and Erlwanger, are important in
thisreport. A brief glimpse at the literature on learning mathematical concepts will
produce along list of studies highlighting students' errors (e.g. Arcavi, Bruckheimer, &
Ben-Zwi, 1987; Fischbein, Jehiam, & Cohen, 1995; and Schmittau, 1988). Despite the
identification of these errors, little attempt has been made to find or inquire how students
understanding either becomes “ distorted” (Byers & Erlwanger, 1985) or failsto meet
cultural standards for validity.

The Logarithmic Function

Although we know that the development of a concept in the mind of an individual
need not follow its historical development, there is much to be gained from knowledge of
the historical development of a mathematical concept. In particular, in the study of
mathematical understanding, knowledge of historical development of mathematical ideas
gives us another lens through which to view a student’ s actions. Commonalties that
occur in the way a student’ s understanding of a mathematical concept devel ops and the

way it developed historically are, according to Sierpinska (1994) citing Piaget and Garcia
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(1989) and Skarga (1989), attributable to commonalties in mechanisms of development
and to preservation of historical meanings of terminology. In the present attempt to
investigate students’ understanding of the logarithmic function, | based several of the
tasks on the historical development of the function.

My study of the historical development was motivated, in part, by the work of
Smith and Confrey (1994). They outline the historical development of the concept of
logarithms and note its consistency with students’ actions (Confrey, 1991; Confrey &
Smith, 1994; Confrey & Smith, 1995). These consistencies were observed during
teaching interviews designed to investigate how students learn about the exponential
function.

According to historians of mathematics (Boyer, 1991; Cajori, 1913; Eves, 1983;
Katz, 1995), Napier devel oped logarithms to simplify the difficult job of multiplying
large numbers, an admirable aim in the time before calculators. In honor of the
tercentenary of Napier’sinvention, avolume (Knott, 1915) was published containing
articles that discussed the invention and how it had been used in the intervening 300
years. Among the articlesis one written by Lord Moulton (1915), who hypothesized
three stages in the invention of logarithms. In the first stage, Napier identified the
correspondence between a geometric and arithmetic sequence as a probable starting point
for asolution. Second, he introduced “a geometrical representation of the original
arithmetical operations” (p. 13). Third, Napier realized that if pairs of termsin the
geometric sequence had the same ratio, then the corresponding termsin the arithmetic
sequence were equal distances apart. Illustrations of each of the stages follow. Modern
notations and an increasing geometric sequence are used to smplify the treatment. This
approach was introduced by Victor Katz (1995).

If we juxtapose an arithmetic and geometric sequence, we can see how Napier
could have thought of the idea of changing difficult multiplication into simpler addition.
Arithmetic sequence: 0,1, 2, 3, 4,5, ...

Geometric sequence: 1, 2, 4, 8, 16, 32, ...
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In the geometric sequence, the product of 4 and 8 can be found by adding the
corresponding terms in the arithmetic sequence and finding the number in the geometric
seguence corresponding to the number 5, namely 32. Hence, multiplication is easily
converted to addition. However, one can also see what Napier’ s challenge must have
been by looking at the termsin both sequences. Neither sequence is dense. Napier
needed to be able to multiply any given numbers, not just integer powers of some base.
Even the selection of a base near 1 for the geometric sequence could not produce the
density Napier desired. Napier’s dissatisfaction with this method led to what Lord
Moulton identified as Stage 2 in the process of invention.

Napier converted his arithmetic problem to a geometric one by considering points

moving on lines asin Figure 4 (Katz, 1995). The point P on the upper line is moving

v O—O v v
< 0 a P 3a 4a 5a 6a 7a
'< O O O O O

Figure 4. lllustration of Napier’s representation of moving points.
arithmetically. P moves with constant velocity and covers each interval in the same
amount of time. Q begins with the same velocity as P and covers the distance between
points in the same amount of time that P moves between points. This requirement
produces an increasing velocity on each of the segments[1, r], [r, r?], [r?, r®], and so on.
According to Katz, Napier’ s geometric representation allowed him to think of point Q as
moving with a smoothly increasing velocity.

Using his geometric representation, Napier considered any two intervals[a,[3] and

B_

[y,0] on the lower line such that .

Z (Katz, 1995). He then noticed when the forgoing

relationship held, the timeit took Q to cover [a, 3] was the same asthe time it took to
cover [y, a]. Since the measure of time on the upper and lower lines was the same, the

points on the upper line being called the logarithms of those on the lower, and since P
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moved with constant velocity, thenlog 3 - loga =log o -logy. This correspondence

marked what Lord Moulton called the third stage of the invention of logarithms.
Mathematical Ideas Used by Napier

The treatment presented here is simplified: however, it illustrates several very
important mathematical ideas. First, it illustrates that multiplication in the geometric
sequence corresponds to addition in the arithmetic one. Thisidea has been identified by
Confrey and Smith (1994, 1995) as problematic for students. Citing Rizzuti (1991), they
conjecture that the correspondence definition of function attributed to Dirichlet is based
on amore primitive concept called covariation found in earlier definitions of function.
Covariation is defined by Confrey and Smith (1995) as “being able to move operationally
fromy_ toy,, , coordinating with movement from x tox,,,” (p. 137).

Second, Confrey and Smith (1994) identified the idea of a multiplicative unit and
amultiplicative rate as primitive actions of students. In interviews with students,
Confrey and Smith presented the students with a table of values meant to represent the
division of acell over time. Thetime, starting at zero, was given in integral values, while
the number of cellswas given in powersof 9. Students identified multiplication by 9 as
the action for moving down the table and division by 9 as the action for moving up the
table. According to Confrey and Smith, the students also identified various powers of 9

as a constant ratio between terms. For example, they found the ratio between successive

terms Eyﬂ%was to be 9 regardless of the position of y,, in the table. Similarly, Yin was
m-1 m-2

identified as 81, again regardless of the position of y,. Hence, the primitive actions of
students were consistent with stages that have been identified as important (Katz, 1995;
Moulton, 1915) to the invention of logarithms.

Third, the summary of the invention of logarithms indicates the vital role that
representation played in Napier’s conjectured solution to the density problem in the

coordination of the actions of two sequences. This representation along with his
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ingenious idea of two points moving along these lines allowed Napier to see how the
terms in the sequences could be related using of the positions of the points.

These three important stages in the invention of logarithms provide alens for
examining and analyzing students' actions on tasks using representations of the
logarithmic function. In addition, the historical development of the logarithmic function
may a guide for how students can make sense of both the function and its modern
applications.

Conclusion

Understanding is described in the literature as assimilation, a network, an act, and
aprocess. Although each of the characterizationsis different, all of them were devel oped
to explain and predict students’ behavior. In addition, representations and connections
are elements of each theory. My definition of understanding aso incorporates
representations and connections. The literature on representation cited in this chapter
helped me realize the student’ s external representations and connections could be used as
evidence of their beliefs. Hence | noted that the representations | am looking for and at in
this study are external. From these and the student’ s conception and application of a
mathematical concept, | can hypothesize students' beliefs.

The link between beliefs and student behavior as expressed by Schoenfeld (1989,
1992) was useful in explaining what | found in this study. Students beliefs impact their
understanding in very specific ways and the existing literature helped me identify the
impact.

A common view held by the studentsin this study was that remembering was
either the same as understanding or a part of understanding. Hence, an examination of
how remembering and understanding are related was called for. Bartlett’s (1932) view of
memory as reconstructive provides a useful perspective for the analysis of the students’
actions during problem solving and will be revisited in chapter 6.

The historical development of the logarithmic function discussed in this chapter
helped me devel op tasks to investigate students' understanding and acted as alens
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through which to view students’ actions. In addition, the historical development
highlighted the importance of representation in the creation of the logarithmic function.
Finally the literature on the logarithmic and exponential functions aerted me to various
mental actionsto look for as | observed the students solving problems. In particular, |
proposed coordination of actions between two sequences as a path students might take as

they generate understanding of the logarithmic function.



CHAPTER 3: METHODOLOGY

The goal of this chapter is to describe the study, so others who wish to critique or
duplicate it may do so easily (Rachlin, 1981). The description will include discussion of
techniques, instruments, participant selection, and procedures.

Research Techniques

The research questions and the theoretical framework for the study should suggest
appropriate data-gathering techniques for the study. Regarding understanding as existing
within an individual suggests evidence of an individual’ s understanding should be
gathered through interaction with the individual. The interpretation of these interactions
isclassified as qualitative analysis. According to Truran and Truran (1998), “Qualitative
analysis interprets spoken or written language, and sometimes other forms of
communication, such as drawings or body language” (p. 61). This method isideally
suited for the investigation of understanding.

Techniques and Rationales

Five techniques (phenomenological interviews, clinical interviews, mapping,
drawings, and participant observation) were used to gather data regarding students
understanding of the logarithmic function. A description and rationale for each of the
techniquesis given in this section.

Phenomenological interview. In this study, students understanding, changesin
understanding, and ways of knowing the logarithmic function were investigated.
Phenomenological interviews are designed to gather data about specific to help the
researcher build a description of the participant’ s view of his or her world. The
fundamental assumption made in a phenomenological study, according to Kvale (1993),
isthat “the important reality is what people perceiveit to be” (p. 52). This perception

was needed to build a description of a student’s conception of the logarithmic function.
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Thus, the phenomenological interview is atechnique ideally suited for data collection in
this study.

Clinical interview. According to Brownell and Sims (1972), “Understanding is
inferred from what the pupil says and does, and from what he does not say and do in
situations confronting him” (p. 41). In this study, | inferred understanding from students
actions and utterances. Theclinical interview provides aforum for the study of actions
and utterances in a problem-solving environment. During aclinical interview, the
researcher attempts to gather information about a student by watching him or her perform
tasks and asking questions about the decision making process. Much of theinterview is
planned prior to meeting with a participant: however, questions and tasks that are not
preplanned may be posed. Zazkis and Hazzan (1999) identify Piaget as the originator of
the clinical interview. If the goal of the research is “the explication of thought” (p. 430),
then the clinical interview is an effective tool for achieving it. The flexibility to follow a
line of questioning that is not preplanned and the opportunity to observe a student in
action that this technique allows made it an appropriate data collection method for this
study.

Mapping. “To map isto construct a bounded graphic representation that
corresponds to a perceived reality” (Wandersee, 1990, p. 923). Thisisthe perceived
reality | hoped to see when | asked the participants to draw maps of the logarithmic
function. The mapping technique | taught the participants to use was proposed by Novak
(1972, 1990) for studying students' understanding of science concepts. Gathering a
student’ s graphic depiction of hisor her perceived reality provided data from which |
developed a description of his or her understanding of the logarithmic function

Drawings. When a student visualizes a picture of his or her process of
understanding, he or she often includes unarticul ated representations of his or her beliefs.
For example, if apreservice teacher is asked to draw a picture of what he or she thinks
mathematicsis and the drawing is atool kit, we can infer something about his or her

beliefs about mathematics. In this study, drawings were used to gather a student’s
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impressions of his or her understanding and changes in understanding. | used these
impressions to devel op the meanings for the students' use of the term understanding. The
drawings provided a window into the students' beliefs about understanding, mathematics,
teaching, and the logarithmic function that might have been imperviousto simple
questioning.

Participant observation. According to Wolcott (1999), participant observation is
away of experiencing the world in which the participants live. The researcher observes
or otherwise engages in the world of the participants. In this study, | used the technique
as | observed three college algebra classes. The goal of these observations was threefold.
First, | used the technique to collect data about the behavior of the participantsin their
college algebra classes. The datawere to be used to construct a general description of
each participant. Second, | used the questions students asked and the responses they
provided as evidence of their understanding. Third, | used participant observation to
catalog the curriculum used to teach the logarithmic function. The use of this technique
provided me with information about the student’ s understanding of the logarithmic
function during instruction.

| nstruments and Interviews

Interview protocols and tasks were used in combination to gather evidence from
the participants. The instrumentsin this study were the interview protocols (see
Appendix A for the complete interview protocols). A description of each of the protocols
and of the question it was designed to provide evidence for is given in this section.
Interview 1

Thefirst interview consisted of five activities: mapping instruction,
phenomenological questions on the student’ s prior experience with the logarithmic
function, skills assessment, phenomenological questions on understanding the
logarithmic function, and mapping of the function.

The mapping instruction used in this study was adapted from Novak and Gowen
(1984). Two adaptations were made. First, the student was not instructed to rank
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concepts he or she generated related to the concept being mapped. This adaptation was
necessary because | disagree with Novak’s view of concepts as being related in a
hierarchy. Second, the student and | constructed two maps together, before he or she was
asked to construct a map independently. The two maps we constructed together were for
the concepts car and pet. The student and | each mapped the third concept, high school,
and then we described and compared our maps.

The primary purpose of the mapping instruction was to train the student to make
maps. The secondary purpose was to become more familiar with the student. Discussions
regarding cars, pets, and high school were used as data in the development of a
description of the student.

Following mapping instruction, the student was asked about his or her prior
experiences with the logarithmic function. Specifically, the student was asked to recall
and recount any experiences he or she had had with the logarithmic function. The
purpose of this phenomenological section of the interview was to gather data regarding
the student’ s understanding of the logarithmic function prior to instruction.

The student was then given the skills assessment activity. The skills assessment
consisted of definitions of terms, recall of properties, and questions associated with
representations and applications of the logarithmic function. In particular, the student
was asked to define the terms function, logarithm, and logarithmic function and to list all
properties of the logarithmic function he or she could remember. The remainder of the
assessment is best described as a traditional mathematics examination based on the
logarithmic function. Three sample problems for the skills assessment are given in
Figure 5.

This activity had two purposes. First, it was used to gather information about the
students’ understanding of the logarithmic function prior to instruction. This information
was used to develop descriptions of the student’ s understanding of the logarithmic
function. Second, it was meant to stimulate recall of any concepts associated with the

logarithmic function in preparation for mapping the concept.
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1. Simplify the following expressions:
a log; 4 +1o0g,5
b. log, 4 - 10g,5
c. log; 9

1
d. =log, 25
2 93

e log;1
2. What function is graphed on the axes below?

3. The 1980 population of the United States was approximately 227
million, and the population has been growing continuously at a rate of
0.7% per year. Predict the population in the year 2010 if this growth
trend continues.

Figure 5. Sample problems form the skills assessment.

Following the skills assessment, the student was asked to recall and recount what
he or she understood most while completing the skills assessment and then what he or she
understood least. The purpose of these phenomenological questions was to gather data
on the student’ s perspective of his or her understanding of the logarithmic function.

Mapping of the concept of the logarithmic function followed the
phenomenological questions. | asked the students to include anything that came to mind

when they thought of the logarithmic function and to map those concepts. The purpose
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of this activity was to gather evidence of the student’ s understanding of the logarithmic
function.
Interview 2

The second interview began with two questions adapted from Brookfield (1990).
| first asked the student to recall and recount |earning experiences that he or she felt were
significant to him or her asalearner. | then asked the student to recall and recount
experiences he or she felt were frustrating. These two questions encouraged
communication and trust between myself and the student. 1n addition, in several cases
these questions elicited responses about learning that occurred outside of school and thus
provided more background information about the student.

The focus of the interview was then shifted to mathematics. The student was
asked to describe him- or herself as a mathematics student and to identify any goals he or
she had when taking a mathematics class. These questions were meant to elicit
background information about the student and his or her view of mathematics. In
particular, the students’ view of mathematics and goals associated with mathematics
classes can influence the student’ s perspective regarding understanding. The student was
then asked about his or her educational goals. This question was designed to gather
information that | could use in my description of the student.

The third series of questions focused on the phenomenon of understanding a
mathematical concept. The student was asked to identify a mathematical concept that at
some time he or she did not understand. After sharing the concept, the student was asked
recount his or her experience of not understanding. The student was then asked to recall
and recount a time when he or she felt they had understood a mathematical concept. In
addition, the student was asked to define understanding. The purpose of these questions
was to collect data about the student’ s definition of understanding and to develop my
view of the student meaning for the term.

Further evidence of the student’ s definition of understanding was gathered using a

drawing task. The student was given a pen and a sheet of paper and asked to visualize and
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draw adiagram or picture of hisor her process of understanding. After completing the
drawing the student was asked to explain how the drawing related to his or her process of
understanding. Specifically, the student was asked to refer to his or her drawing while
recounting a time when he or shefirst did not understand a mathematical concept but
then later did. This activity provided evidence that | used to build a description of the
student’ s view of understanding mathematical concepts.

The questions and activities regarding understanding used in Interview 2 where
adapted from those | used in a previous study of understanding. The study, Acts of
Understanding: A Phenomenology (Kastberg, 2000), was designed to help me investigate
and build atheory of students' perceptions of their experiences of understanding a
mathematical concept (see Appendix B for a complete protocol). The only changein the
protocol was a question about the student’ s definition of understanding. The descriptions
and definitions were necessary to discern the student’s meaning for the term
under standing.

Interview 3

In the third interview, the student was asked to recall and recount atime during
class when he or she did not understand the mathematics being presented and to repeat
the activity for atime when they did understand. The student was then asked to construct
amap of the logarithmic function.

The purpose of this phenomenological interview wasto collect the student’s
perceptions of hisor her experience of understanding the logarithmic function and to
gather data about the student’ s understanding of the logarithmic function. The student’s
description and map were used as evidence of the student’ s understanding of the
logarithmic function during instruction.

Interview 4

During Interview 4, the student was given the skills assessment used in Interview

1. This assessment was then followed by the phenomenologica questions about

understanding. Specifically, students was asked to recall and recount times during the



interview they understood mathematics. A similar question was asked focusing on what
was not understood. The student was then asked to construct a map of the logarithmic
function. The purpose of thisinterview wasto gather evidence about the student’s
understanding of the logarithmic function following instruction and, in particular, about
the student’ s conception of the logarithmic function.
Interview 5

Interview 5 originally consisted of three different activities presented in pictorial
representation. The first is described in the next paragraph. The second was the
interpretation and use of the graph of y =1og,x. The third was an approximation task.
Given the logarithms of severa integers, the student was asked to approximate the
logarithm of others. During the pilot, | realized these three tasks were time intensive and
eliminated the third task. During the study, each interview was 90 minuteslong. The
time was insufficient for the completion of both tasks. This realization occurred to me as
| interviewed the first participant. | elected to eliminate the second task and focus on
probing the students' responses on the first task.

Thetask used in thisinterview was adapted from Jacobs (1970). The student was
given anumber line with theintegersfrom O to 10 on it. Abovetheintegersl, 2, 4, and 8
on the number line were the numbers 0, 1, 2, and 3, respectively, enclosed in boxes. |
told each student a short story about the picture before he or she began the questions on
the task sheet. The following is an example of the story | used during the interviews:

I’m going to start out by telling you alittle story about this [the pictorial

representation of the logarithmic function]. The story isthere isthis guy

and he getsin his car in the morning. Heislike ‘I’m going to take atrip.’

And so he starts from his house and he drives one mile and he sees a giant

sign with azeroonit. Heislike whew, what'sthis. Thisisvery strange.

So he drives two miles from his house and he sees another sign that has a

giant oneonit. Heislike uh, what is going on here. So he drivesfrom his

house, he drives four miles and he sees atwo, he drives eight miles, he
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sees athree. He'slikewhat is going on. But, then alight bulb comes on
and he says ok, | know what’s going on. | know where I’m going to see
the next sign.

The student was then asked to predict what number he or she expected to be above each

of 64, 256, % , +/2, and 3. (For the sake of brevity the numbers above the number line

will be called sign numbers and those below the number line will be called number line
numbers.) This question was designed to invoke generalizations and alternative
representations to help the student predict the sign numbers that corresponded to the
number line numbers. To evoke generalizations about the number line numbers, the
student was asked if there were any number line numbers that could not have signs above
them. In an attempt to seeif the students could reverse his or her prediction procedure,

the student was asked to predict number line numbers corresponding to the sign numbers

7,-7, % % ,and+/2 . This question was followed with another generalizing question:

Are there any numbers that cannot be on signs? Finally, the student was asked to explore
the correspondence between the number line numbers and the sign numbers by
generating properties based on two arbitrary number line numbers A and B corresponding

to sign numbers m and n, respectively. Specifically, the student was asked what sign

A B
number would be above AB, B, and A. To invoke trand ations and transformations to

other representations, the student was asked how he or she would organize and display all
the data generated in this activity and to write down everything he or she knew about the
relationship between the number line numbers and the sign numbers. He or she was then
asked to recall and recount experiences of understanding and not understanding during
the activity. The purpose here was to generate evidence regarding the student’s
perception of hisor her understanding of the logarithmic function.

In thisinterview and in Interview 6, the logarithmic function was not mentioned.

Onereason for thiswasto seeif the student was able to apply his or her understanding of
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the logarithmic function to solve the problem. Another reason was to gather evidence of
the ways of knowing used by the student.

The purpose of thisinterview was to gather evidence of representations,
connections, and applications of the logarithmic function that the student used to
complete the task. This evidence was used to conjecture the student’ s beliefs about the
logarithmic function following instruction.

Interview 6

Roy Smith, auniversity mathematician, and | developed the activity used in
Interview 6. The student was given afunction, f, and was told the function obeyed two
rules:

f(AB) = f(A) + f(B) and f(2) = 1. Based on this information, the student was asked to find
the value of the function for 4, 8, 16, 256, % % % J2,42,0,-4,3, and g In
practice this task was very difficult for the students because they could not decipher the
notation. Using the data gathered from a pilot study using these tasks, | modified the task
and included an example. Before the student began, | wrote the following example using
the notation on the task sheet:
f(4)=f2R)=f2)+f(2Q)=1+1=2.

Students had less difficulty with the task after | presented the example. After the student
generated function values for each of the real numbers, he or she was asked how the data
could be organized and displayed. The student was also asked to record everything he or
she knew about the function f. These questions were designed to invoke representational
trandation or transformation. The task was followed by the phenomenological questions
regarding the student’ s experiences of understanding and not understanding while
completing the task.

The purpose of thisinterview was to collect evidence of the student’s

representations, connections, and applications of the logarithmic function when a

problem is presented in awritten representation. Thisinterview was also designed to
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collect evidence of the student’ s ways of knowing. Evidence of the student’s perspective
of hisor her own understanding was also gathered.
Interview 7

Interview 7 involved two table-completion tasks. In thefirst task, the student was
given atable with the numerals 1-9 and the first column and the numbers 10, 20, and 30
in the first three cells of the third column. The last six cells were left empty.
Approximations for the logarithms of 1, 3, 5, 7, 8, 9, and 10 were provided in Columns 2
and 4. The student was then told the second and fourth columns contained an
approximate value of the logarithm of the numbersin the first and third columns and was

asked to complete the table. The student was also asked to find log 9000, log 0.09, and
Iogg using the table. The student was given a TI-15 calculator for the completion of this

task. This calculator is designed for elementary school students and does not have a
logarithm or a natural logarithm key.
The second table-completion task was based on the function y = log, x. The

numerals 1 - 18 are entered in Columns 1 and 3; however, the only approximation in the
second column was for log, 2. The student was then asked what other information would
be need to compl ete the table, what other ways the data might be represented, how these
other representations might help to fill in the table, and what the best way to represent the
datawould be. Following the table-completion activities, the student was again asked to
recall and recount his or her experiences of understanding and not understanding during
the activities.

The purpose of thisinterview was to gather evidence of the student’s
understanding of the logarithmic function, to identify ways of knowing, and to gather
evidence of the student’s perception of his or her understanding.

Interview 8
In order to determine how students used representations and in their oral

representations of a mathematical concept, the student was asked in Interview 8 to
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explain what he or she knew about the logarithmic function. Specifically, the student was
asked to pretend that | was anew college a gebra student who knew the concept of
function and to explain the logarithmic function to me.

This activity was followed by the mapping activity. The student was asked to
draw a map of the concept of the logarithmic function. Asin the other interviews, the
maps were used to gather evidence about the student’ s understanding of the logarithmic
function.

Interview 9

The purpose of the final interview was to gather the student’ s perspective on
changesin his or her understanding of the logarithmic function. First, the student was
asked to recall and recount atimein hisor her study of the logarithmic function when he
or she did not understanding the logarithmic function. Similarly, the student was asked to
describe atime when he or she did understand the logarithmic function. Following these
phenomenological questions, the student was asked to visualize and then draw his or her
process of understanding the logarithmic function. After completing the drawing, the
student was asked to explain the drawing.

In addition to the activities described here, the student was aso provided with
summaries of al of hisor her comments regarding understanding in general and
understanding the logarithmic function in particular. | had planned to ask the student to
compare the summaries to hisor her drawing, but no student actually read the summaries.
Therefore, | had to eliminate this question from the interview.

Attention was then drawn to the maps that the student had produced during the
course of the study. The student was asked to compare and contrast the maps, to give an
example of how his or her understanding of the logarithmic function had changed since
the beginning of the study, and to illustrate how that change was manifested in the maps.

Developing the Interview Protocols

The interview protocols and tasks described above were the result of a refinement

process that included three developmental stages. First, as the protocols and tasks were
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developed, they were reviewed and discussed by five doctoral students (writing group) in
the mathematics education program at the University of Georgia. Based on the feedback
| received from this group, the interviews and tasks were revised. Second, the protocols
for Interviews 5, 6, and 7 were trialed with two graduate students in the master’ s program
at the University of Georgia. These trials allowed me to see how students might attempt
to respond to the questions and solve the problems | posed. The third devel opmental
phase was a pilot study.

The pilot study was conducted over a 2-week period during October 2000. Two
former students of adoctora student in the mathematics education program at the
University of Georgiawere asked to participate in the pilot study. Both students were
taking precalculus at the time of the study. In fact, the interviews happened to coincide
with the presentation of concept of the logarithmic and exponential function the students
were seeing in their precalculus class. The two students were paid $100 each for their
participation.

Despite the condensed timeline, the data | gathered during the pilot study
provided me with an additional opportunity to critique and modify both the interview
protocols and the tasks. It also allowed a chance to check the coding scheme that |
intended to useto analyze the data. A fellow graduate student and | used the coding
scheme to analyze atranscript from Interview 4. The students' actions during the
interviews allowed to me prepare for what | was going to see during the main study.

Procedure
Research Site

The study was conduced at arural community college, RC, in the Southeast
serving an agrarian community. RC, atwo-year college, is a community-based
residential institution offering programs in the natural and physical sciences, the liberal
arts, the social sciences, business, physical education and recreation, and the health
occupations. It isalso aspecialized ingtitution serving a unigque role through programsin

agriculture and related disciplines. According to the college catalog, when it was
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founded in the early 1900s the institution’ s mission was the devel opment of technological
expertise in young men and women wishing to embark on careersin agriculture, home
economics, and related fields. Later, the role of the institution was expanded to include
college transfer programs designed to prepare students to enter senior institutionsin the
state university system. All majors at RC are required to take at |east one mathematics
course. Studentsin the technological programs take a technical mathematics course or a
mathematical modeling course; those in most transfer programs take cal culus preparatory
courses such as college algebra, trigonometry, and precalculus. Students who intend to
transfer into science or business programs at senior institutions in the state are required to
take calculus. Most RC students enroll in or are placed in calculus preparatory courses
even though calculus can be taken in thefirst year. For studentsin the humanities and in
the elementary education program, college algebrais a terminal mathematics course.

College algebra, a 3-semester-hour course at RC, was designed around the
concept of algebraic and transcendental functions. The functions studied in the course
included polynomial, rational, exponential, and logarithmic functions. The final topic of
the semester in college agebra was logarithmic functions. Approximately 5 hours of
instruction were spent on this concept.

Participant Selection

The participants for the study were students enrolled in college algebraat RC.
All fulltime tenure track instructors teaching college algebra at RC during the fall, 2000
term were contacted and asked to volunteer to be observed while teaching the logarithmic
function. To reduce the number of classroom visitations that | made, only three
volunteers were selected. Selection was based on time and day that each instructor was
teaching and the date that the presentation of the logarithmic function was to begin.
Those who planned to start teaching the logarithmic function before my arrival at the
research site were not considered for the study. No afternoon or evening classes were

selected in an attempt to observe classes with primarily traditional aged students.
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To solicit participants, | visited each of the three instructor’ s classes and gave a
short 5-minute presentation about the study. | explained what participants would be
asked to do and how they might benefit from participation. | then distributed forms (see
Appendix C) with the same information. At the end of class, the instructors asked the
students to submit the forms as they left class. A total of 29 students volunteered to
participate in the study. Every attempt was made contact all volunteers by phone and by
e-mail for an initial meeting.

During the 5- to 10-minute initial meeting, the volunteers were asked questions to
gather background information. | asked how and why they chose RC and how they
might rate themselves as a mathematics student. In addition, volunteers were asked
whether they had ever sought help in mathematics and whether they would feel
comfortable being observed as they worked on mathematics problems. At the conclusion
of theinitial meeting, each volunteer was asked whether he or she was till interested in
participating in the study.

Six students, two from each instructor’ s class, were selected to participate in the
study. The selection of was based on three criteria: my impression of the student’s
comfort level with me and willingness to respond to questions, my impression of
student’ s willingness to seek help with mathematicsif and when difficulty was
encountered, and the student’ s reported mathematical ability. | chose the first two criteria
in an attempt to maximize responsiveness during the interviews. The third criterion was
used in an attempt to select students whose goal it was to pass the course.

Each of the participants was paid $150 for his or her participation in the study.
The monetary award was a strong motivator for at least three of the participants, each of
whom noted that he or she might not have volunteered if compensation had not been
offered. | chose to compensate the students for two reasons. First, the participants were
committing a substantial amount of timeto the study. Each interview was scheduled to
last between 60 and 90 minutes, and nine to twelve interviews were conducted. Hence

the money was offered as partial compensation for the participant’ stime. Second,
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because of the small size of the sample, | needed to retain all of the selected participants
for the duration of the study. The cash award provided incentive for the students to
complete al of the interviews.

One of the instructors (Teacher 2) began presenting the logarithmic function the
day | attended his class to solicit participants for the study. It was his practice to
introduce concepts slowly over anumber of days. Although hisfocus during the first few
days was not the logarithmic function, several of the activities he used were meant to
stimulate students' thinking about the function. | was only able to select the participants
from Teacher 2's class after he had presented some concepts associated with the
logarithmic function. Hence, although | had selected two students from each of the three
classes to participate in the study, the data collected from the studentsin Teacher 2's
class were not analyzed.

Data Collection Phases

The procedure for the study was broken into three phases: preinstructional,
instructional, and postinstructional. During each phase, evidence of the student’s
understanding of the logarithmic function was collected. This evidence was used to
develop conjectures about the student’ s beliefs about the logarithmic function during each
of the phases. My decision to gather datain these three phases was based in part on
Brownell’ s (1972) comments regarding researcher’s claims of learning. In particular,
Brownell noted that |earning claims should only be made if some time between
instruction and testing was built into the study. Naturally, when students are tested
immediately following instruction, they often demonstrate increased computational
proficiency on the concepts presented. A better measure of what a student understandsis
what he or she knows after some time has elapsed. Hence in this study, data on the
students’ understanding were gathered 6 weeks after instruction was completed. Another
reason | collected data during the three phases of the study was to gather evidence of

changes in the student’ s understanding.
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Preinstructional Phase

The preinstructional phase was conducted during the second week of November,
prior to classroom instruction on the logarithmic function. In these classes | took notes
from the board and observed the general structure of the class. In particular, | looked for
general procedures used by the instructors and how each of the participants responded to
those procedures.

During this phase Interviews 1 and 2 were scheduled and completed. Both
interviews for each participant were 60- to 90-minutes long and the two were completed
within afive-day period. The interviews were conducted in alarge office in an academic
building on the RC campus. The office was comfortable and contained a large office
desk with a pull-out surface on which the students could work. For each interview, the
student was positioned to my left with the pull-out work surface between us. | used a
boundary microphone and a standard cassette recorder to tape the interviews. | chose a
boundary microphone because it was less conspicuous and it picked up even very soft
speech. During the pilot study only the cassette recorder was used. When students
became confused, they spoke softly and the recorder did not pick up their comments.

I nstructional Phase

The instructional phase of the study was concurrent with instruction on the
logarithmic function. This phase consisted of classroom observations and student
interviews. During the observations, | developed a set of class notes and recorded
various actions of the participants. My field notes were recorded on 8.5-by-11 paper, in
two columns. The left column contained the board notes and relevant comments made by
the instructor; the right column contained observations regarding student behavior during
class (e.g. student responds to instructor’ s question).

Within 24 hours of any class meeting during which the logarithmic function was
discussed each participant was required to complete Interview 3. Thisinterview lasted
between 15 and 30 minutes. In several cases students could not recall exactly what they

understood or not understood during class. In these cases | provided my class notes to



help stimulate recall. For two of the participants this interview was repeated three times.
If the student allowed me to interview him or she more than once during the instructional
phase, the mapping activity was only conducted during the first iteration of the interview.

Postinstructional Phase

The postinstructional phase of the study took place during the last 3 weeks of
January 2001. By thistime each of the participants had completed college algebra.
During this phase, Interviews 4 - 9 were conducted. Although Interview 5 wasto last no
more than 90 minutes, two of the participants worked on the activity for approximately
100 minutes. This amount of time proved to be too much for both the participants and
me, and hence | enforced a strict 90-minute time limit on the remainder of the interviews.

Genera Procedures

During the study | kept an electronic journal on each of the participantsin the
study. Following each interaction with or observation of a participant, | made notesin
the journal. After class| recorded my general impressions of the class, the student’s
behavior in class, and any interpretations | had regarding that behavior. Following each
interview, | recorded in the journal comments the student had made either before or after
the interview regarding personal activities, goals, and attitudes. In addition, | made notes
regarding my impressions of the student’s activity and major questions | had about the
student’ s behavior during the activities. | used these notes as data in the devel opment of
student profiles and in the preliminary stage of data analysis.

Each day | had lunch in the instructor’ s lounge. During thistime | was ableto
hear conversations between two of the instructors (Teachers 1 and 3) whose classes |
observed. These comments provided me with additional information about the
curriculum and philosophy the two used to teach the logarithmic function.

DataAnalysis

Transcription. | personally transcribed each interview and added comments

regarding the student’ s actions based on my interview notes. This process was extremely

valuable, sinceit allowed me to get to know the student’ s intonations and ways of
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speaking. | finished the transcription before proceeding with the devel opment of case
summaries. A three-ring binder for each student containing the transcripts, task sheets,
maps, drawings, any scratch work produced by the student, along with a hard copy of my
journals for the student became the case books for the study.

Case notes and summaries. | read and made notes on each interview, marking
what | felt were especially significant passages in the transcripts or images in the
drawings, maps, and task sheets. | identified and described important categories from
each interview, which | called case notes. | then summarized the events of each
interview and elaborated on the categories | identified in the case notes. | called these
summaries case summaries.

Coding and identification of evidence. After an interview was summarized, | then

coded it using the following coding scheme devel oped from the framework described in
chapter 1 and from the case summaries. | also asked the writing group of mathematics
education students at UGA to code oneinterview. Based on our discussion, the codes
were revised to include categories of representations used by the students.
1. Conception: Student explicitly communicates feelings or ideas about the logarithmic
function.
2. Representation: Student uses written or oral symbols to think about or communicate
about the logarithmic function.
a. Written: Student uses written notations and words to communicate or investigate
aproblem.
i) Name: Student uses awritten name for an action or procedure.
i) Notation: Student uses written notation for an action or procedure.
i) Maxim: Student uses a written phrase for an action or procedure
iv) Description: Student writes a description for an action or procedure.
b. Oral: Student useswordsto communicate about the logarithmic function.
i) Name: Student uses a name for an action or procedure.

i) Notation: Student uses notation for an action or procedure.
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i) Maxim: Student uses a phrase for an action or procedure.
iv) Description: Student gives description for an action or procedure.
c. Pictorial: Student uses a picture or a graph to communicate or investigate a
problem.
d. Tabular: Student usesatableto communicate or investigate a problem.
3. Connection: Student translates or transforms a representation.
4. Applications: Student uses the logarithmic function to solve a problem.
5. Ways of Knowing: Student uses a procedure to solve a problem he or she does not
recognize as arepresentation of the logarithmic function.

Summarizing evidence. After the data were coded, the evidence of understanding

for each of the interviews and then for each phase of the student was summarized on a
single 8.5-by-11 sheet of paper. The summary sheet was divided into four quadrants
labeled “conceptions,” “representations,” “ connections,” and “applications.” At the
bottom of the summary sheet for Interviews 5, 6, and 7, evidence of ways of knowing
was recorded. Sources (transcripts, maps, drawings, participant observation notes, or
impressions), locations (line numbers in the transcript), and evidence were recorded on
the summary sheets. These summaries were then used to characterize the student’ s beliefs
about the logarithmic function for each phase of the study.

Student’ s beliefs., Using the summaries of evidence from each phase of the study,

| noted ideas that were used in more than one way by the student. For example a student
who used an oral and written representation for the sum of logarithms might have a belief
about this property of the function. | conjectured possible beliefs and then searched the
case summaries for evidence supporting and contradicting my conjectures. Modifications
were made to the conjectured beliefs when they did not fit the evidence. In the proposed
beliefs | attempted to preserve some of the student’ s way of communicating.

Themes. | used the student’ s beliefs to make generalizations about their
understanding. In particular, | put each belief from each phase and participant on a piece

of paper and grouped the papers into categories. Some beliefsfit into two categories. |
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then generated written descriptions of the beliefs students used during each phase. These
descriptions helped me identify themesin the beliefs. For example, during the
preinstructional phase, students speculated about the logarithmic function. When |
described what the students speculated about, | was able to see themesin the beliefs. |
then coded the beliefs with the four themes.



CHAPTER 4: CASE STUDIES

This chapter consists of four case studies of students in two of the classes |
observed. Each case begins with a description of the student, his or her view of
mathematics, and his or her view of understanding. A summary of the evidence of
understanding in terms of the student's conceptions, representations, connections, and
applications of the logarithmic function and its properties for each phase of the study is
presented. These summaries serve as the background for the beliefs that constitute the
student's understanding of the logarithmic function for each phase. A discussion of the
student's changes in understanding is presented. To close each case, | argue that one or
several of the ways of knowing used by the student during the postinstructional phase
could be used as the basis for further growth of understanding of the logarithmic
function.

Jamie
Getting to Know Jamie

Jamie was 18 and afirst-year student at RC. She commuted to school from a
small town about 30 miles west of the college. | was quickly impressed with Jamie
because of her interest in mathematics. She was very enthusiastic about the subject and
planned to become a middle school mathematics teacher. She was so interested that since
her high school graduation, she had observed one of her high school mathematics
teachersto investigate the possibility of becoming a secondary school mathematics
teacher. One visit was enough to convince her that she did not want to teach secondary
school mathematics. Jami€' s positive experiences tutoring her sister, a seventh grader,
convinced her that she would prefer teaching middle school students.

Jamie was a very busy young woman, working 37 - 40 hours aweek as a server at

aregional restaurant chain while also taking 12 semester hours at RC. Occasionally her

58
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home and school environments as well as her workload were sources of stress for her. |
asked Jamie to tell me more about being stressed out. She said,”| had so much to do and
solittletimetodoitin. And | wastrying to work and trying to do my algebraand | had a
test and...it was stressful. Very, very stressful.” School was not Jamie's only source of
stress. She also spent time defending her decisions to her colleagues at work and
debating them with her mother. Some of the women that she worked with took pleasure
in reminding Jamie that she was a server and would likely be one for the rest of her life.
Her mother, on the other hand, had high expectations for her daughter. She wanted Jamie
to do well in school and to graduate. The hopes that Jamie’ s mother had for her, while
helpful at times, caused conflict when they were manifested in advice. Jamie resented
her mother’ s advice and felt that since her mother had never attended college, she did not
understand the stressinvolved. Hence, any advice that Jamie' s mother gave was
unwelcome. This tension caused conflict between the two during the spring 2001
semester. Jamie realized that she would not be able to take 12 hours of course work and
work full time. Since the money she earned was used to pay for her car and gasto
commute to school, the job was necessary. In order to maintain a B average and to
achieve her long-range goal of becoming a mathematics teacher, Jamie felt that she had
to drop aclass. Her mother did not agree. The two argued about Jami€' s decision, but
ultimately Jamie did drop aclass.

Jamie loved the freedom that professors at RC allowed. Speaking of her first
month in college, Jamie said, “It made me feel like more of an adult.” She noted that
teachers at RC differed from those she had in high school because “they don’t go behind
you every step of the way to make sure you are doing everything that you' re suppose to
do asin high school they did.” This new autonomy suited Jamie, since she did not need
anyone to check up on her.

Jamie As a Mathematics Student

During Interview 2, Jamie described herself as a mathematics student: “Focused.

| liketo explore new things. Learn new things. ... And | liketo be organized. | haveto
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have everything redly, really organized.” Being focused and organized were necessary
characteristics for Jamie. Her hectic schedule did not allow time to think too long about
the concepts that were presented to her. Instead, if she ssmply copied the examples from
the board and reviewed them later, she was usually able to figure out how to do the
homework problems:

The thing that helps me learn most, like whenever she (Teacher 1) puts the

examples on the board, if | copy those down | pretty much, | can look

back. Shegivesredly, really good examples, and she writes everything,

al the steps and stuff on the board. So that helps me out alot whenever |

write them down, because | can go back to them whenever I’'m doing my

homework.
When Jamie could not figure out how to do a particular type of problem, she sought help
from multiple sources: Teacher 1, afriend that sat next to her in class, the textbook, and
the academic assistance center (AAC), afree on-campus tutoring center. Having afriend
who was willing to help was nice, but not essential for Jamie:

S. So you meet to study for thetest. Okay ...would you say that sheis

very helpful to you?

J. She helps me out alot because there's some stuff that | understand and

there's some stuff that she understands that | don’t understand, so we kind

of counteract each other.

S: Doyou think it’s really important for you to discuss it with her to get a

good understanding.

J. Itisnot so much that it'simportant. It helpsalot. | mean, if | didn’'t

have her to study with, | could go to the AAC. Butit'salot easier

whenever you know somebody that’s in your class and you know where

they live and if you need them. Y ou know they will be there.
Jamie’ s friend was accessible and available 24 hoursaday. In addition, Jami€’ s friend

knew what had been presented in class. That knowledge made her the best out-of-class
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source of help. Jamie did not hesitate to ask for help when she could not do a problem.
Once, during the preinstructional phase of the study, she even came by and asked me for
help on a graphing problem from the class handout.

Since she wanted to become a mathematics teacher Jamie was very interested in
doing well in her mathematics classes. During Interview 2, she explained her goal in her
mathematics classes:

To do my best to make the best grades that | can which is not very good

sometimes. To try to understand exactly what she is talking about and not

just kind of have the fuzzy idea. To understand exactly what she' s talking

about, and if | don’t understand, and then | will just go to her later and talk

about it.

If she could not do the problems that were presented in class after trying them on her own
Jamie sought help. She described going in for help twice when she was trying to learn
how to find "holes" in rational functions. Jamie did not like feeling that she could not do
aproblem.

| was scared that it was going to be like amgjor part of thetest. And |

didn’'t know how to doit. And | waslike, oh gosh, thisisn’t going to help

meat all. But sinceit wasjust abonus, and | saw that it kind of helped me

alittle. 1 mean | understood the concept, like on the test | got it right, but |

missed one part of it. Because you had to explain some stuff, and | missed

one part of it, but other than that | got it all.

Jamie wanted to do well on the test and was happy that "holes" were not amajor part of
it. She only missed a problem that asked for an explanation. She knew how to do the
"hole" problems.

Jamie sat on the right side of the classroom, three chairs from the front. She
stayed busy during class taking notes on the handout, doing problems, or using her
calculator. Jamie did not like to miss class. She felt that the material was cumulative and
that she would have a difficult time catching up if she missed class. While | observed the
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class, she missed one day because her mother was having outpatient surgery and she
wanted to be with her. According to Jamie, missing class was “not fun.” During
interview 2 she elaborated:

It's not fun. Especialy if you have ... missed a couple days or if you were

sick. You just don’'t know what isgoing on. That'sawful. In algebral’ve

only missed like 3 days, because | try to be there as much as| can, because

if you miss aday then you are totally thrown off. Becausein her... and if

| do missclass... stuff that she does the next day is based on the day

before.

If Jamie did missaclass, it simply meant she would have more work to do, thereby
complicating her already hectic schedule.

In class Jamie followed along on the handout and even got ahead of the teacher if
she knew how to do the problems. She asked questionsif she needed clarification on a
problem. Although she felt that doing homework was important and helped her
“understand” more about the concepts, Jamie did not always do al the homework. She
worked on assignments regularly, but in her notebook her assignments were not
complete.

Jamie earned aB in college algebra. She explained that although the course had
not been particularly difficult, she had earned a B in part because of her hectic schedule.
Jamie was satisfied with her grade but had wanted to do better.

Understanding M athematical Concepts

When | asked Jamie to define the term under standing she described it as afeling.
Feeling...knowing what is going on. Feeling sure. Feeling sure that you
are familiar with the concepts. And it’s not being fuzzy or that you don’t
know what is going, but that you are...that you're...I don’t know, | can’'t
think of aword to use. | guess comfortable with it.
Feeling comfortable with a concept was not the only way that Jamie evaluated her own
understanding. In practice, Jamie said she understood a mathematical concept if she
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could do the problems associated with the concept. Jamie’'s view of understanding was
depicted in her comments about her actions when she did not understand a mathematical
concept.

J. If | don’t understand it, then...I know that either I’m going to have to go

to the AAC or I’'m going to have to try to work.... Working more problems

helps, like more of the same kind of problem that | don’t understand. And

those answersin the back of the book help too because... if you get the

right answer, then you will know it immediately, if you work the odds. It

isjust the more that you do it, the more that you understand. Likeif you

start out with not understanding it, and you work more and more

problems, you will get it eventualy. It might take awhile, but you'll get it

eventually.

S. Right. Doesit create some kind of meaning, or do you just learn how

to do the process?

J. Learn how to do the process. Once you get the hang of how to do it

then any problem, pretty much that she puts down there, you can do it if

you understand like the process of how to do it.
Jamie wanted to feel comfortable, but the feeling was associated with being able to do the
problems. Understanding a mathematical concept for Jamie meant she felt comfortable
because she could do the procedures associated with the concept.

Jami€' s Understanding of the L ogarithmic Function: Preinstructional Phase

Evidence of Understanding

Three categories of evidence were collected during the preinstructiona phase of
the study: conception, representation, and connections. There was no evidence of
application of the concept because Jamie did not recall ever having seen the function

before.



Conception. Jamie' s first remark about the logarithmic function was “| don’t
know that we did it.” She did not remember “doing” the logarithmic function in high
school, and explained that her class had not gotten very far in the textbook.

Our teacher wasreally, really detailed so we didn’t get very far. Wedid

likealot alot of stuff. Wedidn't get very far in the book. | think that

might have been in the back, because | don’t think we did it.

Not recalling any instruction on the logarithmic function made the skills assessment
difficult for Jamie. When we discussed Jamie€’s feelings about not understanding she
focused on the notation In,: “If | knew what L-O-G (she spelled out log) three was, |
might could do them.” Jamie felt if she knew what the notation meant, then she would
have been able to do the problems. This thinking was consistent with her drawing and

explanation of her process of understanding (see Figure 6). Jamie explained her drawing:
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Figure 6. Jamie's drawing of her process of understanding.
At first, she gives you the formulay = mx + b, and you're like, that doesn’t
really relate to numbers. And then she gives you numbers, and you have
to plug them in and work the problem out. Like at first whenever she

gives you the formula with no numbers, you don’t know how to work it.
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But then whenever she gives you some numbersto fill in, it salot easier

to understand because you can relate the numbers to the | etters.

The method that she explained is the same one she used on the skills assessment. She
saw the notation for the logarithm as aformula and tried to figure out what numbers
should be plugged into it. Jamie's conception of the logarithmic function was that it was
an interesting formula. Interesting because “it looks cool,” and * 1I'm ready to learn how
to do those things.” Jamie wanted to learn how to “do” the logarithmic function by
learning how to use the formula.

Representation. In the preinstructional phase of the study, Jamie used notations
and names that she read on the skills assessment to represent the logarithmic function.
Her first map of the logarithmic function gives an indication of the influence that the
skills assessment had on her understanding during this phase (see Figure 7). Jami€’'s

notation
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Figure 7. Jamie's map of the logarithmic function from Interview 1.
log,,, was a generalization of notation used in the skills assessment. Her use of the
guestion mark as a variable was consistent with other notations she used during the study.
In solving problems or doing tasks, Jamie used “?’ as an unknown or variable. So,

although she included the question “What does it mean?’ on her map, Jamie was not
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literally searching for meaning. She ssmply wanted to know how to use formulato do the
problems.

Aswith the notations, the names Jamie used were all taken from the skills
assessment. Logarithms, graphs, and table of values were depicted on her map as
associated with problems she could not do.

Connection. Jamie was sure she had never seen the logarithmic function before
Interview 1, so the connections she made during the preinstructional phase of the study
were the result of her experience with the skills assessment. These connections are
depicted on Jamie' s map of the logarithmic function (Figure 7). Jamie linked all three:
the notation In,, graphs, and tables. Based on her experience with the skills assessment,
Jamie hypothesized that there were links between the notation she saw, tables, and
graphs. During the instructional phase, Jamie quickly abandoned this hypothesis.
Beliefs

Jamie saw the logarithmic function as a formula that she needed to learn how to
use. Shewas interested in learning how to do the problems presented on the skills
assessment. In particular she wondered what the notation stood for in terms of numbers
and how it might help her graph the function and create atable of values. Thusthe
following beliefs represent Jamie' s preinstructional understanding of the logarithmic
function:

1. Thelogarithmic function is associated with the notation log,, , which might represent
anumber.

2. Thelogarithmic function isinteresting, and | would like to know how to do the
problems.

3. If I could figure out how to use the notation log, , | could do the problems.

4. Thelogarithmic function isrelated to at least two types of problems: creating atable

of values and drawing graphs.



67

Jami€' s Understanding of the L ogarithmic Function: Instructional Phase

The presentation of the concept of the logarithmic function in Teacher 1's class
consisted of a series of handouts that the students filled in during the lecture. Thetitle of
the handouts always included a section number from the book. For example, the handout
distributed on November 29th wastitled 4.3 Logarithmic Functions. 4.3 was the number
of the section from the text that introduced the logarithmic function. Problem 1 on the
handout was stated as follows:

Graphy=2"and itsinverse. Graphy = (0.5 and itsinverse.
Space was |eft beneath the problems to allow the students to copy Teacher 1's procedure
as she worked the problems on the board. During each class, time was set aside for
student questions and practice. Teacher 1 circulated during student practice, helping
individual students with the problems on the handouit.

Jamie particularly liked this method of instruction. She could go at her own pace,
which was a bit faster than the pace of the class. She explained how she worked in class.

S: So when sheis saying stuff and you see where it’s going, you

sometimes do things on your calculator...

J. Yes ma am but one thing I’'m bad about is like...whenever we are doing

the handout that she gave us today on the back. | went ahead and worked

all the problems before she did.

S: Well, I don’t think that’s a bad thing.

J. Like whenever she explainsthefirst one...I’m bad about that. I've

always donethat. If I understand something I’m going to go ahead and

work them all. | know she was thinking, “Jamieis not doing anything,”

but | had already done them.

When Jamie knew how to do a problem on the handout (“If | understand something”) she

“worked” all the problems similar to it.
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Evidence of Understanding

Conception. Jami€e' s conception of the logarithmic function during the
instructional phase consisted of two elements: interest and connection with exponents.
Before | started taping Interview 3, Jamie came in very excited, saying that she had
enjoyed class. “I don’t understand where I’m going to apply it (the logarithmic function)
but it was interesting.” Her excitement and interest in the logarithmic function was based
on her feeling that she knew how to “do” the logarithm notation. In particular, she knew
how to calculate logarithmic expressions using her calculator and how to convert
expressions from exponential form to logarithmic form.

Jamie associated her knowledge of exponents with the logarithmic function.

“Y esterday we learned about how to convert ... from exponentsto logs. And exponents
are something that | kind of knew about, so that kind of helped me convert them to logs.”
The origin of this association was instruction. Teacher 1 motivated the connection by
asking the students to explore 2* = 10 and then introducing the logarithm as an exponent.
Jamie used her calculator and atrial-and-error method to quickly approximate the
solution. Hence Jamie associated her knowledge of exponents with the logarithmic
function.

Representation. Jamie worked in two representational modes during this phase of
the study: oral and written. Her use of oral representations of the logarithmic function
and its properties consisted of naming procedures and notations. The four primary names
she used were converting, exponents, logs, and properties. Teacher 1 had used each of
these terms in class during her presentation of the logarithmic function. Terms such as
base were not defined. Sample problems were presented, and the terminology was used
in the demonstration of solutionsto the problems (see Figure 8). It was up to the students
to

Log form Exponential form

log,32=5

Figure 8. Example of converting problem from a class handout.
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define the terms. For Jamie the term converting became a procedure one used to change
an exponential expression to alogarithmic one.

Jamie used the term propertiesto refer to the following mathematical notations:
log, MN =1log, M + log, N and log, MP = plog, M. She noted during Interview 3 that she
had not understood the properties. During class, Jamie was confused about a question that
involved expanding an expression (see Figure 9 for the problem and the directions given
in the text). Jamie asked: “ Are you suppose to work it out?’ Teacher 1 responded to
Jami€’s

Expressin terms of sums and differences of logarithms
log, 6xy°Z*
Figure 9. Jamie’' s homework problem.
question by doing the problem on the board. Her answer waslog, 6 + log, x+ 510g, y +
410g, z. After the teacher finished, Jamie asked: “So if it says write as a sum, you don’'t
work it out? Just go that one step? | worked it out and found a number.” Jamie thought
the properties of the logarithmic function were used to find numeric answers. This
thinking is consistent with her view that to understand mathematics, one learns how to
plug numbers into formulas. Hence the properties in notational form, log, MN = log, M +
log, N and log, MP = plog, M, were formulas she had difficulty using.

The written representations that Jamie used corresponded to the names and

notations that she had seen in class and used during Interview 3. Her map (see Figure 10)

of the logarithmic function during this best illustrates Jami€e' s use of written
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Figure 10. Jamie’s map of the logarithmic function in the instructional phase.
representations. “Logarithmic function” on Jamie’s map is linked to the categories of
exponents, convert, log, properties of logs, and the natural logarithmic function. (The
category labeled equations has a question mark below it because Jamie had not studied
equationsin class yet.) Below the word exponents, an example of an exponential
expression and its conversion to logarithmic form are given. The notation and examples
Jamie used on her map were presented in class that day. Jami€e' s use of names and
notationsin our interview and on her map illustrates how she understood the logarithmic
function. The names and notations were related to problems that she needed to know
how to do.

Connection. During the instructional phase of the study Jamie made connections
between written representations of the logarithmic function. She connected names,
notations, and procedures. The term convert isa good example of this practice. On
Jamie’' s map of the logarithmic function, she linked exponents and log with the name
convert. This name represented a procedure that she illustrated notationaly with an
example.

Jamie also connected names and notations for which she did not yet have

procedures. On her map Jamie included a category: properties of logs. This name was
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connected to two notations: log, MN = log, M + log, N and log, M = plog, M linked to a
guestion mark. Jamie realized that these notations were important, but she did not have a

procedure for them yet. Teacher 1 had talked about them in class, but Jamie could not use
the properties.

Jamie’ s connected names and notations with problems and the procedures used to
solve them. When she could not associate the names and notations with problems, she
“did not understand” them.

Application. | defined application as the use of the logarithmic function or its
properties during problem solving. During the study the logarithm key on the calculator
was referred to and used by the students as a resource to generate information about the
logarithmic function and to compute logarithms. For example, Jamie used the cal culator
to determine that zero was not an element in the domain of the logarithmic function. She
entered log 0, and when an error message was returned, she assumed that zero was not an
element of the domain. Whether or not students used the calculator to generate
information or calculate logarithms, how they used calculator to help them solve
problems was part of their knowledge of the logarithmic function.

The T1-83 graphing calculator is standard equipment for all students taking
mathematics classes at RC. The demonstration and use of the calculator during
instruction via an overhead projection panel was a daily occurrencein all of the classes|
observed. The logarithmic function unit was no exception. Teacher 1 encouraged the
students to use their calculators to evaluate logarithmic expressions. In fact, the handouts
used in class had a section entitled “ Evaluating L ogarithmic Function on a Calculator.”
Throughout her presentations, Teacher 1 referred to the calculator. For example, while
she demonstrated how to “evaluate logarithms on a calculators’ she remarked, “Y ou can
do some of these without a calculator, but in the interest of time we are going to do them
all with our calculator.” She showed the students how to rewrite log, 10 using the change
of base formula so that they could “find” the logarithm with their calculators. At the end
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of class, Teacher 1 said, “Make sure you know how to use your calculator just like we
were doing today.”

In part as aresult of thistype of instruction, Jamie came to see the natural
logarithm and logarithm keys on her calculator as useful tools for finding the logarithm of
anumber. She used her calculator in each class. When she entered class she took out her
notebook and calculator and laid them on her desk. She used the calculator to explore and
check answers she or the teacher got during class. Jamie applied the logarithmic function
when she used the logarithm key on her calculator.

Beliefs

During instruction, Jami€’s beliefs about the logarithmic function shifted. She
still found the function interesting but was now focused on becoming proficient with
terms, notations, and procedures associated with the logarithmic function. This practice
was consistent with Jami€e's desire to do well on the tests. She believed that the
logarithmic function was like any other mathematical concept. 1f she could learn how to
associate problem types with names, the notation used to solve the problem, and the
procedure for doing the problem, Jamie felt she would do well on the test. Jamie’s beliefs
about the logarithmic function are related to this general belief:

1. Exponents are related to logarithmss.

2. Thetermslog, exponents, convert, and properties are important to know if you want
to be able to solve problems.

3. The propertieslog, MN = log, M + log, N and log, M" = p log, M are important to
memorize for the test.

4. Converting is used to change an exponential expression to alogarithmic one.

log10
5. Toevaluatelog, 10, use the change of base formula Ioog >

and your calculator.

6. Useyour calculator to evaluate logarithms.
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Jami€' s Understanding of the L ogarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception. Jami€e' s conception of the logarithmic function during the
postinstructional phase was that the function was hard. Her rationale for this assertion
was that the logarithm is aword not a number. According to Jamie, that made it hard to
remember. She also explained that after her second attempt at the skills assessment, she
knew much less about the logarithmic function than she had known during the
instructional phase. When | asked her how she felt about the skills assessment activity,
shereplied, “ | felt bad since | thought | knew alot about logarithms.” Because she was
not able to answer most of the problems, she did not feel she understood logarithms. The
best illustration of Jami€e's evaluation of her understanding during the postinstructional
phase of the study is her drawing of her process of understanding. During Interview 9, |
asked her to visualize her process of understanding the logarithmic function and to draw a
diagram or picture of that process (see Figure 11). Jamie depicted her understanding as a

series of hills, each one



74

Figure 11. Jamie s drawing of her process of understanding.

corresponding to an interview. The height of each hill represented how much Jamie felt
she understood about the logarithmic function at that time. The hill drawn above the
heading “Interview 3" isthe tallest, whereas there is no hill drawn for Interview 4. Jamie
labeled thisinterview “fuzzy.” Jamie defined the term fuzzy as “ not understanding what is
going on. You know kind of what to do, but not really how to do it. And you know
kinda how to do the problem, but you are not getting the right answer. Just kind of
uneasy | guess.” She used the term when she did not know exactly how to do the task or

problems she was asked to do. Her use of thislabel on her drawing during Interview 4
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indicates that she felt she did not understand the logarithmic function. During Interview
7, Jamie once again called the logarithmic function hard. She noted that doing the task
made her head hurt. Because Jamie was not able to complete skills assessment or the
tablesin Interview 7, she referred to the logarithmic function as hard.

During Interview 5, Jamie introduced arationale for her difficulty with the
logarithmic function during the postinstructional phase that explained her conception of
the logarithmic function as hard:

J. | thought about thisinterview during English. Why, | don’t know. But

| think the reason that we don’t understand logarithms after such a short

time is because there are words associated with it, and with math you think

totally about numbers. And the word and number association just doesn’t

stay clear. | don't know why | thought of that, but I did.

S: That would make sense with some of the other comments that the

participants are making actually.

J: | think that word log isjust,...l think if it was like a certain number it

would help.

Jamie' s theory that the logarithmic function was aword and should be related to numbers
isreminiscent of her preinstructional understanding of notation log, as anumber. Jamie
commented in Interviews 8 and 9 about the difficulty she was having remembering that
the logarithmic function was based on its representation as aword. During Interview 9,
when | asked Jamie to define understanding logarithms, she noted:

| understand like more, uhm, by the activities (in Interviews 5 and 6) we

did, because they were dealing with it (the logarithmic function), but they

didn’t have that word (logarithms) in there. That word just,...I think that’s

what throws everybody off. Becauseit isnot numbers. It isjust words.

Jami€' s conception of the logarithmic function was as a confusing word that made

problems harder to solve. So the first component of Jamie's conception of the logarithmic
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function during the postinstructional phase was that the function was hard because it isa
word and not a number.

Jamie felt that she was more successful with tasks during the postinstructional
phase that did not involve the word logarithm. During Interviews 5 and 6, Jamie
represented the problems using exponents, but she was not aware that either of the tasks
was related to the logarithmic function. When | asked her to make a map of the
logarithmic function during Interview 8, she asked about including the interview tasks on
her map: “What we did in this study was what | was thinking about. It didn’'t haveto do
with it (the logarithmic function) | don’t think. Those exercise (tasks) we did didn’t. Did
they?” When | told Jamie that all of the postinstructional interview tasks were related to
the logarithmic function, she included the tasks in her map of the logarithmic function
and reasoned that she understood the logarithmic function better when the word was not
used in the problem.

Jamie’ s conception of the logarithmic function as hard was a change from her
conception during the instructional phase that it was easy. Aswe have seen, this change
in conception was due to Jami€' sinability to perform the interview tasks. Her conception
of the logarithm as aword appears to be connected to her view of the logarithmic
function during the preinstructional phase as a notation that “might be a number.”

During instruction, Jamie never indicated that logarithm being a word made it a harder
concept. This postinstructional conception is a reappearance of her preinstructional
conception of the logarithmic function as letters that stand for a number.

Representation. During the postinstructional phase, Jamie focused on three
modes of representation: oral, written, and pictorial. The oral representations that she
used were names. The written representations were names, notations, and descriptions.
She used the pictorial mode to explain and illustrate procedures. The representations
Jamie used were often to answer questions that | asked. She rarely used anything but

notation to do problems on her homework.
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Jamie sora representations in the form of names were trial and error and
convert. Trial and error was Jami€' s name for any procedure that involved using the
calculator to investigate a mathematical question. Jamie used the term to explain how she
found exponents during Interviews 5, 6, and 7. During Interview 5 Jamie used the
procedure to find the sign above the product 64[256.

S: Okay, now how can you figure out the sign that is above that [64 -

256]7?

J. Tria and error is how | have been for 15 minutes. Oh, | just totally lost

my number [64 - 256]. Thistakes forever. Thisisfrustrating. | want to

figureit out.

S: You are doing great.

J. Two raised to the...(uses calculator to find the exponents). Ha! That

number was? Where did it go? Isthat the same number?

Jamie evaluated 2 raised to various exponents on her calculator until she matched the
calculator display with the answer she was holding in her mind. The match told her that
the exponent she used was the answer. She also used the term trial and error to refer to
finding values that were not in the domain of the logarithmic function and for finding the
correct exponential expression for a given logarithmic one. An example of the latter
occurred during Interview 8. Jamie demonstrated the procedure for converting, the
second name she used. She showed me how to transform log,, 2 = .30 to 10%° = 2.

S: Oh, okay, thereis an exponential and alog, and you can go back and

forth.

J Right. You can convert it or whatever.

S: So how did you know to put the 10 there [as the base in the exponential

expression]?

J: You just have to remember that. That isthe formula, but you can use

a’'sand b’'s or something. | don’t remember how the formula goes, but

this base number would be your number that you are raising to the power,
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and this would be the exponent [pointsto .30 in the logarithmic

expression] and that would be the answer [pointsto 2 in the logarithmic

expression].

S: Oh, okay, so you just have to remember where everything goes.

J Right. But, if you don’t remember where everything goes, you can kind

of work with it in your calculator to figure it out.

S: Soyou just what? Try some stuff.

J. Right, you can try trial and error. That always works really well.

Here Jamie used the term trial and error to refer to how one can figure out the
positions of the numbers in the exponential notation. She did not remember the
positions and suggested that the calculator could be used. For Jamie the two uses
of the calculator were similar, so she named them both trial and error.

The second name Jamie used was convert. What Jamie meant by thisterm
was illustrated during the preceding interview excerpt. The primary difference
between Jami€e' s use of the term during the instructional phase of the study and
the postinstructional was that during the latter she used the term to refer to
conversions from an expression in logarithmic form to one in exponential form.
She did not convert expressions in exponential form (such asthosein Interviews 5
and 6) to logarithmic form. She did not think the tasks had anything to do with the
logarithmic function. She asked me whether they were related during Interview 9.
Seeing the signs above the number line as exponents was not associated with the
logarithmic function for Jamie. She used the term convert to refer to transforming
expressions in logarithmic form to exponential form.

Jamie’ s written representations included names, notations, and descriptions.
Convert was the name Jamie used most often. The name occupied a central positionin

both
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Figure 12. Jami€' s map of the logarithmic function from interview 8.

maps that Jamie constructed during this phase (see Figure 12). Jamie saw her convert
procedure as her most effective tool to do problems with logarithmsin them.
Trial and error was not depicted on any of Jami€'s maps, but she did write the

term during Interview 5 when she summarized her actions (see Figure 13). For Jamie, the
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Figure 13. Jami€ s written representations of the data generated in Interview 5.

overarching theme for the task in Interview 5 wastrial and error. She used the procedure

to find the sign above the number % aswell asthe number 3. In her diagram Jamie also

used another type of written representation: notation. The notation she devel oped

contained her representative for an unknown, a question mark. This self-generated
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notation stands in contrast to notations that she tried to remember. During Interviews 4
and 8 Jamie tried to remember the rule for adding logarithms (see Figure 14). Jamie
referred to problems like

Figure 14. Jamie's map of the logarithmic function from Interview 4.

the oneillustrated on this map as “easy,” because she had done so many of them during
the instructional phase that she thought she knew how to do them. Jamie had no way of
checking her calculations, so she trusted her memory. Both the notation illustrated and
the faulty rule were used often during this phase of the study. During Interview 8, when |
asked Jamie what problems one might use the logarithmic function to solve, she again
presented log, 4+ 1og, 5=10g,9. Jamie also used the notation while demonstrating or
implementing her convert procedure. During Interview 7, | wrote a notational
representation for one of the table entries. She used my written representation, log, 2 =
.631, asthe basis for her solution path. Using this representation, she applied the convert
and atrial-and-error procedure to find the combination of 3, 2, and .631 that resulted in a
true statement in exponential form. She then used the notation in Figure 15 to help her fill
in some of the cellsin the second table completion task. Jamie was mimicking, with
modification, the

log,4="?
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=4
Figure 15. Representation Jamie used to fill iny values.
written notation that | gave her and combining it with the exponential form that she
generated.

Thefinal type of written representation Jamie used was description. Asarule,
descriptions were not a part of Jamie’s problem-solving process. She used them during
Interviews 5 and 6 to describe the relationship between variables. For example, during
Interview 5 Jamie described the relationship between the line numbers and the sign
numbers: “The relation between the number and the signsis 2 raised to the sign or #in
the box is the answer to the # on the number line.” Jami€' s description is a summary of
her procedure more than an illustration of arelationship.

Jamie used very few pictorial representations during her interviews. Aswe have
seen, she summarized her trial-and-error procedure from Interview 5 with a picture of the
number line and arrows indicating the positions of numerical expressions she wrote. In
addition, she provided the diagram in Figure 16 of her convert procedure when | asked
her to define logarithm. The arrow represents the procedure. Her notation indicates that
she

exponential - logarithmic
10°=1000  log,,*°= 1000
Figure 16. Jami€e s definition of logarithm during Interview 5.
knew there was a procedure involved but could not perform it. Jamie also used pictures
when drawing bulletin boards during Interviews 5 and 6. 1n each of her drawings, Jamie
represented the relationship between exponential expressions and the pictorial
representation by drawing arrows

During this phase of the study, | was able to see Jamie use al three types of
representations. Her primary representational tool was written representation. She
adopted notations used in class and developed her own in severa of the interviews.

Those Jamie devel oped out of procedures were representational for her thinking, whereas
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those she adopted were difficult for her to remember. When she felt compelled to use
standard notation, she often became confused just as she did when converting an
expression in exponential form to logarithmic form. Her attempts to remember also
resulted in errors such as those that arose during her newly invented method of adding
logarithms. Jami€' s representationsillustrate that she understood the logarithmic
function as a collection of problemsto be solved using procedures.

Connection. The diagram in Figure 17 illustrates Jami€' s connections. She
viewed the logarithmic function as a collection of procedures described with names and
notations. The names signified procedures or objects. The notations were used to
demonstrate how to do the procedures. Of particular importance were the procedures she
called convert and trial and error. Jamie used connections between these procedures to

solve problems that involved the logarithmic function.

Ty,
[ CONVERT |
EXPCMENT | e )

at=h b b=c
—, 7_{7—1—/_,—/'-'-
TRIAL &FERROF)

PROCEDURES
\ J/

Figure 17. Connections between Jami€' s representations and procedures.

In Figure 17, the oval s represent names Jamie used to communicate about or solve
problems involving the logarithmic function. The rectangles represent generalizations of
the notation that Jamie used. The bold rectangle illustrates Jami€’ s use of the calculator
as an integral component of the trial-and-error procedures she used to solve problems.

The connections Jamie drew were between her names, notations, and procedures.
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Application. Jamie’ s knowledge of how to use the calculator was an integral
component in her attempts to solve problems. She saw the logarithm key as an answer
key. If shewas ableto put an expression in the correct form, she could use the calculator
to find the logarithm of a number. The centrality of the calculator to Jami€'s
understanding of the logarithmic function was illustrated during the table completion task
in Interview 7. Jamie was given a Tl-15 calculator instead of a TI-83. Sincethe T1-15
does not have alogarithm key Jamie said that she did not know how to fill in the first
table:

J: | have no clue.

S. WEell, can you use anything about logarithmsto help you solve it?

J. | don’'t have akey on here.

Jamie was aware that she could fill in the table easily if she had a TI-83 calculator. This
was one of several incidents that illustrate Jamie’ s understanding of the logarithmic
function as a collection of procedures. During Interview 8, when | asked Jamie how x
and y were involved in the logarithmic function she said they were not:

S: So isthere any other way to represent this function. | mean, so far

everything you have written isn’t really afunction, because my teacher

told mein afunction you have x and y.

J- Uhm...I don’t think so. Because you can do the natural log that’s just In

[writesIn], but...and you get a number. Like whenever you do like log of

five (on the calculator) is point six nine.

Jamie thought of the logarithmic function to something “you do,” with your calculator to
get a number. When Jamie saw or heard the term logarithmic function, she associated it
with akey on her TI-83 calculator.

Beliefs

Jamie used severa beliefs during the postinstructional phase. First, she believed
she knew less about the logarithmic function than she had during instruction. She

believed the notation used to represent the function, —aword and letters,— made it



harder to remember. Second, Jamie's attempt to remember properties of the logarithmic
function from the instructional phase resulted in an application of the distributive law to
the sum of logarithms. Third, Jamie was able to use her calculator and a procedure she
called convert to solve problems that used a representation of the logarithmic function.
1. Thelogarithmic function is hard, and | do not understand it now, because I cannot
always do the problems that useit.

Sincethe logisaword or letters, not a number, it is difficult to remember.
log,b+log,c=log,(b+c).

To solvea™ = b use acalculator and trial and error.

o > W D

To evaluate alogarithmic expressions in the form log, b = ¢, convert it to exponential
form.

6. The calculator is necessary tool for evaluating logarithms.

These beliefs represent a change from both the preinstructional and instructional phases
of the study.

Changes in Understanding

Jamie’ s beliefs about the logarithmic function changed over the course of the
study. During the preinstructional phase, Jamie was interested in learning how to do the
logarithmic function. She focused on what the notation might mean.

During the instructional phase the function was still interesting to Jamie, but now
her goal wasto passthetest. To accomplish this goal, she attempted to adopt
terminology and notation used in her textbook and by Teacher 1 in class. She also tried
to learn procedures that would be of use on the test. In particular, Jamie noted the
importance of a procedure called convert that became the cornerstone of her problem-
solving activity.

The postinstructional phase was a bit of a shock for Jamie. She was unable to
remember what she had learned during the instructional phase to help her solve problems.
As aresult she reconstructed rules that made sense to her, but were not correct (log 4 +

log5=1og9). Not being able to do problems that mentioned the logarithmic function
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changed Jamie’ s conception of the function from interesting to hard. She was still able to
do problems in which the logarithmic function was not mentioned, using her collection of
trial- and-error procedures. Varioustrial-and-error procedures were used, both in service
of the convert procedure she had learned during the instructional phase and to find
exponents in problems that she did not know involved the logarithmic function. The
trial-and-error procedures al involved the intelligent use of a calculator as atool.

The first important observation about Jamie' s changes in understanding istherole
that her memory played during the postinstructional phase. Jamie's attempts to
remember how to use the logarithmic function almost always resulted in either incorrect
answers or faulty reasoning. The primary example of this was her memory of how to add
logarithms. She used the property correctly during the instructional phase, but had not
understood why it worked. She simply mimicked the notation. During the
postinstrucitonal phase, Jamie reconstructed (Bartlett, 1932) what she believed was a
correct rule for adding logarithms. It made sense to her, but then she had no way of
checking her results because she did not know what alogarithm was.

A second important observation regarding changesin Jami€e’' s understanding is
her ability to use trial-and-error procedures to help her solve problems. Jamie's
performance on problems involving logarithms improved when the function itself was
not mentioned. Being aware that the logarithmic function was involved in a problem
limited her search for a solution path in both time and scope. If alogarithmic function
was mentioned, Jamie associated it with keys on the calculator or the convert procedure.
She did not attempt to look beyond these two techniques for solution paths. If she was
not able to solve the problem using either of these methods, she gave up. Her attemptsto
solve problems in which the logarithmic function was not mentioned began with the four
operations. When these did not work, she tried an exponential expression. Since this
attempt worked, Jamie then developed a trial-and-error procedure with her calculator to
solve the problems. This combination of mathematical knowledge and the use of a tool

made it possible for Jamie to solve problems.
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Despite Jami€ sinitial enthusiasm about the logarithmic function, her realization
that she knew little about the function during the postinstructional phase led to
frustration. The only success that Jamie had during the postinstructional phase occurred
when she was unaware the problem involved the logarithmic function.

Ways of Knowing

Jamie swork during Interviews 5 and 6 illustrates a procedure that could be used
to develop her understanding of the logarithmic function. In particular, although Jamie
did not know how to find signs numbers during Interview 5, she quickly realized that
each of the number line numbers with a sign above it was a power of 2. When she
rewrote the number line number as a power of 2, Jamie realized that the sign number was
just the exponent in her expression. Despite the inefficiency of the trial-and-error
procedure she had used to find the number line numbers as powers of 2, the procedure
made sense to Jamie. In addition, it resulted in correct solutions and was consistent with
standard mathematical thinking associated with the logarithmic function.

Jamie’ sway of knowing in Interview 5 could be used to develop her
understanding of the logarithmic function. Although she knew what she was doing,
Jamie had great difficulty articulating her procedure. For understanding to grow,
connections between Jami€’ strial and error method and other representations of the
method needed to be developed. In ateaching situation, | might have asked Jamie to
develop atable of valuesfor her data and then graph her data. Answering these questions
would help Jamie associate her actions with other representations.

Of further interest is Jami€e’s avoidance of standard mathematical notation such as
the use of x as an unknown or as avariable. For growth of understanding of mathematical
concepts in general and the logarithmic function in particular, a connection between
Jamie' s representations of functional relationships and standard mathematical notation
should be developed. In Interview 5, when Jamie tried to communicate her data, she
drew a picture and included the notation 2°. Jamie’s use of notation indicates she was

aware notation conveys meaning to the reader. She seemed unaware that standard
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mathematical notation could convey the same meaning with more precision. If Jamie
was able to see her notation as imprecise, she would seek alternatives. This search would
be the perfect opportunity for instruction.

Jamie’ s use of representations and the calculator during Interviews5, 6, and 7
provide the basis for growth of understanding. In particular, she noted the inefficiency of
her trial-and-error procedure for finding exponents during Interview 7. Thisdesirefor a
more efficient tool could be the beginning of a search for one.

Rachel
Getting to Know Rachel

Rachel chose to attend RC because it was atwo-year residential college with a
pre-veterinary medicine program. After her arrival at RC, Rachel quickly decided to
change her major. She explained that the course work in the pre-veterinary program had
become too difficult for her and that she changed her major to family and consumer
sciences. While she was growing up, Rachel’s mother had owned and operated a family
day care center in her home. Rachel had worked with children, —babysitting and in
summer camps—, during high school but had never thought of pursuing the work as a
career. So when she decided to change her major, family and consumer science was a
natural choice. Although she knew she wanted work with children, Rachel did not know
exactly what she wanted to do. She described her goals during Interview 2:

| really don’t know where I’'m going with it. | know that I’'m working

with kids. | know that I’m not going to be ateacher. I’'m iffy about

maybe running my own [child care] center. I’'m probably...you

know...maybe working with DFACS (Department of Family and

Consumer Services), something like that. | want to help the kids that can’t

help themselves. | don’t want to...not to say that teaching is bad, but your

hands areredly tied as far as helping the child grow in ways other than

educationally. And | am more interested in the personal child.
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This focus on the emotional needs of children was the result of both her home
environment and her school experiences.

School had always been difficult for Rachel. She described it as“awful.” In
elementary school in particular, Rachel explained, “I just wanted to crawl in my little
cubby hole and never come out.” She disliked school because of her relationships with
teachers and peers. Rachel suffered from a neurological disorder that resulted in extreme
hand tremors. By the time | met her, Rachel was taking medication that enabled her to
write clearly, something she had done with difficulty in elementary school. In addition to
the tremors, Rachel had attention deficit hyperactive disorder (ADHD). She was very
conscious of how her disability set her apart from her peers. In elementary school, she
had been sent to a resource room teacher for several of her subjects. She described her
experience during Interview 2:

| have alearning disability, and | remember the humiliation of having to

leave the classroom and go to aresource classroom for math and English

and reading. | had to get up and leave, and it was just like public

humiliation to have to go and leave and go to another classroom to a

different teacher to get specia attention.

Her school experiences had made Rachel very conscious of her classroom behavior. She
rarely spoke in class and stayed very busy looking in the book, using her calculator, and
taking notes. Rachel never spoke to anyone in class, other than the teacher, and admitted
to me that she did not try to get to know anyonein her classes.

Rachel was a 2-year-old sophomore at RC in the middle of her third year. Two
events contributed to the length of Rachel’s stay at RC: changing her major and her
placement in developmental studies for mathematics. It had taken Rachel three semesters
to exit developmental studies, the maximum time allowed by the state system. Following
her successful completion of the developmental studies program in the spring 2000,
Rachel had taken college algebrawith Teacher 1. Sheearned aD. Since she needed aC
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in the course to take any subsequent mathematics courses, she re-enrolled in the course
during the fall 2000 semester.

Rachel was from a large metropolitan area approximately 300 miles north of RC
and only went home on the weekends. Despite coming to school from such a distance,
Rachel felt she was part of the RC community. During aregional disaster that had forced
several hundred families from their homes into atemporary shelter at RC, Rachel had
volunteered to baby-sit and entertain children while their parents rested. She enjoyed
being with the children and helping the families.

Talking to Rachel was areal treat. She was especially knowledgeable about child
development. During one of our early meetings, she recommended a helpful book on the
subject designed for parents of children age 0 to 18. Rachel and | talked a great deal
while | wasat RC. She dropped by my office to discuss school, her roommate, her
boyfriend, and photography, or to have me proofread a paper.

The single character trait that affected Rachel most deeply was her quest for
perfection, the most obvious manifestation of which was her obsession to organize. She
talked about this obsession during Interview 9. | noticed that Rachel seemed particularly
concerned about awrong answer she had given during Interview 6. | mistook this
concern for mathematical interest. Curiosity about mathematics would have been very
unusual for Rachel. She quickly set me straight:

It isthe perfection thing, really | think itis. 1I’'m really bad at that with all

things. It drivesmenuts. It hasto be, it hasto bejust so. Likel have

everything just so in my room. And when it gets unorganized, it drives me

nuts. | mean when | have nothing better to do or when | am bored | will

go organize my room....\Whenever | organize my room, | will have a box

of junk that | really couldn’t do anything with, and | will just put

everything in there and shove it under my bed. And that’swhat | start

with when | go back to organize the next time. So it islike an ongoing

thing. Itislike, okay, | couldn’t figure out what to do with this, so I'm
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just going to sit it here. And then | will come back ... acouple days later,

and | will pull it back out and say okay, | can put this here, this here, this

here, this can get thrown away, you know. And then, then | start back on

everything else. | guessit isthe same system. Pretty much.
As she noted at the end of this quote, Rachel thought how she did mathematics was
similar to the system she used for organizing her room. She was not interested in the
problem from Interview 6, but was just tying up loose ends. Organization for Rachel was
acompulsion.

Rachel As a Mathematics Student

Rachel attributed her quest for perfection to her parents, particularly her father,
and their expectations of her. In each Interview, Rachel mentioned her father and his
mathematical abilities or expectations of her. He had spent many hours trying to help her
with her mathematics homework during middle and high school. According to Rachel,
her father considered the subject rather easy, whereas she found it extremely difficult.
She spoke about her father and mathematics during Interview 3.

Because my dad was so hard on me about math...I would sometimes not

do my homework or not say that | had homework, because | knew that it

was like a 1-hour lecture per problem. And when | come home with my

homework now that I’m in college, he will try and help me. And I’'m like

“Don’'t help me. Don’'t bug me. Don’t help me. Don't try.” It'slike heis

such a...he’s so good at math. And he expects me to be this genius, and

I’m not. | get it my own way, my own pace, my own time. Y ou know.

But, | will eventually get it, but it’ s just the mental process of telling

myself...you know you’ ve got to tell yourself that you will get it and you

will figureit out.

When | asked Rachel how she would describe herself as a mathematics student, she
replied “extremely weak.” She was still optimistic that she would eventually understand
mathematics: “| hoped [I would eventually understand it]. | do hope still. | gain alittle
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bit of knowledge every time | take amath class.” Rachel’ s hope was preceded by
numerous failures in mathematics classes. She became extremely frustrated when she
could not do a problem and explained that the frustration was with her teacher for
assigning the problem, with herself for not “being able to comprehend like other people,”
and with “other people that are like ‘oh, that is sooo easy, and dudada.’”

Rachel identified the root of all her trouble in mathematics as the introduction of
“letters.” She explained her confusion during Interview 2:

| think probably in high school They started putting... lettersin to

eguations, and all letters have different values, and which value in which

problem. Because it varied from problem to problem, the value of the

letter. And informulasthere’ sletters. K stands for something, and h

stands for some thing. P'sand Q’s, and like why, why? | don’t get it.
Rachel’ s frustration extended to having to learn anything about mathematics, which she
saw as useless. To Rachel, some mathematics just “didn’t make sense.” She singled out
the square root and asked, “Who invented it anyway?’ Being a perfectionist, however,
Rachel still wanted to pass her mathematics class. Her goal in a mathematics class was to
“get through it and passit. Get it over with.”

In Teacher 1's class, Rachel sat in the center of the front row. Shetook very
careful notes on both the handout and on separate sheets of notebook paper. Shetried to
get down “exactly” what the teacher had on the board. She thought that if she copied
down everything exactly as Teacher 1 had written it, later when she tried to figure it out,
she would know exactly what the teacher meant. Rachel asked questions in class, but they
were usually regarding alternative answers or procedures.

Rachel was very organized and did all of her homework. During past semesters
she had relied on atutor at the AAC, but the tutor had graduated. So Rachel used her
book and notes from her last attempt at the course. She found the book particularly
helpful in that it gave formulas and examplesto follow. Rachel’s second attempt at

college algebraresulted in agrade of B for the course.
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Understanding M athematical Concepts

During Interview 2 Rachel defined understanding as being “ able to comprehend
what you are trying to do.” She clarified this statement alittle later in the Interview.
After she had finished her drawing, she noted that understanding was “to be able to do
the process.” Understanding for Rachel, like Jamie, was being able to do the problems.

She used severa expressions for understanding. She would say or write, “I get
it.” She also called understanding “making sense.” Although these expressions sound
more like conceptual understanding than being able to “do the process,” Rachel only used
these phrases when she was able to do a problem or saw how to find an answer. During
Interview 2, | asked Rachel to give me an example of an experience of understanding a
mathematical concept, and she explained her experience of understanding the quadratic
equations:

S: Think of atimein your study of mathematics that you felt you

understood an idea or concept and tell me about that.

R: Uh...I can't think of the name of what the formulais called but, | can

tell it to you. The one that we are working on now. That we have been

working on. Itislikeax’ + bx + c.

S. The quadratic formula.

R: Yeah, the quadratic formula. | redlly feel like | get that.

S: Okay, when you first saw it, did you understand it?

R: Nothefirsttimel saw it wasinthe.... | probably didn’t get it when |

first saw it, but | get it now.

S: Okay, do you recall why it isyou get it now, but you didn’t get it then.

R: Probably repetition.... That was just alot of practice at it. Imprinting

the formulain my head really....

S: Do you think anyone helped you to get there?

R: | did have help understanding it. But, it isreally just memorizing the

formula and being able to plug stuff in and so....
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S: How do you feel about it now that you understand it?

R: | feel good about it. | feel that, okay there is something | can do.
Being able to memorize procedures was difficult for Rachel, but she hoped it would help
her be able to retrieve the information from her brain. She thought of her brain as a huge
“card catalog” with information written on cards. Although Rachel felt she understood
mathematical concepts, she explained that sometimes she could not find the card in her
mind the information was written on.

Rachel’ s Understanding of the L ogarithmic Function: Preinstructiona Phase

Evidence of Understanding

Because Rachel had taken college algebra just two semesters prior to the
beginning of the study, her experience with the logarithmic function wasin Teacher 1's
class. Sherecalled the logarithmic function was “to a power” and the power was “on the
bottom.” These comments did not give me any insight into her experience with the
logarithmic function, but they made more sense after | observed Rachel doing the skills
assessment during Interview 1.

Conception. Rachel’ s conception of the logarithmic function had two elements.
First, she felt the logarithmic function was “hard.” She could not do any of the problems
on the skills assessment and repeatedly remarked, “1 don’t remember how to do it,” as
she attempted to do various problems. Not remembering frustrated Rachel, and when |
asked her to draw amap of her concept of the logarithmic function, she connected it the
word hard and the phrase “don’t get it.” She described the function as hard because she
could not do the problems associated with it.

The second element of Rachel’ s conception of the logarithmic function was that it
was “to apower.” She used the term power to signify the base of the logarithmic
function. Her list of the properties of the logarithmic function included “can’t be a neg.
power.” Rachel saw the base as significant. After we discussed some of the problems on
the skills assessment, Rachel wrote “log, .. # as another property of the logarithmic

function. She had atemplate for the notation of the logarithm, but did not know what the
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terms base and # in her template meant. She knew where numbers went, not what they
did.

Rachel’ s conception of the logarithmic function during the preinstructional phase
was based on what she remembered about the function from her previous attempt at
college algebra. Since she could not do the problems the concept was hard and she
remembered that the base, which she called the power, was important and could not be
negative.

Representation. Rachel’ s representations of the logarithmic function were
primarily oral and were limited to trying to use the calculator to evaluate log, 4. She
knew there was away to calculate logarithms using the button on her calculator, but she
could not figure out what to put in the parenthesis. She could not decide whether “log of
three to the fourth” was correct or whether it was log of three times four. Rachel
eventually decided to use log of three times four, but was very unsure of the answer and
only wrote an answer for the first ssmplification problem on the skills assessment. She
was attempting to read the written notation in away that allowed her to useit asabasis
for calculating the logarithm on her calculator.

The only written representations that Rachel used during the preinstructional
phase of the study were notations, log, . # amaxim, “base can’t be negative”; and an
example of her idea of alogarithm, log, Each of these representations provides
information about how to write alogarithm.

Connection. Rachel used two different oral representations for log, 4. The only
connections that she made during this phase were between given written representations
and oral ones.

Application. Rachel applied her knowledge of the logarithm as a computation
done with the calculator to evaluate log, 4. She recalled that calculating logarithms

involved the calculator, but she did not know how to useit.
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Beliefs.

During the preinstructional phase of the study Rachel used three beliefs about the
logarithmic function. First: logarithms are hard to remember. Although Rachel said
logarithms were hard, her references to not being able to remember how to do the
problems in conjunction with her definition that knowing how to do the process was
“understanding,” led me to believe that when Rachel wrote “hard,” she meant “hard to
remember what to do.”

Second, logarithms have the form log, .. #, where the base cannot be a negative
number. Thetemplate log,,. # allowed Rachel to appear competent. Using the template
and her maxim about the base, Rachel could write correct logarithmic expressions.
Although she associated the notation with the topic, | was unable to associate her use of
the notation with any valid concept about the logarithmic function.

Third, the logarithmic expressions could be calculated using the logarithm key on
the T1-83 graphing calculator. Rachel was confident that the calculator would help her
solve the simplification problems if she knew how to useit. In summary, Rachel’s
beliefs about the logarithmic function prior to instruction were
1. Logarithms are hard to remember because | cannot do these problems.

2. Logarithms have the form log, . #, where the base cannot be a negative number.
3. Logarithmic expressions can be calculated using the logarithm key on the T1-83
graphing calculator.

Rachdl’ s Understanding of the L ogarithmic Function: Instructional Phase

Evidence of Understanding

Conception. During the instructional phase of the study, Rachel learned how to
do problems, and hence her conception of the logarithmic function changed. Now
logarithms were “really easy.”

| knew that | knew logs, but it wasjust a...It was all about pulling it out of

my memory bank. Because | was, like, okay | know this...I know that |

know this, and | know that | thought it was kind of easy when | did it the
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first go-round. So | waslike, okay, why am | having trouble with this?
Because | know | know it. Likel said, memory recall.
For Rachel, logarithms were easy now because she remembered how to do them. When |
asked her how she understood logarithms, she told me how she did the problems:
Just plugitin. That'sredly all. That'sall | canthink of. That'sall | do.
With my roommate... shewould be, like, “How do you do this problem?’
| said, “go back to ...go back to [page 331] 321, look at the little box with
theformulasin it and match it up (laughs).” | wasjust like just match it.
That's al you have to do is match it.
The formulas that Rachel was referring to were on page 331 of her textbook in a box
titled, “ Summary of the Properties of Logarithms.” Inside the box are what the authors
referred to as rules, formulas, and properties: the product rule, the power rule, the
guotient rule, the change of base formula, and other properties. The other properties

included were

log,a=1,log,1=0, log, a=x anda™” = X. Rachel used these “formulas’ to
transform logarithmic expressions from one form to another. She saw “matching
formulas’ as the essence of “understanding” the logarithmic function. Rachel’s
conception of the logarithmic function was that it was easy since all she had to do was
match the “formulas’ to the problems.

Representation. During instruction Rachel used written and oral representations.
As shetried to learn how to do problems, she devel oped a vocabulary associated with her
actions or procedures. She used the terms formula and match it to describe how she did
problems. Rachel’s map from Interview 3 illustrates what she meant when she used the

term formula (see Figure 18). Asthis map illustrates, Rachel thought of mathematics as a
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Figure 18. Rachel’s map of the logarithmic function from Interview 3.
collection of numbers, letters, symbols, and formulas. Because the logarithmic function
was a part of mathematics, it was composed of these essential parts. This association was
the basis for Rachel’ s thinking about the logarithmic function.

Connections. Rachel connected both names of objects and procedures,
descriptions of the procedures, and notations associated with the objects. Her ora
representation “match it” was related to her oral representation “formulas’ because it was
part of her description of the procedureitself. Finding the appropriate formulawas part
of the matching procedure.

The term formulas was also written on Rachel’ s map of the logarithmic function.
Rachel connected this category to notation and gave written examples of the formulas on
her map. Hence there is a connection between the written term formulas and the notation.
Beliefs

Rachel’ s understanding of the logarithmic function during this phase of the study

was as a collection of formulas that were easily applied to do problems. If thelist of
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formulas was given, Rachel “matched” the formulas from the text with the problem types
to solve the problems:

1. Logarithms are easy because | can do the problems.

2. To do problems associated with the logarithmic function, match the problemsto

an appropriate formulain the textbook.

loga

3. Important formulas associated to the logarithmic function are: log, b= logh’

log, MN=1log, M +log, N, Ln, and e.
Rachel’ s Understanding of the L ogarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception. Rachel’ s conception of the logarithmic function was as a collection
of problems that were easy to solve with the table in the book. She saw the function as a
collection of problems for two reasons. First, since the logarithmic function was a
function:

It is always something being plugged into something. You are always

given some sort of function that you’ ve got to solve. It bothers me that

they are called functions and not problems. | mean, it’s the same thing.
Rachel saw no distinction between functions and problems. The goal was to find the
answer. Second, the logarithmic function was a type of mathematics. During Interview
9, she drew adiagram of and explained her process of understanding the logarithmic

function;
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Figure 19. Rachel’s process of “understanding” the logarithmic function.
Logis...well, we are really not sure what log is at first. And then when we
figure out that it is a kind of math. And through that we figure out that
there are formulas, numbers, letters, unknowns, and of course you always
have your base. And there are alot of questions asto how to get from
place to place, the question marksin between. Y ou know you know this,
but how do you relate it to this and how do you relate it to that? And then
it kind of slowly all comes together, and then we get our answers, and then
alight bulb goeson. | getit. It makes sense.
For Rachel the collection of problems associated with the logarithmic function was
typical of al mathematics. The goal wasto get answers.
Rachel felt confident that she could get answers using the properties of the
logarithmic function in her textbook and using her calculator. She explained her process

during Interview 8:
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S: Okay, what else do | need to know? | want to be ready. | want to get
an A inthisclass.

R: Basically, al you need to know isthe.... You will have achart. It
should be in your book. Y ou have achart that is going to give you like log
basetimesthe.... Ohgosh, | don’t know what the letter is. We will just
cal it afor lack of abetter thing [Rachel writeslog, a]. So thisisyour
base [Rachel pointsto b] and thisisyour, your number [Rachel pointsto
a] and then you would convert that into log of a over log of b [log, a

:loﬁ‘]. Right, you know how to do that.
logb

S. Y eah, you showed me that. That was cool.

R: Then there will be, like this one [points to log, a:%] will be there.

And acouple of otherswill be there, but there will be a chart in your book

that gives you all the different conversions. So if you find that in your

book, then it makesit very simpleto follow.

S: So | need to get that book, no matter what the teacher said.

R: Yeah. The book isnot an option.
Understanding the logarithmic function was simple for Rachel, it was a collection of
problems easily solved using the properties in the text and the calculator.

Representation. During the postinstructional phase of the study, Rachel used
three modes of representation: oral, written, and pictorial. Like Jamie, Rachel explained
her work with several names: convert, formula, and guess and check. Although both
Jamie and Rachel used the term convert, Rachel’s definition was different. She used
convert to refer to the action she took to transform alogarithmic function or expression
into aform she could use her calculator to evaluate. For example, she called
transforming alogarithmic expression with the change of base formula converting. She

explained during Interview 8:
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R: If it is blank [pointing to the space between log and 5 in her written
expression log 5], it’sten. Now see here we go. We haveto have a
calculator. And then ... If you wanted to solve this equation [referring to
log, 5] as an equation,... you would have convert it because you can't
solve it thisway.

S: Why?

R: Because there is no way to put. Thisisyour base, and you have to put it
into aform that your calculator can read. Because you liketo use a
calculator.

S: Oh, the calculator can’t do base four?

R: No.

S: That’ s not very good.

R: But it can, if you rewriteit. So you would write log of five and divide

log of five by log of four [writesllsTgi]. So then you can get it [the

numeric value for the expression], and thisis your log key right here. So

you would say log, and it automatically gives you the parenthesis. So five,

and you have to make sure you close them. Then you divide by log of

four and then close the parenthesis, and you enter. And that givesyou a

number. Then you just round to like the nearest decimal, so you would

say that [writes 1.16].
Converting did not refer to simplifying an expression, such aslog, 4 + log,5 into log, 9.
Convert was a name used to refer strictly to actions performed with the change of base
formula and the transformation of an expression in logarithmic form to onein
exponential form. The second term Rachel used during the postinstructional phase was
formula. While convert referred to her actions, formula referred to the notations she used
to direct her actions. The third term Rachel used during the postinstructional phase was

guess and check. The procedure Rachel called “guess and check” was similar Jamie's
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use of “trial and error.” Rachel used the procedure during Interview 7 to fill in the table.
Since she did not have alogarithm key on her calculator, with my help she developed an
exponential equation and used “guess and check” to solveit. The primary difference
between Jami€e' s procedure and Rachel’ s was Rachel’ s use of arelevant domain for her
selections of the x values she should try for the exponents. For example, since log 4 was
between log 3 and log 5, Rachel tried numbers between .699 and .845 in her “guess and
check” procedure.

In her explanations of her work, Rachel used incorrect representations for the
exponential and logarithmic function. For example, during Interview 4 Rachel saw the
expression log, 9 assaid: “log of three to the six and log of three to the three” and wrote
log,6 + 10g,3. She thought of the log and 3° as separate expressions and read them that
way. She only used the correct oral representation for the logarithm notation when the
base was not written.  She was aware the base of the function played arolein the oral
representation, but not what roleit played.

Rachel aso used maxims about the base to explain to do problems. For example,
she noted during Interview 8 she said the base can “ never, never be negative. No matter
what.” and if “it isnot there, it isaten.” When | asked Rachel why thiswas so, she
replied, “It just can’'t. It isone of those weird rules.”

Rachel used two types of written representations frequently during the
postinstructional phase. She wrote names and notation. Rachel wrote the names:
formulas, math, base, and numbers on each map and drawing she created during this
phase of the study. Rachel’ s used the term base in conjunction with her maxims. In
particular she associated “never negative and “if unknown 10" with base on her map of
the logarithmic function. | am uncertain of the meaning of Rachel’ s written name:
number. The most plausible interpretation is that she associated finding and using
numbers with plugging into formulas.

The second type of written representation that Rachel used was notation. She

transformed expression from one written notation to another so she could use her
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calculator to find anumeric expression. For example, during Interview 4, Rachel

transformed log, 9 into :2%2 saying, “Y eah, you can changeit from that [log, 9], and

then you can do this [picks up calculator].” The notation was used to enable Rachel to
write an expression she could evaluate with her calculator.

Rachel used one pictorial representation of the logarithmic function during the
postinstructional phase. During Interview 6, she used a picture to help illustrate f(x)
when X is a negative integer. Prior to this extension, the only domain that was
meaningful to Rachel were positive integer powers of 2. Rachel, however, did not see x
asapower of 2, but rather as repeatedly divisible by 2, hence she was able to find f(4),
f(8), f(16), and f(256) easily. For example, she found f(256) by dividing 256 by 2 and
writing f(128) + f(2). She then repeated the process. She divided 128 by 2 and wrote
f(64) + f(2) + f(2). Using this method, Rachel was able to substitute 1 for f(2) and find

f(128). Unfortunately, this method did not work for x = % é and % In part because

of the failure of this division algorithm to produce answers, Rachel tried a new predictive
method to evaluate f(-4). She reasoned that the f(-4) = -f(4) because of the symmetry of
the real line and the order of the “answers.” To illustrate this perspective, Rachel drew

the picturein Figure 20. This
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Figure 20. Rachel’ s pictorial representation for f.
diagram illustrates Rachel’ s use of the symmetry of the real line and the relationship
between the x and y values to predict y values when x was | ess than zero. Hence, she
predicted that f(-2) = -1 and f(-4) = -2. “Wéll, ...it's on the number line.... So it would
only belogical that if this[pointing to 1] equals two, then this [pointing to —1] should
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egual negative two.” Not only was Rachel using symmetry to predict f(-4), she has aso
found away to eliminate the notation for the function f from the process.

Connection. The two primary connections that Rachel used during the
postinstructiona phase of the study were between oral and written representations and
among written representations. The connection between oral and written representation
was artificial because she only attempted oral representations to explain her work to me.
Thus the primary connection used by Rachel was from one notational form to another.
These connections enable her to evaluate expression with her calculator. For example
during Interview 8, shetransformed 5* = 3to 3log 5 = 2, saying, “This[5° = 3] iswithout
the log, but it means the same asthat [31og 5=2].” Again, athough Rachel connected
notations, sherarely did so correctly.

Application. Rachel believed a calculator was important in evaluating logarithmic
expressions. She converted or matched a problem with the right formula and then used
the calculator to compute answers. For example, during Interview 8 Rachel explained
“We have to have acalculator...to solve this[log,, 5].”

Beliefs

Rachel used four beliefs during the postinstructional phase. First, she saw the
logarithmic function as a type of mathematics that involved converting from one form to
another using a collection of formulas. Second, she saw the calculator as integral to the
process of finding the answer to problems associated with the logarithmic function.
Third, she knew the formulas were important and could use one or two of them from her
book. Fourth, she often used the formulas incorrectly but knew that if she had her book
she would be able to match the problem to the correct formula.

1. A logarithmic function is atype of mathematics that involves converting from one
form to another by matching the problems with the formulas found in my

textbook.
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2. Some formulas are very important (change of base and changing exponential to
logarithm), and | need to know how to use them to convert logarithms to aform
my calculator can evaluate.

3. Thebook contains al the conversion formulas for the logarithmic function.

4. The calculator isanecessary tool for evaluating logarithms.

Changes in Understanding

Rachel’ s understanding of the logarithmic function was influenced by her
attempts to memorize enough formulas and their applications to pass the test. Prior to
instruction, Rachel was frustrated by her inability to remember how to do the problems
on the skills assessment. Following the assessment, | asked Rachel what she understood
least during the activity.

S: The next thing | want to ask you what you felt you understood |east.

Tell me about that.

R: | didn't remember very much about the logarithmic function at all.

S: And how did you feel about that?

R: Frustrated...| wanted to be able to do it, but | can’t remember what |

was ... how to doit.

Rachel’s comments indicate her desire to do the problems by remembering the
procedures associated with the logarithmic function. On her map of the logarithmic
function, she had only two categories “hard” and “I don’t get it.”

On numerous occasions during the course of the study, Rachel and | discussed
mathematical notation. Rachel felt she had done well in school mathematics “until they
started throwing lettersin. Letters and shapes that are suppose to mean a number.” She
felt the notation was useless but realized her success was predicated on learning the
symbols and formulas. During the instructional phase, she attempted to coordinate the
formulas and the problems she was asked to solve. Because she had taken the coursein
spring 2000, she was able to coordinate the formulas and problems quickly. Shewas

excited when she came into the office for the instructional interview because she felt she
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had understood the whole lesson. “Aslong as | have aformulaand | know what goes
where, | can plug it in and make it work.” Rachel had memorized the change of base
formula and the sum of logarithms formula and included these on her map of the
function. By the end of the instructional phase, she matched simplification problems
with the formulas in her textbook. She was able to get the answers she needed to
compute for the test.

During the postinstructional phase of the study Rachel’s beliefs about the
logarithmic function, like Jami€e's, were associated with the notation “log.” If she saw or
heard the word, she was aware that the formulas from her textbook should apply. If not,
she used other strategies. Rachel was unable to do any of the problems on the skills
assessment. She was able to remember her maxims about the base but could not recall a
single formula from the textbook. Like Jamie, she recalled the log of a sum was the sum
of the logarithms. She also incorrectly recalled the change of base formula. Rachel
explained that the information was still in her “card catalog,” but she could not find the
card.

During Interviews 5 and 6, Rachel was able to perform but was not aware that
either of the tasks were associated with the logarithmic function. During Interview 5, she
used a successive differences scheme to predict the signs above the numbers greater than
8 and linear interpolation to predict the signs above numbers such as +/2 and 6. Her
performance during Interview 6 illustrated the difficulty Rachel had with notation. She
saw f as aformula and conjectured that the operations used were dependent on the
numbers that she was given to “plug in.” For example, to evaluate f at 2 would require
one formula and to evaluate f at —2 would require another formula. In general, for these
two interviews Rachel relied on strategies associated with the four arithmetic operations.

During Interview 7, Rachel was able to convert the table entries into exponential
form (with prompting from me) and used the form and a guess and check strategy to
complete the table. Her explanation of the logarithmic function during Interview 8

consisted of a description of her converting procedure and the advice “with table on page
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331 of thetext | should be able to solve any problem with logarithms.” Despite this
impoverished understanding Rachel felt that she understood the logarithmic function.
During Interview 9 she explained, “1 went from knowing absolutely nothing about the
logarithmic function to knowing and understanding it.” Despite Rachel’s subjective view
that she understood the logarithmic function, from my perspective she understood very
little. Rachel’ s beliefs about the logarithmic function during this phase were not useful in
doing standard problems or in trying to make sense of nonstandard ones.

Ways of Knowing

Rachel used four ways of knowing during the postinstructional phase of the study
that have potential as tools for the growth of understanding: linear interpolation, guess
and check, validation of answers, and awareness of inconsistenciesin answers. First, |
discuss Rachel’ s use of validation and awareness of inconsistenciesin answers. | then
illustrate how Rachel’ s use of linear interpolation might be used to provoke growth of
understanding of the logarithmic function.

Any time Rachel did a problem, she tried to find away to validate her answer
either by “working off” other information in the task worksheet, by checking her answer
on the calculator, or by checking her answers with an authority such as the teacher.

One example of this practice was Rachel’ s attempt to validate her answer to Problem 3c
on the skills assessment during Interview 4. Rachel used a change of base formula

incorrectly to find log,9 = :Z_gs :% . Rachel explained what she was doing:

R: Umhum....[thinking]. Um...oh, unless we do this. Log of three over

log of nine [writes Ioi3]. Like that?
log9

S. So you are remembering something about changing the form from this

. log3
log,9] to this| —17?
llog.9] tothis[ -1

R: Yeah, you can change it from that, and then you can do this [picks up

calculator].
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S: Goto the calculator.

R: Log of three divided by log 9is.5 or% which would be the same

answer for this[3a] aswell.

S. Okay.

R: [inaudible] Try this. Log of three over...I am just going to verify this.
(Because Rachel got log, 9 for both 3aand 3c, she was using the

calculator to check that she got 1 by adding IO—93+ Ioi3). Because |
2 log4 log5

think this [referring to the change of base formula) is the one that works
al thetime [triesit in the calculator]. Point seven nine.

What was that: log of 3 divided by log of 4?

Umhum. [t shouldn’t be that number. Log 3 divided by...so....
So what did that come out to be?

147 over 100.

Okay.

[triesto reduce] Y ou can't reduce that, can you?

What?

147 divided by...

No, it doesn’t reduce.

No.

So you got .79 or isthat the final answer 1.47? Isit like when you add

thesetwo [.79 and .64], you get 1.47, or was that just for this|[ :(())ng] part?
R: No, 1.47 isthis[lo—g?’] plusthis[loi?’].

log4 log5
S. Okay, so you didn’'t get one half [for 3a], but you got one half down
here [for 3c].

R: Thisisamost one half.
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S Itisamost oneand ahalf. Soitis pretty close.
R: Yeah, one and a half.
S. But, something must be wrong....
R: Because al three of these [3a, b, ¢] should have the same answer.
Well, aand c should have the same answer. | look for similarities. So
they should have the same answer, but | thought that the base always went
up top, but does it not?

In this example, Rachel attempted to validate her answer which resulted in an

inconsistency between two problems that she believed should have the same answer.

Rachel did finally resolve the inconsistency in her two answers. She decided that —Ilggg

was% . The calculator had verified that, but that she was incorrectly adding log, 4 + log,
5. She decided that this expression could be rewritten aslog, (4 + 5) and hence was log,
9, which her calculator had verified was % . Although she drew incorrect conclusions

and used faulty reasoning (that her calculation for log, 9 was correct, but for log, 4 + log,
5 was incorrect), Rachel was aware that the two answers should be the same and
attempted to resolve the conflict. This awareness could be used to help search for
meaningful reasons for the inconsistencies. Why are the answers inconsistent? |s one of
the solution paths flawed? Thistype of thinking can be capitalized on in the classroom.

Rachel’ s use of linear interpolation in combination with her awareness of
inconsistencies could be used in promoting the growth of understanding of the
logarithmic function. During Interview 5, Rachel used linear interpolation to predict the
sign number above the number line number that she was not able to find using her

successive differences algorithm. When Rachel was asked to predict the sign over the 6,
she predicted it would be 2%, halfway between the sign above 4 and the sign above 8.

This use of linear interpolation is an example of what Stavey and Tirosh (2000) called an
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intuitive rule: “More A-More B.” Rachel assumed that if 6 is half way between 4 and 8,
then the sign should be halfway between 2 and 3. The results of Rachel’s predictions
could be graphed (see Figure 21).

10

Oy
Figure 21. Plot of Rachel’s predictions for Interview 5 task.
Given Rachel’ s awareness of inconsistencies, she would have seen the graph as
inconsistent or at least problematic because of, the dips and the flat section. This
awarenessis likely prompt afurther examination of her prediction algorithm.
Nora

Getting to Know Nora

Noradid not enroll in college immediately following her high school graduation.
She could not afford RC. After ayear off, she applied for and was awarded financial aid
to attend RC. Norawas 19 during fall 2000. She commuted 30 milesto school each day.
She also had a part time job at a nationwide sandwich chain. Her work schedule was
hectic, and Norafell behind in her studies. During Interview 2, Noratalked about how

difficult working and going to school was for her:
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It wasn't the last chapter, but | had one chapter where | had worked a

midnight shift all...like two weeks straight. And | wasn’t having time to

do homework, so | went to afriend’s house, and we did the homework. |

understood it very well. Itisjust, you know, pulling those midnight shifts

Y ou know, it was kind of hard...

Noraquit her evening job because of the long hours she was asked to work. To pay for
gas and expenses she took a campus job. It was fewer hours, but the workday ended at
5:00 p.m. Unfortunately, afamily financial crisis came up, and Norareturned to her
evening job, while she continued to work on campus.

Nora wanted to be successful in her work and in school. Her motivation came
from her pride in past accomplishments and her competitive nature. She described
herself as competitive during Interview 2:

S: What are your educational goals?

N: Uh, ...not really many. | just want to makeit. Get adegree. Itiskind

of a competition between me and my brothers. | realy...I’m acompetitive

person when it comes to stuff like that. None of my brothers are in college

and I’ve got atwin brother that is still in high school so. But thereisstill

that “I got to do better, | got to do better.”

Nora s primary life goal wasto “makeit,” which she defined as getting an associate’' s
degreein business. After getting her degree, she planned to work for awhile and then
return to school for a bachelor’s degree.

Nora As a Mathematics Student

Norafelt that she was avery strong mathematics student, especially in high
school. She was always the best in her mathematics classes and had earned an A in every
high school mathematics course she had taken. Although she waited ayear after high
school before enrolling in college, she still expected to be the best student in her college
mathematics classes. When | asked Nora what her goal in a mathematics class was, she

replied, “Mainly to have the highest grade. That is actualy...my goal isto have the
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highest grade in the class. Not actually the school, but in that particular class.” Getting
the highest grade in the class got harder for Nora when she decided to attend college.
When | asked Nora during Interview 2 to describe herself as a mathematics student, she
replied:

In high school exceptionally well. | really thought that | would major in

something math-wise or even.... | considered being a math teacher for

high school because | actually loved it and | associate everything with

math. Infact | tried to...before you even showed me... concept mapping,

that is how | associate math and English. That is how | do an outline with

aconcept map. Butin college | am trying to adapt. | feel it is getting

easier, but it isnot as easy asit was in high school.

The demands of college, work, and home, where she often cared for her four-year-old
brother, had made it more difficult to achieve her goal of getting the highest gradein the
class. On atest that was returned the first day that | observed her class, Nora earned a 79,
which she explained was far below her standards. “1 felt disappointed and it kind of hurt
my feelings because, | mean, a79. | meanitisstill good, but it is not up to my standards.
And | do kind of set my standards high.” She valued her grades and the status she felt
they gave her.

In class Nora, sat in the center of the front row, a practice she had begun in high
school. She had observed that students who sit in the front get more help from the
teacher. She elaborated on her choice of seats during Interview 2:

WEéll, I am as blind as abat, so it helps one for seeing, and sometimes |

can’'t hear too well because | get alot of ear infections. So it helps my

hearing. And plusif | have him (Teacher 3) standing up there watching

what I’ m doing, he can point out something that I’ m doing wrong.

After Nora remarked about this phenomenon, | observed Teacher 3 in class and noticed
that he did provide more help to those sitting on the front row. There were seven

columns of desks with six desksin each column, and the desks were extremely close
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together. | had difficulty getting to my seat near the back of the class. During my two
weeks of observation, Teacher 3 only helped students beyond the first row once. Nora
got help more often than the other students.

Nora never interacted with her peersin the class. Her only communication was
with Teacher 3. She explained that even outside of class, she felt most comfortable in
one-on-one Situation as opposed to crowds. Despite this preference, Nora participated
much more than any other student in the class. She often waited for her peersto answer
guestions posed in class but became frustrated when they would not respond to even the
simplest questions. “ That gets on my nerves sometimes. | fed likeif, well, if nobody else
isgoingtosay it I'll say it.” Asisindicated in this quote, Teacher 3's questions were
primarily simple recall, requiring only a single word answer. When students did not
respond to his questions, Teacher 3 encouraged and cajoled them saying “call it out.”
Despite these attempts, students rarely participated. Many came to class, unprepared.
One student never brought a pencil and paper to class and several students regularly slept
in class. Norawas not one of those students. She brought her learning materials, took
careful notes, and after listening to the silences that often followed Teacher 3's questions,
she would call out an answer.

Although Nora almost never asked a question in class, if she was having difficulty
with a mathematical concept she felt free to ask Teacher 3 for help either before or after
class. Sheaso went to go to the AAC for help. Shefelt certain that someonein the
center could show her how to do the problem she was having trouble with.

Noradid her homework and circled any problems she had difficulty with to
review for thetest. Her class notes were very neatly written, as were her homework
papers. Norawas what most teachers would call a model student. She showed respect
for the teacher, participated in class without dominating it, did her homework, was
concerned about her grades, and loved the subject. Both her attitude and her study habits
contributed to the A that Nora eventually earned in college algebra.
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Understanding M athematical Concepts

When | asked Nora how she defined understanding during Interview 2, she
described it in terms of doing.

S: Okay we have talked a lot about understanding and not understanding,

but | want to know what your definition of understanding is asit relates to

math.

N: My understanding. If | understand something, that means| can do it.

If 1 understand it, then | can walk in on atest and be done with it. You

know ten minutes, al right, I’'m done. And if | don’t understand it then |

tend to take longer than a minute trying to work on it. And then that

means that | really don’t understand it or | am having a hard time at it and

| probably need help.
Understanding a concept meant being able to do problems quickly. Nora commented that
memorizing was different than understanding. She believed that practicing problems was
agreat way to understand them. “Like the vertex [of a parabola], negative b over two a.
| didn’t memorizethat | just understood it and practiced it.” Nora knew how to find the
vertex of a parabola, so she felt she understood parabolas. When she practiced a problem
Norafelt she was learning how to do the problem not memorizing it, hence memorizing
was not understanding.

Nora s view of understanding as doing was especially evident during Interview 9.
When | asked her to draw a picture of her process of understanding the logarithmic
function Nora drew a map (see Figure 22). Each of the categoriesillustrated how one
might do atype of problem. This drawing was markedly different from her depiction of
her process of understanding a mathematical concept from Interview 2 (see Figure 23).
Nora described not understanding and understanding in terms of feelings she had when
she experienced them. When she did not understand, she said, “I get mad.” When she
understood, she described her mood as bubbly, she explained she just bobbed her head
and said okay.
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Figure 22. Nora'sdrawing of her process of understanding the logarithmic function.
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Figure 23. Nora sdrawing of her process of understanding.

Noradrew her diagram after | explained to her four times what | wanted her to do:
visualize her process of understanding a mathematical concept and draw what she saw.
Norawanted to know what | was looking for and said, “I’m alittle confused at what you
want.” These types of remarks were characteristic of Nora' s approach to learning. She
tried to find out what was required, of her and then she did exactly that. When it was not
clear what was required Nora became frustrated. During Interview 2, she expressed her
frustration with Teacher 2:

It islike the homework ... He doesn’t quite teach to the homework. And

I’m not sure if he isteaching to thetest or if heisjust teaching to teach the

subject because there was some stuff from the homework that he didn’t



116

show usthat was like first off that | felt he should have showed us.... |

figured it out by going back into the book and reading, but... | felt like he

should have taught that in class.
Norawanted to know what to focus on, and when Teacher 3 did not provide that focus,
she became frustrated. She needed the information to be efficient in her exam
preparation.

Nora s Understanding of the Logarithmic Function: Preinstructional Phase

Norarecalled very little about the logarithmic function from high school. When |
asked her if she had seen the function before, she replied, “I don’t know. | would have to
seeittotell youif | have.” Later in the same Interview Norarecalled that with the
logarithmic function you “start with one, make it into another.” Her remark seemed to
apply to any function until she described transforming an expression in logarithmic form
into one in exponential form as “easy” for her since she had seen it before in high school.
Hence “start with one, make it into another” is aremark about a procedure Nora called
converting.

Noratook great pridein her grades. Sherecalled during Interview 1 that in high
school she had "made an A on” the logarithmic function, but she did not remember it.
Because she was an A student in mathematics in high school and the logarithmic function
was a high school mathematics topic, Nora reasoned she must have earned an A onit.
This view was characteristic of Nora s general view of grades. Shefelt that if she made
an A on achapter test, she knew everything in the chapter. Similarly if shemadean A in
acourse, she knew all the materia in the course.

Evidence of Understanding

Noradid not recall any specific information about the logarithmic function during
the preinstructional phase of the study. There was no evidence that Nora applied the
logarithmic function or its properties in solving any of the problems on the skills
assessment. Her comments and actions during the skills assessment and her map provided

evidence of Nora s conceptions, representations, and connections.
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Conception. Nora' s conception of the logarithmic was that she could do the
problems if she could recall the necessary procedures and knew how to use her calculator
to solve them. Since Nora could not remember “how to do” logarithms she saw them as
generic problems. Nora s map of the logarithmic function drawn during this phase
included two categories: problems and function. Nora reasoned the function was a topic
in mathematics so it was related to problems. And since it was a function it must be
related to functionsin general. She thought of functions as formulas and depicted a
function asy = ax* + bx + ¢ on the skills assessment. “That’swhat | think afunction is.”
Later in theinterview | asked Nora how she had developed atable of values from a graph
on the skills assessment: “Well, | didn’'t have aformula, you know afunction,...So |
didn’t know what to do without that function.” Based on Nora s view of function, |
anticipated that she would be looking for awritten representation when she was
introduced to the logarithmic function in class.

Following the skills assessment, Nora remarked her calculator might have been of
use in helping her figure out the problems. “If | knew how to do it [the logarithm] on the
calculator, | could doit.” Nora s comment illustrates her view of functions as something
that a calculator can help you solve.

In addition to seeing the logarithmic function as a set of problems associated with
the general definition of function and with procedures involving the calculator, Nora also
noted she recalled doing problems involving the logarithmic function but “not how to do
them.” Hence, Nora s conception of the logarithmic function was as collection of
problems she might be able to use her calculator to help her solve.

Representation. Although Noradid not remember doing problems with
logarithms, she still attempted the problems on the skills assessment. During these
attempts, she used oral and written representations. Her oral representations were simple
attempts to read the notation. For example, Noraread log, 1 as “log three one.” Thisoral
representation illustrates that Nora was unaware of the importance of positionality in the

notation. Nora s written representations of the logarithmic function and its properties
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were in the form of notation. Thisis not surprising, because her only access to
information about the logarithmic function was the skills assessment. She used two rules
to simplify the logarithmic expressions given in Problem 3: a generalization of the
distributive property and a generalization of the associative property. Norafound the
sum of logs to be the log of the sum, a generalization of the distributive law. For
example, she calculated:

log, 4 +log, 5=10g, 9. She also generalized the associative property, ssimplifying
%Iog3 25 to log, 12.5. Both of these generalizations are based on aview of log, as a

variable like x. The representations used by Nora during this phase of the study were
attempts to mimic or make sense the notation presented in the skills assessment.

Connection. During the preinstructional phase of the study, Nora made
connection between written representations and between written and oral representations.
She attempted to mimic the notation she saw used in the problems on the skills
assessment. Her answers to Problems 3 and 4, simplification and expansion problems,
used the notation log,that was given. The answers were incorrect, but the notation was
used correctly. Norawas less successful in her attempts to transform the given notation
into oral form. She read
log, 1 as asequence: “log three one.”
Beliefs

Two groups of beliefs were important in Nora's thinking about the logarithmic
function. First , Norafelt she had seen the logarithmic function in high school, and she
conjectured she had done well on it because she had been successful in all of her
mathematics classes. This reconstruction of her experience was a source of confidence
for Nora. Second, based on information she drew from the problems on the skills
assessment Nora attempted to piece together a reasonable written representation of the
logarithmic function. She felt certain that the log key on her calculator was involved and

that if she knew how to useit she would be able to solve problems.



119

1. Todo problemsinvolving the logarithmic function, | need to learn how to use my
calculator.

2. | have seen logarithmic functions before and since | am a good mathematics student, |
must have done well on them.

3. Thelogarithmic function is atype of function, and so it has problems associated with
it.

4. Thelogarithmic function has a special written representation | have to learn how to
use.

Nora' s Understanding of the L ogarithmic Function: Instructional Phase

The primary mode of instruction used by Teacher 3 was lecture. Each day he
made announcements about campus events and then began lecturing. No demands were
made on the students. Some slept, others did homework that they had from other class,
and several passed notes during class. Teacher 3 carefully wrote examples and
explanations on the board and a few students like Nora took notes. The board notes were
asummary of what was in the textbook. Teacher 3 followed the book very closely. He
referred to it in class and assigned homework problems from it.

Teacher 3 lectured about the logarithmic function for two 75-minute periods.
During that time, he demonstrated how to do a number of procedures, al of which were
included in a handout that he gave the students one day prior to introducing the function.

The handout included examples of what were called “* powerful’ log rules that we will
find helpful” (see Figure 24). It also contained explanations of how to use the calculator

to

Log Rule Examples

log, MIN=1log,M +log, N because log,8+1og,4=109,32 [3+2=5]

aM mN = a.M+N

Figure 24. Example from Teacher 3's handout.




120

evaluate logarithmic expressions and graph logarithmic functions. In addition, the
handout contained problems for the student to try. For example, evaluate log 10,000,000.
Asin class, the students were to find the exact answer if possible or the approximate
answer to four decimal places. Also included on the handout were logarithmic equations
and applications problems such as finding the pH of a substance.

Nora criticized Teacher 3's ability to convey the information that she needed to
know on the test. She questioned the relationship between of the classroom presentations
the tests. She also became frustrated when Teacher 3 made mistakes with his calculator.
In particular, when he was solving a system of nonlinear equations using his calculator,
Teacher 3 could only find one point of intersection when the system had two. Hetried
several times but failed each time. Nora knew how to find both solutions, but she did not
offer any assistance. Later she expressed frustration at Teacher 3'sfailure:

| don’t think he knows...everything, because there was some stuff ... that

he couldn’t quite get, and | already had the answer for it. And so | think it

iskind of an understanding problem.... He knows what he is doing, but he

can't quite get it [the calculator] to do what he wants it to do, and then |

don’t understand what he is wanting.

Because Nora did not know what Teacher 3 wanted or what he would be looking for on
the test, she felt frustrated. Her frustration intensified during the postinstructional phase.
Norafelt that Teacher 3 had not taught her enough and had covered the material on the
logarithmic function too fast. She made numerous comments about the content and how
Teacher 3 had presented it. Although none of her remarks was unkind, she faulted
Teacher 3 whenever she could not do a problem or remember a procedure.

Evidence of Understanding

Conception. During Interview 3 Nora explained how she viewed the function:
The main thing | try to do in mind is remember exponentia things, the
way we combined them, and all that kind of stuff...to remember the

principles of them [the logarithmic function]. And if you know the
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principles then you can pretty much figure out the log itself. The problem

you are trying to do.
Nora s conception of the logarithmic function was as a collection of problems she had to
learn how to solve. She saw the principles, the properties of the logarithmic function, as
tools for solving the problems. She used the properties of exponents to help her
remember the properties of the logarithmic function. When | asked her to tell me about
the function, Nora explained that her main concern was being able to “do” the function:
“Canl doit?...Can | figure out away to do it?’

Norawas most interested in “understanding” test problems. When | asked her to

think of atime when she did not understand the mathematics that was being presented to

her, she identified the written notation: b'*** = x. She was not particularly concerned
with learning about the notation, but rather about whether or not she would need to use
the property on the test:

S: So are you going to go ask him about it [the property b'®** = x] or do

you think that’s just going to be a done deal ?

N: I might ask him the day of the test if it’s going to be on the test,

because he really didn’t go over it any of the days.

Indeed, on the day of the test, Nora did ask Teacher 3 if anything using the property was
going to be on the exam. Teacher 3 replied it was not, and Nora did not worry about the
property again. She focused her attention on those problems and properties she needed to
know for the test.

During the postinstructional phase, Nora saw the logarithmic function as a
collection of problems she was “confident” she could solve. She used the properties of
exponents to help her remember the properties of the logarithmic function.

Representation. Nora used two different modes of representation during the
instructional phase of the study: written and oral. Nora wrote names and notations
associated with the logarithmic function. The names that she chose for her map of the

logarithmic function included principles, do, exponential, and calculator. (see Figure 25).
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Figure 25. Nora's map of the logarithmic function constructed during Interview 3.
With the exception of exponential, the names on Nora s map were associated with doing
problems. The principles from the textbook, Teacher 3's handout, and class could be used
to do simplification problems. The calculator could be used to evaluate logarithms.
Transforming an exponential function into logarithmic form was characterized as “how to
do” problems. Although Nora s map includes “exponentials are logs,” her explanation of
how she remembered the “principles’ of the logarithmic function contradicts a literal
interpretation. She noted that she could remember the principles of the logarithmic
function if she just remembered properties of exponents. Nora believed the two were
related and not the same.

The second type of written representation Nora used was notation. She always
made an effort to get the notation correct, because using correct notation would help her
perform on tests. Nora used two notations for the same transformation of afunctionin

exponential form. This use of notation illustrates that Nora saw converting afunction as
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different from converting an expression such aslog, 2 = x. In Nora s notation, a and b
were considered constants, where x and y were variables.

Noradid not put the same value on oral representations that she did on written
ones. For example, she described a problem from class as “logarithmics.” This excerpt
from Interview 3 was a description of what Nora did not understand during class.

The logarithmics, where you multiply the two functions. Where he

[Teacher 3] did log base of something of something else plus log base of

something else and you multiplied it together. 1 just thought skip that go

to that.

When Teacher 3 solved the equation log x + log (x + 3) = 1, Nora explained that she
would have skipped some steps. Nora consistently used incorrect terminology and read
notation incorrectly. For example, sheread b'®** = x as“b raised to the log power of
base b to the x.” It was not vital for her to use correct oral representations. In class, Nora
answered Teacher 3's questions using nonstandard language, but precise language was
neither used nor expected. For example, when Teacher 3 asked why Ine=1. Nora
replied, “Because it isitself.” This comment was not discussed or questioned; rather, the
lesson continued with no further explanation. Knowing how to represent the problem
orally was not necessary. Teacher 3 understood Nora s response and her response was
sufficient.

Nora s written representations differed from her oral ones. Her written notations
were used to perform on tests, whereas her oral ones were used to participate in class.
Because getting the highest grade in the class was Nora' s goal, knowing how to use
correct notation was very important to her. Oral representations were simply for finding
out how to do the problems and for being recognized in class. The onus was on Teacher 3
to find away to make sense of Nora's utterances. Both Teacher 3 and Nora accepted this
unspoken contract regarding classroom communication.

Connection. During the instructional phase of the study, Nora used connection

between written representations most often. She focused on adopting and creating
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written representations. Nora s homework illustrated she moved easily between written
representations of the logarithmic function. She used all the notations from her map in
her homework. Knowing how to use these representations to do problems made Nora feel
“extremely confident.” She completed the test on inverse, exponential, and logarithmic
functionsin 25 minutes. Following the examination, she came by my office bubbly and
excited and explained that the test was “easy.” The exam consisted primarily of
simplification, evaluation, and equation problems. Nora had no difficulty with these
problems because they were simple applications of the written notation she was so good
at using. Her focus on written representations and connections between them produced
the desired result.

The categories Nora chose for her map were connected to notation aswell. Each
referred to or was related to how to do problems using written notation. Hence Nora's
written names and notations were connected.

All the connections that Nora drew were focused on being able to do problems
and represent what she was doing correctly. These connections were developed to help
Nora perform on the test.

Application. | saw very little evidence of application during the instructional
phase. Nora used properties of the logarithmic function, such as log,b* = x log,b, during
class discussions and referred to this property as “pull the x out front.” She also used her
calculator in class to evaluate logarithms such asIn 5 and log, 23. In general, Nora
attempted to learn how to apply the properties of the logarithmic function to solve
exponential and logarithmic equations.

Beliefs

During the instructional phase, Nora s efforts to understand the logarithmic
function focused on preparing for thetest. Initially, as she confessed during Interview 9,
she found the function both exciting and scary, but she quickly acquired written notations
and learned when and how to apply them. Her capability with these representations made
her feel confident. She believed the logarithmic function was easy.
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1. | know how to do the problems associated with the logarithmic function, so |
understand it.

The logarithmic function is related to the exponential function.

The properties of the logarithmic function are adapted from the exponential.

Use your calculator to compute logarithms.

a ~ W DN

It isimportant to learn the written representations involved in trang ating between
exponential and logarithmic forms and in applying the properties of logarithms.

Nora s Understanding of the L ogarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception. During the preinstructional phase of the study, Nora viewed her
mathematics grades as a source of confidence and pride, and as a measure of her
knowledge of mathematics. During the postinstructional phase, Nora s view of her grades
shifted. During Interview 4, while Nora was doing skills assessment, she commented, “ If
| can make an A on the test, | should be able to do well on this.” She made similar claims
later in the same interview. Two weeks later, during Interview 9, Nora' s view of what her
grade in college algebra meant had changed. She felt she had not learned enough in
college algebraand that “the A wasn’t completely earned.” She even remarked, “Since
coming back from the semester and me not understanding it [the logarithmic function], |
feel like | should go back and do college algebra again.” Norawas not able to finish any
of the tasks | gave her during the postinstructional phase and was dismayed that she
“didn’t know how to use” the logarithmic function to solve them. Since Nora could not
do the problems, she felt she did not understand.

Noragenerally viewed the logarithmic function as related to the exponential
function. She was able to remember the properties of the logarithmic function by
recalling the properties of the exponential function. According to Nora, she could then

use the propertiesto “do” problems involving the logarithmic function.
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Nora’'s conception of the logarithmic function during this phase was that she no
longer understood it because she could not do the problemsin the interview tasks. She
also related the function to the exponential because of the similaritiesin their properties.

Representation. During the postinstructional phase of the study, Nora used all
four representational modes to illustrate or investigate various characteristics of the
logarithmic function. Although, Nora's primary mode of representation was written, how
she used oral and pictoria representationsis also of interest here.

The oral representations that Nora used were names, notations, and maxims. Like
the other participants, Nora had a procedure she called convert. She described the
procedure during Interview 8 as a two-step process:

N: To me al it was was changing it [logarithms] to exponential form. So

that isall | did was change it to exponential form. And if | didn’t know

the power, then | put it back in log form and did a change of base formula

and got the exponential that it needed to be powered by.

She used the procedure to solve most of the problems involving the logarithmic function.
First, she changed the logarithmic expression (e.g., log,a = c) to an exponential one (b°=
a) to seeif awasapower of b. If it was not, second, she converted the expression back
to logarithmic form and used the change of base formula and her calculator to compute
the answer. The terminology Nora associated with this procedure was correct, but her use
of terminology in general was flawed. For example she used the term similarity instead
of symmetry to refer to the relationships between the graphs of the exponential and
logarithmic functions. Nora s confidence in and familiarity with her convert procedure
made it easy for her to talk about it.

Although Noramade errorsin her reading of notation during the skills
assessment, — she wrote log, .8, but said “log base three to the point eight”— during
subsequent interviews she read notation correctly. She also used maxims to remember
the “rules’ of the logarithmic function. For example, she recalled that “when you

multiply, you add.” Her first trandation of this maxim to written notation waslog a + log
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b, ab, but she noted that her representation did not “look right” and changed it to log a +
log b =1log ba.

Asintheinstructional phase of the study, Nora considered written representations
to be most important. When | pointed this out to her during Interview 9, she was not
surprised.

S: Can you shed any light on my whole idea that you think of the written

representation first and then you try to work off of that?

N: | think you’ ve got it right there, because | did that in high school and |

doit now. | think for meit benefited me, because I’ ve always done pretty

well.

Nora had learned how to write notations and do problems, and she had been very
successful. She attempted to use the same strategy during this phase of the study.
Regardless of the mode of representation in which the logarithmic function was
presented, Nora attempted to use written representations to make sense of them.
The map that Nora drew during Interview 4 (Figure 26) isindicative of Nora s use

of written representations.

Figure 26. Noras map of the logarithmic function constructed during Interview
4.
Included on the map are names and notations. In particular, the category looks
refers back to Nora'simpression of how the function should look. Also included are the

terms convert and rules. Norasaw these two names as referring to different objects.
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Convert was the name of a computational procedure. Rules was the name of a group of
properties of the logarithmic function, that were useful in solving problems that convert
could not.

Although the notation Nora used on her map was standard, she also generated her
own notations and modified given notation. During Interview 5, Nora represented the
relationship between the signs and the numbers on the number line as number on the line
= 25 - She did not see the dataiin the task as indicative of logarithmic relationship.
Instead she wrote the relationship in exponential form and transformed it into logarithmic
form to find the sign number corresponding to the number 3. During Interview 6, she
used function notation to represent her procedure. Norawrotef() x 2 and then f(202) =
one greater. She explained, “ multiply it [domain value] by two. It [the range valug] is
always going to be one greater.” This use of notation illustrates Nora s confusion with
the function notation. She often used the notation incorrectly. To explain the graph of
the logarithmic function passed through (0,1), she wrote f(log) (0, 1). When she was
asked to construct atable of values for the function f(x) = log, X, Nora asked me, “What
isy going to be?" | could not associate Nora s use of notation to any standard meaning.

The pictorial representations that Nora used were graphs | asked her to generate.
On the skills assessment Problem 5 asked for the graph f(x) = log,x. Nora used her

calculator and graphed f(x) = :2—3)2( . She hesitated for a moment saying “one comma zero

should have been [oniit],” but quickly moved on to the next problem. When | asked Nora
to compare Problem 5 and 6 (develop atable of values for f(x) = log, X) she noted that
both should pass through the point (1,0). It also became clear the graph of the
logarithmic function in Nora' s mind was both the logarithmic function and its inverse.
She drew a graph of the function during Interview 8 (see Figure 27). When she drew this
graph Nora
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Figure 27. Nora's graph of the logarithmic function from Interview 8

When she drew this graph Nora also explained a bit about it:

N: I don’t remember too much about the graphs. | know it is going to look

something [gets paper] the log graph. Just the basic log graph is going to

look something like... It isgoing to have an asymptote at zero [y = 0,

draws whiletalking]. And that is going through zero commaoneand itis

going to go through zero comma one [draws the exponential function].

And f inverse is going to go through one comma zero and it is going to

have an asymptote like that [referring to the y-axis] and then it will have

symmetry [draws y = x dotted ling].

S: So which one of thoseisthe log graph? Or isit all thelog graph?

N: Itisall log, but thisisjust thef and thisisthef inverse [labels the

exponential function f and the logarithmic function f2].
Nora's drawing and her comments resolved much of my confusion about her view of the
graph of the logarithmic function. Teacher 3 drew this picture on both days the
logarithmic function was discussed in class. In addition, on the test, both functions were
drawn on the same axes. Norafailed to distinguish between the graphical representations

of these two functions. She saw both curves as part of the logarithmic function.
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The representations Nora used during this phase of the study were oral, written,
and pictorial. She used names and notationsin oral and written form. She used maxims
to help her remember the properties of the logarithmic functions. Her graph of the
logarithmic function included the exponential function as a component.

Connection. The connections Nora used during the postinstructional phase of the
study were related to her convert procedure and properties of the logarithmic function.

Connections between oral and written representation of the convert procedure occurred in

. . . 1
that order. For example, during Interview 5 after many trials, Noramapped +2 to >

Following this breakthrough, | asked her to find the sign that corresponded to 3.
S: Okay, now what is going to go with three?
N: Three would be where the square root of two would be [in the written
representation]. Where is my scratch [ paper]?
S. Thereitis.
N: Three would be where the square root of two isgoing to be, so it
would be two to some power, right? Two to some power would equal
three (Writes 3 = 2* on scratch paper). Now | could convert that to log
form.
S: Maybe so.
N: Yeah. Because you could do the log base two to the third equals x
(writeslog, 3=x). Andthen | could do log two divided by log three.
(Noraisstill using the wrong change of base formula) | get point six three
oh nine (.6309).
Nora used her map for the square root of two as atemplate for this problem. Her oral
representations, for example "Two to some power would equal three,” preceded the
written ones, 3 = 2*. Nora s convert procedure in oral form was connected to written

notations.
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Nora aso connected her oral maxim when you add you multiply to the written notation
loga+log b =log ab.

The primary connections Nora formed among representations during the
postinstructional phase were between oral and written. She expressed a relationship
orally and then wrote it on paper. Thisisdistinctly different from how Nora operated
during the instructional phase of the study, where the onus was on the listener to establish
mathematical meanings for her utterances. During the postinstructional phase, she
attempted to coordinate her oral and written representations. Since | was not willing to
tell her if she was correct, she attempted to draw conclusions from my reactionsto her
remarks.

Application. Noraapplied her convert procedure to logarithmic and exponential
equations. Her application of the procedure included the change of base formula and the
calculator. Nora explained how she used the change of base formula during Interview 4
when asked her to explain why she felt her simplification problems on the skills
assessment were incorrect:

| distinctly remember, if you can’'t find the answer just do log base. Do it

in the calculator. Hit log, then you do whatever the base s, hit your

parentheses, divide log again. And then do the number that is beside

[referring to the argument] whatever the number is called, and then hit the

parentheses again and then you can solve it that way. That’swhere |

remember decimals. That'swhy | didn’t feel like that one was right

[referring to Problem 3b. log,; 4 - log, 5]. | didn’t remember too many

decimals on those [simplifying problems].

Nora explained that when she could not evaluate log, 4, she used the change of base
formulato rewrite the expression and her calculator to evaluate it. For Norathe convert
procedure, change of base formula, and the calculator were al associated. During
Interview 7, when she did not have her calculator she had a difficult timefilling in the

table. Half-way through the interview, after several solution attempts, she said: "I need
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that log button. | keep thinking | can do the change of base formula." One of the key
componentsin her convert procedure was missing, so Nora could not fill in the table.

Norawas not aware she linked her convert procedure, the change of base formula,
and the calculator. In general, she viewed using the calculator as cheating. When | asked
her to graph alogarithmic function during the skills assessment, she said, "Let's cheat."
When | asked her if she could match afunction with its graph, she said "I would cheat,"
and graph each function using her calculator. When Norafound a solution path using her
calculator and successive approximation to fill in the table during Interview 7, she called
her method cheating. Nora claimed that she was "addicted" to the graphing calculator, but
in my view she had become adept at using it. She knew how to convert logarithmic
functions to exponential form, and how to use the calculator to find values. She applied
her knowledge of both the logarithmic function and the calculator to calculate answers.
Beliefs

The central elements of Nora's understanding of the logarithmic function during
this phase of the study were: her convert procedure, properties of the logarithmic
function, and the graph of the function. Her convert procedure involved transformations
between logarithmic and exponential form, the change of base formula, and her
calculator. The term convert was connected to both oral and written representations. She
remembered several properties of the logarithmic function because she associated them
with laws of exponents, but in practice Nora only applied them when they were presented
in forms she had seen before. For example she knew "if you subtract you divide,” but she
could only apply the property when she saw log, 4 - l0g,5. She was unable to apply the
properties to the table completion problemsin Interview 7. Finally, Norasidea of the
graph of the logarithmic function was what | would call iconic. She saw it as a picture
with components that she remembered, but combined the exponential and the logarithmic
functions saying they were both pieces of the graph of the logarithmic function.
1. Getting an A in college algebra does not mean that | understand the logarithmic

function, since | cannot do all the problems | am being asked to do.
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2. To solvelogarithmic equations convert to exponential form or use the change of base
formula and the calculator.

3. Thegraph of the logarithmic function passes through the points (0, 1) and (1, 0), has
asymptotes on the axes, and has a line of symmetry aty = x.

4. To solve problems with logarithms you need to know three rules that are some how
generated from the laws of exponents: “if you subtract you divide,” “if you multiply
you add,” and “log of oneis always zero.”

5. Thecalculator isanecessary tool for evaluating logarithms.

Changes in Understanding

Nora s understanding was influenced by her attempts to make the highest grade in
her mathematics class. During the preinstructional phase, Nora remembered very little
about the logarithmic function from high school. The strategies she used to do the
problems on the skills assessment were based on notations she had seen before. She
treated the log, asif it was a variable, applying the distributive property to the sum of
logarithms and the associative property to the product of a constant and alogarithm. In
addition, Nora pointed out the log key on her calculator and commented that if she knew
how to use it she could solve the problems. Nora mimicked the written notation from the
skills assessment and used it to write answers to the simplification problems. Nora
wanted to make sense of the marks on the page and made logical attempts at doing so.
Noticing that the calculator could help and trying to acquire notation were Nora's
attempts.

During the instructional phase, Norawas told how to do particular types of
problems and what properties were important and useful in solving logarithmic and
exponential equations. In her quest to do well on the exam, Nora paid close attention to
what was said in class and faithfully did her homework. She quickly learned how to do
the problems that Teacher 3 showed in class using a transformation of the logarithmic
function to exponential form, the change of base formula, and her calculator. Nora

gained what Skemp (1976) called instrumental understanding of the logarithmic function.
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She paid close attention to the written representations that were presented in class, but
virtually ignored any other form of representation. On the test, she was successful. She
could do the problems with ease. Norafelt she understood the logarithmic function.

During the postinstructional phase, Nora was surprised that she had difficulty
applying logarithmic function and its properties to the tasks | gave her. She believed
making an A in the class meant she knew virtually everything about the logarithmic
function. By Interview 9, Nora sview of her own understanding of the logarithmic
function had changed. She felt that she did not understand the logarithmic function. She
pointed out that she knew each of the tasks was somehow related to the function, but “I
just didn’t know how to use them.” Nora was able to apply the convert procedure and
could state and give examples of some of the properties of the logarithmic function. She
was unable to explain how the properties were derived and could not apply them to
situations other than those she had seen in class. Nora also had trouble with graphing.

Nora s understanding of the logarithmic function changed in each of the three
phases of the study. She acquired skill in solving standard problems using written
notation during the instructional phase. During the postinstructional phase, Nora found
the problems difficult, but did not give up easily. She eventually constructed solution
procedures for the tasks, in part due to her persistence. Her reliance on written
representation generally hampered her problem solving. She never used other
representations to gain insight into the problems. Nora s awareness that makingan A ina
courseis not a measure of her mathematical knowledge was a marked change from her
preinstructional and instructional views. Still Nora's belief that understanding a
mathematical concept means one can do problems associated with it did not change
during the course of the study.

Ways of Knowing

Nora exhibited powerful ways of knowing during the postinstructional phase of
the study. First, she knew how to transform expressions in exponential and logarithmic

forms. When she saw alogarithmic expression or an exponential equation, she was able
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to ssimplify, evaluate, or solveit. No other student in the study displayed thislevel of
procedural proficiency. Connections between her procedures and why they work could
easily be developed. When | asked Norato show me how the properties of exponential
and logarithmic functions were related, it bothered her that her example (sum of the
logarithms is the logarithm of the product because 3 + 3° = 3°) wasincorrect. She
expressed a general dissatisfaction with her knowledge. She wanted to know how and
why the logarithmic function worked. Nora s curiosity and persistence could be used to
encourage the growth of her understanding of the logarithmic function.

Second, Norarealized during Interview 7 that her table completion procedure was
inefficient. She looked for a simpler method, but eventually used successive
approximation as Jamie and Rachel had. During the interview, | encouraged Norato ook
for arelationship between log, 2, log, 4, 1og, 8. Nora did not appear to connect the three
expressions, she did notice that log, 4 was twice log, 2, and that log, 8 was three times
log, 2, she never connected this observation to a property of the logarithmic function or
to powers of two. Nora had difficulty seeing number patterns due to a very limited view

of number. She preferred to use decimals not fractions. Sheinsisted on converting

fractions such as% , % , and :—é to decimal's, which made the commonalties between the

numbers during Interviews 5 and 6 more difficult to see. After much prompting on my
part, Nora did identify the number line numbersin interview 5 as powers of 2. If Nora
learned more about numbers and their various representations, she would understand both
exponential and logarithmic function better.

Third, Norawas aware of inconsistencies in her answers. During Interview 5,
Norainitially used linear interpolation to find the sign above the number+/2 . Later in the
interview, when she conjectured the product of any two numbers on the number line
should correspond to the sum of their signs, | questioned Noraabout +/2 . | noted if
/2 did correspond to 0.4 as she had suggested, then 2 should correspond to 0.8. This

counterexample eventually resulted in Nora' s awareness of arelationship between the
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number line numbers and the sign numbers that she used to find the sign number above
any number line number.

Nora s awareness of inconsistencies and desire to eliminate them, could be used
to develop her understanding of the graph of the logarithmic function. During the skills
assessment, Nora had no difficulty constructing a table of values from a graph and a
function. If Norawere to construct such atable from her graph of the logarithmic
function and develop atable of values for the logarithmic function, she would be
interested in resolving the inconsi stencies she would find.

Nora s ways of knowing provide opportunities for the growth of understanding.
She had developed instrumental understanding of some aspects of the logarithmic
function, in particular, how to solve and simplify problems. She was curious and when
she was aware of inconsistencies, she attempted to eliminate them. These ways of
knowing could be used as the basis for growth of understanding of the logarithmic
function.

Demetrius

Getting to Know Demetrius

In the fall of 2000, Demetrius transferred to RC as a 20-year-old sophomore. His
first year he attended a two-year college in Alabamato play basketball. Demetrius loved
the sport and often used basketball analogies to explain his interpretation of the world.
For example, during Interview 3a Demetrius commented that Teacher 3 explained how to
do things the “hard way” using notations and formulas like the book, “1 know it [math] is
suppose to be hard. It issuppose to be art or perfection, you know, but he [ Teacher 3]
can just stateit. Like. itissimplereally. But he wantsto makeit all confusing.” This
comment mystified me, so during Interview 3b | asked him to explain it.

| work hard in the game and | try to get asgood as| can. | try to perfect

that sport. | try to be the best in that sport because | love that. For the
love of basketball.... Some people love math like Teacher 3. | feelshe

loves math or he wouldn’t want to go in that field and teach it. He loves
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math and tries to be the best he canin it. He hasabig smile, agrin from

ear to ear, when heis up there teaching because he lovesit. Because it

works out and he can see it and he understandsit. Y ou want to make

people feel about math like you feel. Like, if | like math, | want to make

people see what | see and love math like | love math. So for him to be a

math teacher, you know, he is going to do the best he can and he is going

to perfectit. Hejust lovesit. He doesn’t want to see it wrong. Just the

right way. The way you should writeit. That’s how hewantsit. He

wants it done that way because it’sjust, that’stheway it is.
Demetrius believed Teacher 3's love of mathematics was like his love of basketball.
According to Demetrius, Teacher 3 wanted to see mathematics written perfectly like
Demetrius wanted to see basketball played. While at RC, Demetrius practiced with the
team but was redshirted to preserve his years of eligibility. He planned to transfer to a
four-year collegein fall 2001 to play basketball and pursue a bachelor's degree.

Demetrius wanted to become a special education teacher. He started college with
the goal of becoming a physical therapist. Asthe courses became more difficult and
Demetrius realized how long it was going to take to get his degree, he decided to change
hismagjor. Demetrius explained he selected special education because he wanted to help
people. He volunteered for the study because he needed the money and saw it asan
opportunity to help me. Demetrius planned to earn a master's degree before he began
teaching. He explained his educational goals during Interview 2:

Maybe, if | am lucky enough,... if I'm fortunate enough to get my 6-year

specialist or whatever. You know, | feel like my brother has set the path

for me. Heisadoctor in education. So, maybe, if | still have the will and

drive by then, and don’t get satisfied with the income, | will go on and

become a doctor, get my Ph.D., become a doctor in education.

Each of Demetrius's siblings had attended college, atradition he hoped to carry on.
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Demetrius' s family was an extremely important part of hislife. He and his older
sister traveled 85 miles home each weekend. Demetrius was the youngest of six children.
His oldest brother was the principal of a middle school and was like afather to him.
Demetrius's other brother was a probation officer, two of his sisters were teachers, and
one was aregistered nurse. The sibling closest to himin agewas 29. The others were
“grown folks,” whom Demetrius admired and respected because of their ages and
accomplishments. Demetrius credited his mother with his family's academic success. She
had worked in afactory all her life to support her children. When each of her children
was old enough to get a summer job, she found some sort of assembly line work for
them. This experience was pivotal for Demetrius. After along summer of assembly line
work, when the foreman asked Demetrius to continue working in the fall, hereplied, “1I'm
finished. I’m getting my education.”

Demetrius lived on campus and did not work atraditional job. At our first
meeting he gave me a pamphlet for prepaid legal services. For a certain monthly fee the
service provided legal counsel if it was ever needed. Demetrius was an associate for the
company and sold the policy in his spare time.

Demetrius as a M athematics Student

Demetrius described himself as a caring and committed mathematics student.
| don’'t have really strong math skill, ... but | describe myself as a person
that is eager and willing to learn it. Even though | might not useit in life,
just to accomplish it. Because | know it isachallenge to me. Myself...so |
feel like, you know, achieve, master learning it. | feel like, it will be,...that

it isaself-achievement for me. Y ou know what I’m saying?...Because

that isjust like anybody else. If there is something they can’t do that well

or something they want to know more about, even though they can’t do it
that well, they are still going to work hard to achieveit, even if they don't
useitinlife.... AndI know it is something I’ ve got to have anyway to go

on. So, | would describe myself, as a person that is eager and willing to
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learnandto dothe best | caninit. Evenif that’saC, you know, that’'s

thebest | cando. Or if it' saB, thebest | can do.
Demetrius saw mathematics as a challenge, but useless for his career. 1t was also an
obstacle he had to overcome to achieve hisgoal. He had never done well in mathematics
and had been frustrated in his high school mathematics classes:

S: Think of atime when you felt despair or frustration about your learning

activities and tell me about that.

D: Okay, once again going back to high school. Well, | felt like this every

day in math class actually. Because, likel said, | wasn't amath student. |

wasn't really math oriented, smart. | wasn’t that smart in math. Just being

in college prep. I'd say algebrain 9th grade. Just being in that class,

feeling so confused. And then frustrated and confused, to where | didn’t

want to raise my hand and ask questions because they might have been

stupid questions. Or they might have been a question and she would look

at me like, you know, because there were alot of people that did

understand and alot of people that were smart. So | didn’'t realy want to

ask questions, and | felt like in that class, I’'m by myself, frustrated, and ...

that | wasn't that smart, and | shouldn’t be in there.... | used to get most

of my help, like | said tutoring, or even after class, because | didn’t really

ask any questionsin class. That was probably part of my problem. And |

came out withaC init, but | probably would have come out with aB or

maybe even. Well, | won't say an A or maybe a B, if | would have asked

guestions.
Demetrius felt he did not understand mathematics and was not “smart in math.” During
class he would listen, but still be confused. His feelings about his own performance and
how he behaved in class had not changed since high school. Each 75-minute lecture in
college algebrawas atest of his attentive powers. Each day Demetrius came to class

determined to listen and be persistent, during class as the minutes ticked away and he
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became perplexed. He listened less and daydreamed more, “ after awhile you listen and
you lose them or they lose you...and you just go to daydreaming after that.” Demetrius
daydreamed to escape his frustration with not understanding. He mentioned the
importance of listening in 8 of the interviews. In Demetrius's view, a good student is one
who listens and tries.

Demetrius participated in class by asking questions and doing the seatwork that
Teacher 3 suggested. Although he did not participate nearly as much as Nora, Demetrius
asked questions when he was confused or when he wanted to know if his answers were
correct. Demetrius sat near the back of the room in acolumn of desks near the door. All
four of the African American students in the class sat in these first two columns.
Demetrius often talked to the young woman in front of him, asking her questions about
mathematics problems and daily events before and after class. Demetrius' s notes were
extremely neat and he was judicious in what he wrote down as long as he was not feeling
confused. When he gave up and started daydreaming, he was more indiscriminate about
what he recorded and spent time doodling in his notebook.

Demetrius s goal for the class was to pass. During Interview 2, he explained:

The most important thing to meisthat grade. You know. Okay...I’m not

going to say that. The most important thing should be understanding, but

me personally, the most important thing is that grade. Because, you know,

I’ ve got to have that grade to move on. The most important thing should

be...understanding it. Because that iswhat education is all about, you

know, learning. But, then again that grade is the most important thing to

me because it is how you move on.

To achieve his goals he had to pass college algebra. Demetrius explained during alater
interview, only mathematics majors needed to understand the material. He would not
need to know mathematics for his mgjor, so passing the course was sufficient.

Using a combination of techniques, including regularly attending the AAC,

getting my help on aregression project, taking notes, and studying Demetrius was able to
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pass college agebrawith aC. He had hoped for a B, the grade he went into the final
exam with, but the C was acceptable to him. College algebrawas Demetrius's terminal
mathematics course.

Understanding M athematical Concepts

Demetrius had idealistic and realistic views of understanding. He explained his
idealistic view during Interview 2, when | asked him to define understanding:

The term understanding. Not memorizing. Not just knowing how to do it

when you see it, but understanding what you are doing and why you are

doing it. But you can memorize some.... But you've got to understand

exactly what you are doing and why you are doing it, because there might

come a case When it is a different situation from that. Y ou know what I’'m

saying. Itisadifferent situation in that case and you’ ve got to know

exactly what you are doing to maneuver around the differencesin those

two cases. So, you've got to fully understand what you are doing to a

problem when you are doing it. Instead of just memorizing how the

teacher showed you to do it. Because you can’t do every problem the

same exact way...| think understanding is just...understanding thoroughly

and about what exactly are you doing to the problem and just...well, it is

just the opposite of memorizing.
Ideally, he felt he should know both how to do problems and why he was doing them a
particular way. Redlistically, his primary concern was passing the college algebra tests.
Knowing why was not something he was going to be tested on as he explained during
Interview 9:

Okay, let me see how to put this. | think I...memorized [the material

associated with the logarithmic function] because there were some things

that if | understood it completely, | would have known in our interview.

There where a couple of things that let you know then that | didn’t really

fully understand what was going on, but | knew how to doit...I just knew
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what | needed to know to passthe test. Y ou know, the test wasn’t about
telling why this happens and why this. Y ou know what I’m saying? | just
understood what | needed to know and what | needed to do. So | can say,
in asense | understood what | needed to do, but | didn’t understand why it
was going on.
Demetrius was always very candid and reflective in his responses. He realized
understanding meant knowing both how and why, but he also knew sometimesin a
mathematics class you have to be practical. Being practical in college algebra meant
learning to do enough problems to pass the tests.

Demetrius' Understanding of the L ogarithmic Function: Preinstructional Phase

Demetrius remembered seeing the logarithmic function in high school. “I
remember it was a certain base or a certain thing you go by every time. Like,...this part
right here means this and this part right here means this and this part right here means
this.” This vague description was similar to Nora's, but includes the term base.
Demetrius remembered very little about the function prior to attempting the skills
assessment.

Evidence of Understanding

During this phase of the study three categories of evidence were significant.

Conception. Demetrius remembered the logarithmic function as “kind of easy.”
His Algebrall teacher had presented the concept as one that would help students improve
their averages. Thisview did not persist. It took Demetrius approximately 70 minutes to
complete the skills assessment. He spent more time on it than the other participants. He
worked very carefully, but was disappointed in his performance. While doing the
assessment, he became frustrated but wrote an answer for each problem. His answer for
the properties of the logarithmic function was: “Whatever you do, it’s basically the same
concept you do all thetime.” Following the assessment, he concluded, “1 didn’t
remember anything.” Demetrius remembered the logarithmic function being presented as

an easy mathematical concept, but he was unable to do the problems | asked him to do.
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One element of his conception of the function was that it should be easy, but was not for
him.

Demetrius thought of the logarithmic function was as a collection of symbols and
problems. On the skills assessment, he defined the logarithm with the notation 3 log,
base, and the logarithmic function with the notation 2 log,. His meaning became clear as

he completed the mapping task (see Figure 28).

Figure 28. Demetrius's map of the logarithmic function from Interview 1.
Logs were associated with two categories: one as objects that were used to make up a
logarithm, and as types of problemsto be done. The category, thingsto do to them, isa
collection of problem types including some from the skills assessment problems:
simplify, evaluate, and graph. The second element of Demetrius's conception of the
logarithmic function, was as a collection of symbols and problems.

Representation. During the preinstructional phase, Demetrius used both written
and oral representations for the logarithmic function. His written representations were
like Nora's. He also used the distributive and associative properties to ssmplify and
evaluate the logarithmic expressions on the assessment. When | asked him what he
understood most from the activity, he selected the simplification problems.

It seemed like it [the simplification problems] was just aregular addition

problem. That is something that will stick with you, something that easy.

Probably seemed easy, like, because, you know, with regular addition it is
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easy anyway. Y ou get problems like that and you are taught how to do

them and they are that easy. | guessthey stick with you.

Demetrius recalled his teacher had said the concept was easy, so he did what seemed
easy. Hetreated the logarithm as a variable and found log, 4 + log, 5=10g, 9 .

Demetrius also used the written name base on his skills assessment and his map.
He included it on each of the maps he constructed. For Demetrius the base was a
significant feature of the function, although he admitted during Interview 9 he did not
know why it was important.

Demetrius's oral representations included names and maxims. Demetrius recalled
the term base and even knew where it belonged in the notation. He stated and applied the
maxim, “if the bases are the same you can add logarithms.” Unfortunately the maxim
provides very little detail and Demetrius's application produced incorrect answers.

Connection. In Demetrius written work, there were connections between names
and notation and among notations. In particular, early in the skills assessment, Demetrius
indicated he knew base was associated with the subscript in alogarithmic expression. He
also connected the notation log, 4 + log, 5 to the notation log, 9.

Demetrius associated his oral maxim with written notation. He generalized his
action of adding two logarithms into an easy to remember phrase. “If they havelike
bases, the logarithms can be added.” His actions and his map suggest that Demetrius had
and used other maxims about multiplying and dividing logarithms that he did not state.
Beliefs

Demetrius's beliefs were primarily derived from his algebra teacher’ s remarks
about the function and the skills assessment. Since he felt his teacher was “very good,”
he trusted her judgement about the logarithmic function. He used his belief that the
logarithmic function was easy and maxims about like bases, to simplify logarithmic
expressions. He also recalled that the logarithmic function had a base and knew its
position in the notation. The only other student to remember this terminology was

Rachel, and she had taken the course just two semesters earlier. For Demetrius, the skills



145

assessment provided information about the types of problems that could be solved with

the logarithmic function and the notation he should use when writing the function.

1.

The logarithmic function should be easy because that is what my teacher told me.

. Thebaseis part of the logarithmic function and is written as a subscript.

2
3.
4

If two logarithms have the same base you can add, subtract, multiply, or divide them.

. Knowing how to combine logarithms means that you know how to evaluate, simplify,

and graph.
The logarithmic function is a collection of symbolsthat | need to know how to
combine.

Demetius's Understanding of the L ogarithmic Function: Instructional Phase

Evidence of Understanding.

Conception. Demetrius conception of the logarithmic function during this phase

of the study, was that it was easy and associated with a collection of procedures. He

explain hisview during Interview 3:

S: Isthere anything else you can tell me about what went on in class
today that will help me understand how you are understanding the
logarithmic function?

D: Itisbasically aroutine. You are doing the same pattern. Everything
you are doing the same thing depending on the situation. And basically
you've got to get familiar with what you've got to do. What they ask you
to do. Basically you are doing the same pattern. Going from one form to
another to work out the problems, to evaluate the problems. And just go
by your rules. That isbasically it. Logscould be simple, you just learn
the rules and learn what you do for asituation. Thereisn't anything real

hard about it.

For Demetrius logarithms were simple. He learned how to apply the logarithmic function

to evaluate expressions. Since he could solve problems, the function was easy.
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Demetrius saw the logarithmic function as a collection of problems that were easy to
solveif he knew the rules.

Representation. During the instructional phase of the study, Demetrius used oral

and written representations. His oral representations were names and maxims.
Demetrius used names to identify problem types and to refer to properties of the function.
He identified two problem types by name: evaluating and going from logarithmic formto
exponential form. He used these names during Interview 3, as he explained why students
might find the logarithmic function difficult to learn:

Maybe because there are so many ways that you can do a problem. You

try to apply thisway, ... when you were suppose to have done it this way,

for this problem. Like, asfar asthose certain steps. Like when you are

evaluating. You can go about doing it different ways. Sometimes you

like to get mixed up or do the wrong thing. Y ou have to pay attention to

what exactly the question is asking for. Because you can even evaluate

something,...you know, you might try to do something to it when you

were suppose to have left it in that form. For instance, like they said go

from logarithmic form to exponential form. If you don't catch that,...you

might try to evaluate the exponential form, if you’ re not listening

carefully.

For Demetrius, knowing what procedure to apply to a problem was important. He felt if
he did not apply the correct procedure, his answer would be wrong.

The second type of oral representations Demetrius used was maxims. When the
properties of the logarithmic function were introduced in class he had difficulty
remembering them. The notation log A + log B = log AB was confusing for Demetrius, so
he adopted maxims presented in class to help him remember the properties. He used the
maxims "if the two logs are subtracted, then you divided them” and "when you add them
(logarithms) you multiply." Using these maxims, Demetrius was able to evaluate

expressions in logarithmic form, but could not solve logarithmic equations such as
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log,x+ l0g,(X - 2) = 3 from histest.

The primary sources of Demetrius's written representations of the logarithmic
function, were his map, class notes, and homework. He used standard notation for the
logarithmic function in his notes and on his homework. His map included names, but no

notation (see Figure 29).
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Figure 29. Demetrius's map of the logarithmic function instructional phase.
This map is similar to the one Demetrius constructed during Interview 1. He still
depicted the logarithmic function as a collection of problems (thing you do to them) and
symbols (things that make them up). Names of problems were those commonly used in
class, calculate and evaluate. Names of symbols were base and numbers, as they had
been during the preinstructional phase, but he also included the names of collections of
symbols: rules and formulas. Like Nora, Demetrius identified the logarithmic and
exponential forms on hismap. Log formand expon. formrefer to the trandation of an
expression from one form to another.

Connection. Demetrius connected his oral representations. In particular, he
connected the term rules with his maxims. He talked about applying the rules during
Interview 3 as he explained how to solve the logarithmic equation (log, X + log, (X - 2) =
3) hedid incorrectly: "Our rules apply. When you add them, then you multiply. They
have the same bases." Demetrius associated the properties he called rules with the

maxims. These connections helped Demetrius do problems.
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Application. Demetrius applied the properties of the logarithmic function to
evaluate logarithmic expressions. He used maxims to solve problems with addition and
subtraction of logarithms and was able to simplify expressions such aslog, 625 by
expressing 625 as an integer power of five and in hiswords the answer "equals the
exponent.” Hence, if Demetrius saw the symbol log, he knew there was a collection of
problems to solve and procedures to solve them. The challenge was matching the two.
Theories

The primary focus of Demetrius's efforts during the instructional phase, was
development of procedures and learning when to apply them to the correct problems. His
beliefs reflect this focus.

1. Logarithmic functions are simple, if you just know what rule to apply to a problem.

2. Two types of problems one needs to know how to do are evaluating and how to go
from one form to another.

3. Two forms of the logarithmic function are exponential and logarithmic.

4. There are many rulesthat are used to solve the logarithmic function, but they can be
explained most simply with maxims.

5. Two maximsthat are especially useful are “when you add you multiply” and “when
you subtract you divide.”

Demetrius' s Understanding of the L ogarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception. Demetrius's concept of the logarithmic function during the
postinstructional phase of the study, was that he understood the function, despite his
inability to do problemswith it. Being able to remember doing problems from class, but
not being able to do similar problems on the skills assessment, frustrated him. He
explained during Interview 4:

S: Can you pick out a problem and tell me about not understanding?

D: | can pick out several.

S: Well, just pick out one.
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D: For the most part, over dl, | think it was mind boggling because |

didn’t remember hardly anything. And | had to stretch my brain and |

was, “dog, | should have known some of these.” So I felt, kind of like, |

didn’t learn anything in logs. Some of these graphing problems. Graph

the function f of x equal log base two x on the axis provided. | had no

idea. | didn’t even attempt that one. | didn’t even know whereto start. |

don’'t even really know if | even knew it some weeks ago, when we were

doing the chapter. | had no idea of where to even think of where to start

graphing.
Demetrius was disappointed in his performance and viewed his knowledge of the
logarithmic function as lacking. During Interview 7, with prompting from me, he
eventually transformed alogarithmic expression into exponential form and used the
calculator to solve the exponential equation, but commented, "1 still really don't
understand it. | can memorizeit, but that doesn't mean | understand it." He knew how to
do the transformation, but could not explain why it worked. Despite making these
remarks, when | asked Demetrius during Interview 9 if he understood the logarithmic
function he replied, "l would say yeah, | understand them." Hisrationale was that he
knew enough to pass the test:

For somebody that is probably a math major, they need to know

thoroughly why something is done. 1 just need to know what | needed to

do to pass, but they needed to know completely. They need to know why

you need to do thisto apply toinlife, to apply to life, if that is going to be

their occupation.
Mathematics majors need to know why, Demetrius explained, he did not need to know
mathematics for his career. Although | saw his explanations in the postinstructional
phase as contradicting his origina definition of understanding, knowing how and why,

Demetrius disagreed. Hence, for him, being able to do problems during class meant that
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he understood the function well enough for his major. His conception of the logarithmic
function was as a small collection of problems that he could do without knowing why.

Representation. Demetrius primary modes of representation during the
postinstructional phase were oral and written. In speaking about the logarithmic function,
Demetrius used names and maxims. The names he used were logarithmic and
exponential function or form and base. These terms were key to Demetrius view of the
logarithmic function because both referred to doing problems. He could transform an
expression in logarithmic form to one in exponentia form to evaluate it. In addition to
names, Demetrius often used oral representations of the properties of the logarithmic
function to help him simplify problems. Three of these maxims included the term base.
“Logarithms can be added and subtracted if they had the same base,” “the base cannot be
negative,” and the base of the logarithm on the calculator isten.” Although the maxims
were used in reference to the properties of the logarithmic function, during the
postinstructiona phase, they were not helpful. Like the other participants, on the skills
exam Demetrius used the distributive property to find log, 4 + log, 5=log, 9. He had
more success applying “the log is the exponent.” This maxim was introduced during
class. When Demetrius heard it, he claimed that it helped him remember. During
Interview 8, heillustrated and explained how he used the maxim. After writing the
expression log,, X =y, Demetrius explained:

Okay, that isthe logarithmic form. In the exponential form, you need to

remember that, you need to remember always that, the log equals the

exponent. That will help you whenever you are doing the exponential

form. Y ou need to know the log equal s the exponent.
He was able to use this maxim to successfully transform the logarithmic form to the
exponential one. Demetrius used names and maxims as keys to solving problems. He
was not always successful with his maxims, but for him, they were more useful than

notation.
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Demetrius used three types of written representations. names, notations, and
descriptions. There was no significant change in the written names he used during the
postinstructional phase. The categories on his maps remained the same: things they
[logs] are made of, 2 different kinds of logs, things you do to them, as was the term base.
During Interview 9, he explained the category things you do to them.

Things you do to them, because everybody knows what you can do to a

problem. Asfar asadd them, subtract them, divide them, multiply them,

or evaluate them. All of them are basically the same.

According to Demetrius, add, subtract, multiply, divide, and evaluate were how
everybody did mathematics problems. The name of the category referred to mathematics
problemsin general. Like the names he wrote during the instructional phase, the
categories and names exponential and logarithmic formsreferred to problems and
procedures he used to solve them.

The second written representation Demetrius used was notation. He used it only
to illustrate solutions to problems on the skills assessment, during the table completion
task in Interview 7, and when he was explaining the logarithmic function to me during
Interview 8. Although the form of his notation was correct, his application of his maxims
in the form of notation caused errors. For example, during Interview 8 heillustrated his
sum of logarithms maxim using the example log 7 + log 3 = log 10.

Demetrius did not feel comfortable using notation. He did not use it on any of his
maps. Instead of using notation on the bulletin board tasks during Interviews 5 and 6, he
used descriptions. For example, during Interview 5 heillustrated the relationship
between the sign numbers and the number line numbers with the following written
description:

Each time you multiply the # under the sign by 2, go up and add one more

# than the # on the previous sign to that sign above that #. Moving on the

# line back to the left, divide by 2 and subtract one from the previous sign

and place the # above.
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Demetrius described how he found the sign numbers using coordinated actions.
Multiplication by 2 was associated with adding 1, whereas division by 2 was associated
with subtracting 1. The descriptions were easier for him to use than notation.

In summary, Demetrius oral and written representations to do problems. He used
maxims to remind himself of the properties of the logarithmic function and notation to
illustrate his solutions.

Connection. Demetrius made connections between his oral and written
representations and among his written representations. He used oral maxims as guides
for doing problems in written form. He used oral namesin asimilar way. For example, as
he attempted the first table completion task during Interview 7 he commented, "1 was
thinking about logarithmic and exponential form." He knew the table had something to
do with the logarithmic function and his principle tool was transformation between the
logarithmic and exponential forms. Following his comment, he wrote log,, 1,
transformed it into exponential form, and concluded log,, 1 = 0. Demetrius used oral
names and maxims prior writing a representation for the logarithmic function.

Demetrius made connections between written representations when he was
solving problems. He transformed expressions in logarithmic form to exponential form
and simplified expressions such aslog 7 + log 3, using the properties of the logarithmic
function. In addition, Demetrius associated the term logarithm with the exponential and
logarithmic form and the base.

Application. Demetrius applied the logarithmic function and its propertiesin two
ways during the postinstructional phase. Much like the other participants, he saw the
calculator as a source of information about the logarithmic function. During Interview 7,
he noted if he had a calculator with alog key on it, it would be easy to fill in the table.
However, not having the log key did not bother him as much asit did the other
participants. Herelied onit lessin al of the interviews than the other participants. For

example, he found the product of 16 and 2 during Interview 5 by using the standard paper
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and pencil algorithm. During Interview 8, he explained how to use the calculator to
compute logarithms:

D: And uhm...(pause) Y ou have alog key on the T1-83 and uhm...which is

right here. You have anatural log key, which is basically the same thing.

S: Oh, yeah.

D: Except the natural log key, unm...I don’t work with it...it is the same

thing (laughs).

S: They are the same?

D: Yeah.

S. So | can push either one. It doesn’t matter?

D: Doesn’'t matter.

S: Okay, so how do | use that key?

D: So say you are looking for the log of ten you just press...you just press

the log of the number... Whatever number you are looking for the log of. |

will just say log of ten, close parenthesis [typesin log 10] and enter.
Demetrius could compute base ten logarithms with his calculator and believed the log
and In keys produced the same result. Thisideawas quickly dispelled when | asked him
to compute logl0 and In10. He was not exactly sure why the approximations given by
the calculator were not the same. This notion that the two buttons produced the same
approximations, was the result of a classroom exchange that took place during the
instructional phase. On November 21, Teacher 3 commented, it did not matter if one
used the log or the Inin the change of base formula, the same answer would result.
Demetrius asked Teacher 3, "What is the difference if you go [use] natural log?' Teacher
3 replied there was no difference. Hence, Demetrius assumed pushing either button on
his calculator, would result in the same approximation.

Despite Demetrius's awareness that the calculator could approximate logarithms,
he did not use it to do so on the skills assessment as other participants had. In fact, when

Demetrius mentioned using a calculator as he was introducing the logarithmic function to
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me during Interview 8, | asked him if | would need a calculator for thistopic. Hereplied,
"not really." He saw the calculator as useful, but not necessary. He used the calculator at
my request, to verify the sums and differences of logarithms. In general, he relied on his
maxims.

Although Demetrius saw the calculator as an optional tool and was confused
about the In and log keys, he knew how to use it correctly to evaluate base ten logarithms.
He was also able to use it in conjunction with his transformation of expression in
logarithmic form to exponential form to perform the table completion task.

Beliefs
During the postinstructional phase, Demetrius's understanding of the logarithmic
function had changed. He no longer talked about the logarithmic function as being easy.
Instead, he characterized his understanding of the function as memorization of rules, he
no longer could or needed to remember. He still associated the function with a collection
of problems and he realized logarithmic and exponential forms were important to solving
these problems. He knew the calculator could be used to approximate logarithms, but it
was hot a necessary tool. His maxims were vital to generating solution paths, when he
knew a problem involved the logarithmic function.
1. Knowing how to do problems involving logarithmsis not a complete understanding,
but it was all that was required in college algebra and it is enough for me
2. Thelogarithmic function is a collection of notations and problems that can be solved,
if I can remember the maxims.
Thelog isthe exponent.
When the bases are the same you add (subtract) logarithms.

Thelog and In keys on the calculator help you compute logarithms.

o o M~ w

The most important thing to remember about logarithms is that there are two forms:

exponential and logarithmic.
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Changes in Understanding

During the preinstructional phase, Demetrius recalled his high school teacher had
called the logarithmic function as easy. He used this recollection as the basis for his
ways of operating. He over generalized the distributive property and applied it to the
logarithmic function. He was able to remember some relevant notation and names. In
particular, Demetrius remembered the position of the base of the logarithmic function. In
general, hefelt if his memory was refreshed, he would recall how to do the logarithmic
function. Thisview wasin contrast with his claim that when he understood a concept, he
knew both how to do the problems and why he was doing a particular procedure.

During the instructional phase, whenever | asked Demetrius about his
understanding he referred to what he knew how to do. This was consistent with his goal
of learning enough about the logarithmic function to pass the test. Initially Demetrius
found the notation associated with the logarithmic function and its properties difficult to
understand, but he quickly realized the adoption of maxims could help him remember the
properties of the function. Demetrius noted that going from logarithmic to exponential
form was of particular importance. He highlighted this transformation on his map, and
singled it out as one of the types of problems he needed to know how to solve.

Demetrius still saw the logarithmic function as a collection of symbols that could
be combined, an answer to be calculated, and a problem to be solved. In addition, the
objects themselves did not have standard meanings for him. When Teacher 3 attempted
to illustrate how the properties of the logarithmic function could be applied, the notation
looked so complicated to Demetrius and it was so late in the class period, that he just
packed up his materials. He gave up trying and “went to daydreaming.”

During the postinstructional phase, Demetrius was extremely surprised that he did
not know how to do problems with the logarithmic function. He felt “ashamed.” To add
logarithms he reverted to his preinstructional method of taking the logarithm of their sum.
He continued to rely on maxims to help him solve problems; this practice was as much a

hindrance as it was a help. He resolved the issue of understanding, noting that he knew
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how, but not why. For Demetrius, his knowledge of the logarithmic function was
sufficient for his major and he had passed the course, so he understood enough. During
Interview 9, heillustrated his process of understanding the logarithmic function (see

Figure 30).

Ao Rogarithmic e I
dﬁﬁ ?‘m;_‘fi’ﬂ«é’i wrdeun )
- N

Oi?f /O

e —

-

b

fﬂ-’f{ﬁ:ﬁjwslér; mafGes Lhe

minn Og mlr_;-."rf-f- ¢

o \\(j .c/{mﬂr 4 m&dm‘ﬁb Arteairel

& Aom .;4 Tty aprdlerotanet , bt
iy &tec £ F:f; fAJr]‘m-d’ ¢
t ﬂﬁ mw?wf rwfu*hp S regeled A Fenotr

J’A /’;ﬁz’-ﬂ{x i

Figure 30. Demetrius's depiction of his process of understanding the logarithmic
function.

Demetrius was taking psychology during the semester Interview 9 was conducted. He
had recently studied long- and short-term memory. He explained his drawing:

All right, it is called the logarithmic memory man. Which isaman based

on my memory. And thisisthe memory man from long term, you know,

from the long term of talking about logarithms. | didn’t know that much,

so therefore the man wasn’t complete or whatever. And as |’ m going from

long term, which means as | started to talk about it, because it is short term
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memory I’m here, in the process of doing it. So it wasjust like the day

before or that semester, you know, | just did it. So nothing about

logarithms, but I know more about logarithms. | feel like going from there

to now, | am complete, because | understand. | know enough to pass and

whatever. And | didn’t complete the hands because | feel likel

understood enough to passit, but | don’t know everything thereisto know

about them. | don’t understand them completely.
Demetrius rationalized his understanding of the logarithmic function, by including on his
drawing and in his description reference to knowing enough to pass. Demetrius was very
interested in how he remembered concepts. Herealized he did not know everything
about the logarithmic function, but then he felt no one did. He was satisfied with what he
knew. He could transform logarithmic expressions to exponential ones. He al'so
recognized notation in logarithmic form and was able to use some names associated with
the logarithmic function.

Ways of Knowing

Demetrius used many of the same ways of knowing as the other participants. He
used linear interpolation on the tasksin Interview 5 and 6 to find the logarithms of
numbers that were not integer powers of two. In Interview 7, he transformed logarithmic
expressions to exponential ones and found approximations for the logarithms using
successive approximation and his calculator. He also attempted to eliminate the
inconsistenciesin hiswork when he identified them or | pointed them out.

One way of knowing unique to Demetrius, was his confidence in the patterns he
discovered. For example, during Interview 5, he identified the pattern among the number

line numbers as doubling. In this section of the interview he was trying to find the sign

above the number %:

D: What sign would be above the number one-half? Uhm...one-half?
S: Umhum.
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D: Wouldn't it be right here [points to the position for % on the number

ling].

S: Yeah, one-half.

D: (Long pause) Zero...I meant hold up...no, no, no, no (hums, pause,
subvocalizes) One-half.

S: One-half? You think one-half goes over one-half?

D: Hold up, let’ssee. Unum. Two.

S: Two goes over it...what makes you say so.

D: I don’'t know. That doesn’t look right though. Hold up, that can’'t be
right.

S: Why?

D: Because I’ ve got a pattern going. Well, I'd say point five.

S. You would say point five. Okay.

D: No, hold up. (Laughs)

S: That’s ok, take your time. 1’'m not in any hurry.

D: (Subvocalizes) Negative one.

S: Why do you say that?

D: | don’'t know. I'm just looking at the pattern.

Demetrius tested his conjectures by comparing them with the pattern he found. Hisfirst

conjectures for the sign over % did not fit the pattern, so he abandoned them. Identifying

the sign as—1, allowed Demetriusto reverse his procedure. He was able to find the sign
numbers corresponding to negative integer powers of 2, by dividing the number line
number by 2 and subtracting 1 from the sign numbers. Demetrius was able to account for
the sequence of number line numbers and sign numbers and used both to make
predictions. He was also aware of another pattern in this problem. When he used linear

interpolation to find the sign above the number +/2, he felt that his answer was incorrect.
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His rationale was that distances between signs should be increasing. Eventually, he gave
up on this problem because he could not find another prediction method that was
consistent with his doubling/halving map. Demetrius was aware of three patterns, the two
number sequences and the distances between the signs. The strongest of these were the
number sequences, with distance only playing arole, when the number sequences were
no longer useful in helping him find the sign numbers.

Demetrius's awareness of the increasing distances between the numbers with
signs on them, could be used as a basis for encouraging his growth of understanding of
the logarithmic function. In Napier's number lines with simultaneous moving points, it
was his awareness of the distance each point traveled on one number line with respect to
the other that helped him develop his concept of the logarithmic function. Certainly
Demetrius was not Napier, but his awareness of patterns and his ability to coordinate
them and consider the actions of three different patterns suggests a promising avenue for

development of his understanding.



CHAPTER 5: UNDERSTANDING A MATHEMATICAL CONCEPT ASDOING

In this chapter | describe themesin the students’ understanding, changesin their
understanding, and their ways of knowing. These descriptions constitute the findings of
the study and provide the basis for adiscussion of students’ understanding of
mathematical concepts. The themes are also be used to modify the model of
understanding that | used to frame the study. Finally, the analysis of the findings and the
limitations of the study suggest avenues for further research into students' understanding.

Understanding

In this study the changes between in the students' beliefs about the logarithmic
function were small. The students’ understanding of the logarithmic function during the
first two phases had an impact on their understanding during the final phase, but their
beliefs during the final phase constituted their understanding. Their beliefs both within
and across phases had a common theme: problems. For the studentsin this study, the
logarithmic function was a collection of problemsto be done. In addition, | identified
four categories of students’ beliefs about the logarithmic function: level of difficulty,
problem types, tools, and character of the function. In this section | describe the theme
and the categories and answer the research questions.

Understanding as Doing

The students viewed and described their understanding a mathematical concept as
being able to do the function. They used phrases such as the following: “To do the
logarithmic function...., | don’t know how to doiit...., | forgot how todoit....” Their
references to doing the function referred to the problems associated with the function.
The problems were those illustrated and class and on their homework. For the studentsin
this study, the problems were the concept. Hence, they referred to the logarithmic
function as something they had to be able to do.

160
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Level of difficulty. Because al of the students viewed the logarithmic function as
doing problems, their beliefs about the function included perceptions of the level of
difficulty of the problems. If astudent felt he or she did well on atask, the function was
easy. If the student performed poorly, his or her assessment varied depending on his or
her rationale for the performance. If arationale for poor performance could be given, the
student viewed the function as easy. For example, If the students were asked to compute
logarithms without the log key on their calculator, the function was still easy; they just
did not have the proper tool. On the other hand, if arationale for their poor performance
could not be found, the function was hard. Students’ beliefs about the logarithmic
function were based on their perceptions of their performance on problems they
associated with the function. When they described the level of difficulty of the function,
they were assessing their ability to do the problems.

Jamie and Nora believed that the logarithmic function was hard because they did
not perform well on the tasks during the postinstructional phase of the study. Demetrius
also felt he had done poorly but rationalized that he had learned to do the problems
presented in class and that was all he needed to know. Rachel became frustrated with the
tasks during the postinstructional phase but maintained the function was easy to do, if she
had her textbook. Each of the participants made some assessment of the level of difficulty
of the problems and associated the level of difficulty with the concept.

Problemtypes. Two problem types, converting and evaluating, were included in
the students' beliefs. Converting referred to problems that required a transformation from
one form to another. Evaluating referred to problems that required a decimal
approximation for alogarithmic expression such aslog 2 and log,2 . These problem
types were illustrated in class and were included on the homework.

Tools. The largest category of student beliefs about the logarithmic function
involved the tools they used to solve problems. Four types of tools were used and
discussed by the students: facts, formulas, the calculator, and procedures. Facts are

maxims or pieces of information students' remember to help them solve problems and
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identify errors. For example, “the log is the exponent” was a fact that helped Demetrius
transform expressions in logarithmic form to exponential form. The students accepted
and used the facts even though they did not know why they were true. For example, when
Rachel calculated log, 4 — log, 5= l0g,—1 she suspected that her answer was incorrect
since it violated one of her facts: you cannot take the logarithm of a negative number.
Formulas involve mathematical notation. | make a distinction between facts and
formul as because the facts students used were usually correct, the formulas were not.
During the postinstructional phase the students formulas were examples of properties
and procedures. For example, Jamie used log, 4 +10g,5=109,9 asaformulaand Nora

log3 : , .
used log, 4 = %. The students never assumed their formulas were incorrect if an

answer they calculated violated afact. Instead they looked for errorsin their calculation.

The calculator was an essential tool for the students. They used it to find
numerical approximations for logarithms. When they did not have the tool during
Interview 7, their initial response to the table completion task was that it could not be
done without a calculator with the log key.

The students also used these three tools in sequence to solve problems. | call
these sequences procedures. One example was Nora' s procedure for solving logarithmic
equations. She used a fact to transform the logarithmic equation to an exponential one,
the change of base formulaif the transformation did not produce results, and her
calculator.

Character of the function. The students used characterizations of the function to
guide their thinking. | call these characterizations the character of the function. The
students believed the logarithmic function was a collection of problems to be done, but
when | asked them what the function ways they characterized it function in avariety of
ways. Noradescribed the logarithmic function as related to the exponential. For Jamie
and Demetrius, it was aword or collection of symbols. Rachel described the function as

atype of mathematics. These characterizations helped the students do problems. For



163

example Jamie used her characterization of the logarithmic function as aword with
simplify sums of logarithms.

What |s a Student’ s Understanding of the L ogarithmic Function?

The student’ s understanding of the logarithmic function was as collection of
problems to do. Components of their understanding included the level of difficulty of the
problems, the types of problems that they had to solve, the tools they needed to solve the
problems, and the character of the function. The students saw the function as hard or
easy. The associated it with evaluating and converting problems. They used a collection
of facts, formulas, the calculator, and procedures to solve these problems. And they
viewed the function as a type of mathematics, a collection of symbols, and associated to
the exponential function.

Changes in Understanding

The students’ understanding of the logarithmic function during each phase of the
study was different, but comparing the students' understanding for the three phases
revealed similarities. In particular, the four categories of beliefsidentified in their
understanding during the postinstructional phase were present in the other phases. The
changes in understanding were in the content of the beliefs. The categories remained
consistent. Inthissection | characterize the students understanding for the
preinstructional and instructional phases, describe the students' beliefs in each category,
and summarize changes in their understanding across the phases.

Preinstructional Understanding: Speculation

The students’ understanding of the logarithmic function during the
preinstructional phase was speculative. The basis of their beliefs was their experience
with the logarithmic function in courses and with the skills assessment.

Level of difficulty. During the preinstructional phase of the study the students
called the function easy or hard to remember. Nora and Demetrius viewed the function as

easy, based on their experiences from high school. Rachel performed poorly on the skills
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assessment, so she called the function hard to remember. Three of the student specul ated
about the level of difficulty of the function.

Problemtypes. The students either did not recall details about the function or the
function itself from their previous classes; hence their speculation about problem types
came from the skills assessment. They speculated that the logarithmic function was
associated with evaluating, simplifying, creating tables, and graphing. Each of these
terms was used on the skills assessment.

Tools. Beliefs about types of problems and the difficulty of problemswere
secondary to learning how to do the problems. To do problems, the students had to
develop tools. Based on the skills assessment, the students specul ated that they needed
facts, formulas, and the calculator. The students did not demonstrate knowledge of any
formulas during the preinstructional phase, but believed that if they could decipher the
notation for the logarithmic function they could do the problems. For example, Jamie

explained that if she knew what log,, stood for, she could solve the problems. For Nora

and Rachel, the key to solving problems was their calculator. Both asserted if they knew
how to use the log key on their calculators, they would be able to solve the problems on
the skills assessment.

Character. During the preinstructional phase the students specul ated that the
logarithmic function was a collection of symbols or anotation. For example, Rachel
noted the logarithmic function was log, .. #.

Understanding during the Instructional Phase

During the instructional phase of the study, the students attempted to stockpile
information. The results of these attempts can be seen in their beliefs. Solving problems
was the goal, so devel oping tools was of primary importance during this phase.

Difficulty level. During the instructional phase of the study, the students
characterized the logarithmic function as easy and simple because they felt they could do
the problems associated with the concept. Each student expressed doubt or confusion

about some formula or procedure presented in class, but all were satisfied they knew how
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to do problems and were ready for the examination. For the students, the problems were
easy, hence the logarithmic function was easy.

Problemtypes. The students identified two problem types during the instructional
phase: converting and evaluating. These two problem types were emphasized in class.
The majority of instructional time was spent presenting the logarithmic function in
algebraic form, converting it to logarithmic form, and evaluating logarithms. Hence
converting expressions and evaluating logarithms were two types of problems the
students wanted to know how to do.

Tools. During instruction the students' had more beliefs about tools than they did
during the preinstructional phase. More facts and formulas were used in class and on the
homework. In addition, the students practiced using their calculators to evaluate
logarithms and devel oped procedures to solve problems. The students could state a much
larger collection of facts and formulas than during any other phase of the study. Facts
they cited were “ One cannot take the log of a negative number,” “Thelog of oneis zero,”
and “When you add you multiply.” Formulas they used were properties of the
logarithmic function and the change of base formula. The students used these facts and
formulas to transform expressions into forms they could use their calculators to evaluate.
Tools used in sequence on problems became procedures. The students did not know why
their tools worked on problems, but only that they did.

Character of the function. The students' beliefs about the character of the
function during this phase were adopted from an association presented in their classes:
the exponential and the logarithmic function are related. For example, Nora noted
“logarithms and exponentials’ arerelated. This statement made the students sound
knowledgeable, but for them it was amaxim. truth the student could state but that he or

she could not explain.
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What are the Changes in the Students Understanding During the I nstructional Process?

Describing changes in the students' understanding of the logarithmic function is
much more difficult than describing their understanding because there are exceptions to
generalizations made across this group of students. Table 1 summarizes the students’
understanding for each phase of instruction. There was no change in their understanding
of the logarithmic function as how to do problems or in the categories of beliefs. The
changes were in the content of the categories. Beliefs about the level of difficulty of the
logarithmic function varied in the pre- and postinstructional phases, but all the students
believed the logarithmic function was easy during the instructional phase. During the
preinstructional phase, the students' used the skills assessment to speculate about the
problem types associated with the logarithmic function and tools they would need to
solvethem. Prior to instruction al the students described the logarithmic function as a
collection of symbols. All but Norareturned to this characterization during
postinstruction. During instruction all the students characterized the logarithmic function
as related to the exponential, but none could explain or illustrate why.

During the instructional phase, the students’ beliefs were speculative. During the
instructional phase, students' beliefs were consistent with standard mathematical thinking
about the function. During the postinstructional phase, their beliefs were fewer in

number and were distortions of beliefs they formed during instruction.
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Tablel

Characteristics of Sudents Understanding During Instructional Phases

Instructional Phases

Categories of Beliefs  Preinstruction Instruction Postinstruction
Level of Difficulty Easy, Hard Easy Easy, Hard
Problem Types From Skills Convert, Convert,
Assessment Evauate Evauate
Tools Notation, Facts, Formulas, Facts, Formulas,
Calculator Calculator, Calculator,
Procedures Procedures
Character Symbols Related to the Symbols,
Exponential Related to the
Exponential

Ways of Knowing

When one looks at the students’ performance on standard problems during the
postinstructional phase of the study, the view israther bleak. The student’ stools for
solving problems were diminished and distorted. However, as the students' actions
during the postinstructional phase suggest, they had ways of knowing that could be the
basis for an understanding of the logarithmic function consistent with standard

mathematical thinking. In this section, | describe four ways of knowing that were



168

common to al the studentsin the study: number patterns, successive approximations,
more A—more B, and response to inconsistencies.

Number Patterns

During Interviews 5, 6, and 7, each of the students attempted to identify patterns
in either the numbers presented or in the numbers that they generated. In Task 5. the
students attempted to find a relationships among the number line numbers and the sign
numbers, and then to coordinate their actions. Jamie was more successful on this task
than any other student because she was able to see the number line numbers as powers of
2 and the sign numbers as exponents. The other students devel oped various schemes.
Noraand Demetrius identified doubling as the pattern in the number line numbers and
saw the sign number as a counter for this action. With prompting from me, Nora
eventually identified the pattern as a correspondence between powers of 2 and their
exponents. Demetrius was able to reverse his procedure to find the signs above numbers
lessthan 1, but he never became aware of the sign numbers as exponents. Rachel used an
elaborate addition and subtraction algorithm that used both the sign numbers and the
number line numbers. All of the students also used patterns to describe the function
behavior in the remaining two interviews.

Although each of the students explained the pattern in Interview 5 differently,
each first attempted to determine whether addition and subtraction could be used to
describe the pattern. When the explanatory power of their pattern was insufficient, the
student sought other mathematical operations, notably multiplication, to describe the
pattern he or she saw.

Probably the most surprising use of patterns occurred during Interview 7. Each of
the students searched for a pattern between they valuesin the table. The studentstried
addition and subtraction first, but then quickly moved to multiplication and division.
This strategy helped them eventually identify a patternin log 2, log 4, and log 8, but they
were unable to make a generalization from this finding. Eventually, | asked the students
why
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log 1 was equal to zero, which led to their recall of the conversion procedure they had
developed during the instructional phase. They then used exponential equations and their
calculators to devel op a successive approximation procedure.

In each of the tasks, the students attempted to find and use number patterns to
predict answers. Thisway of knowing played avital role in the students' attempts at
problem solving. In cases where the patterns partially explained the mathematical
phenomenon being presented, the students used their patterns. When their patterns could
not predict correct answers, the students attempted to modify them.

Successive Approximations

Successive approximation was used by all the students during Interview 7. They

converted log 1 = 0to 10° =1 and used this example as a template for the other table
entries. Using successive approximation and their calculators, the students were able to
fill inthe tables. Despiteits utility, the students recognized the method’ s inefficiency.
They searched diligently for other methods to fill in the table, but always returned to
successive approximation.

More A-More B

During the task interviews, at some point the students’ prediction strategies broke
down or were identified as inefficient. For example, Nora, Rachel, and Demetrius had
difficulty predicting the sign over the number line number +/2. When it became clear
their prediction method did not work, they used linear interpolation. Hence for the

+
students, the sign above /2 was 0.414.... and the log 4 was log3+logS.

Thislinear interpolation strategy is one example of what Stavy and Tirosh (2000)
have identified as More A —More B. The student incorrectly assumes that two given
guantities have alinear relationship. Henceif 0.414... isadded to 1 on the number line
numbers, then 0.414 should be added to 0 on the sign numbers. Similarly, if 4isthe
midpoint between 3 and 5, then log of 4 must be the midpoint between log 3 and log 5.
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Thistype of thinking was the fall-back position for the students when their predictive
strategy, based on an identified pattern, failed.

Response to Inconsistencies

During the interviews, when students became aware of inconsistenciesin their
answers, they attempted to eliminate them. For example, based on a counterexample |
gave Nora, she realized that her prediction for +/2, 0.414... wasinconsistent with her
generalization that when you multiply two number line numbers the sign numbers are
added. Nora, like the other students, attempted to explain the inconsistency.

Responding to inconsistencies in both answers and thinking is away of knowing
that all four students exhibited. Each of the students was bothered whenever he or she
noticed an inconsistency in hisor her thinking or when | pointed one out using a
counterexample. Finding ways to making their thinking consistent was extremely
important to these students.

Conclusion

The students did not realize that the tasksin Interviews 5 and 6 were based on the
logarithmic function, and, although they did see the logarithmic function as important
during Interview 7, initially each of the students claimed that the task could not be done.
The solution methods generated by the students were based primarily on patterns. The
use of successive approximation was implemented only after an exponential equation was
written. These ways of knowing were seen by the students as elementary, akin to finger
counting in elementary school. None of the students viewed these techniques as
important mathematical tools. For them, tools were facts, formulas, the calculator, and
procedures.

The students use of more A—more B reasoning led them to question the answers
they generated using number patterns, but ultimately the predictive capability of the
number pattern and the students’ responses to inconsistencies in their own reasoning
overcame the more A—more B reasoning. All the students became aware that the

relationship between the sequences in the tasks was not a linear one.
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The students’ ways of knowing were not connected to their understanding of the
logarithmic function. A connection between their methods and their understanding was
made only briefly to transform the logarithmic expressions to exponential ones using
“converting.” The conversion was simply ameansto an end. Once the students had
exponential equations, they used their ways of knowing to complete the task. No
properties of the logarithmic function were used. These four ways of knowing may be

useful in the development of students' understanding about the logarithmic function.



CHAPTER 6: DISCUSSION AND IMPLICATIONS

Discussion of the Findings
In this chapter | discuss the findings of this study in terms of the relevant
literature discussed in chapter 2.

Understanding and Changes in Understanding

The impetus for this study was students' inability to remember the logarithmic
function from one school term to the next. | assumed a description of students would
help me explain this phenomenon. One of Brownell’s (1972) criteriafor learning was that
it had to be sustained. Evidence of learning collected immediately following an
instructional treatment was insufficient for aresearcher to claim the students had learned.
Although it is not clear how, researchers studying learning and understanding claim the
two arerelated (Kieran, 1994). Evidence of sustained change in understanding is
necessary for understanding to be claimed. In addition, Pirie (1988) asserted students
understanding cannot be described without knowledge of the student’ s process of
understanding. My decision to gather evidence of changes in understanding was based
on the work of these researchers. This decision turned out to be crucial. It wasonly
through the examination of the students' beliefs over the three instructional phasesthat |
was able to see the consistency in the beliefs. The descriptions of students
understanding are necessary but not sufficient to explain their understanding. AsPirie
(1988) conjectured, the development of understanding is essential for construction a
model of students' understanding.

Categories

The existence of the four categories of beliefs across the three phases of

instruction indicates a stable structure the student uses to make sense of and take action

during his or her learning experiences. The categories act like afilter for the students
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attention. Activities or experiences that do not fit the categories are disregarded by the
student. For example, the graph of the logarithmic function was illustrated, but not
emphasized, in classes | observed. None of the students used or referred to the
representation. For the students, the graph was not a problem type since it was not
emphasized in class and was not atool for solving either converting or evaluating
problems they identified as important. Instruction on graphing was filtered out.

The appearance of these categories prompts two important questions: What is the
origin of the categories? And why do they remain static over the three phases of
instruction? Support for my answers to these two questions can be found in the beliefs
literature.

Mathematics education researchers have shown that there is a connection between
students’ beliefs and their behavior (Kloosterman, 1991; Schoenfeld, 1989, 1992;
Szydlik, 2000). The studentsin this study believed that understanding a mathematical
concept was being able to do problems. Their behavior was consistent with that belief.
They attempted to collect problem types and tools for solving them. Hence the origin of
the categories—, problem types and tools— are the students' beliefs about understanding
mathematics. The additional categories—, level of difficulty and character— can aso be
traced to the students' beliefs. Because the students believed performance was
understanding, their performance was essential. 1f agood performance was hard to
produce, then the task was difficult; if not, it was easy. The character of the function was
also linked to the students' beliefs about mathematics. For these students, mathematics
was a collection of formulas, notations, and rules. Hence the character of the function
was a notation or rule. Thusthe students’ general beliefs about mathematics and
understanding mathematics were the basis for the four categories of beliefs they used to
mediate their activity.

The static nature of these categoriesisnot surprising. As Dossey (1992) noted
beliefs are extremely difficult to change even when the curriculum is designed to elicit a

changein beliefs. In this study, none of the instruction experienced by the students
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challenged their beliefs about mathematics. Instead, it supported and thus reinforced
their belief structure. Thereforeit isnot surprising that categories derived from the
beliefs did not change. In this study the students’ beliefs about mathematics and
understanding influenced their categories of beliefs about the logarithmic function.
Content

Although the categories of the beliefs remained constant, their content did not.
Two factors influenced the content of the students’ beliefs: instruction and memory.

Instruction. During the preinstructional stage, the students used their categories
to determine what they should attend to. In particular, they looked for clues about the
logarithmic function in the skills assessment. During the instructional phase, the students
processed information presented in class and while doing homework and used it as
content for their beliefs. During the posinstructional phase, the content of the beliefs
changed dramatically. Part of the reason for this change was the dearth of sources from
which information could be derived. When students were given tasks where the
logarithmic function was not mentioned, Interviews 5 and 6, they did not relate the tasks
and the function. When the logarithmic function was mentioned, the students
reconstructed beliefs about the logarithmic function they had formed during the
instructional phase. These beliefs were based on their memories and not on logic.
Instruction and instructional materials were the primary sources of content for the
students’ beliefs.

Memory. Memory was not a direct source of content for the students' beliefs, but
it was an influence. In particular, the students' understanding during the postinstructional
phase was in part an attempt to reconstruct (Bartlett, 1932) their beliefsfrom the previous
phases. Bartlett noted that reconstruction from memory is rational, based on some reason
or association made by the person remembering. This interpretation explains distortion
in the students' beliefs about tools. In particular, from an interpretation of log A+ log B
asliketermsin algebra, log (A + B) isarationa reconstruction of the sum. The emphasis

ison theterm rational. The students were certain that this formulawas correct. For
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them the function was reasonable, but in mathematics the formula, log A + log B = log (A
+ B), iswrong. Why were the students unable to either see the error or respond to
counterexamples of the formula?

The answer to this question lies in the content of the beliefs developed during the
instructional stage. At no time could the students explain why various formulas worked.
The absence of any logical basis for the formulas they adopted and used made the
formulas extremely difficult to remember correctly (Sierpinska, 1994). For the students
the formulas were a bit more than, but much like, the nonsense syllables of Ebbinghaus
(Bruning, Schraw, & Ronning, 1999). The primary difference was that the formulas were
remembered for a purpose. Thus problems and the tools used during this phase were
associated. This association allowed the students' to reconstruct tools during the
postinstructional phase.

The students’ reconstructions of formulas during the postinstructional phase were
flawed and not derived through logical thinking. Hence the students had no means for
checking results obtained using these faulty tools. They simply hoped they had
remembered correctly. As Skemp (1987) noted, this instrumental type of understanding
isless flexible and more difficult to remember than relational understanding.

Growth Versus Change

Clearly the students’ beliefs about the logarithmic function changed over the
course of the study. But does such change constitute growth of understanding? If growth
is defined as a sustained change in beliefs consistent with correct mathematical thought,
the only growth was in the problem types and tools category. In the postinstructional
phase, the students had beliefs about evaluating and converting logarithms and about
tools used to solve these problems. Although the students generally could not use their
tools to solve problems correctly, their beliefs indicate an awareness of the existence of
logarithms and of solution methods. This awarenessis not growth, but could be used in

future instruction.
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There can be many bases for understanding a concept (Skemp, 1987; Sierpinksa,
1994), but among mathematics educators relational understanding, based in knowing
why, is assumed to be superior. The students in this study did not achieve either
relational or even instrumental understanding. Instead, they were |eft with an awareness
that the logarithmic function belongs to the mathematical curriculum. It isthis awareness
that can be used to build subsequent beliefs. Thus my experience teaching students who
passed college algebra but appeared to know nothing about the logarithmic function is
consistent with the findings in this study. The understanding the students devel oped
during instruction was transitional and soon deteriorated. What remained was awareness,
ameager basis for future understanding.

Ways of Knowing

When | planned this study, | conjectured that the students' ways of would be
similar to Napier's. To an extent my hypothesis turned out to be true. Students do map
multiplication to addition if terms of geometric and arithmetic sequences are given to
them. They also notice that there isa common ratio between the given terms of each
sequence. These observations are consistent with Confrey and Smith’s (1995) findings.
Students they studied were able to coordinate actions between arithmetic and geometric
sequences. Rizzuti (1991) called these coordinated actions covariation and described
them as a precursor to the correspondence definition of function.

In this study, the students used covariation to make predictions from their number
patterns. For example, in Interview 6, the students used the examples | provided,

f(2)=1and f(4) = f(2) + f(2) =2, to generate sequences{1, 2, 3,4, ...} and {2, 4, 8,
16, ...}. They then abandoned the given function notation in favor of the sequences and
used the correspondence between the two to make predictions.

Covariational thinking quickly broke down when the students attempted to insert
terms into the sequences. The students began to rely on linear interpolation, a special
case of the intuitive rule called More A—-More B (Stavey & Tirosh, 2000). Napier was

ableto insert terms into his sequences so the ratio between the terms would remain
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constant. The students were not. During Interview 6, when the students attempted to find

f (\/7) they could not use their doubling operations and immediately tried linear

interpolation.

The More A—More B rule wasin direct conflict with the students' use of
covariation. When | presented counterexamples to their hypothesized solutions, they
attempted to resolve the inconsistencies with little success. The intuitive rule was very
strong and seemed logical to them. They used it when they were asked to insert terms
that did not fit the sequence into a given sequence and when their exploration of number
patterns did not yield a covariational relationship (for example Interview 7).

The use of covariational reasoning was restricted to cases where a geometric
sequence and an arithmetic one could be discovered. When no such pattern was
identified or when the student could not use this reasoning to produce answers, he or she
quickly reverted to predicting terms using aMore A —More B strategy. The students
responded, usually unsuccessfully, to counterexamples, but never completely abandoned
it.

The final way of knowing, successive approximation, used by the studentswasin
al but one case motivated by questions | posed during the interviews. For example,
Jamie spontaneoudly used thisway of knowing in Interviews 5 and 6, but only in
response to my questions during Interview 7. The studentsin this study, who were able
to generate an exponential equation, were able to approximate their solutions (logarithms)
with aTI-15 calculator (no log key). More research on students' behavior and thinking
associated with exponential expressions of the form a", where ais a positive integer and
nisany rational number would help explain the use of thisway of knowing.

Discussion of the Framework

In this section | critique the categories of evidence and present a modified theory

of understanding. In addition, | discuss the design of the study and suggest

improvements.
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Modification of the Theory

Categories of Evidence

The beliefs | attributed to the students were developed using four categories of
evidence: conception, representation, connection, and application. Each of the categories
contributed to the development of my conjectures about the students’ beliefs.

Conception. The students' remarks about understanding and their maps of the
function allowed me to view the function from their perspective. It isthis perspective
that has been missing from studies of students' understanding of mathematical concepts.
This category of evidence is essentia in the development of beliefs attributed to the
student. In particular, collection of this data assumes a student’s communicated ideas
about a mathematical concept provide insight and may help explain the student’s
performance on tasks that involve the concept.

Representation. When | began collecting evidence of the students
representations of the logarithmic function, | assumed that when they spoke or wrote
about the function they were providing representations of their own thinking.
Representation of concepts referred to by Hiebert and Carpenter (1992) were not the type
produced by the studentsin this study. Generally, when students were asked to solve
standard problems, they generated marks or utterances they hoped would demonstrate
their ability to do problems. For the students, their demonstrations meant they
understood the function. For me, the demonstrations meant that the students could write
correct notation, not that they understood the function. Hence, the representations |
collected, especially during the instructional phase, were often those presented in class
and mimicked by the students. They were not the students' representations and did not
appear to have standard mathematical meanings for them. For example, during the
instructional phase, the students could translate an expression in exponential form to
logarithmic form and explained that the logarithmic function was related to the
exponential function. None of them could explain why. During Interviews5 and 6

however, when | asked the students to explain their notations or procedures, they
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hesitated, but could explain why they followed their developed procedures. The
representations they generated appeared to be meaningful to the students. The notations
were representative of the students’ thinking. This observation about the findings
suggests this category of evidence be divided into two subcategories: representations
adopted by the students and representations generated by the students.

Connection. The importance of the connections between representations has
been emphasized in the literature on understanding (Hiebert & Carpenter, 1992, Skemp,
1976) and in the literature on representation (Even, 1998; Janvier, 1987; Kaput, 1998).
My definition of a connection between representations was extremely difficult to use. To
identify a connection, | had to see the student use one representation and then another.
This usage was extremely difficult to see because the two types of representation the
students used most often were written and oral. 1t was difficult to tell whether two
written representations were connected or simply part of the same formula. For example,

when students simplified log, 4+ log, 5, were they connecting two written

representations or remembering one formula? In addition, when students read their
notation, were they connecting their written and oral representations or ssimply reciting
names? | resolved this dilemma during data analysis by assuming both of these examples
were connections. Hence | defined a connection as the use of one representation
followed by another. However, a more precise definition must be generated for this
category before evidence of connections can be useful in hypothesizing students’ beliefs.
Application. The students' application of the definition and properties of the
logarithmic function to nonstandard problems was evidence of understanding. In general,
the studentsin this study were unable to apply the logarithmic function it thisway. They
were able to use apply their knowledge of the calculator to generate logarithms,
approximations of logarithms, and facts about the logarithmic function. During the data
analysis, | redefined application as the use of tools to solve problems associated with the
logarithmic function. This new definition allowed me to include the students’ use of the

calculator as an application of the function.
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Beliefs

| dentifying beliefs about mathematics and understanding as the framework for a
student’ s understanding of a mathematical concept, suggests that a study of these beliefs
is necessary to explain the student’ s understanding. Schoenfeld's (1989, 1992) work
provides a basis for the investigation of students' beliefs about mathematics and their
impact on students’ understanding. Research that answers the question: What are
students' beliefs about understanding of mathematical conceptsis needed. Thiswork
could clarify the role of students' beliefs about understanding in their understanding of
mathematical concepts.
Revised Theory

Based on the findings and observations from the data analysis phase | have
revised my theory of understanding:
Sudents understanding of a mathematical concept is a collection of beliefs
derived from four categories of evidence: conceptions, representations,
connections, and applications and influenced by their beliefs about mathematics
and under standing. Conceptions are the students explicitly expressed ideas and
feelings about the concept. Representations are symbols the student uses to think
about or communicate a mathematical concept to others. Two categories of
representations must be used to generate models of students' under standing:
representations they adopt from instruction and representations they develop.
Connections among representations are links the students form between types of
representations (oral, written, tabular, and pictorial). An application of a
mathematical concept is the use of tools to solve problems.

Modification of Design

One design problem caused difficulty during the data analysis phase. Limited
datawere collected during the instructional phase of the study. | observed class,
conducted at least one interview with each participant, and asked the students to map the
function. A richer database was needed to develop hypotheses about the students' beliefs
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during this phase. In particular, | would add another iteration of the skills assessment.
The skills assessment would provide needed data on the students’ definitions of terms
and their ability to apply concepts to problemsin various representational modes.
Limitations of the Study
The findings of this study have two limitations. The first [imitation stems from
my assumption that the goal of teaching is understanding. The second is based on
students' familiarity with the logarithmic function.

In the classes | observed, the focus was on doing problems. Teachers
demonstrated how problems were done, and students practiced doing them. Some
observations about the concept were included in the teacher’ s presentations, but the
majority of each class session was spent demonstrating procedures for particular problem
types. The presentation of the logarithmic function was no exception. Very few class
sessions were allotted to the function: the concept was the last of the semester. Both
teachers admitted that they rushed through their presentations of the logarithmic function
because of limited time. Teacher 3 spent only two 75-minute class sessions on the topic.

Skemp (1976) noted that some teachers attempt to teach for instrumental
understanding because it is efficient and produces excellent results. Teaching for
instrumental understanding worked exceptionally well with the four participantsin this
study: they all performed well on their examinations. The students could do problems:
however, one month later their understanding changed into a collection of beliefs that
were not useful in solving either standard or nonstandard problems. At best, the students
had an awareness of the existence of the logarithmic function. The limited amount of
time available certainly constrained the instructional choices made by the teachers and
limited the students' opportunity to build understanding. Hence one limitation of the
findingsisthat they are based on the assumption that students had little opportunity to
understand.

Another limitation of the findingsistheir relevance as a basis for inference about

students’ understanding of other mathematical concepts. It is not clear that results from a
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study of students' understanding of the quadratic function, for example, would produce
similar results. Students' understanding of the quadratic function could have a different
structure for two reasons. First, the students have more experience with the concept in
high school. Second, more time is spent on the topic in college algebra. Further
investigation of students’ understanding of mathematical concepts they are more familiar
with could help identify key structures in students understanding.

Implications

This study has a number of implications for teaching and research. The
implications for teaching involve confronting students’ beliefs about mathematics and
using their ways of knowing to help them devel op beliefs about mathematical concepts.
The implications for research are based on questions the study raised.

For Teaching

My teaching was the origin of the research questions for this study. The findings
that resulted suggest some possibilities for the teaching of mathematical concepts.

The curriculum is overloaded with mathematical concepts students are asked to
understand. These concepts are taught as if there are connections among them, but for
the student these links may not be obvious. A students experience with school
mathematics may suggest that mathematics is a collection of rules to be memorized and
applied correctly during examinations. Skemp (1987) noted that teaching for
instrumental understanding can achieve a number of short-term educational goals. “If
what iswanted is a page of right answers, instrumental mathematics can provide this’ (p.
158). Students and teachers are aware of the efficiency of instrumental understanding.
Teachers who attempt to present mathematical topics using curricular materials and
methods designed to promote relational understanding are quickly made aware of
students’ preference for instruction designed to result in instrumental understanding. In
the face of student resistance to these methods (Cooney, 1985), time constraints, and an

overfull curriculum, teachers often turn to instrumental understanding to provide students
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with small measures of success and to view themselves as successful. Thisisthe system
that produced the kind of understanding described in this report.

The findings in this study suggest two avenues for growth of understanding.

First, students must confront and question their beliefs about mathematics and
understanding. These beliefs are the framework for students' understanding of
mathematical concepts, hence: if they change so will students' understanding. Second,
students should experience mathematics as sense making. Students develop beliefs about
mathematics as they do mathematics (Schoenfeld, 1992). If reflection on their experience
develops into abelief that mathematicsis a collection of problems that need not make
sense, they do not struggle with meaning, but are satisfied with mimicry. In this study
when students were presented with standard mathematical problems, they attempted to
remember how to do them, with disastrous results. Their answers wereillogical and
incorrect. If mathematics educators hope to change students' beliefs about mathematics,
then students should experience mathematics as sense making.

For Research

The four theories of understanding described in this report (Hiebert & Carpenter,
1992; Pirie & Kieren, 1994a; Sierpinska, 1992; Skemp, 1987) do not suggest a
connection between students’ beliefs about mathematics and their understanding. The
findings of this study and the literature on beliefs suggest that students’ beliefs influence
their understanding of mathematical concepts. What is needed is a close examination of
students' understanding and their beliefsin an attempt to identify and explain connections
between the two.

Much current research on students’ understanding of mathematics is based on
investigation using nonstandard problems. However, the studentsin this study used quite
different approaches to standard and nonstandard problems. The students approached
standard problems as tests of memory. Comments such as“| know we have done this; |
just can’t remember it” were common on these sort of problems. The students also

generated answers using faulty formulas reconstructed from their memory of instruction.
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In addition, when a student could not remember how to do a problem quickly, he or she
gave up. In contrast, students investigating nonstandard problems appear to act in
meaningful ways. Further research of students' understanding in these two settingsis
needed to explore the limitations of the theory to predict and explain students
understanding of both standard and nonstandard problems.

This report suggests that students understanding of mathematical concepts
changes over instructional phases. Students speculate, stockpile, and in the end are | eft
with a collection of beliefs about the concept that are likely to be of little use as the basis
for further understanding. This finding suggest students’ understanding does not grow
over the course of instruction. Instead students understanding in pre- and postinstruction
are similar, whereas their understanding during the instructional phaseis transitory and
thus not useful in subsequent mathematical activity. Further research on the
understanding of mathematical concepts should investigate this phenomenon. Isthe
transitory understanding of the instructional phase the result of instruction that does not
connect to students’ ways of knowing? Do students for whom the mathematical concepts
have standard meanings retain their understanding into the postinstructional phase?

To investigate these questions a study modified to include teaching by the
researcher would be appropriate. The design would be similar to this study. The tasksin
the instructional phase would be modified to include an assessment of the student’s ways
of knowing associated with the logarithmic function. Tasks such as those used during
Interviews 5 and 6 could be used. With this knowledge, the researcher could construct
instruction based on these ways of knowing. The second phase would be referred to as
the instructional phase; however, instead of observing instruction presented to the student
in a classroom, the researcher would be the instructor. Following instruction, a model of
the student’ s understanding would be generated. This phase would be similar to the
postinstructional phase. Thistype of investigation could illustrate understanding of
mathematical concepts that can be achieved and what factors are necessary for studentsto

develop an understanding of the logarithmic function consistent with current
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mathematical views. A student with this understanding believes the function is a map
with a collection of special properties that can be represented in written, oral, tabular, and
pictorial form. He or she can represent and identify the function in these forms, can
connect representation, and can apply properties of the function to solve standard and
nonstandard problems.

Conclusions and Questions

Students’ understanding of mathematical conceptsisintimately tied to instruction:
however, the influence of instruction is not long lasting. This was the phenomenon |
hoped to explain when | began this study. Asateacher | was unable to see the variables
at play in the students' understanding. It was mystifying. The findings in this study have
provided me with an explanation for what | experienced. They have also suggested to
help my students understand mathematical concept, | should find ways to ater their
beliefs about understanding and mathematics while providing opportunities for them to
use their ways of knowing explore mathematical concepts.

As aresearcher, examining these questions has suggested some answers but has
raised many more questions. Do students' beliefs about mathematics and understanding
provide aframework for their beliefs about a mathematical concept? |s students
understanding of different mathematical concepts composed of the same categories of
beliefs? How isthe understanding of students’ who built their beliefs using their ways of
knowing different from the understanding of the studentsin this study? Answersto such

guestions might benefit researchers, teachers, and students.
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APPENDIX A: INTERVIEW PROTOCOLS
Protocol for Interview 1: Preinstructional Phase
Instruction in Mapping
Adapted from Novak & Gowin (1984, p. 32-34).

1. What do you think of when you hear the word car?
a. Does everyone think the same thing?
b. These mental images that we have for object words are our concepts of
objects.
2. What do you think of when you hear the word is?
a. These are not concept words; we call them linking words.
b. Linking words are used together with concept words to make sentences
that have meaning.

3. We can make amap of the concept car using other concepts and linking words. The
map is a picture of what you think of when you hear the word car. Let’stry to makea
map of that concept. We will make the map together. | will write down what you
think of and organize it in amap.

4. Okay, now let’stry to make one for pets. 1I’ll make one and you make one. Then we
will talk about them.

5. Now let's make one for high school. I'll make one and you make one.

Experience with the L ogarithmic Function

6. When was the last time you saw or used logarithms or the logarithmic function?
What was your experience like?
a. How were you feeling at that time?
b. What did you do to try and understand?
c. Who or what was the most helpful to you during that time?

194
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7. (Student is given the skills assessment task sheet) | will give you aslong as you need

to complete the following activity. | realize that you may not know all that is

necessary to do the activity, but do as much asyou can. (Student does skills

assessment)

Student’ s Perception of His or Her Understanding

8. Think back on the activity and tell me about what you understood most.

9. Think back on the activity and tell me about what you understood |east.

Mapping Activity

10. Make a map of the concept logarithmic function.

Participant: Date:

Skills Assessment Activity

1. Using your own words and any pictures or diagrams you need to express your ideas,

define theterms

a.  Function

b. Logarithm

c. Logarithmic function

2. List all the properties of logarithms (or rules about logarithms) that you can recall

3. Simplify the following expressions:

a

b.

C.

e.

log,4+10g,5
log,4-10g9,5
log, 9

1
Elog3 25

log,1

4. Expand the following expressionsif possible. If you can think of more than one

expansion please include it in your answer.

a

2
log.—, wherea>0
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o

log,(3+1)

log,v/6

log,189

o

o

40
SOQS7D

5. Graph the function f(x) = log,(X) on the axes provided.

o

i rrrerrrrre
I e §

-10 10

6. Construct atable of values for the function f(x) = log(X).

7. What function is graphed on the axes below?
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8. Usethe graph below to construct atable of values for the function the graph

represents.

9. What function could have been used to generate the table of values given below?

X 1 1 1 27 81
9 3
f(x) 2 1 0 3 4
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10. The 1980 population of the United States was approximately 227 million, and the
population has been growing continuously at arate of 0.7% per year. Predict the

population in the year 2010 if this growth trend continues.

Protocol for Interview 2: Preinstructional Phase
Understanding

(Questions 1 and 2 are adapted from Brookfield (1990, p. 32-33))
1. Think of atime when you felt something important or significant was happening to

you as alearner and tell me about that time.
2. Think of atime when you felt despair or frustration about your learning activities and
tell me about that time.
Describe yourself as a mathematics student.
When you are taking a mathematics class what are your goals?

What are your educational goals?

o g M~ W

Think of atime in your study of mathematics when you felt that you did not
understand an idea or concept. Tell me about that time.
a. How did you feel about that?
b. What did you do to try and understand?
c. Who or what was the most helpful to you during that time?
d. Didyou fed asthough you would eventually understand it?
7. Think of atimein your study of mathematics that you felt that you understood an idea
or concept. Tell me about that time.
a. How did you feel about that?
b. What did you do that helped you understand?
c. Who or what was the most helpful to you during that time?
8. We have taked alot about not understanding and understanding. How would you

define the word understanding?
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Task: Now | want you to visualize your process of understanding going from not
understanding to understanding and draw what you see on paper.

So that | can understand your drawing, | would like you to think of a mathematical
concept that you did not understand at first but later did understand.

a. What was that concept?

b. Tell me about how you came to understand that concept and explain how your

picture illustrates that process.

Protocol for Interview 3: Instructional Phase
Think of atime during today’ s class that you felt that you did not understand the
mathematics being presented and tell me about that time.
a. How did you feel about that?
b. What did you do to try and understand?
c. Who or what was the most helpful to you during that time?
Think of atime during today’ s class that you felt that you understood the mathematics
being presented and tell me about that time.
a. How did you feel about that?
b. What did you do that helped you understand?
c. Who or what was the most helpful to you during that time?
Do you have any questions about either what was presented in class or any homework
problems? | would be happy to help.

Mapping Activity (Used during at least one iteration of thisinterview)

4. Make amap of the concept of the logarithmic function.

Protocol for Interview 4: Postinstructional Phase
(Student is given the skills assessment task sheet) | will give you aslong as you need
to complete the following activity. | realize that you may not know all that is
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necessary to do the activity, but do as much as you can. (Student completes skills
assessment)

Student’ s Perception of His or Her Understanding of the L ogarithmic Function

. Think of atime during this activity that you felt that you did not understand the
mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do to try and understand?

. Think of atime during this activity that you felt that you did understand the
mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do that helped you understand?

Mapping Activity

. Make amap of the concept logarithmic function.

Protocol for Interview 5: Postinstructional Phase

@
O O O O O O O O O O o—P
0 1 2 3 4 5

. Suppose that the numbers in the squares above the number line are signs.

a. What sign do you think will be above the number 64?
b. What sign will be above the number 256?

c. What sign will be above the number ; ?

d. What sign will be above the number+/2?
e. What sign will be above the number 3?
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f. Arethere any numbers that cannot have signs above them?

a. If asign had the number 7 on it, what number would be below the sign?

If asign had the number -7 on it, what number would be below the sign?
c. If asign had the number % on it, what number would be below the sign?
d. If asign had the number on % it, what number would be below the sign?

e. If asign had the number V2 onit, what number would be below the sign?

f. Arethere any numbers that cannot be on signs? Why or why not.

. Suppose A and B are two numbers on the number line. If the sign above Ahasanm
on it and the sign above B has an n on it, what would the sign above the number AB

haveonit?

a. What would the sign above the number i have on it?

b. What would the sign above the number g have on it?

. What is the best way to organize and display all the data that you generated in
problems 1 - 3? If you were making a bulletin board for this data, what would you
put on it?

. Write down everything that you know about the relationship between the signs and

the numbers on the number line.
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Student’ s Perception of His or Her Understanding of the L ogarithmic Function

4. Think of atime during this activity that you felt that you did not understand the
mathematics you were doing and tell me about that time.
c. How did you feel about that time?
d. What did you do to try and understand?

5. Think of atime during this activity that you felt that you did understand the
mathematics you were doing and tell me about that time.
a. How did you feel about that time?
b. What did you do that helped you understand?

Protocol for Interview 6: Postinstructional Phase

1. Suppose thereis afunction f such that f(AB) = f(A) + f(B) and f(2) = 1,
a Whatisf(4)?
b. What isf(8)?
c. Whatisf(16)?

d. What isf(256)?

. Ar
)
e WhatlstQ[.

o Ar
f. What'SfEE[?

U1l
. Whatisf —=?
g [p56L0
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h. What isf(ﬁ)?
i. Whatis f(4\/§)?

j. Whatisf(0)?
k. What isf(-4)?
l. Whatisf(3)?

. B[
—2
m. WhatlstQ[.

. What is the best way to organize and display all the data that you generated in
Problem 1? If you were trying to display the information on a bulletin board what
would you include?

. Write down everything that you know about the function f.

Student’ s Perception of His or Her Understanding of the L ogarithmic Function

. Think of atime during this activity that you felt that you did not understand the
mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do to try and understand?

. Think of atime during this activity that you felt that you did understand the
mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do that helped you understand?
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Protocol for Interview 7: Postinstructional Phase
1. Consider the following table of values where the values in the second column are
approximations of the logarithms of the values in the first column and the valuesin

the fourth column are approximations of the logarithms of valuesin the third column.

X y X y
1 0 10 1
2 20

3 AT77 30

4

5 .699

6

7 .845

8 .903

9 .954

a. Complete the table.
b. Findlog 9000 using the table.
c. Findlog 0.09 using the table.

d. Find Iog%% using the table.

2. Thefollowing log table is a base 3 table:

y X y
10
.631 11
12
13
14
15
16
17
18

OO (N[OOI [W[N]|F] X

a. Completethetable.
b. What other information is needed to complete the table?
c. What other ways are there to represent the datain this table?

d. Canwe use any other representations to help usfill in the table?
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e. What isthe best way to represent the datain the table?

Student’ s Perception of His or Her Understanding of the L ogarithmic Function

3. Think of atime during this activity that you felt that you did not understand the
mathematics you were doing and tell me about that time.
a. How did you feel about that time?
b. What did you do to try and understand?
4. Think of atime during this activity that you felt that you did understand the
mathematics you were doing and tell me about that time.
a. How did you feel about that time?
b. What did you do that helped you understand?

Protocol for Interview 8: Postinstructional Phase
1. Today | want to talk to you about logarithmic functions. Pretend that | am a new
student studying college algebra. | already know about functions but have not yet
encountered the logarithmic function. Assuming | want to understand logarithmic
functions, what would you tell me about the function?
a. Explain any specia properties of the function.
b. Explain how would you illustrate the properties that you mentioned.
c. Explain how you might represent the function.
d. Explain how the function is applied.

Mapping Activity

2. Make amap of the concept logarithmic function.

Protocol for Interview 9: Postinstructional Phase

Student’ s Perspective of His or Her Understanding

During interview 8 the student is presented with and is asked to read excerpts taken from

interviews 2, 3, 4, 5, and 6.
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. Think back on your experiences with the logarithmic function both in class and in our
interviews. Think of atime when you did not understand something about the
logarithmic function and tell me about that time.

. Think of atime when you understood something about the logarithmic function and
tell me about that time.

. Visualize what you see as the process that you went through to try and understand
logarithms. Now draw a picture of that process.

. Explain your drawing.

. How does your drawing relate to the summaries of from the interviews that | gave
you to read?

Analysis of Maps

. Compare and contrast the maps that you drew to represent your concept of a
logarithmic function.

. Give me an example of how your understanding of the logarithmic function has
changed since we began these interviews in November.

. Can we see that change by looking at your maps?



APPENDIX B: INTERVIEW PROTOCOL ACTS OF UNDERSTANDING

. Think of atimein your study of mathematics when you did not understand a
mathematical concept or idea and tell me about that time.

. Think of atimein your study of mathematics when you did understand a
mathematical concept or idea and tell me about that time.

. We' vetalked about understanding and not understanding. Now think of your process
of understanding and draw a picture of that process.

. Using an example of aconcept you did not initially understand, but later did explain
your drawing.

|s there anything else you can add that will help me get a better idea of your

experience of understanding mathematical concepts?
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APPENDIX C: CALL FOR ASSISTANCE
CALL FOR ASSISTANCE

During the next three months an in-depth study of college algebra students
understanding will be conducted. This paper isacall for College Algebra studentsto
participate in this investigation.

Each participant will be required to meet with an interviewer for 9-12 interviews.
The first two interviews will be conducted during the second and third week in
November, at least one and up to four interviews will be conducted following my
observation of your College Algebra class, and the remaining six interviews will be
conducted during the third and fourth weeks of January. The interviews will each last no
more than 90 minutes. Participation (or non-participation) will not directly affect your
grade in the course and you may of course terminate your participation in the study at any
time during the investigation. All responses made by you, written or oral, will remain
completely anonymous unless you request otherwise in awritten statement. The tasks
donein the interviews are related to the material of College Algebra. | have had many
years of experience as ateacher of mathematics. At the end of each session you may ask
me specific questions about the material in your College Algebra course. Y our
participation in the study will provide you with an opportunity to reflect on your own
process of understanding and to develop an awareness of how your own understanding of
mathematics develops. In addition, if you agree to participate and complete all the

interviews you will receive $150 for your participation.

Unfortunately, due to time constraints, only six students can be used in the study.

If you would like to be included as one of the participants in the study, please sign your
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name in the appropriate space below. Participants will be contacted within the next few

daysto set up an initial meeting time.

| do not wish to participate in the study.

Thank you for your cooperation,

Signe E. Kastberg
Principle Investigator

| would liketo set up aninitial interview.

Loca Phone#

e-mail




	194: 194
	207: 207
	208: 208


