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ABSTRACT

The purpose of this study was to describe students’ understanding of the
logarithmic function, changes in their understanding, and ways of knowing they use to
investigate problems involving the logarithmic function.  Understanding is defined as a
student’s beliefs about a mathematical concept.  Four categories of evidence (conception,
representation, connection, and application) were used to make conjectures about the
students’ beliefs over three instructional phases (preinstruction, instruction, and
postinstruction).  Nine interviews were conducted over a two-month period with students
(3 female, 1 male) from two college algebra classes at a rural southeastern two-year
college.  Case studies were developed based on evidence gathered from
phenomenological interviews, clinical interviews, participant observation, student
constructed maps, and drawings.

The students’ understanding contained a central theme: the logarithmic function
as a collection of problems to do.  Four categories of beliefs (level of difficulty, problem
types, tools, character of the function) associated with the theme were identified in all
three phases of the study. The static nature of the categories suggests students’
understanding of a mathematical concept is influenced by their beliefs about mathematics
and understanding.  The changes in the content of the beliefs were the result of
instruction and the reconstructive nature of memory.  A modified theory of understanding
using beliefs about mathematics and understanding and four categories of evidence is
suggested for further research.

Four ways of knowing (number patterns, successive approximation, More A –
More B, and responses to inconsistencies) were used by the students to investigate
problems involving the logarithmic function. These ways of knowing are suggested as a
starting point for the teaching of logarithmic functions.
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CHAPTER 1:  DEFINING THE PROBLEM AND CRAFTING A SOLUTION PATH

Rationale

 “One of the most widely accepted ideas within the mathematics education

community is the idea that students should understand mathematics” (Hiebert &

Carpenter, 1992, p. 65). This fundamental assumption was the basis for this study.  As a

teacher, I came to believe that students should understand mathematics. A teacher often

assumes a student understands a concept that has been presented and finds, in a

subsequent class, the student cannot recall it.  This experience with students occurred

each term I taught college algebra.

In college algebra the most frustrating concept for me to teach was the

logarithmic function.  Even those students I thought understood the concept could not

remember or use its properties in subsequent courses. This absence of memory motivated

me to ask why.  Why did my students fail to remember what they had seemed to know so

well just a few months earlier?  Did they really understand the concept in the first place?

As a teacher I had to assume something was wrong.   I wanted to know the nature of the

problem and how to attack it. This report is the result of a question I posed as a

mathematics teacher: Why can’t my students remember the definition of, properties of,

and how to use the logarithmic function?

I tried to understand my question.  I believed if my students understood the

logarithmic function they would remember it.  If I taught the concept differently, I

reasoned, students would understand.  So I searched for the perfect curriculum.  My

search produced a collection of materials based on approaches that included the

traditional introduction of the logarithmic function as the inverse of the exponential

function.  Two other approaches also seemed effective: historical (Toumasis, 1993; Katz,

1995) and the logarithmic function as an area (School Mathematics Study Group, 1965). I

focused on finding the curriculum that would produce understanding in my students.
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After reading and analyzing the historical development of logarithms over the

course of several months, I suddenly realized the focus of my research was not the

logarithmic function but students’ understanding of the logarithmic function.  This shift

gave my research the focus I had been looking for. My question became what does it

mean for students to understand the logarithmic function?  Now I needed to be more

precise.  I turned to the literature for definitions and theories about students’

understanding of mathematical concepts.

Several theories of understanding seemed helpful (Hiebert & Carpenter, 1992;

Pirie & Kieren, 1992; Sierpinska, 1994; Skemp, 1987).  The theories agreed on one point,

the location of understanding is in the mind of the individual.  Two of the theories

(Sierpinska, 1994; Skemp, 1987) explicitly stated the individual can, at times,

consciously control his or her understanding.  Despite situating the locus of control for

understanding within the individual, none of the researchers had asked the individuals

what they understood. This omission appeared inconsistent to me.  I assumed if

understanding was occurring within the individual, he or she could tell the researcher

about it.  This assumption proved to be a fairly strong one.  I realized that students might

not share my definition of understanding, but I initially failed to consider that they might

not be using their verbally described definitions. Indeed, how someone defines

understanding might not involve personal action. But as Bruner (1990) explained,

meaning lies somewhere between a person’s actions during an experience and the

person’s explanations of his or her actions.  Hence, if I gathered students’ definitions of

understanding, their reflections on understanding and not understanding mathematical

concepts, and saw them in action, I might discover their meaning of the term. Students’

meanings and reflections could then help me interpret their actions and the understanding

that resulted from them. Using my observations and interpretations I could build

descriptions of students’ understanding of the logarithmic function.  Realizing that I

wanted to ask the students about their own understanding did not help me define the term.



3

All of the theories in the literature seem plausible, but no single theory seemed to explain

what it meant for a student to understand a mathematical concept.

When I began thinking about students’ understanding of the logarithmic function,

my goal was to find a way to teach the concept so students would remember it.  As I

pursued the goal, I took various paths.  I no longer studied curriculum, looking for what

might work.  Instead, I studied students, their ways of knowing, and their explanations of

their ways of knowing in a mathematical context. The purpose of the study was threefold:

to develop descriptions of students’ understanding of the logarithmic function, of changes

in their understanding of the function, and of ways of knowing that they use to investigate

problems involving the logarithmic function.

Theoretical Framework

Before I present my definition of understanding, I would like to clarify the

assumptions on which the study was based.  First, I assumed the goal of mathematics

teaching is student understanding.  Second, I assumed a student’s understanding of a

mathematical concept exists in his or her mind.  Third, I was aware I could not know

precisely what was in a student’s mind, but assumed I could infer the workings of the

mind from external evidence (Goldin, 1998a; Skemp, 1987).  Fourth, I assumed that

when students try to solve mathematics problems, they are trying to make sense to and

for themselves (self-referencing).  Finally, I assumed a student’s understanding is

qualitatively richer and quantitatively larger than external evidence and ultimately my

descriptions can indicate. Hence although my descriptions may not match students’

understanding, they provide useful information for those who teach the logarithmic

function, design curriculum to be used in the teaching of the logarithmic function, and

investigate students’ understanding of mathematical concepts.

Understanding

 Understanding can change. A student’s understanding of a mathematical concept

may become either more or less consistent with standard mathematical views of the

concept, but the most powerful mediator of understanding is a student’s prior knowledge.
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“One observation that assumes near axiomatic status in cognitive science is that student’s

prior knowledge influences what they learn and how they perform” (Hiebert & Carpenter,

1992, p. 80).  When a mathematical concept is presented to a student, he or she attempts

to make sense of it using prior knowledge of the concept, mathematics, strategies, and

available resources. The presentation and what the student thinks he or she is trying to

learn influence these attempts. Is it how to do a problem, how to simplify an expression,

or what the concept is?  Student’s attempts at sense making result in a collection of

beliefs about the mathematical concept. According to Stavy and Tirosh (2000), such

collections have been referred to in mathematics and science education literature as

“misconceptions, naïve conceptions, alternative conceptions, intuitive conceptions, and

preconceptions” (p. i).  I will refer to these privately held beliefs as the student’s

understanding of a mathematical concept.

A Definition of Understanding

A student’s understanding of a mathematical concept is his or her collection of

privately held beliefs about the concept.  This definition does not imply that a student

with a collection of beliefs about a concept understands it.  Certainly a person who

believes the logarithmic function is a number such as e or π does not understand the

logarithmic function.  Instead, having beliefs implies that a student has an understanding

of the concept.   I draw a distinction between a declaration that a student understands and

that he or she has an understanding.  Mathematics teaching is meant to encourage the

growth of a system of beliefs within the student that are consistent with culturally

accepted beliefs.  A student is said to understand a mathematical concept when, based on

an analysis of available evidence, the system of beliefs attributed to the student is

consistent with culturally accepted beliefs about the concept.  It is evidence of

consistency that is used to decide whether or not a student understands a mathematical

concept.  My purpose is not to answer such a question, but to analyze the available

evidence and describe the collections of beliefs I attribute to the student.  I will call this

collection of beliefs the student’s understanding of the logarithmic function. From the
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descriptions of the students and their beliefs each reader can judge for him- or herself if

the students portrayed understood the logarithmic function.

A collection of beliefs might seem a rather odd definition of understanding, but is

less so if we reflect on how we behave when a new mathematical concept is presented to

us.  We quickly attempt to give meaning (Sfard, 2000) to a concept by applying our

existing beliefs about mathematics and our knowledge of mathematical concepts. Reports

of novice-expert studies (Chi, Feltovich, & Glaser, 1981; Glaser, 1984) describe

differences in what the two groups view as important.  If beliefs are different,

understanding will be different. Schoenfeld (1988) found students’ beliefs about

geometry were largely the result of their experiences with the subject.  For example, they

believed most geometry proofs could be done in a very few minutes.  The students’

experience became the basis for the theory they acted on.  If they could not do a proof in

a few minutes, they gave up.  A student’s understanding of a mathematical concept is

much the same: his or her collection of beliefs about a concept is used to decide when, if,

and how a concept is used. Thus it is students’ beliefs about mathematics and specific

beliefs about concepts that govern their learning and form their understanding of

concepts.

Categories of Evidence

I will base my inferences about students’ beliefs on four categories of evidence:

conception, representation, connection, and application.  A conception is a student’s

communicated feelings and ideas about the concept.  A representation is a symbol the

student uses to communicate the concept.  A connection is a relationship between

representations.  An application is a use of the concept to solve a problem.   After

defining and giving an example of each of these categories of evidence, I will explain

why they are indications of students’ theories about a mathematical concept.

Conception.

A student’s conception of a mathematical concept is his or her communicated

feelings and ideas about the concept.  For example, a student may describe the
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logarithmic function as a collection of letters or “frustrating.” These are expressions of

the student’s conception of the function.  Conceptions may be the result of various factors

including, but not limited to, a student's goals for his or her mathematical activity.

A student’s conception of a mathematical concept can affect his or her future

attempts to learn more about or apply the concept (Sierpinska, 1994; Skemp, 1987).  It is

human nature to attempt to categorize objects we perceive.  Mathematical objects are no

exception to this rule.  When a student sees mathematical notation for a function, he or

she will try to make sense of it based on past experiences with mathematics.  Research on

students’ classifications of function illustrates this point.  If a student believes all

functions are linear, when faced with a coordinate axes on which several points are

plotted and asked to draw as many function as possible through the points, what will the

student draw?  Lines.  A student’s conception affects how the concept is applied.  Hence

his or her conception is evidence of his or her understanding of the concept.

Representation.

A student’s representation of a mathematical concept consists of symbols the

student uses to think about the concept and communicate it to others.  In the study, I

focused on four modes of representation: written, pictorial, tabular, and oral.  Briefly, a

written representation is a collection of letters and numerals, a pictorial representation

consists of an image, a tabular representation is a compilation of numerical data in a

table, and an oral representation is spoken.  A student is likely to use a combination of

these four modes when thinking or communicating about a concept.

Written representations are notations students use to think about and communicate

a mathematical concept in writing.  The written representations discussed in this report

are names, notations, maxims, and descriptions.  Names are terms that refer to

mathematical objects, procedures, and collections of the two.  One example of a name is

the term base.  Notations are definitions, properties, and examples of mathematical

concepts written using mathematical symbols: log2 1 = 0 and logaa = 1 are examples of

notation. Maxims are short statements meant to serve as mathematical rules or guides.
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One example is the common: logarithms are exponents. Descriptions are explanations of

procedures, outcomes of procedures, mathematical objects, and relationships.  “A

function is a collection of letters and numbers” is one example of a description.

Pictorial representations are images students use to think about and communicate

a mathematical concept visually.  An example of a pictorial representation often used in

the exploration of the logarithmic function is the graph of y = log2 x, as shown in Figure

1:

Figure 1. Graph of y = log2 x.

Tabular representations are tables of numerical data students use to think about

and communicate a mathematical concept. An example of a tabular representation of y =

log2 x is shown below:

x
1

4

1

2
1 2

log2 x -2 -1 0 1

Oral representations are spoken words and expressions students use to talk about a

mathematical concept.  As with written representations, oral representations are names,

notations, maxims, and descriptions.  The definitions for these terms are the same except

they are spoken not written. An example of an oral representation is: “Log of one is

zero.”

Representations play a role in all mathematical communication.  They are used to

convey an approximation of our thinking.  The theories of understanding cited in this

report (Hiebert & Carpenter, 1992; Pirie & Kieren, 1989, 1994a, 1994b; Sierpinska,
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1994; Skemp, 1987) use representation.  Although the understanding of a mathematical

concept exists in the mind of the individual, how a student uses symbols to represent the

concept is evidence of his or her beliefs about the concept.  For example, if a student

attempts to approximate log3 2 by graphing the function, this is evidence of the student’s

belief that a logarithm is associated to the graph of the logarithmic function.  On the other

hand if the student uses his or her calculator and the change of base formulas, then we

might conjecture the student sees a logarithm as an algebraic computation.  Students’

uses of representations are indications of their understanding of a mathematical concept.

Connection.

If a student translates a representation from one mode to another or transforms a

representation to another in the same mode (Lesh, Post, & Behr, 1987), I will say he or

she has connected the two representations.  For example, if a student can identify the

graph of a logarithmic function (see Figure 2), he or she has translated a representation in

the pictorial

Figure 2.  Example of a question designed to investigate connections.

mode to one in the written mode. The student has connected the graph, a pictorial

representation, and its algebraic expression, a written representation. If a student rewrites

the written representation y = log2 x as y =
log x

log 2
, he or she has also translated the

representation.  Hence, there is a connection within the written mode.

According to Hiebert and Carpenter (1992), “the degree of understanding is

determined by the number and strength of connections” (p. 67).  The connections referred

to are internal ones between representations, but Hiebert and Carpenter also note that
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evidence of a connection can be observed when a student relates two or more external

representations.  That connections are evidence of understanding is not a new idea, as

Hiebert and Carpenter explain:  “It is a theme that runs through some of the classic works

within mathematics education literature” (p. 67). The connections I have defined and

described are limited to external ones, but they provide evidence of students’ beliefs

about a mathematical concept.

Application.

An application of a mathematical concept is the use of the concept to help solve a

problem.  If a student uses a mathematical concept to solve a problem, he or she has

linked the problem to the concept.  This link indicates an understanding of how the

concept can be used.  For example, a student’s ability to find log3 8, given log3 2 is

evidence of the student’s beliefs about the logarithmic function.

The ability to apply a mathematical concept in an unfamiliar situation is probably

the most widely used test of understanding.  According to Brown, Bransford, Ferrera, and

Champion (1983) “We are reluctant to say that someone has learned elementary physics

or mathematics if they can solve only the problems they have practiced in class” (p. 143).

If a student can apply a concept to a novel problem situation, he or she understands

something about both the problem and the concept.  What a student knows can be

extracted from his or her actions. If a student can transform the function f (x) =
1

x
 into

linear form, I would conjecture that he or she knows more about the logarithmic function

than a student who cannot.  The application is evidence of the student’s beliefs about the

function.

Changes in Understanding

When the term understanding is used in colloquial speech, it generally means a

static quantity, but teachers of mathematics know that a student’s understanding of a

mathematical concept changes over time. Students study and develop their beliefs in and

out of class, and hence how their understanding changes is not always clear.  Pirie and
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Kieren (1994b) have hypothesized that these changes are occur in a process involving

various levels of abstraction, indicating the development of understanding is orderly.

They are careful to point out that their theory is based on conjectures of an observer. To

an observer the student’s actions appear in sequence or like a process, but the experience

for the student is often very different.  He or she may experience understanding as

changes in their beliefs based on their experiences during various activities.  For the

student the understanding is not a process.

I do not claim that understanding is a process.  In my own attempts at

understanding I impose a structure on my activities to make the experience of learning

feel less chaotic, but it does indeed feel chaotic (Halmos, 1985; Poincaré, 1946). The

most I can claim about a student’s understanding of a mathematical concept is that it

changes. In this study, changes in students’ understanding of a concept were seen as

changes in their beliefs about the concept.  The second purpose of the study was to

identify changes in students’ understanding of the logarithmic function.

Ways of Knowing

When a student tries to solve a problem, he or she does not always approach the

problem the way I would. I have often been surprised at the approaches a student takes.

For example, given the sequence 1, 2, 4, 8, … some students explain the action in the

geometric sequence as multiplying each term by two to get the next term and coordinated

(Smith & Confrey, 1994) this action with adding 1 in the arithmetic sequence 0, 1, 2, 3….

Describing the relationship between the two sequences as a map of multiplication by 2 to

addition by 1 allows the students to predict terms in the arithmetic sequence that

correspond to nonnegative integer powers of 2, but is not flexible enough to allow the

student to make predictions about arithmetic corresponding with terms such as 

€ 

2 .  I

will call students approaches ways of knowing. Hence, students’ ways of knowing are

defined as operations and strategies they use to investigate problems they are asked to

solve.
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The students’ ways of knowing can be used as the basis for future understanding,

but they can also be constraining (Skemp, 1987).  If a student sees the relationship

between the two sequences as a map where multiplication by 2 in one sequence

corresponds to adding 1 in the other, he or she may have an extremely difficult time

reversing the relationship to find what 

€ 

1

2
, inserted in the geometric sequence, maps to.

Despite the constraints a student’s way of knowing may create, they are sources

of meaning.  As sources of meaning, the constraints have the potential to be what

Sierpinska (1994) calls the basis (chapter 2) for the student’s understanding.  For me a

student’s ways of knowing provides insight into how a student’s understanding of the

logarithmic function can grow.

Research Questions

The primary purpose of this study was to describe students’ understanding of the

logarithmic function. Hence, the first two questions were about understanding. The first

was about understanding the logarithmic function, and the second was about changes in

understanding.  The secondary purpose was to identify ways of knowing used by the

students that could be used as a basis for growth of understanding. Hence, the third

question was posed to look beyond what students understand and toward what they might

be able to understand.

1. What is students’ understanding of the logarithmic function?

2.  What changes occur in students’ understanding of the logarithmic function during the

instructional process?

3. What ways of knowing do students use to investigate problems that include a

representation of the logarithmic function?
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CHAPTER 2:  DISCUSSION OF RELEVANT LITERATURE

The purpose of this chapter is to summarize and discuss my interpretation of an

conversation among educational researchers about understanding.  The participants in the

conversation were selected because of their influence on my view of understanding, the

design of the study, and the data analysis.

In this chapter I outline four theories of mathematical understanding proposed in

the last 25 years.  Each of the theories was developed from a different perspective and

uses a different definition of understanding.  However, as I will show, these theories have

common elements I used to investigate and describe students’ understanding.

In the data analysis phase of the study, it was useful to examine the effects of

students’ beliefs about mathematics and understanding on their understanding of the

logarithmic function.  Some literature illustrating the connection between students’

actions and their beliefs is discussed.

In the rationale for this study I noted my own dismay at the students’ failure to

remember either the definition of the logarithmic function, the basic properties of the

function, or the graph.  In addition, during the collection of data, students themselves

remarked about either being able to remember or not remember.  Hence, research on the

connection between remembering and understanding is discussed.

Finally, the historical development of the concept of logarithms sheds some light

on how the tasks in the study were developed.  A historical development of the concept

of logarithm is presented, and Smith and Confrey’s (1994) work on both the exponential

function and the logarithmic function is discussed.

Theories of Understanding

Skemp’s Theory of Understanding

In 1976, Richard Skemp marked the beginning of the study of understanding in

mathematics education research.  His classic article entitled “Relational and Instrumental
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Understanding” sought to define and describe these two types of understanding and to

explain why so many teachers felt instrumental understanding was a type of

understanding.  Skemp credited Stieg Mellin-Olsen with the coining and definition of the

terms.  According to Skemp, relational understanding is “knowing what to do and why,”

whereas instrumental understanding is “rules without reasons” (p. 152).  The emphasis

on knowing what and why in Skemp’s article gives one the impression he associates

understanding with the type of knowing it produces (Sierpinska, 1990).  A bit more

reading reveals an expansion and revision of Skemp’s categories of understanding.

Following the publication of Skemp’s (1976) article in Mathematics Teaching,

debate about the definitions and categories of understanding Skemp described ensued

(Backhouse, 1978; Buxton, 1978; Byers & Herscovics, 1977; Tall, 1978).  This

discussion prompted Skemp to revise his definitions of and to include a new type of

understanding he called formal understanding.  Skemp (1987) elaborated on these new

definitions attributed to Byers and Herscovics:

Instrumental understanding is the ability to apply an appropriate

remembered rule to the solution of a problem without knowing why the

rule works.

Relational understanding is the ability to deduce specific rules or

procedures from more general mathematical relationships.

Formal understanding ...is the ability to connect mathematical symbolism

and notation with relevant mathematical ideas and to combine these ideas

into chains of logical reasoning. (p. 166)

The language of “knowing” found in Skemp’s (1976) original work regarding

instrumental and relational understanding is replaced in this excerpt with “ability.”

Hence, for Skemp, understanding is linked to abilities.  The question remains, how does

one acquire these abilities?

In his book the Psychology of Learning Mathematics, Skemp writes “To

understand something means to assimilate it into an appropriate schema” (p. 29).  We
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can unravel this sentence a bit if we know what assimilate and schema mean.  By

schema, Skemp means a group of connected concepts, each of which has been formed by

abstracting invariant properties from sensory motor input or from other concepts. The

concepts are connected by relations or transformations. An example of how a schema

works is given by Skemp:

When we see some particular car, we automatically recognize it as a

member of the class of private cars.  But this class-concept is linked by

our mental schemas with a vast number of other concepts, which are

available to help us behave adaptively with respect to the many different

situations in which a car can form a part. Suppose the car is for sale.  Then

all our motoring experience is brought to bear, reviews of performance

may be recalled, questions to be asked (m.p.g.?) present themselves. (p.

24)

This characterization does not mean schemas are used only when we have had

some previous experience with a situation: they are also used in problem situations with

which we have no experience.  For example, if one has never solved a logarithmic

equation, but has solved linear equations, various techniques and information about

solving linear equations might come to mind as one tried to solve the logarithmic

equation.  According to Skemp, “The more schemas we have available, the better our

chance of coping with the unexpected” (p. 24).

As Skemp points out his definition of understanding is not based on finding the

appropriate schema, but an appropriate schema.  This distinction explains why students

may think they understand a concept when they do not.  Suppose for example a student

thinks the notation f(x) means f · x.  The student may believe he or she understands the

notation.  It is assimilated into his or her schema for multiplication and will be

detrimental to his or her understanding of the concept of function. The student can

reconstruct a schema if he or she encounters situations for which his or her existing

schemas are not adequate.  Skemp notes that this process is not easy or comfortable,
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because of the strength of existing schema.  “If situations are then encountered for which

they are not adequate, this stability of the schemas becomes an obstacle to adaptability”

(p. 27).

Instrumental understanding is understanding.  The problem is that to use such

understanding the student must be able to identify the problem type and associate it with

a solution procedure. Unfortunately, there are many types of problems a particular

mathematical concept can be used to solve and memorizing all of them would be both

difficult and inefficient.  Nevertheless, many students memorize procedures and problem

types, some with the encouragement of their teachers.  Skemp notes the connection

between the procedures and problem types is likely to deteriorate rather quickly, leaving

the student unable to match the problem with the concept.  Hence, instrumental

understanding fails to have two qualities of relational understanding: adaptability and

integration.  A student who attempts to understand relationally will try to link a new

concept with other concepts he or she has developed and then reflect on the similarities

and differences between the new concept and those previously understood.  The student

then has resources to draw on when he or she gets stuck in a problem.

Logical understanding, according to Skemp, is what allows a student to

communicate mathematically and be understood by others.  Although a student might

solve a problem correctly and understand it, that is no guarantee he or she could prove

formally that the sequence of actions is based on a series of logical inferences used in

mathematical proof.  The following example illustrates how a student may have

instrumental and relational understanding, but not logical understanding.  A student may

be able to find f(4) given f(x) = log2 x, by proceeding as follows (example adapted from

Skemp, 1987, p. 170):

f(x) = log2 x = log2 4 = 2.

When asked why he or she wrote this expression the student might respond, “To find any

range value that corresponds with a given domain value for a given function f, one simply

evaluates the function at the given domain value.”  This explanation indicates that the
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student has relational understanding, but what he or she has written indicates a flaw in

logic, namely, that the range of the function, f(x), could equal a particular range value,

f(4).  Although Skemp (1987) was able, with the help of his colleagues, to propose the

construct of logical understanding, he was, as he put it, “working in his own frontier

zone” when it came to describing “what kind of schema are involved in” (p. 171) this

kind of understanding.  His hypothesis was that schema involved were built from

concepts consisting of classes of statements connected by logical implications.  Hence,

Skemp and his colleagues saw formal logical mathematical argumentation as part of

understanding.

Skemp’s view on understanding expressed in his 1976 article is a very brief

introduction to his theory of learning mathematics.  Knowing how and knowing what are

by-products of learning, or schema building, whereas understanding is part of the schema

building process.

Pirie and Kieren’s Theory of Understanding

Pirie and Kieren’s (1994b) theory of understanding (Pirie-Kieren theory) is based

on their belief that “mathematical understanding is a process, grounded within a person,

within a topic, within a particular environment” (p. 39).  The theory was developed in

response to what Pirie (1988) saw as the inadequacies of category theories like Skemp’s

for explaining children’s understanding of mathematical concepts.  Pirie (1988) explained

how a student, Katie, who had in previous interviews constructed an understanding of the

division of a fraction by a fraction using pie diagrams, in a later interview could not give

a pictorial representation for her symbolic action. Katie was able to divide fractions

effortlessly using the standard algorithm but could not recall her previous way of

operating with fractions.  In the final interview, Katie illustrated how she divided

fractions by inserting shaded pie pieces for the number symbols.  Any researcher who

observed this demonstration would conclude Katie did not understand the division of

fractions but was simply following an algorithm.  However, the interviewer having seen
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Katie’s actions in previous interviews, asked her if 50 divided by 

€ 

1

3
 would be bigger or

smaller than 50.  According to Pirie (1988), Katie’s instant response that the answer

would be bigger was evidence she had an understanding of the division of fractions.  The

question was what understanding did she have?  Into which of Skemp’s categories did

Katie’s understanding fit?  Pirie noted that extreme care should be used in labeling

students’ understanding.  Obviously the researcher’s experience with Katie allowed her to

have an insider’s perspective on changes in Katie’s understanding.  This context altered

the meaning the researcher gave to Katie’s actions.

Shortly after the appearance of Pirie’s (1988) article, Pirie and Kieren (1989)

published “A Recursive Theory of Mathematical Understanding.” In this article, they

describe a theory of understanding and illustrate how the theory can be used to explain a

student’s understanding of a mathematical concept.  Their theory is one of transcendent

recursion.   It is transcendent in that each level of knowing, while compatible with prior

levels, transcends those levels in sophistication.  It is recursive in that the structure of the

understanding at one level is similar to the structure of the understanding at another, and

one level of understanding can call into action a previous understanding. For example, if

a conflict occurs at a current level of understanding, the student has access to previous

ways of knowing that can be used to help resolve the conflict.  The result of this

perspective is the following definition of understanding:

Mathematical understanding can be characterized as leveled but non-

linear.  It is a recursive phenomenon and recursion is seen to occur when

thinking moves between levels of sophistication.…  Indeed each level of

understanding is contained within succeeding levels.  Any particular level

is dependent on the forms and processes within and further, is constrained

by those without.  (Pirie & Kieren, 1989, p. 8)
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In addition to a definition of understanding, Pirie and Kieren (1994a) developed a

pictorial representation of their theory highlighting eight levels in the process of the

growth of understanding (see Figure 3).

Primitive
Knowing

Image Having

Image Making

Property 
Noticing

Formalizing

Inventing

Structuring

Observing

Figure 3. Pirie and Kieren’s pictorial representation of understanding (1994a, p. 167).

Although the representation is static, the intention is that it be used as a tool for

mapping an individual’s changes in understanding of a mathematical concept over time.

When such a map is completed, according to Pirie and Kieren (1992), it represents the

student’s process of understanding.  In general, the inner levels of understanding leading

up to formalizing are context dependent.  The particular problems the student does and

actions he or she takes will enable and constrain the properties he or she abstracts from

them.  Formalizing marks the beginning of reflections on mental objects free of the

contexts from which they were derived and also marks the development and proof of

theorems regarding these mental objects.  Detailed definitions of each of the levels can be

found in Pirie and Kieren (1992).
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There is a major problem with the Pirie-Kieran theory.  It is unclear how it was

developed.  There is no evidence in published articles (Kieren & Pirie, 1991; Pirie, 1988;

Pirie & Kieren, 1989, 1992, 1994a, 1994b) that the model was adapted over time using

the results of investigations with students.  The theory is used to describe students’

understanding, but there has been no critique of it by the authors. Unless a theory of

understanding is tested and modified using data collected from students who perform

both standard and nonstandard tasks, it is an opinion rather than a theory.

Sierpinska’s Theory of Understanding

Sierpinska’s (1994) theory is based on understanding an “act of grasping

meaning” (1990, p. 27).  She calls these act of understanding.  Each act of understanding

is composed of four components: the understanding subject, the object of understanding,

the basis of understanding, and mental operations that link the object with the basis.

The understanding subject that Sierpinska (1994) refers to is not the psychological

subject one teacher has in his or her class, but rather is the epistemic subject referred to

by Beth and Piaget (1961).  This subject is a compilation of all subjects who have

grasped various meanings of mathematical concepts.  For example, the epistemic subject

developing the concept of real numbers would encounter difficulty with both the concept

of zero and the negative integers.  Historically in the development of the real numbers,

both of these concepts were met with resistance, hence the epistemic subject would

experience these concepts as obstacles.  Called epistemological obstacles or “barriers to

changes in frame of mind” (Sierpinska, 1994, p. 121), they become opportunities for the

occurrence of an act of understanding. Sierpinska provides the following justification for

her focus on the epistemic subject:

If we want to speak about understanding of some mathematical topic in

normative terms this notion of sujet épistémique comes in handy.  To be

exact, it is not the way ‘a certain concrete Gauss’ has developed his

understanding between one work and another that will give us some

guidance as to what acts of understanding have to be experienced or what
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epistemological obstacles have to be overcome in today’s students.  We

have to know how a notion has developed over large periods of time, and

in what conditions (questions, problems, paradoxes) were the great

breakthroughs in this development brought about.  This, and not historical

facts about exactly who did what and when, can be instructive in

designing our teaching and facilitating understanding processes in our

students. (p. 40)

Hence, though observations of a single subject and his or her acts of understanding may

help an individual teacher working with a concrete student, the construction of an

epistemic subject can help any teacher working with any student.

Despite the inclusion by Sierpinska of the understanding subject, this subject has

none of the human features of the students in our classrooms.  The students we teach

bring to their study of mathematics obstacles in mathematics, mathematical thinking, and

obstacles in their beliefs and goals.  They often believe they understand what was taught

despite a mismatch with instructional goals set by the teacher.  According to Skemp

(1987), this belief of the student can shut the door to further examination of a

mathematical concept.  A student who feels he or she has failed to understand can be

motivated to conduct further investigation whereas a student who feels he or she

understands often terminates his or her investigation. Hence an investigation of

understanding should include both the researcher’s interpretation of understanding and

the student’s.

The second, third, and fourth components (object, basis, and mental operations) of

Sierpinska’s (1994) theory of understanding provide a picture of how a student attempts

to construct meaning.  These three components work together to produce an act of

understanding.  First, there is a mental operation of identification: “Identification is the

main operation involved in acts of understanding ... acts that consist in a re-organization

of the field of consciousness so that some objects” (p. 57) that were in the background are

now in the foreground.  Other mental operations identified and defined by Sierpinska are
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discrimination, generalization, and synthesis. Discrimination is the identification of

differences between objects. Seeing an object as a particular case of a situation is defined

as generalization.  Synthesis is the “search for a common link” (p. 60) between

generalizations.

Once an object is identified, the subject searches for a basis for his or her

understanding.  How can the object be given meaning?  Objects are connected using

mental operations.  The existing object is called the basis for understanding the new

object.  In terms of the questions at hand, how does a student’s understanding of the

logarithmic function change? In Sierpinska’s terms, if a student is able to identify the

logarithmic function as an object to understand and can find a basis for it, he or she will

understand.  We must ask: What bases can there be for understanding the logarithmic

function? To answer this question we must look at students in action.

Hiebert and Carpenter’s Theory of Understanding

Hiebert and Carpenter (1992) propose a cognitive science perspective on students’

understanding of mathematics.  They conjecture the existence of networks of internal

representations.  The “number and strength” (p. 67) of the connections between

representations is used as a measure of the degree of understanding.   Hence a student

who has an internal representation for the logarithmic function connected to the definition

of function and to the graph of the function will have a stronger understanding than a

student who has simply heard of the function. The theory is based on three assumptions:

“Knowledge is represented internally and these internal representations are structural” (p.

66).  There is a relationship between internal representations and external ones.  And

internal representations are connected. Hiebert and Carpenter further explain that internal

representations and connections can be inferred from analyzing a student’s external

representations and connections.

An example of the connection between internal and external representation is

provided by Lawler (1981).  He presented his daughter, Merriam, with three tasks he

viewed as involving the same computation, adding 75 and 26.  First, Lawler presented the
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problem orally, then in terms of money (75 cents and 26 cents), and finally on paper.  In

each case, Merriam used a different method of computation.  Context (external

representation) made a difference in Merriam’s thinking.  In terms of Hiebert and

Carpenter’s definition of understanding, the external representations were related to

Merriam’s mental (internal) ones.

 What then are these mental representations and connections?  Although

mathematics educators do not know how a student is representing mathematical concepts

internally or the nature of these representations, according to Hiebert and Carpenter, the

student’s solution to a problem is influenced by external representations (physical

materials, pictures, symbols, etc.) in the problem.  Problems solved both in and out of

school affect the internal representations and help form networks. Hiebert and Carpenter

contend these mental representations are needed to “think about mathematical ideas” (p.

66).

Hiebert and Carpenter (1992) propose two metaphors for these networks of

representations.  First, networks are structured like vertical hierarchies.  Representations

are details of other more overarching representation. Hence if a student has a mental

representation of function, in terms of a vertical hierarchy, an associated representation

would be a linear function.  Second networks are structured like webs.  Representations

of information form nodes connected to other nodes.  Connections, according to Hiebert

and Carpenter, are formed in one of two ways: by noting similarities and differences, and

by inclusion.  A new idea is compared with other ideas already represented mentally.

Once similarities and differences are cataloged, a student can connect his or her mental

representation of the idea to existing structures.

Hiebert and Carpenter (1992) explain the growth of understanding in terms of

adjoining and reorganizing existing networks.  Adjoining may occur when a student

becomes aware of a mathematical idea for the first time.  In an attempt to make sense of

the idea the student searches for connections to existing mental representations.  One

result of this process is the connection of new ideas to unrelated mental representations.
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For example, consider the addition of logarithms: log 4 + log 5.  A student might connect

this representation to his or her knowledge of the distributive property.  This connection

will result in the following calculation: log 4 + log 5 = log 9.  Hence the idea is adjoined,

but the connection is not useful.  This connection can be modified through a process that

Hiebert and Carpenter call reorganization. Reorganization can occur when a student

reflects on his or her thinking and is aware of an inconsistency.  For example, if a student

subsequently sees log 4 + log 5 = log 20, he or she may have cause for reorganization.

The new information is not consistent with current mental representations for adding

logarithms.

Noting the importance placed on the communication and understanding of

mathematics in both school and society, Hiebert and Carpenter (1992) explain how

written symbols can be understood by students.  If a symbol is to carry some meaning for

a student, it “must be represented internally as a mathematical object” (p. 72). Hence in

order for a student, to understand log 4, for example, he or she must represent the

notation as mathematical object rather than a collection of symbols.

Common Elements in the Four Theories of Understanding

The four theories of understanding have five elements in common: obstacles to

understanding, modification for efficiency or to overcome obstacles, basis for

understanding, mental representation, and connections. Although the language and

perspectives of the researchers’ theories differ, each of the theories makes use of these

five elements.

Obstacles to Understanding and Modification

Each theory of understanding contains the ideas of obstacle and of modifications

in the face of obstacles. Skemp does not use the term obstacle; instead, he notes that a

student may encounter a situation for which his or her schemas are not adequate. In this

situation, “this stability of the schemas become an obstacle to adaptability” (p. 27) and

the schemas must be reconstructed (modified) “before the new situation can be

understood” (p. 27).  Naturally there is no guarantee a student will successfully
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reconstruct his or her schema.  Skemp notes that if an effort at reconstruction fails, then

“the new experience can no longer be successfully interpreted and adaptive behavior

breaks down — the individual can not cope” (p. 27).

An obstacle in the Pirie-Kieren theory is simply a problem that cannot be solved.

“When faced with a problem or question at any level, which is not immediately solvable,

one needs to fold back to an inner level in order to extend one’s current, inadequate

understanding” (1994a, p. 173).  If the student cannot solve the problem, it is an obstacle

to the growth of understanding.  Folding back is the terminology Pirie and Kieren use to

illustrate how students behave when they encounter an obstacle.  Students return to inner

levels of understanding to generate information and new ways of operating that will help

them overcome the obstacles.  This return to and modification of inner levels of

understanding results in growth of understanding.

Epistemological obstacles are a major feature of understanding in Sierpinska’s

(1994) theory.  Obstacles to the historical development of mathematical ideas indicate

mathematical concepts that might be obstacles for students.  Obstacles are overcome by

what Sierpinska calls reorganizations. “Every next stage starts with a reorganization, at

another level, of ways of understanding constructed at the previous stage, the

understandings of the early stages become integrated into those of the highest levels” (p.

122). These reorganizations result in modification of the student’s beliefs about a

mathematical concept.

In the Hiebert-Carpenter (1992) theory of understanding, a network of mental

representations grows as new and varied problem situations are presented.  Growth will

be inhibited if the problem types and contexts are of a very limited nature.  For example,

if students only encounter the logarithmic function as a rule for solving exponential

equations, they will have difficulty finding log 8 given log 2.  A student’s limited

network of mental representations is an obstacle to solving novel problems.  Changes in

understanding occur as the networks grow and connections are strengthened, or as

networks are modified.
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The construction of new relationships may force a reconfiguration of

affected networks.  The reorganizations may be local or widespread and

dramatic, reverberating across numerous related networks.

Reorganizations are manifested both as new insights, local or global, and

as temporary confusions.  Ultimately, understanding increases as the

reorganizations yield more richly connected, cohesive networks. (p. 69)

Hence, the obstacles in the Hiebert-Carpenter theory are the limited experiences of the

students and the modification is the change in existing networks of mental

representations.

Basis for Understanding

The third common element in the four theories of understanding is the basis for

understanding. A student logically associates what he or she is presented in class with

other concepts.  These associated concepts are what Sierpinska (1994) calls the basis for

the student’s understanding of the presented concept.

For Skemp the basis of understanding is existing schema.  For example, if a

student understands the exponential function and inverse functions, these two concepts

could be the basis for understanding the logarithmic function.  The logarithmic function

could be seen as a special case of an inverse function and be assimilated into the inverse

function schema and connected to the exponential function schema.

In the Pirie-Kieren theory, primitive knowing is the basis for understanding.

Primitive knowing is the understanding the student uses to build his or her understanding

of a new concept. In the example in the last paragraph, a student’s understanding of the

exponential function and inverse functions could serve as primitive knowing for the

student’s understanding of the logarithmic function. Hence in the Pirie-Kieren theory, the

basis for understanding a new mathematical concept is a previous understanding.

The basis for understanding in the Hiebert-Carpenter theory of understanding is

the existing network of mental representations and connections.  For example, if an

external representation of the logarithmic function such as the graph of y = log x is
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compared with the graph of y = 10x, the two functions can be identified as inverse

functions based on the symmetry of the graphs about the line y = x.  Hence the basis for

understanding the graph of the logarithmic function becomes the graph of the exponential

function.

Mental Representations and Connections

The final common elements of the four theories of understanding are mental

representations and connections.  These two elements play a particularly important role in

the development of understanding in each of the theories.

According to Skemp (1987), a mental representation of common properties

abstracted from experiences, either mental or physical, is referred to as a concept.  Hence

in a schema it is the concept that is the mental representation.  If we want to be able to

use our experiences in the future, they cannot be represented exactly as they have

occurred.  Instead, they are examined in search of regularities. These regularities can then

be adapted to new situations we encounter.  Concepts must be connected to form

schemas.  Connections for Skemp take the form of relations and transformations. A

relation is a common idea connecting two concepts.  For example, if one considers the

following pairs of functions: f(x) = 2x , f-1(x) = log2 x; g(x) = 3x , g-1(x) = log3 x; h(x) = 5x , h-

1(x) = log5 x, the relation between the two would be “is the inverse function of.” A

transformation “arises from our ability to ‘turn one idea into another’ by doing something

to it” (p. 23).  For example,

8 = 23 →log2 8 = 3 is a transformation.  Both relations and transformations help form

connections between existing concepts and new concepts.

In the Pirie-Kieren theory, when a student is at the level of image making, the

images may be either external or internal, but when the image having level is attained, the

images are internal.  The general quality of the images made has been abstracted.  These

images are one form of mental representations included in the Pirie-Kieren theory.  At

subsequent levels, operations are performed that abstract qualities from mental images

and generalize them.  The generalizations are also represented internally.
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Both the understanding of concepts and levels of knowing are connected in the

Pirie-Kieren theory.  Connections between understandings of concepts can be seen in the

“fractal like quality”(Pirie & Kieren, 1994a, p. 172) of a theory of a student’s

understanding. “Inspection of any particular primitive knowing will reveal the layers of

inner knowings” (p. 172).  Connections within a particular concept are formed as

commonalties and are abstracted from the results of mental and physical action.  For

example, suppose a student has constructed the graph of y = log x and the graph of y = ln

x on his or her calculator.  The student may abstract an image of an increasing function

from these two made images.  This abstraction, although incorrect, is a noticed property

of these two graphs.

Sierpinska also features mental representations and connections in her theory of

understanding.  She describes mental representation as a possible basis for understanding

and as one source of obstacles.  For example, consider the abstraction made by the

hypothetical student in the previous paragraph.  Based on two graphs, he or she

abstracted the idea that the logarithmic function is increasing.  This abstraction may

prove to be an obstacle when the student tries to determine the limit of y = log1/2 x as x

approaches 0   If a mental representation does form the basis of a student’s understanding

of a mathematical concept, according to Sierpinska, it is connected to the object of

understanding by mental operations.  The Hiebert-Carpenter definition and theory of

understanding is built on representations, internal and external, and connections between

representations.

Conclusion

Obstacles and modification, basis, and representations and connections were used

in various ways in this study.  First, idea of the existence of obstacles and modification

was used in the development of the tasks and during the interviews. In particular

epistemological obstacles in the historical development of the logarithmic function were

considered as I developed the tasks.  During the interviews, I pressed students when they

considered their own thinking.  For example, I always encouraged the students to justify
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their answers.  On many occasions, attempts to justify their responses lead students to

modifications their original approaches.

Second, I used the idea of the basis of understanding during the data analysis.

During the data analysis I often asked myself what the student’s basis was for

understanding the logarithmic function.  Thinking the evidence through using this

construct clarified my findings.  Third, representations and connections were essential

elements of my own theory because they play a role in each of these theories and because

of the role representations have played in my own mathematical thinking.

Beliefs

The release of the statistics reported in the Third National Assessment of

Educational Progress (NAEP) motivated mathematics educators to study the existence of

a connection between students’ performance and their beliefs about mathematics.

According to Carpenter, Lindquist, Matthews, and Silver (1983), the NAEP data

illustrated that “students felt very strongly that mathematics always gives a rule to follow

to solve problems” (p. 656).  These findings prompted researchers to study the

connection between students’ beliefs and their behavior. The results of such studies

(Kloosterman, 1991; Schoenfeld, 1989,1992; Underhill, 1988) indicated there was a

relationship between students’ beliefs about mathematics and how they thought about and

did mathematics.

Affect is a term used by mathematics educators as a catch-all for emotions,

attitudes, and beliefs (McLeod, 1988).  McLeod defines affect as “all of the feelings that

seem to be related to mathematics learning” (p. 135).  Although there seems to be

consensus that belief is an affective factor, in the mathematics education community

there is little agreement as to the word’s definition (Pehkonen & Furinghetti, 2001). Cobb

(1986) defined beliefs as “assumptions about the nature of reality that underlie goal-

oriented activity” (p. 4). This definition is the most useful one in terms of my approach to

the research questions and my discussion of the findings.  I chose this definition, first

because it does not use the term understanding to define belief and second because it was
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consistent with my assumptions about students’ understanding: it occurs within the

individual, student’s own opinions of their understanding are important, and it may be

inconsistent with correct mathematics.

Using Cobb’s definition, I took views that students expressed about what it meant

to understand a mathematical concept as evidence of their beliefs about mathematics and

understanding.  Students’ described mathematics as a collection of rules and procedures

they must learn to achieve their performance goals and understanding.  This view of

mathematics among students and teachers has been well documented and shown to

influence action (Dossey, 1992; Schoenfeld, 1989).

Although links between beliefs, understanding, and learning have been explored

by some researchers (Schoenfeld, 1989; Szydlik, 2000), those studying understanding

have focused their energy on describing the cognitive factors involved in its

development.  The theories proposed fail to address students’ about mathematics beliefs,

which Schoenfeld (1992) noted “shape their behavior in ways that have extraordinarily

powerful (and often negative) consequences” (p. 359).  Each of the theories discussed in

this chapter, assumes understanding occurs within the mind of the individual.  It is not

clear how an individual’s beliefs about mathematics and understanding might influence

his or her understanding.   

The results of this study illustrate the importance of beliefs in the development of

students’ understanding of mathematical concepts.  Much like those who have studied

preservice teachers’ beliefs in attempts to explain their practice (Cooney, 1997; Dossey,

1992) I have found beliefs to be a tool to make sense of students’ understanding of

mathematical concepts.

Representations

Since Janvier’s (1987) summary of research and theories on the role of

representation in the learning of mathematics, debate has continued regarding how the

term might be defined, how internal and external representations are related, and what

can be learned from the study of representations (Goldin, 1998b). Some mathematics
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education researchers (Goldin, 1998a; Goldin & Kaput, 1996) claim that representations

are a system we use to learn mathematics. In this study, representations provide evidence

of students’ understanding.

Sfard (2000) hypothesized the symbol referent pair is dynamic, the use of one

influences how the other is seen.  For example, the use of the representation log 3, and

how and when it is used influence what a student sees as the referent for the

representation.  Often when a new concept is introduced to students, it is through

representations. The student then strives to become proficient with the representation and

its syntax.  Although that sort of proficiency is not all the understanding mathematics

educators hope for, syntactic proficiency is an understanding.  External representations

may enable a student to develop internal representations of the concept, and they may

constrain his or her understanding of the concept.

Remembering and Understanding

A major revolution in experimental psychology was born with Bartlett’s (1932)

research on remembering.  This seminal work illustrated the reconstructive nature of

remembering.  Since then, some psychologists who choose mathematics as a context in

which to study memory have ignored this function. The result of this oversight has been a

focus on students’ errors as “bugs” (Brown & Burton, 1978). and the popular term used

today misconceptions. Much of what is labeled misconceptions in mathematics could

simply be attributable to the reconstructive function of memory.  One good example of

this function of memory are overgeneralizations (Byers & Erlwanger, 1985) made by

students studying the notation of a new concept such as the sum property of logarithms.

The students remember this property as

€ 

logbA + logbB = logb(A + B), an

overgeneralization of the distributive law. Much of what students are asked to do in

college algebra is based on remembering rather than understanding.

In 1985, Byers and Erlwanger called for more research on the role of

remembering in understanding. They noted that very little work in mathematics education

had focused on how remembering impacted students’ understanding.  In particular, they
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pointed out distortions in students’ thinking. They called these changes in memory

transformations. One such transformation is reported to have occurred in the daughter of

one of the authors.  “Her school topic in arithmetic was “carrying” and she was doing

beautifully — until the Christmas break.  After the break she started to produce

consistently wrong answers” (p. 275).  Her wrong answers were produced because the

child was ‘carrying’ the ones and recording the tens.  Another example of transformation

was the example given by Pirie (1988) of Katie, who after learning the algorithm for

dividing fractions, could no longer produce drawings that represented division of

fractions.  Byers and Erlwanger called for research that might explain these

transformations and how and when they occur.  Neither research focusing on retention

nor research on organization, according to Byers and Erlwanger, had been able to

accomplish this task.

Both the idea that memory is reconstructive, as suggested by Bartlett, and that

remembering can result in errors, as suggested by Byers and Erlwanger, are important in

this report.  A brief glimpse at the literature on learning mathematical concepts will

produce a long list of studies highlighting students’ errors (e.g. Arcavi, Bruckheimer, &

Ben-Zwi, 1987; Fischbein, Jehiam, & Cohen, 1995; and Schmittau, 1988).  Despite the

identification of these errors, little attempt has been made to find or inquire how students’

understanding either becomes “distorted” (Byers & Erlwanger, 1985) or fails to meet

cultural standards for validity.

The Logarithmic Function

Although we know that the development of a concept in the mind of an individual

need not follow its historical development, there is much to be gained from knowledge of

the historical development of a mathematical concept.  In particular, in the study of

mathematical understanding, knowledge of historical development of mathematical ideas

gives us another lens through which to view a student’s actions.  Commonalties that

occur in the way a student’s understanding of a mathematical concept develops and the

way it developed historically are, according to Sierpinska (1994) citing Piaget and Garcia
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(1989) and Skarga (1989), attributable to commonalties in mechanisms of development

and to preservation of historical meanings of terminology.  In the present attempt to

investigate students’ understanding of the logarithmic function, I based several of the

tasks on the historical development of the function.

My study of the historical development was motivated, in part, by the work of

Smith and Confrey (1994).  They outline the historical development of the concept of

logarithms and note its consistency with students’ actions (Confrey, 1991; Confrey &

Smith, 1994; Confrey & Smith, 1995).  These consistencies were observed during

teaching interviews designed to investigate how students learn about the exponential

function.

According to historians of mathematics (Boyer, 1991; Cajori, 1913; Eves, 1983;

Katz, 1995), Napier developed logarithms to simplify the difficult job of multiplying

large numbers, an admirable aim in the time before calculators.  In honor of the

tercentenary of Napier’s invention, a volume (Knott, 1915) was published containing

articles that discussed the invention and how it had been used in the intervening 300

years.  Among the articles is one written by Lord Moulton (1915), who hypothesized

three stages in the invention of logarithms.  In the first stage, Napier identified the

correspondence between a geometric and arithmetic sequence as a probable starting point

for a solution. Second, he introduced “a geometrical representation of the original

arithmetical operations ” (p. 13). Third, Napier realized that if pairs of terms in the

geometric sequence had the same ratio, then the corresponding terms in the arithmetic

sequence were equal distances apart.  Illustrations of each of the stages follow.  Modern

notations and an increasing geometric sequence are used to simplify the treatment.  This

approach was introduced by Victor Katz (1995).

If we juxtapose an arithmetic and geometric sequence, we can see how Napier

could have thought of the idea of changing difficult multiplication into simpler addition.

Arithmetic sequence:  0, 1, 2, 3, 4, 5, ...

Geometric sequence:  1, 2, 4, 8, 16, 32, ...
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In the geometric sequence, the product of 4 and 8 can be found by adding the

corresponding terms in the arithmetic sequence and finding the number in the geometric

sequence corresponding to the number 5, namely 32.  Hence, multiplication is easily

converted to addition.  However, one can also see what Napier’s challenge must have

been by looking at the terms in both sequences.  Neither sequence is dense.  Napier

needed to be able to multiply any given numbers, not just integer powers of some base.

Even the selection of a base near 1 for the geometric sequence could not produce the

density Napier desired.  Napier’s dissatisfaction with this method led to what Lord

Moulton identified as Stage 2 in the process of invention.

Napier converted his arithmetic problem to a geometric one by considering points

moving on lines as in Figure 4 (Katz, 1995). The point P on the upper line is moving

0

1

a 2a 3a 4a 5a 6a 7a

r r r

P

Q 2 3

Figure 4.  Illustration of Napier’s representation of moving points.

arithmetically.  P moves with constant velocity and covers each interval in the same

amount of time.  Q begins with the same velocity as P and covers the distance between

points in the same amount of time that P moves between points.  This requirement

produces an increasing velocity on each of the segments [1, r], [r, r2], [r2, r3], and so on.

According to Katz, Napier’s geometric representation allowed him to think of point Q as

moving with a smoothly increasing velocity.

Using his geometric representation, Napier considered any two intervals [α,β] and

[γ,σ] on the lower line such that 

€ 

β
α

=
γ
σ

 (Katz, 1995).  He then noticed when the forgoing

relationship held, the time it took Q to cover [α, β] was the same as the time it took to

cover [γ, σ].   Since the measure of time on the upper and lower lines was the same, the

points on the upper line being called the logarithms of those on the lower, and since P
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moved with constant velocity, then log β - log α = log σ  - log γ.  This correspondence

marked what Lord Moulton called the third stage of the invention of logarithms.

Mathematical Ideas Used by Napier

The treatment presented here is simplified: however, it illustrates several very

important mathematical ideas.  First, it illustrates that multiplication in the geometric

sequence corresponds to addition in the arithmetic one.  This idea has been identified by

Confrey and Smith (1994, 1995) as problematic for students.  Citing Rizzuti (1991), they

conjecture that the correspondence definition of function attributed to Dirichlet is based

on a more primitive concept called covariation found in earlier definitions of function.

Covariation is defined by Confrey and Smith (1995) as “being able to move operationally

from ym to ym+ 1 coordinating with movement from   xm to xm + 1” (p. 137).

Second, Confrey and Smith (1994) identified the idea of a multiplicative unit and

a multiplicative rate as primitive actions of students.  In interviews with students,

Confrey and Smith presented the students with a table of values meant to represent the

division of a cell over time.  The time, starting at zero, was given in integral values, while

the number of cells was given in powers of 9.  Students identified multiplication by 9 as

the action for moving down the table and division by 9 as the action for moving up the

table.  According to Confrey and Smith, the students also identified various powers of 9

as a constant ratio between terms.  For example, they found the ratio between successive

terms 

€ 

ym

ym −1

 
 
  

 
 was to be 9 regardless of the position of ym in the table. Similarly, 

€ 

ym

ym −2

 was

identified as 81, again regardless of the position of ym.  Hence, the primitive actions of

students were consistent with stages that have been identified as important (Katz, 1995;

Moulton, 1915) to the invention of logarithms.

Third, the summary of the invention of logarithms indicates the vital role that

representation played in Napier’s conjectured solution to the density problem in the

coordination of the actions of two sequences.  This representation along with his
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ingenious idea of two points moving along these lines allowed Napier to see how the

terms in the sequences could be related using of the positions of the points.

These three important stages in the invention of logarithms provide a lens for

examining and analyzing students’ actions on tasks using representations of the

logarithmic function.  In addition, the historical development of the logarithmic function

may a guide for how students can make sense of both the function and its modern

applications.

Conclusion

Understanding is described in the literature as assimilation, a network, an act, and

a process.  Although each of the characterizations is different, all of them were developed

to explain and predict students’ behavior.  In addition, representations and connections

are elements of each theory.  My definition of understanding also incorporates

representations and connections.  The literature on representation cited in this chapter

helped me realize the student’s external representations and connections could be used as

evidence of their beliefs.  Hence I noted that the representations I am looking for and at in

this study are external.  From these and the student’s conception and application of a

mathematical concept, I can hypothesize students’ beliefs.

The link between beliefs and student behavior as expressed by Schoenfeld (1989,

1992) was useful in explaining what I found in this study.  Students’ beliefs impact their

understanding in very specific ways and the existing literature helped me identify the

impact.

A common view held by the students in this study was that remembering was

either the same as understanding or a part of understanding.  Hence, an examination of

how remembering and understanding are related was called for.  Bartlett’s (1932) view of

memory as reconstructive provides a useful perspective for the analysis of the students’

actions during problem solving and will be revisited in chapter 6.

The historical development of the logarithmic function discussed in this chapter

helped me develop tasks to investigate students’ understanding and acted as a lens
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through which to view students’ actions.  In addition, the historical development

highlighted the importance of representation in the creation of the logarithmic function.

Finally the literature on the logarithmic and exponential functions alerted me to various

mental actions to look for as I observed the students solving problems.  In particular, I

proposed coordination of actions between two sequences as a path students might take as

they generate understanding of the logarithmic function.
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CHAPTER 3:  METHODOLOGY

The goal of this chapter is to describe the study, so others who wish to critique or

duplicate it may do so easily (Rachlin, 1981).  The description will include discussion of

techniques, instruments, participant selection, and procedures.

Research Techniques

The research questions and the theoretical framework for the study should suggest

appropriate data-gathering techniques for the study.  Regarding understanding as existing

within an individual suggests evidence of an individual’s understanding should be

gathered through interaction with the individual.  The interpretation of these interactions

is classified as qualitative analysis.  According to Truran and Truran (1998), “Qualitative

analysis interprets spoken or written language, and sometimes other forms of

communication, such as drawings or body language” (p. 61). This method is ideally

suited for the investigation of understanding.

Techniques and Rationales

Five techniques (phenomenological interviews, clinical interviews, mapping,

drawings, and participant observation) were used to gather data regarding students’

understanding of the logarithmic function.  A description and rationale for each of the

techniques is given in this section.

Phenomenological interview.   In this study, students’ understanding, changes in

understanding, and ways of knowing the logarithmic function were investigated.

Phenomenological interviews are designed to gather data about specific to help the

researcher build a description of the participant’s view of his or her world.  The

fundamental assumption made in a phenomenological study, according to Kvale (1993),

is that “the important reality is what people perceive it to be” (p. 52).  This perception

was needed to build a description of a student’s conception of the logarithmic function.
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Thus, the phenomenological interview is a technique ideally suited for data collection in

this study.

Clinical interview.   According to Brownell and Sims (1972), “Understanding is

inferred from what the pupil says and does, and from what he does not say and do in

situations confronting him” (p. 41). In this study, I inferred understanding from students’

actions and utterances.  The clinical interview provides a forum for the study of actions

and utterances in a problem-solving environment.  During a clinical interview, the

researcher attempts to gather information about a student by watching him or her perform

tasks and asking questions about the decision making process.  Much of the interview is

planned prior to meeting with a participant: however, questions and tasks that are not

preplanned may be posed.  Zazkis and Hazzan (1999) identify Piaget as the originator of

the clinical interview.  If the goal of the research is “the explication of thought” (p. 430),

then the clinical interview is an effective tool for achieving it.  The flexibility to follow a

line of questioning that is not preplanned and the opportunity to observe a student in

action that this technique allows made it an appropriate data collection method for this

study.

Mapping.  “To map is to construct a bounded graphic representation that

corresponds to a perceived reality” (Wandersee, 1990, p. 923).  This is the perceived

reality I hoped to see when I asked the participants to draw maps of the logarithmic

function.  The mapping technique I taught the participants to use was proposed by Novak

(1972, 1990) for studying students’ understanding of science concepts. Gathering a

student’s graphic depiction of his or her perceived reality provided data from which I

developed a description of his or her understanding of the logarithmic function

Drawings.  When a student visualizes a picture of his or her process of

understanding, he or she often includes unarticulated representations of his or her beliefs.

For example, if a preservice teacher is asked to draw a picture of what he or she thinks

mathematics is and the drawing is a tool kit, we can infer something about his or her

beliefs about mathematics.  In this study, drawings were used to gather a student’s
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impressions of his or her understanding and changes in understanding. I used these

impressions to develop the meanings for the students’ use of the term understanding.  The

drawings provided a window into the students’ beliefs about understanding, mathematics,

teaching, and the logarithmic function that might have been impervious to simple

questioning.

Participant observation.  According to Wolcott (1999), participant observation is

a way of experiencing the world in which the participants live.  The researcher observes

or otherwise engages in the world of the participants.  In this study, I used the technique

as I observed three college algebra classes.  The goal of these observations was threefold.

First, I used the technique to collect data about the behavior of the participants in their

college algebra classes.  The data were to be used to construct a general description of

each participant.  Second, I used the questions students asked and the responses they

provided as evidence of their understanding.  Third, I used participant observation to

catalog the curriculum used to teach the logarithmic function.  The use of this technique

provided me with information about the student’s understanding of the logarithmic

function during instruction.

Instruments and Interviews

Interview protocols and tasks were used in combination to gather evidence from

the participants.  The instruments in this study were the interview protocols (see

Appendix A for the complete interview protocols). A description of each of the protocols

and of the question it was designed to provide evidence for is given in this section.

Interview 1

The first interview consisted of five activities: mapping instruction,

phenomenological questions on the student’s prior experience with the logarithmic

function, skills assessment, phenomenological questions on understanding the

logarithmic function, and mapping of the function.

 The mapping instruction used in this study was adapted from Novak and Gowen

(1984).  Two adaptations were made.  First, the student was not instructed to rank
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concepts he or she generated related to the concept being mapped.  This adaptation was

necessary because I disagree with Novak’s view of concepts as being related in a

hierarchy. Second, the student and I constructed two maps together, before he or she was

asked to construct a map independently.  The two maps we constructed together were for

the concepts car and pet.  The student and I each mapped the third concept, high school,

and then we described and compared our maps.

The primary purpose of the mapping instruction was to train the student to make

maps. The secondary purpose was to become more familiar with the student.  Discussions

regarding cars, pets, and high school were used as data in the development of a

description of the student.

Following mapping instruction, the student was asked about his or her prior

experiences with the logarithmic function. Specifically, the student was asked to recall

and recount any experiences he or she had had with the logarithmic function. The

purpose of this phenomenological section of the interview was to gather data regarding

the student’s understanding of the logarithmic function prior to instruction.

The student was then given the skills assessment activity.  The skills assessment

consisted of definitions of terms, recall of properties, and questions associated with

representations and applications of the logarithmic function.  In particular, the student

was asked to define the terms function, logarithm, and logarithmic function and to list all

properties of the logarithmic function he or she could remember.  The remainder of the

assessment is best described as a traditional mathematics examination based on the

logarithmic function.  Three sample problems for the skills assessment are given in

Figure 5.

This activity had two purposes.  First, it was used to gather information about the

students’ understanding of the logarithmic function prior to instruction. This information

was used to develop descriptions of the student’s understanding of the logarithmic

function.  Second, it was meant to stimulate recall of any concepts associated with the

logarithmic function in preparation for mapping the concept.
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1. Simplify the following expressions:

a.  log3 4 + log3 5

b.  log3 4 - log3 5

c.  log3 9

d.  
1

2
log3 25

e.  log3 1

2.  What function is graphed on the axes below?  ___________________

3.  The 1980 population of the United States was approximately 227

million, and the population has been growing continuously at a rate of

0.7% per year.  Predict the population in the year 2010 if this growth

trend continues.

Figure 5.  Sample problems form the skills assessment.

Following the skills assessment, the student was asked to recall and recount what

he or she understood most while completing the skills assessment and then what he or she

understood least.  The purpose of these phenomenological questions was to gather data

on the student’s perspective of his or her understanding of the logarithmic function.

Mapping of the concept of the logarithmic function followed the

phenomenological questions.  I asked the students to include anything that came to mind

when they thought of the logarithmic function and to map those concepts.  The purpose
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of this activity was to gather evidence of the student’s understanding of the logarithmic

function.

Interview 2

The second interview began with two questions adapted from Brookfield (1990).

I first asked the student to recall and recount learning experiences that he or she felt were

significant to him or her as a learner.  I then asked the student to recall and recount

experiences he or she felt were frustrating.   These two questions encouraged

communication and trust between myself and the student.  In addition, in several cases

these questions elicited responses about learning that occurred outside of school and thus

provided more background information about the student.

The focus of the interview was then shifted to mathematics.  The student was

asked to describe him- or herself as a mathematics student and to identify any goals he or

she had when taking a mathematics class.  These questions were meant to elicit

background information about the student and his or her view of mathematics.  In

particular, the students’ view of mathematics and goals associated with mathematics

classes can influence the student’s perspective regarding understanding.  The student was

then asked about his or her educational goals.  This question was designed to gather

information that I could use in my description of the student.

The third series of questions focused on the phenomenon of understanding a

mathematical concept.  The student was asked to identify a mathematical concept that at

some time he or she did not understand.  After sharing the concept, the student was asked

recount his or her experience of not understanding.  The student was then asked to recall

and recount a time when he or she felt they had understood a mathematical concept. In

addition, the student was asked to define understanding. The purpose of these questions

was to collect data about the student’s definition of understanding and to develop my

view of the student meaning for the term.

Further evidence of the student’s definition of understanding was gathered using a

drawing task. The student was given a pen and a sheet of paper and asked to visualize and
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draw a diagram or picture of his or her process of understanding.  After completing the

drawing the student was asked to explain how the drawing related to his or her process of

understanding.  Specifically, the student was asked to refer to his or her drawing while

recounting a time when he or she first did not understand a mathematical concept but

then later did. This activity provided evidence that I used to build a description of the

student’s view of understanding mathematical concepts.

The questions and activities regarding understanding used in Interview 2 where

adapted from those I used in a previous study of understanding.  The study, Acts of

Understanding: A Phenomenology (Kastberg, 2000), was designed to help me investigate

and build a theory of students’ perceptions of their experiences of understanding a

mathematical concept (see Appendix B for a complete protocol).  The only change in the

protocol was a question about the student’s definition of understanding.  The descriptions

and definitions were necessary to discern the student’s meaning for the term

understanding.

Interview 3

 In the third interview, the student was asked to recall and recount a time during

class when he or she did not understand the mathematics being presented and to repeat

the activity for a time when they did understand. The student was then asked to construct

a map of the logarithmic function.

The purpose of this phenomenological interview was to collect the student’s

perceptions of his or her experience of understanding the logarithmic function and to

gather data about the student’s understanding of the logarithmic function.  The student’s

description and map were used as evidence of the student’s understanding of the

logarithmic function during instruction.

Interview 4

During Interview 4, the student was given the skills assessment used in Interview

1.  This assessment was then followed by the phenomenological questions about

understanding.  Specifically, students was asked to recall and recount times during the
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interview they understood mathematics.  A similar question was asked focusing on what

was not understood.  The student was then asked to construct a map of the logarithmic

function.  The purpose of this interview was to gather evidence about the student’s

understanding of the logarithmic function following instruction and, in particular, about

the student’s conception of the logarithmic function.

Interview 5

Interview 5 originally consisted of three different activities presented in pictorial

representation. The first is described in the next paragraph.  The second was the

interpretation and use of the graph of y = log3 x .  The third was an approximation task.

Given the logarithms of several integers, the student was asked to approximate the

logarithm of others.  During the pilot, I realized these three tasks were time intensive and

eliminated the third task.  During the study, each interview was 90 minutes long.  The

time was insufficient for the completion of both tasks.  This realization occurred to me as

I interviewed the first participant.  I elected to eliminate the second task and focus on

probing the students’ responses on the first task.

The task used in this interview was adapted from Jacobs (1970).  The student was

given a number line with the integers from 0 to 10 on it.  Above the integers 1, 2, 4, and 8

on the number line were the numbers 0, 1, 2, and 3, respectively, enclosed in boxes.  I

told each student a short story about the picture before he or she began the questions on

the task sheet. The following is an example of the story I used during the interviews:

I’m going to start out by telling you a little story about this [the pictorial

representation of the logarithmic function].  The story is there is this guy

and he gets in his car in the morning.  He is like ‘I’m going to take a trip.’

And so he starts from his house and he drives one mile and he sees a giant

sign with a zero on it.  He is like whew, what’s this.  This is very strange.

So he drives two miles from his house and he sees another sign that has a

giant one on it.  He is like uh, what is going on here.  So he drives from his

house, he drives four miles and he sees a two, he drives eight miles, he
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sees a three.  He’s like what is going on.  But, then a light bulb comes on

and he says ok, I know what’s going on.  I know where I’m going to see

the next sign.

The student was then asked to predict what number he or she expected to be above each

of 64, 256, 
1

2
, 2 , and 3.  (For the sake of brevity the numbers above the number line

will be called sign numbers and those below the number line will be called number line

numbers.) This question was designed to invoke generalizations and alternative

representations to help the student predict the sign numbers that corresponded to the

number line numbers.  To evoke generalizations about the number line numbers, the

student was asked if there were any number line numbers that could not have signs above

them.  In an attempt to see if the students could reverse his or her prediction procedure,

the student was asked to predict number line numbers corresponding to the sign numbers

7, -7, 
1

2
, 

3

4
, and 2 .  This question was followed with another generalizing question:

Are there any numbers that cannot be on signs?  Finally, the student was asked to explore

the correspondence between the number line numbers and the sign numbers by

generating properties based on two arbitrary number line numbers A and B corresponding

to sign numbers m and n, respectively.  Specifically, the student was asked what sign

number would be above AB, 
A
B , and 

B
A .  To invoke translations and transformations to

other representations, the student was asked how he or she would organize and display all

the data generated in this activity and to write down everything he or she knew about the

relationship between the number line numbers and the sign numbers. He or she was then

asked to recall and recount experiences of understanding and not understanding during

the activity.  The purpose here was to generate evidence regarding the student’s

perception of his or her understanding of the logarithmic function.

In this interview and in Interview 6, the logarithmic function was not mentioned.

One reason for this was to see if the student was able to apply his or her understanding of
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the logarithmic function to solve the problem.  Another reason was to gather evidence of

the ways of knowing used by the student.

The purpose of this interview was to gather evidence of representations,

connections, and applications of the logarithmic function that the student used to

complete the task. This evidence was used to conjecture the student’s beliefs about the

logarithmic function following instruction.

Interview 6

Roy Smith, a university mathematician, and I developed the activity used in

Interview 6.  The student was given a function, f, and was told the function obeyed two

rules:

f(AB) = f(A) + f(B) and f(2) = 1.  Based on this information, the student was asked to find

the value of the function for 4, 8, 16, 256, 
1

2
, 

1

8
, 

1

256
, 2 , 24 , 0, -4, 3, and 

3

2
.  In

practice this task was very difficult for the students because they could not decipher the

notation. Using the data gathered from a pilot study using these tasks, I modified the task

and included an example.  Before the student began, I wrote the following example using

the notation on the task sheet:

f(4) = f(2⋅2) = f(2) + f(2) = 1 + 1 = 2.

Students had less difficulty with the task after I presented the example.  After the student

generated function values for each of the real numbers, he or she was asked how the data

could be organized and displayed.  The student was also asked to record everything he or

she knew about the function f. These questions were designed to invoke representational

translation or transformation. The task was followed by the phenomenological questions

regarding the student’s experiences of understanding and not understanding while

completing the task.

The purpose of this interview was to collect evidence of the student’s

representations, connections, and applications of the logarithmic function when a

problem is presented in a written representation.  This interview was also designed to
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collect evidence of the student’s ways of knowing.  Evidence of the student’s perspective

of his or her own understanding was also gathered.

Interview 7

Interview 7 involved two table-completion tasks.  In the first task, the student was

given a table with the numerals 1–9 and the first column and the numbers 10, 20, and 30

in the first three cells of the third column. The last six cells were left empty.

Approximations for the logarithms of 1, 3, 5, 7, 8, 9, and 10 were provided in Columns 2

and 4.  The student was then told the second and fourth columns contained an

approximate value of the logarithm of the numbers in the first and third columns and was

asked to complete the table.   The student was also asked to find log 9000, log 0.09, and

log
5

8
 using the table. The student was given a TI-15 calculator for the completion of this

task. This calculator is designed for elementary school students and does not have a

logarithm or a natural logarithm key.

The second table-completion task was based on the function y = log3 x .  The

numerals 1 - 18 are entered in Columns 1 and 3; however, the only approximation in the

second column was for log3 2.  The student was then asked what other information would

be need to complete the table, what other ways the data might be represented, how these

other representations might help to fill in the table, and what the best way to represent the

data would be.   Following the table-completion activities, the student was again asked to

recall and recount his or her experiences of understanding and not understanding during

the activities.

The purpose of this interview was to gather evidence of the student’s

understanding of the logarithmic function, to identify ways of knowing, and to gather

evidence of the student’s perception of his or her understanding.

Interview 8

In order to determine how students used representations and in their oral

representations of a mathematical concept, the student was asked in Interview 8 to
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explain what he or she knew about the logarithmic function. Specifically, the student was

asked to pretend that I was a new college algebra student who knew the concept of

function and to explain the logarithmic function to me.

This activity was followed by the mapping activity.  The student was asked to

draw a map of the concept of the logarithmic function.  As in the other interviews, the

maps were used to gather evidence about the student’s understanding of the logarithmic

function.

Interview 9

 The purpose of the final interview was to gather the student’s perspective on

changes in his or her understanding of the logarithmic function. First, the student was

asked to recall and recount a time in his or her study of the logarithmic function when he

or she did not understanding the logarithmic function.  Similarly, the student was asked to

describe a time when he or she did understand the logarithmic function.  Following these

phenomenological questions, the student was asked to visualize and then draw his or her

process of understanding the logarithmic function. After completing the drawing, the

student was asked to explain the drawing.

In addition to the activities described here, the student was also provided with

summaries of all of his or her comments regarding understanding in general and

understanding the logarithmic function in particular.  I had planned to ask the student to

compare the summaries to his or her drawing, but no student actually read the summaries.

Therefore, I had to eliminate this question from the interview.

Attention was then drawn to the maps that the student had produced during the

course of the study.  The student was asked to compare and contrast the maps, to give an

example of how his or her understanding of the logarithmic function had changed since

the beginning of the study, and to illustrate how that change was manifested in the maps.

Developing the Interview Protocols

The interview protocols and tasks described above were the result of a refinement

process that included three developmental stages.  First, as the protocols and tasks were
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developed, they were reviewed and discussed by five doctoral students (writing group) in

the mathematics education program at the University of Georgia.  Based on the feedback

I received from this group, the interviews and tasks were revised.  Second, the protocols

for Interviews 5, 6, and 7 were trialed with two graduate students in the master’s program

at the University of Georgia.  These trials allowed me to see how students might attempt

to respond to the questions and solve the problems I posed. The third developmental

phase was a pilot study.

The pilot study was conducted over a 2-week period during October 2000. Two

former students of a doctoral student in the mathematics education program at the

University of Georgia were asked to participate in the pilot study.  Both students were

taking precalculus at the time of the study.  In fact, the interviews happened to coincide

with the presentation of concept of the logarithmic and exponential function the students

were seeing in their precalculus class.  The two students were paid $100 each for their

participation.

Despite the condensed timeline, the data I gathered during the pilot study

provided me with an additional opportunity to critique and modify both the interview

protocols and the tasks.  It also allowed a chance to check the coding scheme that I

intended to use to analyze the data.  A fellow graduate student and I used the coding

scheme to analyze a transcript from Interview 4. The students’ actions during the

interviews allowed to me prepare for what I was going to see during the main study.

Procedure

Research Site

The study was conduced at a rural community college, RC, in the Southeast

serving an agrarian community.  RC, a two-year college, is a community-based

residential institution offering programs in the natural and physical sciences, the liberal

arts, the social sciences, business, physical education and recreation, and the health

occupations.  It is also a specialized institution serving a unique role through programs in

agriculture and related disciplines.  According to the college catalog, when it was
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founded in the early 1900s the institution’s mission was the development of technological

expertise in young men and women wishing to embark on careers in agriculture, home

economics, and related fields.  Later, the role of the institution was expanded to include

college transfer programs designed to prepare students to enter senior institutions in the

state university system. All majors at RC are required to take at least one mathematics

course.  Students in the technological programs take a technical mathematics course or a

mathematical modeling course; those in most transfer programs take calculus preparatory

courses such as college algebra, trigonometry, and precalculus.  Students who intend to

transfer into science or business programs at senior institutions in the state are required to

take calculus.  Most RC students enroll in or are placed in calculus preparatory courses

even though calculus can be taken in the first year.  For students in the humanities and in

the elementary education program, college algebra is a terminal mathematics course.

College algebra, a 3-semester-hour course at RC, was designed around the

concept of algebraic and transcendental functions.  The functions studied in the course

included polynomial, rational, exponential, and logarithmic functions.  The final topic of

the semester in college algebra was logarithmic functions.  Approximately 5 hours of

instruction were spent on this concept.

Participant Selection

The participants for the study were students enrolled in college algebra at RC.

All fulltime tenure track instructors teaching college algebra at RC during the fall, 2000

term were contacted and asked to volunteer to be observed while teaching the logarithmic

function.  To reduce the number of classroom visitations that I made, only three

volunteers were selected. Selection was based on time and day that each instructor was

teaching and the date that the presentation of the logarithmic function was to begin.

Those who planned to start teaching the logarithmic function before my arrival at the

research site were not considered for the study.  No afternoon or evening classes were

selected in an attempt to observe classes with primarily traditional aged students.
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To solicit participants, I visited each of the three instructor’s classes and gave a

short 5-minute presentation about the study.  I explained what participants would be

asked to do and how they might benefit from participation.  I then distributed forms (see

Appendix C) with the same information.  At the end of class, the instructors asked the

students to submit the forms as they left class.  A total of 29 students volunteered to

participate in the study.  Every attempt was made contact all volunteers by phone and by

e-mail for an initial meeting.

During the 5- to 10-minute initial meeting, the volunteers were asked questions to

gather background information.   I asked how and why they chose RC and how they

might rate themselves as a mathematics student.  In addition, volunteers were asked

whether they had ever sought help in mathematics and whether they would feel

comfortable being observed as they worked on mathematics problems.  At the conclusion

of the initial meeting, each volunteer was asked whether he or she was still interested in

participating in the study.

Six students, two from each instructor’s class, were selected to participate in the

study. The selection of was based on three criteria: my impression of the student’s

comfort level with me and willingness to respond to questions, my impression of

student’s willingness to seek help with mathematics if and when difficulty was

encountered, and the student’s reported mathematical ability. I chose the first two criteria

in an attempt to maximize responsiveness during the interviews.  The third criterion was

used in an attempt to select students whose goal it was to pass the course.

Each of the participants was paid $150 for his or her participation in the study.

The monetary award was a strong motivator for at least three of the participants, each of

whom noted that he or she might not have volunteered if compensation had not been

offered. I chose to compensate the students for two reasons.  First, the participants were

committing a substantial amount of time to the study.  Each interview was scheduled to

last between 60 and 90 minutes, and nine to twelve interviews were conducted.  Hence

the money was offered as partial compensation for the participant’s time.  Second,
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because of the small size of the sample, I needed to retain all of the selected participants

for the duration of the study.  The cash award provided incentive for the students to

complete all of the interviews.

One of the instructors (Teacher 2) began presenting the logarithmic function the

day I attended his class to solicit participants for the study.  It was his practice to

introduce concepts slowly over a number of days.  Although his focus during the first few

days was not the logarithmic function, several of the activities he used were meant to

stimulate students’ thinking about the function.  I was only able to select the participants

from Teacher 2’s class after he had presented some concepts associated with the

logarithmic function.  Hence, although I had selected two students from each of the three

classes to participate in the study, the data collected from the students in Teacher 2’s

class were not analyzed.

Data Collection Phases

The procedure for the study was broken into three phases: preinstructional,

instructional, and postinstructional.  During each phase, evidence of the student’s

understanding of the logarithmic function was collected.  This evidence was used to

develop conjectures about the student’s beliefs about the logarithmic function during each

of the phases.  My decision to gather data in these three phases was based in part on

Brownell’s (1972) comments regarding researcher’s claims of learning.  In particular,

Brownell noted that learning claims should only be made if some time between

instruction and testing was built into the study.  Naturally, when students are tested

immediately following instruction, they often demonstrate increased computational

proficiency on the concepts presented.  A better measure of what a student understands is

what he or she knows after some time has elapsed.  Hence in this study, data on the

students’ understanding were gathered 6 weeks after instruction was completed. Another

reason I collected data during the three phases of the study was to gather evidence of

changes in the student’s understanding.
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Preinstructional Phase

The preinstructional phase was conducted during the second week of November,

prior to classroom instruction on the logarithmic function. In these classes I took notes

from the board and observed the general structure of the class.  In particular, I looked for

general procedures used by the instructors and how each of the participants responded to

those procedures.

During this phase Interviews 1 and 2 were scheduled and completed.  Both

interviews for each participant were 60- to 90-minutes long and the two were completed

within a five-day period.  The interviews were conducted in a large office in an academic

building on the RC campus.  The office was comfortable and contained a large office

desk with a pull-out surface on which the students could work.  For each interview, the

student was positioned to my left with the pull-out work surface between us.  I used a

boundary microphone and a standard cassette recorder to tape the interviews.  I chose a

boundary microphone because it was less conspicuous and it picked up even very soft

speech. During the pilot study only the cassette recorder was used.  When students

became confused, they spoke softly and the recorder did not pick up their comments.

Instructional Phase

The instructional phase of the study was concurrent with instruction on the

logarithmic function.  This phase consisted of classroom observations and student

interviews.  During the observations, I developed a set of class notes and recorded

various actions of the participants.  My field notes were recorded on 8.5-by-11 paper, in

two columns. The left column contained the board notes and relevant comments made by

the instructor; the right column contained observations regarding student behavior during

class (e.g. student responds to instructor’s question).

Within 24 hours of any class meeting during which the logarithmic function was

discussed each participant was required to complete Interview 3.  This interview lasted

between 15 and 30 minutes.  In several cases students could not recall exactly what they

understood or not understood during class.  In these cases I provided my class notes to
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help stimulate recall.  For two of the participants this interview was repeated three times.

If the student allowed me to interview him or she more than once during the instructional

phase, the mapping activity was only conducted during the first iteration of the interview.

Postinstructional Phase

The postinstructional phase of the study took place during the last 3 weeks of

January 2001.  By this time each of the participants had completed college algebra.

During this phase, Interviews 4 - 9 were conducted.  Although Interview 5 was to last no

more than 90 minutes, two of the participants worked on the activity for approximately

100 minutes.  This amount of time proved to be too much for both the participants and

me, and hence I enforced a strict 90-minute time limit on the remainder of the interviews.

General Procedures

During the study I kept an electronic journal on each of the participants in the

study.  Following each interaction with or observation of a participant, I made notes in

the journal.  After class I recorded my general impressions of the class, the student’s

behavior in class, and any interpretations I had regarding that behavior.  Following each

interview, I recorded in the journal comments the student had made either before or after

the interview regarding personal activities, goals, and attitudes.  In addition, I made notes

regarding my impressions of the student’s activity and major questions I had about the

student’s behavior during the activities.  I used these notes as data in the development of

student profiles and in the preliminary stage of data analysis.

Each day I had lunch in the instructor’s lounge.  During this time I was able to

hear conversations between two of the instructors (Teachers 1 and 3) whose classes I

observed.  These comments provided me with additional information about the

curriculum and philosophy the two used to teach the logarithmic function.

Data Analysis

Transcription.  I personally transcribed each interview and added comments

regarding the student’s actions based on my interview notes.  This process was extremely

valuable, since it allowed me to get to know the student’s intonations and ways of
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speaking. I finished the transcription before proceeding with the development of case

summaries.  A three-ring binder for each student containing the transcripts, task sheets,

maps, drawings, any scratch work produced by the student, along with a hard copy of my

journals for the student became the case books for the study.

Case notes and summaries.  I read and made notes on each interview, marking

what I felt were especially significant passages in the transcripts or images in the

drawings, maps, and task sheets.  I identified and described important categories from

each interview, which I called case notes.  I then summarized the events of each

interview and elaborated on the categories I identified in the case notes.  I called these

summaries case summaries.

Coding and identification of evidence.  After an interview was summarized, I then

coded it using the following coding scheme developed from the framework described in

chapter 1 and from the case summaries.  I also asked the writing group of mathematics

education students at UGA to code one interview.  Based on our discussion, the codes

were revised to include categories of representations used by the students.

1. Conception: Student explicitly communicates feelings or ideas about the logarithmic

function.

2. Representation: Student uses written or oral symbols to think about or communicate

about the logarithmic function.

a. Written:  Student uses written notations and words to communicate or investigate

a problem.

i) Name:  Student uses a written name for an action or procedure.

ii) Notation:  Student uses written notation for an action or procedure.

iii) Maxim:  Student uses a written phrase for an action or procedure

iv) Description:  Student writes a description for an action or procedure.

b. Oral:  Student uses words to communicate about the logarithmic function.

i) Name:  Student uses a name for an action or procedure.

ii) Notation:  Student uses notation for an action or procedure.
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iii) Maxim:  Student uses a phrase for an action or procedure.

iv) Description:  Student gives description for an action or procedure.

c. Pictorial:  Student uses a picture or a graph to communicate or investigate a

problem.

d. Tabular:  Student uses a table to communicate or investigate a problem.

3. Connection:  Student translates or transforms a representation.

4. Applications:  Student uses the logarithmic function to solve a problem.

5. Ways of Knowing: Student uses a procedure to solve a problem he or she does not

recognize as a representation of the logarithmic function.

Summarizing evidence.  After the data were coded, the evidence of understanding

for each of the interviews and then for each phase of the student was summarized on a

single 8.5-by-11 sheet of paper.  The summary sheet was divided into four quadrants

labeled “conceptions,” “representations,” “connections,” and “applications.”  At the

bottom of the summary sheet for Interviews 5, 6, and 7, evidence of ways of knowing

was recorded.  Sources (transcripts, maps, drawings, participant observation notes, or

impressions), locations (line numbers in the transcript), and evidence were recorded on

the summary sheets. These summaries were then used to characterize the student’s beliefs

about the logarithmic function for each phase of the study.

Student’s beliefs.  Using the summaries of evidence from each phase of the study,

I noted ideas that were used in more than one way by the student.  For example a student

who used an oral and written representation for the sum of logarithms might have a belief

about this property of the function.  I conjectured possible beliefs and then searched the

case summaries for evidence supporting and contradicting my conjectures. Modifications

were made to the conjectured beliefs when they did not fit the evidence. In the proposed

beliefs I attempted to preserve some of the student’s way of communicating.

Themes.  I used the student’s beliefs to make generalizations about their

understanding.  In particular, I put each belief from each phase and participant on a piece

of paper and grouped the papers into categories.  Some beliefs fit into two categories.  I
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then generated written descriptions of the beliefs students used during each phase.  These

descriptions helped me identify themes in the beliefs.  For example, during the

preinstructional phase, students speculated about the logarithmic function.  When I

described what the students speculated about, I was able to see themes in the beliefs.  I

then coded the beliefs with the four themes.   
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CHAPTER 4: CASE STUDIES

This chapter consists of four case studies of students in two of the classes I

observed.  Each case begins with a description of the student, his or her view of

mathematics, and his or her view of understanding.  A summary of the evidence of

understanding in terms of the student's conceptions, representations, connections, and

applications of the logarithmic function and its properties for each phase of the study is

presented.  These summaries serve as the background for the beliefs that constitute the

student's understanding of the logarithmic function for each phase. A discussion of the

student's changes in understanding is presented.  To close each case, I argue that one or

several of the ways of knowing used by the student during the postinstructional phase

could be used as the basis for further growth of understanding of the logarithmic

function.

Jamie

Getting to Know Jamie

Jamie was 18 and a first-year student at RC. She commuted to school from a

small town about 30 miles west of the college.  I was quickly impressed with Jamie

because of her interest in mathematics.  She was very enthusiastic about the subject and

planned to become a middle school mathematics teacher.  She was so interested that since

her high school graduation, she had observed one of her high school mathematics

teachers to investigate the possibility of becoming a secondary school mathematics

teacher.  One visit was enough to convince her that she did not want to teach secondary

school mathematics.  Jamie’s positive experiences tutoring her sister, a seventh grader,

convinced her that she would prefer teaching middle school students.

Jamie was a very busy young woman, working 37 - 40 hours a week as a server at

a regional restaurant chain while also taking 12 semester hours at RC.  Occasionally her
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home and school environments as well as her workload were sources of stress for her.  I

asked Jamie to tell me more about being stressed out.  She said,“I had so much to do and

so little time to do it in.  And I was trying to work and trying to do my algebra and I had a

test and…it was stressful.  Very, very stressful.” School was not Jamie's only source of

stress.  She also spent time defending her decisions to her colleagues at work and

debating them with her mother.  Some of the women that she worked with took pleasure

in reminding Jamie that she was a server and would likely be one for the rest of her life.

Her mother, on the other hand, had high expectations for her daughter.  She wanted Jamie

to do well in school and to graduate.  The hopes that Jamie’s mother had for her, while

helpful at times, caused conflict when they were manifested in advice.  Jamie resented

her mother’s advice and felt that since her mother had never attended college, she did not

understand the stress involved.  Hence, any advice that Jamie’s mother gave was

unwelcome. This tension caused conflict between the two during the spring 2001

semester.  Jamie realized that she would not be able to take 12 hours of course work and

work full time.  Since the money she earned was used to pay for her car and gas to

commute to school, the job was necessary.  In order to maintain a B average and to

achieve her long-range goal of becoming a mathematics teacher, Jamie felt that she had

to drop a class.  Her mother did not agree.  The two argued about Jamie’s decision, but

ultimately Jamie did drop a class.

Jamie loved the freedom that professors at RC allowed. Speaking of her first

month in college, Jamie said, “It made me feel like more of an adult.” She noted that

teachers at RC differed from those she had in high school because “they don’t go behind

you every step of the way to make sure you are doing everything that you’re suppose to

do as in high school they did.” This new autonomy suited Jamie, since she did not need

anyone to check up on her.

Jamie As a Mathematics Student

During Interview 2, Jamie described herself as a mathematics student:  “Focused.

I like to explore new things.  Learn new things. …  And I like to be organized.  I have to
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have everything really, really organized.”  Being focused and organized were necessary

characteristics for Jamie.  Her hectic schedule did not allow time to think too long about

the concepts that were presented to her.  Instead, if she simply copied the examples from

the board and reviewed them later, she was usually able to figure out how to do the

homework problems:

The thing that helps me learn most, like whenever she (Teacher 1) puts the

examples on the board, if I copy those down I pretty much, I can look

back.  She gives really, really good examples, and she writes everything,

all the steps and stuff on the board. So that helps me out a lot whenever I

write them down, because I can go back to them whenever I’m doing my

homework.

When Jamie could not figure out how to do a particular type of problem, she sought help

from multiple sources: Teacher 1, a friend that sat next to her in class, the textbook, and

the academic assistance center (AAC), a free on-campus tutoring center.  Having a friend

who was willing to help was nice, but not essential for Jamie:

S:  So you meet to study for the test.  Okay ...would you say that she is

very helpful to you?

J:  She helps me out a lot because there's some stuff that I understand and

there’s some stuff that she understands that I don’t understand, so we kind

of counteract each other.

S:  Do you think it’s really important for you to discuss it with her to get a

good understanding.

J:  It is not so much that it’s important.  It helps a lot.  I mean, if I didn’t

have her to study with, I could go to the AAC.  But it’s a lot easier

whenever you know somebody that’s in your class and you know where

they live and if you need them.  You know they will be there.

Jamie’s friend was accessible and available 24 hours a day.  In addition, Jamie’s friend

knew what had been presented in class.  That knowledge made her the best out-of-class
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source of help.  Jamie did not hesitate to ask for help when she could not do a problem.

Once, during the preinstructional phase of the study, she even came by and asked me for

help on a graphing problem from the class handout.

 Since she wanted to become a mathematics teacher Jamie was very interested in

doing well in her mathematics classes.  During Interview 2, she explained her goal in her

mathematics classes:

To do my best to make the best grades that I can which is not very good

sometimes.  To try to understand exactly what she is talking about and not

just kind of have the fuzzy idea.  To understand exactly what she’s talking

about, and if I don’t understand, and then I will just go to her later and talk

about it.

If she could not do the problems that were presented in class after trying them on her own

Jamie sought help.  She described going in for help twice when she was trying to learn

how to find "holes" in rational functions.  Jamie did not like feeling that she could not do

a problem.

I was scared that it was going to be like a major part of the test.  And I

didn’t know how to do it.  And I was like, oh gosh, this isn’t going to help

me at all.  But since it was just a bonus, and I saw that it kind of helped me

a little.  I mean I understood the concept, like on the test I got it right, but I

missed one part of it.  Because you had to explain some stuff, and I missed

one part of it, but other than that I got it all.

Jamie wanted to do well on the test and was happy that "holes" were not a major part of

it.  She only missed a problem that asked for an explanation.  She knew how to do the

"hole" problems.

Jamie sat on the right side of the classroom, three chairs from the front.  She

stayed busy during class taking notes on the handout, doing problems, or using her

calculator. Jamie did not like to miss class.  She felt that the material was cumulative and

that she would have a difficult time catching up if she missed class. While I observed the
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class, she missed one day because her mother was having outpatient surgery and she

wanted to be with her.  According to Jamie, missing class was “not fun.” During

interview 2 she elaborated:

It’s not fun.  Especially if you have ... missed a couple days or if you were

sick. You just don’t know what is going on.  That’s awful.  In algebra I’ve

only missed like 3 days, because I try to be there as much as I can, because

if you miss a day then you are totally thrown off.  Because in her… and if

I do miss class… stuff that she does the next day is based on the day

before.

If Jamie did miss a class, it simply meant she would have more work to do, thereby

complicating her already hectic schedule.

In class Jamie followed along on the handout and even got ahead of the teacher if

she knew how to do the problems.  She asked questions if she needed clarification on a

problem.  Although she felt that doing homework was important and helped her

“understand” more about the concepts, Jamie did not always do all the homework.  She

worked on assignments regularly, but in her notebook her assignments were not

complete. 

Jamie earned a B in college algebra.  She explained that although the course had

not been particularly difficult, she had earned a B in part because of her hectic schedule.

Jamie was satisfied with her grade but had wanted to do better.

Understanding Mathematical Concepts

When I asked Jamie to define the term understanding she described it as a feeling.

Feeling...knowing what is going on.  Feeling sure.  Feeling sure that you

are familiar with the concepts.  And it’s not being fuzzy or that you don’t

know what is going, but that you are...that you’re...I don’t know, I can’t

think of a word to use.  I guess comfortable with it.

Feeling comfortable with a concept was not the only way that Jamie evaluated her own

understanding.  In practice, Jamie said she understood a mathematical concept if she



63

could do the problems associated with the concept.  Jamie’s view of understanding was

depicted in her comments about her actions when she did not understand a mathematical

concept.

J: If I don’t understand it, then...I know that either I’m going to have to go

to the AAC or I’m going to have to try to work.... Working more problems

helps, like more of the same kind of problem that I don’t understand.  And

those answers in the back of the book help too because... if you get the

right answer, then you will know it immediately, if you work the odds.  It

is just the more that you do it, the more that you understand.  Like if you

start out with not understanding it, and you work more and more

problems, you will get it eventually.  It might take a while, but you’ll get it

eventually.

S:  Right.  Does it create some kind of meaning, or do you just learn how

to do the process?

J:  Learn how to do the process.  Once you get the hang of how to do it

then any problem, pretty much that she puts down there, you can do it if

you understand like the process of how to do it.

Jamie wanted to feel comfortable, but the feeling was associated with being able to do the

problems.  Understanding a mathematical concept for Jamie meant she felt comfortable

because she could do the procedures associated with the concept.

Jamie’s Understanding of the Logarithmic Function: Preinstructional Phase

Evidence of Understanding

Three categories of evidence were collected during the preinstructional phase of

the study: conception, representation, and connections. There was no evidence of

application of the concept because Jamie did not recall ever having seen the function

before.
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Conception.  Jamie’s first remark about the logarithmic function was “I don’t

know that we did it.”  She did not remember “doing” the logarithmic function in high

school, and explained that her class had not gotten very far in the textbook.

Our teacher was really, really detailed so we didn’t get very far.  We did

like a lot a lot of stuff.  We didn’t get very far in the book.  I think that

might have been in the back, because I don’t think we did it.

Not recalling any instruction on the logarithmic function made the skills assessment

difficult for Jamie.  When we discussed Jamie’s feelings about not understanding she

focused on the notation ln3:  “If I knew what L-O-G (she spelled out log) three was, I

might could do them.”  Jamie felt if she knew what the notation meant, then she would

have been able to do the problems.  This thinking was consistent with her drawing and

explanation of her process of understanding (see Figure 6). Jamie explained her drawing:

Figure 6.  Jamie's drawing of her process of understanding.

At first, she gives you the formula y = mx + b, and you’re like, that doesn’t

really relate to numbers.  And then she gives you numbers, and you have

to plug them in and work the problem out.  Like at first whenever she

gives you the formula with no numbers, you don’t know how to work it.
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But then whenever she gives you some numbers to fill in, it’s a lot easier

to understand because you can relate the numbers to the letters.

The method that she explained is the same one she used on the skills assessment.  She

saw the notation for the logarithm as a formula and tried to figure out what numbers

should be plugged into it.  Jamie’s conception of the logarithmic function was that it was

an interesting formula.  Interesting because “it looks cool,” and “ I’m ready to learn how

to do those things.” Jamie wanted to learn how to “do” the logarithmic function by

learning how to use the formula.

Representation. In the preinstructional phase of the study, Jamie used notations

and names that she read on the skills assessment to represent the logarithmic function.

Her first map of the logarithmic function gives an indication of the influence that the

skills assessment had on her understanding during this phase (see Figure 7). Jamie’s

notation

Figure 7.  Jamie’s map of the logarithmic function from Interview 1.

log(?) was a generalization of notation used in the skills assessment.  Her use of the

question mark as a variable was consistent with other notations she used during the study.

In solving problems or doing tasks, Jamie used “?” as an unknown or variable. So,

although she included the question “What does it mean?” on her map, Jamie was not
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literally searching for meaning.  She simply wanted to know how to use formula to do the

problems.

As with the notations, the names Jamie used were all taken from the skills

assessment. Logarithms, graphs, and table of values were depicted on her map as

associated with problems she could not do.

Connection.  Jamie was sure she had never seen the logarithmic function before

Interview 1, so the connections she made during the preinstructional phase of the study

were the result of her experience with the skills assessment.  These connections are

depicted on Jamie’s map of the logarithmic function (Figure 7).  Jamie linked all three:

the notation ln3, graphs, and tables.  Based on her experience with the skills assessment,

Jamie hypothesized that there were links between the notation she saw, tables, and

graphs.  During the instructional phase, Jamie quickly abandoned this hypothesis.

Beliefs

Jamie saw the logarithmic function as a formula that she needed to learn how to

use.  She was interested in learning how to do the problems presented on the skills

assessment.  In particular she wondered what the notation stood for in terms of numbers

and how it might help her graph the function and create a table of values.  Thus the

following beliefs represent Jamie’s preinstructional understanding of the logarithmic

function:

1. The logarithmic function is associated with the notation log(?) , which might represent

a number.

2. The logarithmic function is interesting, and I would like to know how to do the

problems.

3. If I could figure out how to use the notation log(?) , I could do the problems.

4. The logarithmic function is related to at least two types of problems: creating a table

of values and drawing graphs.
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Jamie’s Understanding of the Logarithmic Function: Instructional Phase

The presentation of the concept of the logarithmic function in Teacher 1’s class

consisted of a series of handouts that the students filled in during the lecture.  The title of

the handouts always included a section number from the book.  For example, the handout

distributed on November 29th was titled 4.3 Logarithmic Functions.  4.3 was the number

of the section from the text that introduced the logarithmic function.  Problem 1 on the

handout was stated as follows:

Graph y = 2x and its inverse. Graph y = (0.5)x and its inverse.

Space was left beneath the problems to allow the students to copy Teacher 1’s procedure

as she worked the problems on the board. During each class, time was set aside for

student questions and practice.  Teacher 1 circulated during student practice, helping

individual students with the problems on the handout.

Jamie particularly liked this method of instruction.  She could go at her own pace,

which was a bit faster than the pace of the class. She explained how she worked in class.

S:  So when she is saying stuff and you see where it’s going, you

sometimes do things on your calculator...

J:  Yes ma’am but one thing I’m bad about is like...whenever we are doing

the handout that she gave us today on the back.  I went ahead and worked

all the problems before she did.

S:  Well, I don’t think that’s a bad thing.

J:  Like whenever she explains the first one...I’m bad about that.  I’ve

always done that.  If I understand something I’m going to go ahead and

work them all.  I know she was thinking, “Jamie is not doing anything,”

but I had already done them.

When Jamie knew how to do a problem on the handout (“If I understand something”) she

“worked” all the problems similar to it.
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Evidence of Understanding

Conception.  Jamie’s conception of the logarithmic function during the

instructional phase consisted of two elements: interest and connection with exponents.

Before I started taping Interview 3, Jamie came in very excited, saying that she had

enjoyed class. “I don’t understand where I’m going to apply it (the logarithmic function)

but it was interesting.” Her excitement and interest in the logarithmic function was based

on her feeling that she knew how to “do” the logarithm notation.  In particular, she knew

how to calculate logarithmic expressions using her calculator and how to convert

expressions from exponential form to logarithmic form.

Jamie associated her knowledge of exponents with the logarithmic function.

“Yesterday we learned about how to convert ... from exponents to logs.  And exponents

are something that I kind of knew about, so that kind of helped me convert them to logs.”

The origin of this association was instruction.  Teacher 1 motivated the connection by

asking the students to explore 2x = 10 and then introducing the logarithm as an exponent.

Jamie used her calculator and a trial-and-error method to quickly approximate the

solution.  Hence Jamie associated her knowledge of exponents with the logarithmic

function.

Representation.  Jamie worked in two representational modes during this phase of

the study: oral and written.  Her use of oral representations of the logarithmic function

and its properties consisted of naming procedures and notations.  The four primary names

she used were converting, exponents, logs, and properties. Teacher 1 had used each of

these terms in class during her presentation of the logarithmic function.  Terms such as

base were not defined.  Sample problems were presented, and the terminology was used

in the demonstration of solutions to the problems (see Figure 8). It was up to the students

to

Log form                         Exponential form

log2 32 = 5                       ______________

Figure 8.  Example of converting problem from a class handout.
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define the terms.  For Jamie the term converting became a procedure one used to change

an exponential expression to a logarithmic one.

Jamie used the term properties to refer to the following mathematical notations:

loga MN = loga M + loga N and loga M
p = p loga M.  She noted during Interview 3 that she

had not understood the properties. During class, Jamie was confused about a question that

involved expanding an expression (see Figure 9 for the problem and the directions given

in the text). Jamie asked: “Are you suppose to work it out?” Teacher 1 responded to

Jamie’s

Express in terms of sums and differences of logarithms

loga 6xy5z4

Figure 9. Jamie’s homework problem.

question by doing the problem on the board.  Her answer was loga 6 + loga x + 5 loga y +

4 loga z.  After the teacher finished, Jamie asked: “So if it says write as a sum, you don’t

work it out?  Just go that one step?  I worked it out and found a number.” Jamie thought

the properties of the logarithmic function were used to find numeric answers.  This

thinking is consistent with her view that to understand mathematics, one learns how to

plug numbers into formulas.  Hence the properties in notational form, loga MN = loga M +

loga N and loga M
p = p loga M, were formulas she had difficulty using.

The written representations that Jamie used corresponded to the names and

notations that she had seen in class and used during Interview 3.  Her map (see Figure 10)

of the logarithmic function during this best illustrates Jamie’s use of written
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Figure 10.  Jamie’s map of the logarithmic function in the instructional phase.

representations. “Logarithmic function” on Jamie’s map is linked to the categories of

exponents, convert, log, properties of logs, and the natural logarithmic function. (The

category labeled equations has a question mark below it because Jamie had not studied

equations in class yet.) Below the word exponents, an example of an exponential

expression and its conversion to logarithmic form are given. The notation and examples

Jamie used on her map were presented in class that day. Jamie’s use of names and

notations in our interview and on her map illustrates how she understood the logarithmic

function.  The names and notations were related to problems that she needed to know

how to do.

Connection.  During the instructional phase of the study Jamie made connections

between written representations of the logarithmic function.  She connected names,

notations, and procedures.  The term convert is a good example of this practice.  On

Jamie’s map of the logarithmic function, she linked exponents and log with the name

convert. This name represented a procedure that she illustrated notationaly with an

example.

Jamie also connected names and notations for which she did not yet have

procedures.  On her map Jamie included a category: properties of logs.  This name was
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connected to two notations:  loga MN = loga M + loga N and loga M
p = p loga M linked to a

question mark.  Jamie realized that these notations were important, but she did not have a

procedure for them yet. Teacher 1 had talked about them in class, but Jamie could not use

the properties.

Jamie’s connected names and notations with problems and the procedures used to

solve them.  When she could not associate the names and notations with problems, she

“did not understand” them.

Application.  I defined application as the use of the logarithmic function or its

properties during problem solving. During the study the logarithm key on the calculator

was referred to and used by the students as a resource to generate information about the

logarithmic function and to compute logarithms.  For example, Jamie used the calculator

to determine that zero was not an element in the domain of the logarithmic function.  She

entered log 0, and when an error message was returned, she assumed that zero was not an

element of the domain. Whether or not students used the calculator to generate

information or calculate logarithms, how they used calculator to help them solve

problems was part of their knowledge of the logarithmic function.

The TI-83 graphing calculator is standard equipment for all students taking

mathematics classes at RC.  The demonstration and use of the calculator during

instruction via an overhead projection panel was a daily occurrence in all of the classes I

observed.  The logarithmic function unit was no exception.  Teacher 1 encouraged the

students to use their calculators to evaluate logarithmic expressions.  In fact, the handouts

used in class had a section entitled “Evaluating Logarithmic Function on a Calculator.”

Throughout her presentations, Teacher 1 referred to the calculator.  For example, while

she demonstrated how to “evaluate logarithms on a calculators” she remarked, “You can

do some of these without a calculator, but in the interest of time we are going to do them

all with our calculator.” She showed the students how to rewrite log2 10 using the change

of base formula so that they could “find” the logarithm with their calculators.  At the end
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of class, Teacher 1 said, “Make sure you know how to use your calculator just like we

were doing today.”

In part as a result of this type of instruction, Jamie came to see the natural

logarithm and logarithm keys on her calculator as useful tools for finding the logarithm of

a number.  She used her calculator in each class.  When she entered class she took out her

notebook and calculator and laid them on her desk. She used the calculator to explore and

check answers she or the teacher got during class. Jamie applied the logarithmic function

when she used the logarithm key on her calculator.

Beliefs

During instruction, Jamie’s beliefs about the logarithmic function shifted.  She

still found the function interesting but was now focused on becoming proficient with

terms, notations, and procedures associated with the logarithmic function.  This practice

was consistent with Jamie’s desire to do well on the tests. She believed that the

logarithmic function was like any other mathematical concept.  If she could learn how to

associate problem types with names, the notation used to solve the problem, and the

procedure for doing the problem, Jamie felt she would do well on the test. Jamie’s beliefs

about the logarithmic function are related to this general belief:

1. Exponents are related to logarithmss.

2. The terms log, exponents, convert, and properties are important to know if you want

to be able to solve problems.

3. The properties loga MN = loga M + loga N and loga M
p = p loga M are important to

memorize for the test.

4. Converting is used to change an exponential expression to a logarithmic one.

5. To evaluate log2 10, use the change of base formula 

€ 

log10

log2
 and your calculator.

6.   Use your calculator to evaluate logarithms.
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Jamie’s Understanding of the Logarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception.  Jamie’s conception of the logarithmic function during the

postinstructional phase was that the function was hard. Her rationale for this assertion

was that the logarithm is a word not a number.  According to Jamie, that made it hard to

remember. She also explained that after her second attempt at the skills assessment, she

knew much less about the logarithmic function than she had known during the

instructional phase.  When I asked her how she felt about the skills assessment activity,

she replied, “ I felt bad since I thought I knew a lot about logarithms.”  Because she was

not able to answer most of the problems, she did not feel she understood logarithms. The

best illustration of Jamie’s evaluation of her understanding during the postinstructional

phase of the study is her drawing of her process of understanding. During Interview 9, I

asked her to visualize her process of understanding the logarithmic function and to draw a

diagram or picture of that process (see Figure 11). Jamie depicted her understanding as a

series of hills, each one
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Figure 11.  Jamie’s drawing of her process of understanding.

corresponding to an interview. The height of each hill represented how much Jamie felt

she understood about the logarithmic function at that time. The hill drawn above the

heading “Interview 3” is the tallest, whereas there is no hill drawn for Interview 4. Jamie

labeled this interview “fuzzy.” Jamie defined the term fuzzy as “not understanding what is

going on.  You know kind of what to do, but not really how to do it.  And you know

kinda how to do the problem, but you are not getting the right answer.  Just kind of

uneasy I guess.” She used the term when she did not know exactly how to do the task or

problems she was asked to do. Her use of this label on her drawing during Interview 4
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indicates that she felt she did not understand the logarithmic function.  During Interview

7, Jamie once again called the logarithmic function hard.  She noted that doing the task

made her head hurt.  Because Jamie was not able to complete skills assessment or the

tables in Interview 7, she referred to the logarithmic function as hard.

During Interview 5, Jamie introduced a rationale for her difficulty with the

logarithmic function during the postinstructional phase that explained her conception of

the logarithmic function as hard:

J:  I thought about this interview during English.  Why, I don’t know.  But

I think the reason that we don’t understand logarithms after such a short

time is because there are words associated with it, and with math you think

totally about numbers.  And the word and number association just doesn’t

stay clear.  I don’t know why I thought of that, but I did.

S: That would make sense with some of the other comments that the

participants are making actually.

J: I think that word log is just,...I think if it was like a certain number it

would help.

Jamie’s theory that the logarithmic function was a word and should be related to numbers

is reminiscent of her preinstructional understanding of notation 
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log3  as a number. Jamie

commented in Interviews 8 and 9 about the difficulty she was having remembering that

the logarithmic function was based on its representation as a word.  During Interview 9,

when I asked Jamie to define understanding logarithms, she noted:

I understand like more, uhm, by the activities (in Interviews 5 and 6) we

did, because they were dealing with it (the logarithmic function), but they

didn’t have that word (logarithms) in there.  That word just,...I think that’s

what throws everybody off.  Because it is not numbers.  It is just words.

Jamie’s conception of the logarithmic function was as a confusing word that made

problems harder to solve. So the first component of Jamie’s conception of the logarithmic
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function during the postinstructional phase was that the function was hard because it is a

word and not a number.

Jamie felt that she was more successful with tasks during the postinstructional

phase that did not involve the word logarithm. During Interviews 5 and 6, Jamie

represented the problems using exponents, but she was not aware that either of the tasks

was related to the logarithmic function.  When I asked her to make a map of the

logarithmic function during Interview 8, she asked about including the interview tasks on

her map:  “What we did in this study was what I was thinking about.  It didn’t have to do

with it (the logarithmic function) I don’t think.  Those exercise (tasks) we did didn’t.  Did

they?” When I told Jamie that all of the postinstructional interview tasks were related to

the logarithmic function, she included the tasks in her map of the logarithmic function

and reasoned that she understood the logarithmic function better when the word was not

used in the problem.

Jamie’s conception of the logarithmic function as hard was a change from her

conception during the instructional phase that it was easy.  As we have seen, this change

in conception was due to Jamie’s inability to perform the interview tasks.  Her conception

of the logarithm as a word appears to be connected to her view of the logarithmic

function during the preinstructional phase as a notation that “might be a number.”

During instruction, Jamie never indicated that logarithm being a word made it a harder

concept.  This postinstructional conception is a reappearance of her preinstructional

conception of the logarithmic function as letters that stand for a number.

Representation.  During the postinstructional phase, Jamie focused on three

modes of representation: oral, written, and pictorial. The oral representations that she

used were names. The written representations were names, notations, and descriptions.

She used the pictorial mode to explain and illustrate procedures.  The representations

Jamie used were often to answer questions that I asked.  She rarely used anything but

notation to do problems on her homework.
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Jamie’s oral representations in the form of names were trial and error and

convert.  Trial and error was Jamie’s name for any procedure that involved using the

calculator to investigate a mathematical question. Jamie used the term to explain how she

found exponents during Interviews 5, 6, and 7. During Interview 5 Jamie used the

procedure to find the sign above the product 64⋅ 256.

S: Okay, now how can you figure out the sign that is above that [64 ·

256]?

J: Trial and error is how I have been for 15 minutes.  Oh, I just totally lost

my number [64 · 256]. This takes forever.  This is frustrating.  I want to

figure it out.

S: You are doing great.

J: Two raised to the...(uses calculator to find the exponents). Ha! That

number was?  Where did it go?  Is that the same number?

Jamie evaluated 2 raised to various exponents on her calculator until she matched the

calculator display with the answer she was holding in her mind.  The match told her that

the exponent she used was the answer.  She also used the term trial and error to refer to

finding values that were not in the domain of the logarithmic function and for finding the

correct exponential expression for a given logarithmic one.  An example of the latter

occurred during Interview 8.  Jamie demonstrated the procedure for converting, the

second name she used.  She showed me how to transform log10 2 = .30 to 10.30 = 2.

S: Oh, okay, there is an exponential and a log, and you can go back and

forth.

J: Right.  You can convert it or whatever.

S: So how did you know to put the 10 there [as the base in the exponential

expression]?

J: You just have to remember that.  That is the formula, but you can use

a’s and b’s or something.  I don’t remember how the formula goes, but

this base number would be your number that you are raising to the power,
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and this would be the exponent [points to .30 in the logarithmic

expression] and that would be the answer [points to 2 in the logarithmic

expression].

S: Oh, okay, so you just have to remember where everything goes.

J: Right.  But, if you don’t remember where everything goes, you can kind

of work with it in your calculator to figure it out.

S: So you just what?  Try some stuff.

J: Right, you can try trial and error.  That always works really well.

Here Jamie used the term trial and error to refer to how one can figure out the

positions of the numbers in the exponential notation.  She did not remember the

positions and suggested that the calculator could be used.  For Jamie the two uses

of the calculator were similar, so she named them both trial and error.

The second name Jamie used was convert.  What Jamie meant by this term

was illustrated during the preceding interview excerpt.  The primary difference

between Jamie’s use of the term during the instructional phase of the study and

the postinstructional was that during the latter she used the term to refer to

conversions from an expression in logarithmic form to one in exponential form.

She did not convert expressions in exponential form (such as those in Interviews 5

and 6) to logarithmic form. She did not think the tasks had anything to do with the

logarithmic function.  She asked me whether they were related during Interview 9.

Seeing the signs above the number line as exponents was not associated with the

logarithmic function for Jamie.  She used the term convert to refer to transforming

expressions in logarithmic form to exponential form.

Jamie’s written representations included names, notations, and descriptions.

Convert was the name Jamie used most often.  The name occupied a central position in

both
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Figure 12.  Jamie’s map of the logarithmic function from interview 8.

maps that Jamie constructed during this phase (see Figure 12).  Jamie saw her convert

procedure as her most effective tool to do problems with logarithms in them.

Trial and error was not depicted on any of Jamie’s maps, but she did write the

term during Interview 5 when she summarized her actions (see Figure 13). For Jamie, the

Figure 13.  Jamie’s written representations of the data generated in Interview 5.

overarching theme for the task in Interview 5 was trial and error.  She used the procedure

to find the sign above the number 
1

2
 as well as the number 3.  In her diagram Jamie also

used another type of written representation: notation.  The notation she developed

contained her representative for an unknown, a question mark.  This self-generated
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notation stands in contrast to notations that she tried to remember.  During Interviews 4

and 8 Jamie tried to remember the rule for adding logarithms (see Figure 14). Jamie

referred to problems like

Figure 14.  Jamie’s map of the logarithmic function from Interview 4.

the one illustrated on this map as “easy,” because she had done so many of them during

the instructional phase that she thought she knew how to do them.  Jamie had no way of

checking her calculations, so she trusted her memory.  Both the notation illustrated and

the faulty rule were used often during this phase of the study.  During Interview 8, when I

asked Jamie what problems one might use the logarithmic function to solve, she again

presented 
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log3 4 + log3 5 = log3 9 .  Jamie also used the notation while demonstrating or

implementing her convert procedure.  During Interview 7, I wrote a notational

representation for one of the table entries. She used my written representation, log3 2 =

.631, as the basis for her solution path.  Using this representation, she applied the convert

and a trial-and-error procedure to find the combination of 3, 2, and .631 that resulted in a

true statement in exponential form. She then used the notation in Figure 15 to help her fill

in some of the cells in the second table completion task. Jamie was mimicking, with

modification, the

log34 = ?
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3? = 4.

Figure 15.  Representation Jamie used to fill in y values.

written notation that I gave her and combining it with the exponential form that she

generated.

The final type of written representation Jamie used was description.  As a rule,

descriptions were not a part of Jamie’s problem-solving process.  She used them during

Interviews 5 and 6 to describe the relationship between variables.  For example, during

Interview 5 Jamie described the relationship between the line numbers and the sign

numbers: “The relation between the number and the signs is 2 raised to the sign or # in

the box is the answer to the # on the number line.” Jamie’s description is a summary of

her procedure more than an illustration of a relationship.

Jamie used very few pictorial representations during her interviews.  As we have

seen, she summarized her trial-and-error procedure from Interview 5 with a picture of the

number line and arrows indicating the positions of numerical expressions she wrote.  In

addition, she provided the diagram in Figure 16 of her convert procedure when I asked

her to define logarithm. The arrow represents the procedure.  Her notation indicates that

she

exponential → logarithmic

       1010 = 1000       log10
10 = 1000

Figure 16. Jamie’s definition of logarithm during Interview 5.

knew there was a procedure involved but could not perform it.  Jamie also used pictures

when drawing bulletin boards during Interviews 5 and 6.  In each of her drawings, Jamie

represented the relationship between exponential expressions and the pictorial

representation by drawing arrows

During this phase of the study, I was able to see Jamie use all three types of

representations.  Her primary representational tool was written representation.  She

adopted notations used in class and developed her own in several of the interviews.

Those Jamie developed out of procedures were representational for her thinking, whereas
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those she adopted were difficult for her to remember.  When she felt compelled to use

standard notation, she often became confused just as she did when converting an

expression in exponential form to logarithmic form.  Her attempts to remember also

resulted in errors such as those that arose during her newly invented method of adding

logarithms.  Jamie’s representations illustrate that she understood the logarithmic

function as a collection of problems to be solved using procedures.

Connection.  The diagram in Figure 17 illustrates Jamie’s connections.  She

viewed the logarithmic function as a collection of procedures described with names and

notations.  The names signified procedures or objects.  The notations were used to

demonstrate how to do the procedures. Of particular importance were the procedures she

called convert and trial and error.  Jamie used connections between these procedures to

solve problems that involved the logarithmic function.

Figure 17.  Connections between Jamie’s representations and procedures.

In Figure 17, the ovals represent names Jamie used to communicate about or solve

problems involving the logarithmic function.  The rectangles represent generalizations of

the notation that Jamie used.  The bold rectangle illustrates Jamie’s use of the calculator

as an integral component of the trial-and-error procedures she used to solve problems.

The connections Jamie drew were between her names, notations, and procedures.
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Application.  Jamie’s knowledge of how to use the calculator was an integral

component in her attempts to solve problems.  She saw the logarithm key as an answer

key.  If she was able to put an expression in the correct form, she could use the calculator

to find the logarithm of a number. The centrality of the calculator to Jamie’s

understanding of the logarithmic function was illustrated during the table completion task

in Interview 7.  Jamie was given a TI-15 calculator instead of a TI-83.  Since the TI-15

does not have a logarithm key Jamie said that she did not know how to fill in the first

table:

J: I have no clue.

S: Well, can you use anything about logarithms to help you solve it?

J: I don’t have a key on here.

Jamie was aware that she could fill in the table easily if she had a TI-83 calculator.  This

was one of several incidents that illustrate Jamie’s understanding of the logarithmic

function as a collection of procedures.  During Interview 8, when I asked Jamie how x

and y were involved in the logarithmic function she said they were not:

S: So is there any other way to represent this function.  I mean, so far

everything you have written isn’t really a function, because my teacher

told me in a function you have x and y.

J: Uhm...I don’t think so.  Because you can do the natural log that’s just ln

[writes ln], but...and you get a number.  Like whenever you do like log of

five (on the calculator) is point six nine.

Jamie thought of the logarithmic function to something “you do,” with your calculator to

get a number. When Jamie saw or heard the term logarithmic function, she associated it

with a key on her TI-83 calculator.

Beliefs

Jamie used several beliefs during the postinstructional phase. First, she believed

she knew less about the logarithmic function than she had during instruction.  She

believed the notation used to represent the function, —a word and letters,— made it
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harder to remember.  Second, Jamie’s attempt to remember properties of the logarithmic

function from the instructional phase resulted in an application of the distributive law to

the sum of logarithms.  Third, Jamie was able to use her calculator and a procedure she

called convert to solve problems that used a representation of the logarithmic function.

1. The logarithmic function is hard, and I do not understand it now, because I cannot

always do the problems that use it.

2. Since the log is a word or letters, not a number, it is difficult to remember.

3. 

€ 

loga b + loga c = loga (b + c).

4. To solve

€ 

a x = b  use a calculator and trial and error.

5. To evaluate a logarithmic expressions in the form loga b = c, convert it to exponential

form.

6. The calculator is necessary tool for evaluating logarithms.

These beliefs represent a change from both the preinstructional and instructional phases

of the study.

Changes in Understanding

Jamie’s beliefs about the logarithmic function changed over the course of the

study.  During the preinstructional phase, Jamie was interested in learning how to do the

logarithmic function.  She focused on what the notation might mean.

During the instructional phase the function was still interesting to Jamie, but now

her goal was to pass the test.  To accomplish this goal, she attempted to adopt

terminology and notation used in her textbook and by Teacher 1 in class.  She also tried

to learn procedures that would be of use on the test.  In particular, Jamie noted the

importance of a procedure called convert that became the cornerstone of her problem-

solving activity.

 The postinstructional phase was a bit of a shock for Jamie.  She was unable to

remember what she had learned during the instructional phase to help her solve problems.

As a result she reconstructed rules that made sense to her, but were not correct (log 4 +

log 5 = log 9).  Not being able to do problems that mentioned the logarithmic function
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changed Jamie’s conception of the function from interesting to hard.  She was still able to

do problems in which the logarithmic function was not mentioned, using her collection of

trial- and-error procedures.  Various trial-and-error procedures were used, both in service

of the convert procedure she had learned during the instructional phase and to find

exponents in problems that she did not know involved the logarithmic function.  The

trial-and-error procedures all involved the intelligent use of a calculator as a tool.

The first important observation about Jamie’s changes in understanding is the role

that her memory played during the postinstructional phase.  Jamie’s attempts to

remember how to use the logarithmic function almost always resulted in either incorrect

answers or faulty reasoning.  The primary example of this was her memory of how to add

logarithms.  She used the property correctly during the instructional phase, but had not

understood why it worked. She simply mimicked the notation.  During the

postinstrucitonal phase, Jamie reconstructed (Bartlett, 1932) what she believed was a

correct rule for adding logarithms.  It made sense to her, but then she had no way of

checking her results because she did not know what a logarithm was.

A second important observation regarding changes in Jamie’s understanding is

her ability to use trial-and-error procedures to help her solve problems. Jamie’s

performance on problems involving logarithms improved when the function itself was

not mentioned.  Being aware that the logarithmic function was involved in a problem

limited her search for a solution path in both time and scope.  If a logarithmic function

was mentioned, Jamie associated it with keys on the calculator or the convert procedure.

She did not attempt to look beyond these two techniques for solution paths.  If she was

not able to solve the problem using either of these methods, she gave up.  Her attempts to

solve problems in which the logarithmic function was not mentioned began with the four

operations.  When these did not work, she tried an exponential expression. Since this

attempt worked, Jamie then developed a trial-and-error procedure with her calculator to

solve the problems.  This combination of mathematical knowledge and the use of a tool

made it possible for Jamie to solve problems.
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Despite Jamie’s initial enthusiasm about the logarithmic function, her realization

that she knew little about the function during the postinstructional phase led to

frustration. The only success that Jamie had during the postinstructional phase occurred

when she was unaware the problem involved the logarithmic function.

Ways of Knowing

Jamie’s work during Interviews 5 and 6 illustrates a procedure that could be used

to develop her understanding of the logarithmic function.  In particular, although Jamie

did not know how to find signs numbers during Interview 5, she quickly realized that

each of the number line numbers with a sign above it was a power of 2. When she

rewrote the number line number as a power of 2, Jamie realized that the sign number was

just the exponent in her expression. Despite the inefficiency of the trial-and-error

procedure she had used to find the number line numbers as powers of 2, the procedure

made sense to Jamie.  In addition, it resulted in correct solutions and was consistent with

standard mathematical thinking associated with the logarithmic function.

 Jamie’s way of knowing in Interview 5 could be used to develop her

understanding of the logarithmic function.  Although she knew what she was doing,

Jamie had great difficulty articulating her procedure. For understanding to grow,

connections between Jamie’s trial and error method and other representations of the

method needed to be developed.  In a teaching situation, I might have asked Jamie to

develop a table of values for her data and then graph her data.  Answering these questions

would help Jamie associate her actions with other representations.

Of further interest is Jamie’s avoidance of standard mathematical notation such as

the use of x as an unknown or as a variable. For growth of understanding of mathematical

concepts in general and the logarithmic function in particular, a connection between

Jamie’s representations of functional relationships and standard mathematical notation

should be developed.  In Interview 5, when Jamie tried to communicate her data, she

drew a picture and included the notation 2?.  Jamie’s use of notation indicates she was

aware notation conveys meaning to the reader.  She seemed unaware that standard
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mathematical notation could convey the same meaning with more precision.  If Jamie

was able to see her notation as imprecise, she would seek alternatives.  This search would

be the perfect opportunity for instruction.

Jamie’s use of representations and the calculator during Interviews 5, 6, and 7

provide the basis for growth of understanding. In particular, she noted the inefficiency of

her trial-and-error procedure for finding exponents during Interview 7.  This desire for a

more efficient tool could be the beginning of a search for one.

Rachel

Getting to Know Rachel

Rachel chose to attend RC because it was a two-year residential college with a

pre-veterinary medicine program.  After her arrival at RC, Rachel quickly decided to

change her major. She explained that the course work in the pre-veterinary program had

become too difficult for her and that she changed her major to family and consumer

sciences. While she was growing up, Rachel’s mother had owned and operated a family

day care center in her home.  Rachel had worked with children, —babysitting and in

summer camps—, during high school but had never thought of pursuing the work as a

career.  So when she decided to change her major, family and consumer science was a

natural choice.  Although she knew she wanted work with children, Rachel did not know

exactly what she wanted to do. She described her goals during Interview 2:

I really don’t know where I’m going with it.  I know that I’m working

with kids.  I know that I’m not going to be a teacher.  I’m iffy about

maybe running my own [child care] center.  I’m probably...you

know...maybe working with DFACS (Department of Family and

Consumer Services), something like that.  I want to help the kids that can’t

help themselves.  I don’t want to...not to say that teaching is bad, but your

hands are really tied as far as helping the child grow in ways other than

educationally.  And I am more interested in the personal child.
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This focus on the emotional needs of children was the result of both her home

environment and her school experiences.

School had always been difficult for Rachel.  She described it as “awful.”  In

elementary school in particular, Rachel explained, “I just wanted to crawl in my little

cubby hole and never come out.” She disliked school because of her relationships with

teachers and peers.  Rachel suffered from a neurological disorder that resulted in extreme

hand tremors.  By the time I met her, Rachel was taking medication that enabled her to

write clearly, something she had done with difficulty in elementary school.  In addition to

the tremors, Rachel had attention deficit hyperactive disorder (ADHD).  She was very

conscious of how her disability set her apart from her peers.  In elementary school, she

had been sent to a resource room teacher for several of her subjects.  She described her

experience during Interview 2:

I have a learning disability, and I remember the humiliation of having to

leave the classroom and go to a resource classroom for math and English

and reading.  I had to get up and leave, and it was just like public

humiliation to have to go and leave and go to another classroom to a

different teacher to get special attention.

Her school experiences had made Rachel very conscious of her classroom behavior.  She

rarely spoke in class and stayed very busy looking in the book, using her calculator, and

taking notes.  Rachel never spoke to anyone in class, other than the teacher, and admitted

to me that she did not try to get to know anyone in her classes.

Rachel was a 2-year-old sophomore at RC in the middle of her third year.  Two

events contributed to the length of Rachel’s stay at RC: changing her major and her

placement in developmental studies for mathematics.  It had taken Rachel three semesters

to exit developmental studies, the maximum time allowed by the state system. Following

her successful completion of the developmental studies program in the spring 2000,

Rachel had taken college algebra with Teacher 1.  She earned a D.  Since she needed a C
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in the course to take any subsequent mathematics courses, she re-enrolled in the course

during the fall 2000 semester.

Rachel was from a large metropolitan area approximately 300 miles north of RC

and only went home on the weekends. Despite coming to school from such a distance,

Rachel felt she was part of the RC community.  During a regional disaster that had forced

several hundred families from their homes into a temporary shelter at RC, Rachel had

volunteered to baby-sit and entertain children while their parents rested.  She enjoyed

being with the children and helping the families.

Talking to Rachel was a real treat.  She was especially knowledgeable about child

development.  During one of our early meetings, she recommended a helpful book on the

subject designed for parents of children age 0 to 18. Rachel and I talked a great deal

while I was at RC.  She dropped by my office to discuss school, her roommate, her

boyfriend, and photography, or to have me proofread a paper.

The single character trait that affected Rachel most deeply was her quest for

perfection, the most obvious manifestation of which was her obsession to organize.  She

talked about this obsession during Interview 9.  I noticed that Rachel seemed particularly

concerned about a wrong answer she had given during Interview 6. I mistook this

concern for mathematical interest.  Curiosity about mathematics would have been very

unusual for Rachel.  She quickly set me straight:

It is the perfection thing, really I think it is.  I’m really bad at that with all

things.  It drives me nuts.  It has to be, it has to be just so.  Like I have

everything just so in my room.  And when it gets unorganized, it drives me

nuts.  I mean when I have nothing better to do or when I am bored I will

go organize my room....Whenever I organize my room, I will have a box

of junk that I really couldn’t do anything with, and I will just put

everything in there and shove it under my bed.  And that’s what I start

with when I go back to organize the next time.  So it is like an ongoing

thing.  It is like, okay, I couldn’t figure out what to do with this, so I’m
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just going to sit it here.  And then I will come back … a couple days later,

and I will pull it back out and say okay, I can put this here, this here, this

here, this can get thrown away, you know.  And then, then I start back on

everything else.  I guess it is the same system.  Pretty much.

As she noted at the end of this quote, Rachel thought how she did mathematics was

similar to the system she used for organizing her room.  She was not interested in the

problem from Interview 6, but was just tying up loose ends. Organization for Rachel was

a compulsion.

Rachel As a Mathematics Student

Rachel attributed her quest for perfection to her parents, particularly her father,

and their expectations of her.  In each Interview, Rachel mentioned her father and his

mathematical abilities or expectations of her.  He had spent many hours trying to help her

with her mathematics homework during middle and high school.  According to Rachel,

her father considered the subject rather easy, whereas she found it extremely difficult.

She spoke about her father and mathematics during Interview 3.

Because my dad was so hard on me about math...I would sometimes not

do my homework or not say that I had homework, because I knew that it

was like a 1-hour lecture per problem.  And when I come home with my

homework now that I’m in college, he will try and help me.  And I’m like

“Don’t help me.  Don’t bug me.  Don’t help me.  Don’t try.”  It’s like he is

such a...he’s so good at math.  And he expects me to be this genius, and

I’m not.  I get it my own way, my own pace, my own time.  You know.

But, I will eventually get it, but it’s just the mental process of telling

myself...you know you’ve got to tell yourself that you will get it and you

will figure it out.

When I asked Rachel how she would describe herself as a mathematics student, she

replied “extremely weak.” She was still optimistic that she would eventually understand

mathematics: “I hoped [I would eventually understand it].  I do hope still.  I gain a little



91

bit of knowledge every time I take a math class.” Rachel’s hope was preceded by

numerous failures in mathematics classes.  She became extremely frustrated when she

could not do a problem and explained that the frustration was with her teacher for

assigning the problem, with herself for not “being able to comprehend like other people,”

and with “other people that are like ‘oh, that is sooo easy, and dudada.’”

Rachel identified the root of all her trouble in mathematics as the introduction of

“letters.” She explained her confusion during Interview 2:

I think probably in high school They started putting… letters in to

equations, and all letters have different values, and which value in which

problem.  Because it varied from problem to problem, the value of the

letter.  And in formulas there’s letters.  K stands for something, and h

stands for some thing.  P’s and Q’s, and like why, why?  I don’t get it.

Rachel’s frustration extended to having to learn anything about mathematics, which she

saw as useless.  To Rachel, some mathematics just “didn’t make sense.” She singled out

the square root and asked, “Who invented it anyway?” Being a perfectionist, however,

Rachel still wanted to pass her mathematics class.  Her goal in a mathematics class was to

“get through it and pass it.  Get it over with.”

In Teacher 1’s class, Rachel sat in the center of the front row.  She took very

careful notes on both the handout and on separate sheets of notebook paper.  She tried to

get down “exactly” what the teacher had on the board.  She thought that if she copied

down everything exactly as Teacher 1 had written it, later when she tried to figure it out,

she would know exactly what the teacher meant. Rachel asked questions in class, but they

were usually regarding alternative answers or procedures.

Rachel was very organized and did all of her homework.  During past semesters

she had relied on a tutor at the AAC, but the tutor had graduated.  So Rachel used her

book and notes from her last attempt at the course.  She found the book particularly

helpful in that it gave formulas and examples to follow.  Rachel’s second attempt at

college algebra resulted in a grade of B for the course.
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Understanding Mathematical Concepts

During Interview 2 Rachel defined understanding as being “able to comprehend

what you are trying to do.” She clarified this statement a little later in the Interview.

After she had finished her drawing, she noted that understanding was “to be able to do

the process.” Understanding for Rachel, like Jamie, was being able to do the problems.

She used several expressions for understanding.  She would say or write, “I get

it.” She also called understanding “making sense.” Although these expressions sound

more like conceptual understanding than being able to “do the process,” Rachel only used

these phrases when she was able to do a problem or saw how to find an answer.  During

Interview 2, I asked Rachel to give me an example of an experience of understanding a

mathematical concept, and she explained her experience of understanding the quadratic

equations:

S: Think of a time in your study of mathematics that you felt you

understood an idea or concept and tell me about that.

R:  Uh...I can’t think of the name of what the formula is called but, I can

tell it to you.  The one that we are working on now.  That we have been

working on.  It is like ax2 + bx + c.

S:  The quadratic formula.

R:  Yeah, the quadratic formula.  I really feel like I get that.

S:  Okay, when you first saw it, did you understand it?

R:  No the first time I saw it was in the.…  I probably didn’t get it when I

first saw it, but I get it now.

S:  Okay, do you recall why it is you get it now, but you didn’t get it then.

R:  Probably repetition….That was just a lot of practice at it.  Imprinting

the formula in my head really….

S:  Do you think anyone helped you to get there?

R:  I did have help understanding it.  But, it is really just memorizing the

formula and being able to plug stuff in and so.…
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S:  How do you feel about it now that you understand it?

R:  I feel good about it.  I feel that, okay there is something I can do.

Being able to memorize procedures was difficult for Rachel, but she hoped it would help

her be able to retrieve the information from her brain.  She thought of her brain as a huge

“card catalog” with information written on cards.  Although Rachel felt she understood

mathematical concepts, she explained that sometimes she could not find the card in her

mind the information was written on.

Rachel’s Understanding of the Logarithmic Function: Preinstructional Phase

Evidence of Understanding

Because Rachel had taken college algebra just two semesters prior to the

beginning of the study, her experience with the logarithmic function was in Teacher 1’s

class.  She recalled the logarithmic function was “to a power” and the power was “on the

bottom.” These comments did not give me any insight into her experience with the

logarithmic function, but they made more sense after I observed Rachel doing the skills

assessment during Interview 1.

Conception.  Rachel’s conception of the logarithmic function had two elements.

First, she felt the logarithmic function was “hard.” She could not do any of the problems

on the skills assessment and repeatedly remarked, “I don’t remember how to do it,” as

she attempted to do various problems.  Not remembering frustrated Rachel, and when I

asked her to draw a map of her concept of the logarithmic function, she connected it the

word hard and the phrase “don’t get it.”  She described the function as hard because she

could not do the problems associated with it.

The second element of Rachel’s conception of the logarithmic function was that it

was “to a power.”  She used the term power to signify the base of the logarithmic

function.  Her list of the properties of the logarithmic function included “can’t be a neg.

power.”  Rachel saw the base as significant.  After we discussed some of the problems on

the skills assessment, Rachel wrote “logbase #” as another property of the logarithmic

function.  She had a template for the notation of the logarithm, but did not know what the
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terms base and # in her template meant.  She knew where numbers went, not what they

did.

Rachel’s conception of the logarithmic function during the preinstructional phase

was based on what she remembered about the function from her previous attempt at

college algebra.  Since she could not do the problems the concept was hard and she

remembered that the base, which she called the power, was important and could not be

negative.

Representation.  Rachel’s representations of the logarithmic function were

primarily oral and were limited to trying to use the calculator to evaluate log3 4.  She

knew there was a way to calculate logarithms using the button on her calculator, but she

could not figure out what to put in the parenthesis.  She could not decide whether “log of

three to the fourth” was correct or whether it was log of three times four.  Rachel

eventually decided to use log of three times four, but was very unsure of the answer and

only wrote an answer for the first simplification problem on the skills assessment.  She

was attempting to read the written notation in a way that allowed her to use it as a basis

for calculating the logarithm on her calculator.

The only written representations that Rachel used during the preinstructional

phase of the study were notations, logbase #; a maxim, “base can’t be negative”; and an

example of her idea of a logarithm, log6.  Each of these representations provides

information about how to write a logarithm.

Connection. Rachel used two different oral representations for log3 4.  The only

connections that she made during this phase were between given written representations

and oral ones.

Application.  Rachel applied her knowledge of the logarithm as a computation

done with the calculator to evaluate log3 4.  She recalled that calculating logarithms

involved the calculator, but she did not know how to use it.
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Beliefs.

During the preinstructional phase of the study Rachel used three beliefs about the

logarithmic function.  First: logarithms are hard to remember.  Although Rachel said

logarithms were hard, her references to not being able to remember how to do the

problems in conjunction with her definition that knowing how to do the process was

“understanding,” led me to believe that when Rachel wrote “hard,” she meant “hard to

remember what to do.”

Second, logarithms have the form logbase #, where the base cannot be a negative

number.  The template logbase # allowed Rachel to appear competent.  Using the template

and her maxim about the base, Rachel could write correct logarithmic expressions.

Although she associated the notation with the topic, I was unable to associate her use of

the notation with any valid concept about the logarithmic function.

Third, the logarithmic expressions could be calculated using the logarithm key on

the TI-83 graphing calculator.  Rachel was confident that the calculator would help her

solve the simplification problems if she knew how to use it.  In summary, Rachel’s

beliefs about the logarithmic function prior to instruction were

1.  Logarithms are hard to remember because I cannot do these problems.

2.  Logarithms have the form logbase #, where the base cannot be a negative number.

3.  Logarithmic expressions can be calculated using the logarithm key on the TI-83

graphing calculator.

Rachel’s Understanding of the Logarithmic Function: Instructional Phase

Evidence of Understanding

Conception.  During the instructional phase of the study, Rachel learned how to

do problems, and hence her conception of the logarithmic function changed.  Now

logarithms were “really easy.”

I knew that I knew logs, but it was just a...It was all about pulling it out of

my memory bank.  Because I was, like, okay I know this...I know that I

know this, and I know that I thought it was kind of easy when I did it the
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first go-round.  So I was like, okay, why am I having trouble with this?

Because I know I know it.  Like I said, memory recall.

For Rachel, logarithms were easy now because she remembered how to do them.  When I

asked her how she understood logarithms, she told me how she did the problems:

Just plug it in.  That’s really all.  That’s all I can think of.  That’s all I do.

With my roommate…  she would be, like, “How do you do this problem?”

I said, “go back to ...go back to [page 331] 321, look at the little box with

the formulas in it and match it up (laughs).”  I was just like just match it.

That’s all you have to do is match it.

The formulas that Rachel was referring to were on page 331 of her textbook in a box

titled, “Summary of the Properties of Logarithms.”  Inside the box are what the authors

referred to as rules, formulas, and properties: the product rule, the power rule, the

quotient rule, the change of base formula, and other properties.  The other properties

included were

loga a = 1, loga 1 = 0,  loga a
x = x, and

€ 

a loga x = x .  Rachel used these “formulas” to

transform logarithmic expressions from one form to another. She saw “matching

formulas” as the essence of “understanding” the logarithmic function.  Rachel’s

conception of the logarithmic function was that it was easy since all she had to do was

match the “formulas” to the problems.

Representation.  During instruction Rachel used written and oral representations.

As she tried to learn how to do problems, she developed a vocabulary associated with her

actions or procedures.  She used the terms formula and match it to describe how she did

problems.  Rachel’s map from Interview 3 illustrates what she meant when she used the

term formula (see Figure 18). As this map illustrates, Rachel thought of mathematics as a
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Figure 18.  Rachel’s map of the logarithmic function from Interview 3.

collection of numbers, letters, symbols, and formulas.  Because the logarithmic function

was a part of mathematics, it was composed of these essential parts. This association was

the basis for Rachel’s thinking about the logarithmic function.

Connections.  Rachel connected both names of objects and procedures,

descriptions of the procedures, and notations associated with the objects. Her oral

representation “match it” was related to her oral representation “formulas” because it was

part of her description of the procedure itself.  Finding the appropriate formula was part

of the matching procedure.

The term formulas was also written on Rachel’s map of the logarithmic function.

Rachel connected this category to notation and gave written examples of the formulas on

her map. Hence there is a connection between the written term formulas and the notation.

Beliefs

Rachel’s understanding of the logarithmic function during this phase of the study

was as a collection of formulas that were easily applied to do problems.  If the list of
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formulas was given, Rachel “matched” the formulas from the text with the problem types

to solve the problems:

1. Logarithms are easy because I can do the problems.

2. To do problems associated with the logarithmic function, match the problems to

an appropriate formula in the textbook.

3. Important formulas associated to the logarithmic function are: 

€ 

loga b =
log a

logb
,

loga MN = loga M + loga N, Ln, and e.

Rachel’s Understanding of the Logarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception.  Rachel’s conception of the logarithmic function was as a collection

of problems that were easy to solve with the table in the book.  She saw the function as a

collection of problems for two reasons.  First, since the logarithmic function was a

function:

It is always something being plugged into something.  You are always

given some sort of function that you’ve got to solve.  It bothers me that

they are called functions and not problems.  I mean, it’s the same thing.

Rachel saw no distinction between functions and problems.   The goal was to find the

answer.  Second, the logarithmic function was a type of mathematics.  During Interview

9, she drew a diagram of and explained her process of understanding the logarithmic

function:
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Figure 19.  Rachel’s process of “understanding” the logarithmic function.

Log is...well, we are really not sure what log is at first.  And then when we

figure out that it is a kind of math.  And through that we figure out that

there are formulas, numbers, letters, unknowns, and of course you always

have your base.  And there are a lot of questions as to how to get from

place to place, the question marks in between.  You know you know this,

but how do you relate it to this and how do you relate it to that?  And then

it kind of slowly all comes together, and then we get our answers, and then

a light bulb goes on.   I get it.  It makes sense.

For Rachel the collection of problems associated with the logarithmic function was

typical of all mathematics.  The goal was to get answers.

Rachel felt confident that she could get answers using the properties of the

logarithmic function in her textbook and using her calculator.  She explained her process

during Interview 8:
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S: Okay, what else do I need to know?  I want to be ready.  I want to get

an A in this class.

R: Basically, all you need to know is the.…  You will have a chart.  It

should be in your book.  You have a chart that is going to give you like log

base times the.…   Oh gosh, I don’t know what the letter is.  We will just

call it a for lack of a better thing [Rachel writes logb a].  So this is your

base [Rachel points to b] and this is your, your number [Rachel points to

a] and then you would convert that into log of a over log of b [logb a

=

€ 

log a

log b
].  Right, you know how to do that.

S: Yeah, you showed me that.  That was cool.

R: Then there will be, like this one [points to logb a =

€ 

log a

log b
] will be there.

And a couple of others will be there, but there will be a chart in your book

that gives you all the different conversions.  So if you find that in your

book, then it makes it very simple to follow.

S: So I need to get that book, no matter what the teacher said.

R: Yeah.  The book is not an option.

Understanding the logarithmic function was simple for Rachel, it was a collection of

problems easily solved using the properties in the text and the calculator.

Representation.  During the postinstructional phase of the study, Rachel used

three modes of representation: oral, written, and pictorial.  Like Jamie, Rachel explained

her work with several names: convert, formula, and guess and check. Although both

Jamie and Rachel used the term convert, Rachel’s definition was different.  She used

convert to refer to the action she took to transform a logarithmic function or expression

into a form she could use her calculator to evaluate.  For example, she called

transforming a logarithmic expression with the change of base formula converting. She

explained during Interview 8:
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R: If it is blank [pointing to the space between log and 5 in her written

expression log 5], it’s ten.  Now see here we go.  We have to have a

calculator.  And then ... If you wanted to solve this equation [referring to

log4 5] as an equation,... you would have convert it because you can’t

solve it this way.

S: Why?

R: Because there is no way to put. This is your base, and you have to put it

into a form that your calculator can read.  Because you like to use a

calculator.

S: Oh, the calculator can’t do base four?

R: No.

S: That’s not very good.

R: But it can, if you rewrite it.  So you would write log of five and divide

log of five by log of four [writes

€ 

log5

log 4
].  So then you can get it [the

numeric value for the expression], and this is your log key right here.  So

you would say log, and it automatically gives you the parenthesis.  So five,

and you have to make sure you close them.  Then you divide by log of

four and then close the parenthesis, and you enter.  And that gives you a

number.  Then you just round to like the nearest decimal, so you would

say that [writes 1.16].

Converting did not refer to simplifying an expression, such as log3 4 + log3 5 into log3 9.

Convert was a name used to refer strictly to actions performed with the change of base

formula and the transformation of an expression in logarithmic form to one in

exponential form.  The second term Rachel used during the postinstructional phase was

formula.  While convert referred to her actions, formula referred to the notations she used

to direct her actions. The third term Rachel used during the postinstructional phase was

guess and check.  The procedure Rachel called “guess and check” was similar Jamie’s
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use of “trial and error.”  Rachel used the procedure during Interview 7 to fill in the table.

Since she did not have a logarithm key on her calculator, with my help she developed an

exponential equation and used “guess and check” to solve it.  The primary difference

between Jamie’s procedure and Rachel’s was Rachel’s use of a relevant domain for her

selections of the x values she should try for the exponents.  For example, since log 4 was

between log 3 and log 5, Rachel tried numbers between .699 and .845 in her “guess and

check” procedure.

In her explanations of her work, Rachel used incorrect representations for the

exponential and logarithmic function. For example, during Interview 4 Rachel saw the

expression log3 9 as said: “log of three to the six and log of three to the three” and wrote

log36 + log33. She thought of the log and 36 as separate expressions and read them that

way. She only used the correct oral representation for the logarithm notation when the

base was not written.    She was aware the base of the function played a role in the oral

representation, but not what role it played.

Rachel also used maxims about the base to explain to do problems.  For example,

she noted during Interview 8 she said the base can “never, never be negative. No matter

what.” and if “it is not there, it is a ten.” When I asked Rachel why this was so, she

replied, “It just can’t.  It is one of those weird rules.”

Rachel used two types of written representations frequently during the

postinstructional phase.  She wrote names and notation.  Rachel wrote the names:

formulas, math, base, and numbers on each map and drawing she created during this

phase of the study. Rachel’s used the term base in conjunction with her maxims. In

particular she associated “never negative and “if unknown 10” with base on her map of

the logarithmic function. I am uncertain of the meaning of Rachel’s written name:

number.  The most plausible interpretation is that she associated finding and using

numbers with plugging into formulas.

The second type of written representation that Rachel used was notation. She

transformed expression from one written notation to another so she could use her
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calculator to find a numeric expression.  For example, during Interview 4, Rachel

transformed log3 9 into 

€ 

log9

log 3
 saying,  “Yeah, you can change it from that [log3 9], and

then you can do this [picks up calculator].” The notation was used to enable Rachel to

write an expression she could evaluate with her calculator.

Rachel used one pictorial representation of the logarithmic function during the

postinstructional phase.  During Interview 6, she used a picture to help illustrate f(x)

when x is a negative integer.  Prior to this extension, the only domain that was

meaningful to Rachel were positive integer powers of 2.  Rachel, however, did not see x

as a power of 2, but rather as repeatedly divisible by 2, hence she was able to find f(4),

f(8), f(16), and f(256) easily.  For example, she found f(256) by dividing 256 by 2 and

writing f(128) + f(2).  She then repeated the process.  She divided 128 by 2 and wrote

f(64) + f(2) + f(2).  Using this method, Rachel was able to substitute 1 for f(2) and find

f(128).  Unfortunately, this method did not work for x = 
1

2
, 

1

8
, and 

1

256
.  In part because

of the failure of this division algorithm to produce answers, Rachel tried a new predictive

method to evaluate f(-4).  She reasoned that the f(-4) = -f(4) because of the symmetry of

the real line and the order of the “answers.” To illustrate this perspective, Rachel drew

the picture in Figure 20.  This

Figure 20. Rachel’s pictorial representation for f.

diagram illustrates Rachel’s use of the symmetry of the real line and the relationship

between the x and y values to predict y values when x was less than zero. Hence, she

predicted that f(-2) = -1 and f(-4) = -2.  “Well, ...it’s on the number line.... So it would

only be logical that if this [pointing to 1] equals two, then this [pointing to –1] should
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equal negative two.” Not only was Rachel using symmetry to predict f(-4), she has also

found a way to eliminate the notation for the function f from the process.

Connection. The two primary connections that Rachel used during the

postinstructional phase of the study were between oral and written representations and

among written representations.  The connection between oral and written representation

was artificial because she only attempted oral representations to explain her work to me.

Thus the primary connection used by Rachel was from one notational form to another.

These connections enable her to evaluate expression with her calculator. For example

during Interview 8, she transformed 52 = 3 to 3 log 5 = 2, saying, “This [52 = 3] is without

the log, but it means the same as that [3 log 5 = 2].”  Again, although Rachel connected

notations, she rarely did so correctly. 

Application. Rachel believed a calculator was important in evaluating logarithmic

expressions.  She converted or matched a problem with the right formula and then used

the calculator to compute answers.   For example, during Interview 8 Rachel explained

“We have to have a calculator...to solve this [

€ 

log10 5].”

Beliefs

Rachel used four beliefs during the postinstructional phase.  First, she saw the

logarithmic function as a type of mathematics that involved converting from one form to

another using a collection of formulas.  Second, she saw the calculator as integral to the

process of finding the answer to problems associated with the logarithmic function.

Third, she knew the formulas were important and could use one or two of them from her

book.  Fourth, she often used the formulas incorrectly but knew that if she had her book

she would be able to match the problem to the correct formula.

1. A logarithmic function is a type of mathematics that involves converting from one

form to another by matching the problems with the formulas found in my

textbook.
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2. Some formulas are very important (change of base and changing exponential to

logarithm), and I need to know how to use them to convert logarithms to a form

my calculator can evaluate.

3. The book contains all the conversion formulas for the logarithmic function.

4. The calculator is a necessary tool for evaluating logarithms.

Changes in Understanding

Rachel’s understanding of the logarithmic function was influenced by her

attempts to memorize enough formulas and their applications to pass the test.  Prior to

instruction, Rachel was frustrated by her inability to remember how to do the problems

on the skills assessment.  Following the assessment, I asked Rachel what she understood

least during the activity.

S: The next thing I want to ask you what you felt you understood least.

Tell me about that.

R:  I didn’t remember very much about the logarithmic function at all.

S:  And how did you feel about that?

R:  Frustrated...I wanted to be able to do it, but I can’t remember what I

was ... how to do it.

Rachel’s comments indicate her desire to do the problems by remembering the

procedures associated with the logarithmic function.  On her map of the logarithmic

function, she had only two categories “hard” and “I don’t get it.”

On numerous occasions during the course of the study, Rachel and I discussed

mathematical notation.  Rachel felt she had done well in school mathematics “until they

started throwing letters in.  Letters and shapes that are suppose to mean a number.” She

felt the notation was useless but realized her success was predicated on learning the

symbols and formulas.  During the instructional phase, she attempted to coordinate the

formulas and the problems she was asked to solve.  Because she had taken the course in

spring 2000, she was able to coordinate the formulas and problems quickly.  She was

excited when she came into the office for the instructional interview because she felt she
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had understood the whole lesson. “As long as I have a formula and I know what goes

where, I can plug it in and make it work.” Rachel had memorized the change of base

formula and the sum of logarithms formula and included these on her map of the

function.  By the end of the instructional phase, she matched simplification problems

with the formulas in her textbook.  She was able to get the answers she needed to

compute for the test.

During the postinstructional phase of the study Rachel’s beliefs about the

logarithmic function, like Jamie’s, were associated with the notation “log.”  If she saw or

heard the word, she was aware that the formulas from her textbook should apply.  If not,

she used other strategies.  Rachel was unable to do any of the problems on the skills

assessment.  She was able to remember her maxims about the base but could not recall a

single formula from the textbook.  Like Jamie, she recalled the log of a sum was the sum

of the logarithms. She also incorrectly recalled the change of base formula.  Rachel

explained that the information was still in her “card catalog,” but she could not find the

card.

During Interviews 5 and 6, Rachel was able to perform but was not aware that

either of the tasks were associated with the logarithmic function.  During Interview 5, she

used a successive differences scheme to predict the signs above the numbers greater than

8 and linear interpolation to predict the signs above numbers such as 2  and 6.  Her

performance during Interview 6 illustrated the difficulty Rachel had with notation.  She

saw f as a formula and conjectured that the operations used were dependent on the

numbers that she was given to “plug in.”  For example, to evaluate f at 2 would require

one formula and to evaluate f at –2 would require another formula.  In general, for these

two interviews Rachel relied on strategies associated with the four arithmetic operations.

During Interview 7, Rachel was able to convert the table entries into exponential

form (with prompting from me) and used the form and a guess and check strategy to

complete the table.  Her explanation of the logarithmic function during Interview 8

consisted of a description of her converting procedure and the advice “with table on page
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331 of the text I should be able to solve any problem with logarithms.”  Despite this

impoverished understanding Rachel felt that she understood the logarithmic function.

During Interview 9 she explained, “I went from knowing absolutely nothing about the

logarithmic function to knowing and understanding it.” Despite Rachel’s subjective view

that she understood the logarithmic function, from my perspective she understood very

little. Rachel’s beliefs about the logarithmic function during this phase were not useful in

doing standard problems or in trying to make sense of nonstandard ones.

Ways of Knowing

Rachel used four ways of knowing during the postinstructional phase of the study

that have potential as tools for the growth of understanding: linear interpolation, guess

and check, validation of answers, and awareness of inconsistencies in answers.  First, I

discuss Rachel’s use of validation and awareness of inconsistencies in answers.  I then

illustrate how Rachel’s use of linear interpolation might be used to provoke growth of

understanding of the logarithmic function.

Any time Rachel did a problem, she tried to find a way to validate her answer

either by “working off” other information in the task worksheet, by checking her answer

on the calculator, or by checking her answers with an authority such as the teacher.

One example of this practice was Rachel’s attempt to validate her answer to Problem 3c

on the skills assessment during Interview 4.  Rachel used a change of base formula

incorrectly to find 

€ 

log3 9 =
log 3

log9
=

1

2
.  Rachel explained what she was doing:

R:  Umhum....[thinking].  Um...oh, unless we do this.  Log of three over

log of nine [writes 

€ 

log 3

log9
].  Like that?

S:  So you are remembering something about changing the form from this

[log39] to this [

€ 

log 3

log9
]?

R:  Yeah, you can change it from that, and then you can do this [picks up

calculator].
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S:  Go to the calculator.

R: Log of three divided by log 9 is .5 or
1

2
 which would be the same

answer for this [3a] as well.

S:  Okay.

R:  [inaudible] Try this.  Log of three over...I am just going to verify this.

(Because Rachel got log3 9 for both 3a and 3c, she was using the

calculator to check that she got 
1

2
 by adding 

€ 

log3

log 4
+

log 3

log 5
).  Because I

think this [referring to the change of base formula] is the one that works

all the time  [tries it in the calculator]. Point seven nine.

S:  What was that: log of 3 divided by log of 4?

R:  Umhum.  It shouldn’t be that number.  Log 3 divided by...so....

S:  So what did that come out to be?

R:  147 over 100.

S:  Okay.

R:  [tries to reduce] You can’t reduce that, can you?

S:  What?

R:  147 divided by...

S:  No, it doesn’t reduce.

R:  No.

S:  So you got .79 or is that the final answer 1.47?  Is it like when you add

these two [.79 and .64], you get 1.47, or was that just for this [

€ 

log3

log 4
] part?

R:  No, 1.47 is this [

€ 

log3

log 4
] plus this [

€ 

log 3

log5
].

S:  Okay, so you didn’t get one half [for 3a], but you got one half down

here [for 3c].

R:  This is almost one half.
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S:  It is almost one and a half.  So it is pretty close.

R:  Yeah, one and a half.

S:  But, something must be wrong....

R: Because all three of these [3a, b, c] should have the same answer.

Well, a and c should have the same answer.  I look for similarities.  So

they should have the same answer, but I thought that the base always went

up top, but does it not?

In this example, Rachel attempted to validate her answer which resulted in an

inconsistency between two problems that she believed should have the same answer.

Rachel did finally resolve the inconsistency in her two answers.  She decided that 
log3

log 9

was
1

2
.  The calculator had verified that, but that she was incorrectly adding log3 4 + log3

5.  She decided that this expression could be rewritten as log3 (4 + 5) and hence was log3

9, which her calculator had verified was 
1

2
.  Although she drew incorrect conclusions

and used faulty reasoning (that her calculation for log3 9 was correct, but for log3 4 + log3

5 was incorrect), Rachel was aware that the two answers should be the same and

attempted to resolve the conflict.  This awareness could be used to help search for

meaningful reasons for the inconsistencies.  Why are the answers inconsistent?  Is one of

the solution paths flawed?  This type of thinking can be capitalized on in the classroom.

Rachel’s use of linear interpolation in combination with her awareness of

inconsistencies could be used in promoting the growth of understanding of the

logarithmic function.  During Interview 5, Rachel used linear interpolation to predict the

sign number above the number line number that she was not able to find using her

successive differences algorithm.  When Rachel was asked to predict the sign over the 6,

she predicted it would be 

€ 

2
1

2
, halfway between the sign above 4 and the sign above 8.

This use of linear interpolation is an example of what Stavey and Tirosh (2000) called an
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intuitive rule: “More A-More B.” Rachel assumed that if 6 is half way between 4 and 8,

then the sign should be halfway between 2 and 3.  The results of Rachel’s predictions

could be graphed (see Figure 21).

-20 -10 10 20

10

-10

Figure 21.  Plot of Rachel’s predictions for Interview 5 task.

Given Rachel’s awareness of inconsistencies, she would have seen the graph as

inconsistent or at least problematic because of, the dips and the flat section.  This

awareness is likely prompt a further examination of her prediction algorithm.

Nora

Getting to Know Nora

Nora did not enroll in college immediately following her high school graduation.

She could not afford RC.  After a year off, she applied for and was awarded financial aid

to attend RC.  Nora was 19 during fall 2000.  She commuted 30 miles to school each day.

She also had a part time job at a nationwide sandwich chain.   Her work schedule was

hectic, and Nora fell behind in her studies. During Interview 2, Nora talked about how

difficult working and going to school was for her:
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It wasn’t the last chapter, but I had one chapter where I had worked a

midnight shift all...like two weeks straight.  And I wasn’t having time to

do homework, so I went to a friend’s house, and we did the homework.  I

understood it very well.  It is just, you know, pulling those midnight shifts

You know, it was kind of hard…

Nora quit her evening job because of the long hours she was asked to work.  To pay for

gas and expenses she took a campus job. It was fewer hours, but the workday ended at

5:00 p.m.  Unfortunately, a family financial crisis came up, and Nora returned to her

evening job, while she continued to work on campus.

Nora wanted to be successful in her work and in school.  Her motivation came

from her pride in past accomplishments and her competitive nature.   She described

herself as competitive during Interview 2:

S: What are your educational goals?

N:  Uh, ...not really many.  I just want to make it.  Get a degree.  It is kind

of a competition between me and my brothers.  I really...I’m a competitive

person when it comes to stuff like that.  None of my brothers are in college

and I’ve got a twin brother that is still in high school so.  But there is still

that “I got to do better, I got to do better.”

Nora’s primary life goal was to “make it,” which she defined as getting an associate’s

degree in business.  After getting her degree, she planned to work for a while and then

return to school for a bachelor’s degree.

Nora As a Mathematics Student

Nora felt that she was a very strong mathematics student, especially in high

school.  She was always the best in her mathematics classes and had earned an A in every

high school mathematics course she had taken.  Although she waited a year after high

school before enrolling in college, she still expected to be the best student in her college

mathematics classes. When I asked Nora what her goal in a mathematics class was, she

replied, “Mainly to have the highest grade.  That is actually...my goal is to have the
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highest grade in the class.  Not actually the school, but in that particular class.” Getting

the highest grade in the class got harder for Nora when she decided to attend college.

When I asked Nora during Interview 2 to describe herself as a mathematics student, she

replied:

In high school exceptionally well.  I really thought that I would major in

something math-wise or even….  I considered being a math teacher for

high school because I actually loved it and I associate everything with

math.  In fact I tried to...before you even showed me… concept mapping,

that is how I associate math and English.  That is how I do an outline with

a concept map.  But in college I am trying to adapt.  I feel it is getting

easier, but it is not as easy as it was in high school.

The demands of college, work, and home, where she often cared for her four-year-old

brother, had made it more difficult to achieve her goal of getting the highest grade in the

class.  On a test that was returned the first day that I observed her class, Nora earned a 79,

which she explained was far below her standards.  “I felt disappointed and it kind of hurt

my feelings because, I mean, a 79.  I mean it is still good, but it is not up to my standards.

And I do kind of set my standards high.”  She valued her grades and the status she felt

they gave her.

In class Nora, sat in the center of the front row, a practice she had begun in high

school.  She had observed that students who sit in the front get more help from the

teacher.  She elaborated on her choice of seats during Interview 2:

Well, I am as blind as a bat, so it helps one for seeing, and sometimes I

can’t hear too well because I get a lot of ear infections.  So it helps my

hearing.   And plus if I have him (Teacher 3) standing up there watching

what I’m doing, he can point out something that I’m doing wrong.

After Nora remarked about this phenomenon, I observed Teacher 3 in class and noticed

that he did provide more help to those sitting on the front row.  There were seven

columns of desks with six desks in each column, and the desks were extremely close
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together. I had difficulty getting to my seat near the back of the class. During my two

weeks of observation, Teacher 3 only helped students beyond the first row once.  Nora

got help more often than the other students.

Nora never interacted with her peers in the class. Her only communication was

with Teacher 3.  She explained that even outside of class, she felt most comfortable in

one-on-one situation as opposed to crowds. Despite this preference, Nora participated

much more than any other student in the class. She often waited for her peers to answer

questions posed in class but became frustrated when they would not respond to even the

simplest questions. “That gets on my nerves sometimes.  I feel like if, well, if nobody else

is going to say it I’ll say it.” As is indicated in this quote, Teacher 3’s questions were

primarily simple recall, requiring only a single word answer.  When students did not

respond to his questions, Teacher 3 encouraged and cajoled them saying “call it out.”

Despite these attempts, students rarely participated. Many came to class, unprepared.

One student never brought a pencil and paper to class and several students regularly slept

in class. Nora was not one of those students.  She brought her learning materials, took

careful notes, and after listening to the silences that often followed Teacher 3's questions,

she would call out an answer.

Although Nora almost never asked a question in class, if she was having difficulty

with a mathematical concept she felt free to ask Teacher 3 for help either before or after

class.  She also went to go to the AAC for help.  She felt certain that someone in the

center could show her how to do the problem she was having trouble with.

Nora did her homework and circled any problems she had difficulty with to

review for the test.  Her class notes were very neatly written, as were her homework

papers.  Nora was what most teachers would call a model student.  She showed respect

for the teacher, participated in class without dominating it, did her homework, was

concerned about her grades, and loved the subject.  Both her attitude and her study habits

contributed to the A that Nora eventually earned in college algebra.
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Understanding Mathematical Concepts

When I asked Nora how she defined understanding during Interview 2, she

described it in terms of doing.

S:  Okay we have talked a lot about understanding and not understanding,

but I want to know what your definition of understanding is as it relates to

math.

N:  My understanding.  If I understand something, that means I can do it.

If I understand it, then I can walk in on a test and be done with it.  You

know ten minutes, all right, I’m done.  And if I don’t understand it then I

tend to take longer than a minute trying to work on it.  And then that

means that I really don’t understand it or I am having a hard time at it and

I probably need help.

Understanding a concept meant being able to do problems quickly.  Nora commented that

memorizing was different than understanding.  She believed that practicing problems was

a great way to understand them.  “Like the vertex [of a parabola], negative b over two a.

I didn’t memorize that I just understood it and practiced it.”  Nora knew how to find the

vertex of a parabola, so she felt she understood parabolas. When she practiced a problem

Nora felt she was learning how to do the problem not memorizing it, hence memorizing

was not understanding.

Nora’s view of understanding as doing was especially evident during Interview 9.

When I asked her to draw a picture of her process of understanding the logarithmic

function Nora drew a map (see Figure 22).  Each of the categories illustrated how one

might do a type of problem.  This drawing was markedly different from her depiction of

her process of understanding a mathematical concept from Interview 2 (see Figure 23).

Nora described not understanding and understanding in terms of feelings she had when

she experienced them.  When she did not understand, she said, “I get mad.”  When she

understood, she described her mood as bubbly, she explained she just bobbed her head

and said okay.



115

Figure 22.  Nora’s drawing of her process of understanding the logarithmic function.

Figure 23.  Nora’s drawing of her process of understanding.

Nora drew her diagram after I explained to her four times what I wanted her to do:

visualize her process of understanding a mathematical concept and draw what she saw.

Nora wanted to know what I was looking for and said, “I’m a little confused at what you

want.”  These types of remarks were characteristic of Nora’s approach to learning.  She

tried to find out what was required, of her and then she did exactly that.  When it was not

clear what was required Nora became frustrated.  During Interview 2, she expressed her

frustration with Teacher 2:

It is like the homework …  He doesn’t quite teach to the homework.  And

I’m not sure if he is teaching to the test or if he is just teaching to teach the

subject because there was some stuff from the homework that he didn’t
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show us that was like first off that I felt he should have showed us.… I

figured it out by going back into the book and reading, but… I felt like he

should have taught that in class.

Nora wanted to know what to focus on, and when Teacher 3 did not provide that focus,

she became frustrated.  She needed the information to be efficient in her exam

preparation.

Nora’s Understanding of the Logarithmic Function: Preinstructional Phase

Nora recalled very little about the logarithmic function from high school.  When I

asked her if she had seen the function before, she replied, “I don’t know.  I would have to

see it to tell you if I have.” Later in the same Interview Nora recalled that with the

logarithmic function you “start with one, make it into another.”  Her remark seemed to

apply to any function until she described transforming an expression in logarithmic form

into one in exponential form as “easy” for her since she had seen it before in high school.

Hence “start with one, make it into another” is a remark about a procedure Nora called

converting.

Nora took great pride in her grades.  She recalled during Interview 1 that in high

school she had "made an A on” the logarithmic function, but she did not remember it.

Because she was an A student in mathematics in high school and the logarithmic function

was a high school mathematics topic, Nora reasoned she must have earned an A on it.

This view was characteristic of Nora’s general view of grades.  She felt that if she made

an A on a chapter test, she knew everything in the chapter.  Similarly if she made an A in

a course, she knew all the material in the course.

Evidence of Understanding

Nora did not recall any specific information about the logarithmic function during

the preinstructional phase of the study.  There was no evidence that Nora applied the

logarithmic function or its properties in solving any of the problems on the skills

assessment. Her comments and actions during the skills assessment and her map provided

evidence of Nora’s conceptions, representations, and connections.
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Conception. Nora’s conception of the logarithmic was that she could do the

problems if she could recall the necessary procedures and knew how to use her calculator

to solve them. Since Nora could not remember “how to do” logarithms she saw them as

generic problems.  Nora’s map of the logarithmic function drawn during this phase

included two categories: problems and function.  Nora reasoned the function was a topic

in mathematics so it was related to problems.  And since it was a function it must be

related to functions in general.  She thought of functions as formulas and depicted a

function as y = ax2 + bx + c on the skills assessment.  “That’s what I think a function is.”

Later in the interview I asked Nora how she had developed a table of values from a graph

on the skills assessment: “Well, I didn’t have a formula, you know a function,…So I

didn’t know what to do without that function.”  Based on Nora’s view of function, I

anticipated that she would be looking for a written representation when she was

introduced to the logarithmic function in class.

Following the skills assessment, Nora remarked her calculator might have been of

use in helping her figure out the problems.  “If I knew how to do it [the logarithm] on the

calculator, I could do it.”  Nora’s comment illustrates her view of functions as something

that a calculator can help you solve.

In addition to seeing the logarithmic function as a set of problems associated with

the general definition of function and with procedures involving the calculator, Nora also

noted she recalled doing problems involving the logarithmic function but “not how to do

them.”  Hence, Nora’s conception of the logarithmic function was as collection of

problems she might be able to use her calculator to help her solve.

Representation.  Although Nora did not remember doing problems with

logarithms, she still attempted the problems on the skills assessment. During these

attempts, she used oral and written representations. Her oral representations were simple

attempts to read the notation.  For example, Nora read log3 1 as “log three one.”  This oral

representation illustrates that Nora was unaware of the importance of positionality in the

notation.  Nora’s written representations of the logarithmic function and its properties
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were in the form of notation.  This is not surprising, because her only access to

information about the logarithmic function was the skills assessment.  She used two rules

to simplify the logarithmic expressions given in Problem 3: a generalization of the

distributive property and a generalization of the associative property.   Nora found the

sum of logs to be the log of the sum, a generalization of the distributive law. For

example, she calculated:

log3 4 + log3 5 = log3 9.  She also generalized the associative property, simplifying

1

2
log3 25 to log3 12.5.  Both of these generalizations are based on a view of log3 as a

variable like x.  The representations used by Nora during this phase of the study were

attempts to mimic or make sense the notation presented in the skills assessment.

Connection.  During the preinstructional phase of the study, Nora made

connection between written representations and between written and oral representations.

She attempted to mimic the notation she saw used in the problems on the skills

assessment.  Her answers to Problems 3 and 4, simplification and expansion problems,

used the notation log3 that was given. The answers were incorrect, but the notation was

used correctly.  Nora was less successful in her attempts to transform the given notation

into oral form.  She read

log3 1 as a sequence:  “log three one.”

Beliefs

Two groups of beliefs were important in Nora’s thinking about the logarithmic

function.  First , Nora felt she had seen the logarithmic function in high school, and she

conjectured she had done well on it because she had been successful in all of her

mathematics classes.  This reconstruction of her experience was a source of confidence

for Nora.  Second, based on information she drew from the problems on the skills

assessment Nora attempted to piece together a reasonable written representation of the

logarithmic function.  She felt certain that the log key on her calculator was involved and

that if she knew how to use it she would be able to solve problems.
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1. To do problems involving the logarithmic function, I need to learn how to use my

calculator.

2. I have seen logarithmic functions before and since I am a good mathematics student, I

must have done well on them.

3. The logarithmic function is a type of function, and so it has problems associated with

it.

4. The logarithmic function has a special written representation I have to learn how to

use.

Nora’s Understanding of the Logarithmic Function: Instructional Phase

The primary mode of instruction used by Teacher 3 was lecture.  Each day he

made announcements about campus events and then began lecturing. No demands were

made on the students.  Some slept, others did homework that they had from other class,

and several passed notes during class. Teacher 3 carefully wrote examples and

explanations on the board and a few students like Nora took notes.  The board notes were

a summary of what was in the textbook.  Teacher 3 followed the book very closely.  He

referred to it in class and assigned homework problems from it.

Teacher 3 lectured about the logarithmic function for two 75-minute periods.

During that time, he demonstrated how to do a number of procedures, all of which were

included in a handout that he gave the students one day prior to introducing the function.

The handout included examples of what were called “‘powerful’ log rules that we will

find helpful” (see Figure 24). It also contained explanations of how to use the calculator

to

Log Rule Examples

loga M ⋅ N = loga M + loga N  because

aM ⋅ aN = aM + N

log2 8 + log2 4 = log2 32  [ 3 + 2 = 5 ]

Figure 24.  Example from Teacher 3’s handout.
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evaluate logarithmic expressions and graph logarithmic functions.  In addition, the

handout contained problems for the student to try.  For example, evaluate log 10,000,000.

As in class, the students were to find the exact answer if possible or the approximate

answer to four decimal places. Also included on the handout were logarithmic equations

and applications problems such as finding the pH of a substance.

Nora criticized Teacher 3’s ability to convey the information that she needed to

know on the test.  She questioned the relationship between of the classroom presentations

the tests.  She also became frustrated when Teacher 3 made mistakes with his calculator.

In particular, when he was solving a system of nonlinear equations using his calculator,

Teacher 3 could only find one point of intersection when the system had two.  He tried

several times but failed each time. Nora knew how to find both solutions, but she did not

offer any assistance.  Later she expressed frustration at Teacher 3’s failure:

I don’t think he knows…everything, because there was some stuff … that

he couldn’t quite get, and I already had the answer for it.  And so I think it

is kind of an understanding problem.... He knows what he is doing, but he

can’t quite get it [the calculator] to do what he wants it to do, and then I

don’t understand what he is wanting.

Because Nora did not know what Teacher 3 wanted or what he would be looking for on

the test, she felt frustrated.  Her frustration intensified during the postinstructional phase.

Nora felt that Teacher 3 had not taught her enough and had covered the material on the

logarithmic function too fast.  She made numerous comments about the content and how

Teacher 3 had presented it.  Although none of her remarks was unkind, she faulted

Teacher 3 whenever she could not do a problem or remember a procedure.

Evidence of Understanding

Conception.  During Interview 3 Nora explained how she viewed the function:

The main thing I try to do in mind is remember exponential things, the

way we combined them, and all that kind of stuff…to remember the

principles of them [the logarithmic function].  And if you know the
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principles then you can pretty much figure out the log itself.  The problem

you are trying to do.

Nora’s conception of the logarithmic function was as a collection of problems she had to

learn how to solve.  She saw the principles, the properties of the logarithmic function, as

tools for solving the problems.  She used the properties of exponents to help her

remember the properties of the logarithmic function.  When I asked her to tell me about

the function, Nora explained that her main concern was being able to “do” the function:

“Can I do it?…Can I figure out a way to do it?”

Nora was most interested in “understanding” test problems.  When I asked her to

think of a time when she did not understand the mathematics that was being presented to

her, she identified the written notation: b logb x = x .  She was not particularly concerned

with learning about the notation, but rather about whether or not she would need to use

the property on the test:

S:  So are you going to go ask him about it [the property b logb x = x ] or do

you think that’s just going to be a done deal?

N:  I might ask him the day of the test if it’s going to be on the test,

because he really didn’t go over it any of the days.

Indeed, on the day of the test, Nora did ask Teacher 3 if anything using the property was

going to be on the exam.  Teacher 3 replied it was not, and Nora did not worry about the

property again.  She focused her attention on those problems and properties she needed to

know for the test.

During the postinstructional phase, Nora saw the logarithmic function as a

collection of problems she was “confident” she could solve. She used the properties of

exponents to help her remember the properties of the logarithmic function.

Representation.  Nora used two different modes of representation during the

instructional phase of the study: written and oral.  Nora wrote names and notations

associated with the logarithmic function.  The names that she chose for her map of the

logarithmic function included principles, do, exponential, and calculator. (see Figure 25).
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Figure 25.  Nora’s map of the logarithmic function constructed during Interview 3.

With the exception of exponential, the names on Nora’s map were associated with doing

problems. The principles from the textbook, Teacher 3’s handout, and class could be used

to do simplification problems.  The calculator could be used to evaluate logarithms.

Transforming an exponential function into logarithmic form was characterized as “how to

do” problems.  Although Nora’s map includes “exponentials are logs,” her explanation of

how she remembered the “principles” of the logarithmic function contradicts a literal

interpretation.  She noted that she could remember the principles of the logarithmic

function if she just remembered properties of exponents.  Nora believed the two were

related and not the same.

The second type of written representation Nora used was notation.  She always

made an effort to get the notation correct, because using correct notation would help her

perform on tests.  Nora used two notations for the same transformation of a function in

exponential form. This use of notation illustrates that Nora saw converting a function as
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different from converting an expression such as log3 2 = x.  In Nora’s notation, a and b

were considered constants, where x and y were variables.

 Nora did not put the same value on oral representations that she did on written

ones.  For example, she described a problem from class as “logarithmics.” This excerpt

from Interview 3 was a description of what Nora did not understand during class.

The logarithmics, where you multiply the two functions.  Where he

[Teacher 3] did log base of something of something else plus log base of

something else and you multiplied it together.  I just thought skip that go

to that.

When Teacher 3 solved the equation log x + log (x + 3) = 1, Nora explained that she

would have skipped some steps.  Nora consistently used incorrect terminology and read

notation incorrectly.  For example, she read b logb x = x  as “b raised to the log power of

base b to the x.” It was not vital for her to use correct oral representations.  In class, Nora

answered Teacher 3’s questions using nonstandard language, but precise language was

neither used nor expected.  For example, when Teacher 3 asked why ln e = 1.  Nora

replied, “Because it is itself.” This comment was not discussed or questioned; rather, the

lesson continued with no further explanation. Knowing how to represent the problem

orally was not necessary.  Teacher 3 understood Nora’s response and her response was

sufficient.

Nora’s written representations differed from her oral ones. Her written notations

were used to perform on tests, whereas her oral ones were used to participate in class.

Because getting the highest grade in the class was Nora’s goal, knowing how to use

correct notation was very important to her.  Oral representations were simply for finding

out how to do the problems and for being recognized in class. The onus was on Teacher 3

to find a way to make sense of Nora’s utterances. Both Teacher 3 and Nora accepted this

unspoken contract regarding classroom communication.

Connection.  During the instructional phase of the study, Nora used connection

between written representations most often.  She focused on adopting and creating
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written representations.  Nora’s homework illustrated she moved easily between written

representations of the logarithmic function. She used all the notations from her map in

her homework. Knowing how to use these representations to do problems made Nora feel

“extremely confident.”  She completed the test on inverse, exponential, and logarithmic

functions in 25 minutes.  Following the examination, she came by my office bubbly and

excited and explained that the test was “easy.” The exam consisted primarily of

simplification, evaluation, and equation problems.  Nora had no difficulty with these

problems because they were simple applications of the written notation she was so good

at using.  Her focus on written representations and connections between them produced

the desired result.

The categories Nora chose for her map were connected to notation as well.  Each

referred to or was related to how to do problems using written notation.  Hence Nora’s

written names and notations were connected.

All the connections that Nora drew were focused on being able to do problems

and represent what she was doing correctly.  These connections were developed to help

Nora perform on the test.

Application.  I saw very little evidence of application during the instructional

phase. Nora used properties of the logarithmic function, such as logab
x = x logab, during

class discussions and referred to this property as “pull the x out front.”  She also used her

calculator in class to evaluate logarithms such as ln 5 and log5 23.  In general, Nora

attempted to learn how to apply the properties of the logarithmic function to solve

exponential and logarithmic equations.

Beliefs

During the instructional phase, Nora’s efforts to understand the logarithmic

function focused on preparing for the test.  Initially, as she confessed during Interview 9,

she found the function both exciting and scary, but she quickly acquired written notations

and learned when and how to apply them.  Her capability with these representations made

her feel confident.  She believed the logarithmic function was easy.
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1. I know how to do the problems associated with the logarithmic function, so I

understand it.

2. The logarithmic function is related to the exponential function.

3. The properties of the logarithmic function are adapted from the exponential.

4. Use your calculator to compute logarithms.

5. It is important to learn the written representations involved in translating between

exponential and logarithmic forms and in applying the properties of logarithms.

Nora’s Understanding of the Logarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception.  During the preinstructional phase of the study, Nora viewed her

mathematics grades as a source of confidence and pride, and as a measure of her

knowledge of mathematics. During the postinstructional phase, Nora’s view of her grades

shifted. During Interview 4, while Nora was doing skills assessment, she commented, “If

I can make an A on the test, I should be able to do well on this.”  She made similar claims

later in the same interview. Two weeks later, during Interview 9, Nora’s view of what her

grade in college algebra meant had changed.  She felt she had not learned enough in

college algebra and that “the A wasn’t completely earned.”  She even remarked, “Since

coming back from the semester and me not understanding it [the logarithmic function], I

feel like I should go back and do college algebra again.” Nora was not able to finish any

of the tasks I gave her during the postinstructional phase and was dismayed that she

“didn’t know how to use” the logarithmic function to solve them.  Since Nora could not

do the problems, she felt she did not understand.

Nora generally viewed the logarithmic function as related to the exponential

function.  She was able to remember the properties of the logarithmic function by

recalling the properties of the exponential function.  According to Nora, she could then

use the properties to “do” problems involving the logarithmic function.
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Nora’s conception of the logarithmic function during this phase was that she no

longer understood it because she could not do the problems in the interview tasks.  She

also related the function to the exponential because of the similarities in their properties.

Representation.  During the postinstructional phase of the study, Nora used all

four representational modes to illustrate or investigate various characteristics of the

logarithmic function. Although, Nora's primary mode of representation was written, how

she used oral and pictorial representations is also of interest here.

The oral representations that Nora used were names, notations, and maxims. Like

the other participants, Nora had a procedure she called convert.  She described the

procedure during Interview 8 as a two-step process:

N: To me all it was was changing it [logarithms] to exponential form. So

that is all I did was change it to exponential form.  And if I didn’t know

the power, then I put it back in log form and did a change of base formula

and got the exponential that it needed to be powered by.

She used the procedure to solve most of the problems involving the logarithmic function.

First, she changed the logarithmic expression (e.g., logba = c) to an exponential one (bc =

a) to see if a was a power of b.  If it was not, second, she converted the expression back

to logarithmic form and used the change of base formula and her calculator to compute

the answer. The terminology Nora associated with this procedure was correct, but her use

of terminology in general was flawed.  For example she used the term similarity instead

of symmetry to refer to the relationships between the graphs of the exponential and

logarithmic functions.  Nora’s confidence in and familiarity with her convert procedure

made it easy for her to talk about it.

Although Nora made errors in her reading of notation during the skills

assessment, — she wrote log3 .8, but said “log base three to the point eight”— during

subsequent interviews she read notation correctly.  She also used maxims to remember

the “rules” of the logarithmic function.  For example, she recalled that “when you

multiply, you add.”  Her first translation of this maxim to written notation was log a + log
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b, ab, but she noted that her representation did not “look right” and changed it to log a +

log b = log ba.

As in the instructional phase of the study, Nora considered written representations

to be most important.  When I pointed this out to her during Interview 9, she was not

surprised.

S: Can you shed any light on my whole idea that you think of the written

representation first and then you try to work off of that?

N: I think you’ve got it right there, because I did that in high school and I

do it now.  I think for me it benefited me, because I’ve always done pretty

well.

Nora had learned how to write notations and do problems, and she had been very

successful. She attempted to use the same strategy during this phase of the study.

Regardless of the mode of representation in which the logarithmic function was

presented, Nora attempted to use written representations to make sense of them.

The map that Nora drew during Interview 4 (Figure 26) is indicative of Nora’s use

of written representations.

Figure 26.  Nora's map of the logarithmic function constructed during Interview

4.

Included on the map are names and notations.  In particular, the category looks

refers back to Nora's impression of how the function should look.  Also included are the

terms convert and rules.  Nora saw these two names as referring to different objects.
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Convert was the name of a computational procedure. Rules was the name of a group of

properties of the logarithmic function, that were useful in solving problems that convert

could not.

Although the notation Nora used on her map was standard, she also generated her

own notations and modified given notation.  During Interview 5, Nora represented the

relationship between the signs and the numbers on the number line as number on the line

= 2sign number.  She did not see the data in the task as indicative of logarithmic relationship.

Instead she wrote the relationship in exponential form and transformed it into logarithmic

form to find the sign number corresponding to the number 3.  During Interview 6, she

used function notation to represent her procedure.  Nora wrote f( ) × 2 and then f(2û2) =

one greater.  She explained, “ multiply it [domain value] by two.  It [the range value] is

always going to be one greater.”  This use of notation illustrates Nora’s confusion with

the function notation.  She often used the notation incorrectly.  To explain the graph of

the logarithmic function passed through (0,1), she wrote f(log) (0, 1). When she was

asked to construct a table of values for the function f(x) = log3 x , Nora asked me, “What

is y going to be?”  I could not associate Nora’s use of notation to any standard meaning.

The pictorial representations that Nora used were graphs I asked her to generate.

On the skills assessment Problem 5 asked for the graph f(x) = log2 x.  Nora used her

calculator and graphed f(x) = 

€ 

log 2

log x
. She hesitated for a moment saying “one comma zero

should have been [on it],” but quickly moved on to the next problem. When I asked Nora

to compare Problem 5 and 6 (develop a table of values for f(x) = log3 x) she noted that

both should pass through the point (1,0).  It also became clear the graph of the

logarithmic function in Nora’s mind was both the logarithmic function and its inverse.

She drew a graph of the function during Interview 8 (see Figure 27). When she drew this

graph Nora
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Figure 27.  Nora's graph of the logarithmic function from Interview 8

When she drew this graph Nora also explained a bit about it:

N: I don’t remember too much about the graphs. I know it is going to look

something [gets paper] the log graph.  Just the basic log graph is going to

look something like…  It is going to have an asymptote at zero [y = 0,

draws while talking].  And that is going through zero comma one and it is

going to go through zero comma one [draws the exponential function].

And f inverse is going to go through one comma zero and it is going to

have an asymptote like that [referring to the y-axis] and then it will have

symmetry [draws y = x dotted line].

S: So which one of those is the log graph?  Or is it all the log graph?

N: It is all log, but this is just the f and this is the f inverse [labels the

exponential function f and the logarithmic function f(-1)].

Nora's drawing and her comments resolved much of my confusion about her view of the

graph of the logarithmic function. Teacher 3 drew this picture on both days the

logarithmic function was discussed in class. In addition, on the test, both functions were

drawn on the same axes.  Nora failed to distinguish between the graphical representations

of these two functions.  She saw both curves as part of the logarithmic function.
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The representations Nora used during this phase of the study were oral, written,

and pictorial.  She used names and notations in oral and written form.  She used maxims

to help her remember the properties of the logarithmic functions.  Her graph of the

logarithmic function included the exponential function as a component.

Connection.  The connections Nora used during the postinstructional phase of the

study were related to her convert procedure and properties of the logarithmic function.

Connections between oral and written representation of the convert procedure occurred in

that order.  For example, during Interview 5 after many trials, Nora mapped 2  to 
1

2
.

Following this breakthrough, I asked her to find the sign that corresponded to 3.

S:  Okay, now what is going to go with three?

N:  Three would be where the square root of two would be [in the written

representation].  Where is my scratch [paper]?

S:  There it is.

N:  Three would be where the square root of two is going to be, so it

would be two to some power, right?  Two to some power would equal

three (Writes 3 = 2x on scratch paper).  Now I could convert that to log

form.

S:  Maybe so.

N:  Yeah.  Because you could do the log base two to the third equals x

(writes log2 3 = x).  And then I could do log two divided by log three.

(Nora is still using the wrong change of base formula)  I get point six three

oh nine (.6309).

Nora used her map for the square root of two as a template for this problem.  Her oral

representations, for example "Two to some power would equal three," preceded the

written ones, 3 = 2x. Nora’s convert procedure in oral form was connected to written

notations.



131

Nora also connected her oral maxim when you add you multiply to the written notation

log a + log b = log ab.

The primary connections Nora formed among representations during the

postinstructional phase were between oral and written.  She expressed a relationship

orally and then wrote it on paper.  This is distinctly different from how Nora operated

during the instructional phase of the study, where the onus was on the listener to establish

mathematical meanings for her utterances.  During the postinstructional phase, she

attempted to coordinate her oral and written representations.   Since I was not willing to

tell her if she was correct, she attempted to draw conclusions from my reactions to her

remarks.

Application.  Nora applied her convert procedure to logarithmic and exponential

equations.  Her application of the procedure included the change of base formula and the

calculator.  Nora explained how she used the change of base formula during Interview 4

when asked her to explain why she felt her simplification problems on the skills

assessment were incorrect:

I distinctly remember, if you can’t find the answer just do log base.  Do it

in the calculator.  Hit log, then you do whatever the base is, hit your

parentheses, divide log again.  And then do the number that is beside

[referring to the argument] whatever the number is called, and then hit the

parentheses again and then you can solve it that way.  That’s where I

remember decimals.  That’s why I didn’t feel like that one was right

[referring to Problem 3b. log3 4 − log3 5].  I didn’t remember too many

decimals on those [simplifying problems].

Nora explained that when she could not evaluate log3 4, she used the change of base

formula to rewrite the expression and her calculator to evaluate it. For Nora the convert

procedure, change of base formula, and the calculator were all associated. During

Interview 7, when she did not have her calculator she had a difficult time filling in the

table. Half-way through the interview, after several solution attempts, she said: "I need
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that log button. I keep thinking I can do the change of base formula." One of the key

components in her convert procedure was missing, so Nora could not fill in the table.

Nora was not aware she linked her convert procedure, the change of base formula,

and the calculator.  In general, she viewed using the calculator as cheating. When I asked

her to graph a logarithmic function during the skills assessment, she said, "Let's cheat."

When I asked her if she could match a function with its graph, she said "I would cheat,"

and graph each function using her calculator.  When Nora found a solution path using her

calculator and successive approximation to fill in the table during Interview 7, she called

her method cheating. Nora claimed that she was "addicted" to the graphing calculator, but

in my view she had become adept at using it. She knew how to convert logarithmic

functions to exponential form, and how to use the calculator to find values.  She applied

her knowledge of both the logarithmic function and the calculator to calculate answers.

Beliefs

The central elements of Nora's understanding of the logarithmic function during

this phase of the study were: her convert procedure, properties of the logarithmic

function, and the graph of the function. Her convert procedure involved transformations

between logarithmic and exponential form, the change of base formula, and her

calculator.  The term convert was connected to both oral and written representations.  She

remembered several properties of the logarithmic function because she associated them

with laws of exponents, but in practice Nora only applied them when they were presented

in forms she had seen before.  For example she knew "if you subtract you divide," but she

could only apply the property when she saw log3 4 - log3 5.  She was unable to apply the

properties to the table completion problems in Interview 7.  Finally, Nora's idea of the

graph of the logarithmic function was what I would call iconic.  She saw it as a picture

with components that she remembered, but combined the exponential and the logarithmic

functions saying they were both pieces of the graph of the logarithmic function.

1. Getting an A in college algebra does not mean that I understand the logarithmic

function, since I cannot do all the problems I am being asked to do.
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2. To solve logarithmic equations convert to exponential form or use the change of base

formula and the calculator.

3. The graph of the logarithmic function passes through the points (0, 1) and (1, 0), has

asymptotes on the axes, and has a line of symmetry at y = x.

4. To solve problems with logarithms you need to know three rules that are some how

generated from the laws of exponents: “if you subtract you divide,” “if you multiply

you add,” and “log of one is always zero.”

5. The calculator is a necessary tool for evaluating logarithms.

Changes in Understanding

Nora’s understanding was influenced by her attempts to make the highest grade in

her mathematics class.  During the preinstructional phase, Nora remembered very little

about the logarithmic function from high school.  The strategies she used to do the

problems on the skills assessment were based on notations she had seen before.  She

treated the log3 as if it was a variable, applying the distributive property to the sum of

logarithms and the associative property to the product of a constant and a logarithm.  In

addition, Nora pointed out the log key on her calculator and commented that if she knew

how to use it she could solve the problems. Nora mimicked the written notation from the

skills assessment and used it to write answers to the simplification problems.  Nora

wanted to make sense of the marks on the page and made logical attempts at doing so.

Noticing that the calculator could help and trying to acquire notation were Nora’s

attempts.

During the instructional phase, Nora was told how to do particular types of

problems and what properties were important and useful in solving logarithmic and

exponential equations.  In her quest to do well on the exam, Nora paid close attention to

what was said in class and faithfully did her homework.  She quickly learned how to do

the problems that Teacher 3 showed in class using a transformation of the logarithmic

function to exponential form, the change of base formula, and her calculator.  Nora

gained what Skemp (1976) called instrumental understanding of the logarithmic function.
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She paid close attention to the written representations that were presented in class, but

virtually ignored any other form of representation.  On the test, she was successful.  She

could do the problems with ease.  Nora felt she understood the logarithmic function.

During the postinstructional phase, Nora was surprised that she had difficulty

applying logarithmic function and its properties to the tasks I gave her.  She believed

making an A in the class meant she knew virtually everything about the logarithmic

function.  By Interview 9, Nora’s view of her own understanding of the logarithmic

function had changed.  She felt that she did not understand the logarithmic function.  She

pointed out that she knew each of the tasks was somehow related to the function, but “I

just didn’t know how to use them.” Nora was able to apply the convert procedure and

could state and give examples of some of the properties of the logarithmic function.  She

was unable to explain how the properties were derived and could not apply them to

situations other than those she had seen in class. Nora also had trouble with graphing.

Nora’s understanding of the logarithmic function changed in each of the three

phases of the study.  She acquired skill in solving standard problems using written

notation during the instructional phase.  During the postinstructional phase, Nora found

the problems difficult, but did not give up easily.  She eventually constructed solution

procedures for the tasks, in part due to her persistence. Her reliance on written

representation generally hampered her problem solving.  She never used other

representations to gain insight into the problems.  Nora’s awareness that making an A in a

course is not a measure of her mathematical knowledge was a marked change from her

preinstructional and instructional views.  Still Nora’s belief that understanding a

mathematical concept means one can do problems associated with it did not change

during the course of the study.

Ways of Knowing

Nora exhibited powerful ways of knowing during the postinstructional phase of

the study.  First, she knew how to transform expressions in exponential and logarithmic

forms.  When she saw a logarithmic expression or an exponential equation, she was able
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to simplify, evaluate, or solve it.  No other student in the study displayed this level of

procedural proficiency.  Connections between her procedures and why they work could

easily be developed.  When I asked Nora to show me how the properties of exponential

and logarithmic functions were related, it bothered her that her example (sum of the

logarithms is the logarithm of the product because 32 + 33 = 36 ) was incorrect.  She

expressed a general dissatisfaction with her knowledge.   She wanted to know how and

why the logarithmic function worked.  Nora’s curiosity and persistence could be used to

encourage the growth of her understanding of the logarithmic function.

Second, Nora realized during Interview 7 that her table completion procedure was

inefficient.  She looked for a simpler method, but eventually used successive

approximation as Jamie and Rachel had.  During the interview, I encouraged Nora to look

for a relationship between log3 2, log3 4, log3 8. Nora did not appear to connect the three

expressions, she did notice that log3 4 was twice log3 2, and that log3 8 was three times

log3 2, she never connected this observation to a property of the logarithmic function or

to powers of two. Nora had difficulty seeing number patterns due to a very limited view

of number.  She preferred to use decimals not fractions.  She insisted on converting

fractions such as
1

2
, 

1

4
, and 

1

8
 to decimals, which made the commonalties between the

numbers during Interviews 5 and 6 more difficult to see.  After much prompting on my

part, Nora did identify the number line numbers in interview 5 as powers of 2.  If Nora

learned more about numbers and their various representations, she would understand both

exponential and logarithmic function better.

Third, Nora was aware of inconsistencies in her answers.  During Interview 5,

Nora initially used linear interpolation to find the sign above the number 2 .  Later in the

interview, when she conjectured the product of any two numbers on the number line

should correspond to the sum of their signs, I questioned Nora about 2 .  I noted if

2 did correspond to 0.4 as she had suggested, then 2 should correspond to 0.8.   This

counterexample eventually resulted in Nora’s awareness of a relationship between the
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number line numbers and the sign numbers that she used to find the sign number above

any number line number.

Nora’s awareness of inconsistencies and desire to eliminate them, could be used

to develop her understanding of the graph of the logarithmic function.  During the skills

assessment, Nora had no difficulty constructing a table of values from a graph and a

function.  If Nora were to construct such a table from her graph of the logarithmic

function and develop a table of values for the logarithmic function, she would be

interested in resolving the inconsistencies she would find.

Nora’s ways of knowing provide opportunities for the growth of understanding.

She had developed instrumental understanding of some aspects of the logarithmic

function, in particular, how to solve and simplify problems.  She was curious and when

she was aware of inconsistencies, she attempted to eliminate them.  These ways of

knowing could be used as the basis for growth of understanding of the logarithmic

function.

Demetrius

Getting to Know Demetrius

 In the fall of 2000, Demetrius transferred to RC as a 20-year-old sophomore. His

first year he attended a two-year college in Alabama to play basketball.  Demetrius loved

the sport and often used basketball analogies to explain his interpretation of the world.

For example, during Interview 3a Demetrius commented that Teacher 3 explained how to

do things the “hard way” using notations and formulas like the book, “I know it [math] is

suppose to be hard.  It is suppose to be art or perfection, you know, but he [Teacher 3]

can just state it.  Like. it is simple really.  But he wants to make it all confusing.”   This

comment mystified me, so during Interview 3b I asked him to explain it.

I work hard in the game and I try to get as good as I can.  I try to perfect

that sport.  I try to be the best in that sport because I love that.  For the

love of basketball….  Some people love math like Teacher 3.  I feels he

loves math or he wouldn’t want to go in that field and teach it.  He loves
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math and tries to be the best he can in it.  He has a big smile, a grin from

ear to ear, when he is up there teaching because he loves it.   Because it

works out and he can see it and he understands it.  You want to make

people feel about math like you feel.  Like, if I like math, I want to make

people see what I see and love math like I love math.  So for him to be a

math teacher, you know, he is going to do the best he can and he is going

to perfect it.  He just loves it.  He doesn’t want to see it wrong.  Just the

right way.  The way you should write it.  That’s how he wants it.  He

wants it done that way because it’s just, that’s the way it is.

Demetrius believed Teacher 3’s love of mathematics was like his love of basketball.

According to Demetrius, Teacher 3 wanted to see mathematics written perfectly like

Demetrius wanted to see basketball played. While at RC, Demetrius practiced with the

team but was redshirted to preserve his years of eligibility.  He planned to transfer to a

four-year college in fall 2001 to play basketball and pursue a bachelor's degree.

Demetrius wanted to become a special education teacher.  He started college with

the goal of becoming a physical therapist.  As the courses became more difficult and

Demetrius realized how long it was going to take to get his degree, he decided to change

his major.  Demetrius explained he selected special education because he wanted to help

people.  He volunteered for the study because he needed the money and saw it as an

opportunity to help me.  Demetrius planned to earn a master's degree before he began

teaching.  He explained his educational goals during Interview 2:

Maybe, if I am lucky enough,... if I’m fortunate enough to get my 6-year

specialist or whatever.  You know, I feel like my brother has set the path

for me.  He is a doctor in education. So, maybe, if I still have the will and

drive by then, and don’t get satisfied with the income, I will go on and

become a doctor, get my Ph.D., become a doctor in education.

Each of Demetrius’s siblings had attended college, a tradition he hoped to carry on.
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Demetrius’s family was an extremely important part of his life.  He and his older

sister traveled 85 miles home each weekend.  Demetrius was the youngest of six children.

His oldest brother was the principal of a middle school and was like a father to him.

Demetrius’s other brother was a probation officer, two of his sisters were teachers, and

one was a registered nurse. The sibling closest to him in age was 29.  The others were

“grown folks,” whom Demetrius admired and respected because of their ages and

accomplishments.  Demetrius credited his mother with his family's academic success. She

had worked in a factory all her life to support her children. When each of her children

was old enough to get a summer job, she found some sort of assembly line work for

them.  This experience was pivotal for Demetrius. After a long summer of assembly line

work, when the foreman asked Demetrius to continue working in the fall, he replied, “I’m

finished.  I’m getting my education.”

Demetrius lived on campus and did not work a traditional job. At our first

meeting he gave me a pamphlet for prepaid legal services.  For a certain monthly fee the

service provided legal counsel if it was ever needed.  Demetrius was an associate for the

company and sold the policy in his spare time.

Demetrius as a Mathematics Student

Demetrius described himself as a caring and committed mathematics student.

I don’t have really strong math skill, … but I describe myself as a person

that is eager and willing to learn it.  Even though I might not use it in life,

just to accomplish it.  Because I know it is a challenge to me. Myself...so I

feel like, you know, achieve, master learning it.  I feel like, it will be,...that

it is a self-achievement for me.  You know what I’m saying?…Because

that is just like anybody else.  If there is something they can’t do that well

or something they want to know more about, even though they can’t do it

that well, they are still going to work hard to achieve it,  even if they don’t

use it in life….   And I know it is something I’ve got to have anyway to go

on.  So, I would describe myself, as a person that is eager and willing to
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learn and to do the best I can in it.   Even if that’s a C, you know, that’s

the best I can do.   Or if it’s a B, the best I can do.

Demetrius saw mathematics as a challenge, but useless for his career.  It was also an

obstacle he had to overcome to achieve his goal.  He had never done well in mathematics

and had been frustrated in his high school mathematics classes:

S:  Think of a time when you felt despair or frustration about your learning

activities and tell me about that.

D: Okay, once again going back to high school.  Well, I felt like this every

day in math class actually.  Because, like I said, I wasn’t a math student.  I

wasn’t really math oriented, smart.  I wasn’t that smart in math.  Just being

in college prep. I’d say algebra in 9th grade. Just being in that class,

feeling so confused.  And then frustrated and confused, to where I didn’t

want to raise my hand and ask questions because they might have been

stupid questions.  Or they might have been a question and she would look

at me like, you know, because there were a lot of people that did

understand and a lot of people that were smart.  So I didn’t really want to

ask questions, and I felt like in that class, I’m by myself, frustrated, and …

that I wasn’t that smart,  and I shouldn’t be in there….  I used to get most

of my help, like I said tutoring, or even after class, because I didn’t really

ask any questions in class.  That was probably part of my problem.  And I

came out with a C in it, but I probably would have come out with a B or

maybe even.  Well, I won’t say an A or maybe a B, if I would have asked

questions.

Demetrius felt he did not understand mathematics and was not “smart in math.”  During

class he would listen, but still be confused.  His feelings about his own performance and

how he behaved in class had not changed since high school. Each 75-minute lecture in

college algebra was a test of his attentive powers.  Each day Demetrius came to class

determined to listen and be persistent, during class as the minutes ticked away and he
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became perplexed.  He listened less and daydreamed more, “after a while you listen and

you lose them or they lose you…and you just go to daydreaming after that.” Demetrius

daydreamed to escape his frustration with not understanding.  He mentioned the

importance of listening in 8 of the interviews.  In Demetrius's view, a good student is one

who listens and tries.

Demetrius participated in class by asking questions and doing the seatwork that

Teacher 3 suggested.  Although he did not participate nearly as much as Nora, Demetrius

asked questions when he was confused or when he wanted to know if his answers were

correct.   Demetrius sat near the back of the room in a column of desks near the door.  All

four of the African American students in the class sat in these first two columns.

Demetrius often talked to the young woman in front of him, asking her questions about

mathematics problems and daily events before and after class.  Demetrius’s notes were

extremely neat and he was judicious in what he wrote down as long as he was not feeling

confused.  When he gave up and started daydreaming, he was more indiscriminate about

what he recorded and spent time doodling in his notebook.

Demetrius’s goal for the class was to pass. During Interview 2, he explained:

The most important thing to me is that grade.  You know.  Okay...I’m not

going to say that.  The most important thing should be understanding, but

me personally, the most important thing is that grade.  Because, you know,

I’ve got to have that grade to move on. The most important thing should

be…understanding it.  Because that is what education is all about, you

know, learning.  But, then again that grade is the most important thing to

me because it is how you move on.

To achieve his goals he had to pass college algebra.  Demetrius explained during a later

interview, only mathematics majors needed to understand the material.  He would not

need to know mathematics for his major, so passing the course was sufficient.

Using a combination of techniques, including regularly attending the AAC,

getting my help on a regression project, taking notes, and studying Demetrius was able to
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pass college algebra with a C.  He had hoped for a B, the grade he went into the final

exam with, but the C was acceptable to him.  College algebra was Demetrius's terminal

mathematics course.

Understanding Mathematical Concepts

Demetrius had idealistic and realistic views of understanding. He explained his

idealistic view during Interview 2, when I asked him to define understanding:

The term understanding.  Not memorizing.  Not just knowing how to do it

when you see it, but understanding what you are doing and why you are

doing it.  But you can memorize some….  But you’ve got to understand

exactly what you are doing and why you are doing it, because there might

come a case when it is a different situation from that.  You know what I’m

saying.  It is a different situation in that case and you’ve got to know

exactly what you are doing to maneuver around the differences in those

two cases.  So, you’ve got to fully understand what you are doing to a

problem when you are doing it.  Instead of just memorizing how the

teacher showed you to do it.  Because you can’t do every problem the

same exact way…I think understanding is just...understanding thoroughly

and about what exactly are you doing to the problem and just...well, it is

just the opposite of memorizing.

Ideally, he felt he should know both how to do problems and why he was doing them a

particular way.  Realistically, his primary concern was passing the college algebra tests.

Knowing why was not something he was going to be tested on as he explained during

Interview 9:

Okay, let me see how to put this.  I think I...memorized [the material

associated with the logarithmic function] because there were some things

that if I understood it completely, I would have known in our interview.

There where a couple of things that let you know then that I didn’t really

fully understand what was going on, but I knew how to do it…I just knew
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what I needed to know to pass the test.  You know, the test wasn’t about

telling why this happens and why this.  You know what I’m saying?  I just

understood what I needed to know and what I needed to do.  So I can say,

in a sense I understood what I needed to do, but I didn’t understand why it

was going on.

Demetrius was always very candid and reflective in his responses.  He realized

understanding meant knowing both how and why, but he also knew sometimes in a

mathematics class you have to be practical.  Being practical in college algebra meant

learning to do enough problems to pass the tests.

Demetrius’ Understanding of the Logarithmic Function: Preinstructional Phase

Demetrius remembered seeing the logarithmic function in high school. “I

remember it was a certain base or a certain thing you go by every time.  Like,...this part

right here means this and this part right here means this and this part right here means

this.”  This vague description was similar to Nora’s, but includes the term base.

Demetrius remembered very little about the function prior to attempting the skills

assessment.

Evidence of Understanding

During this phase of the study three categories of evidence were significant.

Conception.  Demetrius remembered the logarithmic function as “kind of easy.”

His Algebra II teacher had presented the concept as one that would help students improve

their averages. This view did not persist. It took Demetrius approximately 70 minutes to

complete the skills assessment.  He spent more time on it than the other participants.  He

worked very carefully, but was disappointed in his performance.  While doing the

assessment, he became frustrated but wrote an answer for each problem.  His answer for

the properties of the logarithmic function was: “Whatever you do, it’s basically the same

concept you do all the time.”  Following the assessment, he concluded, “I didn’t

remember anything.”  Demetrius remembered the logarithmic function being presented as

an easy mathematical concept, but he was unable to do the problems I asked him to do.



143

One element of his conception of the function was that it should be easy, but was not for

him.

Demetrius thought of the logarithmic function was as a collection of symbols and

problems.  On the skills assessment, he defined the logarithm with the notation 3 log,

base, and the logarithmic function with the notation 2 log2.  His meaning became clear as

he completed the mapping task (see Figure 28).

Figure 28.  Demetrius’s map of the logarithmic function from Interview 1.

Logs were associated with two categories: one as objects that were used to make up a

logarithm, and as types of problems to be done.  The category, things to do to them, is a

collection of problem types including some from the skills assessment problems:

simplify, evaluate, and graph.  The second element of Demetrius’s conception of the

logarithmic function, was as a collection of symbols and problems.

Representation.  During the preinstructional phase, Demetrius used both written

and oral representations for the logarithmic function. His written representations were

like Nora’s. He also used the distributive and associative properties to simplify and

evaluate the logarithmic expressions on the assessment.  When I asked him what he

understood most from the activity, he selected the simplification problems.

It seemed like it [the simplification problems] was just a regular addition

problem.  That is something that will stick with you, something that easy.

Probably seemed easy, like, because, you know, with regular addition it is



144

easy anyway.  You get problems like that and you are taught how to do

them and they are that easy.  I guess they stick with you.

Demetrius recalled his teacher had said the concept was easy, so he did what seemed

easy.  He treated the logarithm as a variable and found log3 4 + log3 5 = log3 9 .

Demetrius also used the written name base on his skills assessment and his map.

He included it on each of the maps he constructed.  For Demetrius the base was a

significant feature of the function, although he admitted during Interview 9 he did not

know why it was important.

Demetrius’s oral representations included names and maxims.  Demetrius recalled

the term base and even knew where it belonged in the notation.  He stated and applied the

maxim, “if the bases are the same you can add logarithms.”  Unfortunately the maxim

provides very little detail and Demetrius’s application produced incorrect answers.

Connection.  In Demetrius’ written work, there were connections between names

and notation and among notations.  In particular, early in the skills assessment, Demetrius

indicated he knew base was associated with the subscript in a logarithmic expression.  He

also connected the notation log3 4 + log3 5 to the notation log3 9.

Demetrius associated his oral maxim with written notation.  He generalized his

action of adding two logarithms into an easy to remember phrase.  “If they have like

bases, the logarithms can be added.” His actions and his map suggest that Demetrius had

and used other maxims about multiplying and dividing logarithms that he did not state.

Beliefs

Demetrius’s beliefs were primarily derived from his algebra teacher’s remarks

about the function and the skills assessment.  Since he felt his teacher was “very good,”

he trusted her judgement about the logarithmic function. He used his belief that the

logarithmic function was easy and maxims about like bases, to simplify logarithmic

expressions. He also recalled that the logarithmic function had a base and knew its

position in the notation. The only other student to remember this terminology was

Rachel, and she had taken the course just two semesters earlier.  For Demetrius, the skills
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assessment provided information about the types of problems that could be solved with

the logarithmic function and the notation he should use when writing the function.

1. The logarithmic function should be easy because that is what my teacher told me.

2. The base is part of the logarithmic function and is written as a subscript.

3. If two logarithms have the same base you can add, subtract, multiply, or divide them.

4. Knowing how to combine logarithms means that you know how to evaluate, simplify,

and graph.

5. The logarithmic function is a collection of symbols that I need to know how to

combine.

Demetius's Understanding of the Logarithmic Function: Instructional Phase

Evidence of Understanding.

Conception.  Demetrius’ conception of the logarithmic function during this phase

of the study, was that it was easy and associated with a collection of procedures.   He

explain his view during Interview 3:

S:  Is there anything else you can tell me about what went on in class

today that will help me understand how you are understanding the

logarithmic function?

D:  It is basically a routine.  You are doing the same pattern.  Everything

you are doing the same thing depending on the situation.  And basically

you've got to get familiar with what you've got to do.  What they ask you

to do.  Basically you are doing the same pattern.  Going from one form to

another to work out the problems, to evaluate the problems.  And just go

by your rules.  That is basically it.  Logs could be simple, you just learn

the rules and learn what you do for a situation.  There isn't anything real

hard about it.

For Demetrius logarithms were simple.  He learned how to apply the logarithmic function

to evaluate expressions.  Since he could solve problems, the function was easy.
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Demetrius saw the logarithmic function as a collection of problems that were easy to

solve if he knew the rules.

Representation.  During the instructional phase of the study, Demetrius used oral

and written representations.  His oral representations were names and maxims.

Demetrius used names to identify problem types and to refer to properties of the function.

He identified two problem types by name: evaluating and going from logarithmic form to

exponential form.  He used these names during Interview 3, as he explained why students

might find the logarithmic function difficult to learn:

Maybe because there are so many ways that you can do a problem.  You

try to apply this way, … when you were suppose to have done it this way,

for this problem.  Like, as far as those certain steps.  Like when you are

evaluating.  You can go about doing it different ways.  Sometimes you

like to get mixed up or do the wrong thing.  You have to pay attention to

what exactly the question is asking for.  Because you can even evaluate

something,…you know, you might try to do something to it when you

were suppose to have left it in that form.  For instance, like they said go

from logarithmic form to exponential form.  If you don't catch that,…you

might try to evaluate the exponential form, if you’re not listening

carefully.

For Demetrius, knowing what procedure to apply to a problem was important.  He felt if

he did not apply the correct procedure, his answer would be wrong.

The second type of oral representations Demetrius used was maxims.  When the

properties of the logarithmic function were introduced in class he had difficulty

remembering them. The notation log A + log B = log AB was confusing for Demetrius, so

he adopted maxims presented in class to help him remember the properties. He used the

maxims "if the two logs are subtracted, then you divided them” and "when you add them

(logarithms) you multiply." Using these maxims, Demetrius was able to evaluate

expressions in logarithmic form, but could not solve logarithmic equations such as
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log2 x + log2 (x  - 2) = 3 from his test.

The primary sources of Demetrius's written representations of the logarithmic

function, were his map, class notes, and homework. He used standard notation for the

logarithmic function in his notes and on his homework. His map included names, but no

notation (see Figure 29).

Figure 29.  Demetrius's map of the logarithmic function instructional phase.

This map is similar to the one Demetrius constructed during Interview 1.  He still

depicted the logarithmic function as a collection of problems (thing you do to them) and

symbols (things that make them up). Names of problems were those commonly used in

class, calculate and evaluate.  Names of symbols were base and numbers, as they had

been during the preinstructional phase, but he also included the names of collections of

symbols: rules and formulas.  Like Nora, Demetrius identified the logarithmic and

exponential forms on his map.  Log form and expon. form refer to the translation of an

expression from one form to another.

Connection.  Demetrius connected his oral representations.   In particular, he

connected the term rules with his maxims.  He talked about applying the rules during

Interview 3 as he explained how to solve the logarithmic equation (log2 x + log2 (x  - 2) =

3) he did incorrectly:  "Our rules apply. When you add them, then you multiply.  They

have the same bases."  Demetrius associated the properties he called rules with the

maxims. These connections helped Demetrius do problems.
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Application.  Demetrius applied the properties of the logarithmic function to

evaluate logarithmic expressions.  He used maxims to solve problems with addition and

subtraction of logarithms and was able to simplify expressions such as log5 625 by

expressing 625 as an integer power of five and in his words the answer "equals the

exponent.”  Hence, if Demetrius saw the symbol log, he knew there was a collection of

problems to solve and procedures to solve them.  The challenge was matching the two.

Theories

The primary focus of Demetrius’s efforts during the instructional phase, was

development of procedures and learning when to apply them to the correct problems. His

beliefs reflect this focus.

1. Logarithmic functions are simple, if you just know what rule to apply to a problem.

2. Two types of problems one needs to know how to do are evaluating and how to go

from one form to another.

3. Two forms of the logarithmic function are exponential and logarithmic.

4. There are many rules that are used to solve the logarithmic function, but they can be

explained most simply with maxims.

5. Two maxims that are especially useful are “when you add you multiply” and “when

you subtract you divide.”

Demetrius’s Understanding of the Logarithmic Function: Postinstructional Phase

Evidence of Understanding

Conception.  Demetrius’s concept of the logarithmic function during the

postinstructional phase of the study, was that he understood the function, despite his

inability to do problems with it.  Being able to remember doing problems from class, but

not being able to do similar problems on the skills assessment, frustrated him.  He

explained during Interview 4:

S: Can you pick out a problem and tell me about not understanding?

D: I can pick out several.

S: Well, just pick out one.
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D: For the most part, over all, I think it was mind boggling because I

didn’t remember hardly anything.   And I had to stretch my brain and I

was, “dog, I should have known some of these.”  So I felt, kind of like, I

didn’t learn anything in logs.  Some of these graphing problems.  Graph

the function f of x equal log base two x on the axis provided.  I had no

idea.  I didn’t even attempt that one.  I didn’t even know where to start.  I

don’t even really know if I even knew it some weeks ago, when we were

doing the chapter.  I had no idea of where to even think of where to start

graphing.

Demetrius was disappointed in his performance and viewed his knowledge of the

logarithmic function as lacking.  During Interview 7, with prompting from me, he

eventually transformed a logarithmic expression into exponential form and used the

calculator to solve the exponential equation, but commented, "I still really don't

understand it.  I can memorize it, but that doesn't mean I understand it." He knew how to

do the transformation, but could not explain why it worked.  Despite making these

remarks, when I asked Demetrius during Interview 9 if he understood the logarithmic

function he replied, "I would say yeah, I understand them."  His rationale was that he

knew enough to pass the test:

For somebody that is probably a math major, they need to know

thoroughly why something is done.  I just need to know what I needed to

do to pass, but they needed to know completely.  They need to know why

you need to do this to apply to in life, to apply to life, if that is going to be

their occupation.

Mathematics majors need to know why, Demetrius explained, he did not need to know

mathematics for his career.  Although I saw his explanations in the postinstructional

phase as contradicting his original definition of understanding, knowing how and why,

Demetrius disagreed. Hence, for him, being able to do problems during class meant that
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he understood the function well enough for his major. His conception of the logarithmic

function was as a small collection of problems that he could do without knowing why.

Representation.  Demetrius' primary modes of representation during the

postinstructional phase were oral and written.  In speaking about the logarithmic function,

Demetrius used names and maxims.  The names he used were logarithmic and

exponential function or form and base.  These terms were key to Demetrius' view of the

logarithmic function because both referred to doing problems.  He could transform an

expression in logarithmic form to one in exponential form to evaluate it. In addition to

names, Demetrius often used oral representations of the properties of the logarithmic

function to help him simplify problems.  Three of these maxims included the term base.

“Logarithms can be added and subtracted if they had the same base,” “the base cannot be

negative,” and the base of the logarithm on the calculator is ten.” Although the maxims

were used in reference to the properties of the logarithmic function, during the

postinstructional phase, they were not helpful.  Like the other participants, on the skills

exam Demetrius used the distributive property to find log3 4 + log3 5 = log3 9.  He had

more success applying “the log is the exponent.”  This maxim was introduced during

class.  When Demetrius heard it, he claimed that it helped him remember.  During

Interview 8, he illustrated and explained how he used the maxim.  After writing the

expression log10 x = y, Demetrius explained:

Okay, that is the logarithmic form.  In the exponential form, you need to

remember that, you need to remember always that, the log equals the

exponent.  That will help you whenever you are doing the exponential

form.  You need to know the log equals the exponent.

He was able to use this maxim to successfully transform the logarithmic form to the

exponential one. Demetrius used names and maxims as keys to solving problems.  He

was not always successful with his maxims, but for him, they were more useful than

notation.
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Demetrius used three types of written representations: names, notations, and

descriptions. There was no significant change in the written names he used during the

postinstructional phase.  The categories on his maps remained the same: things they

[logs] are made of, 2 different kinds of logs, things you do to them, as was the term base.

During Interview 9, he explained the category things you do to them.

Things you do to them, because everybody knows what you can do to a

problem.   As far as add them, subtract them, divide them, multiply them,

or evaluate them.  All of them are basically the same.

According to Demetrius, add, subtract, multiply, divide, and evaluate were how

everybody did mathematics problems.  The name of the category referred to mathematics

problems in general. Like the names he wrote during the instructional phase, the

categories and names exponential and logarithmic forms referred to problems and

procedures he used to solve them.

The second written representation Demetrius used was notation.  He used it only

to illustrate solutions to problems on the skills assessment, during the table completion

task in Interview 7, and when he was explaining the logarithmic function to me during

Interview 8.  Although the form of his notation was correct, his application of his maxims

in the form of notation caused errors.  For example, during Interview 8 he illustrated his

sum of logarithms maxim using the example log 7 + log 3 = log 10.

Demetrius did not feel comfortable using notation.  He did not use it on any of his

maps.  Instead of using notation on the bulletin board tasks during Interviews 5 and 6, he

used descriptions.  For example, during Interview 5 he illustrated the relationship

between the sign numbers and the number line numbers with the following written

description:

Each time you multiply the # under the sign by 2, go up and add one more

# than the # on the previous sign to that sign above that #.  Moving on the

# line back to the left, divide by 2 and subtract one from the previous sign

and place the # above.
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Demetrius described how he found the sign numbers using coordinated actions.

Multiplication by 2 was associated with adding 1, whereas division by 2 was associated

with subtracting 1.  The descriptions were easier for him to use than notation.

In summary, Demetrius oral and written representations to do problems.  He used

maxims to remind himself of the properties of the logarithmic function and notation to

illustrate his solutions.

Connection.  Demetrius made connections between his oral and written

representations and among his written representations.  He used oral maxims as guides

for doing problems in written form. He used oral names in a similar way. For example, as

he attempted the first table completion task during Interview 7 he commented, "I was

thinking about logarithmic and exponential form."  He knew the table had something to

do with the logarithmic function and his principle tool was transformation between the

logarithmic and exponential forms.  Following his comment, he wrote log10 1,

transformed it into exponential form, and concluded log10 1 = 0. Demetrius used oral

names and maxims prior writing a representation for the logarithmic function.

Demetrius made connections between written representations when he was

solving problems.  He transformed expressions in logarithmic form to exponential form

and simplified expressions such as log 7 + log 3, using the properties of the logarithmic

function.  In addition, Demetrius associated the term logarithm with the exponential and

logarithmic form and the base.

Application.  Demetrius applied the logarithmic function and its properties in two

ways during the postinstructional phase.  Much like the other participants, he saw the

calculator as a source of information about the logarithmic function.  During Interview 7,

he noted if he had a calculator with a log key on it, it would be easy to fill in the table.

However, not having the log key did not bother him as much as it did the other

participants.  He relied on it less in all of the interviews than the other participants.  For

example, he found the product of 16 and 2 during Interview 5 by using the standard paper
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and pencil algorithm.  During Interview 8, he explained how to use the calculator to

compute logarithms:

D: And uhm...(pause) You have a log key on the TI-83 and uhm...which is

right here.  You have a natural log key, which is basically the same thing.

S: Oh, yeah.

D: Except the natural log key, uhm...I don’t work with it...it is the same

thing (laughs).

S: They are the same?

D: Yeah.

S: So I can push either one.  It doesn’t matter?

D: Doesn’t matter.

S: Okay, so how do I use that key?

D: So say you are looking for the log of ten you just press...you just press

the log of the number... Whatever number you are looking for the log of.  I

will just say log of ten, close parenthesis [types in log 10] and enter.

Demetrius could compute base ten logarithms with his calculator and believed the log

and ln keys produced the same result.  This idea was quickly dispelled when I asked him

to compute log10 and ln10.  He was not exactly sure why the approximations given by

the calculator were not the same.  This notion that the two buttons produced the same

approximations, was the result of a classroom exchange that took place during the

instructional phase.  On November 21, Teacher 3 commented, it did not matter if one

used the log or the ln in the change of base formula, the same answer would result.

Demetrius asked Teacher 3, "What is the difference if you go [use] natural log?" Teacher

3 replied there was no difference.  Hence, Demetrius assumed pushing either button on

his calculator, would result in the same approximation.

Despite Demetrius's awareness that the calculator could approximate logarithms,

he did not use it to do so on the skills assessment as other participants had.  In fact, when

Demetrius mentioned using a calculator as he was introducing the logarithmic function to
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me during Interview 8, I asked him if I would need a calculator for this topic.  He replied,

"not really."  He saw the calculator as useful, but not necessary.  He used the calculator at

my request, to verify the sums and differences of logarithms.  In general, he relied on his

maxims.

Although Demetrius saw the calculator as an optional tool and was confused

about the ln and log keys, he knew how to use it correctly to evaluate base ten logarithms.

He was also able to use it in conjunction with his transformation of expression in

logarithmic form to exponential form to perform the table completion task.

Beliefs

During the postinstructional phase, Demetrius's understanding of the logarithmic

function had changed.  He no longer talked about the logarithmic function as being easy.

Instead, he characterized his understanding of the function as memorization of rules, he

no longer could or needed to remember. He still associated the function with a collection

of problems and he realized logarithmic and exponential forms were important to solving

these problems.  He knew the calculator could be used to approximate logarithms, but it

was not a necessary tool.  His maxims were vital to generating solution paths, when he

knew a problem involved the logarithmic function.

1. Knowing how to do problems involving logarithms is not a complete understanding,

but it was all that was required in college algebra and it is enough for me

2. The logarithmic function is a collection of notations and problems that can be solved,

if I can remember the maxims.

3. The log is the exponent.

4. When the bases are the same you add (subtract) logarithms.

5. The log and ln keys on the calculator help you compute logarithms.

6. The most important thing to remember about logarithms is that there are two forms:

exponential and logarithmic.
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Changes in Understanding

During the preinstructional phase, Demetrius recalled his high school teacher had

called the logarithmic function as easy.  He used this recollection as the basis for his

ways of operating. He over generalized the distributive property and applied it to the

logarithmic function.  He was able to remember some relevant notation and names.  In

particular, Demetrius remembered the position of the base of the logarithmic function.  In

general, he felt if his memory was refreshed, he would recall how to do the logarithmic

function. This view was in contrast with his claim that when he understood a concept, he

knew both how to do the problems and why he was doing a particular procedure.

During the instructional phase, whenever I asked Demetrius about his

understanding he referred to what he knew how to do. This was consistent with his goal

of learning enough about the logarithmic function to pass the test.  Initially Demetrius

found the notation associated with the logarithmic function and its properties difficult to

understand, but he quickly realized the adoption of maxims could help him remember the

properties of the function. Demetrius noted that going from logarithmic to exponential

form was of particular importance.  He highlighted this transformation on his map, and

singled it out as one of the types of problems he needed to know how to solve.

Demetrius still saw the logarithmic function as a collection of symbols that could

be combined, an answer to be calculated, and a problem to be solved. In addition, the

objects themselves did not have standard meanings for him.  When Teacher 3 attempted

to illustrate how the properties of the logarithmic function could be applied, the notation

looked so complicated to Demetrius and it was so late in the class period, that he just

packed up his materials.  He gave up trying and “went to daydreaming.”

During the postinstructional phase, Demetrius was extremely surprised that he did

not know how to do problems with the logarithmic function.  He felt “ashamed.”  To add

logarithms he reverted to his preinstructional method of taking the logarithm of their sum.

He continued to rely on maxims to help him solve problems; this practice was as much a

hindrance as it was a help.  He resolved the issue of understanding, noting that he knew
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how, but not why.  For Demetrius, his knowledge of the logarithmic function was

sufficient for his major and he had passed the course, so he understood enough.  During

Interview 9, he illustrated his process of understanding the logarithmic function (see

Figure 30).

Figure 30.  Demetrius's depiction of his process of understanding the logarithmic

function.

Demetrius was taking psychology during the semester Interview 9 was conducted.  He

had recently studied long- and short-term memory. He explained his drawing:

All right, it is called the logarithmic memory man.  Which is a man based

on my memory.  And this is the memory man from long term, you know,

from the long term of talking about logarithms.  I didn’t know that much,

so therefore the man wasn’t complete or whatever.  And as I’m going from

long term, which means as I started to talk about it, because it is short term



157

memory I’m here, in the process of doing it.  So it was just like the day

before or that semester, you know, I just did it.  So nothing about

logarithms, but I know more about logarithms.  I feel like going from there

to now, I am complete, because I understand.  I know enough to pass and

whatever.  And I didn’t complete the hands because I feel like I

understood enough to pass it, but I don’t know everything there is to know

about them.  I don’t understand them completely.

Demetrius rationalized his understanding of the logarithmic function, by including on his

drawing and in his description reference to knowing enough to pass. Demetrius was very

interested in how he remembered concepts.  He realized he did not know everything

about the logarithmic function, but then he felt no one did.  He was satisfied with what he

knew. He could transform logarithmic expressions to exponential ones.  He also

recognized notation in logarithmic form and was able to use some names associated with

the logarithmic function.

Ways of Knowing

Demetrius used many of the same ways of knowing as the other participants. He

used linear interpolation on the tasks in Interview 5 and 6 to find the logarithms of

numbers that were not integer powers of two.  In Interview 7, he transformed logarithmic

expressions to exponential ones and found approximations for the logarithms using

successive approximation and his calculator.  He also attempted to eliminate the

inconsistencies in his work when he identified them or I pointed them out.

  One way of knowing unique to Demetrius, was his confidence in the patterns he

discovered.  For example, during Interview 5, he identified the pattern among the number

line numbers as doubling.  In this section of the interview he was trying to find the sign

above the number 
1

2
:

D: What sign would be above the number one-half?  Uhm...one-half?

S: Umhum.
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D: Wouldn’t it be right here [points to the position for 
1

2
 on the number

line].

S: Yeah, one-half.

D: (Long pause) Zero...I meant hold up...no, no, no, no (hums, pause,

subvocalizes) One-half.

S: One-half?  You think one-half goes over one-half?

D: Hold up, let’s see.  Unum. Two.

S: Two goes over it...what makes you say so.

D: I don’t know.  That doesn’t look right though.  Hold up, that can’t be

right.

S: Why?

D: Because I’ve got a pattern going.  Well, I’d say point five.

S: You would say point five.  Okay.

D: No, hold up. (Laughs)

S: That’s ok, take your time.  I’m not in any hurry.

D: (Subvocalizes) Negative one.

S: Why do you say that?

D: I don’t know.  I’m just looking at the pattern.

Demetrius tested his conjectures by comparing them with the pattern he found.  His first

conjectures for the sign over 
1

2
 did not fit the pattern, so he abandoned them.  Identifying

the sign as –1, allowed Demetrius to reverse his procedure. He was able to find the sign

numbers corresponding to negative integer powers of 2, by dividing the number line

number by 2 and subtracting 1 from the sign numbers.  Demetrius was able to account for

the sequence of number line numbers and sign numbers and used both to make

predictions.  He was also aware of another pattern in this problem.  When he used linear

interpolation to find the sign above the number 2 , he felt that his answer was incorrect.



159

His rationale was that distances between signs should be increasing.  Eventually, he gave

up on this problem because he could not find another prediction method that was

consistent with his doubling/halving map. Demetrius was aware of three patterns, the two

number sequences and the distances between the signs.  The strongest of these were the

number sequences, with distance only playing a role, when the number sequences were

no longer useful in helping him find the sign numbers.

Demetrius's awareness of the increasing distances between the numbers with

signs on them, could be used as a basis for encouraging his growth of understanding of

the logarithmic function.  In Napier's number lines with simultaneous moving points, it

was his awareness of the distance each point traveled on one number line with respect to

the other that helped him develop his concept of the logarithmic function.  Certainly

Demetrius was not Napier, but his awareness of patterns and his ability to coordinate

them and consider the actions of three different patterns suggests a promising avenue for

development of his understanding.
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CHAPTER 5: UNDERSTANDING A MATHEMATICAL CONCEPT AS DOING

In this chapter I describe themes in the students’ understanding, changes in their

understanding, and their ways of knowing.  These descriptions constitute the findings of

the study and provide the basis for a discussion of students’ understanding of

mathematical concepts.  The themes are also be used to modify the model of

understanding that I used to frame the study. Finally, the analysis of the findings and the

limitations of the study suggest avenues for further research into students’ understanding.

Understanding

In this study the changes between in the students’ beliefs about the logarithmic

function were small.  The students’ understanding of the logarithmic function during the

first two phases had an impact on their understanding during the final phase, but their

beliefs during the final phase constituted their understanding. Their beliefs both within

and across phases had a common theme: problems.  For the students in this study, the

logarithmic function was a collection of problems to be done.   In addition, I identified

four categories of students’ beliefs about the logarithmic function: level of difficulty,

problem types, tools, and character of the function.  In this section I describe the theme

and the categories and answer the research questions.

Understanding as Doing

The students viewed and described their understanding a mathematical concept as

being able to do the function.   They used phrases such as the following: “To do the

logarithmic function…., I don’t know how to do it…., I forgot how to do it….”  Their

references to doing the function referred to the problems associated with the function.

The problems were those illustrated and class and on their homework.  For the students in

this study, the problems were the concept.  Hence, they referred to the logarithmic

function as something they had to be able to do.



161

Level of difficulty.  Because all of the students viewed the logarithmic function as

doing problems, their beliefs about the function included perceptions of the level of

difficulty of the problems.  If a student felt he or she did well on a task, the function was

easy.  If the student performed poorly, his or her assessment varied depending on his or

her rationale for the performance.   If a rationale for poor performance could be given, the

student viewed the function as easy.  For example, If the students were asked to compute

logarithms without the log key on their calculator, the function was still easy; they just

did not have the proper tool. On the other hand, if a rationale for their poor performance

could not be found, the function was hard.  Students’ beliefs about the logarithmic

function were based on their perceptions of their performance on problems they

associated with the function. When they described the level of difficulty of the function,

they were assessing their ability to do the problems.

Jamie and Nora believed that the logarithmic function was hard because they did

not perform well on the tasks during the postinstructional phase of the study.  Demetrius

also felt he had done poorly but rationalized that he had learned to do the problems

presented in class and that was all he needed to know. Rachel became frustrated with the

tasks during the postinstructional phase but maintained the function was easy to do, if she

had her textbook. Each of the participants made some assessment of the level of difficulty

of the problems and associated the level of difficulty with the concept.

Problem types.  Two problem types, converting and evaluating, were included in

the students’ beliefs. Converting referred to problems that required a transformation from

one form to another. Evaluating referred to problems that required a decimal

approximation for a logarithmic expression such as log 2 and 

€ 

log3 2 . These problem

types were illustrated in class and were included on the homework.

Tools.  The largest category of student beliefs about the logarithmic function

involved the tools they used to solve problems. Four types of tools were used and

discussed by the students: facts, formulas, the calculator, and procedures.  Facts are

maxims or pieces of information students’ remember to help them solve problems and
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identify errors.  For example, “the log is the exponent” was a fact that helped Demetrius

transform expressions in logarithmic form to exponential form. The students accepted

and used the facts even though they did not know why they were true. For example, when

Rachel calculated log3 4 − log3 5 = log3 −1 she suspected that her answer was incorrect

since it violated one of her facts: you cannot take the logarithm of a negative number.

Formulas involve mathematical notation.  I make a distinction between facts and

formulas because the facts students used were usually correct, the formulas were not.

During the postinstructional phase the students’ formulas were examples of properties

and procedures.  For example, Jamie used 

€ 

log3 4 + log3 5 = log3 9  as a formula and Nora

used log3 4 =
log3

log4
. The students never assumed their formulas were incorrect if an

answer they calculated violated a fact.  Instead they looked for errors in their calculation.

The calculator was an essential tool for the students.  They used it to find

numerical approximations for logarithms.  When they did not have the tool during

Interview 7, their initial response to the table completion task was that it could not be

done without a calculator with the log key.

The students also used these three tools in sequence to solve problems.  I call

these sequences procedures. One example was Nora’s procedure for solving logarithmic

equations. She used a fact to transform the logarithmic equation to an exponential one,

the change of base formula if the transformation did not produce results, and her

calculator.

Character of the function.  The students used characterizations of the function to

guide their thinking.  I call these characterizations the character of the function. The

students believed the logarithmic function was a collection of problems to be done, but

when I asked them what the function ways they characterized it function in a variety of

ways.  Nora described the logarithmic function as related to the exponential.  For Jamie

and Demetrius, it was a word or collection of symbols.  Rachel described the function as

a type of mathematics.  These characterizations helped the students do problems.  For
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example Jamie used her characterization of the logarithmic function as a word with

simplify sums of logarithms.

What Is a Student’s Understanding of the Logarithmic Function?

The student’s understanding of the logarithmic function was as collection of

problems to do. Components of their understanding included the level of difficulty of the

problems, the types of problems that they had to solve, the tools they needed to solve the

problems, and the character of the function. The students saw the function as hard or

easy. The associated it with evaluating and converting problems.  They used a collection

of facts, formulas, the calculator, and procedures to solve these problems.  And they

viewed the function as a type of mathematics, a collection of symbols, and associated to

the exponential function.

Changes in Understanding

The students’ understanding of the logarithmic function during each phase of the

study was different, but comparing the students’ understanding for the three phases

revealed similarities.  In particular, the four categories of beliefs identified in their

understanding during the postinstructional phase were present in the other phases.  The

changes in understanding were in the content of the beliefs.  The categories remained

consistent.  In this section I characterize the students understanding for the

preinstructional and instructional phases, describe the students’ beliefs in each category,

and summarize changes in their understanding across the phases.

Preinstructional Understanding: Speculation

The students’ understanding of the logarithmic function during the

preinstructional phase was speculative. The basis of their beliefs was their experience

with the logarithmic function in courses and with the skills assessment.

Level of difficulty.  During the preinstructional phase of the study the students

called the function easy or hard to remember. Nora and Demetrius viewed the function as

easy, based on their experiences from high school.  Rachel performed poorly on the skills
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assessment, so she called the function hard to remember.  Three of the student speculated

about the level of difficulty of the function.

Problem types.  The students either did not recall details about the function or the

function itself from their previous classes; hence their speculation about problem types

came from the skills assessment.  They speculated that the logarithmic function was

associated with evaluating, simplifying, creating tables, and graphing. Each of these

terms was used on the skills assessment.

Tools.  Beliefs about types of problems and the difficulty of problems were

secondary to learning how to do the problems.  To do problems, the students had to

develop tools. Based on the skills assessment, the students speculated that they needed

facts, formulas, and the calculator. The students did not demonstrate knowledge of any

formulas during the preinstructional phase, but believed that if they could decipher the

notation for the logarithmic function they could do the problems.  For example, Jamie

explained that if she knew what 

€ 

log(?)  stood for, she could solve the problems.  For Nora

and Rachel, the key to solving problems was their calculator.  Both asserted if they knew

how to use the log key on their calculators, they would be able to solve the problems on

the skills assessment.

Character.   During the preinstructional phase the students speculated that the

logarithmic function was a collection of symbols or a notation.  For example, Rachel

noted the logarithmic function was 

€ 

logbase# .

Understanding during the Instructional Phase

During the instructional phase of the study, the students attempted to stockpile

information.  The results of these attempts can be seen in their beliefs.  Solving problems

was the goal, so developing tools was of primary importance during this phase.

Difficulty level.  During the instructional phase of the study, the students

characterized the logarithmic function as easy and simple because they felt they could do

the problems associated with the concept.  Each student expressed doubt or confusion

about some formula or procedure presented in class, but all were satisfied they knew how
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to do problems and were ready for the examination.  For the students, the problems were

easy, hence the logarithmic function was easy.

Problem types.  The students identified two problem types during the instructional

phase: converting and evaluating. These two problem types were emphasized in class.

The majority of instructional time was spent presenting the logarithmic function in

algebraic form, converting it to logarithmic form, and evaluating logarithms. Hence

converting expressions and evaluating logarithms were two types of problems the

students wanted to know how to do.

Tools.  During instruction the students’ had more beliefs about tools than they did

during the preinstructional phase.  More facts and formulas were used in class and on the

homework.  In addition, the students practiced using their calculators to evaluate

logarithms and developed procedures to solve problems. The students could state a much

larger collection of facts and formulas than during any other phase of the study.  Facts

they cited were “One cannot take the log of a negative number,” “The log of one is zero,”

and “When you add you multiply.”  Formulas they used were properties of the

logarithmic function and the change of base formula.  The students used these facts and

formulas to transform expressions into forms they could use their calculators to evaluate.

Tools used in sequence on problems became procedures.  The students did not know why

their tools worked on problems, but only that they did.

Character of the function.  The students’ beliefs about the character of the

function during this phase were adopted from an association presented in their classes:

the exponential and the logarithmic function are related. For example, Nora noted

“logarithms and exponentials” are related.  This statement made the students sound

knowledgeable, but for them it was a maxim.  truth the student could state but that he or

she could not explain.



166

What are the Changes in the Students’ Understanding During the Instructional Process?

Describing changes in the students’ understanding of the logarithmic function is

much more difficult than describing their understanding because there are exceptions to

generalizations made across this group of students.  Table 1 summarizes the students’

understanding for each phase of instruction.  There was no change in their understanding

of the logarithmic function as how to do problems or in the categories of beliefs.  The

changes were in the content of the categories.  Beliefs about the level of difficulty of the

logarithmic function varied in the pre- and postinstructional phases, but all the students

believed the logarithmic function was easy during the instructional phase.  During the

preinstructional phase, the students’ used the skills assessment to speculate about the

problem types associated with the logarithmic function and tools they would need to

solve them.   Prior to instruction all the students described the logarithmic function as a

collection of symbols.  All but Nora returned to this characterization during

postinstruction.  During instruction all the students characterized the logarithmic function

as related to the exponential, but none could explain or illustrate why.

During the instructional phase, the students’ beliefs were speculative.   During the

instructional phase, students’ beliefs were consistent with standard mathematical thinking

about the function.   During the postinstructional phase, their beliefs were fewer in

number and were distortions of beliefs they formed during instruction.
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Table 1

Characteristics of Students’ Understanding During Instructional Phases

________________________________________________________________________

Instructional Phases

   ____________________________________________________

Categories of Beliefs    Preinstruction Instruction Postinstruction

________________________________________________________________________

Level of Difficulty    Easy, Hard Easy Easy, Hard

Problem Types    From Skills Convert, Convert,

   Assessment Evaluate Evaluate

Tools    Notation, Facts, Formulas, Facts, Formulas,

   Calculator Calculator, Calculator,

Procedures Procedures

Character    Symbols Related to the Symbols,

Exponential Related to the

          Exponential

________________________________________________________________________

Ways of Knowing

When one looks at the students’ performance on standard problems during the

postinstructional phase of the study, the view is rather bleak.  The student’s tools for

solving problems were diminished and distorted.  However, as the students’ actions

during the postinstructional phase suggest, they had ways of knowing that could be the

basis for an understanding of the logarithmic function consistent with standard

mathematical thinking. In this section, I describe four ways of knowing that were
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common to all the students in the study: number patterns, successive approximations,

more A–more B, and response to inconsistencies.

Number Patterns

During Interviews 5, 6, and 7, each of the students attempted to identify patterns

in either the numbers presented or in the numbers that they generated.  In Task 5. the

students attempted to find a relationships among the number line numbers and the sign

numbers, and then to coordinate their actions.  Jamie was more successful on this task

than any other student because she was able to see the number line numbers as powers of

2 and the sign numbers as exponents.  The other students developed various schemes.

Nora and Demetrius identified doubling as the pattern in the number line numbers and

saw the sign number as a counter for this action.  With prompting from me, Nora

eventually identified the pattern as a correspondence between powers of 2 and their

exponents.  Demetrius was able to reverse his procedure to find the signs above numbers

less than 1, but he never became aware of the sign numbers as exponents. Rachel used an

elaborate addition and subtraction algorithm that used both the sign numbers and the

number line numbers. All of the students also used patterns to describe the function

behavior in the remaining two interviews.

Although each of the students explained the pattern in Interview 5 differently,

each first attempted to determine whether addition and subtraction could be used to

describe the pattern.  When the explanatory power of their pattern was insufficient, the

student sought other mathematical operations, notably multiplication, to describe the

pattern he or she saw.

Probably the most surprising use of patterns occurred during Interview 7.  Each of

the students searched for a pattern between the y values in the table.  The students tried

addition and subtraction first, but then quickly moved to multiplication and division.

This strategy helped them eventually identify a pattern in log 2, log 4, and log 8, but they

were unable to make a generalization from this finding. Eventually, I asked the students

why
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log 1 was equal to zero, which led to their recall of the conversion procedure they had

developed during the instructional phase.  They then used exponential equations and their

calculators to develop a successive approximation procedure.

In each of the tasks, the students attempted to find and use number patterns to

predict answers.  This way of knowing played a vital role in the students’ attempts at

problem solving.  In cases where the patterns partially explained the mathematical

phenomenon being presented, the students used their patterns.  When their patterns could

not predict correct answers, the students attempted to modify them.

Successive Approximations

Successive approximation was used by all the students during Interview 7.  They

converted log 1 = 0 to 100 = 1 and used this example as a template for the other table

entries. Using successive approximation and their calculators, the students were able to

fill in the tables.  Despite its utility, the students recognized the method’s inefficiency.

They searched diligently for other methods to fill in the table, but always returned to

successive approximation.

More A–More B

During the task interviews, at some point the students’ prediction strategies broke

down or were identified as inefficient. For example, Nora, Rachel, and Demetrius had

difficulty predicting the sign over the number line number 2 .  When it became clear

their prediction method did not work, they used linear interpolation.  Hence for the

students, the sign above 2 was 0.414…. and the log 4 was 

€ 

log 3+ log 5

2
.

This linear interpolation strategy is one example of what Stavy and Tirosh (2000)

have identified as More A – More B.  The student incorrectly assumes that two given

quantities have a linear relationship.  Hence if 0.414… is added to 1 on the number line

numbers, then 0.414 should be added to 0 on the sign numbers. Similarly, if 4 is the

midpoint between 3 and 5, then log of 4 must be the midpoint between log 3 and log 5.
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This type of thinking was the fall-back position for the students when their predictive

strategy, based on an identified pattern, failed.

Response to Inconsistencies

During the interviews, when students became aware of inconsistencies in their

answers, they attempted to eliminate them.  For example, based on a counterexample I

gave Nora, she realized that her prediction for 2 , 0.414… was inconsistent with her

generalization that when you multiply two number line numbers the sign numbers are

added. Nora, like the other students, attempted to explain the inconsistency.

Responding to inconsistencies in both answers and thinking is a way of knowing

that all four students exhibited.  Each of the students was bothered whenever he or she

noticed an inconsistency in his or her thinking or when I pointed one out using a

counterexample. Finding ways to making their thinking consistent was extremely

important to these students.

Conclusion

The students did not realize that the tasks in Interviews 5 and 6 were based on the

logarithmic function, and, although they did see the logarithmic function as important

during Interview 7, initially each of the students claimed that the task could not be done.

The solution methods generated by the students were based primarily on patterns.  The

use of successive approximation was implemented only after an exponential equation was

written. These ways of knowing were seen by the students as elementary, akin to finger

counting in elementary school.   None of the students viewed these techniques as

important mathematical tools. For them, tools were facts, formulas, the calculator, and

procedures.

The students use of more A–more B reasoning led them to question the answers

they generated using number patterns, but ultimately the predictive capability of the

number pattern and the students’ responses to inconsistencies in their own reasoning

overcame the more A–more B reasoning.  All the students became aware that the

relationship between the sequences in the tasks was not a linear one.
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The students’ ways of knowing were not connected to their understanding of the

logarithmic function.  A connection between their methods and their understanding was

made only briefly to transform the logarithmic expressions to exponential ones using

“converting.”  The conversion was simply a means to an end.  Once the students had

exponential equations, they used their ways of knowing to complete the task.  No

properties of the logarithmic function were used.  These four ways of knowing may be

useful in the development of students’ understanding about the logarithmic function.
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CHAPTER 6:  DISCUSSION AND IMPLICATIONS

Discussion of the Findings

In this chapter I discuss the findings of this study in terms of the relevant

literature discussed in chapter 2.

Understanding and Changes in Understanding

The impetus for this study was students’ inability to remember the logarithmic

function from one school term to the next.  I assumed a description of students would

help me explain this phenomenon. One of Brownell’s (1972) criteria for learning was that

it had to be sustained.  Evidence of learning collected immediately following an

instructional treatment was insufficient for a researcher to claim the students had learned.

Although it is not clear how, researchers studying learning and understanding claim the

two are related (Kieran, 1994). Evidence of sustained change in understanding is

necessary for understanding to be claimed. In addition, Pirie (1988) asserted students’

understanding cannot be described without knowledge of the student’s process of

understanding.  My decision to gather evidence of changes in understanding was based

on the work of these researchers.  This decision turned out to be crucial.  It was only

through the examination of the students’ beliefs over the three instructional phases that I

was able to see the consistency in the beliefs.  The descriptions of students’

understanding are necessary but not sufficient to explain their understanding.  As Pirie

(1988) conjectured, the development of understanding is essential for construction a

model of students’ understanding.

Categories

The existence of the four categories of beliefs across the three phases of

instruction indicates a stable structure the student uses to make sense of and take action

during his or her learning experiences. The categories act like a filter for the students’
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attention. Activities or experiences that do not fit the categories are disregarded by the

student. For example, the graph of the logarithmic function was illustrated, but not

emphasized, in classes I observed.   None of the students used or referred to the

representation.  For the students, the graph was not a problem type since it was not

emphasized in class and was not a tool for solving either converting or evaluating

problems they identified as important. Instruction on graphing was filtered out.

The appearance of these categories prompts two important questions: What is the

origin of the categories?  And why do they remain static over the three phases of

instruction?   Support for my answers to these two questions can be found in the beliefs

literature.

Mathematics education researchers have shown that there is a connection between

students’ beliefs and their behavior (Kloosterman, 1991; Schoenfeld, 1989, 1992;

Szydlik, 2000). The students in this study believed that understanding a mathematical

concept was being able to do problems.  Their behavior was consistent with that belief.

They attempted to collect problem types and tools for solving them. Hence the origin of

the categories—, problem types and tools— are the students’ beliefs about understanding

mathematics.  The additional categories—, level of difficulty and character— can also be

traced to the students’ beliefs.  Because the students believed performance was

understanding, their performance was essential.  If a good performance was hard to

produce, then the task was difficult; if not, it was easy.  The character of the function was

also linked to the students’ beliefs about mathematics.  For these students, mathematics

was a collection of formulas, notations, and rules.  Hence the character of the function

was a notation or rule.  Thus the students’ general beliefs about mathematics and

understanding mathematics were the basis for the four categories of beliefs they used to

mediate their activity.

The static nature of these categories is not surprising.  As Dossey (1992) noted

beliefs are extremely difficult to change even when the curriculum is designed to elicit a

change in beliefs.  In this study, none of the instruction experienced by the students
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challenged their beliefs about mathematics.  Instead, it supported and thus reinforced

their belief structure.  Therefore it is not surprising that categories derived from the

beliefs did not change.  In this study the students’ beliefs about mathematics and

understanding influenced their categories of beliefs about the logarithmic function.

Content

Although the categories of the beliefs remained constant, their content did not.

Two factors influenced the content of the students’ beliefs:  instruction and memory.

Instruction.  During the preinstructional stage, the students used their categories

to determine what they should attend to.  In particular, they looked for clues about the

logarithmic function in the skills assessment.  During the instructional phase, the students

processed information presented in class and while doing homework and used it as

content for their beliefs. During the posinstructional phase, the content of the beliefs

changed dramatically. Part of the reason for this change was the dearth of sources from

which information could be derived.  When students were given tasks where the

logarithmic function was not mentioned, Interviews 5 and 6, they did not relate the tasks

and the function.  When the logarithmic function was mentioned, the students

reconstructed beliefs about the logarithmic function they had formed during the

instructional phase.   These beliefs were based on their memories and not on logic.

Instruction and instructional materials were the primary sources of content for the

students’ beliefs. 

Memory. Memory was not a direct source of content for the students’ beliefs, but

it was an influence.  In particular, the students’ understanding during the postinstructional

phase was in part an attempt to reconstruct (Bartlett, 1932) their beliefs from the previous

phases. Bartlett noted that reconstruction from memory is rational, based on some reason

or association made by the person remembering.  This interpretation explains distortion

in the students’ beliefs about tools.  In particular, from an interpretation of log A + log B

as like terms in algebra, log (A + B) is a rational reconstruction of the sum.  The emphasis

is on the term rational.  The students were certain that this formula was correct.  For
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them the function was reasonable, but in mathematics the formula, log A + log B = log (A

+ B), is wrong.  Why were the students unable to either see the error or respond to

counterexamples of the formula?

The answer to this question lies in the content of the beliefs developed during the

instructional stage.  At no time could the students explain why various formulas worked.

The absence of any logical basis for the formulas they adopted and used made the

formulas extremely difficult to remember correctly (Sierpinska, 1994).  For the students

the formulas were a bit more than, but much like, the nonsense syllables of Ebbinghaus

(Bruning, Schraw, & Ronning, 1999). The primary difference was that the formulas were

remembered for a purpose.  Thus problems and the tools used during this phase were

associated.  This association allowed the students’ to reconstruct tools during the

postinstructional phase.

The students’ reconstructions of formulas during the postinstructional phase were

flawed and not derived through logical thinking.  Hence the students had no means for

checking results obtained using these faulty tools.  They simply hoped they had

remembered correctly.  As Skemp (1987) noted, this instrumental type of understanding

is less flexible and more difficult to remember than relational understanding.

Growth Versus Change

Clearly the students’ beliefs about the logarithmic function changed over the

course of the study.  But does such change constitute growth of understanding? If growth

is defined as a sustained change in beliefs consistent with correct mathematical thought,

the only growth was in the problem types and tools category.  In the postinstructional

phase, the students had beliefs about evaluating and converting logarithms and about

tools used to solve these problems.  Although the students generally could not use their

tools to solve problems correctly, their beliefs indicate an awareness of the existence of

logarithms and of solution methods.   This awareness is not growth, but could be used in

future instruction.
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There can be many bases for understanding a concept (Skemp, 1987; Sierpinksa,

1994), but among mathematics educators relational understanding, based in knowing

why, is assumed to be superior.  The students in this study did not achieve either

relational or even instrumental understanding.  Instead, they were left with an awareness

that the logarithmic function belongs to the mathematical curriculum.  It is this awareness

that can be used to build subsequent beliefs.  Thus my experience teaching students who

passed college algebra but appeared to know nothing about the logarithmic function is

consistent with the findings in this study. The understanding the students developed

during instruction was transitional and soon deteriorated.  What remained was awareness,

a meager basis for future understanding.

Ways of Knowing

When I planned this study, I conjectured that the students’ ways of would be

similar to Napier’s.  To an extent my hypothesis turned out to be true.  Students do map

multiplication to addition if terms of geometric and arithmetic sequences are given to

them.  They also notice that there is a common ratio between the given terms of each

sequence.  These observations are consistent with Confrey and Smith’s (1995) findings.

Students they studied were able to coordinate actions between arithmetic and geometric

sequences. Rizzuti (1991) called these coordinated actions covariation and described

them as a precursor to the correspondence definition of function.

In this study, the students used covariation to make predictions from their number

patterns.  For example, in Interview 6, the students used the examples I provided,

f (2) = 1 and f (4) = f (2) + f (2) = 2 , to generate sequences {1, 2, 3, 4, …} and {2, 4, 8,

16, …}.  They then abandoned the given function notation in favor of the sequences and

used the correspondence between the two to make predictions.

Covariational thinking quickly broke down when the students attempted to insert

terms into the sequences.  The students began to rely on linear interpolation, a special

case of the intuitive rule called More A–More B (Stavey & Tirosh, 2000).  Napier was

able to insert terms into his sequences so the ratio between the terms would remain
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constant.  The students were not. During Interview 6, when the students attempted to find

f 2( ) , they could not use their doubling operations and immediately tried linear

interpolation.

The More A–More B rule was in direct conflict with the students’ use of

covariation.  When I presented counterexamples to their hypothesized solutions, they

attempted to resolve the inconsistencies with little success.  The intuitive rule was very

strong and seemed logical to them.  They used it when they were asked to insert terms

that did not fit the sequence into a given sequence and when their exploration of number

patterns did not yield a covariational relationship (for example Interview 7).

The use of covariational reasoning was restricted to cases where a geometric

sequence and an arithmetic one could be discovered.  When no such pattern was

identified or when the student could not use this reasoning to produce answers, he or she

quickly reverted to predicting terms using a More A – More B strategy.  The students

responded, usually unsuccessfully, to counterexamples, but never completely abandoned

it.

The final way of knowing, successive approximation, used by the students was in

all but one case motivated by questions I posed during the interviews.  For example,

Jamie spontaneously used this way of knowing in Interviews 5 and 6, but only in

response to my questions during Interview 7.  The students in this study, who were able

to generate an exponential equation, were able to approximate their solutions (logarithms)

with a TI-15 calculator (no log key). More research on students’ behavior and thinking

associated with exponential expressions of the form 

€ 

an , where a is a positive integer and

n is any rational number would help explain the use of this way of knowing.

Discussion of the Framework

In this section I critique the categories of evidence and present a modified theory

of understanding.  In addition, I discuss the design of the study and suggest

improvements.
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Modification of the Theory

Categories of Evidence

The beliefs I attributed to the students were developed using four categories of

evidence: conception, representation, connection, and application.  Each of the categories

contributed to the development of my conjectures about the students’ beliefs.

Conception.  The students’ remarks about understanding and their maps of the

function allowed me to view the function from their perspective.  It is this perspective

that has been missing from studies of students’ understanding of mathematical concepts.

This category of evidence is essential in the development of beliefs attributed to the

student.  In particular, collection of this data assumes a student’s communicated ideas

about a mathematical concept provide insight and may help explain the student’s

performance on tasks that involve the concept.

Representation.  When I began collecting evidence of the students’

representations of the logarithmic function, I assumed that when they spoke or wrote

about the function they were providing representations of their own thinking.

Representation of concepts referred to by Hiebert and Carpenter (1992) were not the type

produced by the students in this study.  Generally, when students were asked to solve

standard problems, they generated marks or utterances they hoped would demonstrate

their ability to do problems.  For the students, their demonstrations meant they

understood the function.  For me, the demonstrations meant that the students could write

correct notation, not that they understood the function.  Hence, the representations I

collected, especially during the instructional phase, were often those presented in class

and mimicked by the students.  They were not the students’ representations and did not

appear to have standard mathematical meanings for them.  For example, during the

instructional phase, the students could translate an expression in exponential form to

logarithmic form and explained that the logarithmic function was related to the

exponential function.  None of them could explain why.  During Interviews 5 and 6

however, when I asked the students to explain their notations or procedures, they
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hesitated, but could explain why they followed their developed procedures.  The

representations they generated appeared to be meaningful to the students. The notations

were representative of the students’ thinking. This observation about the findings

suggests this category of evidence be divided into two subcategories: representations

adopted by the students and representations generated by the students.

Connection.   The importance of the connections between representations has

been emphasized in the literature on understanding (Hiebert & Carpenter, 1992, Skemp,

1976) and in the literature on representation (Even, 1998; Janvier, 1987; Kaput, 1998).

My definition of a connection between representations was extremely difficult to use.  To

identify a connection, I had to see the student use one representation and then another.

This usage was extremely difficult to see because the two types of representation the

students used most often were written and oral.  It was difficult to tell whether two

written representations were connected or simply part of the same formula.  For example,

when students simplified log3 4 + log3 5, were they connecting two written

representations or remembering one formula?  In addition, when students read their

notation, were they connecting their written and oral representations or simply reciting

names?  I resolved this dilemma during data analysis by assuming both of these examples

were connections.  Hence I defined a connection as the use of one representation

followed by another.  However, a more precise definition must be generated for this

category before evidence of connections can be useful in hypothesizing students’ beliefs.

Application.  The students’ application of the definition and properties of the

logarithmic function to nonstandard problems was evidence of understanding.  In general,

the students in this study were unable to apply the logarithmic function it this way.   They

were able to use apply their knowledge of the calculator to generate logarithms,

approximations of logarithms, and facts about the logarithmic function.  During the data

analysis, I redefined application as the use of tools to solve problems associated with the

logarithmic function.  This new definition allowed me to include the students’ use of the

calculator as an application of the function.
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Beliefs

Identifying beliefs about mathematics and understanding as the framework for a

student’s understanding of a mathematical concept, suggests that a study of these beliefs

is necessary to explain the student’s understanding.  Schoenfeld’s (1989, 1992) work

provides a basis for the investigation of students’ beliefs about mathematics and their

impact on students’ understanding.  Research that answers the question: What are

students’ beliefs about understanding of mathematical concepts is needed.  This work

could clarify the role of students’ beliefs about understanding in their understanding of

mathematical concepts.

Revised Theory

Based on the findings and observations from the data analysis phase I have

revised my theory of understanding:

Students’ understanding of a mathematical concept is a collection of beliefs

derived from four categories of evidence: conceptions, representations,

connections, and applications and influenced by their beliefs about mathematics

and understanding. Conceptions are the students explicitly expressed ideas and

feelings about the concept.  Representations are symbols the student uses to think

about or communicate a mathematical concept to others.  Two categories of

representations must be used to generate models of students’ understanding:

representations they adopt from instruction and representations they develop.

Connections among representations are links the students form between types of

representations (oral, written, tabular, and pictorial).  An application of a

mathematical concept is the use of tools to solve problems.

Modification of Design

 One design problem caused difficulty during the data analysis phase.  Limited

data were collected during the instructional phase of the study.  I observed class,

conducted at least one interview with each participant, and asked the students to map the

function. A richer database was needed to develop hypotheses about the students’ beliefs
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during this phase.  In particular, I would add another iteration of the skills assessment.

The skills assessment would provide needed data on the students’ definitions of terms

and their ability to apply concepts to problems in various representational modes.

Limitations of the Study

The findings of this study have two limitations.  The first limitation stems from

my assumption that the goal of teaching is understanding.  The second is based on

students’ familiarity with the logarithmic function.

 In the classes I observed, the focus was on doing problems.  Teachers

demonstrated how problems were done, and students practiced doing them.  Some

observations about the concept were included in the teacher’s presentations, but the

majority of each class session was spent demonstrating procedures for particular problem

types.   The presentation of the logarithmic function was no exception.  Very few class

sessions were allotted to the function: the concept was the last of the semester. Both

teachers admitted that they rushed through their presentations of the logarithmic function

because of limited time. Teacher 3 spent only two 75-minute class sessions on the topic.

Skemp (1976) noted that some teachers attempt to teach for instrumental

understanding because it is efficient and produces excellent results.  Teaching for

instrumental understanding worked exceptionally well with the four participants in this

study: they all performed well on their examinations.  The students could do problems:

however, one month later their understanding changed into a collection of beliefs that

were not useful in solving either standard or nonstandard problems.  At best, the students

had an awareness of the existence of the logarithmic function.  The limited amount of

time available certainly constrained the instructional choices made by the teachers and

limited the students’ opportunity to build understanding.  Hence one limitation of the

findings is that they are based on the assumption that students had little opportunity to

understand.

Another limitation of the findings is their relevance as a basis for inference about

students’ understanding of other mathematical concepts. It is not clear that results from a
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study of students’ understanding of the quadratic function, for example, would produce

similar results.  Students’ understanding of the quadratic function could have a different

structure for two reasons.  First, the students have more experience with the concept in

high school.  Second, more time is spent on the topic in college algebra.  Further

investigation of students’ understanding of mathematical concepts they are more familiar

with could help identify key structures in students’ understanding.

Implications

This study has a number of implications for teaching and research.   The

implications for teaching involve confronting students’ beliefs about mathematics and

using their ways of knowing to help them develop beliefs about mathematical concepts.

The implications for research are based on questions the study raised.

For Teaching

My teaching was the origin of the research questions for this study.  The findings

that resulted suggest some possibilities for the teaching of mathematical concepts.

The curriculum is overloaded with mathematical concepts students are asked to

understand.  These concepts are taught as if there are connections among them, but for

the student these links may not be obvious.  A students’ experience with school

mathematics may suggest that mathematics is a collection of rules to be memorized and

applied correctly during examinations.  Skemp (1987) noted that teaching for

instrumental understanding can achieve a number of short-term educational goals.  “If

what is wanted is a page of right answers, instrumental mathematics can provide this” (p.

158).  Students and teachers are aware of the efficiency of instrumental understanding.

Teachers who attempt to present mathematical topics using curricular materials and

methods designed to promote relational understanding are quickly made aware of

students’ preference for instruction designed to result in instrumental understanding.  In

the face of student resistance to these methods (Cooney, 1985), time constraints, and an

overfull curriculum, teachers often turn to instrumental understanding to provide students
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with small measures of success and to view themselves as successful.  This is the system

that produced the kind of understanding described in this report.

The findings in this study suggest two avenues for growth of understanding.

First, students must confront and question their beliefs about mathematics and

understanding.  These beliefs are the framework for students’ understanding of

mathematical concepts, hence: if they change so will students’ understanding.   Second,

students should experience mathematics as sense making.  Students develop beliefs about

mathematics as they do mathematics (Schoenfeld, 1992).  If reflection on their experience

develops into a belief that mathematics is a collection of problems that need not make

sense, they do not struggle with meaning, but are satisfied with mimicry.  In this study

when students were presented with standard mathematical problems, they attempted to

remember how to do them, with disastrous results.  Their answers were illogical and

incorrect. If mathematics educators hope to change students’ beliefs about mathematics,

then students should experience mathematics as sense making.

For Research   

The four theories of understanding described in this report (Hiebert & Carpenter,

1992; Pirie & Kieren, 1994a; Sierpinska, 1992; Skemp, 1987) do not suggest a

connection between students’ beliefs about mathematics and their understanding.  The

findings of this study and the literature on beliefs suggest that students’ beliefs influence

their understanding of mathematical concepts.  What is needed is a close examination of

students’ understanding and their beliefs in an attempt to identify and explain connections

between the two.

Much current research on students’ understanding of mathematics is based on

investigation using nonstandard problems.  However, the students in this study used quite

different approaches to standard and nonstandard problems.  The students approached

standard problems as tests of memory.  Comments such as “I know we have done this; I

just can’t remember it” were common on these sort of problems.  The students also

generated answers using faulty formulas reconstructed from their memory of instruction.
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In addition, when a student could not remember how to do a problem quickly, he or she

gave up. In contrast, students investigating nonstandard problems appear to act in

meaningful ways.  Further research of students’ understanding in these two settings is

needed to explore the limitations of the theory to predict and explain students’

understanding of both standard and nonstandard problems.

This report suggests that students’ understanding of mathematical concepts

changes over instructional phases.  Students speculate, stockpile, and in the end are left

with a collection of beliefs about the concept that are likely to be of little use as the basis

for further understanding. This finding suggest students’ understanding does not grow

over the course of instruction.  Instead students’ understanding in pre- and postinstruction

are similar, whereas their understanding during the instructional phase is transitory and

thus not useful in subsequent mathematical activity.  Further research on the

understanding of mathematical concepts should investigate this phenomenon.  Is the

transitory understanding of the instructional phase the result of instruction that does not

connect to students’ ways of knowing?  Do students for whom the mathematical concepts

have standard meanings retain their understanding into the postinstructional phase?

To investigate these questions a study modified to include teaching by the

researcher would be appropriate.  The design would be similar to this study. The tasks in

the instructional phase would be modified to include an assessment of the student’s ways

of knowing associated with the logarithmic function.  Tasks such as those used during

Interviews 5 and 6 could be used.  With this knowledge, the researcher could construct

instruction based on these ways of knowing.  The second phase would be referred to as

the instructional phase; however, instead of observing instruction presented to the student

in a classroom, the researcher would be the instructor.  Following instruction, a model of

the student’s understanding would be generated.  This phase would be similar to the

postinstructional phase.  This type of investigation could illustrate understanding of

mathematical concepts that can be achieved and what factors are necessary for students to

develop an understanding of the logarithmic function consistent with current
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mathematical views.  A student with this understanding believes the function is a map

with a collection of special properties that can be represented in written, oral, tabular, and

pictorial form.  He or she can represent and identify the function in these forms, can

connect representation, and can apply properties of the function to solve standard and

nonstandard problems.

Conclusions and Questions

Students’ understanding of mathematical concepts is intimately tied to instruction:

however, the influence of instruction is not long lasting.  This was the phenomenon I

hoped to explain when I began this study.  As a teacher I was unable to see the variables

at play in the students’ understanding.  It was mystifying.  The findings in this study have

provided me with an explanation for what I experienced.  They have also suggested to

help my students understand mathematical concept, I should find ways to alter their

beliefs about understanding and mathematics while providing opportunities for them to

use their ways of knowing explore mathematical concepts.

As a researcher, examining these questions has suggested some answers but has

raised many more questions.  Do students’ beliefs about mathematics and understanding

provide a framework for their beliefs about a mathematical concept?  Is students’

understanding of different mathematical concepts composed of the same categories of

beliefs?  How is the understanding of students’ who built their beliefs using their ways of

knowing different from the understanding of the students in this study? Answers to such

questions might benefit researchers, teachers, and students.
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APPENDIX A: INTERVIEW PROTOCOLS

Protocol for Interview 1: Preinstructional Phase

Instruction in Mapping

Adapted from Novak & Gowin (1984, p. 32-34).

1.  What do you think of when you hear the word car?

a. Does everyone think the same thing?

b. These mental images that we have for object words are our concepts of

objects.

2. What do you think of when you hear the word is?

a. These are not concept words; we call them linking words.

b. Linking words are used together with concept words to make sentences

that have meaning.

3. We can make a map of the concept car using other concepts and linking words.  The

map is a picture of what you think of when you hear the word car.  Let’s try to make a

map of that concept.  We will make the map together.  I will write down what you

think of and organize it in a map.

4. Okay, now let’s try to make one for pets.  I’ll make one and you make one.  Then we

will talk about them.

5. Now let’s make one for high school.  I’ll make one and you make one.

Experience with the Logarithmic Function

6. When was the last time you saw or used logarithms or the logarithmic function?

What was your experience like?

a. How were you feeling at that time?

b. What did you do to try and understand?

c. Who or what was the most helpful to you during that time?
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7.  (Student is given the skills assessment task sheet) I will give you as long as you need

to complete the following activity.  I realize that you may not know all that is

necessary to do the activity, but do as much as you can.  (Student does skills

assessment)

Student’s Perception of His or Her Understanding

8. Think back on the activity and tell me about what you understood most.

9. Think back on the activity and tell me about what you understood least.

Mapping Activity

10. Make a map of the concept logarithmic function.

Skills Assessment Activity

Participant:  _________________________      Date: ____________________________

1. Using your own words and any pictures or diagrams you need to express your ideas,

define the terms

a. Function

b. Logarithm

c. Logarithmic function

2. List all the properties of logarithms (or rules about logarithms) that you can recall

3. Simplify the following expressions:

a. 

€ 

log3 4 + log3 5

b. 

€ 

log3 4 − log3 5

c. 

€ 

log3 9

d. 

€ 

1

2
log3 25

e. 

€ 

log31

4.  Expand the following expressions if possible.  If you can think of more than one

expansion please include it in your answer.

a. 

€ 

log3

2

5a
, where a > 0
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b. 

€ 

log3(3+1)

c. 

€ 

log3 6

d. 

€ 

log3189

e. 

€ 

log 3

4

7

 
 

 
 

2

5. Graph the function 

€ 

f(x) = log 2 x( ) on the axes provided.

10

10

-10

-10

6. Construct a table of values for the function 

€ 

f(x) = log 3 x( ) .

7. What function is graphed on the axes below?  __________________________
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8. Use the graph below to construct a table of values for the function the graph

represents.

9. What function could have been used to generate the table of values given below?

x

€ 

1

9

€ 

1

3
1 27 81

f(x) -2 -1 0 3 4
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10. The 1980 population of the United States was approximately 227 million, and the

population has been growing continuously at a rate of 0.7% per year.  Predict the

population in the year 2010 if this growth trend continues.

Protocol for Interview 2: Preinstructional Phase

Understanding

 (Questions 1 and 2 are adapted from Brookfield (1990, p. 32-33))

1. Think of a time when you felt something important or significant was happening to

you as a learner and tell me about that time.

2. Think of a time when you felt despair or frustration about your learning activities and

tell me about that time.

3. Describe yourself as a mathematics student.

4. When you are taking a mathematics class what are your goals?

5. What are your educational goals?

6. Think of a time in your study of mathematics when you felt that you did not

understand an idea or concept. Tell me about that time.

a. How did you feel about that?

b. What did you do to try and understand?

c. Who or what was the most helpful to you during that time?

d. Did you feel as though you would eventually understand it?

7. Think of a time in your study of mathematics that you felt that you understood an idea

or concept.  Tell me about that time.

a. How did you feel about that?

b. What did you do that helped you understand?

c. Who or what was the most helpful to you during that time?

8.  We have talked a lot about not understanding and understanding.   How would you

define the word understanding?
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9.  Task:   Now I want you to visualize your process of understanding going from not

understanding to understanding and draw what you see on paper.

10. So that I can understand your drawing, I would like you to think of a mathematical

concept that you did not understand at first but later did understand.

a. What was that concept?

b. Tell me about how you came to understand that concept and explain how your

picture illustrates that process.

Protocol for Interview 3: Instructional Phase

1. Think of a time during today’s class that you felt that you did not understand the

mathematics being presented and tell me about that time.

a. How did you feel about that?

b. What did you do to try and understand?

c. Who or what was the most helpful to you during that time?

2. Think of a time during today’s class that you felt that you understood the mathematics

being presented and tell me about that time.

a. How did you feel about that?

b. What did you do that helped you understand?

c. Who or what was the most helpful to you during that time?

3. Do you have any questions about either what was presented in class or any homework

problems?  I would be happy to help.

Mapping Activity (Used during at least one iteration of this interview)

4.  Make a map of the concept of the logarithmic function.

Protocol for Interview 4: Postinstructional Phase

1.  (Student is given the skills assessment task sheet) I will give you as long as you need

to complete the following activity.  I realize that you may not know all that is
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necessary to do the activity, but do as much as you can.  (Student completes skills

assessment)

Student’s Perception of His or Her Understanding of the Logarithmic Function

2. Think of a time during this activity that you felt that you did not understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do to try and understand?

3. Think of a time during this activity that you felt that you did understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do that helped you understand?

Mapping Activity

4. Make a map of the concept logarithmic function.

Protocol for Interview 5: Postinstructional Phase

0 1 2

0 1

3 4

2

5 6 7 8

3

9 10

1. Suppose that the numbers in the squares above the number line are signs.

a. What sign do you think will be above the number 64?

b. What sign will be above the number 256?

c. What sign will be above the number 

€ 

1

2
?

d. What sign will be above the number

€ 

2 ?

e. What sign will be above the number 3?
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f. Are there any numbers that cannot have signs above them?

2.

a. If a sign had the number 7 on it, what number would be below the sign?

b. If a sign had the number -7 on it, what number would be below the sign?

c. If a sign had the number 

€ 

1

2
 on it, what number would be below the sign?

d. If a sign had the number on 

€ 

3

4
 it, what number would be below the sign?

e. If a sign had the number 

€ 

2  on it, what number would be below the sign?

f. Are there any numbers that cannot be on signs?  Why or why not.

A

m

B

n

1. Suppose A and B are two numbers on the number line.  If the sign above A has an m

on it and the sign above B has an n on it, what would the sign above the number AB

have on it?

a. What would the sign above the number 

€ 

B

A
 have on it?

b. What would the sign above the number 

€ 

A

B
 have on it?

2. What is the best way to organize and display all the data that you generated in

problems 1 - 3?  If you were making a bulletin board for this data, what would you

put on it?

3. Write down everything that you know about the relationship between the signs and

the numbers on the number line.
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Student’s Perception of His or Her Understanding of the Logarithmic Function

4. Think of a time during this activity that you felt that you did not understand the

mathematics you were doing and tell me about that time.

c. How did you feel about that time?

d. What did you do to try and understand?

5. Think of a time during this activity that you felt that you did understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do that helped you understand?

Protocol for Interview 6: Postinstructional Phase

1. Suppose there is a function f such that f(AB) = f(A) + f(B) and f(2) = 1,

a. What is f(4)?

b. What is f(8)?

c. What is f(16)?

d. What is f(256)?

e. What is

€ 

f
1

2

 
 

 
 ?

f. What is

€ 

f
1

8

 
 

 
 ?

g. What is

€ 

f
1

256

 
 

 
 ?
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h. What is

€ 

f 2( ) ?

i. What is 

€ 

f 24( ) ?

j. What is f(0)?

k. What is f(-4)?

l. What is f(3)?

m. What is

€ 

f
3

2

 
 

 
 ?

2. What is the best way to organize and display all the data that you generated in

Problem 1?  If you were trying to display the information on a bulletin board what

would you include?

3. Write down everything that you know about the function f.

Student’s Perception of His or Her Understanding of the Logarithmic Function

4. Think of a time during this activity that you felt that you did not understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do to try and understand?

5. Think of a time during this activity that you felt that you did understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do that helped you understand?
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Protocol for Interview 7: Postinstructional Phase

1. Consider the following table of values where the values in the second column are

approximations of the logarithms of the values in the first column and the values in

the fourth column are approximations of the logarithms of values in the third column.

x y x y
1 0 10 1
2 20
3 .477 30
4
5 .699
6
7 .845
8 .903
9 .954

a. Complete the table.

b. Find log 9000 using the table.

c. Find log 0.09 using the table.

d. Find 

€ 

log
5

8

 
 

 
  using the table.

2.  The following log table is a base 3 table:

x y x y
1 10
2 .631 11
3 12
4 13
5 14
6 15
7 16
8 17
9 18

a. Complete the table.

b. What other information is needed to complete the table?

c. What other ways are there to represent the data in this table?

d. Can we use any other representations to help us fill in the table?
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e. What is the best way to represent the data in the table?

Student’s Perception of His or Her Understanding of the Logarithmic Function

3. Think of a time during this activity that you felt that you did not understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do to try and understand?

4. Think of a time during this activity that you felt that you did understand the

mathematics you were doing and tell me about that time.

a. How did you feel about that time?

b. What did you do that helped you understand?

Protocol for Interview 8: Postinstructional Phase

1. Today I want to talk to you about logarithmic functions. Pretend that I am a new

student studying college algebra.  I already know about functions but have not yet

encountered the logarithmic function.  Assuming I want to understand logarithmic

functions, what would you tell me about the function?

a. Explain any special properties of the function.

b. Explain how would you illustrate the properties that you mentioned.

c. Explain how you might represent the function.

d. Explain how the function is applied.

Mapping Activity

2. Make a map of the concept logarithmic function.

Protocol for Interview 9: Postinstructional Phase

Student’s Perspective of His or Her Understanding

During interview 8 the student is presented with and is asked to read excerpts taken from

interviews 2, 3, 4, 5, and 6.
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1. Think back on your experiences with the logarithmic function both in class and in our

interviews.   Think of a time when you did not understand something about the

logarithmic function and tell me about that time.

2. Think of a time when you understood something about the logarithmic function and

tell me about that time.

3. Visualize what you see as the process that you went through to try and understand

logarithms.  Now draw a picture of that process.

4. Explain your drawing.

5. How does your drawing relate to the summaries of from the interviews that I gave

you to read?

Analysis of Maps

6. Compare and contrast the maps that you drew to represent your concept of a

logarithmic function.

7. Give me an example of how your understanding of the logarithmic function has

changed since we began these interviews in November.

8. Can we see that change by looking at your maps?



APPENDIX B: INTERVIEW PROTOCOL ACTS OF UNDERSTANDING

1. Think of a time in your study of mathematics when you did not understand a

mathematical concept or idea and tell me about that time.

2. Think of a time in your study of mathematics when you did understand a

mathematical concept or idea and tell me about that time.

3. We’ve talked about understanding and not understanding.  Now think of your process

of understanding and draw a picture of that process.

4. Using an example of a concept you did not initially understand, but later did explain

your drawing.

5. Is there anything else you can add that will help me get a better idea of your

experience of understanding mathematical concepts?



APPENDIX C: CALL FOR ASSISTANCE

CALL FOR ASSISTANCE

During the next three months an in-depth study of college algebra students’

understanding will be conducted.  This paper is a call for College Algebra students to

participate in this investigation.

Each participant will be required to meet with an interviewer for 9-12 interviews.

The first two interviews will be conducted during the second and third week in

November, at least one and up to four interviews will be conducted following my

observation of your College Algebra class, and the remaining six interviews will be

conducted during the third and fourth weeks of January. The interviews will each last no

more than 90 minutes.  Participation (or non-participation) will not directly affect your

grade in the course and you may of course terminate your participation in the study at any

time during the investigation.  All responses made by you, written or oral, will remain

completely anonymous unless you request otherwise in a written statement.  The tasks

done in the interviews are related to the material of College Algebra.  I have had many

years of experience as a teacher of mathematics.  At the end of each session you may ask

me specific questions about the material in your College Algebra course.  Your

participation in the study will provide you with an opportunity to reflect on your own

process of understanding and to develop an awareness of how your own understanding of

mathematics develops.  In addition, if you agree to participate and complete all the

interviews you will receive $150 for your participation.

Unfortunately, due to time constraints, only six students can be used in the study.

If you would like to be included as one of the participants in the study, please sign your
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name in the appropriate space below.  Participants will be contacted within the next few

days to set up an initial meeting time.

Thank you for your cooperation,

Signe E. Kastberg

Principle Investigator

I do not wish to participate in the study. I would like to set up an initial interview.

_______________________________ _________________________________

Local Phone # _____________________

e-mail ____________________________
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