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ABSTRACT 

 Obesity is a complex disease involving interactions between genetics and the 

environment. Epigenetic modifications are able to integrate changes in the environment (i.e. diet) 

into the genomes of cells. This dissertation identifies distinct leukocyte type specific changes in 

DNA methylation that are associated with obesity. Three studies were performed to (1) identify 

which peripheral leukocyte types may be the best to assess DNA methylation in response to a 

phenotype, (2) examine the DNA methylation profile of CD4+ T cells, CD8+ T cells, and 

CD16+ neutrophils in obese and normal weight women, and (3) examine the DNA methylation 

profile in CD4+ T cells in overweight and obese women before and after a weight loss 

intervention. In all studies of this dissertation, cell type specific differences in regards to their 

DNA methylome were observed. The first study (Chapter 2) identified that CD4+ T cells, CD8+ 

T cells, and CD14+ monocytes are the most potentiated to respond to physiological cues via their 

methylomes. Thus, CD4+ T cells and CD8+ T cells were selected for analysis in obese women, 

as well as a third leukocyte type, CD16+ neutrophils, which were found to be less potentiated to 

respond, but are the majority leukocyte type. In the obese women DNA methylation was found 

to be altered in 19 sites in CD4+ T cells and 16 sites in CD8+ T cells, while no alterations were 



identified in neutrophils (q<0.05) (Chapter 3). Additionally, in the CD4+ T cells, 79 sites were 

identified to have methylation levels correlated with the amount of visceral adipose tissue 

(q<0.05). When DNA methylation was examined in relation to weight loss in CD4+ T cells 

(Chapter 4), 448 sites were identified to have methylation levels post-intervention that were 

associated with the amount of android fat lost over the intervention (q<0.05). Changes in DNA 

methylation associated with weight loss were only observed in the women who began the 

intervention with the lowest amount of android fat. Collectively the studies of this dissertation 

provide evidence that there are leukocyte type specific alterations in DNA methylation that are 

associated with obesity.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW: LEUKOCYTE SPECIFIC ANALYSIS OF 

THE DNA CYTOSINE METHYLOME AS A VIEW TO UNDERSTANDING OBESTIY 

RELATED HEALTH RISK 

Introduction 

 Obesity is a complex disease that develops through interactions between both the 

environment and genetics (Ling and Groop, 2009). Despite widespread knowledge of the 

comorbidities associated with obesity and their resulting health burden, the prevalence of obesity 

remains high (CDC, 2015; WHO, 2015). Furthermore, only 20% of individuals who are able to 

lose ≥10% body weight are able to keep the weight off for at least a year (Kraschnewski et al., 

2010). It is thought that the body ‘reprograms’ itself in the obese state resulting in metabolic 

adaptations that favor higher adiposity, even when weight is lost. To gain insight into the 

molecular alterations which may be facilitating this ‘reprograming’ that occurs in obesity, I 

chose to investigate the epigenetic modification of DNA methylation. Understanding the 

epigenetic profile of obese individuals will give insight into the molecular mechanisms which 

may be facilitating the ‘reprograming’ and negative health related consequences of obesity. 

It is believed that through epigenetic modifications (i.e., changes in chromatin structure) 

cells can integrate environmental (i.e. diet) and physiological cues (i.e. changes in energy stores), 

and hence, transiently modify expression of the genome. This view has become a particularly 

popular area of obesity research with numerous studies examining the relationship between DNA 

cytosine methylation and obesity. Yet the majority of studies examining DNA methylation and 
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obesity have used samples derived from whole tissue or mixed cell types. Different cell types 

have been shown to have distinct DNA methylation profiles (Reinius et al., 2012; Gu et al., 

2016), and thus the data derived from mixed cell types is the weighted average of the 

methylation profile of all included cells. Therefore, the cell type specific DNA methylation 

signatures in obesity are likely lost in the average. Studying individual cell types instead of a 

mixture might reveal critical information to understanding the relationship between DNA 

methylation and obesity.  

Blood has been a common tissue source to study the relationship between DNA 

methylation and obesity. However, blood is made up of a variety of cell types, each which have 

their own distinct biological role. These cell type specific differences are likely reflected in their 

methylomes, and may be why conflicting data has been observed when assessing DNA 

methylation from blood samples. One study has examined the global DNA methylation levels in 

PBMCs (containing B cells, T cells, monocytes and natural killer cells), lymphocytes (B cells, T 

cells and natural killer cells), monocytes, CD4+ T cells, CD8+ T cells, B cells, and natural killer 

cells and found that the global methylation levels were only altered in the B cells in obesity 

(Simar et al., 2014). This B cell specific difference was not observed in the PBMCs or 

lymphocytes, which both contain this cell type (Simar et al., 2014). This study provides initial 

evidence that cell type specific methylation associated with obesity can be lost in the average 

when examining multiple cell types. Furthermore, peripheral leukocytes are altered in their 

levels, activation and differentiation capacity in obesity. Thus, it is reasonable to suspect that 

DNA methylation may be facilitating some of these changes in the obese state. In order to 

discover more about the cell type specific epigenetic changes that are associated with obesity, I 
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focused my dissertation work on examining DNA methylation of distinct peripheral leukocyte 

cell types in relation to obesity.  

I began the first study of my dissertation to determine the potential of the seven main 

leukocyte types in peripheral blood to respond via changes in DNA methylation (Chapter 2). 

Additionally in this chapter I present a rapid reiterative isolation protocol to isolate a few to 

seven peripheral leukocyte types from one small sample of fresh or frozen blood. This work 

facilitated the selection of the best leukocyte types to study the environmentally responsive 

phenotypes of obesity, and how to enrich for them starting with whole fresh or frozen blood for 

the remainder of my dissertation. The next chapter of my dissertation evaluates genome wide 

methylation of three leukocyte types in a population of obese women with age and sex matched 

controls of a healthy weight (Chapter 3). The leukocyte types were selected for this analysis 

based on their potential to respond to physiological cues via changes in methylation as 

determined in chapter 2. In the third study of my dissertation, I examined genome wide DNA 

methylation in CD4+ T cells in response to a specific weight loss program consisting of both 

dietary and exercise components in a group of overweight and obese women (Chapter 4). 

Collectively, these studies provide insight into the molecular basis of changes that occur with 

obesity at the level of DNA cytosine methylation in peripheral leukocyte types.  

 To provide a basis for this dissertation, my literature review will focus on providing a 

relevant background on obesity, different adipose tissue depots in obesity, adipokines, the 

inflammatory state in obesity, treatment and management of obesity through weight loss, 

epigenetics, DNA methylation, the relationship between DNA methylation, obesity and diet, and 

the use of leukocytes to study epigenetics.  
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Obesity 

 Obesity is a global health problem and was officially recognized by the American 

Medical Association (AMA) as a disease in June of 2013 (Frellick, 2013). The World Health 

Organization defines overweight and obesity as the accumulation of excess body fat which may 

impair health (WHO, 2015). Overweight and obese adults make up the majority of the US 

population, and 34.9% of US adults are classified as obese (Ogden et al., 2014; CDC, 2015). 

Overweight and obesity are defined in adults by the body mass index (BMI), where a BMI of 25 

to 29.9 kg/m2 is considered overweight, and a BMI ≥30 kg/m2 is considered obese (1998). 

Obesity is further classified by BMI into three classes of obesity defined as, class I (BMI 30-34.9 

kg/m2), class II (BMI 35-40 kg/m2), and class III (BMI ≥40 kg/m2) (2000).   

BMI is commonly used to assess weight status, as it is easy to use in clinical and 

community settings (Shah and Braverman, 2012). However, BMI does not provide any measure 

of body composition, as it is just a weight to height ratio (Gallagher et al., 1996; Shah and 

Braverman, 2012). Thus, classifying obesity by BMI can lead to misclassification due to its 

inability to distinguish free fat mass (FFM) from fat mass (FM) (Gallagher et al., 1996; Shah and 

Braverman, 2012). In additional to classifying weight status by BMI, obesity can be classified by 

percent body fat. According to the American Society of Bariatric Physicians and the AMA 

specialty board in their guidelines in 2009, ≥25% body fat for men and ≥30% body fat for 

women is considered obese, and these have been commonly used in research settings 

(Okorodudu et al., 2010; Shah and Braverman, 2012). Body fat levels can be determined by an 

estimation or direct measurement by many techniques including measurements of skin fold 

thickness, waist circumference, waist to hip ratio, bioelectrical impedance, DXA (duel energy x-

ray absorptiometry), MRI (magnetic resonance imaging), densitometry (underwater weighing 
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and air displacement plethysmography), and CT (computed tomography) imaging (Ellis, 2000; 

Wells and Fewtrell, 2006; Shuster et al., 2012). The gold standards for determining body 

composition are DXA, MRI, and CT (Shuster et al., 2012). DXA, MRI, and CT can provide not 

only measures of total body fat, but also provide information on the different adipose depots, 

such as VAT (visceral adipose tissue) (Ellis, 2000; Wells and Fewtrell, 2006; Micklesfield et al., 

2012; Shuster et al., 2012). To fully characterize the state of obesity in the studies of this 

dissertation, both calculations of BMI and body fat as determined by DXA were used. 

Obesity increases the risk for many comorbidities (i.e. type 2 diabetes, coronary heart 

disease, stroke, sleep apnea, and some cancers) and is associated with the development of 

metabolic syndrome (Finkelstein et al., 2009; CDC, 2015). The medical costs for obesity are 

estimated at $147 billion a year (Finkelstein et al., 2009; CDC, 2015). Additionally, life 

expectancy has been shown to decrease with increasing BMI (up to the age of 75), especially 

among younger adults (Stevens et al., 1998). Different distributions of body fat are associated 

with worse metabolic phenotypes, with abdominal obesity (accumulation in the trunk region) 

associated with poorer metabolic outcomes, including insulin resistance, impaired glucose 

metabolism, and impaired lipid metabolism as well as a worse prognosis (Fox et al., 2007; 

Ritchie and Connell, 2007; Shuster et al., 2012). The accumulation of adipose tissue in the lower 

extremities, or the development of peripheral obesity, it thought to be more protective, and the 

associations with metabolic disturbances are lower (Evans et al., 1984; Bjorntorp, 1991; Jensen, 

2008; Grundy, 2015). Although the health consequences of obesity are well established, the 

prevalence of this disease remains high, with rates more than doubled worldwide since 1980 

(WHO, 2015). This high occurrence of obesity emphasizes the need to further understand this 

complex disease, define biomarkers, and develop therapeutics to help reduce this burden. 
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Adipose tissue 

 Adipose tissue accumulates when energy intake chronically exceeds energy expenditure, 

caused by the storage of the excess energy as triglycerides in adipocytes (Martinez, 2000; Wright 

and Aronne, 2012; Jung and Choi, 2014). The balance between these two forces is at will to a 

complex pathological process including both genetic and environmental interactions (Martinez, 

2000; Wright and Aronne, 2012). At the simplest level these environmental influences consist of 

unhealthy lifestyle choices. For example, poor dietary habits and a sedentary lifestyle are known 

to contribute to increased adipose mass (Wright and Aronne, 2012). Additional factors including 

the food environment, social environment, sleep disturbances, some drugs, mental health, and 

other illness can contribute to the development of obesity at the environmental level (Martinez, 

2000; Haslam and James, 2005; Keith et al., 2006). Genetic factors and predisposition can 

influence different aspects of metabolism that can lead to weight gain including lower resting 

metabolic rates, macronutrient utilization, rates of oxidation, and altered hormonal signaling 

(Martinez, 2000).  

The distribution of adipose tissue has been shown to be an important determinant in the 

development of the metabolic abnormalities associated with obesity (Abate et al., 1995; Sites et 

al., 2000; Fox et al., 2007). Accumulation of adiposity in the abdomen is commonly called 

android adiposity or central adiposity (Lee et al., 2013), and is associated with worse metabolic 

outcomes than the accumulation of fat in the lower extremities (Evans et al., 1984; Jensen et al., 

1989; Vega et al., 2006; Azuma et al., 2007; Pinnick and Karpe, 2011). White adipose tissue 

(WAT) depots are distributed across the body and are broadly classified as subcutaneous adipose 

tissue (SAT, under the skin) and VAT (intraperitoneal, associated with organs), which have 

different characteristics (Shuster et al., 2012; Lee et al., 2013). SAT depots store over 80% of 
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total body fat while VAT contains 10-20% and 5-10% of body fat stores in men and women 

respectively (Lee et al., 2013). In obesity, there is increased lipolysis from VAT, which is 

thought to contribute to the development of metabolic disturbances (Lee et al., 2013). VAT also 

produces higher levels of pro-inflammatory cytokines in obesity, which is also thought to be 

involved in the development of metabolic disturbances (Lee et al., 2013). In response to modest 

weight loss, which improves metabolic dysfunction, there is a preferential loss of VAT over 

SAT, which suggests that even small losses in VAT are due to the improvement of metabolic 

parameters (Chaston and Dixon, 2008).  

Adipose tissue functions not only as a storage organ for energy, but also as a major 

endocrine and metabolic organ (Apostolopoulos et al., 2016). The accumulation of excess 

adiposity leads to dysfunction of its endocrine roles, and increased free fatty acid release into 

circulation, which both play a role in the development of metabolic abnormalities (Jung and 

Choi, 2014). The free fatty acids that are released in obesity increase insulin secretion, decrease 

insulin sensitivity in the liver and muscle, induce endothelial dysfunction, and increase VLDL 

secretion from the liver (Lee et al., 2013). Additionally, in obese adipose tissue there is an 

increased release of pro-inflammatory cytokines, which can lead to systemic inflammation (Lee 

et al., 2013). Further, as the adipocytes expand (hypertrophy) in response to increased energy 

intake, macrophage infiltration increases which then secrete more pro-inflammatory factors (Lee 

et al., 2013). As the adipose tissue grows, there can be localized hypoxia if there is inadequate 

vasculature, which can further exacerbate localized inflammation (Lee et al., 2013). Regardless 

of the cause of obesity, the increased adipose mass that develops, specifically in the trunk region, 

is independently associated with the development of metabolic abnormalities which can develop 

further into chronic disease (Evans et al., 1984; Goodpaster et al., 1997; Carr et al., 2004 ). 
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Adipokines influence peripheral organs including blood  

 As an endocrine organ adipose tissue releases adipokines, lipids, and metabolites which 

provide information of the functional status of the adipose tissue to other organs (Fasshauer and 

Bluher, 2015). Adipokines are peptides released from the adipocytes to mediate an effect, but 

have also been defined to include all peptides secreted from the adipose tissue (Lehr et al., 2012; 

Fasshauer and Bluher, 2015). In the adipose tissue adipokines can influence adipogenesis, the 

migration of immune cells into the tissue, and other functions of adipocytes (Fasshauer and 

Bluher, 2015). Adipokines can also affect other organs including the brain, liver, muscle, 

vasculature, heart, pancreas, and the immune system (Fasshauer and Bluher, 2015).  

There are many different adipokines with over 600 secreted peptides released from 

adipose tissue (Lehr et al., 2012; Aguilar-Valles et al., 2015; Fasshauer and Bluher, 2015) which 

are involved in lipid metabolism, insulin sensitivity, vascular hemostasis, alternative complement 

system, blood pressure, angiogenesis, inflammation, appetite, and energy balance (Trayhurn and 

Wood, 2004; Aguilar-Valles et al., 2015). The most well-known adipokines include leptin and 

adiponectin. There are also pro-inflammatory adipokines (i.e. TNFα, IL-6, adipsin, resistin), anti-

inflammatory adipokines (i.e. Omentin, IL-10), adipokines involved in glucose homeostasis (i.e. 

DPP-4, FGF21), and adipokines involved in regulating food intake (i.e. BMP-7, Vaspin) 

(Trayhurn and Wood, 2004; Fasshauer and Bluher, 2015). Leptin is mainly known for its role as 

a satiety signal (regulated food intake and appetite), but also is involved in the regulation of 

energy expenditure, reproductive function, activity, and atherogenesis (Fasshauer and Bluher, 

2015). Adiponectin is secreted from adipocytes, and is present in human plasma (Ohashi et al., 

2014). Adiponectin is involved in both improving insulin sensitivity and carrying out anti-

inflammatory roles (Ohashi et al., 2014; Fasshauer and Bluher, 2015). In example, adiponectin 
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increases macrophages ability to remove apoptotic bodies, which is important in preventing 

inflammation (Ohashi et al., 2014). In adipose tissue of healthy weight individuals, the 

adipokines secreted work to maintain homeostasis in the body (Fasshauer and Bluher, 2015). As 

the adipose tissue expands in obesity, the secreted adipokine profile is altered and can contribute 

to metabolic and inflammatory disease (Fasshauer and Bluher, 2015). 

In obesity, the adipose tissue expands which affects the biological function of the 

adipocytes (Fasshauer and Bluher, 2015). The resulting hypertrophy of the adipocytes is thought 

to begin the dysfunction of the adipose tissue leading to both the altered secretion of adipokines 

and the recruitment of immune cells (Fasshauer and Bluher, 2015). In obesity, there is increased 

secretion of more harmful adipokines including angiotensin, TNFα, IL-6, PAI-1, and leptin (Wu 

et al., 2007; Trayhurn et al., 2008; Wozniak et al., 2009; Karastergiou and Mohamed-Ali, 2010; 

Paz-Filho et al., 2011; Wu et al., 2012; Cohen et al., 2014; Rosenwald and Wolfrum, 2014). 

There is also a corresponding decrease in the secretion of the more helpful adipokines in obesity 

including IL-10, adiponectin, apelin, and omentin (Sethi and Vidal-Puig, 2005; Howard et al., 

2010; Boydens et al., 2012; Van de Voorde et al., 2013; Matsuda and Shimomura, 2014). Leptin 

has been a well-studied example of the changing adipokines in obesity. Levels of circulating 

leptin are proportional to body fat, and are thus increased in obesity (Fasshauer and Bluher, 

2015). The chronically high circulating levels of leptin lead to leptin resistance, diminishing the 

beneficial effects of leptin of appetite suppression and food intake regulation (Fasshauer and 

Bluher, 2015). Humans and mice genetically deficient in leptin are characterized by hyperphagia, 

obesity, and insulin resistance (Nakamura et al., 2014). Both leptin and adiponectin (among other 

adipokines) have been shown to interact with different leukocytes to promote pro-inflammatory 

and anti-inflammatory roles respectively (Nakamura et al., 2014; Aguilar-Valles et al., 2015). 
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The increased pro-inflammatory adipokines released in obesity promotes both metabolic and 

cardiovascular disease (Nakamura et al., 2014). For example, the increased levels of TNFα in 

obesity (a pro-inflammatory adipokine) contributes to insulin resistance by inhibiting the 

phosphorylation of the insulin receptor and insulin receptor substrate 1 in muscle and adipose 

tissue, which is required for their activation (Hotamisligil et al., 1994; Nakamura et al., 2014). 

Further, the altered adipokine profile secreted from obese adipose tissue impacts inflammatory 

cells, contributing to the localized and systemic inflammation in obesity (Nakamura et al., 2014).  

Inflammation and obesity  

Many of the metabolic abnormalities stemming from obesity are related to the 

development of an inflammatory state in adipose tissue (specifically in the VAT), which results 

in chronic systemic inflammation (Lee and Pratley, 2005; Anderson et al., 2010). This chronic 

low-grade inflammation is the link between obesity (increased adipose mass) and the 

development of metabolic abnormalities (Mathis, 2013). In obese adipose tissue there are 

dynamic changes including increased release of free fatty acids (FFA), hormones, and 

adipokines, as well as an increase in the presence of inflammatory cells (Apostolopoulos et al., 

2016). These dynamic changes disturb the balance of the adipose tissue that is maintained in 

those of a healthy weight, and results in the activation of the inflammatory response 

(Apostolopoulos et al., 2016).  

  Adipose tissue of normal weight individuals consists of adipocytes, precursor cells, 

endothelial cells, and immune cells (Huh et al., 2014). The immune cells of adipose tissue 

consist of both innate (macrophages, neutrophils, eosinophils, and mast cells) and adaptive 

(various T cells, and B cells) cell types (Huh et al., 2014). Adipocytes are able to communicate 

with these immune cells and are involved in their activation and proliferation in adipose tissue 
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(Huh et al., 2014). For example, obese adipocytes secrete TNFα and IL-6, pro-inflammatory 

cytokines, which are involved in the development of adipose tissue inflammation (Huh et al., 

2014). Additionally adipocytes secrete leptin (in proportion to adipose mass), which activates 

CD4+ T cells to secrete pro-inflammatory cytokines and increases activation of monocytes 

(Apostolopoulos et al., 2016). Adiponectin, also secreted by adipocytes, works to inhibit TNFα 

expression in adipocytes and macrophages and its expression is decreased in obesity (Ohashi et 

al., 2015). Obese adipocytes can also activate CD4+ T cells by acting as MHC class II antigen 

presenting cells (Deng et al., 2013). 

As adipose mass increases, there is a shift in the immune cells present and their activity 

to that of a pro-inflammatory nature, which is thought to be involved in the development of 

insulin resistance (Huh et al., 2014). There are mainly anti-inflammatory immune cells (M2 

macrophages, regulatory T cells (Tregs), and eosinophils) in the adipose tissue of lean 

individuals which helps maintain insulin sensitivity (Huh et al., 2014). Macrophages are a major 

immune cell involved in the establishment of a pro-inflammatory state in obese adipose tissue. 

Monocytes are differentiated into either M1 macrophages (classically activated) or M2 

macrophages (alternatively activated) depending on different stimuli (Lumeng et al., 2007). M2 

macrophages are present in lean adipose tissue and produce anti-inflammatory cytokines 

(Lumeng et al., 2007a), which promote local and systemic insulin sensitivity (Chawla et al., 

2011; Osborn and Olefsky, 2012). The eosinophils present in lean adipose tissue are though to 

promote the presence of M2 macrophages, as they release IL-4 (major contributor of this 

cytokine in adipose tissue) in VAT promoting this lineage, and are reduced in obesity (Wu et al., 

2011). In obesity, the pro-inflammatory cytokines LPS and IFN-γ promote M1 macrophages 

which secrete pro-inflammatory cytokines including TNFα (Lumeng et al., 2007) which 
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promotes insulin resistance (Chawla et al., 2011; Osborn and Olefsky, 2012). Neutrophils are 

implicated in the early development of the inflammatory state in adipose tissue and have been 

shown to be recruited into adipose tissue just three days after mice are fed a high fat diet 

(Elgazar-Carmon et al., 2008). Neutrophils further promote the inflammatory response in obesity 

by their anti-microbial activities as well as recruit circulating monocytes to the tissue (which can 

be differentiated into macrophages) (Mathis, 2013). CD8+ T cells are also involved in the early 

stages, and have been shown to be recruited into adipose tissue within two weeks of a high fat 

diet, prior to the recruitment of macrophages (Nishimura et al., 2009). When CD8+ T cells are 

inhibited in high fat diet induced obesity, there is both improved inflammation in VAT and 

systemic insulin sensitivity independent of changes in body weight (Nishimura et al., 2009). 

Further, CD8+ T cells have been shown to be activated by only obese adipocytes and are 

involved with the recruitment and differentiation of macrophages (Nishimura et al., 2009). 

Additionally there is a decrease in the anti-inflammatory CD4+ T helper 2 (Th2) and Treg 

populations in obese adipose tissue (Nishimura et al., 2009; Zuniga et al., 2010; Huh et al., 

2014). Th1 CD4+ T cells, a pro-inflammatory T cell, increase in obese adipose tissue and 

produce IFN-γ (Winer et al., 2009; Zuniga et al., 2010), further promoting the presence of M2 

macrophages. B cells also appear to have a pro-inflammatory effect in obese adipose tissue, and 

are increased in the obese state (Winer et al., 2011; DeFuria et al., 2013).  

 The increased inflammatory state in adipose tissue with obesity contributes to the 

development of chronic systemic inflammation (Huh et al., 2014). There is evidence that the 

cytokines released from obese adipose tissue are reflected in the blood as elevated levels of 

TNFα have been observed both in obese adipose tissue and systemically (Hotamisligil et al., 

1993). When TNFα is neutralized, systemic insulin resistance is improved (Hotamisligil et al., 
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1993). Furthermore, total white blood cell (WBC) counts have been shown to correlate with 

obesity and measures of adiposity (Fisch and Freedman, 1975; Pratley et al., 1995; Dixon and 

O'Brien, 2006). Peripheral leukocytes in obese individuals have higher activations marks on 

neutrophils, monocytes, T lymphocytes, and Th1 cells (Nijhuis et al., 2009; Viardot et al., 2012). 

Finally, circulating leukocytes have been shown to be altered in obesity. Circulating monocytes 

from obese individuals have different gene expression and surface molecules than the circulating 

monocytes in normal weight individuals (Satoh et al., 2010; Viardot et al., 2012). Circulating 

neutrophils are increased with obesity, and are higher in people with metabolic syndrome (Dixon 

and O'Brien, 2006; Kaur et al., 2013). CD4+ T cells (naïve, memory, Treg, and Th2) increase in 

circulation with obesity and have been shown to correlate with insulin sensitivity (van der Weerd 

et al., 2012). It also appears that the proliferation of both CD4+ and CD8+ T cells is increased 

with obesity (Womack et al., 2007; van der Weerd et al., 2012). Leptin negatively affects 

proliferation of Tregs, and in obese individuals, higher leptin levels correlate with lower Treg 

levels (De Rosa et al., 2007; Wagner et al., 2013; Apostolopoulos et al., 2016). B cell counts are 

also increased in the periphery of obese individuals (Nieman et al., 1999; Ilavska et al., 2012). 

Further details on the development of the inflammatory state in adipose tissue has been 

previously well reviewed (Chawla et al., 2011; Osborn and Olefsky, 2012; Mathis, 2013; Huh et 

al., 2014; Apostolopoulos et al., 2016). 

Treatment and management of obesity: weight loss 

 Weight loss is the primary focus of the guidelines for the management of obesity from 

the Academy of Nutrition and Dietetics, the American Heart Association (AHA)/American 

College of Cardiology (ACC)/The Obesity Society (TOS) and Endocrine society (Jensen et al., 

2014; Apovian et al., 2015; Raynor and Champagne, 2016). The guidelines state that even 
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modest weight loss of 3-5% body weight can produce benefits of reductions of triglycerides, 

blood glucose, hemoglobin A1c, and the risk of developing type 2 diabetes (Jensen et al., 2014; 

Raynor and Champagne, 2016). Higher levels of weight loss lead to even more beneficial 

changes to metabolic parameters including reductions in blood pressure and LDL-cholesterol, 

increases in HDL-cholesterol, and may eliminate the need for medications to control blood 

pressure, blood glucose, and serum lipids (Jensen et al., 2014; Raynor and Champagne, 2016). 

Furthermore, many studies have shown that reductions in body weight of approximately 10% 

improved metabolic parameters and the prevalence of metabolic syndrome (Goldstein, 1992; 

Case et al., 2002; Grundy et al., 2005; Phelan et al., 2007). Thus, the recommended weight loss 

goal for overweight and obese individuals is 5 to 10% of body weight in a six month period 

(Raynor and Champagne, 2016). Weight loss is primarily recommended to be implemented 

through lifestyle interventions targeting diet and physical activity, however individuals with 

comorbidities or who are morbidly obese (BMI ≥40 kg/m2) may need additional pharmacological 

treatment or bariatric surgical treatment (Jensen et al., 2014; Apovian et al., 2015).  

 Lifestyle interventions to promote weight loss should focus both on dietary and physical 

activity aspects, facilitated through the use of behavioral strategies, or a comprehensive lifestyle 

program (Jensen et al., 2014). The AHA, ACC, and TOS conclude in their guideline for the 

treatment and management of overweight and obesity, that there is strong evidence that a 

calorically restricted diet will promote weight loss (Jensen et al., 2014). They also conclude that 

there is strong evidence that the use of comprehensive lifestyle programs for at least 6 months 

will promote weight loss (Jensen et al., 2014). This was confirmed in the 2016 guidelines 

published by the Academy of Nutrition and Dietetics (Raynor and Champagne, 2016). Thus, it is 

well accepted that an energy restricted diet alone or in combination with a comprehensive 
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lifestyle intervention promotes weight loss. Yet, most weight loss intervention studies still 

observe large individual variation in the response to weight loss interventions, suggesting 

individual factors play a role in weight loss success (Dansinger et al., 2005; King et al., 2008; 

Napolitano et al., 2012; O'Neil et al., 2012; Kullgren et al., 2013).  

To make caloric intake recommendations to promote weight loss (up to 2 lbs. per week) 

the resting metabolic rate (RMR) needs to be determined (Raynor and Champagne, 2016). The 

RMR should ideally be determined though indirect calorimetry, but if not available the Mifflin-

St. Jeor equation using the actual body weight of the overweight or obese individual can be used 

(Raynor and Champagne, 2016). The RMR must then be multiplied by an activity factor 

(sedentary 1-1.4, low activity 1.4-1.6, active 1.6-1.9, very active 1.9-2.5) to determine the daily 

energy expenditure (DEE) of the overweight or obese individual (Raynor and Champagne, 

2016). Once the DEE is determined, a weight loss plan can be developed. In order to produce an 

energy deficit to facilitate weight loss, dietary intake should be 500 kcal to 750 kcal per day less 

than the DEE (Raynor and Champagne, 2016). It is important that the calorically restricted diet 

still provides adequate nutrition and meets the reconditions of the Dietary Guidelines for 

Americans (Raynor and Champagne, 2016). As long as the caloric deficit is achieved, the 

macronutrient distribution of the diet (i.e. low carbohydrate, low fat) produce similar weight loss 

(Tobias et al., 2015; Raynor and Champagne, 2016).  

 Increased moderate to vigorous physical activity alone is not as effective in weight loss as 

caloric restriction alone (Johns et al., 2014; Raynor and Champagne, 2016). Yet the combination 

of both physical activity and caloric restriction produces the most significant amounts of weight 

loss (Johns et al., 2014; Raynor and Champagne, 2016). Although not the most important factor 

for weight loss, moderate to vigorous physical activity is crucial for weight loss maintenance 
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(Raynor and Champagne, 2016). This may be related to the ability to offset the reduced energy 

expenditure that is experienced in those who lose significant amounts of weight (Maclean et al., 

2011). By increasing physical activity, daily energy expenditure is increased, and maintaining a 

non-excessive dietary intake become more manageable. Indeed, moderate to vigorous physical 

activity needs are increased to more than 250 min per week for weight loss maintenance, while 

the general recommendations for a healthy individual are 105 min per week (Donnelly et al., 

2009; Raynor and Champagne, 2016).  

Finally, cognitive behavioral therapy is recommended to complete a comprehensive 

lifestyle intervention for weight loss. This type of behavioral intervention focuses on relating 

thoughts and behaviors to their impact on health outcomes, and how change can facilitate 

improvements in these outcomes (i.e. obesity) (Raynor and Champagne, 2016). This type of 

behavior intervention should focus on self-monitoring to facilitate change in thought and 

behaviors (Raynor and Champagne, 2016). Motivational interviewing is a technique RDNs 

should use when counseling overweight and obese patients on weight loss, leading patients to 

thought and behavior changes (Raynor and Champagne, 2016). Thus, comprehensive 

interventions are likely to produce better weight loss as lifestyle factors which need to be 

maintained for weight maintenance are introduced to an individual.  

Another aspect of obesity management is the ability to keep weight off once it is lost. 

However, this has proven to be quite the challenge for most individuals with successful weight 

loss. In a large systemic analysis of 33 weight loss interventions based on lifestyle modifications, 

after 1 year approximately half of the weight lost was regained (Stevens et al., 2001). It has been 

found that only approximately 20% of adults in the US are able to maintain weight loss of at 

least 10% initial body weight for at least a year (Kraschnewski et al., 2010). A higher portion of 
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adults may be able to keep the weight off (39.3% of participants able to maintain a 10% weight 

loss for one year) when comprehensive lifestyle intervention is used (focused on diet, physical 

activity, and cognitive behavioral intervention) (Look, 2014). The ability to maintain lifestyle 

changes after weight loss are crucial to weight maintenance success (Raynor and Champagne, 

2016), as once weight loss is achieved, there are metabolic adaptations which favor weight 

regain (Rosenbaum et al., 2008). The metabolic adaptations that persist with weight loss have 

been well reviewed (Maclean et al., 2011) and include a decreased resting metabolic rate, altered 

endocrine signaling, increased appetite, and overall suppressed energy expenditure (Rosenbaum 

et al., 2008; Maclean et al., 2011). The persistence of these metabolic adaptations makes 

maintaining weight loss difficult. These adaptations are in part a result of the remembrance of the 

obese state which has ‘reprogramed’ the body (Leung et al., 2016). 

Dietary interventions for weight loss, and a role for personalized interventions? 

Despite the strong evidence that caloric restriction (alone or in part of a comprehensive 

weight loss program) results in weight loss, there is inter-individual differences in weight lost 

from dietary changes (Moreno-Aliaga et al., 2005; Wu H, 2013). It has been suggested that 

weight loss should be viewed as a complex trait with environmental, behavioral, and genetic 

determinants (Moreno-Aliaga et al., 2005; Wu H, 2013). Thus, in addition to the environmental 

and behavioral aspects that are targeting by comprehensive weight loss programs, individual 

genetic background can also influence their weight loss success and corresponding 

improvements in metabolic parameters (Moreno-Aliaga et al., 2005). An example of how 

individual genetic disposition can effect weight loss involves the leptin receptor. Overweight 

women with the 343T/C SNP in the leptin receptor lost more weight following a low calorie diet 

than those without this variant (Mammes et al., 2001). As leptin is an appetite suppressant 
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(Moreno-Aliaga et al., 2005), this polymorphism links individual genetic profiles to diet, which 

affects weight loss success. Additionally, the Pro12Ala polymorphisms in PPARγ2 (adipose 

tissue specific) is associated with better weight loss over three years (diet and exercise 

intervention) than those with other genotypes (Lindi et al., 2002). As PPARGγ2 is a transcription 

factor involved in adipogenesis and glucose and lipid homeostasis (Moreno-Aliaga et al., 2005), 

this polymorphism in another link between weight loss and diet. Furthermore, people who have 

the rs1558902 risk allele in the FTO (fat mass and obesity associated gene) have larger response 

(weight reductions, positive body composition changes) to a high protein weight loss diet than on 

a low protein weight loss diet for 2 years (Zhang et al., 2012), suggesting that for those with this 

variant the type of weight loss diet is crucial for success. Thus, understanding gene-diet 

interactions may provide the framework needed for personalized weight management (Wu H, 

2013). Epigenetics, specifically DNA methylation may be one modality though which these 

gene-diet interactions occur and warrants further investigation. 

Epigenetics 

 Epigenetics is commonly defined as the heritable changes in gene expression that occur 

without changing the DNA sequence (Campion et al., 2009c; Dupont et al., 2009; Perez-Cornago 

et al., 2014). Others have defined epigenetics as “any long-term change in gene function that 

persists even when the initial trigger is long gone that does not involve a change in gene 

sequence or structure” (McGowan and Szyf, 2010). It has been proposed that the epigenome is 

responsive to different environmental cues such as inflammation, oxidative stress, smoking, 

physical activity, stress, and nutrition (Campion et al., 2010; Martin-Nunez et al., 2014; Samblas 

et al., 2016). Thus, epigenetics can act as a link between genotype and phenotype, which is 

responsive to different physiological cues (Goldberg et al., 2007). The most commonly studied 
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epigenetic modifications are DNA methylation and covalent histone modifications. The sum of 

the epigenetic information in a cell is called the ‘epigenome’, and the epigenome differs between 

cells (Suzuki and Bird, 2008). Thus, there are at least as many epigenomes as there are cell types 

in the body, but likely more due to the dynamic nature of epigenetic modifications (Suzuki and 

Bird, 2008). As the studies included in this dissertation focus on DNA methylation in relation to 

obesity and adiposity, the remaining review on epigenetics will focus on DNA methylation.  

DNA methylation 

 DNA methylation occurs at cytosine residues by the addition of a methyl group in the 5th 

carbon position (5mC) (Newell-Price et al., 2000; Gibney and Nolan, 2010). 5mC typically 

occurs in the context of a CG dinucleotide (Newell-Price et al., 2000). CG dinucleotides are 

found at high densities in the genome in regions termed CG islands (CGIs) which cover ~60% of 

genes promoters (Antequera and Bird, 1993). Immediately upstream and downstream of the CGI 

are the shores and shelves (Bibikova et al., 2011). The shores are the 2kb regions immediately 

upstream and downstream of the CGI, while the shelves are the 2kb regions upstream and 

downstream of the shores (Bibikova et al., 2011). Most CG dinucleotides are methylated in the 

genome, with the exception that most CGIs are demethylated (Newell-Price et al., 2000). 

Typically DNA methylation is associated with a heterochromatin state, resulting in the 

repression of gene expression (Siegfried and Simon, 2010). The data is strong supporting this 

relationship in CG sites located in the promoter region and CGIs of genes (Goldberg et al., 2007; 

Pinnick and Karpe, 2011; Paluch et al., 2016). However, gene body methylation has a less clear 

relationship with gene expression (Bird and Wolffe, 1999; Klose and Bird, 2006; Suzuki and 

Bird, 2008).  
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DNA is methylated by DNA methyltransferase enzymes (DNMTs), which add the methyl 

group to the 5’ position of cytosine residues (Newell-Price et al., 2000; Kim et al., 2009; Gibney 

and Nolan, 2010). S-adenosylmethionine (SAM) is the methyl donor for this methylation 

reaction (Remely et al., 2015). There are three common DNMTs: DNMT1, which is responsible 

for maintenance of DNA methylation, able to methylated hemi-methylate CG sites, and 

DNMT3a and DNMT3b, which are the de novo methyltransferases able to methylate both un-

methylated and hemi-methylated CG sites (Newell-Price et al., 2000; Gibney and Nolan, 2010).  

 It has been suggested that 20% of CG sites are tissue specific and may be involved with 

gene regulation (Lister et al., 2013; Meagher, 2014; Wu and Zhang, 2014; Gu et al., 2016). DNA 

methylation is thought to be involved in regulating gene expression in two main ways, altering 

transcription factor binding and the binding of methyl CG binding proteins (Tate and Bird, 1993; 

Newell-Price et al., 2000). Methylated CG sites can interfere with the ability of some 

transcription factors to bind to a DNA sequence (Tate and Bird, 1993; Newell-Price et al., 2000). 

Additionally, the DNMTs can interact with transcription factors to methylate specific CG sites, 

which then can affect the recruitment of transcriptional machinery or alter the chromatin 

structure to affect gene regulation (Hervouet et al., 2009; Gibney and Nolan, 2010). The proteins 

that bind to 5mCG are the methyl-CG binding proteins (MBD1, MBD2, MBD3, MBD4, 

MeCP2) (Du et al., 2015), and can affect gene transcription (Gibney and Nolan, 2010). MBD1-3 

recruit various histone deacetylases and co-repressors, which results in transcriptional repression. 

Another of the methyl-CG binding proteins, MBD4 has a glycosylase domain (Otani et al., 

2013), like TDG (thymine DNA glycosylase, involved in the de-methylation of 5mC), and thus 

may contribute to the modification of 5mC, but has not been associated with repressing gene 

transcription (Newell-Price et al., 2000; Gibney and Nolan, 2010). MeCP2 can be affected by 
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changes in external stimuli (cocaine and ethanol) (Grigera et al., 2013; Pol Bodetto et al., 2013). 

Additionally, MeCP2 can bind to both 5mCG and 5-hydroxymethylated CG sites, being 

associated with repressed and active transcription respectively (Mellen et al., 2012). The 

repression domain of MeCP2 can repress transcription at locations a few hundred base pairs 

away (Bird and Wolffe, 1999) and can also recruit the Sin3 complex which is a co-repressor 

containing histone deacetylase 1 and 2, as well as other co-repressors to further facilitate 

repression (Newell-Price et al., 2000; Gibney and Nolan, 2010). Finally, MeCP2 can also bind to 

the linker DNA and to nucleosomes, altering chromatin compaction and thus can form physical 

barriers to the transcriptional machinery (Gibney and Nolan, 2010). Thus, the complex 

interactions between DNA methylation, the binding of cellular machinery, and chromatin 

structure work together to regulate gene transcription. 

There is evidence that the turnover of the 5mC at sites that are relevant to gene 

expression is rapid (Meagher, 2014) with approximately 10% of 5mC sites in the genome able to 

be demethylated in as little as two hours (Yamagata et al., 2012). Recently the process of 

demethylation has been determined. The ability of DNA to not only be methylated, but 

demethylated as well, shows the ability of this epigenetic modification to have a dynamic 

response to different physiological cues. The demethylation of 5mC begins by oxidation by one 

of three ten eleven translocase methyl-cytosine dioxygenase enzymes (TET1, TET2, TET3) to 

5hmC (5-hydroxymethylcytosine), and is followed by repair back to cytosine by thymine-DNA 

glycosylase (TDG) and growth and arrest DNA damage 45 (GADD45 A, B, and G) enzymes 

(Calabrese et al., 2014). 5hmC has been proposed to be not only an intermediate of the 

demethylation of 5mC, but is associated with gene expression changes. The prevalence of 5hmC 

is much lower than 5mC, but is correlated with differential gene regulation (Mellen et al., 2012; 
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Lister et al., 2013; Tsagaratou et al., 2014). In contrast to 5mC, 5hmC is associated with 

euchromatin (Ficz, 2015), suggested to be poising genes for transcription (Pastor et al., 2011), or 

involved in ‘on demand’ gene regulation (Irier et al., 2014). As with 5mC, 5hmC seems to be 

tissue specific and involved in differentiation (Nestor et al., 2012; Taylor et al., 2016). For 

example, in TET1 and TET2 known down embryonic stem cells, methylation of pluripotency 

related genes is increased with corresponding changes in gene expression, resulting in an altered 

differentiation potential (Ficz et al., 2011). There can be changes in the levels of 5mC and 5hmC 

independent of each other (Ruzov et al., 2011; Salvaing et al., 2012; Hahn et al., 2013). In 

addition to this active demethylation, sites can become demethylated passively, if methylation is 

not maintained with replication (Gibney and Nolan, 2010).  

As was described when introducing the concept of the epigenome, there are at least as 

many epigenomes as there are cells in the body (Suzuki and Bird, 2008). Thus, it is critically 

important to examine epigenetic modifications, like DNA methylation, in single cell types. An 

example of the vast differences in the DNA methylome between different cell types has been 

shown in peripheral blood leukocytes. Reinius et al. (2012) performed a genome wide analysis of 

the DNA methylation profile in seven main leukocyte types. They found that the two closely 

related PBMCs, the CD4+ T cells and the CD8+ T cells differed in ~45,000 sites of the ~485,000 

sites assayed (9%) in methylation levels (Reinius et al., 2012). The distantly related PBMC 

CD8+ T cells and the granulocytic eosinophils differed in a remarkable ~193,000 sites of the 

~485,000 sites assayed (40%) (Reinius et al., 2012). Additionally, the granulocytes (neutrophils 

and eosinophils) are hypomethylated, with five to ten times less methylation across the genome 

than the hypermethylated PBMC lymphoid cell types (T cells, B cells, NK cells, and monocytes) 

(Reinius et al., 2012). Differences in DNA methylation between different cell and tissue types 
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other to leukocytes has also been demonstrated (Gu et al., 2016). Thus, when mixed leukocytes 

DNA methylomes are analyzed together, the resulting data is a weighted average of all cell types 

included. This can lead to the loss of many biologically relevant differences, which are obscured 

in the weighted average.  

DNA methylation, obesity, and dietary intake 

 Worldwide the rate of obesity has more than doubled in the last 35 years (WHO, 2015). 

Epigenetics has been suggested to be a major player in this development and persistence of 

obesity (Campion et al., 2010). It has been suggested that epigenetic factors facilitating the 

interaction between gene regulation and the environment may explain the inter-individual 

differences that are observed in complex diseases, like obesity (Ling and Groop, 2009). There 

are many factors in obesity that may influence DNA methylation and the epigenome including 

diet, oxidative stress, inflammation, and hypoxia (Milagro et al., 2011).  

 As obesity in part develops from the chronic disturbed energy balance where intake 

exceeds total energy expenditure, diet may play a role in the proposed altered DNA methylome 

in obesity (Milagro et al., 2011). The methyl groups available for DNA methylation are affected 

by intake of dietary methyl donors (de Mello et al., 2014). The main dietary methyl donors 

include methionine, betaine, folate, and choline (Niculescu and Zeisel, 2002; Anderson et al., 

2012). The utilization of methyl groups can also be affected by diet, as the enzymes involved in 

the DNA methylation process require different nutrients and their metabolites for proper 

functionality (Remely et al., 2015). S-adenosylmethionine (SAM) is the enzyme that provides 

the methyl group to be used for DNA methylation (Niculescu and Zeisel, 2002; Remely et al., 

2015), and folate, cobalamin, pyridoxine, and riboflavin can influence the availability of SAM 

(Ross, 2003; Anderson et al., 2012; de Mello et al., 2014). DNMT activity can be influenced by 
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curcumin, genistein, EGCG, and equol (Remely et al., 2015). TETs activity can be affected by 

vitamin C, which can affect the formation of 5hmC, 5fC, and 5caC as well as the de-methylation 

process (Blaschke et al., 2013).  

Additionally, changes in diet have been shown to be associated with changes in DNA 

methylation. For example a high fat diet (HFD) has been shown to alter the methylation status of 

adiponectin, which was associated with changes in gene expression in the adipocytes of mice 

(Kim et al., 2015). The altered methylation status of adiponectin was found to be due to changes 

in DNMT1 activity. This activity can be induced in vitro by treating differentiated adipocytes 

with TNFα, suggesting an involvement of the inflammatory state in obesity in which TNFα 

levels are elevated (Kim et al., 2015). In humans, the methylation of adiponectin and its 

expression level have been shown to correlate with BMI, suggesting that this gene’s responsive 

to the obesogenic diet in humans as well (Kim et al., 2015). Berry intake, in addition to a high fat 

diet in mice, altered DNA methylation profiles in liver compared to the mice on a high fat diet 

alone (Heyman-Linden et al., 2016). In mice, a high fat diet decreases PPARγ promoter 

methylation and increases its expression in muscle, which can be prevented by the 

supplementation of fish oil (Amaral et al., 2014). Additionally, short term overfeeding in humans 

has altered DNA methylation at over 7000 sites corresponding to over 6500 genes in skeletal 

muscle (Jacobsen et al., 2012). These changes in DNA methylation were only partially reversed 

after six weeks with no sites significantly restored to baseline levels (Jacobsen et al., 2012). 

Thus, cumulating evidence is suggesting that alterations in diet, which occur in obesity, are 

associated with altered DNA methylation.  
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Medications, age and DNA methylation 

 In addition to obesity and dietary intake, DNA methylation levels can be impacted by 

different medications and by age. The effect of medications of DNA methylation warrants 

discussion as many obese patients develop complications that require medication use. 

Additionally, if older participants are included in studies of DNA methylation and obesity, the 

likely hood for pharmaceutical use is increased, representing a potential confounding effect of 

DNA methylation and obesity. It is also important to consider the impact of age on DNA 

methylation when considering studies that have been conducted in populations with different 

ages or with large age ranges. 

Some of the earliest drugs known to affect DNA methylation are 5-azacytidine and 5-

deoxyazacytidine, both of which are hypo-methylating drugs and are used for cancer treatment 

(Issa and Kantarjian, 2009). These drugs are nucleoside analogs which trap DNMT onto the 

DNA where this drug is incorporated (Szyf, 2009). Another nucleoside analog, Zebularine is also 

used for cancer treatment and has a similar effect (Szyf, 2009). Hydralazine which is a 

vasodilator used to treat hypertension inhibits the DNMTs, resulting in a drug induced lupus like 

autoimmune disease (Csoka and Szyf, 2009). The anti-arrhythmic sodium channel blocker 

procainamide induces the same affect (Csoka and Szyf, 2009). Methotrexate, which is an 

anticancer drug, affects methionine synthesis which alters DNA methylation (Csoka and Szyf, 

2009). The teratogens thalidomide and isotretinoin have been shown to affect DNA methylation 

in the offspring, yet the mechanism of action in unknown (Csoka and Szyf, 2009).  Tamoxifen, a 

non-steroidal anti-estrogen which is used for breast cancer prevention and treatment has also 

been suggested to affect DNA methylation (Csoka and Szyf, 2009). Valproic acid, which is used 

to treat epilepsy and as a mood stabilizer, has been shown to induce demethylation (Szyf, 2009). 
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Additionally, the histone deacetylate inhibitors, TSA, valproate, and benzamide have been 

shown to cause demethylation in the brain (Szyf, 2009). The use or past use of these drugs in 

participants in DNA methylation studies may confound the DNA methylation data. It is also 

likely that other medications lead to changes in DNA methylation, albeit indirect, that may also 

confound data. It is thus important to report or consider the medications used by participants in 

these DNA methylation studies.  

DNA methylation changes throughout the lifespan. Following birth, DNA methylation 

levels are elevated for the first year (Jones et al., 2015). Once adulthood is reached, DNA 

methylation decreases as measured by LINE-1, Alu, and microarray with the ageing process (van 

Otterdijk et al., 2013; Jones et al., 2015). In individuals whose DNA methylation profile were 

measured over eight years showed that DNA methylation decreased over time (Bollati et al., 

2009). In addition to decreases in methylation with aging, site specific DNA methylation 

becomes more variable (van Otterdijk et al., 2013; Jones et al., 2015). So with aging, there is not 

only a global reduction in DNA methylation, but increased differences in methylation between 

individuals (Jones et al., 2015). Not all regions in the genome decrease methylation with age, 

there are some regions that have increased methylation with age, usually occurring within CGIs 

(van Otterdijk et al., 2013; Jones et al., 2015). Specific sites have been shown to have highly 

associated methylation levels with age, and have been used to predict age (Bocklandt et al., 

2011; Johnson et al., 2012; Jones et al., 2015). Thus, it is important to consider the effect of age 

when comparing DNA methylation studies in relation to obesity as well as other phenotypes.  

Prior studies of DNA methylation and obesity in blood 

There has been much interest in studying the relationship between obesity and DNA 

methylation in the recent years. According to PubMed, prior to 2006 there were less than 20 
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manuscripts published a year on DNA methylation and obesity, yet since 2006 the topic has 

skyrocketed in interest with 152 articles published on the topic in 2015 alone (2016). As there 

are many aspect of DNA methylation and obesity, there have been numerous areas of research on 

the topic including the maternal and paternal influences, manipulation of DNA methylation by 

numerous sources in animal models as well as in humans, exploratory studies on DNA 

methylation in obese, and DNA methylation and weight loss. As the studies included in this 

dissertation focus on the DNA methylation profile in obese adults and in response to weight loss 

in adults in blood cells, this will be the focus of the studies reviewed. The other aspect of DNA 

methylation and obesity, as well as the relationship between DNA methylation and obesity in 

other tissue types, have been previously reviewed (de Mello et al., 2014; Martinez et al., 2014; 

van Dijk et al., 2015).  

Global DNA methylation levels (Table 1.1) have been assessed in blood of both adults 

and children. There have been mixed results in adults with one study showing no relationship of 

global methylation with obesity (Wang et al., 2010; Keller et al., 2014), while others have shown 

associations of global methylation with BMI (Perng et al., 2013; Na et al., 2014; Simar et al., 

2014). Interestingly, the one study examining single leukocyte types found that there are changes 

in global methylation in obesity in only the B cells while PBMCs and the other leukocyte types 

are unaltered, emphasizing the importance of single cell type analysis (Simar et al., 2014). In the 

one study examining global DNA methylation in adolescents, an association with both BMI and 

skinfold thickness was identified (Perng et al., 2013).  

Genome wide studies of DNA methylation and obesity in adults have also been 

conducted in blood cells (Table 1.2). Many sites with differential methylation associated with 

obesity have been identified, many of which are unique to its own study (Table 1.2). In children, 
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similar results have been observed in blood cells (Table 1.2). Only one study assessing genome 

wide DNA methylation in blood has been performed in a single leukocyte type, CD4+ T cells 

(Aslibekyan et al., 2015). Site-specific methylation levels in CD4+ T cells were found to be 

associated with both BMI and waist circumference (Aslibekyan et al., 2015). Finally, studies 

examining methylation levels of candidate genes in obesity have also been performed in blood 

cells (Table 1.3). All of the candidate genes studies conducted in blood have been performed on 

samples derived from multiple cell types (Table 1.3). Many different genes have been shown to 

have associations between DNA methylation and obesity, yet many differences between studies 

have been observed. 

In addition to examining the DNA methylation profile that is associated with the obese 

state, researchers have begun to examine the response of the DNA methylome to weight loss 

(Table 1.4). These studies can answer many questions about DNA methylation in obesity. First, 

does DNA methylation change with weight loss, or is the reprograming to the methylome that 

occurs with obesity remembered even once the weight is lost? Second, can baseline methylation 

predict the amount of weight loss success an individual will have? And third, are the 

corresponding changes in DNA methylation with weight loss involved in the metabolic 

adaptations that are associated with weight loss? Studies examining DNA methylation and 

weight loss have been performed in many tissues including skeletal muscle, adipose tissue and 

blood cells, yet the majority have been conducted in blood which are described in Table 1.4. 

Again these studies have produced conflicting results, but have identified potential biomarkers 

for weight loss and changes in methylation that occur with weight loss. No studies have 

examined this relationship in single cell types.  
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The conflicting results obtained from studies on DNA methylation and obesity and/or 

weight loss may be due to a variety of factors. First, they have been conducted in many different 

study populations, with different ages, genders, and ethnicities, all of which have been shown to 

be independently associated with differences in DNA methylation (Boks et al., 2009; Liu et al., 

2010; Adkins et al., 2011; Fraser et al., 2012; Heyn et al., 2012; Florath et al., 2014; Xia et al., 

2014; Jung and Pfeifer, 2015). A few studies have examined DNA methylation profiles in 

association to their phenotype in multiple tissues or in multiple study populations (Dick et al., 

2014; Su et al., 2014; Aslibekyan et al., 2015; Demerath et al., 2015; Gomez-Uriz et al., 2015; 

Houde et al., 2015; Huang et al., 2015a; Al Muftah et al., 2016; Mansego et al., 2016). These 

studies have only found a small number of methylation differences that have been consistent 

across both tissues and populations. For example, Al Muftah et al (2016) examined 39 sites with 

methylation levels previously associated with obesity in Caucasians in an Arab population. Only 

seven of these sites had methylation levels associated with obesity in the Arab population (Al 

Muftah et al., 2016). Additionally, all but two studies (Simar et al., 2014; Aslibekyan et al., 

2015; Maples et al., 2015) examining these relationships have been performed on mixed cell 

types. DNA methylation is cell type specific, and the DNA methylation profile of the different 

cell types in a tissue is unique (Reinius et al., 2012; Gu et al., 2016). Thus, the data obtained 

from these studies is the weighted average of the methylation profiles of all the included cell 

types. While this may be informative, there may be meaningful data that is missed when 

individual cell types are not examined. For examples, Aslibekyan et al (2015) only identified 

global methylation differences in B cells in obesity, which were not observed in the PBMC 

fraction which contains B cells among the other mononuclear leukocytes. Thus, there is a larger 
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gap in our knowledge of single cell type DNA methylation and obesity, which needs to be 

further examined. 

Another aspect that may be related to the conflicting results that have been identified in 

relation to DNA methylation and obesity are dietary differences. The previous studies examining 

the relationship between obesity and DNA methylation in blood cells have been conducted in 

different areas across the world, all of which will have their own culturally different diet. Even in 

different regions of the United States the diets can vary considerably representing a confounding 

factor when comparing these studies. Many different aspects of diet can influence DNA 

methylation. For example, the western diet (high fat, high calories, low in calcium, vitamin D, 

fiber, methionine, and choline) has been shown to decrease DNA methylation in mice (Choi et 

al., 2015). The bioactive compound epigallocatechin 3-gallate in green tea and genestein in 

soybeans, which are consumed in higher degrees in differing populations have also been shown 

to affect DNA methylation (Fang et al., 2007). Dietary differences in folate, a dietary methyl 

donor, have also been shown to affect DNA methylation levels (Niculescu and Zeisel, 2002). 

Many countries including the United States have folate fortification in the food supply, yet others 

do not. The difference in folate intake from countries who have fortification and those who do 

not may also impact DNA methylation levels. The maternal intake of different nutrients can also 

alter offspring’s DNA methylation, representing another cultural dietary difference that could 

impact DNA methylation (Lillycrop and Burdge, 2015). Collectively these examples as well as 

many other dietary differences may provide a potential explanation for the conflicting results 

obtained from previous studies of DNA methylation and obesity.  
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Benefits of examining DNA methylation and obesity in blood cells 

 Examining DNA methylation in blood cells in relation to obesity has advantages. Blood 

is a minimally invasive tissue source, of which the different leukocytes can be easily isolated 

from (Hohos et al., 2016). Leukocytes are involved in the development and potentiation of the 

chronic low-grade inflammatory state in obesity, which is thought to be the link to the 

development of metabolic abnormalities (Mathis, 2013; Apostolopoulos et al., 2016). Thus, 

many of the studies examining DNA methylation in obesity have been performed in blood cells 

(Tables 1.1-1.4), yet only two studies have examined DNA methylation in individual leukocyte 

types (Simar et al., 2014; Aslibekyan et al., 2015).  

There are seven major leukocyte types in blood including CD4+ T cells (helper cells), 

CD8+ T cells (cytoxic T cells), monocytes, natural killer (NK) cells, and B cells which are 

involved in the innate immune system, and the eosinophils and neutrophils which are involved in 

the adaptive immune system. Each of these cell types has a unique role in the immune response 

and in the development of inflammation in obesity (Elgazar-Carmon et al., 2008; Nishimura et 

al., 2009; Winer et al., 2009; Mathis, 2013; Huh et al., 2014). Additionally, DNA methylation 

has been shown to be involved in the regulation of leukocyte type specific genes. In example, 

hydroxymethylcytosine has been shown to be involved in the T cell development and 

differentiation (Tsagaratou et al., 2014). Further, methylation of Foxp3 regulates the stimulation 

and development of Treg cells (Wang et al., 2013), which are decreased in obesity (Nishimura et 

al., 2009; Zuniga et al., 2010; Huh et al., 2014). CD4+ T cells have also been shown to involve 

DNA methylation in the activation of genes involved in the immune response which may be 

involved in the ‘priming’ of the memory T cells to carry out a response upon stimulation 

(Komori et al., 2015). Moreover, bacterial infection of neutrophils leads to changes in DNA 
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methylation and gene expression following infection (Sinclair et al., 2015). The seven peripheral 

leukocytes have also been shown to each have distinct DNA methylation profiles (Reinius et al., 

2012). These features of leukocytes suggest that they will each have a unique DNA methylome 

in obesity, making them relevant cell types to assess the relationship of DNA methylation and 

obesity in. Furthermore, these leukocyte type specific differences in both function and DNA 

methylation make it critical to examine gene sequence specific DNA methylation in each cell 

type, yet this has only been performed in CD4+ T cells (Aslibekyan et al., 2015).  

Rationale, hypotheses, and specific aims 

 Studying the DNA methylation profile in obesity represents an opportunity to learn more 

about the interaction between the environment and gene regulation in the obese and post obese 

state. DNA methylation is responsive to changes in the environment and has been shown to be 

altered with changes in diet and with measures of adiposity. Despite a surge in the number of 

studies on DNA methylation and obesity, there is still much to be learned from studying this 

relationship. The vast majority of the studies examining the DNA methylome in obesity have 

been performed in samples derived from mixed cell types, and in populations with both males 

and females of different ethnicities and ages. To help fill the gap in knowledge of single cell 

DNA methylation in obesity in a more focused manner, this dissertation has focused on 

determining the best leukocyte types to utilize for studies of DNA methylation, and then utilizing 

this knowledge to assess the DNA methylome of different peripheral leukocytes associated with 

obesity.  

 The overall hypothesis are that (1) each leukocyte type will have a different potential to 

respond via their methylome to physiological cues, (2) there will be DNA methylation 

differences in the obese women that are specific to each of the three leukocyte types assayed, and 
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(3) there will be changes in DNA methylation with weight loss in overweight and obese women. 

These hypotheses were testing in different study populations recruited from the Athens, GA area. 

Chapter 2 of this dissertation addresses the first specific aim which was to determine which 

leukocyte types are best to utilize for DNA methylation and obesity studies. Chapter 3 addresses 

the second specific aim, which was to measure the genome wide DNA methylation profile in 

CD4+ T cells, CD8+ T cells, and CD16+ neutrophils in a group of obese and healthy weight 

women to determine cell type specific methylation differences in obesity. Finally, chapter 4 

addresses the last specific aim, which was to examine the genome wide DNA methylation profile 

in CD4+ T cells before and after a six-month weight loss intervention consisting of dietary and 

exercise components.  

Two (Chapter 3 and 4) of the included dissertation studies were parts of larger projects. 

Chapter 3 was part of a folic acid supplementation study examining the effects supplementation 

on leukocyte DNA methylation in obese and healthy weight women (Principle Investigator: 

Lynn B. Bailey). Chapter 4 was part of a funded project by a grant from the National 

Cattleman’s Beef Association entitled, Effects of a Higher Protein Weight Loss Diet and 

Exercise on Body Composition, Physical Function, and Fatigue in Overweight Older women 

(Principle Investigator: Ellen M. Evans).  

 

 



 

34 

Table 1.1. Global DNA methylation and obesity in blood cells 

Study Design Study Population Tissue/ 

Cell type 

Methylation 

Methodology 

Main Outcome 

Adults 

1. (Keller et 

al., 2014) 

Global DNA 

methylation levels 

were tested for 

associations with 

percent body fat 

and measures of 

glucose 

homeostasis in a 

population of Sorb 

individuals with a 

wide range of BMIs   

N=559 (217 men)  

consisting of: 

N= 231 lean (38±14 yrs.) 

N=218 overweight (49±14 

yrs.)  

N=108 obese (53±13 yrs.) 

From Germany, all white 

Leukocytes LUMA Global methylation in the 

leukocytes was not 

associated with percent body 

fat or glucose homeostasis 

after correction for multiple 

testing  

2. (Simar et 

al., 2014) 

Global DNA 

methylation levels 

in obese with or 

without T2D were 

assessed in eight 

leukocyte 

populations 

N=14 healthy obese males 

(35±6.7 yrs.) 

N=11 healthy lean male 

controls for health obese 

(34.8±3 yrs.) 

N=12 T2D obese 

(44.1±6.5 yrs.) 

N=7 healthy lean controls 

for T2D obese (44.1±6 

yrs.) 

From Denmark 

T cells 

(helper and 

cytotoxic), 

mononuclear 

cells, 

monocytes, 

lymphocytes, 

B cells, NK 

cells, 

PBMCs 

 

Flow cytometry Increased global methylation 

levels in B cells in obese and 

T2D. Increased global 

methylation in NK cells in 

T2D  

DNA methylation in B and 

NK cells was also correlated 

with Insulin resistance 

3. (Na et al., 

2014) 

Examine global 

methylation of 

peripheral blood 

cells in a group of 

healthy Korean 

women with a 

N=244 healthy women 

with a range of BMIs 

from 20 to 51(32±7.9 

yrs.) 

From Korea 

Peripheral 

blood 

Pyrosequencing 

of Alu elements 

A U-shaped association 

between BMI and Alu 

methylation was observed 

with the lowest methylation 

levels occurring at BMIs of 

23 and 30  
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range of BMIs  

Adolescents (<18 yrs.) 

4. (Perng et 

al., 2013) 

Examine global 

DNA methylation 

in school aged 

children, with 30 

month follow up 

data on 

anthropometrics.  

N=533 (8.8±1.7 yrs.), 

45.9% boys 

From Colombia 

Peripheral 

leukocytes 

Pyrosequencing 

of LINE-1 

DNA 

methylation 

There was a non-linear 

inverse relation between 

LINE1 methylation and BMI 

and skinfold thickness ratio 

Boys with the lowest 

quartile of LINE 1 

methylation had higher 

annual gains in BMI and 

skinfold thickness than the 

other quartiles.  

Studies assessing global DNA methylation in blood cells which included an obese group and a comparison group, or a range of BMIs 

were included in the table. Only manuscripts with the full text available were included. Only data from the included studies relevant to 

global methylation and obesity in blood cells is provided. Studies are separated by those conducted in adults and those in adolescents. 
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Table 1.2. Genome wide analysis of DNA methylation and obesity in blood cells 

Study Design Study 

Population 

Tissue/ 

Cell type 

Methylation 

Methodology 

Main Outcome 

Adults 

1. (Aslibekya

n et al., 

2015) 

Examine DNA 

methylation in a 

population with a 

large range of 

BMIs and validate 

findings in 

separate cohorts.  

N=991 (49±16 

yrs.), 52% 

female 

All European 

Americans 

CD4 T cells HumanMethylation

450 BeadChip by 

Illumina 

Eight loci had methylation levels 

associated with BMI and five loci 

had methylation levels associated 

with WC. 

Two genes CPT1A and PHGDH 

were validated in two large cohorts 

of similar age. 

2. (Feinberg 

et al., 

2010) 

Examine DNA 

methylation in a 

population with a 

range of BMIs. 

Samples collected 

at two study visits 

of the Reykjavik 

Study. Included 

study visits were 

~11 yrs. apart.  

N=74 consisting 

of: 

Visit 6: N=48 

(74.1±3.5 yrs.), 

33% male 

Visit 7: N=64 

(82.8±3.5 yrs.), 

31% male 

With N=38 at 

both time points 

From Iceland 

Lymphocytes CHARM analysis 

examining 

4.5 million CG 

sites  

 

At visit 7, 13 regions had 

methylation levels associated with 

BMI. Four of these regions were 

also associated with BMI at visit 6 

(PM20D1, MMP9, PRKG1, RFC5). 

In PM20D1 there was a 20% 

increase in methylation in the obese 

compared to the normal BMI 

groups. Three of the sites identified 

at visit 7 had conflicting 

associations with BMI between the 

two visits, suggesting an interaction 

of BMI and age. 

3. (Dick et 

al., 2014) 

Genome wide 

analysis of 

methylated CG 

sites in relation to 

BMI. Sites 

identified in 

discovery cohort 

were validated in 

Discovery 

cohort: N=479 

Replication 

cohort: N=339, 

22% male 

Second 

replication 

cohort: 

Whole blood HumanMethylation

450 BeadChip by 

Illumina 

In the discovery cohort. Five sites 

associated with three genes had 

methylation levels associated with 

BMI. Three of these sites were in 

HIF3A, and were all confirmed in 

the two replication cohorts. 
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replication cohort. 

The sites 

replicated in the 

replication cohort 

were validated in 

the second 

replication cohort. 

N=1789, 49% 

men 

All cohorts of 

European 

decent 

4. (Mansego 

et al., 

2015) 

To examine DNA 

methylation 

differences 

between two BMI 

categories: Low 

HRO (overweight 

and class 1 

obesity) and high 

HRO (class 2 and 

3 obesity). 

N=73 (45±10 

yrs.), 35.6% 

men 

All from Spain 

WBC HumanMethylation

450 BeadChip by 

Illumina 

No differences in methylation were 

identified in relation to HRO 

Associations between DNA 

methylation and BMI and 

methylation of five sites were 

identified, with correlations to the 

expression levels of two genes 

(GPR133, ITGB5) 

5. (Al Muftah 

et al., 

2016) 

Analyzed the 

association of 

DNA methylation 

and BMI or T2D 

in an Arab 

population.  

N=72 females 

(39±16.9 yrs.) 

N=51 males 

(36.3±17.2 yrs.) 

All of Arabic 

decent from 

Qatar  

Validation 

cohort: N=810 

twins (age 

range from 16 

to 98 yrs.), 

>80% female 

All Caucasians 

from the UK 

Whole blood HumanMethylation

450 BeadChip by 

Illumina, with a 

correction applied 

for blood cell types 

in whole blood 

In their Arab population, no sites 

had methylation levels associated 

with BMI, but one site in DQX1 

was associated with T2D, which 

was replicated in the validation 

cohort. 

 

6. (Demerath Examine N=2097 Leukocytes HumanMethylaiton Methylation was associated with 
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et al., 

2015) 

associations of 

DNA methylation 

and BMI or WC in 

a population of 

African 

Americans.  

(56.2±5.7 yrs.), 

36.4% male 

All African 

American 

450 BeadChip by 

Illumina 

BMI in 76 sites and WC in 164 

sites. These identified sites included 

associations with HIF3A, CPT1A, 

and ABCG1, which have been 

identified in previous studies. 37 of 

the sites correlating with BMI and 1 

correlated with WC were replicated 

in previous data sets of DNA 

methylation and blood in Caucasian 

adults. Additionally, 16 sites were 

replicated in a previous data set of 

DNA methylation in adipose tissue 

of women.   

7. (Ollikainen 

et al., 

2015) 

Examine DNA 

methylation 

differences in 

clinically healthy 

young adult MZ 

twins discordant 

for BMI  

N=40 twin pairs 

(27±3.3 yrs.), 

42.5% male, 30 

twin pairs 

discordant for 

BMI 

All Finish 

Leukocytes HumanMethylation

450 BeadChip by 

Illumina 

No differences in methylation 

between twins with different BMIs. 

However, if the heavier twin had 

higher liver fat (N=13 twins), there 

were 1236 sites identified with 

differential methylation between 

the twins. 23 of the associated 

genes are known to be associated 

with obesity.  

8. (Gomez-

Uriz et al., 

2015) 

Examine DNA 

methylation in 

obese individuals, 

and obese 

individuals with 

stroke. 

N=6 non-obese-

non-stroke 

(69.8±6.9 yrs.) 

N=6 non-obese-

stroke (74.6±3 

yrs.) 

N=6 obese-non-

stroke (67.5±5.8 

yrs.) 

N=6 obese-

stroke (66.5±6.7 

Blood  HumanMethylation

27 BeadChip by 

Illumina 

Validation with 

Massarray Epityper  

96 sites were differentially 

methylated between obese and lean 

and 59 sites had an interaction 

between stroke and obesity 

In the validation cohort of the 

subset of genes validated, only two 

sites in KCNQ1 were replicated 
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yrs.) 

All half male 

and from Spain  

Validation 

cohort: N=115 

with a range of 

BMIs (age 

range of 50 to 

80 yrs.) 

From Spain 

9. (Almen et 

al., 2014) 

Examine effect of 

obesity and aging 

on DNA 

methylation 

N=24 obese (57 

yrs. ranging 

from 42-70) 

N=22 lean (55 

yrs. ranging 

from 41-69) 

All females, 

from Latvia 

Peripheral 

blood 

HumanMethylation

27 BeadChip by 

Illumina 

10 CG sites had methylation 

differences between the lean and 

obese groups, with one region, 

LINC00304, associated with 

obesity independent of age 

Adolescents (<18 yrs.) 

10. (Wang et 

al., 2010) 

Examine DNA 

methylation 

associated with 

obesity in African 

American male 

children   

N=7 lean 

(15.9±1.4 yrs.) 

N=7 obese 

(15.8±1 yrs.) 

All African 

American males 

Validation 

cohort:  

N=46 obese 

(20.3±5 yrs.) 

N=46 lean 

(17.6±3.1 yrs.) 

All African 

American males 

Peripheral 

blood 

leukocytes 

HumanMethylation

27 BeadChip, 

validation with 

pyrosequencing  

No sites were associated with 

obesity after correcting for multiple 

testing. Yet, six sites that were with 

associated with obesity at lower 

significance levels were validated 

with pyrosequencing (UBASH3A, 

TRIM3, CTSZ, HIPK2, CDH5, 

CREB3L3). 

Pyrosequencing confirmed 

methylation of UBASH3A was 

higher in obese, and TRIM3, 

HIPK3, and CDH5 were lower in 

obese.  
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11. (Huang et 

al., 2015a) 

Examine DNA 

methylation in 

obese children 

N=78 obese 

(12.6 yrs. with 

range of 9.4 to 

13.7 yrs.) 

N= 71 lean 

(12.9 yrs., with 

range of 10.7 to 

14.1 yrs.) 

All from 

western 

Australia 

Whole blood HumanMethylation

450 BeadChip by 

Illumina, 

validation via 

pyrosequencing 

For initial analysis, 

obese and lean 

samples were 

pooled into four 

samples for each 

group. 

Pyrosequencing 

was performed in 

individuals 

129 differentially methylated sites 

were identified in the obese 

children, with 80 unique genes 

having greater than 10% difference 

in methylation. 

Validation of results were 

conducted for three genes (FYN, 

PIWIL4 and TAOK3), all three of 

which were replicated 

12. (Ding et 

al., 2015) 

Examine DNA 

methylation an 

obesity in 

preschool aged 

children  

N=32 obese 

(5±0.73 yrs.) 

N=32 controls 

(5±0.69 yrs.), 

19 females in 

both groups. 

From China 

Peripheral 

blood 

NimbleGen Human 

DNA methylation 

385K Promoter 

Plus CG Island 

Microarray, 

validation with 

bisulfite 

sequencing 

Compared to lean children, 251 

promoters and 575 CGIs were 

demethylated in the obese children, 

while 141 promoters and 277 CGI 

were hypermethylated in the obese 

children. The correlation of 

methylation and obesity was 

validated in four genes (FZD7, 

PRLHR, EXOSC4, EIF6) 

Studies assessing genome wide DNA methylation in blood cells which included an obese group and a comparison group or a range of 

BMIs were included in the table. Only manuscripts with the full text available were included. Only data from the included studies 

relevant to global methylation and obesity in blood cells is provided. Studies are separated by those conducted in adults and those in 

adolescents. 
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Table 1.3. Candidate gene analysis of DNA methylation and obesity in blood cells 

Study Design Study Population 
Tissue/ 

Cell type 

Methylation 

Methodology 
Main Outcome 

Adults 

1. (Houde et 

al., 2015) 

Examined DNA 

methylation levels 

of LEP and 

ADIPOQ, which 

they had shown to 

be associated with 

BMI, WC, and 

LDL-cholesterol in 

adipose tissue, to 

see if methylation 

differences were 

similar.  

N=73 severely 

obese (34.7±7.1 

yrs.), 33 men 

All from Canada 

Blood Bisulfite 

pyrosequencing  

LEP methylation levels in blood 

cells were negatively associated 

with BMI, the opposite 

relationship of what was 

observed in SAT in their study 

population. Fasting LDL levels 

were positively correlated with 

methylation of two sites in LEP 

in blood, which was also 

observed in SAT. 

2. (Remely et 

al., 2014) 

Examined the DNA 

methylation of five 

CG sites associated 

with FFAR3 in 

obese, T2D, and 

lean controls at 

baseline and after a 

four month 

intervention of 

nutrition 

counselling and 

GLP-1 agonist 

treatment for T2D. 

N=14 obese (39±15 

yrs.), 7 males 

N=24 T2D (58±9), 

10 males 

N=18 lean controls 

(25±3), 15 males 

All from Austria 

Blood Bisulfite conversion 

followed by PCR 

There were lower methylation 

levels in FFAR3 in the obese and 

T2D groups than the lean 

controls. The methylation levels 

were slightly increased over the 

intervention.  

There were also significant 

inverse correlations between 

BMI and methylation of FFAR3.  

3. (Bollati et 

al., 2014) 

Examine the DNA 

methylation profile 

of CD14, ET-1, 

N=165 (mean age 

of 50 yrs. with 

interquartile range 

Blood Bisulfite conversion 

followed by PCR 

No associations between BMI 

and DNA methylation was found 

in any of the genes. Positive 
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iNOS, HERV-w, 

and TNFα in 

overweight and 

obese adults to test 

associations 

between BMI and 

measures of serum 

cholesterol. 

of 43 to 58 yrs.), 

20% male 

All from Italy 

associations between DNA 

methylation of TNFα and LDL, 

TC/HDL, and LDL/HDL 

cholesterol.  

4. (Stepanow 

et al., 2011) 

Examined DNA 

methylation in a 

315 bp region of 

MCHR1, which 

contains 2 SNPs 

associated with 

obesity.  

N=49 (21 to 77 

yrs.), 11 males 

All from Germany 

Blood Bisulfite 

sequencing 

The GT allele of one of the 

SNPs had decreased methylation 

status with increasing BMI, 

where the methylation of the AC 

allele is not associated with this 

phenotype. In cell culture they 

show that this gene has SNP 

dependent transcription which is 

abolished by treatment with the 

DNA methylase inhibitor 5-aza-

2′-deoxycytidine. 

5. (Al Muftah 

et al., 2016) 

Examined DNA 

methylation levels 

of 39 sites 

previously 

associated with 

BMI and eight sites 

previously 

associated with 

T2D in Caucasians 

in their Arab 

population. 

N=72 females 

(39±16.9 yrs.) 

N=51 males 

(36.3±17.2 yrs.) 

All of Arabic 

decent from Qatar  

Validation cohort: 

N=810 twins (age 

range from 16 to 98 

yrs.), >80% female 

All Caucasians 

from the UK 

Blood HumanMethylation

450 BeadChip by 

Illumina, with a 

correction applied 

for blood cell types 

in whole blood 

Seven of the sites previously 

associated with BMI were 

replicated (SOCS3, SREBF1, 

SBNO2, CPT1A, PRR5L, 

LY6G6E and cg03078551) and 

one site previously associated 

with T2D (TCNIP).  

6. (Hermsdorf

f et al., 

Examined the 

relationship 

N=40 high and low 

trunk fat women 

WBCs Sequome EpiTyper 

(promoter region -

Women with higher trunk fat 

had lower methylation in two 
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2013) between TNFα 

methylation and 

central adiposity in 

young women.  

(21±3 yrs.), all 

normal weight 

All in Spain 

170 to 359) sites of TNFα. The methylation 

levels of one of these sites 

correlated with circulating TNFα 

levels.  

7. (Na et al., 

2015) 

Examined the 

methylation of IL6, 

TNFα, TFAM, and 

GLUT4 in a group 

of Korean women 

with a range of 

BMIs.  

N= (31.9±7.8 yrs.), 

all women 

All from Korea 

Blood  Methylation 

specific PCR 

Obese women had increased 

methylation of IL6 compared to 

normal weight women and the 

overweight women.  

Adolescents (<18 yrs.) 

8. (Mansego 

et al., 2016) 

Examined DNA 

methylation of 

miRNA coding 

regions in obese 

and lean children.  

 

N=12 obese 

(10.6±.4 yrs.) 

N=12 lean  (10.8±.3 

yrs.) 50% males 

All Caucasian, from 

Spain 

Validation cohort: 

N=95 (10-16 yrs.) 

Blood HumanMethylation

450 BeadChip 

Validation with 

mass array  

In miRNA coding regions, 16 

sites were differentially 

methylated in the obese children. 

DNA methylation levels at miR-

1203, miR-412 and miR-216A 

significantly correlated with 

BMI-SDS score and explained 

up to 40% of the variation in 

BMI-SDS. Validation of the 

three miRNAs was found 

between the obese and lean 

children. 

9. (Wang et 

al., 2015) 

Determine if DNA 

methylation in 

HIF3A, which has 

previously been 

shown to have 

altered methylation 

in obesity, is altered 

in obese Chinese 

children. 

N=110 severely 

obese (11.1±2.6 

yrs.), males 

N=110 normal 

weight controls 

(1.02±2.6 yrs.) 

All Chinese  

Blood Sequome 

MassArray 

There was significantly higher 

methylation n two sites of 

HIF3A in the obese children.  

Positive associations between 

DNA methylation od HIF3A and 

ALT levels found a positive 

correlation for methylation and 

ALT levels after adjusting for 

age, gender, and BMI. 
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10. (Carobin 

et al., 

2015) 

Examined the 

methylation profile 

of SNRPN in obese 

and lean adults and 

children. 

N=10 obese 

children (12±2.7 

yrs.), 5 male 

N=10 lean children 

(10±2.6 yrs.) 

N=15 obese adults 

(40±10.3 yrs.) 7 

male 

N=15 lean adults 

(35±12.8 yrs. 7 

male  

All from Brazil  

Blood Bisulfite conversion 

followed by PCR 

No differences in DNA 

methylation of SNRPN and 

obesity were identified. There 

were correlations between 

methylation and age.  

11. (Wu et al., 

2015a) 

Examined the DNA 

methylation levels 

of the promoter of 

FAIM2 in obese 

and lean children 

with different levels 

of activity.  

N=59 obese (8-18 

yrs.) 

N=39 lean (8-18 

yrs.), mixed males 

and females 

All from Beijing 

Blood Sequome 

MassArray 

7 sites had differences in DNA 

methylation between the obese 

and lean children with low levels 

of sedentary behavior. Only two 

differences between the obese 

and lean children who had high 

levels of sedentary behavior. 

One site had methylation 

differences between the two 

groups with low levels of high 

activity and two sites in those 

with high levels of high activity. 

There were four sites identified 

with differences in methylation 

between the obese and lean 

children who met physical 

activity guidelines.  

12. (Wu et al., 

2015b) 

Examined DNA 

methylation of the 

FAIM2 promoter in 

obese and lean 

N=59 obese (8-18 

yrs.) 

N=39 lean (8-18 

yrs.), mixed males 

Leukocytes Sequome 

MassArray 

Methylation at eight sites were 

differentially methylated 

between the obese and lean 

children and several sites with 



 

45 

Chinese children.  and females 

All Chinese 

dyslipidemia after adjusting for 

age, gender and BMI 

13. (Dave et 

al., 2015) 

First they identified 

differences in gene 

expression between 

the obese and lean 

children in blood. 

They then 

examined the DNA 

methylation levels 

of the differentially 

expressed genes in 

the obese and lean 

children.  

N=69 (9.1±.1 yrs.), 

50% obese, 50% 

male 

All Mexican 

American 

Blood clots HumanMethylation

450 BeadChip by 

Illumina 

In the differentially expressed 

genes, ADIPOR1 and PPARγ, 
DNA methylation. Identified 

sites whose methylation levels 

correlated with gene expression, 

but there were no association 

with BMI or WC.  

14. (Su et al., 

2014) 

Examined the 

methylation levels 

of 117 previously 

identified genes 

from GWAS for 

obesity and its 

related traits in 

there population of 

African American 

youths. Their 

results were 

validated in four 

different cohorts of 

youth.  

 

N=7 obese (15.8±1 

yrs.) 

N=7 controls 

(15.9±1.4 yrs.) 

All African 

American males 

Validation cohorts: 

all three validation 

cohorts contained 

only adolescents 

Blood HumanMethylation

27 BeadChip by 

Illumina 

Validation cohort 1 

used 

HumanMethylation

450 BeadChip by 

Illumina,  

Remaining 

validation cohorts 

with 

pyrosequencing 

In the first population, 89 of the 

117 sites were included on the 

array and only four sites in 

LEPR, SNRPN, KREMEN1, and 

LY86, were differentially 

methylated in the obese children. 

In the first validation group, only 

LY86 had differences in 

methylation in the obese 

children, and was validated in 

the remaining cohorts. 

15. (Garcia-

Cardona 

et al., 

2014) 

Examine 

correlations 

between DNA 

methylation of LEP 

N=102 (10 to 16 

yrs.), 66 males 

All from Mexico 

Blood Methylation 

specific PCR  

Obese adolescents without 

insulin resistance had the same 

methylation levels in two sites of 

LEP as the lean adolescents. The 
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and ADIPOQ and 

obesity and insulin 

resistance in a 

group of 

adolescents with a 

range of BMIs.  

methylation levels of these sites 

in the obese with insulin 

resistance children were 

decreased. The same relationship 

was identified in one site of 

ADIPOQ.  

One site in LEP was methylated 

in all the normal weight children, 

but only in 79% of overweight 

and 56% of obese and 36% in 

morbid obese, with a similar 

response in another site as well.  

Similarly, one site in the 

ADIPOQ promoter had 3% 

methylation in normal weight, 

0% in overweight, 51% in obese 

and 46% in morbid obese 

adolescents.  

 No differences were observed 

between sexes, so they were 

combined. 

16. (Deodati 

et al., 

2013) 

Examine DNA 

methylation of 

IGF2 with the body 

composition indices 

and metabolic 

status is obese 

adolescents.  

N=84 obese 

(11.6±2.1 yrs.), 44 

males 

All from Italy 

Lymphocytes DNA methylation 

by restriction 

enzyme digest 

There were no correlations 

between body composition 

measures and methylation. 

Percentage of methylated sites 

was related to TG levels, 

TG/HDL and C-peptide levels.  

17. (Milagro 

et al., 

2012) 

Examined the 

association of DNA 

methylation of 

CLOCK, BMAL1, 

and PER2 in  

N=60 ( yrs.) 

women 

From 

WBCs Sequome 

MassArray 

Differences in methylation 

between normal weight and the 

overweight and obese groups 

were observed in CLOCK and 

BMAL1.  
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normal weight, 

overweight and 

obese women 

 

Studies assessing DNA methylation and obesity in blood cells in a candidate gene approach were included if the full text was 

available. Additionally, studies that examined methylation in an obese group and control group, or a range of BMIs were included. 

Only information relevant to candidate gene methylation status in obesity is included from the studies in the table. Studies are 

separated by those conducted in adults and those conducted in adolescents. 
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Table 1.4. DNA methylation and weight loss in blood cells 

Study Design Study Population Tissue/ Cell 

type 

Methylation 

Methodology 

Main Outcomes 

Adults 

1. (Crujeiras 

et al., 

2013) 

Examined the 

methylation level of 

LEPR, POMC, GHSR, 

NPY¸ six months after an 

8 week 30% energy 

restricted diet by weight 

regain. Participants who 

lost ≥5% BW, but gained 

≥10% of the weight back 

were classified as 

regainers, while those 

who lost ≥5% BW and 

gained N=7 regainers 

(lost at least 5%, but 

gained ≤10% back were 

classified as non-

regainers.  

N=7 regainers 

N=11non-regainers, 

adults, specific age 

not provided 

All men from Spain 

Leukocytes MALDI-TOF mass 

spectrometry  

The methylation level of LEPR 

CG 7 was lower in regainers, 

but did not correlate with the 

percentage weight regain. 

POMC CG’s 10-11 showed 

higher methylation levels in 

regainers and was directly 

associated with weight regain. 

Regainers has lower 

methylation in CG4-5 and 8-9 

of NPY than the non regainers 

and in the total region of NPY 

examined. Pretreatment 

methylation levels correlated 

inversely with weight loss 

regain. 

2. (Duggan 

et al., 

2014) 

Examined global 

methylation in 

overweight and obese 

post-menopausal women 

after a one year RCT 

comparing independent 

and combined effects of 

reduced caloric intake 

and exercise program 

compared to controls. 

N=300 (58±5.1 yrs.) 

women 

All from Seattle, 

WA 

Leukocytes LINE-1 methylation 

via pyrosequencing 

No significant differences in 

LINE-1 methylation levels 

were detected in any 

intervention group v controls. 

The magnitude of weight loss 

was not associated with LINE-

1 methylation at one year.  

3. (Martin- Examine the effects of a N= 155 control Blood Pyrosequencing  Both LINE-1 and SCD1 gene 
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Nunez et 

al., 2014) 

one year weight loss 

intervention on both 

global methylation and 

the promoter region of 

SCD1. The intervention 

consisted of a control 

group only receiving 

general dietary 

recommendations and PA 

guidelines and an 

intervention group with 

intensive lifestyle 

intervention and followed 

the Mediterranean dietary 

pattern. 

group (53.7±7.8 

yrs.), 34.8% male 

N=155 intervention 

group (53.5±8.15 

yrs.), 47.5% male 

All from Spain 

promoter methylation, were 

similar at baseline. After one 

year methylation levels of both 

were higher in the control 

group. Weight loss was 

associated with higher levels 

of SCD1 promoter methylation 

after the intervention. Weight 

change was associated with 

changes in LINE-1 

methylation regardless of the 

group, and those who did not 

lose weight showed higher 

levels of LINE-1 

4. (Milagro 

et al., 

2011) 

Compare DNA 

methylation profiles of 

high and low responders 

to a hypocaloric 8 week 

diet intervention in 

overweight and obese 

men. 

N=25 adults, age not 

provided, all men 

from Spain 

PBMCs HumanMethylation

27 BeadChip by 

Illumina 

 MALDI-TOF for 

validation 

DNA methylation levels in 

several CG sites in ATP10A 

and CD44 had baseline 

differences depending on 

weight loss outcome. After the 

intervention, DNA 

methylation of several CGs in 

the WT1 promoter had higher 

methylation levels in high 

responders. CG sites in WT1 

and ATP10A were modified as 

a result of the intervention.  

5. (Nicoletti 

et al., 

2015) 

Determine if two weight 

loss by an energy 

restricted Mediterranean 

diet would affect global 

DNA methylation, 

hydroxymethylation or 

N=9 control normal 

weight (35-65 yrs.) 

N=33 energy 

restricted obese (35-

65 yrs.) 

All women from 

Buffy coat 

DNA 

Global hydroxyl-

methylation by 

ELISA 

LINE-1 for global 

methylation, and 

MS-HRM for gene 

Baseline LINE-1 methylation 

was associated with serum 

glucose levels whereas 

baseline hydroxymethylation 

was associated with BMI, WC, 

total cholesterol and TG. 
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methylation patterns of 

inflammatory genes (IL-

6, SERPINE-1).  

Brazil and Spain specific analysis 

 

LINE-1 and SERPINE-1 

methylation levels did not 

change after weight loss. IL6 

methylation was increased 

after energy restricted diet An 

association between 

SERPINE-1 methylation and 

weight loss response was 

found.  

6. (Huang et 

al., 2015b) 

Assess methylation 

patterns in individuals 

who are obese, normal 

weight, or who were 

obese and lost sufficient 

weight to be of a normal 

weight (SWLM). 

N=16 SWLM 

(44.4±8.5 yrs.),  

N=16 obese 

(47.9±7.7 yrs.),  

N=16 normal weight 

(49.8±10.3 yrs.) 

Mixed ethnicities, 

all 87.5% female 

Buffy coat 

DNA 

HumanMethylation

450 BeadChip by 

Illumina 

Used a correction 

for leukocyte types 

No differences after FDR 

correction. Potentially 

differentiated methylated sites 

across the three groups were 

observed in RYR1, MPZL3 and 

TUBA3C. 

In 32 obesity related genes, 

differential methylation 

profiles were found between 

groups in BDNF.  

In RYR1, TUBA3C and BDNF, 

SWLM differed from obese 

but not normal weight.  

7. (Perez-

Cornago et 

al., 2014) 

Examined 20 CG sites 

associated with HTR2A 

after a RTC weight loss 

intervention. Study 

groups consisted of 

control diet and modified 

energy restricted diet 

(both 30% E restricted) 

for six months. Samples 

were pooled into one 

group for methylation 

N=41 (49±1 yrs.), 

mixed males and 

females all with 

metabolic syndrome 

and all Caucasian 

WBC HumanMethylation

450 BeadChip by 

Illumina 

A positive association of 

HTR2A methylation with waist 

circumference and insulin 

levels were observed at 

baseline.  

After the intervention, lower 

mean HTR2A gene 

methylation as baseline was 

associated with major 

reductions in BW, BMI and fat 

mass. Mean HTR2A 
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analysis.  methylation at baseline 

significantly predicted the 

decrease in depressive 

symptoms after the weight loss 

treatment.  

8. (Samblas 

et al., 

2016) 

Examine the DNA 

methylation profile of 

BMAL1, CLOCK, and 

NR1D1 after an energy 

restricted weight loss 

intervention in 

overweight and obese 

women. Intervention 

included both dietary and 

exercise components for 

four months, followed by 

a five month 

maintenance period.  

N=61 (42.2±11.4 

yrs.) all women, 

from Spain 

Blood MassArray 

Epityper  

The methylation status of 

different CGs in BMAL1 and 

NR1D1 was modified as a 

result of the intervention. 

Baseline methylation in 

BMAL1 positively correlated 

with energy and carbohydrate 

intake and negatively 

correlated with the effect of 

the weight loss intervention on 

total cholesterol and LDL 

cholesterol.  

9. (Campio

n et al., 

2009a; 

Campion 

et al., 

2009b) 

Examine the association 

of the DNA methylation 

profile of TNFα’s 

promoter in obese men 

and women with an eight 

week energy restricted 

intervention. 

N=24 (34±4 yrs.) 

50% male 

All from Spain 

 

PBMC Bisulfite conversion 

and pyrosequencing  

Obese men with successful 

weight loss (≥5% initial body 

weight) showed lower levels 

of total TNFα promoter 

methylation at baseline.  

10. (Milagro 

et al., 

2012) 

Examined the association 

of DNA methylation of 

CLOCK, BMAL1, and 

PER2 at  baseline in  

normal weight, 

overweight and obese 

women with the success 

of a  

N=60 (23-53 yrs.) 

all women, 

from Spain 

WBCs Sequome 

MassArray 

Methylation pattern at 

different sites in these genes 

showed correlations with BMI, 

adiposity and Metabolic 

syndrome score.  

Baseline methylation levels of 

CLOCK (1 site) and PER2 (4 

sites) were correlated with the 
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16 week weight loss 

program with energy 

restriction following the 

Mediterranean diet and 

PA recommendations. 

magnitude of weight loss. 

 

Adolescents (<18 yrs.) 

11. (Moleres 

et al., 

2013) 

Look at baseline changes 

in DNA methylation that 

could be associated with 

better weight loss 

following a 10 week 

multidisciplinary 

intervention program in 

overweight or obese 

adolescent boys.  

N=24 (12-15 yrs. 

old) 42% male 

All from Spain 

Blood HumanMethylation

27 BeadChip by 

Illumina 

Validation with 

MALDI-TOF for 

all participants 

After validation, five regions 

located in/near AQp9, 

DUSP22, HIPK3, TNNT1 and 

TNNI3 had different 

methylation levels between 

high and low responders. A 

calculated methylation score 

was significantly associated 

with changes in weight, BMI 

and body fat mass loss after 

intervention.  

Studies assessing DNA methylation in blood cells with weight loss were included if the full text of the manuscript was available. Only 

the information relevant to methylation and weight loss in blood cells is included. Studies are separated by those performed in adults 

or adolescents.
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CHAPTER 2 

DNA CYTOSINE HYDROXYMETHYLATION LEVELS ARE DISTINCT AMOUNG NON-

OVERLAPPING CLASSES OF PERIPHERAL LEUKOCYTES1 

  

                                                 
1 Hohos NM, Lee K, Ji L, Yu M, Kandasamy MM, Philips BG, Baile CB, He C, Schmitz RJ, Meagher RB. 2016. 

Journal of Immunological Methods. Doi: 10.1016/j.jim.2016.05.003. Reprinted here with permission of the 

publisher.  



 

54 

Abstract 

Background: Peripheral blood leukocytes are the most commonly used surrogates to study 

epigenome-induced risk and epigenomic response to disease-related stress. We considered the 

hypothesis that the various classes of peripheral leukocytes differentially regulate the synthesis 

of 5-methylcytosine (5mCG) and its removal via Ten-Eleven Translocation (TET) dioxygenase 

catalyzed hydroxymethylation to 5-hydroxymethylcytosine (5hmCG), reflecting their 

responsiveness to environment. Although it is known that reductions in TET1 and/or TET2 

activity lead to the over-proliferation of various leukocyte precursors in bone marrow and in 

development of chronic myelomonocytic leukemia and myeloproliferative neoplasms, the role of 

5mCG hydroxymethylation in peripheral blood is less well studied.  

Results: We developed simplified protocols to rapidly and reiteratively isolate non-overlapping 

leukocyte populations from a single small sample of fresh or frozen whole blood. Among 

peripheral leukocyte types we found extreme variation in the levels of transcripts encoding 

proteins involved in cytosine methylation (DNMT1, 3A, 3B), the turnover of 5mC by 

demethylation (TET1, 2, 3), and DNA repair (GADD45A, B, G) and in the global and gene-

region-specific levels of DNA 5hmCG (CD4+ T cells >> CD14+ monocytes > CD16+ 

neutrophils > CD19+ B cells > CD56+ NK cells > Siglec8+ eosinophils > CD8+ T cells). 

Conclusions: Our data taken together suggest a potential hierarchy of responsiveness among 

classes of leukocytes with CD4+, CD8+ T cells and CD14+ monocytes being the most distinctly 

poised for a rapid methylome response to physiological stress and disease.  

 

Key words: 5-hydroxymethylcytsine, surrogate cells, disease, epigenetic control, epigenome-

induced risk, cellular memory  
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Highlights 

 Reiterative isolation of several non-overlapping leukocyte types from fresh or frozen blood 

 Leukocytes suitable for cell type specific epigenetic analysis 

 Classes of peripheral leukocytes distinctly regulate factors for the synthesis and removal of 

5mCG 

 Classes of peripheral leukocytes are distinct in their levels and distribution of 5hmCG 

 CD4+, CD8+ and CD14+ cells appear to be poised to respond via changes in 5mCG  

 

1. Background2 

Peripheral blood leukocytes are the most commonly used cell types to assess human 

disease states (Javierre et al., 2010; Huang et al., 2014; Di Francesco et al., 2015; Ellinger et al., 

2015). Because of their accessibility, leukocytes are used in preference to other tissues such as 

the brain, muscle, adipose tissue, bone or various non-blood-borne cancer cells, even when these 

latter cell types are the focus of disease.  As a result, the methylome and transcriptome of 

peripheral blood leukocytes often act as proxies for disease states centered in other tissues and 

cell types. One implicit assumption is that genetic and epigenetic reprograming caused by 

disease states in other tissues are systemically reflected in blood-borne leukocytes. There are 

numerous published studies examining the response of genome-methylation in whole blood 

                                                 
2 Abbreviations: ACTB (cytoplasmic beta actin), DNMT1, 3A, 3B (DNA methyltransferase 1, 

3A, 3B), CG (cytosine-guanine dinucleotide), CNS (conserved noncoding sequence), CT (cycle 

threshold), GADD45A, B, G (Growth arrest DNA damage inducible proteins 45a, 45b, 45g), 

5hmC (5´-hydroxymethylcytosine), GO (gene ontology), 5hmCG (5-hydroxymethylcytosine-

guanine dinucleotide), IFM (Immuno-Fluorescence Microscopy), 5mC (5´-methylcytosine), 

5mCG (5´-methyl CG dinucleotide), MBD2, MBD4, MeCP2 (Methyl-CpG Binding Domain 

Proteins), NLP (natural log p-value), nt (nucleotide), PE (phycerythrin), RQ (Relative Quantity), 

SLE (systemic lupus erythematous), TAB-Seq (TET assisted bisulfite sequencing), TSS 

(transcription start site), TTS (transition termination site), TET1, 2, 3 (Ten-eleven Translocation 

Enzymes 1, 2, 3, methylcytosine dioxygenases 1, 2, 3). 
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leukocytes to diseases and disease progression (Javierre et al., 2010; Wang et al., 2010; Weiss et 

al., 2011; Saied et al., 2012; Schroeder et al., 2012; Smith et al., 2012; Sun et al., 2013; Xu et al., 

2013; Almen et al., 2014; Smith et al., 2014). However, the genome-wide methylation data from 

these studies comprises the epigenomic information of several major leukocyte cell types 

combined as a weighted average of their fractional representation in blood. 

 Epigenetics, from its modern inception, predicts that different cell types within a tissue or 

organ are epigenetically distinct (Nanney, 1958). Reinius et al (2012) made pairwise 

comparisons of the methylomes of seven major leukocyte types to reveal that even the two most 

closely related peripheral blood mononuclear cells (PBMCs), CD4+/CD8± and CD8+/CD4± T 

cells, differ significantly in DNA methylation levels. Over 45,000 of the 485,000 cysteine-

guanine dinucleotide (CG) sites measured (~9%), which are concentrated in gene regions, are 

distinct. Equally remarkable, the PBMC CD8+ T cells and granulocyte Siglec8+ eosinophils 

differ in approximately 193,000 of the CG sites measured (~40%) (Reinius et al., 2012). 

Different leukocyte types all have quantitatively different global methylation profiles, with the 

relatively hypomethylated granulocytes (Siglec8+ eosinophils, CD16+ neutrophils) showing 5 to 

10 times less methylation across different gene regions than the hypermethylated PBMC 

lymphoid cell types (CD4+ and CD8+ T cells, CD19+ B cells, CD56+ NK cells, CD14+ 

monocytes) (Reinius et al., 2012). When these cell types are analyzed together in DNA 

methylation studies using total peripheral blood DNA, the methylation profiles from the seven 

leukocyte types with high and low levels of methylation, as well as their sequence specific 

differences in methylation, are obscured as a weighted averaged depending upon cell type 

frequency. Many statistically significant differences in the methylation profiles of individual cell 
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types are lost, making the results from whole blood less intelligible and less meaningful than 

they would be from individual cell types.  

In the Reinius et al (2012) study they started with large whole blood samples, separated 

PBMCs and granulocytes by density centrifugation on Ficoll-Paque gradients and lysed the 

remaining red blood cells with NH4Cl. Seven leukocyte subtypes were then isolated from 

separate aliquots of the PBMC and granulocyte fractions by immuno-paramagnetic bead capture. 

Fluorescence activated multichannel cell sorting (FACS) can also be used to isolate various 

classes of leukocytes after Ficoll gradient separation (Roederer et al., 1997; Melzer et al., 2015). 

Herein, as a potentially less expensive and rapid alternative to these two methods we develop the 

approach of first lysing red blood cells by NH4Cl treatment or by freezing and thawing and then 

reiteratively isolating six or seven cell types on immuno-paramagnetic beads starting from a 

single small starting sample. A reiterative approach (Lyons et al., 2007) has the potential to 

eliminate or include specific cell types expressing overlapping markers in each isolated class, 

depending upon the order of isolation, and providing relatively pure distinct leukocyte 

populations for subsequent epigenetic analysis. The utility of examining non-overlapping 

populations of leukocytes is demonstrated herein by our own analysis of 5hmCG levels and 

supports the previous benefits of reiterative methods presented in Lyons et al (2007).  

Recent evidence suggests the gene sequence-specific differences in 5mCG levels at 20% of 

CG sites are tissue specific and may be important to changes in gene regulation, whereas 80% of 

global 5mCGs appear to have little impact on gene expression (Lister et al., 2013; Meagher, 

2014; Wu and Zhang, 2014; Gu et al., 2016). By contrast, 5hmCG levels are much lower than 

5mCG levels, but highly correlated with differential gene regulation (Mellen et al., 2012; Lister 

et al., 2013; Tsagaratou et al., 2014). 5hmCG is concentrated in euchromatin (Ficz, 2015), which 



 

58 

has an open-chromatin conformation facilitating transcriptional regulation. Genes and gene 

regions enriched for 5hmCG are said to be “poised” to be differentially regulated (Pastor et al., 

2011). For example, during chondrogenesis there is an increase in 5hmCG associated with 

important chondrogenic genes, while minimal changes in 5hmCG were observed in 

housekeeping genes (Taylor et al., 2016). Finally, 5hmCG enriched gene sets appear to be 

relatively distinct for each tissue (Nestor et al., 2012). Therefore, it is reasonable to propose that 

differences in gene region specific 5hmCG levels among peripheral blood might reflect their 

potential to respond to their environment with changes in gene expression. 

We recently presented strong evidence that the majority of functional 5mCG sites, turn 

over rapidly (Figure 2.1), with half-lives of less than an hour (Meagher, 2014). Many of the 

proteins essential to the establishment and maintenance of 5mCG (DNA methyltransferases, 

DNMT1, DNMT3A, DNMT3B), removal of 5mCG by oxidation to 5hmCG (Ten eleven 

translocation dioxygenase, TET1, 2, 3), and repair back to cytosine (Growth arrest and DNA 

damage induced, GADD45A, B, G) are expressed in leukocytes (Calabrese et al., 2014). TET 

catalyzed oxidation may be a rate-limiting step in 5mCG removal (Sabag et al., 2014; Wu and 

Zhang, 2014), and hence, the model presented in Figure 2.1 emphasizes the central importance 

of TET activity to the turnover of modified cytosine and its potential impact on gene regulation.  

There are limited data showing the importance of the DNA methylation cycle (Figure 2.1) 

to peripheral blood leukocytes. TET enzyme oxidation of 5mCG to 5hmCG is critical in T cell 

development as well as in the expression of T cell lineage specific genes (Tsagaratou et al., 2014; 

Ichiyama et al., 2015). RNAi mediated silencing of TET2 in cord blood progenitor CD34+ cells 

lowers 5hmCG levels and skews differentiation toward granulocytes and away from lymphoid 

and erythroid lineages (Pronier et al., 2011). When both TET2 and TET3 are mutated in 
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zebrafish, there are reductions in the number of hematopoietic stem cells emerging during 

embryonic development (Li et al., 2015). Furthermore, TET2 mutations are implicated in the 

development of T-cell lymphomas, myeloproliferation, and myeloid malignancies, where bone 

marrow precursor cells are affected (Moran-Crusio et al., 2011; Pronier et al., 2011; Muto et al., 

2014). Although the relationship of the cytosine modification cycle to health is limited, it is 

reasonable to consider that each of the divergent leukocyte lineages may regulate the cycle 

differently. 

The roles for TETs and 5hmCG in leukocyte development led us to hypothesize that 

various classes of peripheral leukocytes differentially regulate the establishment of 5mCG and 

its removal via oxidation to 5hmCG (Figure 2.1). These and other data also point to potential 

cause-and-effect relationships, that these differences in sequence specific 5mCG and 5hmCG 

impart to each cell type more or less potential to respond to physiological stresses and disease 

and in a cell type specific manner. We looked for initial evidence that non-overlapping leukocyte 

classes, isolated by our reiterative isolation protocol, might vary in the expression of machinery 

controlling the rates of 5mCG turnover, through changes in their DNA cytosine 

hydroxymethylome. Our results identify CD4+ T cells and CD14+ monocytes as having the 

highest levels of 5hmCG, but identified CD8+ T cells as having the highest levels of TET gene 

expression that might reflect turnover rates.  

2. Results 

2.1 Isolation of cell populations 

After a number of preliminary studies, we developed three different isolation methods to 

successively and rapidly isolate a few to seven leukocyte types (helper T cells, inflammatory T 

cells, monocytes, neutrophils, B cells, natural killer cells, and eosinophils) from single 5 ml 
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samples of fresh or frozen whole blood as summarized in Figure 2.2. The three methods 

included: (1) the isolation of CD4+ T cells, CD8+ T cells, and CD14+ monocytes directly from 

whole fresh blood, (2) the isolation of six or seven leukocyte types from whole blood using prior 

red blood cell lysis, and (3) the isolation of six or seven leukocyte types from frozen whole 

blood.  

In determining the order of isolation that would yield the purest samples of the seven 

leukocyte types, we had to consider that each of the seven leukocyte populations are complex 

and often express more than one of the common plasma membrane antigens (PMAs) used to 

isolate each population (Supplemental Table 2.S1).  Our results represent an attempt to 

optimize isolation of defined leukocyte populations free of unwanted cell types without seriously 

compromising the recovery of cell types.  Three different orders of isolation were identified, 

where isolation order A was used for isolation method 1 and isolation order B was found to yield 

the purest cell populations for the isolated cell types (methods 2 and 3) with the exception of one 

cell type, NK cells. Isolation order C resulted in relatively pure populations of some of the 

leukocyte types (e.g., CD16+ neutrophils), but not others, and is shown to highlight the 

importance of the order of isolation in recovering pure cell populations.  

The efficiencies of recovery of leukocyte types from each isolation method are estimated in 

Table 2.1. Method 1 produced the highest recovery of CD4+ T cells and CD14+ monocytes 

while Method 2 generated the highest recovery of CD8+ T cells, CD16+ neutrophils, CD19+ B 

cells, CD56+ NK cells, and Siglec8+ eosinophils. In general there was a 30 to 80% reduction in 

recovery depending upon leukocyte types for Method 3, resulting from cell lysis during the 

freeze-thaw process.  

2.1.2 Confirmation of purity of isolated cell types 
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Initial analysis of the purity of the seven isolated cell types was performed using the four distinct 

nuclear morphologies (round for CD4+, CD8+, CD19+, CD56+ cells; kidney shaped for CD14+ 

and CD56+ cells; multilobular for CD16+ cells; bilobed for Siglec8+ cells) of peripheral blood 

leukocytes (Alberts, 1994). Purity was assessed based on the absence of three uncharacteristic 

nuclear phenotypes for six cell types with relatively unique morphologies. For CD56+ NK cells 

the estimate is based on the absence of two nuclear morphologies, multilobed and biolobed. The 

fluorescent nuclear morphology we observed for the seven isolated leukocyte types after staining 

with DAPI and propidium iodide (PI) are shown in Figure 2.3. After examining several fields of 

cells by fluorescent microscopy, each cell type isolated by the methods and isolation orders 

described in Figure 2.2 and Table 2.1, were found to be at least 95% pure, thus meeting our 

criteria to be initially considered as a highly enriched cell population pending qRT-PCR 

transcript analysis. Some of the isolated cell types were bound to numerous dynabeads during the 

isolation process, making the nuclear morphology of these cells difficult to assess. Cells with 

obscured nuclear morphologies are not included in our estimates of purity. Purity was further 

confirmed through qRT-PCR analysis of leukocyte-specific transcripts.  

Most studies of isolated leukocytes use cytometry to demonstrate that the cell types express 

common PMAs consistent with expectations (i.e., CD4+ T cells are CD4+/CD3+/CD14-) 

(Reinius et al., 2012). However, this approach does not quantitatively address the level of 

contamination from other unwanted cell types, without the use of many other marker antibodies 

during cytometry. The binding of multiple large Dynabeads to cells complicates cytometry and 

bead removal may damage cells. Therefore, we developed qRT-PCR assays using a panel of 

eight leukocyte-specific marker transcripts to assess the purity of the seven isolated cell types. 

The relative quantity (RQ) of expression of each transcript in each cell type is shown in 
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Supplemental Figure 2.S1A (isolation order B, yielding the most pure leukocyte populations) 

and isolation order C (shown to demonstrate the importance of isolation order) in Supplemental 

Figure 2.S1B. Unexpectedly high levels of CD4 mRNA were observed in CD14+ monocytes 

and CD16+ neutrophils (Supplemental Figure 2.S1A). Therefore, IFM was used to assess CD4 

protein localization in these cell types and in CD4+ T cells (Supplemental Figure 2.S2). We 

found CD4 protein in the membrane of isolated CD4 cells, but only in the cytoplasm of CD14+ 

monocytes and CD16+ neutrophils. The results of this analysis provided evidence that the CD4 

protein is only trafficked to the membrane in the CD4+ T cells. Considering the IFM analysis of 

nuclear morphology showed no round nuclei in either the isolated monocytes or neutrophils, we 

can conclude that there is no contamination of CD4+ T cells in these isolated cell populations.  

As shown in Supplemental Figure 2.S1, NK cells captured using the CD56+ antigen 

express transcripts for many of the common PMAs used for cell isolation (Supplemental Table 

2.S1), and thus represent a heterogeneous population of cells (Kelly-Rogers et al., 2006; Poli et 

al., 2009). If the order of the isolation is manipulated to isolate CD56+ NK cells last, very few 

cells remain, as the majority of CD56+ cells have been isolated in the other cell populations as 

sub-types of these cell populations. This is due to the co-expression of CD16 (Kelly-Rogers et 

al., 2006; Poli et al., 2009; Accomando et al., 2014), CD4 (Kelly-Rogers et al., 2006; Zloza and 

Al-Harthi, 2006; Gruenbacher et al., 2009), CD8 (Kelly-Rogers et al., 2006; Zloza and Al-

Harthi, 2006; Gruenbacher et al., 2009), and CD14 (Gruenbacher et al., 2009) surface markers in 

some CD56+ NK cells. For the cells assayed in Supplemental Figure 2.S1A, CD56+ cells were 

isolated first, hence, CD56+ cells expressing all these other markers were included.  

2.2 Utilization of isolated leukocytes for epigenetic analysis  
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Based on the purity of the isolated cell populations as defined by nuclear morphology and 

the expression of cell type specific transcripts, isolation order B was selected and used for the 

remaining experimental analysis in this manuscript, with the exception of only the first six cell 

types were isolated following this order, while CD56+ NK cells were isolated in parallel from an 

additional blood sample.  

2.2.1 5hmCG levels among leukocytes 

To explore the differences in 5hmCG levels and gene-region specific distribution of 

5hmCG among leukocytes, we performed a TET assisted bisulfite sequencing (TAB-Seq) 

genome wide analysis on DNA isolated from each of the seven isolated cell types. The majority 

of the 5hmCG modification is found in the CG dinucleotide context, resulting from the 

specificity of TET enzymes and associated DNA binding machinery to CG dinucleotides (Lister 

et al., 2013; Wu and Zhang, 2014). And thus, we first quantified the overall level of 5hmCG in 

each of the cell types (Table 2.2) and found that CD4+ T cells had by far the highest level of 

5hmCG at CG dinucleotides: 3.67% of CG sites assayed contained a 5hmCG. Monocytes, 

neutrophils, and B cells had intermediate levels of 5hmCG: 2.69%, 2.62% and 2.38%, 

respectively. NK cells, eosinophils and CD8+ T cells had the lowest levels with 2.12%, 1.99%, 

and 1.91%, respectively. These values were based on the analysis of ~10x106 different CG 

dinucleotides from each cell type.  

As an independent confirmation of this range of 5hmCG levels among classes of 

leukocytes we performed immuno-fluorescent microscopy (IFM) (Figure 2.4) of 5hmC in 

preparations of total leukocytes co-stained with DAPI for DNA. Preparations of leukocytes 

where prepared from both fresh (method 2, Figure 2.4A) and frozen (method 3, Figure 2.4B) 

blood to determine the impact of using freezing on recovery.  Observation of the lowest levels of 
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5hmC in some cells required longer photographic exposures and a further assessment of antibody 

reagent controls (Supplemental Figure 2.S3), however all leukocyte nuclei, as identified by 

DAPI staining (Supplemental Figure 2.S3A), expressed 5hmC (Supplemental Figure 2.S3B-

C) in varying degrees after this assessment, agreeing with our TAB-Seq data. After 

quantification of the 5hmC signal of at least 100 cells of each of the four distinct nuclear 

morphologies (round: T cells, B cells and NK cells; kidney: monocytes and NK cells; 

multilobed: neutrophils; bilobed: eosinophils) the 5hmC signal for each morphology was 

classified as minimal, low, medium or high (Figure 2.4C). A two-way MANOVA revealed that 

freezing had no significant effect on the distribution of 5hmC signal among nuclear types. 

However, as expected, the various nuclear morphologies were a significant determinant of 5hmC 

levels (p=0.001). In particular, among nuclei with the high 5hmC signal, 92.7% of the variance 

in 5hmC levels was explained by the different nuclear morphologies (p=2.07x10-7) with the 

kidney and round morphologies much more commonly represented than the others. Furthermore, 

nuclear morphology significantly impacted 5hmC signal in the medium, low and minimal groups 

(p<0.05, explaining 61.6%, 76.3%, and 45.5% of the variance in 5hmC signal respectively).  

However, all the different nuclear morphologies were represented in these groups. The 

differences identified were similar to the TAB-seq analysis, where the CD4+ T cells with round 

nuclei and monocytes with kidney shaped nuclei have the highest level of 5hmC, and lower 

levels of 5hmC are found among all nuclear morphologies (i.e. all cell types).  

2.2.2 Gene-region specific 5hmCG distribution 

We next assessed the gene-region specific 5hmCG profile of the seven different 

leukocyte types (Figure 2.5). Three regions were defined for all genes, 100 kb upstream of the 

transcription start site (TSS), the gene body (i.e., start to stop of transcript) and 100 kb 
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downstream of the transcription stop site (TTS). The gene regions examined are the same as 

those used to examine gene region distribution of 5hmCG in brain (Lister et al., 2013). 18,000 

transcripts detected in leukocytes (Palmer et al., 2006) were broken into five expression quintiles 

(5 of 5 representing transcripts with the highest steady state level and 1 of 5 representing 

transcripts with the lowest levels). All of the leukocyte types had roughly the same pattern of 

gene-region 5hmCG distribution per transcript expression quintile with the most highly 

expressed transcripts having the highest levels of 5hmCG, with decreasing 5hmCG correlating 

with decreasing quintile of expression (Figure 2.5B). Although the highest expression quintile 

for each cell type had the highest level of 5hmCG, the absolute level was different for each cell 

type. CD4+ T cells had by far the highest levels of 5hmCG with a peak at 4.53% and CD8+ T 

cells had the lowest levels of 5hmCG with a peak at 2.57% (Figure 2.5B). The relative 

differences among cell types held true across gene location within each quintile of expression, 

where for the highest expression transcript quintile, the level of 5hmCG was highest in the CD4+ 

T cells and lowest in the CD8+ T cells following the same pattern as the global levels presented 

in Table 2.2. The highest quintile data are shown in Figure 2.5C and lower quintile data in 

Supplemental Figure 2.S4. The highest 5hmCG peak for each cell type and transcript 

expression quintiles occurred immediately after the TSS, at the beginning of the gene body, 

following a valley of 5hmCG just prior to the TSS site. A dip in the level of 5hmCG across all 

cell types and expression quintiles can be seen at the end of the gene body with a second smaller 

peak of 5hmCG at or near the TTS (Figure 2.5B).  

We then examined the differences in the levels of 5hmCG for several different leukocyte-

relevant gene-ontology (GO) term categories (Figure 2.6). For GO category analysis each gene 

was divided into seven smaller gene sequence locations (Figure 2.6) than used in Figure 2.5. 
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This analysis allowed us to examine both the total variance in 5hmCG levels in all cell types 

assayed for each GO term, and also assess how different each cell type is from all the others in 

each gene sequence location. The total leukocyte data for all but two of the GO term based gene 

lists (Adaptive Immune Response and Leukocyte Migration) showed a dip in 5hmCG levels 

around the TTS, in agreement with this analysis of larger gene regions in Figure 2.5. By pooling 

the exons into one single bin in the box plot we no longer resolve the spike in 5hmCG at the start 

of the gene body (Figure 2.5). With a few exceptions, the two regions immediately flanking the 

TTS had some of the highest levels of 5hmCG for all leukocyte types, which was obscured when 

we looked at the larger downstream region in Figure 2.5.  

When the differences in the weighted average of 5hmCG for all genes in the GO term list 

for each cell type are examined in relation to the 5hmCG levels observed in all leukocytes, 

striking differences from the total leukocyte population emerge. As an example, for the 

Leukocyte Differentiation genes, CD16+ neutrophils had much higher weighted average of 

5hmCG levels in the two regions around the TSS, far exceeding 1.5 times the interquartile range 

(IQR) for this region of the 5hmCG levels observed in the total leukocytes (Figure 2.6).  As an 

additional example, CD4+ and CD8+ T cells also distinguish themselves from the other 

leukocyte types with much higher and much lower levels of 5hmCG, respectively, within exons 

of Inflammatory Response genes (Figure 2.6).  

Not only are there differences among cell types for the different GO terms, but there are 

also differences in the level of 5hmCG for total leukocytes across GO terms. Most of the GO 

terms related to leukocyte function had variable levels of 5hmCG across the different gene 

regions assayed, with the exception of the Adaptive Immune Response gene list, where the level 

of 5hmCG is relatively constant across gene regions with the exception of the 100 nt downstream 
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of the TTS, where levels of 5hmCG are three times higher (Figure 2.6). The peak level of 

5hmCG across these smaller gene regions among the gene lists are variable with some reaching 

more than 7.5% (Cytokine Production and Adaptive Immune Response), while others only reach 

~4% (Immune System Process, Leukocyte Differentiation, and Leukocyte Activation). 

Additional GO terms related to general cell function were also examined and are presented in 

Supplemental Figure 2.S5. 

It seemed possible that any one of three factors (1) the genomic bin (the gene-region 

specific location), (2) the cell type, and/or (3) the GO term-based gene set might account 

disproportionately for the variance in our data, weighting its biological relevance. Therefore, we 

examined the variance in 5hmCG levels separately for these three factors (Supplemental Figure 

2.S6). For all leukocyte types, the gene-region specific location and the cell type explained 

approximately 31% of the variance in 5hmCG levels, ~16% and ~15%, respectively. The 

different gene ontology gene lists explained less (~7%) of the variance in 5hmCG levels. Hence, 

there are many factors controlling 5hmCG levels and its gene-region distribution in leukocytes. 

2.2.3 Expression of factors involved in regulation of DNA 5hmCG levels in peripheral leukocyte 

types 

We used qRT-PCR to determine the relative quantity (RQ) of each transcript for nine factors 

involved in the DNA cytosine methylation cycle (DNMT1, 3A and 3B, TET1, 2, and 3, 

GADD45A, B, and G) as shown in Figure 2.7. DNMT1 was 8- to 16-fold more highly expressed 

in the CD4+ and CD8+ T cells (p<0.0005), while DNMT3A and 3B were 8- and 4-fold more 

highly expressed in the CD4+ T cells (p<0.0005) and CD8+ T cells (p<0.05), respectively, than 

in the 5 other cells types (Figure 2.7A).  TET1 was 50-fold more highly expressed in the two T 

cell types than other leukocytes (p<0.0005). TET2 was 10- to 50-fold higher in the CD8+ T cells 
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and eosinophils than in 4 other cell types (p<0.005). TET3 was most highly expressed in 

eosinophils, monocytes, and CD4+ T cells than the other leukocyte types (p<0.05) (Figure 

2.7B). GADD45A was 50-fold higher in CD8+ T cells than in all other cell types (p<0.0005). 

GADD45B was 8- to 16-fold higher in both T cell populations relative to all other cell types 

(p<0.0005), except for eosinophils, where it was modestly expressed. GADD45G was 15-fold 

higher in the CD4+ T cells than in the other cell types (p<0.0005), again with exception of 

modest expression in eosinophils (Figure 2.7C). In summary, there are dramatically different 

expression profiles for many of the enzymes central to the turnover of modified cytosine residues 

(Figure 2.1) among classes of leukocytes.  

3. Discussion 

 

3.1 Isolating sub-populations of leukocytes 

Before testing our hypothesis that the various classes of peripheral leukocytes differentially 

regulate the establishment of 5mCG and its removal via oxidation to 5hmCG, we first optimized 

methods to quickly and reiteratively isolate a few to seven of the peripheral blood leukocyte 

types from small samples of fresh or frozen stored blood. Our approach represents an extension 

of the partially reiterative methods of Lyons et al. (2007), who started with two aliquots of 

PBMCs and then successively isolated CD14+ monocytes and then CD4+ T cells from one 

aliquot and the CD19+ B cells followed by CD8+ T cells from the other. Most other reports of 

blood cell methylome analysis start with large amounts of blood (e.g., 100 to 450 ml) and isolate 

single cell types from separate aliquots (Reinius et al., 2012; Zilbauer et al., 2013). Such large 

blood samples are not easily adapted to the analysis of large patient populations particularly if 

multiple cell types are to be isolated. Furthermore, typical protocols for leukocyte isolation rely 

on Ficoll density centrifugation to first purify the leukocyte population from the red blood cells 
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prior to individual cell type isolation, which takes time and effort and results in a significant loss 

of cells. This is of concern with epigenetic analysis, as the half-life of promoter region specific 

DNA methylation for many genes is measured in fractions of an hour (Meagher, 2014). Hence, 

any additional time of manipulation may result in the loss of the original methylation profile. Our 

protocol(s) allows for rapid isolation of several relatively pure leukocyte populations with 

minimal time and labor compared to the current methods.  

 If multiple cell types are to be isolated from one blood sample, six to ten color flow 

cytometry and sorting has the potential to identify and eliminate contamination of subpopulations 

expressing multiple markers (Roederer et al., 1997; Granja et al., 2015; Melzer et al., 2015) and 

provide more information about the cell populations than magnetic bead isolation. However, 

multichannel sorting is more technically challenging and more costly. In addition, during 

cytometry “contamination” of one cell type with another depends not only upon co-expressed 

markers, but also on the choice of fluorophores and their overlapping emission spectra. While the 

reiterative isolation of cell types employed herein is less complex, less expensive, and more 

rapid, it may not achieve the level of purity possible using multichannel FACS. 

The current common criterion for assessing purity of isolated leukocyte types relies on 

fluorescently labeling isolated cells with a panel of antibodies and subsequent analysis by flow 

cytometry (Reinius et al., 2012; Accomando et al., 2014). However, we were confronted with the 

problem that the large 2.8 or 4.5 micron diameter Dynabeads used to capture cells would have to 

be dissociated from cells before cytometric analyses. Therefore, to confirm purity by a technique 

independent of cytometry we employed qRT-PCR analysis of transcripts encoding eight defining 

PMA marker proteins.  
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3.2 Evidence for extreme variability in the regulation of 5mCG and 5hmCG levels among classes 

of leukocytes 

We examined the levels of 5hmCG and related proteins regulating synthesis and decay of 

5mCG levels among leukocytes. We were exploring the idea that the leukocyte types with higher 

levels of 5hmCG and enzymes leading to 5hmCG synthesis and removal would be more readily 

poised to respond to different environmental stimuli via changes in DNA demethylation and 

rapid changes in transcription. We hoped these data would begin to define those classes of blood-

borne leukocytes with the greatest potential to respond rapidly to changes in the cell, tissue, and 

blood environment. However, we have not yet directly tested the response of the methylome of 

different cell types to environmental stress. 

Our goal was a broad survey of 5hmCG across all of the peripheral leukocyte types. When 

we examined 5hmC by IFM in a total leukocyte preparation, we found that all cells examined 

expressed 5hmC at some level (Supplemental Figure 2.S3), and that the level of 5hmC varied 

dramatically among leukocyte types (Figure 2.4). However, there was no difference in the 5hmC 

levels as determined by IFM for total leukocytes isolated with either method 2 (fresh blood) or 3 

(frozen blood) (Figure 2.4) and thus we only examined one isolation method in our further 

analysis. The analysis of 5hmC levels was expanded and quantified using TAB-Seq and showed 

a wide variation among leukocytes (Table 2.2). The modestly high levels of 5hmCG in all 

peripheral leukocyte types suggests that all peripheral leukocytes are able to alter their 5mCG 

levels via hydroxymethylation, presumably in response to different physiological signals.  

However, it should be mentioned that a direct relationship between the loss of 5mCG and 

the gain of 5hmCG should not be expected, as there are many regulated steps in the cycle, and 

the half-lives of all the intermediates may vary in a site specific manner. In other words, these 
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two modifications may change independently in different gene sequences and in different cell 

types in a tissue (Ruzov et al., 2011; Salvaing et al., 2012; Hahn et al., 2013). With a few 

exceptions, we did not observe a clear relationship between the relative levels of 5hmCG among 

the 7 leukocyte types and the levels of 5mCG reported previously (Reinius et al., 2012). This 

comparison supports the view that the cytosine modification cycle is quite distinctly regulated in 

each cell type.  

Further, we did not find a simple correlation between the expression of transcripts encoding 

enzymes involved in the turnover of modified cytosine residues (e.g., TETs, GADD45s, Figure 

2.1) and the levels of 5hmCG among the seven leukocyte types, although some speculation about 

these relationships seems warranted. CD4+ T cells have by far the highest levels of 5hmCG 

(Table 2.2, Figure 2.5) and they have the highest levels of 5mCG of any leukocyte type assayed 

(Reinius et al., 2012). It is tempting to speculate then, that they are the most highly potentiated to 

respond to stress by 5hmCG mediated changes in 5mCG levels followed by changes in gene 

expression. Yet, CD4+ T cells did not distinguish themselves with high levels of expression of 

those factors controlling the synthesis of 5hmCG. They did highly express TET1, DNMT1, 

DNMT3A, and GADD45G. These data suggest there is another level of regulation controlling the 

balance among the factors in the turnover cycle of cytosine modification (Figure 2.1).  

Overall, CD8+ T cells expressed relatively high steady state levels of transcripts encoding 

most of the factors involved in this cycle (DNMT1, DNMT3B, TET1, TET2, GADD45A, and 

GADD45B). Despite this, CD8+ T cells had the lowest levels of 5hmCG for all quintiles of 

transcript expression. CD8+ T cells have moderately high levels of 5mCG relative to other 

PBMCs (Reinius et al., 2012). Hence, the balance among these modifying activities (examine 

Figures 2.1 and 2.7) for CD8+ T cells must be weighted toward accumulation of 5mCG and 



 

72 

rapid removal of 5hmCG.  The high levels of TET and GADD45 suggests these cells may be 

highly responsive in changing 5mCG levels, despite having low levels of 5hmCG. It has been 

shown there are dynamic changes in DNA cytosine methylation in CD8+ T cells in response to 

acute infection (Scharer et al., 2013), supporting the view that the cycle turns over rapidly in 

these cells. This emphasizes the importance of both DNA demethylation and methylation in the 

ability of CD8+ T cells to respond to changes in their environment (Scharer et al., 2013).  

CD14+ monocytes have relatively low levels of all the factors assayed with the exception 

of TET3, and yet they have the second highest levels of 5hmCG. By contrast they have 2 to 3 

times lower levels of 5mCG relative to other PBMCs (Reinius et al., 2012). Hence, these 

modifying activities must be weighted toward removal of 5mCG and accumulation of 5hmCG. 

Granulocytes, CD16+ neutrophils and Siglec8+ eosinophils have the lowest levels of 5mCG 

(Reinius et al., 2012), but have moderate and low levels of 5hmCG, respectively (Table 2.2, 

Figure 2.5). 

Interestingly, the two cell types with the highest levels of 5hmCG, CD4+ T cells and 

CD14+ monocytes, both expressed high levels of transcripts involved in the removal of 5hmCG 

(TETs and GADDs), which may seem counterintuitive. Perhaps the TET activity in these two 

cell types efficiently carry out the first oxidation step from 5mC to 5hmC, but are less efficient at 

further oxidation. Those sites that are oxidized further to 5fC and 5caC may be repaired by the 

base excision repair (BER) pathway back to C and then further modified to 5mC and then back 

to 5hmC. This proposed mechanism emphasizes the importance of the modification cycle for 

DNA cytosine (Figure 2.1). Both of these cell types also express high to modest levels of the 

DNMTs, further strengthening this explanation.  
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When we examined the 5hmCG distribution across gene regions among the quintiles of 

gene expression (Figure 2.5) for the seven leukocyte types, we observed a strong depletion of 

5hmCG at the TSS and an enrichment over the gene body. These data agree with previous work 

assessing 5hmCG distribution in T cells (Tsagaratou et al., 2014; Ichiyama et al., 2015), as well 

as other non-leukocyte cell types and tissues (Song et al., 2011; Mellen et al., 2012; Yu et al., 

2012b; Chapman et al., 2015; Taylor et al., 2016). In genes with the highest levels of expression 

(Figure 2.5), we observed an enrichment of 5hmCG in the gene body, suggesting that higher 

gene body 5hmCG correlates with the activation of these genes. Gene body enrichment of 

5hmCG and its association with highly expressed cell type specific genes have been observed in 

studies of the brain, neurons, colonocytes, and chondrocytes (Mellen et al., 2012; Hahn et al., 

2013; Chapman et al., 2015; Taylor et al., 2016). Higher and lower levels of 5hmCG in both the 

total leukocytes and the individual cell types were observed in our analysis of smaller gene 

regions (Figure 2.6) than what we had observed in larger gene regions (Figure 2.5), because the 

extreme levels are averaged out by adjacent regions when larger gene regions are examined. The 

highest 5hmCG level in the different gene regions and GO terms were not always in the CD4+ T 

cells as we have observed for large gene regions Figure 2.5. For example, in the Cytokine 

Production GO gene list in the region upstream of the TTS, CD14+ monocytes have high 

5hmCG levels (~8%) and in the region downstream of the TTS, Siglec8+ eosinophils and 

CD19+ B cells have levels reaching ~8.5% (Figure 2.6). The Siglec8+ eosinophils have the 

second lowest global 5hmCG level as well as the second lowest peak 5hmCG level when 

examined by transcript expression quintile and larger gene regions. This may suggest that 

although globally there are generally low levels of 5hmCG in the eosinophils, there are gene-

region and gene-type differences in 5hmCG in this cell type (and others) that may be important 
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to gene regulation of specific genes and would be missed by both global analysis and transcript 

expression quintile analysis of larger gene regions. 

Cell type specific changes in 5hmCG in relation to different GO classes of genes and gene 

region may be relevant to the role of 5hmCG in potentiating gene expression. For example, 

during chondrogenisis those genes for which increases in 5hmCG correlate with increases in 

gene expression there was a enrichment of 5hmCG both prior to the TSS and in the gene body 

and a sharp drop in between (Taylor et al., 2016). This distribution of 5hmCG was not observed 

in the genes with either no change in expression or a decrease in expression associated with large 

changes in 5hmCG (Taylor et al., 2016). Our data (Figure 2.6) also shows this relationship. For 

example, when neutrophils were examined for the leukocyte activation GO gene list we saw 

enrichment of 5hmCG in the region prior to the TSS and in the gene body with a valley in 

between. By contrast, when the adaptive immune response GO gene list is applied to neutrophils, 

an innate immune cell type, this enrichment pattern of 5hmCG is not observed.  These data 

support the idea that gene region specific enrichment of 5hmCG is cell type specific in 

leukocytes, potentiating the expression of cell type specific genes for regulated gene expression.  

3.4 The role of hydroxymethylcytosine in potentiating gene regulation 

A current view is that high levels of gene region specific 5hmCG potentiate genes for “on 

demand gene regulation”(Irier et al., 2014). Further, there is direct evidence that this cytosine 

modification is essential for normal regulation of gene expression. For example, during 

erythropoiesis in zebra fish, there is both increased expression and demethylation of scl, gata-1, 

and cmyb. However, if TET2 is knocked down there is increased methylation and decreased 

expression of these genes that results in anemia (Ge et al., 2014) suggesting a direct role for 

5mCG oxidation in essential gene regulation. In embryonic stem cells, when TET1 and TET2 are 
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knocked down, there is an increase in methylation of the pluripotency related genes with a 

corresponding decrease in expression, altering their differentiation potential (Ficz et al., 2011).  

 5hmCG rich regions are associated with a potentiated, open chromatin state allowing 

access to various transcription and chromatin remodeling factors. For example, in embryonic 

stem cells enhancer regions enriched for 5hmCG are also enriched for nucleosomal histone 

modifications H3K4Me1 and H3K27Ac, which are associated with active transcription 

(Szulwach et al., 2011). In addition, in CD4+/CD8+ double positive thymocytes, 5hmCG is 

enriched in active thymus-specific enhancers, which have high levels of H3K4Me1 and 

H3K27Ac (Tsagaratou et al., 2014). There is also a negative correlation between 5hmC and the 

repressive histone modification H3K27me3 (Tsagaratou et al., 2014). It has been suggested that 

the combination of these chromatin structures indicates genes that are poised for transcriptional 

activation or silencing in response to environmental cues (Lister et al., 2013; Tsagaratou and 

Rao, 2013; Tsagaratou et al., 2014).  

Considering that oxidation of 5mC to 5hmC must impact 5mC levels it is worth 

considering the contribution of 5mC binding protein to the concept of 5hmC function. 5mCG 

dinucleotides attract a wide variety of chromatin remodeling machinery such as methyl-CG 

binding proteins MBD4 and MeCP2 (Du et al., 2015). MBD4 recognizes 5hmCG and has a 

glycosylase domain (Otani et al., 2013) (see Figure 2.1, TDG) and therefore, may contribute to 

the cyclic modification and removal of cytosine (Figure 2.1) in various classes of leukocytes. 

The binding and activity of MeCP2 appears enhanced at promoter 5hmCG sites in the brain 

(Zhubi et al., 2014) and its activity is considered particularly important, because in the brain 

MeCP2 activity responds to external stimuli (e.g., cocaine, ethanol) (Pol Bodetto et al., 2013; 

Liyanage et al., 2015). MeCP2 binding in the brain to modified C residues can work to enhance 
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transcription if bound to 5hmCG, or repress transcription if bound to 5mCG (Mellen et al., 

2012).  Appropriate levels of MeCP2 activity are essential for the differentiation of naive CD4+ 

T cells into a variety of T cell types (Yang et al., 2012; Jiang et al., 2014). Thus it appears that 

the balance between 5mCG and 5hmCG is allowing the DNA sequence to be poised for 

activation and expression or repression via a combination of interactions with methyl-binding 

proteins.  

In summary, Pastor et al., 2011 (Pastor et al., 2011) presented an initial simple view of 

the role of 5hmCG that may still be valid, stating that “5hmC contributes to the 'poised' 

chromatin signature found at developmentally-regulated genes”. On the other hand, Nestor et al. 

(Nestor et al., 2012) presented solid evidence that “tissue type” was “a major modifier of the 5-

hydroxymethylcytosine content” of genes. It is reasonable for us to interpret tissue type as 

leukocyte type and expect gene specific differences among cell types when a genome-wide 

analysis is performed. Our data herein and that from mouse brain (Lister et al., 2013) agree with 

both views, suggesting that gene expression levels and cell type are both significant determinants 

of overall 5hmCG levels. In short, gene region-specific 5hmCG level differences between active 

and inactive chromatin regions are preserved within a background of higher or lower total 

5hmCG, which is determined by the cell type. Perhaps it is important to recall that the seven 

major classes of leukocytes examined are indeed quite divergent.    

3.5 Conclusions 

In summary, we optimized protocols for the reiterative isolation of the major leukocyte 

types from single small whole blood samples that are rapid and efficient. The isolated 

populations of the various leukocyte types appear sufficiently pure for epigenome and 
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transcriptome studies. This was confirmed with the analysis of both nuclear morphology and of 

leukocyte cell-type specific transcripts.  

We showed that these seven isolated leukocyte types, (1) differentially express factors 

involved in the cycle of DNA cytosine methylation and demethylation, (2) have rank order 

differences in 5hmCG levels and gene region dispersal, and (3) collectively our data suggest that 

the CD4+ and CD8+ T cells and CD14+ monocytes may be potentiated to turnover their 5mCG 

more rapidly via oxidation to 5hmCG than other leukocytes. However, there is not a simple 

relationship between TET expression levels and 5hmCG levels as suggested by our hypothesis, 

implying that a much better understanding of every step in the cytosine modification cycle is 

needed. Recall that TETs catalyze the further oxidation of 5hmCG to 5fCG and 5caCG (Figure 

2.1). Taken together our data suggest that each leukocyte type uniquely regulates their cycle of 

DNA cytosine modification, which imparts to each cell type a distinct ability to regulate gene 

expression in response to different physiological cues. Definitive identification of the optimal 

surrogate leukocyte cell types in peripheral blood to report the methylome’s response to health 

status awaits further experimental analysis. It still needs to be established that 5hmCG levels and 

components of the turnover cycle for cytosine modification enable some cell types to respond 

more rapidly or more definitively than others to distinct physiological stresses and diseases. 

4. Materials and Methods 

4.1 Methods of reiteratively isolating leukocytes  

Building on previous efforts to reiteratively isolate some classes of peripheral blood 

leukocytes (Lyons et al., 2007) we developed simplified protocols that could be executed in 5 

hours on six or seven leukocyte classes (Figures 2.2-2.3, Supplemental Figure 2.S1-2.S2, 

Table 2.1). Venous blood samples were collected in EDTA tubes in the morning between 8 and 
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9AM from a nonfasted healthy 65-year-old male volunteer free of cardiovascular and other 

diseases with a BMI of 29. These studies were approved by the Institutional Review Board at the 

University of Georgia. Analyzing the methylome of seven cell types from one individual in this 

initial study eliminated genetic variation so as to strengthen the interpretation of complex data, as 

was done with the early studies of bisulfite conversion for analyzing 5mCG residues, TET-

assisted bisulfite sequencing for analyzing 5hmCG residues, and six color sorting for the analysis 

of multiple leukocyte types (Frommer et al., 1992; Roederer et al., 1997; Yu et al., 2012a). 

However, we have not yet addressed the natural variability in the leukocyte populations or in 

chromatin structures that may exist among healthy individuals differing in age and/or sex. 

Leukocytes were isolated following the methods described in detail below and are depicted 

in Figure 2.2. For each method the cells were isolated in the following order: (A) CD4+ T cells, 

CD8+ T cells, and CD14+ monocytes, respectively, (B) CD16+ neutrophils, Siglec8+ 

eosinophils, CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes, and CD56+ NK 

cells, respectively, and (C) CD14+ monocytes, CD4+ T cells, CD16+ neutrophils, CD56+ NK 

cells, CD8+ T cells, CD19+ B cell, and Siglec8+ eosinophils, respectively. The majority of 

leukocyte data presented in the text utilize Method 2 in which six of the cell types were 

reiteratively isolated from one 5 ml fresh blood sample in isolation order B, while the seventh 

type, CD56+ NK cells were isolated in parallel from a second 5 ml blood sample, because NK 

cells are a highly mixed cell type in terms of the affinity markers being utilized, their recovery is 

poor when isolated at the end of isolation order B.  

4.1.2 Dynabead Preparation 

Anti-CD4, anti-CD8, and anti-CD14 antibodies bound to 4.5 µm paramagenetic Dynabeads 

were obtained from Life Technologies (Grand Island, NY, USA Cat# 11145D, 11147D, 
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11149D). 25 µl of suspended anti-CD4+ and anti-CD8+ Dynabeads and 20 µl of suspended anti-

CD14+ Dynabeads were used per 5 ml of blood. The Dynabeads we prepared per manufacturer’s 

instructions and stored in 50 µl of PBSBE (phosphate buffered saline, 1% BSA, 2mM EDTA, 

pH7.4) on ice until needed. Protein G Dynabeads (2.8 µm, Life Technologies, Grand Island, NY, 

USA Cat# 10009D) were coupled to anti-CD16 (Santa Cruz Biotech Dallas, TX, USA Cat# sc-

19620), anti-CD19 (Bio legend San Diego, CA, USA  Cat#  302202), anti-CD56 (Bio Legend, 

San Diego, CA, USA Cat# 31824), or anti-Siglec8 (Bio Legend, San Diego, CA, USA Cat# 

347102) antibodies for the isolation of 4 other leukocyte classes. Protein G Dynabeads were first 

washed with 1 ml of PBSBE, resuspended in 200 µl of PBSBE where the antibody was then 

added (40 µl Dynabeads and 4 µl anti-CD16 or 10 µl Dynabeads and 0.5 µl of anti-CD19, anti-

CD56, and anti-Siglec8). Beads and antibodies were incubated at room temperature with rotation 

for 15 min, washed twice with 1 ml PBSBE, resuspended in 50 µl of PBSBE and stored on ice 

for no more than 4 h until use. Washing was implemented with the use of strong neodymium 

magnets that pulled the Dynabead-bound cells to the side of a 1.5 ml microfuge tube 

(MagnaRack, Invitrogen, Grand Island, NY, USA Cat # CS15000) in a minute. 

4.1.3 Method 1: Isolation of leukocytes from fresh whole blood without red blood cell lysis 

(Figure 2.2) 

Five ml of venous blood samples were collected in EDTA tubes in the morning between 8 

and 9AM in a nonfasted male subject (kept on ice immediately after collection until leukocyte 

isolation) and were diluted 1:2 with PBSBE and centrifuged at 300 x g for 30 min at 4ºC. 

Supernatant was discarded, and the cell pellet was resuspended in 1 ml of PBSBE. Cells were 

centrifuged at 400 x g for 2 min, supernatant was discarded, and cells resuspended in 1 ml of 

PBSTBE (phosphate buffered saline, 2% Tween 20, 1% BSA, 2mM EDTA, pH7.4). Three 
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leukocyte types (CD4+, CD8+, and CD14+) were then successively isolated following the 

general isolation protocol (see below).  

4.1.4 Method 2: Isolation from fresh whole blood with controlled red blood cell lysis (Figure 

2.2) 

Five ml of venous blood samples were collected in EDTA tubes in the morning between 8 

and 9AM in a nonfasted male subject (kept on ice immediately after collection until leukocyte 

isolation) and were diluted 1:10 with freshly prepared 1x cold red blood cell lysis solution form a 

10x stock (10x red blood cell lysis solution: 1.5 M NH4Cl 100mM NaHCO3, 10 mM EDTA, pH 

7.4) (Bossuyt et al., 1997) and placed on ice for 20 min. Samples were then centrifuged at 300 x 

g for 20 min at 4ºC. Supernatant was discarded, and cells were resuspended in 10 ml of PBSBE 

and centrifuged at 300 x g for 10 min at 4ºC. Supernatant was again discarded, and cells were 

resuspended in 1 ml of PBSTBE. Six to seven leukocyte types were then successively isolated 

following the general isolation protocol.  

4.1.5 Method 3: Isolation from frozen whole blood (Figure 2.2) 

Venus blood samples were collected in EDTA tubes in the morning between 8 and 9AM in 

nonfasted a male subject and frozen at -80 ºC. Five ml of frozen blood (at -80ºC) was thawed on 

ice. Approximately 90% of red blood cells lyse during the freeze-thaw process, but most white 

cells do not (Fiebig et al., 1997). Thawed blood was diluted 1:2 with PBSBE and centrifuged at 

300 x g for 30 min at 4ºC. The supernatant was discarded, and cells were resuspended in 1 ml of 

PBSBE. Cells were centrifuged at 400 x g for 2 min, supernatant was discarded, and cells were 

resuspended in 1 ml of PBSTBE. Again, six to seven leukocyte types were then successively 

isolated following the general isolation protocol. 

 4.1.6 General Isolation Protocol 
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Dynabeads prepared for the first cell type to be isolated were added to the cells. Cells were 

incubated with Dynabeads with rotation at 4ºC for 30 min for CD4+ T cells, CD8+ T cells, 

CD14+ monocytes, CD19+ B cells, CD56+ natural killer (NK) cells, and Siglec8+ eosinophils or 

1 hour for CD16+ neutrophils. Samples were then placed on a magnetic rack (Invitrogen, Grand 

Island, NY, USA Cat # CS15000) for 2 min, and the supernatant was carefully removed, placed 

in a fresh microcentrifuge tube for the next leukocyte type to be isolated, and stored on ice until 

processing. The cells bound to paramagnetic beads were resuspended in 1 ml of PBSBE and 

washed three times with PBSBE using the magnetic rack. Cells were finally resuspended in 200 

µl of PBS (phosphate buffered saline, pH 7.4) and stored according to future use (e.g., the cell 

pellet was frozen with liquid nitrogen and stored at -80ºC for RNA, frozen at -80 ºC for DNA 

extraction or fixed with 3.7% formaldehyde for Immuno-Fluorescent Microscopy (IFM)). The 

Dynabeads prepared for the next cell type to be isolated were added to the microcentrifuge tube 

containing the uncaptured cells, and the next cell type was isolated following the same protocol. 

This process was repeated until all desired leukocyte types had been isolated. When we tried to 

use this capture method with the white blood cells suspended in 10 ml the recovery was not 

quantitative, even with longer incubation times, using twice as much antibody and beads, and 

larger neodymium magnets. 

4.1.7 Determination of cell recovery for each isolation method 

Ten µl of the formalin fixed cells of each cell type were incubated for 20 min in the dark at 

4ºC with 0.25 µl of Propidium Iodine (PI, 1mg/ml). Stained cells were examined on a 

hemocytometer under combined fluorescence and DIC, and cells were counted following 

standard protocols. Florescence microscopy was performed on a Leica TR600 epifluorescence 

microscope using Hamamatsu SimplePCI Image Analysis software or on a confocal microscope 
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(Zeiss SM710) using ZEN 2011 software. A one-way ANOVA followed by tukeys HSD post 

hoc was performed using SPSS software (IBM) to determine differences in cell recovery 

between the three methods of isolation for the three cell types where cells were recovered for all 

three methods. Significance was set at p <0.05. A two tailed t test was performed on the cell 

recoveries between methods 2 and 3 to determine any significant differences in cell recovery 

between the two methods for the four cell types in which cells were only recovered in these 

methods. Significance was set at p<0.05. Data are presented in Table 2.1. 

4.1.8 Assessment of nuclear morphology by fluorescent microscopy 

Initial cell purity was assessed by microscope analysis of the four distinct nuclear 

morphologies characteristic of the various leukocyte types (Alberts, 1994). Samples for analysis 

were prepared the same as used to determine cell recovery. Analysis of at least 100 cells showed 

that all cell preparations assayed were greater than 95% pure, based on the presence of the 

correct nuclear morphology and the absence of the alternate morphologies. Red blood cells were 

seldom observed. Data are presented in Figure 2.3. 

To confirm the purity of CD16+ neutrophils and CD14+ monocytes, we fluorescently 

labeled the total leukocyte fraction with DAPI and anti-CD4-Texas RPE (Invitrogen, Grand 

Island, NY, USA Cat# MHCD0417). First the cells were blocked for 45 min with PBSBE, 

washed 3x, and stained with DAPI and the fluorescent antibody for 1 hour with rotation in the 

dark. Cells were then washed 3x with PBSBE and a 20 µl aliquot was set aside for immediate 

microscope analysis while the remaining cells were split into three equal aliquots. CD4+, 

CD14+, and CD16+ were then isolated from one of the three samples of labeled leukocytes and 

then immediately analyzed by fluorescent microscopy. Cells positive for the CD4 antibody were 

classified by their nuclear morphology and all cells were counted into their respective 
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classifications. The percentage of each cell type was then calculated. A one-way ANOVA 

followed by tukey HSD post hoc test was used to determine significant differences between each 

of cell populations for each cell type using SPSS software (IBM).  

4.1.9 qRT-PCR analysis of transcript levels 

To further confirm the purity of the cell types, we performed qRT-PCR assays for eight 

transcripts specific to the seven isolated cell types (CD3, CD4, CD8, CD14, CD16, CD19, CD56 

and Siglec8. Leukocytes bound to Dynabeads (Method 3, Order B) were washed in PBS and 

frozen in liquid nitrogen and stored at -80ºC. RNA was extracted using RNeasy Mini Kit 

(Qiagen, Frederick, MD, USA Cat# 74104) following manufacture instructions. RNA 

concentrations were quantified using Qubit RNA assay kit (Life technologies, Grand Island, NY, 

USA Cat# Q32855) and 400 ng of RNA was used for cDNA synthesis using qScript cDNA 

synthesis supermix (Quanta Biosciences, Gaitthersburg, MD, USA Cat# 95148-100). Relative 

quantities (RQ) of cell type specific transcripts were normalized to an endogenous control, Beta 

Actin (ACTB) (Vandesompele et al., 2002) using the dCT method (Livak and Schmittgen, 

2001). ACTB was used when we were examining the expression profile of the transcripts of cell 

type markers within a single cell type, and not making comparisons among cell types. ACTB 

mRNA abundance, and hence, its CT values were closer to those of the target transcripts being 

examined, however expression was variable across cell types (Supplemental Figure 2.S7). 

Oligonucleotide primer sequences (Supplemental Table 2.S2) were synthesized by Integrated 

DNA Technologies (Coralville, IA, USA). Two to six primer sets were tested for each of the 

target genes, ensuring the specific gene target was being amplified, and those having a single 

sharp dissociation peak and the lowest CT values were selected for subsequent use. A 25µl 

reaction using SYBR green master mix (Life Technologies, Grand Island, NY, USA Cat# 
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43677659) and 4 ng of cDNA was used for analysis of the eight gene panel in all seven isolated 

leukocyte types. To determine statistical relevance of differences in transcript levels, a one-way 

ANOVA was used to examine the effects of cell type on expression with Tukey’s HSD test as a 

post hoc using Statistica software 7.1 (StatSoft; Tulsa, OK, USA). 

4.2 TAB-Seq library preparation and sequencing 

DNA (0.5 to 1 ug) was prepared from all seven isolated cell types (1- to 2- x 105 cells) 

while still attached to Dynabeads using DNeasy kit (Qiagen, Frederick, MD, USA #69506) 

according to the manufacturer's recommendations. DNA was quantified using a Qubit 2.0 

Instrument and dsDNA HS Reagent (Life Technologies, Grand Island, NY, USA #Q32866 and 

#Q32851 respectively). TET-enzyme assisted bisulfite sequencing (TAB-Seq) was performed as 

described previously (Yu et al., 2012a). Briefly, 0.5 ng of M. SssI methylated Lambda DNA and 

0.25 ng of hydroxymethylated pUC19 DNA was added per 1 ug of DNA prior to treatment as 

C/5mCG and 5hmCG control respectively and then sequencing libraries were prepared following 

the MethylC-seq protocol (Urich et al., 2015) (Supplemental Table 2.S3). Deep sequencing was 

performed using an Illumina NextSeq500 Instrument at the University of Georgia Genomics 

Facility. The limitation of our TAB-Seq analysis is that there is only moderate to low coverage 

of the genome and thus it is only statistically valid to look at groupings of genes and not 

individual genes. Our coverage for the different cell types ranged from 34% to 55% of the 

human genome (Supplemental Table 2.S3), which is considerably above accepted levels for a 

meta-analysis (Popp et al., 2010) and hence the analysis of gene groups with more than 100 

genes gave statistically sound results. 

4.2.1 TAB-Seq data analysis  
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The raw sequence reads were trimmed for adapters, preprocessed to remove low quality 

reads and aligned as previously described in (Yu et al., 2012b) to the H. sapiens GRCh38 

reference genome. Fully unmethylated lambda DNA was treated by M. SssI to methylate all 

cytosines in the CG context to 5mCG. These 5mCG sites in CG contexts were used to calculate 

the 5mCG non-conversion rate upon TET and bisulfite treatment. Non-CG sites were used to 

compute the non-conversion rate of unmodified cytosines upon bisulfite treatment. For the 

5hmCG control, a ~1.64 kb region of the pUC19 vector was constructed by PCR amplification 

with all cytosines being synthesized as 5hmCGs. These 5hmCG sites were used to evaluate the 

protection rate of 5hmCGs. For this analysis, only cytosines in the CG context were considered 

(Supplemental Table 2.S3). The TAB-Seq data set supporting the results of this article is 

available in NCBI GEO repository, accession number GSE70519. 

For the data plotted in Figure 2.5 and Supplemental Figure 2.S4, we grouped genes into 

five quintile groups based on the ranking of  expression levels for ~18,000 transcripts in 

peripheral blood mononuclear cells in a highly cited previous study (Palmer et al., 2006). For 

each quintile (~3,600 transcripts), the level of 5hmCG was determined using weighted 

methylation level calculations (Schultz et al., 2012) for each of 20 bins upstream, 20 bins within 

genes (between annotated TSS and TTS), and 20 bins downstream of the gene region. Each of 

the upstream and downstream bins spanned 5 kb of the total of 100kb. The within-gene regions, 

which varied in length, were evenly divided between the 20 bins. Figures were prepared using 

ggplot2 (Wickham, 2009). 

A related analysis was used to investigate the level of the 5hmCG marks in 100 bp 

windows in the context of transcriptionally- and translationally-important locations: around the 

TSS, exon boundaries, and around the TTS and in a larger window containing the collated exons 
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(i.e., seven genomic bins in all). For this analysis, numerous immune cell-relevant GO terms 

were used. The genes in each GO term set were extracted, and all CG sites within the bins were 

examined to determine the level of 5hmCG. The total levels of 5hmCG in all leukocytes were 

presented as box plots in order to show the variance in the level of 5hmCG in each region. The 

weighted average of 5hmCG for each cell type was also plotted as a colored dot within the 

diagram. A table describing the GO terms used and the lists of genes is provided in 

Supplemental File 1 (available at 

http://www.sciencedirect.com/science/article/pii/S0022175916300941).  In order to determine 

the amount of variance in 5hmCG levels explained by genomic bin, cell type, and GO term set, 

an ANOVA was performed between the three factors using R and the amount of variance 

explained by each factor was determined by the proportion of their total sum of square 

(Supplemental Figure 2.S6). 

4.3 Fluorescent labeling of 5hmCG 

Total white blood cells were isolated from both fresh (method 2) and frozen blood (method 

3) (Figure 2.4), fixed with 3.7% formaldehyde for 15 min, and then centrifuged at 400 x g for 2 

min, after which the supernatant was discarded. Cells were resuspended in 500 µl of 50% 

methanol in PBS (phosphate buffered saline, pH7.4), incubated for 1 min at room temperature, 

and centrifuged at 400 x g for 3 min, after which the supernatant was discarded. Cells were 

heated to 95oC for 5 min, snap cooled on ice, washed two times with PBSBE (phosphate 

buffered saline, 1% BSA, 2mM EDTA, pH7.4), and finally resuspended in 200 µl PBSBE and 

incubated for 45 min to block non-specific binding of antibodies. Rabbit anti-5hmC polyclonal 

antibody (Active Motif, Carlsbad, CA, USA Cat# 39769) was added to cells at a 1:200 dilution 

in PBSBE and incubated at room temperature with rotation for 1 hour. Cells were washed three 
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times with PBSBE and resuspended in 1:500 dilution of goat anti-rabbit conjugated with 

phycerythrin (PE) (Abcam, Cambridge, MA, USA Cat# ab97070) in PBSBE and incubated at 

room temperature with rotation in the dark for 1 hour. Cells were washed three times with 

PBSBE and finally resuspended in 30µl of PBSBE. 10 µl of labeled cells were stained with 1 µl 

of DAPI (1mg/ml) for ten minutes and examined with fluorescence microscopy, all under the 

same exposure conditions. Cells were classified by nuclear morphology into four groups, round 

nuclei, kidney shaped nuclei, multilobed nuclei, or bilobed nuclei, and Hamamatsu SimplePCI 

Image Analysis software was used to assess the 5hmCG signal for at least 100 cells for each 

morphology in each isolation method. Background fluorescent was subtracted from each raw 

5hmCG signal. The 5hmGC signal for each of the morphologies and each isolation method was 

divided into 4 quintiles of data, labeled as minimal, low, medium or high 5hmCG signal. The 

cells for each morphology were randomly separated into three groups and the percent of cells 

falling in each 5hmCG signal range were identified for each morphology in both isolation 

methods. To determine if there was an interaction between the isolation method and the nuclear 

morphology on the number of cells in each 5hmCG signal group a two-way MANOVA was 

performed using pillia trace test using SPSS software (IBM). A significant effect of only nuclear 

morphology was identified and Bonferroni post-hoc analysis was used to assess differences 

between nuclear morphology and 5hmCG signal for this analysis with significance set at p<0.05.  

4.4 qRT-PCR analysis of transcript levels 

To assess the potential for turnover of 5mCG, three transcripts related to DNA methylation 

(DNMT1, 3A, and 3B) and six related to DNA demethylation (TET1, 2, 3 and GADD45A, B, G) 

were also assayed. Isolated leukocytes bound to Dynabeads (Method 3, Order B) were washed in 

PBS and frozen in liquid nitrogen and stored at -80ºC. RNA was extracted using RNeasy Mini 
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Kit (Qiagen, Frederick, MD, USA Cat# 74104) following the manufacturer’s instructions. RNA 

concentrations were quantified using the Qubit RNA assay kit (Life technologies, Grand Island, 

NY, USA Cat# Q32855) and 400 ng of RNA was used for cDNA synthesis using qScript cDNA 

synthesis supermix (Quanta Biosciences, Gaithersburg, MD, USA Cat# 95148-100). Relative 

quantities (RQ) of cell type specific transcripts were normalized to endogenous control 

ribosomal 18S rRNA (Vandesompele et al., 2002) using the dCT method (Livak and Schmittgen, 

2001). We found beta-actin was far more variably expressed across the seven cell types than 18S 

rRNA, relative to a constant cDNA input (Supplemental Figure 2.S7). Therefore, 18S rRNA 

was used as an endogenous control when comparing transcripts related to establishment and 

removal of 5mCG across cell types.18S rRNA has the disadvantage as an endogenous control 

that it is 1,000-fold more abundant than any mRNAs being assayed. Therefore, the low number 

of PCR cycles needed to reach cycle threshold levels are far removed from those of the target, 

which could be another source of error. Oligonucleotide primer sequences (Supplemental Table 

2.S2) were synthesized by Integrated DNA Technologies (Coralville, IA, USA). Two to six 

primer sets were tested for each of the target genes and those having a single sharp dissociation 

peak, ensuring the specific gene target was being amplified, and the lowest CT values were 

selected for subsequent use. A 25 µl reaction using SYBR green master mix (Life Technologies, 

Grand Island, NY, USA Cat# 43677659) and 4 ng of cDNA was used for analysis of the gene 

panel. To determine statistical relevance of differences in transcript levels, a one-way ANOVA 

was used to examine the effects of cell type on expression with Tukey’s HSD test as a post hoc 

using Statistica software 7.1 (StatSoft; Tulsa, OK, USA).  
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Table 2.1. Efficiency of recovery of each isolation method.  

 CD4 + 

T cells 

CD8+ 

T cells 

CD14+ 

monocytes 

CD16+ 

neutrophils 

CD19+ B 

cells 

CD56+ NK 

cells 

Siglec8+ 

eosinophils 
Method 

1 72,300 ± 

6,500a 

34,500 

± 

7,400a,b 

11,100 ± 

1,600a 

NR NR NR NR 

2 44,900 ± 

4,700b 

39,300 

± 

10,600a 

3,500 ± 

1,600b 

211,000 ± 

53,500a 

3,900 ± 

800a 

54,300* ± 

11,100a 

6,400 ± 

2,900a 

3 13,800 ± 

2,100c 

 7,100 ± 

2,300b 

 4,800 ± 

1,500a,b 

43,200 ± 

6,700b 

 2,800 ± 

900a 

14,100* 

±4,500b 

3,600 ± 200a 

Numbers of cells recovered from each isolation method starting with 5 ml of blood reported as 

Mean ±SEM (N=3). Fresh blood with RBC lysis and frozen blood protocols were isolated 

following isolation order A, except *CD56+ cells which were isolated directly from white blood 

cells isolated with the respective method, as they are unable to be recovered in isolation order A. 

NR: Not Recovered. A one-way ANOVA followed by Tukey HSD post hoc was performed 

between methods 1, 2 and 3 for the three cell types where cells were recovered in all three 

methods. A two tailed t test was performed between methods 2 and 3 for the four cell types 

where cells were only recovered in these methods. Significant differences between the different 

methods for each of the seven cell types are designated by having different letters.  
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Table 2.2. 5hmC levels are distinct among the seven classes of peripheral leukocytes 

Quantification of 5hmC levels from TAB-Seq data demonstrated a modestly wide range of 

5hmC levels among the peripheral leukocytes. See Materials and Methods. 

Leukocyte Type Total 5hmCG 

sites 

Total CGs sites % 5hmCG Scaled % 

5hmCG 

CD4+ T cell   268,707  12,379,005  2.17%  3.67% 

CD14+ monocyte   155,335  10,332,947  1.50%  2.69% 

CD16+ neutrophil  176,386  12,621,471  1.40%  2.62% 

CD19+ B cell   144,885  10,154,660  1.43%  2.38% 

CD56+ NK cell   174,264  12,397,889 1.41%  2.12% 

Siglec8+ eosinophil   117,257  8,357,101  1.40%  1.99% 

CD8+ T cell 158,512 13,045,103  1.22%  1.91% 
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Supplemental Table 2.S1. Expression of common antigen markers used for cell isolation of 

peripheral leukocytes 

Cell Type Co-Expression of Other Markers 

CD4+ T cells CD8 (Sullivan et al., 2001; Zloza and Al-Harthi, 2006); CD16 (Zloza and 

Al-Harthi, 2006); CD56 (Zloza and Al-Harthi, 2006) 

CD8+ T cells CD4 (Sullivan et al., 2001; Zloza and Al-Harthi, 2006); CD56 (Ohkawa et 

al., 2001) 

CD14+ 

monocytes 

CD4 (Biswas et al., 2003; Lyons et al., 2007); CD8 (Gibbings et al., 2007); 

CD16 (Ziegler-Heitbrock, 2007); CD56 (Grip et al., 2007) 

CD16+ 

neutrophils 

CD4 (Biswas et al., 2003); CD14 (Kuuliala et al., 2007) 

CD19+ B Cells CD14(Ziegler-Heitbrock et al., 1994) 

CD56+ NK 

cells 

CD4 (Subset) (Biswas et al., 2003); CD8 (Subset) (Kelly-Rogers et al., 

2006); CD16 (Schleypen et al., 2006); CD14 (Subset) (Gruenbacher et al., 

2009) 

Siglec8+ 

eosinophils 

CD4 (Biswas et al., 2003); CD16 (Davoine et al., 2002) 

Many of the peripheral leukocyte types express many of the common antigen markers that were 

used for cell isolation and are described in this table. 
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Supplemental Table 2.S2. Oligonucleotide sequences for qRT-PCR 

Oligonucleotide Name Oligonucleotide sequence 

BACTN GGATCAGCAAGCAGGAGTATG 

AGAAAGGGTGTAACGCAACTAA  

CD4 ACCTTTGCCTCCTTGTTCTC 

CTCCAGAAAAATTTGACCTGTGAG 

CD8 CAGTTTGAAGTAATGTAGTGGCT 

GAACCGAAGACGTGTTTGC 

CD3 TGCTGGTACCCAGTCCTAAA 

CCAAAGGGAAGGGAGTGAATAG 

CD14 GCCTCAAGGTACTGAGCATT 

AGACAGGTCTAGGCTGGTAAG  

CD16 GTTCAAGGAGGAAGACCCTATTC 

ACTTCCTGTCTTTGCCATTCT  

CD19 GCTCAGGAAGTCCATTGTCC 

CAGCTCTCCCAGGATGG 

CD56 GAGGCTTCACAGGTAAGAGTG 

GACCATCCACCTCAAAGTCTT 

Silgec8 CAGGGCACAGAGCAGGT 

ATTACAAAACTAAGCAGCTGTCTG 

18s CACGGACAGGATTGACAGATT 

GCCAGAGTCTCGTTCGTTATC 

DNMT1   CCAGGATGAGAAGAGACGTAGA 

  AGTGCGCGTTCCTGATTT 

DNMT3A   GCCCAAGGTCAAGGAGATTATT 

  GAGATGCAGATGTCCTCAATGT 

DNMT3B   AGACAGTGGAGATGGAGACA 

  CAGGAGAAGCCCTTGATCTTT 

TET1   ATTGATCCAAGCTCTCCCTTAC 

  GCTACTGGAGCATACTGCTTAT 

TET2   GCACTCTGAATGGTGGAGTT 

  GCCTCAGGTTTACCCTCTATTT 

TET3   CGATTGCGTCGAACAAATAGTG 

  TCCATGAGTTCCCGGATAGA 

GADD45A   CGGTGATGGCATCTGAATGA 

  GCATCAGTGTAGGGAGTAACTG 

GADD45B   GTCGGCCAAGTTGATGAATG 

  GATGAGCGTGAAGTGGATTTG 

GADD45G   ACTTGGTACAGTTGCAGGAG 

  CTTCAACAGCAGCATCCTTTAG 
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Description of data:
 
Oligonucleotide pairs for each assayed transcript are listed in order of sense 

(S) followed by antisense (A) oligonucleotides.  
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Supplemental Table 2.S3. TAB-Seq Analysis metrics 

Sample 

Mapped reads 
Lambda 

pUC19 (5hmC) 
Genome 

coverage 
CG sites (5mC) non-CG sites (unmodified C) 

number % 
methylated 

Cs 

mapped 

Cs 
% 

methylated 

Cs 

mapped 

Cs 
% 

methylated 

Cs 

mapped 

Cs 
% 

CD4 + T 

cell 
11,375,778 50.49% 2,759 129,604 2.13% 3,822 492,185 0.78% 1,501 2,540 59.1% 0.53 

CD8+ T 

cell 
11,932,983 45.80% 3,213 319,140 1.01% 7,596 995,267 0.76% 1,732 2,722 63.6% 0.55 

CD14+ 

monocyte 
9,226,507 46.84% 2,961 308,976 0.96% 6,922 959,506 0.72% 1,051 1,881 55.9% 0.43 

CD16+ 

neutrophil 
10,215,886 49.17% 3,615 366,496 0.99% 7,470 1,103,681 0.68% 874 1,640 53.3% 0.47 

CD19+ B 

cell 
8,853,607 47.84% 2,724 289,549 0.94% 6,242 891,022 0.70% 1,196 1,995 59.9% 0.41 

CD56+ 

NK cell 
11,713,710 51.16% 2,989 289,667 1.03% 6,691 915,692 0.73% 1,376 2,076 66.3% 0.54 

Siglec8+ 

eosinophil 
7,462,495 47.07% 2,409 243,724 0.99% 5,641 757,979 0.74% 623 883 70.6% 0.35 

 

Description of data: Provided in the table are the metrics related to the TAB-Seq analysis. The genome coverage achieved by our Tab-

Seq meta-analysis is listed in the last column as a fraction of our coverage to the human genome (GRCh38). 
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Figure 2.1. The dynamic modification cycle of DNA cytosine and its impact on gene activity. 

This model of the turnover of modified cytosine (C) residues emphasizes the central role of 

DNMTs in the methylation of C to 5-methylcytosine (5mC) and TETs in the rate limiting 

removal of 5mC by oxidation to 5-hydroxymethylcytosine (5hmC). The dynamic turnover of 

5mC appears critical to regulating rapid changes in linked gene expression (Meagher, 2014; Wu 

and Zhang, 2014). TETs may further oxidize 5hmC to 5-formalcytosine (5fC) and 5-

carboxycytosine (5caC). Thymine DNA glycosidase TDG removes the modified 5fC or 5caC 

bases leaving an abasic nucleotide (-OH). Base excision repair (BER) repairs the single 

nucleotide gap in double stranded DNA back to a C residue. Enzymes are in square boxes and 

nucleotide bases are in ovals. The diagram was modified from (Kohli and Zhang, 2013), based 

on the data in (Chen et al., 2012; Ramon et al., 2012; Dubois-Chevalier et al., 2014; Haseeb et 

al., 2014; Oger et al., 2014; Dubois-Chevalier et al., 2015). 



 

97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Description of isolation protocols. Graphical outline of the three isolation methods 

(1, 2, 3) each starting with 5 ml of peripheral blood.  
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Figure 2.3. Nuclear morphologies of isolated cell types. Isolated leukocytes, bound to 

Dynabeads were stained with: DAPI (upper left blue) and PI (lower left red) and photographed 

by fluorescence (left) and DIC microscopy (upper right) of each of the seven panels. The three 

images were merged to yield the image in the lower right. Scale bar = 20 microns. 
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Figure 2.4. Immuno-fluorescent analysis showed a wide distribution of 5hmC levels among 

various classes of leukocytes. A. Total human leukocyte fraction from fresh peripheral blood 

(method 2) were labeled with DAPI for DNA (fluorescent green), primary antibody to 5hmC and 

secondary R-PE (red fluorescence), and then the merged image of DAPI and 5hmC is also 

presented. The same field of cells is shown in all images. B. Total human leukocyte fraction 
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from frozen peripheral blood (method 3) were labeled with DAPI for DNA (fluorescent green), 

primary antibody to 5hmC and secondary R-PE (red fluorescence), and then the merged image of 

DAPI and 5hmC is also presented. The same field of cells is shown in all images. Example cells 

are labeled based on nuclear morphologies. K: kidney shaped (monocytes or natural killer cells), 

R: Round (T cells and B cells), M: Multilobed (neutrophils), B: Bilobed (eosinophils). C. 5hmC 

signal was quantified, and categorized as minimal, low, medium or high for each of the nuclear 

morphologies in each isolation method (fresh blood: method 2, frozen blood: method 3) and the 

percent of cells for each nuclear morphology was plotted for each 5hmC signal. Error bars 

represent standard error of the mean.  
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Figure 2.5. Gene-region-specific 5hmCG levels are distinct among the peripheral leukocyte 

types and vary by transcript level. A. Map defining the three gene regions assayed (Lister et al., 

2013). B. 5hmCG levels were plotted for each of the seven leukocyte types by quintile of 

transcript expression level. The peak percentage of 5hmCG relative to total CG content for each 

cell type is estimated at the top of each graph. C. The 5hmCG levels for the quintile of the 

highest quintile of transcript for each cell type was plotted together. The dots plotted with each 

line on the graph represent the degree of change from the previous regions level of 5hmCG to the 

current level. The figure legend to the right of panel C shows the varying levels of significance 

of this change as determined by NLP.  The relative position of each cell type is the same when 

these data are plotted for the other 4 quintiles of transcript expression (Supplemental Figure 

2.S4). 
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Figure 2.6. Gene-sequence-specific distribution of 5hmCG levels in the peripheral leukocytes 

for relevant GO term gene lists. The fraction of 5hmCG relative to all CG dinucleotides for 

seven gene sequence locations in all leukocytes (100 bp upstream of the TSS (UTSS), 100 bp 

downstream TSS (DTSS), 100 bp  upstream of all exons (UEXON), within exons (EXON), 100 

bp downstream of exons (DEXON), 100 bp upstream TTS (UTTS), and 100 bp downstream TTS 

(DTTS)) were plotted for different GO terms related to leukocyte function as box plots with the 

bar representing the median, and the box extending from the 25th to 75th percentiles. The 

whiskers represent +/- 1.5 times the interquartile range. Within each box plot the weighted 

average of 5hmCG for each leukocyte type was plotted as a colored dot, while the box is the 

weighted average for all 7 cell types. Similarly plotted data for several other genes grouped by 

GO terms are presented in Supplemental Figure 2.S5.  
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Figure 2.7. Expression of transcripts encoding enzymes involved in the establishment and 

removal of modified DNA cytosine. A-C. qRT-PCR analysis of the relative transcript expression 

was performed on cDNA prepared from seven leukocyte types. Values are expressed as a scaled 

Relative Quantity (RQ) of transcript in each cell type using the dCT method. Letters designate 

significant differences of at least p<0.05. A. Analysis of transcripts for DNMTs (Figure 2.1). 

The RQ value for each cell type is presented as a scaled value of 104, 105, and 106 times their RQ 
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value for DNMT1, DNMT3A, and DNMT3B, respectively. B. Analysis of transcripts for TETs 

(Figure 2.1). The RQ value for each cell type is presented as a scaled value of 106, 105, and 105 

times their RQ value for TET1, TET2, and TET3, respectively. C. Analysis of transcripts for 

GADD45s (Figure 2.1). The RQ value for each cell type is presented as a scaled value of 105, 

105, and 106 times their RQ value for GADD45A, GADD45B, and GADD45G, respectively.  
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Supplemental Figure 2.S1. Cell-type specific transcript analysis among peripheral leukocyte 

types. A-B. qRT-PCR analysis of mRNA levels for eight leukocyte specific transcripts were used 

to further assess leukocyte purity. Values are expressed as Relative Quantity (RQ) of transcript 

using the dCT method, with actin transcript levels set to 1. Letters designate significant 
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differences of at least p<0.05. A. Assessment of purity of cell types isolated by Method 2, cell 

type order B (Table 2.1). Cytoplasmic beta-actin was used as the endogenous control. Cell 

marker transcript analysis of CD56+ NK cells isolated first from fresh blood using Method 2. It 

should be noted that beta actin mRNA levels vary widely among leukocyte cell type, and hence, 

the RQ values cannot be compared across cell types. B. Assessment of purity of isolated cell 

types isolated by Method 2, cell type order C. A one-way ANOVA followed by tukeys HSD post 

hoc was performed, and significant differences (p<0.05) are represented as having different 

letters. 

 

 

Supplemental Figure 2.S2. Assessment of monocyte and neutrophil purity in the light of 

detecting transcripts encoding CD4. A. Total leukocyte fraction from peripheral blood was 

isolated with Method 3 and labeled with DAPI for DNA and with anti-CD4-Texas RPE. The 

total leukocyte fraction shown was split into three equal aliquots and CD4+, CD14+, and CD16+ 

cells were each depleted from one aliquot. Cells positive for CD4 in each aliquot were classified 
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based on their CD4 immunostained nuclear morphologies assayed and quantified. Mean 

percentage of counted cells and the standard error of the mean are plotted. A one-way ANOVA 

followed by tukeys HSD post hoc was used to determine differences between samples, 

significant (p<0.05) differences are depicted as having differing letter. 

 

 

Supplemental Figure 2.S3. 5hmC is detected in the nuclei of essentially all peripheral 

leukocytes. A-C.  Total leukocyte fraction from blood was formalin fixed and labeled with rabbit 

anti-5hmC primary antibody and goat anti-rabbit secondary antibody conjugated to PE. D-F. 

Total leukocyte fraction from blood was formalin fixed and only labeled with secondary goat 

anti-rabbit antibody conjugated to PE omitting the primary antibody to 5hmC (i.e., primary 

antibody negative control). A-F. All images were photographed with the exact same exposure 

time for DAPI and PE (5hmC) and images enhanced to with the exact same parameters. A and 

D. Cells were labeled with DAPI for DNA (green fluorescence). B and E differ only in that anti-

5hmC was omitted from E. C and F represent the merged images of A and B and D and E 
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respectively. White arrows point to three cells in panel C that have weak 5hmC staining, and in 

panels A and B white arrows are in the same location pointing to the same cells labeled for DAPI 

alone in panel A and 5hmC alone in panel B clarifying that these cells and nearly all leukocytes 

examined express 5hmC, even though the weak 5hmC labeling is hard to see in the merged 

image in panel C. Results for A-C. Nearly all leukocytes showed some expression of 5hmC, 

which was not observed in the negative control (D-F). This is an extension of Figure 2.4. 

 

 

Supplemental Figure 2.S4. 5hmCG by quintile of transcript expression level among the seven 

peripheral leukocytes. This is an extension of figure 2.4C. The dots plotted with each line on the 

graph represent the degree of change from the previous regions level of 5hmCG to the current 
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level. The figure legend to the right of panel C shows the varying levels of significance of this 

change as determined by NLP. 

 

 

 

Supplemental Figure 2.S5. Additional gene ontology analysis by gene-sequence-specific 

distribution of 5hmCG levels among the peripheral leukocytes. Percent 5hmC by gene sequence 

location (upstream TSS 100 nt, downstream TSS 100 nt, upstream of exon 100 nt, within exon, 

downstream of exon 100 nt, upstream TTS 100 nt, and downstream TTS 100 nt) was plotted for 
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total leukocytes for different GO terms relevant to peripheral leukocyte function as box plots 

with the median 5hmCG level plotted as the bar, and the box extending from the 25th to 75th 

percentile of 5hmCG levels. The whiskers represent 1.5 times the IQR. Within each boxplot, the 

weighted average of 5hmCG for that gene region in that GO term was plotted as a colored dot for 

each leukocyte type. This is an extension of Figure 2.6. 

 

 

Supplemental Figure 2.S6. Variance explained by genome bin, cell type and GO term gene 

lists. The variance explained by each of the three factors used in Figure 2.6 and Additional 

Figure 2.S6 were presented as a bar graph. 
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Supplemental Figure 2.S7. Endogenous controls. A. The average cycle threshold (CT) values of 

ACTNB for each of the seven leukocyte types. The error bars represent the standard error of the 

mean. B. The average CT values of 18S for each of the seven leukocyte types. The error bars 

represent the standard error of the mean.  
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CHAPTER 3 

LEUKOCYTE-SPECIFIC DNA CYTOSINE METHYLATION DIFFERENCES 

ASSOCIATED WITH OBESITY3 

                                                 
3 Hohos NM, Smith AK, Kilaru V, Park HJ, Hausman DB, Bailey LB, Lewis RD, Phillips BG, Meagher RB. To be 

submitted to a peer reviewed journal 
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Abstract 

Epigenome-regulated gene expression may be altered by diet, nutrition, and other 

lifestyle factors associated with obesity and increased adiposity. Most dietary and nutritional 

studies analyze DNA 5´-methylcytosine (5mC) differences in whole blood, and are a weighted 

average of the profiles of several distantly related classes of leukocytes.  To examine leukocyte-

specific differences in obesity, we examined 5mC profiles from three distinct cell types isolated 

from peripheral blood in normal weight (BMI 18.5-24.9 kg/m2) and obese (BMI >30 kg/m2 ) 

women (18-35 y). CD4+ T cells, CD8+ T cells and CD16+ neutrophils were reiteratively 

isolated from blood samples and 5mC levels were measured across > 485,000 CG sites in each 

cell type using the HumanMethylation450 BeadChip. After controlling for the false discovery 

rate (q-value < 0.05), 19 CG sites were differentially methylated between the obese and normal 

weight women in CD4+ T cells, 16 CG sites in CD8+ T cells and 0 CG sites in CD16+ 

neutrophils. None of the differentially methylated sites were in common between the CD4+ and 

CD8+ cells. The amount of visceral adipose tissue (VAT) was strongly associated with the level 

of methylation in 79 CG sites (q-value < 0.05) in CD4+ T cells, while no associations with VAT 

were identified in either of the other cell types. Gene-specific associations of 5mC site changes 

with obesity and VAT were highly significant, ranging from 10-5 < p < 10-9. Methylation 

increased in 4 CG sites in CLSTN1’s promoter with increasing VAT in CD4+ T cells. We 

demonstrated that inhibiting the maintenance of methylation in CD4+ T cells for 24 hr with 5-

azacytidine increased CLSTN1 transcript levels, suggesting the observed changes in the study 

population were important to CLSTN1 expression.  It appears that the methylome of these three 

cell types each respond quite differently to obesity and the levels of VAT, perhaps illustrating the 

importance of examining epigenetic marks in single cell types. In summary, by examining DNA 
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methylation differences in three cell types, we identified highly significant sites that were 

differentially methylated between the normal and obese weight women with biological relevance 

to obesity.   

Introduction4 

Obesity is a well know public health problem and is associated with many negative health 

consequences (Field et al., 2001; Sturm, 2002; Poirier et al., 2006; Apostolopoulos et al., 2016). 

Obesity results from many factors including both internal (genetic) and external (i.e. lifestyle) 

influences (Franks and Ling, 2010; McCarthy, 2010; de Mello et al., 2014; Apostolopoulos et al., 

2016). External factors involved in the pathogenesis of obesity include environmental aspects 

such as dietary intake and physical activity. Diet and physical activity appear to act via 

epigenetic mechanisms (i.e., changes to chromatin structures) (Franks and Ling, 2010; de Mello 

et al., 2014; Martin-Nunez et al., 2014; Martinez et al., 2014; Kim et al., 2015). One such change 

in chromatin structure is the 5´ methylation of DNA cytosine, which often results in altered gene 

expression and corresponding altered physiology (Bird and Wolffe, 1999; Klose and Bird, 2006; 

Suzuki and Bird, 2008; Paluch et al., 2016). Generally, hypermethylation of the promoter region 

is associated with repressed transcription, while hypomethylation of this region is associated 

with active transcription (Klose and Bird, 2006; Suzuki and Bird, 2008; Siegfried and Simon, 

2010; Pinnick and Karpe, 2011). However, gene body methylation is proposed to also have an 

                                                 
4 Abbreviations: 5mC (5-methylcytosine), BMI (body mass index), CG (cytosine guanine dinucleotide), CGI (GC 

island), CLSTN1 (calsyntenin 1), DMS (differentially methylated site), DNMT (DNA methyl transferase), HOXB5 

(homeobox 5), IFN-γ (interferon gamma), IRF1 (interferon regulatory factor 1), IRF2 (interferon regulatory factor 

2), PBMCs (peripheral blood mononuclear cells), T2D (type 2 diabetes), TMEM18 (transmembrane protein 18), 

TNFα (tumor necrosis factor alpha), TSS (transcription start site), VAT (visceral adipose tissue), WBC (white blood 

cells) 
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effect on epigenetically-regulated gene expression, yet the relationship here is still unclear (Bird 

and Wolffe, 1999; Klose and Bird, 2006; Suzuki and Bird, 2008). DNA methylation appears to 

be involved in obesity as it has been associated with altered methylation of specific genes in 

human tissues (Hermsdorff et al., 2013; de Mello et al., 2014; Dick et al., 2014; Remely et al., 

2014; Houde et al., 2015), with some alterations in methylation associated with corresponding 

changes in gene expression (Barres et al., 2013).   

Once obese or overweight, the main treatment goal is weight loss primarily through 

dietary modifications and increased physical activity (Jensen et al., 2014; Apovian et al., 2015). 

Even though there is strong evidence that caloric restriction with or without a comprehensive 

lifestyle program will lead to weight loss (Jensen et al., 2014), they are not successful with long 

term weight maintenance (Stevens et al., 2001; Kraschnewski et al., 2010). It is thought that the 

difficulty in maintaining weight loss stems from the reprograming of the body in the obese state 

through biological adaptations (i.e. suppressed energy expenditure, altered endocrine signaling, 

increased appetite) that favor weight re-gain (Maclean et al., 2011; Leung et al., 2016). This 

suggests that the reprograming that occurs in obese individuals might be carried out through 

semi-stable modifications in their epigenome. The dynamic nature of DNA methylation, its 

response to environmental influences (Jaenisch and Bird, 2003; Jacobsen et al., 2012; Kim et al., 

2015)  and the existence of mechanisms for its maintenance once established (Meagher, 2014) all 

suggests a potential connection to obesity (Campion et al., 2010; Franks and Ling, 2010; 

Lavebratt et al., 2012; van Dijk et al., 2015). 

Most work examining the association of obesity and DNA cytosine methylation have 

utilized mixed cell populations, taking samples from adipose tissue (Dick et al., 2014; Guenard 

et al., 2014; Keller et al., 2014; Houde et al., 2015), skeletal muscle (Barres et al., 2013), and 
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peripheral blood leukocytes (Hermsdorff et al., 2013; Almen et al., 2014; Dick et al., 2014; 

Keller et al., 2014; Remely et al., 2014), all of which are comprised of many cell types. Each cell 

type is distinct in its DNA methylome reflecting not only tissue specificity but also cell type 

specific epigenetically controlled gene expression (Lister et al., 2013; Wu and Zhang, 2014; Gu 

et al., 2016). For example, when the DNA methylome of the seven major leukocyte types in 

whole blood was examined, distinct methylation profiles were revealed in each cell type (Reinius 

et al., 2012). The granulocytes were found to be hypomethylated while the peripheral blood 

mononuclear cells (PBMCs) were found to be hypermethylated (Reinius et al., 2012). CD4+ and 

CD8+ T cells, two closely related PBMCs differed in more than 45,000 of the 485,000 sites 

assayed (9%), while the more distantly related CD8+ T cells and the Siglec8+ eosinophils 

differed in >40% of the sites assayed (193,000 sites) (Reinius et al., 2012). Thus, analyzing 

leukocytes together in whole blood results in a methylation profile that is a weighted average of 

all included cell types. When the global methylation of the peripheral leukocytes was examined 

in relation to obesity, it revealed that there are only changes in global methylation in the B cells 

in obese individuals (Simar et al., 2014). There was no association with obesity and methylation 

in the PBMCs (peripheral blood mononuclear cells), which contains the weighted average of the 

T cells, B cells, monocytes and natural killer cells global methylation levels, providing an 

example of the loss of data when examining mixed cell types in relation to obesity (Simar et al., 

2014). The problem is only made worse when comparing normal to obese adipose tissue, as the 

numbers of leukocytes is dramatically increased in obese tissue (Apostolopoulos et al., 2016). 

Thus methylation levels when comparing lean and obese adipose tissue may only reflect the 

weighted average of changes different cell populations, and not informative changes in 

methylation of adipocytes. The data obtained through analyzing the individual leukocyte types, 
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or other individual cell types from tissues (i.e. differentiated adipocytes only from adipose tissue) 

will yield more meaningful and insightful data to further understand the role of DNA 

methylation in obesity related health risks.  

Obesity is characterized by a chronic low-grade systemic inflammatory state, which is 

thought to contribute to the development of related co-morbidities (Lee and Pratley, 2005; 

Anderson et al., 2010; Huh et al., 2014; Pecht et al., 2014; Apostolopoulos et al., 2016). Central 

adiposity further exacerbates this relationship and is considered a more unhealthy fat depot 

(Pinnick and Karpe, 2011; Gerriets and MacIver, 2014). Although the adipose tissue is the main 

organ responsible for the development of this inflammatory state (Cildir et al., 2013; 

Apostolopoulos et al., 2016), the resulting systemic inflammation affects the circulating 

leukocytes. For example, circulating levels of neutrophils are increased in obesity as are the 

levels of myeloperoxidase and calprotectin, which are released from activated neutrophils 

(Nijhuis et al., 2009; Pecht et al., 2014; Apostolopoulos et al., 2016). The neutrophil activation 

marker CD66b is also increased in obesity (Nijhuis et al., 2009). Additionally, in obese adipose 

tissue CD8+ T cells increase while CD4+ T cells decrease, and in circulation there is an increase 

in CD4+ T cells while the effect on CD8+ T cell levels has been mixed (Womack et al., 2007; 

Nishimura et al., 2009; Ilavska et al., 2012; Pecht et al., 2014). There is also an increase in the 

ratio of circulating pro-inflammatory Th1 to anti-inflammatory Th2 CD4+ T cells with obesity, 

which may further potentiate the inflammatory cascade (Viardot et al., 2012; Apostolopoulos et 

al., 2016). Human adipose tissue samples are difficult to collect, however different classes of 

leukocytes from peripheral blood are easy to obtain, making them ideal surrogate cell types to 

assay DNA methylation (Terry et al., 2011; Adalsteinsson et al., 2012; Crujeiras et al., 2013). . 
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Thus, we choose to examine CD4+ and CD8+ T cells, and CD16+ neutrophils to examine the 

DNA methylome among obese and normal weight women.   

The physiological stress of obesity and the distinct roles of these three classes of 

leukocytes led us to hypothesize that (1) there will be differences in DNA methylation that are 

associated with both obesity and levels of adiposity and (2) the differences in methylation will be 

distinct to each of the three classes of leukocyte. We assayed DNA methylation of >450,000 sites 

in each leukocyte type in a group of obese and normal BMI women. Our results identified cell 

type specific differences in DNA cytosine methylation between the obese and normal weight 

women in both the T cell types, but not in the neutrophils. We also identified an association of 

DNA methylation with the amount of VAT in the CD4+ T cells, while no associations were 

found between VAT and the other two cell types. 

Results 

The obese and normal weight groups in this study differed in weight, BMI, percent body 

fat, amount of VAT, and VAT normalized to body weight (p<0.05) (Table 3.1). Although the 

groups were not significantly different in age, age was added as a covariate in all subsequent 

analysis of DNA methylation, as age is independently associated with altered DNA methylation 

(Boks et al., 2009; Hannum et al., 2013; Jenkins et al., 2013; Jones et al., 2015). 

Assessment of DNA methylation differences between obese and normal weight women in three 

leukocyte types. 

DNA methylation differences between women classified as obese (BMI ³30 kg/m2) and 

normal weight (BMI 18.5 £  24.9 kg/m2) for all sites on the array were analyzed for each of the 

three leukocyte types assayed (CD4+ T cells, CD8+ T cells, and CD16+ neutrophils). There were 

19 significantly differentially methylated sites (DMS) identified in CD4+ T cells (q < 0.05), 16 
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in CD8+ T cells, and no sites were significantly differentially methylated in the CD16+ 

neutrophils (Table 3.2).  

Within the DMS in the CD4+ T cells, eight had decreased methylation and 11 had 

increased methylation in the obese women. In addition, eight of the sites were associated with 

promoter regions of the associated gene. The most significantly DMS (q<0.005) was 

cg06384413 which is associated with both the HOXB5 and LOC404266 genes. Within the 

significantly DMS in the CD8+ T cells, 10 had decreased methylation and six had increased 

methylation in the obese women. Five of the sites were associated with promoter regions. The 

most significantly DMS (q<0.002) in the CD8+ T cells was cg26655295, which is associated 

with TMEM18. There were no significantly differentially methylated sites common to both cell 

types. 

To further characterize the differences in methylation between the obese and normal BMI 

women, the absolute difference in methylation between the two groups was calculated for the 19 

DMS in the CD4+ T cells and the 16 DMS in the CD8+ T cells (Figure 3.1A). The CD8+ T cells 

had much higher differences in the magnitude of methylation change between the two groups 

with over 40% of the DMS having at least a 10% difference in methylation. The differences in 

methylation between the two BMI groups in CD4+ T cells were smaller, with over 70% of the 

DMS having a difference in methylation between 2.5 to 5%.  

The 19 and 16 sites with differential methylation in the obese women for the CD4+ and 

CD8+ T cells respectively were then characterized with respect to the percent of sites associated 

with each aspect of CG island (CGI) (Figure 3.1B). Over 60% of the 19 DMS in CD4+ T cells 

were located in a CGI, while the majority of the 16 DMS in the CD8+ T cells were located in the 

flanking regions of CGI and very few within the island themselves. Only a small percentage of 
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the DMS were located outside of a CGI in the open sea, 15.8% in CD4+ T cells and 25% in 

CD8+ T cells.  

Functional enrichment analysis identified 57.9% and 42.1% of the genes associated with 

the 19 sites with differential methylation between the two BMI groups in the CD4+ T cells as 

having transcription factor binding sites for Interferon Regulatory Factor 2 (IRF2) and Interferon 

Regulatory Factor 1 (IRF1) respectively (Table 3.3). IRF2 and IRF1 are members of the 

interferon regulatory transcription factor family which have various roles in regulating the 

immune response and in hematopoietic differentiation (Taniguchi et al., 2001; Battistini, 2009; 

Huang et al., 2010).  

DNA methylation levels correlated with the amount of VAT  

Because higher levels of VAT are associated with a more negative health outcome 

(Freedland, 2004; Revelo et al., 2014; Lee et al., 2015), we looked for an association between 

methylation levels and the amount of VAT in each of the three peripheral leukocyte types. Only 

for the CD4+ T cells were such differences identified. The methylation of 79 CG sites were 

significantly associated with the amount of VAT (q-value<0.05) in this cell type (Table 3.4).  

Of the 79 DMS that were identified, 61 displayed decreasing methylation with increasing 

amount of VAT. 26 of these sites were associated with enhancer regions and 5 with promoter 

regions. None of these 79 sites were found to be differentially methylated between the obese and 

normal BMI women in either CD4+ or CD8+ T cells (Table 3.2). The 79 sites with methylation 

levels associated with the amount of VAT were plotted to show the distribution of the percent of 

sites falling into each aspect of CGI (Figure 3.1C). The majority of the sites were either in a 

CGI, or in the flanking regions, although more sites were identified in the open sea than the sites 

with differential methylation between the obese and normal BMI groups in either of the two T 
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cell types. One gene, CLSTN1, had four CG sites that increased with the amount of VAT, all of 

which were associated with the transcription start site region (Figure 3.2).  

Functional enrichment analysis of these genes containing these 79 DMS (Table 3.5) 

identified enriched biological processes including those related to phosphate and phosphorus 

metabolic processes, phosphorylation, negative regulation of signal transduction and cell 

communication, and intracellular transport.  

Validating a potential role for DNA methylation changes in regulating gene expression  

We identified one gene, CLSTN1 with four sites where methylation levels increased with 

the amount of VAT. All four sites were located prior to the TSS, a region where methylation 

levels have been shown to affect gene expression (Suzuki and Bird, 2008). As this gene has been 

previously shown to have differential methylation associated with obesity (Huang et al., 2015b), 

as well as altered expression in adipose tissue of morbidly obese women (Dahlman et al., 2012), 

we choose to further look into the role of methylation in CLSTN1’s gene regulation in CD4+ T 

cells.  

There is accumulating evidence to suggest that DNA methylation of CG sites may turn 

over relatively rapidly with half-lives measured in hours, going through the methylation cycle of 

oxidation, base removal and remethylation, even though steady state methylation levels may be 

relatively constant (Meagher, 2014). Maintenance of methylation status is enabled by the 

retention of hemi-methylated base in complementary CG site recognized by the maintenance 

methylase DNMT1.  Inhibiting cultured cells for 2 hours with a DNMT inhibitor 5-aza-

deoxycytosine decreased genome-wide methylation levels by 10% whereas longer treatment 

produced insignificantly greater decrease (Yamagata et al., 2012). These data suggest a subset of 

sites turnover rapidly and that that their re-methylation is inhibited by 5-azacytidine. It seemed 
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possible that we could make use of the methylation cycle to demonstrate its relevance to gene 

regulation, even in non-activated peripheral CD4 T cells. WBCs were isolated from freshly 

drawn peripheral blood and cultured for 24 hours with or without the DNMT inhibitor 

5azacytidine (5azaC, 2µM) followed by isolation of the CD4+ T cells. We were hypothesizing 

that if DNA methylation is repressing transcription of CLSTN1, 5azaC treatment should result in 

increased mRNA. The expression of CLSTN1 transcript was significantly increased in the CD4+ 

T cells as compared to those cultured without the drug treatment (Table 3.6, Supplemental 

Figure 3.5). The other four genes assayed, all of which had only one CG methylation difference 

correlating with VAT levels were not significantly altered in expression in response to 5azaC 

treatment (Table 3.6). 

Discussion 

We examined DNA cytosine methylation differences between obese and normal weight 

women and as a function of VAT mass among CD4+ T cells, CD8+ T cells, and CD16+ 

neutrophils. We identified CG sites with changes in CG methylation levels associated with both 

BMI classification in CD4+ and CD8+ T cells and with VAT mass levels in CD4+ T cells. To 

our knowledge, only two prior studies have been performed examining DNA methylation in 

obesity in single leukocyte types. When global 5mC was examined, there were only obesity 

related differences in the B cells (Simar et al., 2014). We also did not observe global methylation 

changes in the three cell types assayed in this study, suggesting that the methylation changes 

associated with obesity in the T cell types is site specific. Additionally, CD4+ T cells 5mC 

profile has been examined in a mixed population of adults and eight DMSs were identified to be 

correlated with obesity and five with waist circumference (a measure of central adiposity) 

(Aslibekyan et al., 2015). However, none of the DMSs identified in their study were also 
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identified in our analysis of CD4+ T cells. This may be due to the fact that only women were 

examined in this study, while both sexes were included in Aslibekyan et al. (2015), and they 

looked for associations with BMI as a continuous variable, where we looked between obese and 

normal BMI groups. None the less, this previous data and ours supports the idea that 5mC levels 

in CD4+ T cells respond to obesity. 

It is important to consider that the obese women included in this study had no metabolic 

comorbidities of obesity, and were overall healthy obese women. Thus, the DNA methylation 

differences we observed have occurred before the development of insulin resistance and other 

obvious associated comorbidities and are only associated with increased adiposity. This is 

important when comparing DNA methylation studies in obesity in which the participants have 

developed metabolic disturbances (i.e. insulin resistance) and comorbidities (i.e. T2D) (Keller et 

al., 2014; Su et al., 2014; Kurylowicz et al., 2015; Al Muftah et al., 2016). 

T Cells as surrogates to study obesity.  

It is not surprising that we observed DMSs in the CD4+ and CD8+ T cells in the obese 

women. The two T cell populations evaluated in this study have been shown to have high 

methylation levels in healthy adults, 56.1% methylated in CD4+ T cells and 33.4% methylated in 

CD8+ T cells (Reinius et al., 2012). Thus, there is room for both increases and decreases in 

methylation of site specific residues in these cell types. The high methylation levels may also 

suggest that DNA methylation is important in these cell types. Additionally, CD4+ T cells 5mC 

profile has been associated with BMI and waist circumference (Aslibekyan et al., 2015). 

Furthermore, DNA methylation has been implicated in the differentiation of both CD4+ and 

CD8+ T cells from their precursor cells (Tsagaratou et al., 2014) and in obesity there is altered 

differentiation of these cells into their various subtypes. For example, there is an alteration in the 
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lineage of CD4+ T cell subsets to higher levels of Th17 cells, which release pro-inflammatory 

cytokines in obesity (Viardot et al., 2012; Apostolopoulos et al., 2016).  

Although differences in DNA methylation associated with obesity were identified in both 

the T cell types assayed in this study, there was no overlap in the differentially methylated sites 

identified between them. While CD4+ and CD8+ cells both are involved in the adaptive immune 

system, they carry out very different roles. CD4+ T cells bind antigens that are in MHC class II 

complexes (Apostolopoulos et al., 2016), while CD8+ T cells bind to MHC class II complexes 

and are involved in the cytolysis of target cells (Huh et al., 2014). In response to mycobacterium 

tuberculosis CD4+ T cells play a protective role through their secretion of TNFα and IFN-γ to 

recruit and activate other innate immune cells, while CD8+ T cells have a more ‘multifunctional’ 

role including their ability to target cells for apoptosis (Prezzemolo et al., 2014). Additionally, in 

response to Listeria infection, CD4+ T cells have limited proliferative capacity while the CD8+ 

cells have extensive proliferative capacity, thought to facilitate their roles as regulator and 

effector T cells (Foulds et al., 2002). Finally, CD8+ T cells have longer sustained memory cell 

responses than CD4+ T cells in response to viral infection (Seder and Ahmed, 2003). 

Considering that each of these cell types has its own 5mC (Reinius et al., 2012) and 5-

hydroxymethylcytosine (Hohos et al., 2016) profile, our data showing no overlapping sites of 

DNA methylation differences may not be so surprising. These distinct cell type specific 

differences provide further evidence of the importance of examining epigenetic marks in relation 

to obesity in single cell types. Considering that T cells types make up only 7 to 24% of the 

peripheral blood leukocyte population, the significance of these differences would undoubtedly 

have been missed in an analysis of whole blood methylation. 

The limitations of neutrophils as cell type to study DMSs.  
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No associations between DNA methylation and obesity were identified in neutrophils. 

There are several aspects of this observation worthy of discussion. First, neutrophils have very 

low levels of methylation to begin with in healthy adults (5.7% methylated) (Reinius et al., 

2012), so only an increase in methylation in obesity is reasonably possible. Second, we used a 

stringent cut off to determine significance after controlling for multiple testing (q < 0.05), there 

were sites with p-values as low as 1x10-5 but were no longer associated with the phenotype. 

Third, we recently published data showing that neutrophils have low levels of the machinery 

needed for methylation and de-methylation, suggesting they are not involved in rapid turnover of 

their methylomes (Hohos et al., 2016). Forth, neutrophils have a short half-life in the blood 

(Pillay et al., 2010) and thus they may have no need or time to alter their methylome in response 

to physiological changes. Instead, methylation may be more important to their pre cursor cells in 

the bone marrow. Finally, perhaps neutrophils integrate physiological changes into to genome 

thorough other epigenetic mechanism, such as histone modifications not assessed herein. 

Associations with VAT 

To further characterize DNA methylation differences in obesity, we assessed the 

relationship between 5mC level and the amount of VAT. VAT is known to be a fat depot with a 

significant relationship with the development of obesity and the chronic low grade inflammatory 

state (Shu et al., 2012; Thomas et al., 2012). BMI is a height to weight ration and does not 

provide information of either percent body fat or adipose distribution (Gallagher et al., 1996; 

Shah and Braverman, 2012) thus, our analysis of 5mC between the obese and normal BMI 

groups may have missed relationships with VAT and DNA methylation. VAT experiences 

changes to its cellular makeup with increasing adiposity as well as releases a milieu of cytokines 

that affect the overall inflammatory state involving both CD4+ and CD8+ T cells 
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(Apostolopoulos et al., 2016), and likely affect the peripheral leukocytes. However, we only 

identified DNA methylation correlating with the amount of VAT in one of the peripheral 

leukocyte types, the CD4+ T cells. In comparison to the differences we observed between the 

obese and normal weight women, the 79 sites with methylation levels correlating to the amount 

of VAT were unique to this analysis. Interestingly, when we normalized the amount of VAT to 

body fat or mass we did not observe any associations with methylation (data not shown). This 

suggests that the amount of VAT, regardless of total body mass or adiposity, has an impact at the 

molecular level.  

However, unlike in the analysis between the obese and normal weight women we only 

identified correlations between methylation and visceral adiposity in one cell type, the CD4+ T 

cells. Again, the same explanations for why we did not observe differences in the neutrophils 

apply here (low levels of methylation, low levels of machinery for methylation and 

demethylation, and short half-lives), however we might expect to see the correlation with DNA 

methylation and VAT in the CD8+ T cells. This is especially true because CD8+ T cells have 

been shown to be involved in the early stages of increased adiposity, where they infiltrate VAT 

before macrophages and are involved in macrophage recruitment into adipose tissue (Nishimura 

et al., 2009).  

Relevance of DMS’s to gene expression 

We identified four sites within the gene CLSTN1, calsyntenin 1, to have methylation 

levels correlating with the amount of VAT in CD4+ T cells, all located prior to the TSS. We 

show that in CD4+ T cells when DNMT-dependent remethlation of hemi-methylated DNAs was 

inhibited and thus unable to methylate DNA, there was an increase in CLSTN1 gene expression, 

suggesting the DNA methylation is involved in its gene regulation. We examined 4 other genes 
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with only one DMS, but found no other changes in gene expression. CLSTN1 interacts with 

kinesin-1 motor for the transport of certain vesicles and has a cytoplasmic calcium binding 

domain (Vogt et al., 2001; Vagnoni et al., 2012). The majority of the work on CLSTN1 has been 

performed in the brain where it has been shown to be involved in the trafficking of the amyloid 

precursor protein and the pathogenesis of Alzheimer’s disease (Vagnoni et al., 2012). However, 

there is also evidence of this protein having an effect in CD4+ T cells, as in some patients with 

acute myeloid leukemia (AML), calsyntenin 1 peptides are able to produce the CD4+ T cell 

response (Stickel et al., 2013).  

Other studies have suggested that CLSTN1 may be relevant to diet and obesity. In rats fed 

a low protein diet with vitamin D, there is also increased expression of CLSTN1 in the kidneys 

(Chen et al., 2010). Additionally, when human islet cells are exposed to the saturated fatty acid 

palmitate, there is decreased expression of CLSTN1 (Cnop et al., 2014). In the subcutaneous 

adipose tissue of morbidly obese women, there is increased expression of CLSTN1 (Dahlman et 

al., 2012). Finally, in PBMCs differential methylation of one site of CLSTN1 was identified 

between obese and normal weight participants, obese and successful weight loss maintainers, and 

between normal weight and successful weight loss maintainers (Huang et al., 2015b). This 

evidence in addition to our data suggest that CLSTN1 methylation levels are increased with 

increasing amounts of VAT, potentially related to its gene expression, and may be a novel gene 

related to adiposity and obesity . 

Conclusions 

In our exploratory study we identified differences in DNA methylation in both CD4+ and 

CD8+ T cells in obese women and in CD4+ T cells with increasing amounts of VAT. The 

differences we observed were unique to each cell type and revealed no overlaps in methylation 
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changes between the different analyses. The data herein provide further evidence of the 

importance of examining DNA methylation in single cell types in relation to obesity. As 

neutrophils are the majority cell type in WBCs and we observed no methylation differences in 

this cell type, if we had performed these experiments in WBCs we may have not observed the 

cell type specific differences in the two T cell types as they would have been obscured by the 

heavily weighted methylation profile of neutrophils.   

Materials and Methods  

Study participants: 

Fourteen normal weight (BMI 18.5 to 24.9 kg/m2) and eight obese (BMI >30.0 females 

kg/m2) (age 18-35 years old) women were recruited from the Athens, GA area. Exclusion criteria 

included pregnancy in the last year, chronic disease, prescription drug use other than oral 

contraceptives, smoking, heavy alcohol consumption, and weight change greater than 10% in the 

past six months. To limit genetic variability, only those women who self-identified as Caucasian 

were selected for this study. As this study was a subset of a larger folate supplementation trial, 

all included women had serum folate levels <60 nmol/L and the CC or CT MTHFR 677 

(Rs1801133) genotype (sequenced using real-time PCR by the Georgia Genomics Facility in 

Athens, GA). All data used in the presented study are from baseline appointments, before the 

folate supplementation or any other intervention occurred. The University of Georgia 

Institutional Review Board approved this protocol and all subjects provided written informed 

consent, after being made aware as to the design of the study.  

The participant’s height and weight were obtained by standard protocols and used for the 

calculation of their BMI (kg/m2). Body composition was also determined for the participants 

through duel-energy X-ray absorptiometry (DXA) (Hologic Discovery A, Hologic Inc., 
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Waltham, MA). DXA data was only available for N = 13 of the normal weight women and N=7 

of the obese women.  

To determine differences in regards to the biometrical parameters between the obese and 

normal weight women, a two tailed t-test was performed with significance set at p<0.05.  

Cell isolation 

10 mL of venous blood samples were collected from all participants after an overnight 

fast. The samples were stored on ice after collection and processed within four hours of 

collection. CD4+ T cells, CD8+ T cells, and CD16+ neutrophils were reiteratively isolated from 

the whole blood following the protocol published in Hohos et al. (2016). Isolated cells were 

stored at -80ºC in 200 µl of PBS (Phosphate Buffered Saline) until genomic DNA extraction 

with the DNeasy Kit (Cat # 69506, QIAGEN). The extracted DNA was then quantified using 

Quant-iT PicoGreen dsDNA assay kit (Cat #P7589, Life Technologies) following manufacture 

protocol and by nanodrop. Limitations in cell isolation and DNA yield resulted in a reduced 

sample size for the obese CD8+ T cell samples (N=7), normal weight neutrophils (N=12) and 

obese neutrophils (N=6).  

DNA methylation analysis 

In total 61 samples of genomic DNA (~1.6 µg) were loaded onto the Illumina-provided, 

midi deep well, barcoded plate  and sent to Illumina for processing of the HumanMethylation450 

BeadChip to interrogate >485,000 independent CG sites throughout the genome with 99% 

coverage of RefSeq genes following Illumina’s instructions (Illumina, San Diego, CA). 

CpGassoc was used for implementation of quality control parameters (Barfield et al., 2012). 

Samples with probe detection call rates < 90% were excluded, as were those with an average 

intensity value of either < 50% of the experiment-wide sample mean or < 2,000 arbitrary units. 
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Data points with detection p-values > 0.001 were set as missing, and probes that cross hybridize 

between autosomes and sex chromosomes were excluded (Chen et al., 2013). No individual 

subject samples were excluded. BMIQ was then used to normalize the probe distributions and 

background signals (Teschendorff et al., 2013). Estimated DNA methylation proportions (the 

ration of methylated signal to total signal) or β-values were then computed for each CpG site.  

MethLAB (Kilaru et al., 2012) was used to test for association with BMI class (normal or 

obese) in each of the three leukocyte types via linear regressions that modeled the M-values 

(log(beta-value/(1-beta-value))) as the outcome and the BMI class as a categorical independent 

variable, or VAT g as a continuous independent variable for each CG site on the array. Age was 

added as a covariate in all regression analysis. To control for false positives due to multiple 

testing, associated sites were only considered significant after controlling the false discovery rate 

with a q-value < 0.05.  Methylation levels associated with the phenotype as determined with the 

use of M-values are discussed as ß-values in the manuscript, where a ß-value of 0 is equal to 0% 

methylation and a ß-value of 1 is equal to 100% methylation (Du et al., 2010). Functional 

enrichment analysis was performed using DAVID 6.7 (Huang da et al., 2009a; Huang da et al., 

2009b). Terms were considered enriched in the data set if the EASE score (a modified fishers 

exact p-value) was <0.05 and the fold enrichment was >1.5 (Huang da et al., 2009b).  

Methylation and gene expression assay 

Venous blood samples were collected in EDTA tubes in the morning from a nonfasted 

healthy 65-year-old male volunteer free of cardiovascular and other diseases with a BMI of 29. 

These studies were approved by the Institutional Review Board at the University of Georgia. 

White blood cells were immediately isolated. Following isolation cells were washed 1X with 10 

ml of DMEM (at 37°C) at 100 x g for 10 min. Cells were resuspended in DMEM+ (DMEM, 1% 
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penicillin-streptomycin, 10% FBS) and plated in a volume of 2 ml (~500,000 WBCs) in a 6 well 

culture dish. 2 µM 5azaC in DMEM was added to drug treated samples. N=6 control (no drug) 

and N=6 treatment (5azaC) were incubated in a 37°C incubator for 24 hours. Cells were then 

washed with 1X PBSBE (phosphate buffered saline, 1% BSA, 2mM EDTA, pH7.4) and CD4+ T 

cells were isolated as described in (Hohos et al., 2016). RNA was extracted from the isolated 

CD4+ T cells with RNeasy mini kit (Cat#74101, QIAGEN) following manufactures protocol. 

RNA was quantified with Quibit RNA assay kit (Cat # Q32855, Life Technologies) and 400 ng 

of RNA was used for cDNA synthesis with qScript cDNA synthesis supermix (Quanta 

Biosciences, Gaitthersburg, MD, USA Cat# 95148-100). Oligonucleotide primer sequences 

(Supplemental Table 3.S1) were synthesized by Integrated DNA Technologies (Coralville, IA, 

USA). Two primer sets were tested for each of the target genes and those having a single sharp 

dissociation peak, ensuring the specific gene target was being amplified, and the lowest CT 

values were selected for subsequent use. A 25 µl reaction using SYBR green master mix (Life 

Technologies, Grand Island, NY, USA Cat# 43677659) and 4 ng of cDNA was used for analysis 

of the gene panel. All reactions were repeated in triplicate.  All data was normalized to the 

endogenous control 18s mRNA and then to the relative expression of the control samples by the 

ddCT method. A one-tailed t-test was performed to determine if there was an increase in 

expression of the 5azaC treatment, with significance set to p<0.05.  
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Table 3.1. Descriptive characteristics of study participants 

 
Age 

Weight 

(kg) 
BMI 

% Body 

Fat* 

VAT 

(g)* 

VAT (g) 

per Body 

fat (kg)* 

Vat (g) per 

Body weight 

(kg)* 

CD4+ T cells 

Normal BMI 26.2 

± 1.4 

59.7 

 ± 1.7 

21.6 ± 

0.3 

29.2  

± 1.4 

154.8 

± 20.6 

8.7 ± 0.9 2.6 ± 0.3 

Obese BMI 30.9 

± 1.7 

102.8 

 ± 3.7 

36.9 ± 

1.1 

44.9  

± 0.4 

502.5 

± 74.1 

10.8 ± 1.6 4.9 ± 0.7 

p-value 0.06 4.3E-

10 

7.4E-

13 

3.9E-7 0.001 0.3 0.006 

CD8+ T cells 

Normal BMI 26.2 

± 1.4 

59.7 

 ± 1.7 

21.6 ± 

0.3 

29.2  

± 1.4 

154.8 

± 20.6 

8.7 ± 0.9 2.6 ± 0.3 

Obese BMI 30.6 

± 1.9 

105.2 

 ± 3 

37.2 ± 

1.2 

44.9  

± 0.5 

537.7 

± 71.8 

11.4 ± 1.7 5.2 ± 0.8 

p-value 0.1 1.8E-

10 

2.2E-

12 

1.8E-6 1.6-5 0.2 0.004 

CD16+ neutrophils 

Normal BMI 27.1 

± 1.5 

59.4  

± 1.8 

21.6 ± 

0.4 

29.3  

± 1.5 

158.7 

± 22.0 

8.9 ± 1 2.7 ± 0.3 

Obese BMI 31.3 

± 1.3 

101.3  

± 3.6 

37.6 ± 

0.9 

44.9 

± 0.5 

502.25 

± 86.4 

10.9 ± 1.8 5.0 ± .9 

p-value 0.1 7.2E-9 4.9E-

12 

4.3E-6 0.0002 0.3 0.01 

Values are reported as mean ± sem. Reported p-values were calculated from a two tailed t-test 

and were considered significant at p < 0.05. VAT: visceral adipose tissue. Limited amounts of 

DNA isolated from the CD8+ T cells and CD16+ neutrophils resulted in slightly reduced sample 

size for the respective analysis (CD4+ T cells normal BMI N = 14 and obese BMI N = 8; CD8+ 

T cells normal BMI N = 14 and obese BMI N = 7; CD16= neutrophils normal BMI N = 12 and 

obsess BMI N = 6). *Data from DXA was only available for N=13 of the normal BMI 

participants in the CD4+ and CD8+ cells; N=7 for obese CD4+ T cells and N=6 for obese CD8+ 

T cells.   
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Table 3.2. DMS between obese and normal BMI women in CD4+ and CD8+ T cells 

Cell Type CG sites Associated Genes 
CD4+ T cells cg06384413, cg07321536, 

cg06352483, cg03056766, 

cg25350057, cg08913530, 

cg17213381, cg09248007, 

cg12227505, cg06090383, 

cg03704653, cg10318313, 

cg15418826, cg02466749, 

cg27659478, cg25291941, 

cg22068822, cg19180156, 

cg07790826 

LOC404266, HOXB5, LIAS, 

RPL9, FAM76A, SCAMP1, 

GPR177, C10orf129, 

AGPAT1, MKL2, SLC26A11, 

SGSH, SAP30, FAM9A, 

NAP1L4, KIF21A, FANCC, 

TRIM65, POP1, HRSP12, 

UBTD2, FADD 

CD8+ T cells cg26655295, cg21579726, 

cg19235307, cg17191443, 

cg08426200, cg01419670, 

cg089164477, cg01059398, 

cg18449739, cg01560407, 

cg16248435, cg25732252, 

cg11844737, cg06544310, 

cg06074534, cg11088051 

TMEM18, ABT1, IFT122, 

MBD4, MATN4, AGPHD1, 

TNFSF10, DTX1, ITFG3, 

JARID2, ST6GALNAC4, 

BCOR, HNRNPUL1, 

ZDHHC7, SLC25A3 
  
  

The sites with differential methylation (q < 0.05) between the obese and normal BMI classified 

women in both CD4+ T cells and CD8+ T cells and their associated genes are listed above. Not 

all sites were associated with a named gene. Some sites were associated with two genes. Sites are 

listed in descending order of significance. 
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Table 3.3. Functional enrichment analysis of DMS between obese and normal BMI women in 

CD4+ T cells 

Enriched TFBS Number of genes Percent of gene list p-value Fold Enrichment 

IRF2 sites 11 57.9% 0.0099 2.02 

IRF1 sites  8 42.1% 0.022 2.41 
Functional enrichment analysis was performed for UCSC transcription factor binding sites with 

the associated genes of the DMS in obesity in the CD4+ T cells. The p-value listed is an EASE 

score, a modified fisher exact p-value, and terms were considered enriched at p<0.05 (Huang da 

et al., 2009b). The magnitude of enrichment of the UCSC transcription factor term to the total 

genes in the human genome is listed as the fold enrichment value (Huang da et al., 2009b). Fold 

enrichment values of greater than 1.5 and lower EASE scores are considered enriched in the data 

set (Huang da et al., 2009b).  
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Table 3.4. CG sites associated with VAT (g) in CD4+ T cells 

CG sites Associated Genes 
cg05942022, cg03340649, cg19143282, cg14287443, 

cg20329085, cg19670290, cg12005412, cg26317237, 

cg05114959, cg24551579, cg22053720, cg25133192, 

cg01543179, cg23936609, cg02835977, cg09082287, 

cg18803110, cg17177074, cg22221131, cg01447854, 

cg07442105, cg19858017, cg20388707, cg14373988, 

cg06745684, cg07521668, cg26345916, cg26639906, 

cg11643442, cg12990575, cg02494246, cg14559176, 

cg22614521, cg20029881, cg24339043, cg11954030, 

cg10070328, cg25649895, cg18446069, cg21497780, 

cg06330289, cg05312779, cg09213124, cg14552010, 

cg22512973, cg06815003, cg23712458, cg01281450, 

cg01800926, cg17028259, cg23279792, cg00583861, 

cg08151292, cg10928257, cg05897809, cg16091292, 

cg04682699, cg24033558, cg02936679, cg00123104, 

cg05455971, cg01967642, cg24138916, cg15007123, 

cg03470671, cg19423175, cg23400715, cg11679124, 

cg04486919, cg13576552, cg01161042, cg23673974, 

cg18431489, cg01312828, cg16630259, cg04527989, 

cg13932865, cg07873325, cg27166993 

SLC2A1, ZNF660, CTDP1, 

ASXL3, HDDC3, UNC45A, 

CLSTN1, PTK7, DHX9, NKX3-

1, BRD4, DNAJC6, PRKCZ7, 

CASZ1, RNASEH2B, OBSCN, 

NGEF, PEX10, CLDN14, 

MACROD1, CACNA1G, 

SNORA38, BAT2, KLC4, 

ALDH3B1, LRP1, SPRYD3, 

MYO10, TMEM92, WNT5B, 

ANPEP, IGFBP4, AFF3, STX1A, 

RPH3AL, IFNG, SCARF1, 

SPEF1, MIR449C, CDC20B, 

C11orf35, SLC38A3, SHF, 

DLGAP2, EPHA10, SMTNL2, 

FAM109A, PRDM11, MAP2K2, 

FAM19A5M FRMD4A, 

MAD1L1, ZFYVE28, TBKBP1, 

TNXB, WIPF2, PTCD2, 

MRPS27, KRCC1, LGR5 
The CG sites and the associated genes with differential methylated (q < 0.05) with amount of 

VAT in CD4+ T cells are listed. Not all CG sites were associated with a named gene. Some CG 

sites were associated with two genes. CG sites are listed in descending order of significance. 
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Table 3.5. Functional enrichment analysis of CG sites with methylation levels correlating with 

the amount of VAT in CD4+ T cells 

Enriched GO: Biological Process Number 

of genes 
Percent of 

gene list p-value Fold 

Enrichment 
GO:0006468 protein amino acid 

phosphorylation 7 12.07 0.01 3.74 
GO:0006796 phosphate metabolic 

process 8 13.79 0.015 2.93 
GO:0006793 phosphorus metabolic 

process 8 13.79 0.015 2.93 
GO:0016310 phosphorylation 7 12.07 0.02 3.12 
GO:0009968 negative regulation of 

signal transduction 4 6.90 0.02 6.44 
GO:0010648 negative regulation of cell 

communication 4 6.90 0.03 5.74 
GO:0046907 intracellular transport 6 10.34 0.03 3.25 
Functional enrichment analysis was performed for GO: biological processes with the associated 

genes of the sites with methylation levels correlating with VAT in CD4+ T cells. The p-value 

listed is an EASE score, a modified fisher exact p-value, terms were considered enriched at 

p<0.05 (Huang da et al., 2009b). The magnitude of enrichment of the biological process term to 

the total genes in the human genome is listed as the fold enrichment value (Huang da et al., 

2009b). Fold enrichment values of greater than 1.5 and lower EASE scores are considered 

enriched in the data set (Huang da et al., 2009b).  
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Table 3.6. Effect of 5azaC on gene expression in CD4+ T cells 

Gene 

Name 

DMS 

associated 

with 

phenotype 

q-value for 

association 

with 

phenotype 

DMS 

gene-

region 

location 

Direction of 

methylation 

change 

Effect of 

5azaC on 

gene 

expression 

p-value 

for 5azaC 

treatment 

IFNG 1 0.045  3’UTR 

 Decreases 

with 

increasing 

VAT 

No effect 0.35 

CLSTN1 4 

0.034 

0.045 

0.045 

0.045  

TSS200 

TSS200 

TSS200 

TSS200 

Increases 

with 

increasing 

VAT 

Increased 0.037 

NAP1L4 1  0.043 TSS1500 
Decreased 

in Obese  
No effect 0.33 

POP1 1  0.048 
TSS1500/ 

1
st
 exon 

 Increased in 

Obese 
No effect 0.15 

LIAS 1  0.011 TSS1500 
Increased in 

Obese 
No effect 0.41 

The five genes chosen to determine if DNA methylation is involved in the regulation of their 

expression in CD4+ T cells are listed. A one-tailed t-test was performed between control and 

5azaC samples at 24 hours. Significance was set to p<0.05 (bold), and the p-values for this 

analysis are listed.  
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Supplemental Table 3.S1. Oligonucleotide sequences 

Oligonucleotide Name Oligonucleotide sequence 

18s CACGGACAGGATTGACAGATT 

GCCAGAGTCTCGTTCGTTATC 

IFNG GGGTTCTCTTGGCTGTTACT  

GAGTTCCATTATCCGCTACATCT 

CLSTN1 TCCCGAGTGTGACTCTCTATG 

CACCACGAGCTGAGTTTCTATC 

LIAS CAGTCCCTACGTGTACTGAAAC 

TGCTCATCATTCTCGCCTAAA  

NAP1L4 CTGCGGGTCACCTCATATTT 

CAAGGTGGTTCAGAAACGTTAAG 

POP1 CTCTCCAACCACAGGCATTAT 

CAGTTAGGATGGAGTGGGAAAG 

Oligonucleotide pairs for each assayed transcript are listed in order of sense (S) followed by 

antisense (A) oligonucleotides.  
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Figure 3.1. Distribution of methylation differences. A-C the percent of sites is plotted on the y-

axis. Data from the CD4+ T cells is displayed in the dark grey bars and data from the CD8+ T 

cells is displayed in the light grey bars. A. The absolute difference in methylation between the 

obese and normal weight women was calculated for each of the differentially methylated sites in 

the CD4+ and CD8+ T cells. The differences in methylation between the two groups was 

categorized into five different ranges of methylation differences (0-2.5%, 2.5-5%, 5-7.5%, 7.5-

10%, and >10%), and the percent of sites falling in each range for each cell type is presented. B. 

Each DMS between the obese and normal BMI women in the two T cell types were classified by 

its associated CGI region. The percent of sites in each cell type in each region are presented. C. 

Each DMS with methylation levels correlated to the amount of VAT (g) in the CD4+ T cells 

were classified by its associated CGI region. The percent of sites in each region are presented. 

The regions of the CGI (B-C) are defined as previously reported in (Bibikova et al., 2011; Ronn 

et al., 2013) 
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Figure 3.2. Methylation levels of the four CG sites associated with the amount of VAT in CD4+ 

T cells in the CLSTN1 gene. The methylation level (beta values, 0: 0% methylated, 1:100% 

methylated) and the amount of VAT are plotted for the four DMS in CLSTN1. These DMS were 

positively correlated with the amount of VAT. 
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Supplemental Figure 3.S1. Changes in gene expression following 24 hour inhibition of DNMTs 

with 5azaC. The relative expression of transcripts as determined by qRT-PCR for the five genes 

with DMS associated with obesity or VAT in CD4+ T cells. The relative expression of each gene 

with 5azaC treatment (black) in CD4+ T cells in comparison to CD4+ T cells with no drug 

treatment (grey) is shown. All genes consist of the average of six independent drug treatments or 

control preparations. Error bars represent the standard error of the mean.  
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CHAPTER 4 

WEGHT LOSS AND DNA METHYLATION CHANGES IN CD4+ T CELLS IN 

OVERWEIGHT AND OBESE WOMEN5 

  

                                                 
5 Hohos NM, Johnson KB, Berg AC, Smith AK, Kilaru V, Johnson MA, Evans E, Phillips BG, Meagher RBM. To 

be submitted to a peer reviewed journal.  
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Abstract 

We were interested in studying genome-wide DNA methylation changes in relation to 

diet and weight loss. Most studies examining the relationship between DNA methylation and 

weight loss have used peripheral whole blood DNA. Statistically meaningful data for any one 

cell type may be lost as these data are the weighted average of the gene specific methylation data 

of the various cell types in blood. We examined DNA methylation and weight loss in CD4+ T 

cells at baseline and after a six month weight loss intervention in 14 overweight and obese 

women (59.8±1 years) using the HumanMethylation450 BeadChip. Following the intervention, 

participants lost 11.99± 0.87 percent of starting body weight. After correcting for multiple testing 

(FDR, q<0.05) across our population, no differences in methylation were observed from pre- to 

post- intervention, except in relation to central adiposity (i.e., android fat). For example, 448 sites 

whose methylation levels after the intervention correlated with the amount of android fat lost. 

Further, participants with the lowest amount of android fat at baseline had significant changes in 

their DNA methylome following the intervention. One gene in particular, CACNA1G encoding 

the Calcium Channel, Voltage-Dependent, T Type, Alpha 1G Subunit, had two sites decrease in 

methylation following weight loss in participants with the lowest android fat prior to the 

intervention. Treating CD4+ T cells with the DNA methylation inhibitor 5-azacytidine increased 

CACNAIG expression supporting its regulation by DNA methylation. Our data show that DNA 

methylation in CD4+ T cells is associated with measures of central adiposity, but there is not a 

simple relationship between weight loss and changes of the methylome.  
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Introduction6 

 Obesity has become a global health problem that is associated with the development of a 

number of comorbidities that negatively affect health status (Field et al., 2001; Sturm, 2002; 

Poirier et al., 2006; Apostolopoulos et al., 2016). Weight loss can decrease the risk and 

development of these comorbidities, including insulin resistance and type 2 diabetes (Niskanen 

et al., 1996; Tuomilehto et al., 2001). Accordingly, weight loss is commonly prescribed to obese 

and overweight patients (Goldstein, 1992; Case et al., 2002; Grundy et al., 2005; Phelan et al., 

2007; Jensen et al., 2014; Kushner, 2014; Apovian et al., 2015). However, weight loss 

interventions do not always have equal success for all subjects (King et al., 2008; Napolitano et 

                                                 
6 Abbreviations 

5azaC (5-azacytadine),  AGAP1 (ArfGAP with GTPase domain, ankyrin repeat and Ph domain 1), ATP6V1B2 

(ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2), ATP10A (ATPase, class V, type 10A), AQP9 

(Aquaporin 9), BMAL1 (aka ARNT1 arly hydrocarbon receptor nuclear translocator-like), CACNA1G (Calcium 

channel, voltage-dependent, T type, alpha 1G subunit), CD44 (CD44 molecule), CG (cytosine guanine 

dinucleotide), CGI (CG island), DMR (differentially methylated region), DMS (differentially methylated site), 

CLOCK1 (Clock circadian regulator 1), DNMTs (DNA methyltransferases), DUSP22 (dual specificity phosphatase 

22), GADD45s (growth arrest and DNA-damage-inducible protein 45), GAS7 (growth arrest-specific 7), GO (gene 

ontology), HIPK3 (homeodomain interacting protein kinase 3), HTR2A (5-Hydroxytyrpatine (Serotonin) receptor 

2A, G protein coupled), IL-6 (interleukin 6), KIAA1731 (aka CEP295, Centrosomal protein 295 kDa), LDL (low 

density lipoprotein), NR1D1 (nuclear receptor subfamily 1, group D, member 1), NPY (Neuropeptide Y), PBMCs 

(peripheral blood mononuclear cells), PER2 (Period circadian clock 2), PIP5K1C (phosphatidylinositol-4-phosphate 

5-kinase, type 1 gamma), POMC (Proopiomelanocortin), PRDM16 (PR domain containing 16), PPT2 (Palmitoyl-

protein thioesterase 2), SCD1 (Stearoyl-CoA desaturase 1 (delta-9-desaturase)), SEPT9 (Septin 9), TDG (thymine 

DNA glycosylase), TETs (ten eleven translocase methyl-dioxygenases), TNFα (tumor necrosis factor α), TNNT1 

(Troponin T type 1), TNNI3 (Troponin 1 type 3), VAT (visceral adipose tissue), WBCs (white blood cells) 
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al., 2012). There are large differences in response to weight loss interventions that are in part due 

to an individual’s genetic differences (Tholin et al., 2005; Hainer et al., 2008). Further, most 

individuals who do achieve weight loss have difficulty keeping the weight off (Stevens et al., 

2001; Curioni and Lourenco, 2005; Kraschnewski et al., 2010; Atallah et al., 2014; Fothergill et 

al., 2016). If weight loss is maintained, there are lasting metabolic adaptations that favor weight 

regain in individuals with sustained weight loss (Rosenbaum et al., 2008). Some metabolic 

adaptations have been proposed to be associated with the difficulty in maintaining weight loss, 

including a sustained decrease in resting metabolic rate (Rosenbaum et al., 2008), altered 

endocrine signaling, increased appetite, suppressed energy expenditure and other effects that are 

well described in the review by Maclean et al  (2011).  

As an individual’s genetic profile has been shown to influence the success of weight loss, 

it seems reasonable to consider that the epigenome may also contribute to weight loss success 

(Hainer et al., 2008; Deram and Villares, 2009; Martinez et al., 2014; Nicoletti et al., 2015). For 

example, epigenetic modifications may reprogram the cells of an obese person, which may be 

sustained through weight loss, or impact the effectiveness of weight loss. This reprograming may 

reflect changes that have been imprinted into the genome via epigenetic modifications in the 

obese or overweight state that are sustained regardless of weight loss. Epigenetic modifications 

lead to changes in chromatin structure which ultimately affect gene expression and the resulting 

physiological function. And thus, the biological changes that prevent weight loss and make it 

difficult to maintain (Maclean et al., 2011), may manifest from epigenetic modifications.  

 DNA cytosine methylation in peripheral blood has been studied in relation to different 

aspects of weight loss. This includes studies looking at changes from baseline to after weight loss 

(Duggan et al., 2014; Martin-Nunez et al., 2014; Perez-Cornago et al., 2014; Nicoletti et al., 
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2015; Samblas et al., 2016), differences between responders and non-responders to a specific 

weight loss intervention (Bouchard et al., 2010; Cordero et al., 2011; Milagro et al., 2011; 

Crujeiras et al., 2013), and as biomarkers that are predictive of weight loss (Campion et al., 

2009c; Bouchard et al., 2010; Milagro et al., 2012; Moleres et al., 2013; Perez-Cornago et al., 

2014; Nicoletti et al., 2015; Samblas et al., 2016). The data from these studies have yielded 

mixed results. Both decreases and no changes in global methylation have been observed (Duggan 

et al., 2014; Martin-Nunez et al., 2014; Nicoletti et al., 2015). While gene-specific changes in 

methylation have been consistently identified, the specific genes altered in relation to weight loss 

vary among studies (Campion et al., 2009c; Milagro et al., 2011; Milagro et al., 2012; Crujeiras 

et al., 2013; Moleres et al., 2013; Martin-Nunez et al., 2014; Perez-Cornago et al., 2014; 

Nicoletti et al., 2015; Samblas et al., 2016). These mixed results may be due to the fact that this 

work has been performed on samples composed of mixed blood cell types, including either total 

peripheral blood/leukocytes (Crujeiras et al., 2013; Moleres et al., 2013; Duggan et al., 2014; 

Martin-Nunez et al., 2014; Perez-Cornago et al., 2014; Nicoletti et al., 2015; Samblas et al., 

2016) or PBMCs (peripheral blood mononuclear cells) (Campion et al., 2009c; Milagro et al., 

2011). The PBMC fraction is comprised of CD4+ and CD8+ T cells, B cells, NK cells and 

monocytes. Epigenetics, including DNA methylation, is a cell type specific phenomena, 

reflecting not only the cells ontogeny, but also in the regulation of cell-type-specific genes 

(Reinius et al., 2012; Lister et al., 2013; Wu and Zhang, 2014; Gu et al., 2016). When the 

methylation profile of mixed cell types is examined, the data is a weighted average of all cell 

types. Biologically and statistically meaningful data from individual cell type are obscured by 

opposing changes in other cell types. Thus, weight loss studies examining DNA methylation in 

mixed cell types may be yielding mixed results as there is a heterogeneous population of cells 
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methylation profiles examined and compared, each unique to the study population. To 

circumvent this issue and to discover more information about the DNA methylation profile 

associated with or predictive of weight loss, we examined DNA methylation in CD4+ T cells 

before and after a six-month weight loss intervention.  

 CD4+ T cells are commonly used as a surrogate cell to study DNA methylation in 

relation to different phenotypes including obesity, psoriasis, juvenile idiopathic arthritis, 

systemic sclerosis, and systemic lupus erythematosus (Jeffries et al., 2011; Ellis et al., 2012; Park 

et al., 2014; Wang et al., 2014; Aslibekyan et al., 2015). Blood is an easy and minimally invasive 

tissue source to obtain from participants, of which CD4+ T cells can be easily and directly 

isolated from either whole blood (Hohos et al., 2016) or from the PBMC fraction. CD4+ T cell 

levels are altered in obesity in both circulation and adipose tissue (Feuerer et al., 2009; Ilavska et 

al., 2012; Cildir et al., 2013; Wagner et al., 2013), and have been shown in a recent study to have 

alterations in DNA methylation with increasing BMI and waist circumference (Aslibekyan et al., 

2015). Additionally, CD4+ T cells have also been suggested to be potentiated to respond to 

changes in physiological cues via their methylome (Hohos et al., 2016), which likely occur in the 

altered inflammatory state in obesity. 

 We hypothesized that we would identify DNA methylation differences in CD4+ T cells 

between pre to post weight loss intervention. In fact, we identify differences in methylation 

associated with weight loss only in those overweight and obese participants who began the 

intervention with the lowest levels of android fat mass (central adiposity). We also identified 448 

sites whose DNA methylation levels at the end of the weight loss intervention were associated 

with the amount of android adipose mass lost over the intervention. The data presented herein 
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provide information on the DNA methylation profile associated with weight loss in obese and 

overweight women in CD4+ T cells.  

Results 

Participant characteristics  

Fourteen obese (N=7) and overweight women (N=7) (59.8±1 years old, with an age range 

of 52 years to 64 years) were selected from a larger sample who were enrolled in a six month 

weight loss intervention program consisting of both dietary and exercise components (selection 

details are described in the materials and methods sections). A weight loss goal of at least 10% of 

baseline body weight was achieved in ten of the fourteen participants, with an average weight 

loss of 11.99 ± 0.87% for all patients. Participant weight loss ranged from 7.3% to 20%. There 

was also a successful decrease in BMI, total body fat and android (central) fat over the 

intervention (Table 4.1).  

DNA methylation and weight loss 

 To test associations between DNA methylation and weight loss, we analyzed 451,705 

sites of the 485,000 that passed quality control assessment (Teschendorff et al., 2013). A linear 

regression model was fitted for each site in relation to the weight loss phenotype and its 

methylation level. M-values ( ) were used for the regression analysis as the measure of 

methylation, as with the small sample size in our study, issues of heteroscedasticity for highly 

methylated and un-methylated sites is of concern when using standard beta-values (Du et al., 

2010). Thus, using the M-values yields better results in regards to both detection rate and true 

positive rates for those highly methylated and un-methylated sites (Du et al., 2010). Additionally, 
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as age is known to impact methylation levels (Jung and Pfeifer, 2015), age was added as a 

covariate in all analysis. Changes in the methylation levels of a site were only considered to be 

associated with the phenotype if they were still significantly associated (q<0.05) after correcting 

for multiple testing by the FDR method. This stringent criteria allows more certainty that the 

differences we found are indeed different in our data set, and was applied for all analysis unless 

otherwise specified. As ß-values are easier to interpret biologically (ß-value of 0 is 0% 

methylation, ß-value of 1 is 100% methylated), they are used to discuss results determined 

statistically significant by M-values (Du et al., 2010).  

There were no statistically supported differences in DNA methylation from pre- to post-

intervention for all participants in the study after correcting for multiple testing (q<0.05). We 

next examined methylome changes as a function of central adiposity, because android fat (central 

adiposity) is typically associated with an increased risk of metabolic disturbances (Evans et al., 

1984; Jensen et al., 1989; Pinnick and Karpe, 2011) and includes visceral adipose tissue (VAT), 

which is known to contribute to the low grade inflammatory state in obesity and descending 

diseases (Gerriets and MacIver, 2014; Huh et al., 2014).  

For only those participants with levels of baseline android fat per kg body weight in the 

lowest 25th percentile (N=4), were there changes in DNA methylation from pre- to post-

intervention. Eight differentially methylated sites (DMS) had significant differences in DNA 

methylation (q<0.05), yet many sites were trending on significance (q<0.1) and we chose to 

examine all sites with a p-value < 1x10-4 (q<0.09), yielding 372 DMSs for further analysis. Of 

these 372 sites, 107 had at least a 10% change in methylation from pre- to post-intervention 

(Figure 4.1A), with 105 sites decreasing methylation levels with weight loss. These 372 sites 

were associated with 242 named genes, and nine of these genes were associated with multiple 
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DMS (Table 4.2). The PRDM16 gene which is known to be involved in the development of 

beige and brown adipocytes, contained four DMSs.  AGAP1 which is involved in membrane 

trafficking and the cytoskeleton dynamics, and GAS7 a growth arrest protein, each had three 

differentially methylated sites (Figure 4.2). Two of the DMS in AGAP1 were located 2 base 

pairs apart. 143 of these sites were associated with enhancer regions, 17 with promoter regions, 

and 16 with DMRs (differentially methylation regions).  When these sites were examined in 

context to their relation to a CGI (CG island) (Figure 4.1B), there was only an enrichment of 

sites in the regions not associated with CGIs, and an under representation of sites associated with 

both CGIs and their flanking regions. Functional gene enrichment analysis was performed for 

those sites with at least a 10% change in methylation or were significant at q<0.05 to determine 

if any biological processes were enriched in the associated gene list (Figure 4.3). Biological 

processes involving signal transduction, cell adhesion, protein transport, regulation of apoptotic 

processes and cellular calcium ion homeostasis were found to be enriched in our data set among 

others.  

DNA methylation levels after the weight loss intervention of 448 sites were correlated 

with the amount of android adipose mass lost (normalized to body weight loss) over the 

intervention (q<0.05). This analysis included the data from all 14 individuals. Of these 448 sites, 

77 were associated with enhancer regions, 163 were associated with promoter regions, and 21 

were associated with known DMRs. The 448 sites were associated with 395 named genes, with 

five genes (PIP5K1C, PPT2, SEPT9, ATP6V1B2, KIAA1731) associated with two sites whose 

methylation levels correlated to the amount of weight loss (Table 4.3). 210 (47%) of these sites 

had decreasing levels of methylation associated with increasing amount of android fat lost. When 

the 448 sites with methylation levels correlating with the amount of android fat lost were 
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analyzed by relation to CGI’s, there was an enrichment of sites located in the island and its south 

shelf relative to the distribution of probes included on the whole array (Figure 4.4). Functional 

gene enrichment analysis (Figure 4.5) showed that the genes associated with these 448 sites 

were predominantly involved in biological processes including regulation of transcription, 

cytokinesis, ubiquitination and cell division. Biological processes related to CD4+ T cells were 

also enriched and included toll-like receptor signaling pathways and response to interleukin-1. 

DNA methylation and regulation of gene expression 

 It seemed reasonable to make use of the potentially rapid turnover of DNA methylation in 

CD4+ T cells that has been reported for other cell types (Yamagata et al., 2012; Meagher, 2014) 

to determine if DNA methylation is involved in the regulation of a sample of the DMS 

containing genes. Methylcytosine turns over biochemically by first oxidation by TETs (ten-

eleven translocation methylcytosine dioxygenases), and then base removal by GADD45s 

(growth arrest and DNA-damage-inducible protein 45) and TDG (thymine DNA glycosylase) 

and finally remethylaiton by DNMTs (DNA methyltransferases). Even though there is evidence 

for this rapid turnover (Yamagata et al., 2012; Meagher, 2014), the steady state levels of DNA 

methylation remain constant, which is primarily due to efficient maintenance methylation of 

hemi-methylated CG sites by DNMT1. Thus, we treated primary WBCs (non-stimulated, non-

dividing) with or without 2µM 5-azacytidine (5azaC), an inhibitor of all DNMTs, for 24 hours, 

isolated CD4+ T cells, and assessed gene expression of seven genes which had DMSs identified 

in our analysis (Table 4.4). Only one gene, CACNA1G, had increased gene expression following 

5azaC treatment, suggesting that DNA methylation likely plays a role in regulating this gene in 

CD4+ T cells (Table 4.4. Supplemental Figure 4.S1). Another gene, AGAP1, had decreased 

gene expression following 5azaC treatment that was trending on significance (p ≈ 0.1), 
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suggesting DNA methylation may also be involved in its regulation in CD4+ T cells, albeit, 

indirectly.  

Discussion 

Regardless of the largely successful weight loss intervention in which all participants 

reduced their body weight (>7% body weight lost) by levels shown to improve metabolic 

parameters (Goldstein, 1992; Case et al., 2002; Grundy et al., 2005; Phelan et al., 2007), we did 

not observe statistically supported changes in DNA methylation of any loci from pre- to post- 

intervention. There were no changes linked simply to their change in BMI, or percent change in 

body weight or percent body fat. However, we did observe changes in DNA methylation 

following weight loss in only the participants with the lowest quartile of baseline android fat. We 

also identified methylation levels of specific loci after the intervention that correlated with the 

amount of android adipose tissue lost over the intervention. 

 One possible explanation why we did not observe changes in DNA methylation from pre- 

to post-weight loss may involve retention of changes to molecular memory of CD4+ T cells in 

the overweight and obese individuals. DNA methylation has been suggested to be involved in 

molecular memory by altering the methylation status of specific loci in response to different 

stimuli that are retained once the stimuli is removed (Riggs, 1989; Thomassin et al., 2001; Yu et 

al., 2011; Leung et al., 2016). This has been demonstrated previously in CD4+ T cells, where 

genes activated in the immune response in memory T cells have been shown to be under 

methylation control (Komori et al., 2015). It is suggested that this regulation of immune response 

genes by DNA methylation is involved in ‘priming’ the memory T cells to respond quickly upon 

future stimulation, making a memory of previous stimuli encountered (Komori et al., 2015). It is 

known that there are many biological adaptations favoring weight regain once weight is lost, 
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including changes in endocrine signaling and energy expenditure (Rosenbaum et al., 2008; 

Maclean et al., 2011). It has been suggested that these adaptations arise from reprograming 

during the time which the body considers overweight or obese its new normal (Leung et al., 

2016). These biological ‘memories’ of the obese state may be partially implemented at the level 

of DNA methylation in CD4+ T cells. Reprograming may be maintained with weight loss, as the 

body’s molecular memory ‘remembers’ it’s normal state is obese, working to reestablish the 

obese state through weight regain.  

This premise fits well with our analysis of DNA methylation following weight loss when 

we examined this relationship for those with different baseline characteristics of android fat. 

Only the participants who had the lowest amounts of baseline android fat (normalized to body 

weight) had changes in their DNA methylome from pre- to post-intervention. Central adiposity, 

has been shown to be associated with a more negative metabolic profile, where increasing levels 

are associated with an increased risk for obesity related comorbidities (Evans et al., 1984; Jensen 

et al., 1989). Additionally, this collection of adipose tissue depots also includes VAT which is 

known to be intimately involved in the development of the inflammatory response associated 

with obesity (Gerriets and MacIver, 2014; Huh et al., 2014; Pecht et al., 2014). As central 

adiposity is more metabolically unhealthy, perhaps those with less of this fat depot have not had 

this ‘reprograming’ of DNA methylation in CD4 + T cells in the obese state, as those with higher 

amounts do. Without this ‘reprograming’ their methylomes are still responsive to weight loss, 

while those with higher levels of central adiposity have a methylome that is no longer responsive 

to weight loss.  

Further evidence of this persistent DNA methylation reprograming has been shown in 

response to dietary change. For example, in one study examining the effect of short term 
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overfeeding in humans there were many changes in DNA methylation levels in skeletal muscle 

(Jacobsen et al., 2012). Yet, after six weeks without overfeeding, the methylation changes had 

not returned to that of baseline (Jacobsen et al., 2012). In mice, it appears that the persistent 

epigenetic reprograming from a high fat diet depends on genetic background. In C57BL/6J mice, 

after switching to a normal chow diet from a high fat diet, the changes in chromatin structure 

from the high fat diet remained (Leung et al., 2016). However, in A/J mice, the chromatin 

changes were transient, and returned to normal following the return to a chow diet (Leung et al., 

2016). It is well established that C57BL/6J mice are useful for studies of obesity, and is 

interesting that reprograming of the methylome was retained once the high fat diet was removed. 

This difficulty of reversing DNA methylation memory appears to be relevant to obesity as well. 

A study examining DNA methylation in subcutaneous adipose tissue in obese, post-obese (2 

years), and never obese women, identified DNA methylation levels that are similar between 

obese and post obese women and different from women who were never obese (Dahlman et al., 

2015). Interestingly, gene expression analysis showed that even though the DNA methylation 

profile was similar between the obese and post obese, the expression of the related genes was 

similar between the post obese and the never obese (Dahlman et al., 2015). This data suggests 

that the DNA methylation ‘reprograming’ that occurred with obesity persists even with weight 

loss, and may be acting to ‘prime’ the genes for altered expression in response to an obesogenic 

environment.  

 Other studies examining DNA methylation in response to weight loss in blood cells have 

had mixed results. Studies looking at specific loci or genes DNA methylation profile have 

identified changes in methylation in response to weight loss in SCD1 promoter methylation 

(Martin-Nunez et al., 2014), IL-6 and SEPRINE-1 (Nicoletti et al., 2015) in BMAL1 and NR1D1 
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(Samblas et al., 2016) in peripheral blood, and in WTI and ATP10A in PBMCs (Milagro et al., 

2011). No common genes with differential methylation were identified in any two studies, or in 

our analysis. All of these studies have examined methylation in mixed blood cell types, which 

may confound the data. To our knowledge no studies examining DNA methylation and weight 

loss have been performed in CD4+ T cells, and only two studies have examined DNA 

methylation and obesity in CD4+ T cells. Global methylation levels in CD4+ T cells did not 

differ between obese individuals and normal weight controls (Simar et al., 2014), but differences 

in gene sequence specific loci have been identified in CD4+ T cells of obese individuals 

(Aslibekyan et al., 2015). We did not observe any baseline differences in DNA methylation that 

were association with BMI (data not shown), as were identified by Aslibekyan et al. (2015). 

Additionally, none of the eight sites they identified to have methylation levels associated with 

BMI, or the five they found associated with waist circumference in CD4+ T cells (Aslibekyan et 

al., 2015), were found to be associated with android fat lost, or predictive of android fat loss in 

our study.  

 Although we did not identify any sites with methylation changes over the weight loss 

intervention, we did identify 448 sites whose methylation levels after the intervention correlated 

with the amount of android adipose mass lost. Again, we only observed this association of DNA 

methylation after the intervention in regards to the android fat mass outcome of weight loss, 

which is associated with more negative metabolic and health status with increasing adiposity 

(Evans et al., 1984; Jensen et al., 1989). Perhaps the level of this depot is important to the DNA 

methylation changes or ‘reprograming’ that occurs in obese or overweight states. Considering we 

only observed changes in DNA methylation with weight loss in those with the lowest starting 

amounts of this depot, this rationale seems probable. None of the sites whose methylation levels 
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after the intervention correlated with the amount of android adipose mass lost were previously 

identified in any of the studies examining DNA methylation and weight loss, yet none looked in 

CD4+ T cells alone. 

 Finally, the interest in studying DNA methylation roots from its ability to respond to the 

environment and alter gene expression. A limitation to our study was that we did not have 

mRNA from our participants to study concurrent changes in gene expression. To circumvent this 

limitation, we choose to carry out a primary cell culture experiment in CD4+ T cells examining 

the effect of a DNMT inhibitor on gene expression of a few genes where DNA methylation 

differences were observed. Inhibiting DNMTs in cell culture for two hours, yields a 10% 

decrease in methylation due to the inhibition of DNMT1 (Yamagata et al., 2012), suggesting this 

experiment may produce changes in gene expression due to the inhibition of maintenance 

methylation.  For one of the seven genes tested (Table 4.4) we observed a significant increase in 

expression of CACNA1G following 5azaC treatment. We observed two sites in this gene where 

DNA methylation levels changed with weight loss in the participants with the lowest amount of 

baseline android fat. When this gene is knocked out in mice, they are resistant to high fat diet 

induced weight gain (Uebele et al., 2009), and its expression has been shown to be regulated by 

methylation in a colon cancer cell line (Toyota et al., 1999). This data suggests that DNA 

methylation is involved in the regulation of the transcription of CACNA1G in CD4+ T cells, its 

methylation may be altered in response to weight loss, and it plays some role in weight gain or 

loss.  

 In summary, we have identified sites whose methylation levels after weight loss were 

correlated with the amount of android adipose mass lost over the intervention. We also showed 

that changes in DNA methylation associated with weight loss were only observed in those with 
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the lowest baseline levels of android fat. As all our results were only associated measures of 

central adiposity, it suggests a relationship between central adiposity and DNA methylation with 

weight loss in CD4+ T cells that warrants further investigation. 

Materials and Methods 

Participant Recruitment  

Twenty five women aged 50-64 years old were recruited form the Athens, GA area by 

paid newspaper advertisement, flyers, emails to listservs, and by word of mouth. Exclusion 

criteria included a BMI ≤25 kg/m2, smoking, dietary restrictions, weight loss surgery, use of 

weight loss, steroid, or anti-inflammatory medications, and a current diagnosis or history of 

unstable cardiovascular disease, chronic obstructive pulmonary disease, lung disease, severe 

asthma, cancer (active or treatment within five years), balance disorders, severe arthritis, 

physical limitations, dementia, and psychological conditions that would affect adherence. 

Additionally, to be included in the study, participants must self-identified as postmenopausal 

(defined by the absence of a menstrual cycle for 12 months). All included women were weight 

stable (within 2 kg over 6 moths), community dwelling and sedentary (<1 hour physical activity 

per week), obtained physician clearance, and self-identified as Caucasian (to eliminate variation 

in DNA methylation due to race differences).  From the twenty five women enrolled in the 

weight loss intervention, seventeen participants had adequate blood samples (10 ml) at both 

baseline and the end of the intervention to be included for methylation analysis. Fourteen of the 

seventeen women were selected for methylation analysis due to limited availability of spaces on 

the HumanMethylaiton450 BeadChip. To select the fourteen participants, the three with the 

lowest percent weight loss and BMI points lost were eliminated, and the fourteen participants 
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with the highest percent weight loss and BMI points lost were included. Many of the included 

women in this study were on medications or had medical conditions. This data is presented in 

supplemental table S4.2. As DNA methylation can be impacted my different medications 

(Csoka and Szyf, 2009; Szyf, 2009), it is important to consider this may be a confounding factor 

in the DNA methylation analysis performed in this study. All studies were approved by the 

University of Georgia IRB.  

Weight loss intervention 

All participants were enrolled in a six-month weight loss intervention with both exercise 

and dietary components. The exercise intervention consisted of 75 minute sessions three times 

per week that were multi-modal involving cardiorespiratory, resistance, balance and flexibility 

training. All exercise interventions were participant tailored and compliance was set to 

completion of 80% of training sessions. The dietary intervention consisted of both energy 

restriction and macronutrient goals to achieve 10% weight loss. The energy restriction goal was 

500 kcal less than each participants calculated needs calculated by the Mifflin St. Jeor equation, 

with a minimum possible energy goal of 1200 kcal/day. Macronutrient goals were given as 

percent of energy with 30% from protein, 40% from carbohydrate, and 30% from fat. To achieve 

the higher protein diet, participants were instructed to consume one serving of lean beef daily. To 

facilitate the dietary intervention participants had individual counseling by an RDN or trained 

graduate student. This consisted of at least two 60 min sessions at the start of the intervention to 

instruct participants to reach their energy restrictions, meet their macronutrient goals, use self-

monitoring techniques (myfitnesspal.com and the exchange system as needed), and to consume 

lean beef. There was also a midpoint individual session with all participants, and other individual 

sessions as needed. Participants were also enrolled in weekly group classes that were 45 to 60 
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min and consisted of 2-15 women per group. Group sessions were based on the Social Cognitive 

Theory and covered topics covering nutrition education and behavior modification. Participants 

were also provided with a multivitamin mineral supplement (Centrum Silver Women) and 

TUMS for any additional calcium needs based on participants food intake. Anthropometrics 

(weight, height, dual-energy X-ray absorptiometry (DXA)) were measured at baseline and at 6 

months following standard protocol. 10 ml of venous blood was collected from fasting 

participants at baseline and 6 months in EDTA containing tubes and immediately frozen at -80°C 

until processing. To determine differences from pre- to post-intervention, a two-tailed t-test was 

performed with significance set at p<0.05.  

Cell isolation and methylation analysis 

Blood samples were thawed on ice and CD4+ T cells were isolated as previously 

described in Hohos et al. (2016). Isolated cells were stored at -80ºC in 200 µl of PBS (Phosphate 

Buffered Saline) until genomic DNA extraction with the DNeasy Kit (Cat # 69506, QIAGEN). 

The extracted DNA was then quantified using Quant-iT PicoGreen dsDNA assay kit (Cat 

#P7589, Life Technologies) following manufacture protocol.  

In total 28 samples of genomic DNA (~1.6 µg; N=14 pre-intervention samples and N=14 

post-intervention samples) were loaded onto the Illumina-provided, midi deep well, barcoded 

plate and sent to Illumina for processing of the HumanMethylation450 BeadChip to interrogate 

>485,000 independent CG sites throughout the genome with 99% coverage of RefSeq genes 

following Illumina’s instructions (Illumina, San Diego, CA). CpGassoc was used for 

implementation of quality control parameter (Barfield et al., 2012). Samples with probe detection 

call rates < 90% were excluded, as were those with an average intensity value of either < 50% of 

the experiment-wide sample mean or < 2,000 arbitrary units. Data points with detection p-values 
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> 0.001 were set to missing, and probes that cross hybridize between autosomes and sex 

chromosomes were excluded (Chen et al., 2013). No individual subject samples were excluded. 

BMIQ was then used to normalize the probe distributions and background signals (Teschendorff 

et al., 2013). Estimated DNA methylation proportions (the ration of methylated signal to total 

signal) or β-values were then computed for each CpG site. A total of 451,705 CG sites were 

included for analysis.  

 MethLAB (Kilaru et al., 2012) was used to test for association with time point (pre- or 

post-intervention) in CD4+ T cells via linear regressions that modeled the M-values  as 

the outcome and the time point as a categorical independent variable. This analysis was also 

performed for the participants in the bottom quartile and top quartile of baseline android fat 

(normalized to body weight).  We also tested the association of post-intervention methylation 

levels and the amount of android fat lost (normalized to body weight lost) over the intervention 

following the same analysis as the prior test, however with the amount of android fat lost as a 

continuous variable. Age was added as a covariate in all regression analysis. To control for false 

positives due to multiple testing, associated sites were considered significant after controlling the 

false discovery rate with a q-value < 0.05. Functional enrichment analysis were performed using 

GeneCodis (Carmona-Saez et al., 2007; Nogales-Cadenas et al., 2009; Tabas-Madrid et al., 

2012) to find any enriched biological processes for genes associated with methylation 

differences. Enriched GO (gene ontology) terms for biological processes were included that 

reached a corrected p-value < 0.05 by FDR method and contained ≥3 genes.  

For a validation assay to determine if DNA methylation is involved in the regulation of 

gene expression of genes with identified differences in DNA methylation from pre- to post-
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weight loss or with the methylation levels after the intervention associated with the amount of 

android adipose mass lost, we assessed the effect of 5azaC on gene expression in CD4+ T cells. 

Venous blood samples were collected in EDTA tubes in the morning from a nonfasted healthy 

65-year-old male volunteer free of cardiovascular and other diseases with a BMI of 29. These 

studies were approved by the Institutional Review Board at the University of Georgia. White 

blood cells were immediately isolated as previously described (Hohos et al., 2016). Following 

isolation cells were washed 1X with 10 ml of DMEM (at 37°C) at 100 x g for 10 min. Cells were 

resuspended in DMEM+ (DMEM, 1% penicillin-streptomycin, 10% FBS) and plated in a 

volume of 2 ml (~500,000 WBCs) in a 6 well culture dish. 2 µM 5azaC in DMEM was added to 

drug treated samples. N=6 control (no drug) and N=6 treatment (5azaC) were incubated in a 

37°C incubator for 24 hours. Cells were then washed with 1X PBSBE (phosphate buffered 

saline, 1% BSA, 2mM EDTA, pH7.4) and CD4+ T cells were isolated as previously described 

(Hohos et al., 2016). RNA was extracted from the isolated CD4+ T cells with RNeasy mini kit 

(Cat#74101, QIAGEN) following manufactures protocol. RNA was quantified with Quibit RNA 

assay kit (Cat # Q32855, Life Technologies) and 400 ng of RNA was used for cDNA synthesis 

with qScript cDNA synthesis supermix (Quanta Biosciences, Gaitthersburg, MD, USA Cat# 

95148-100).  Oligonucleotide primer sequences (Supplemental Table 4.S1) were synthesized by 

Integrated DNA Technologies (Coralville, IA, USA). Two primer sets were tested for each of the 

target genes and those having a single sharp dissociation peak, ensuring the specific gene target 

was being amplified, and the lowest CT values were selected for subsequent use. A 25 µl 

reaction using SYBR green master mix (Life Technologies, Grand Island, NY, USA Cat# 

43677659) and 4 ng of cDNA was used for analysis of the gene panel. All reactions were 

repeated in triplicate. All data was normalized to the endogenous control 18s mRNA and then the 
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relative expression to the control samples was calculated with the ddCT method. A two-tailed t 

test was performed to determine if there was a change in gene expression with the 5azaC 

treatment, with significance set to p<0.05.  
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Table 4.1. Participant characteristics 

 
Age Weight 

(kg) 
BMI 

(kg/m2) 
% Body 

Fat 
Androi

d Fat 

(g) 

Android Fat 
(g/kg body 

weight) 

Pre-intervention 59.8±1 80.3±3.

5 
30.6±1.

4 
45.9±0.9 3470.4 

±245.6 
42.7±1.4 

Post-intervention 70.4±2.

6 
26.8±1 39.5±1.1 2404.3 

±245.6 
33.8±1.4 

p-value 0.039 0.040 0.00025 0.0020 0.00018 
Biometrics of study participants are shown for both pre and post intervention.  Data is presented 

as mean ± standard error of the mean. A two-tailed t test was performed to determine differences 

from pre to post intervention and significance was set to p<0.05, with the p-value for each test in 

displayed on the table.  
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Table 4.2. Genes containing multiple sites with methylation changes associated with weight loss 

Gene Name CG sites 
Relation to android 

fat loss 
CGI location 

CACA1G 
cg17319889 Decrease (-10.7%) S-Shelf 

cg20204921 Decrease (-6.9%) Island 

CYP11B1 
cg21298978 Decrease (-9.5%)  

cg20073007 Decrease (-10.4%)  

MYT1L 
cg07910488 Decrease (-5.9%)  

cg23861841 Decrease (-7.0%)  

NCKAP5 
cg17081914 Decrease (-10.2%)  

cg00827382 Decrease (-9.85)  

PXDN 
cg27160524 Decrease (-7.5%)  

cg09996777 Decrease (-5.6%)  

MC3R 
cg19226099 Decrease (-5.9%) N_Shore* 

cg24298684 Decrease (-9.7%) N_Shore* 

AGAP1 

cg15068641 Decrease (-7%)  

cg21672829 Decrease (-8.8%)  

cg14406878 Decrease (-11.5%)  

GAS7 

cg22596049 Decrease (-6.4%)  

cg18657751 Decrease (-11.4%)  

cg07049421 Decrease (-7.5%)  

PRDM16 

cg14169886 Decrease (-11%) Island 

cg26153353 Decrease (-8.5%)  

cg24878051 Decrease (-16.1%) N_Shore 

cg17861161 Decrease (-7.4%) N_Shore 

Nine genes were identified to have multiple sites with DNA methylation changes associated with 

weight loss in the women with the lowest quartile of baseline android fat (N=4).  These nine 

genes and relevant information including the CG site with methylation change, the direction of 

the change for each, the average change in methylation with weight loss of that site, and the sites 
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relation to any region of a CGI are provided. Sites not associated with a CGI are left blank. *Two 

sites were located in the same region of the same island. 

 

Table 4.3. Genes associated with multiple sites whose methylation levels after the intervention 

were associated with android weight loss 

Gene Name CG sites Relation to 

android fat loss CGI location 

PIP5K1C 
cg03228408 Inverse Island 

cg13995193 Inverse  N_Shore 

PPT2 
cg13836183 Inverse N_shelf 

cg09599399 Direct Island 

Sept9 
cg12985929 Direct S_Shore 

cg15803122 Direct N_Shore 

ATP6V1B2 
cg11856918 Direct Island* 

cg17637107 Direct Island* 

KIAA1731 

(CEP295) 
cg04583011 Direct Island* 

cg05338497 Direct Island* 
The five genes with multiple sites with methylation levels after weight loss associated with the 

amount of android mass loss are shown. The relation of the DNA methylation level to the 

amount of android fat loss is shown as well as each sites relation to a CGI. *Two sites were 

located in the same region of the same island. 
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Table 4.4. Effect of 5azaC on gene expression in CD4+T cells 

Gene 

Name 

Number of 

DMS 

associated 

with 

phenotype 

q-

value  
Sites gene-

region location 

Direction of 

methylation 

change 

Effect of 

5azaC on 

gene 

expression 

p-value 

for 5azaC 

treatment 

KLKB1 1 0.049 TSS1500 

Decreases 

with greater 

android fat 

loss 

No effect  0.21 

PRDM16 4 

0.077 
0.078 
0.078 
0.077  

Body 
Body 
Body 
Body 

Decreases 

with weight 

loss  
No effect 0.31 

CACNA1G 2 0.087 
0.087 

Body 
Body/3’UTR 

Decreases 

with weight 

loss  
Increased 0.0079 

MC3R 2 0.089 
0.077 

1
st
 exon/ 5’UTR 

1st exon 

Decreases 

with weight 

loss  
No effect 0.50 

AGAP1 3 
0.087 
0.078 
0.076 

Body 
Body 
Body 

Decreases 

with weight 

loss  
Decreased 0.11 

CCL15 1 0.081 TSS1500 
Decreases 

with weight 

loss  
No effect 0.44 

CD4 1 0.087 TSS200 
Decreases 

with weight 

loss  
No effect 0.58 

The seven genes chosen to see if DNA methylation is involved in the regulation of their 

expression in CD4+ T cells are listed along with the details of this experiment. A two-tailed t-test 

was performed between control and 5azaC samples at 24 hours. Significance was set to p<0.05 

(bold), and the p-values for this analysis are listed. 
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Supplemental Table 4.S1. Oligonucleotide sequences 

Oligonucleotide Name Oligonucleotide sequence 

18s CACGGACAGGATTGACAGATT 

GCCAGAGTCTCGTTCGTTATC 

KLKB1 TGCCACGCAAACATTTCAC 

CCACGTTACTCAGCACCTTTA 

PRDM16 CCACCCAAGATCCCTCAATTAT 

ACAGAGGAGGGAAGGAAGAT 

CACNA1G TGCTCTGCTTCTTCGTCTTC 

GAGGCTGAAATTCTCAGGTAGG 

MC3R TCAGCCAACACTGCCTAATG 

GATGAAGACCTGCTCACAGAAG 

AGAP1 CTGCAAGTCGCTACCTAATTCT 

GCTTAAACTCCCACCTCCATTA 

CCL15 ACTCCTATCTCAGGCTTAGAGG 

CCCTGTGGATTTCCCGAATTA 

CD4 ACCTTTGCCTCCTTGTTCTC 

CTCCAGAAAAATTTGACCTGTG

AG 

Oligonucleotide pairs for each assayed transcript are listed in order of sense (S) followed by 

antisense (A) oligonucleotides. 



 

168 

Supplemental Table 4.S2. Medications and Medical Conditions 

 

The total number of medications taken by each participant are listed along with their drug 

classification. The total number of medical conditions as defined by the diagnosis of 

cardiovascular disease, heart rhythm disorder, hypertension, peripheral vascular disease, 

pulmonary disease, obstructive sleep apnea, epilepsy, arthritis, diabetes, cancer, and 

hyper/hypothyroidism.  

 

 

Participant 

Number of 

Medications  Classes of Medications 

Number of Medical 

Conditions 

1 1 Hypothyroid 0 

2 3 

OTCNSAID, RxNSAID, 

ProtonPumpInhibitor 

0 

3 2 Migrane, OTCNSAID 1 

4 1 Statin 0 

5 0  2 

6 4 

HRTEst, ACEInhibitor, Migrane, 

Hypothyroid 

3 

7 0  0 

8 7 

Allergy (2), SSRI/NE, 

ProtonPumpInhibitor, OTCNSAID, 

Statin, Hypothyroid 

3 

9 0  0 

10 1 SSRI/NE 1 

11 1 

HRTEst, ACEInhibitor, Migrane, 

Hypothyroid 

 

12 0  0 

13 2 HRTEst (2) 1 

14 1 OtherBP 2 
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Figure 4.1. Distribution of methylation change with weight loss in participants in the lowest 25th 

percentile of baseline android fat. The individuals with the lowest quartile of baseline android fat 

per kg body weight (N=4) were included in this analysis to determine if there were DNA 

methylation changes in those with the lowest amount of central adiposity following weight loss. 

A. The absolute change in the methylation levels of the 372 sites with methylation differences 

associated with weight loss were determined. The percent of sites with methylation differences 

falling in each of the five categories of percent methylation change are presented in the bar 

graph. B. The 372 sites with DNA methylation levels changing with weight loss were classified 

by their relation to a CGI. All sites on the array were also classified based on their relation to a 

CGI. The percent of sites are shown for each of the regions of the CGI (island, shores, and 

shelves), or in the open sea (not associated with a CGI), for both those with changes associated 

with weight loss (black) and the whole array (grey; 451,705 sites). The regions of the CGI are 

defined as previously reported in (Bibikova et al., 2011; Ronn et al., 2013). 
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Figure 4.2. DNA methylation change in response to weight loss in participants with low central 

adiposity. The genes which had at least three sites with methylation changes associated with 

weight loss for the participants with the lowest quartile of baseline android fat (N=4) are shown. 

A. The three sites with methylation changes associated with AGAP1. B. The three sites with 

methylation changes associated with GAS7. C. The four sites with methylation changes 

associated with PRDM16. The DNA methylation levels are presented as ß-values, where a ß-

value of 0 is considered 0% methylated, and 1 is considered 100% methylated. The data is 

presented as a box plot, with the average methylation level depicted by the black line in each 

box.  
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Figure 4.3. Functional enrichment analysis of DMS associated with weight loss in participants in 

the lowest 25th percentile of baseline android fat. Functional enrichment analysis for GO: 

Biological Processes was performed on only the sites with at least a 10% change in methylation, 

or were significant after FDR correction (N=114). A. The enriched terms are presented in a pie 

chart, the number in each wedge signifies the number of genes enriched in that term. B. The 

enriched terms, the p-value of enrichment, and the genes enriched in each terms are provided.  

*A hypergeometric corrected p-value based on the FDR correction is listed for each enriched GO 

term.  
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Figure 4.4. Distribution of sites with methylation levels after weight loss associated with central 

adiposity loss in relation to CGI regions. The 448 sites after the intervention with methylation 

levels associated with android fat loss (N=14) were classified by their relation to a CGI. All sites 

on the array that were included in this study (451,705 sites) were also classified based on their 

relation to a CGI. The percent of sites are shown for each of the regions of the CGI (island, 

shores, and shelves), or in the open sea (not associated with a CGI), for both those predictive of 

weight loss (black) and the whole array (grey). The regions of the CGI are defined as previously 

reported in (Bibikova et al., 2011; Ronn et al., 2013). 
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Figure 4.5. Functional enrichment analysis of genes with methylation levels after weight loss 

that were associated with central adiposity loss. Functional enrichment analysis for GO: 

Biological Processes of the genes associated with the 448 sites that had methylation levels after 

the intervention that were associated with the amount of android adipose mass lost. A.  The 

enriched terms are presented in a pie chart, the number in each wedge signifies the number of 

genes enriched in that term. B. The enriched terms, the p-value of enrichment, and the genes 

enriched in each terms are provided.  *A hypergeometric corrected p-value based on the FDR 

correction is listed for each enriched GO term.  
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Supplemental Figure 4.S1. Gene expression following 5azaC treatment in CD4+ T cells. The 

relative expression of transcripts as determined by qRT-PCR for the seven genes with DMS 

associated with weight loss in CD4+ T cells. The relative expression of each gene with 5azaC 

treatment (black) in CD4+ T cells in comparison to CD4+ T cells with no drug treatment (grey) 

is shown. All genes consist of the average of six independent drug treatments or control 

preparations. Error bars represent the standard error of the mean.  
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CHAPTER 5 

CONCLUSIONS 

The work presented in this dissertation focused on the leukocyte type specific changes in 

DNA methylation associated with obesity. The majority of the previously published studies 

examining the relationship between DNA methylation and obesity have been conducted on 

samples derived from mixed cell types. As DNA methylation profiles have been shown to be 

different in different cell and tissue types, the data from these studies is the weighted average of 

the methylation data of all included cell types. Thus, cell type specific differences in DNA 

methylation associated with obesity can be lost in the average. In order to provide information on 

single cell type DNA methylation associated with obesity, the studies of this dissertation 

examined this relationship in different leukocyte types.  

 Chapter 2 of this dissertation provides a reiterative isolation method for rapidly isolating 

the seven main leukocyte types from fresh or frozen peripheral blood. Additionally in this 

chapter, the potential of each of the seven leukocytes to respond to physiological cues via their 

methylomes were assessed. 5-hydroxymethylcytosine (5hmC) levels, the first product in the de-

methylation of 5-methylcytosine (5mC), were evaluated in each of the leukocyte types. The 

CD4+ T cells were found to have the highest levels of 5hmC (3.67% of CG sites), followed by 

CD14+ monocytes (2.69% of CG sites), while CD8+ T cells had the lowest levels of 5hmC 

(1.91% of CG sites). Transcripts of the genes encoding the enzymes involved in the 

establishment (DNMTs) and removal (TETs, GADD45) of 5mC were also assessed with the 

CD4+ and CD8+ T cells having the highest levels of these factors. Together this data suggests 
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that the CD4+ T cells, CD8+ T cells, and CD14+ monocytes are the most poised to respond to 

physiological cues via DNA methylation.  

 Chapter 3 of this dissertation provides evidence of cell type specific DNA methylation 

differences associated with obesity. Genome wide DNA methylation was assessed in CD4+ T 

cells, CD8+ T cells, and CD16+ neutrophils in a group of obese and normal weight women. The 

two T cell types were selected for analysis based on their high potential to respond via DNA 

methylation as determined in Chapter 2. The neutrophils were selected even though they were 

not identified to be highly potentiated to respond via their methylome as they are the 

predominant leukocyte type in blood and are functionally altered in obesity. DNA methylation 

differences were only identified in obese women in the CD4+ and CD8+ T cells. 19 sites were 

differentially methylated in the obese women in the CD4+ T cells and 16 in the CD8+ T cells 

(q<0.05). No differences in methylation in the obese women overlapped between the two T cell 

types. Further, the amount of visceral adipose tissue was associated with the methylation levels 

of 79 sites in CD4+ T cells (q<0.05). One gene, CLSTN1, had four differentially methylated sites 

associated with it (q<0.05) and its expression in CD4+ T cells was shown to be effected by the 

inhibition of the DNMTs, suggesting that this gene is under methylation control in CD4+ T cells. 

However, we were not able to assess the expression levels of CLSTN1 in the obese and normal 

weight women, so it is yet to be determined if there are corresponding alterations in expression 

with the methylation changes observed. 

 Chapter 4 of this dissertation provides information on DNA methylation and weight loss 

in a group of overweight and obese women in CD4+ T cells. CD4+ T cells were selected for this 

analysis based on the high number of associations between DNA methylation and obesity 

determined in Chapter 3. DNA methylation levels only changed with weight loss in the women 
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who started the intervention with the lowest levels of android fat. Additionally, the DNA 

methylation levels of 448 sites after the intervention were associated with the amount of android 

fat lost over the intervention (q<0.05). Interestingly in this study, DNA methylation differences 

were only identified in relation to measures of android fat. As central adiposity is known to be a 

more harmful fat depot, this suggests that there may be reprograming of the DNA methylome in 

CD4+ T cells in relation to the amount of central adiposity.  

 Collectively the data presented in Chapters 2 to 4 provides insight into the molecular 

modifications that occur in obesity at the level of DNA methylation. The inter-individual 

differences that are observed in obesity, weight loss, and weight loss maintenance suggest that 

there is a genetic component to this disease. Epigenetic mechanisms, including DNA methylation 

can provide a link between changes in the environment and the genome and may be in part 

facilitating these individual differences. The data presented in this dissertation provides evidence 

that there are leukocyte type specific differences of the DNA methylome in obesity. 

Additionally, it appears that the DNA methylation difference in obesity are not altered with 

weight loss, unless there are low baseline levels of central adiposity.  

Future work needs to further characterize the role of DNA methylation in obesity and 

weight loss in other leukocyte types, as well as study the relationship with changes in gene 

expression. Understanding the DNA methylation profile in obesity will help learn more about 

this complex disease. 
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