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ABSTRACT 

     Transmission of Mycobacterium tuberculosis (M. tuberculosis) relies on prolonged 

contacts with people infected with M. tuberculosis. The Community Health Study of 

Social Networks and Tuberculosis (COHSONET), an ongoing study initiated by Whalen, 

aims to evaluate the effects of social contacts on the risk of M. tuberculosis conversion 

through Ecological Momentary Assessment (EMA). This dissertation offers the linear 

probability model as an alternative to the logistic regression, to describe the risk of M. 

tuberculosis conversion as a function of proportions of time participants spent in different 

location contexts, a surrogate variable for social contacts. To restrict the predictive values 

from the linear probability model in a meaningful interval [0, 1], we propose two 

constrained optimization approaches in the current dissertation: the constrained ordinary 

least squares (OLS) and constrained adaptive LASSO. Within the constrained parameter 

space, both constrained OLS and constrained adaptive LASSO estimators are 

asymptotically consistent and asymptotically normal given all parameter estimates lying 

within the boundary of parameter space. Other than that, the constrained adaptive LASSO 

is an oracle procedure, and thus has consistent model selection. Intensive simulations 



demonstrate that both constrained OLS and constrained adaptive LASSO estimators are 

asymptotically consistent because their empirical mean biases tend to approach zero with 

an increased sample size. Moreover, the constrained OLS estimators (MLEs) perform as 

well as maximum likelihood estimators and bias-reduced penalized maximum likelihood 

estimators(PMLEs) in the logistic regression when all parameters are in the interior of the 

boundary. In particular, the constrained OLS in the linear probability model outperforms 

both MLE and PMLE in the logistic regression model when some parameters close to the 

boundary of the parameter space. The constrained adaptive LASSO appears to have 

better performance than the constrained OLS in the linear probability model when some 

parameters lie well on the boundary of the parameter space.  

INDEX WORDS: Social contact patterns, M. tuberculosis, Ecological Momentary 
Assessment, linear probability model, logistic regression model, 
constrained, ordinary least squares, adaptive LASSO, maximum 
likelihood estimators, penalized maximum likelihood estimators. 

 

 

 

 

  



 

 

MODELING THE PROBABILITY OF TUBERCULOSIS CONVERSION FROM 

ECOLOGICAL MOMENTARY ASSESSMENT OF SOCIAL PATTERNS  

 

by 

 

CHUNLA HE 

B.Med., Southern Medical University, China, 2009 

M.S., Southern Medical University, China, 2012 

M.S., The University of Georgia, 2016 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2017 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

Chunla He 

All Rights Reserved 

  



 

 

MODELING THE PROBABILITY OF TUBERCULOSIS CONVERSION FROM 

ECOLOGICAL MOMENTARY ASSESSMENT OF SOCIAL PATTERNS  

 

by 

 

CHUNLA HE 

 

 

 

 

     Major Professor: Stephen L. Rathbun  
     Committee:  Christopher Whalen 
        Hanwen Huang 
        Ye Shen 
 
 
 
 
 
 
 
 
 
 
Electronic Version Approved: 
 
Suzanne Barbour 
Dean of the Graduate School 
The University of Georgia 
August 2017  
 



 

iv 

 

 

ACKNOWLEDGEMENTS 

      There are many debts to gratefully acknowledge. My first thanks must go to the 

University of Georgia, the Graduate School, the Department of Epidemiology and 

Biostatistics made this program possible. Foremost, I am deeply indebted to my academic 

advisor, Dr. Stephen Rathbun. Dr. Rathbun has been all one could hope for in an advisor. 

Over all the years at UGA, Dr. Rathbun’s expertise in statistics has hone my skills in 

researching and being an independent biostatistician. At the end of my Ph.D. program, I 

am only beginning to realize how much has been offered and taught. Without his 

guidance and encouragement, I could not finish such a complex work. 

       My dissertation committee have been instrumental throughout the study and research 

process. Dr. Christopher Whalen not only generously offered me the opportunity to start 

my PhD program at UGA, but also allowed me to use his wonderful research data for my 

dissertation. Also, he helped cultivate my interest in doing research in the field of public 

health. My thanks also go to Dr. Ye Shen and Dr. Hanwen Huang. Their excellent 

courses in LASSO and generalized linear models contribute directly to the development 

of my dissertation. I am grateful to have been a student of them, whose knowledge and 

insights continually widen my horizons.  

 

  



 

v 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

 1 INTRODUCTION  ............................................................................................1 

   1.1 INTRODUCTION .................................................................................1 

   1.2 MOTIVATING DATASET ...................................................................6 

   1.3 DESIGN-BASED INFERENCE FOR THE DOMAIN MEANS .........7 

   1.4 MISSING DATA MODELING .............................................................9 

   1.5 MODEL-BASED MEASUREMENT ERROR ...................................12 

   1.6 DESIGN-BASED ALGORITHM .......................................................15 

   1.7 COHSONET STUDY OF RISK OF TUBERCULOSIS 

CONVERSION ..........................................................................................17 

   1.8 DISSERTAION OUTLINE .................................................................24 

   1.9 REFERENCES ....................................................................................25 

 2 CONSTRAINED LINEAR PROBABILITY MODEL IN DETEMRING THE 

PROBABILITY OF TUBERCULOSIS CONVERSION FROM 

ECOLOGICAL ASSESSMETN OF SOCIAL PATTERNS ...........................32 

   2.1 INTRODUCTION ...............................................................................32 



 

vi 

   2.2 CONSTRAINED LINEAR PROBABILITY MODEL .......................35 

   2.3 SIMULATIONS ..................................................................................55 

   2.4 APPLICATION OF COHSONET DATA ...........................................68 

   2.5 DISCUSSION ......................................................................................77 

   2.6 REFERENCES ....................................................................................79 

 3 CONSTRAINED ADAPTIVE LASSO FOR ESTIMATING THE 

PROBABILITY OF TUBERCULOSIS CONVERSION FROM 

ECOLOGICAL MOMENTARY ASSESSMENT OF SOCIAL PATTERNS88 

   3.1 INTRODUCTION ...............................................................................86 

   3.2 CONSTRAINED ADAPTIVE LASSO ...............................................89 

   3.3 SIMULATIONS ..................................................................................96 

   3.4 APPLICATION OF COHSONET DATA .........................................109 

   3.5 DISCUSSION ....................................................................................116 

   3.6 REFERENCES ..................................................................................117 

 4 CONCLUSIONS ...........................................................................................123 

   4.1 SUMMARY .......................................................................................123 

   4.2 FUTURE RESEARCH ......................................................................126 

   4.3 REFERENCES  .................................................................................128 

 

  



 

vii 

LIST OF TABLES 

Page 

1.1       Mean levels of random effects describing the periodic pattern of the probability of 

answering phone calls (n=288) ..............................................................................18 

1.2       Parameter estimates in the constrained linear probability model over all location 

contexts (n=189)  ...................................................................................................22 

1.3       Parameter estimates in the constrained linear probability model over reduced 

location contexts (n=189) ......................................................................................24 

2.1      Simulation results for Scenario A with known location contexts: Bias, empirical 

mean difference of estimate and true parameter value; SD, empirical standard 

deviation of bias; CR, percentage coverage of nominal 95% confidence intervals 58 

2.2       Simulation results for Scenario B with known location contexts: Bias, empirical 

mean difference of estimate and true parameter value; SD, empirical standard 

deviation of bias; CR, percentage coverage of nominal 95% confidence intervals 62 

2.3      Comparison of simulation results between Scenarios A and C: Bias, empirical 

mean difference of estimate and true parameter value; SD, empirical standard 

deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; 

Ratio, empirical variance of known location contexts versus estimated location 

contexts  .................................................................................................................66 

2.4       Parameter estimates using different approaches over all location contexts (n=189). 

95% CI: 95% confidence interval ..........................................................................74 

2.5       Parameter estimates based on reduced location contexts (n=189). 95% CI: 95% 

confidence interval  ................................................................................................76 



 

viii 

3.1      Simulation results for Scenario A with known location contexts: Bias, empirical 

mean difference of estimate and true parameter value; SD, empirical standard 

deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; 

% To 0, percentage of estimates falling on zero; % To 1, percentage of estimates 

falling on one .........................................................................................................99 

3.2      Simulation results for Scenario B with known location contexts: Bias, empirical 

mean difference of estimate and true parameter value; SD, empirical standard 

deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; 

% To 0, percentage of estimates falling on zero; % To 1, percentage of estimates 

falling on one  ......................................................................................................103 

3.3      Comparison of simulation results between Scenarios A and C: Bias, empirical 

mean difference of estimate and true parameter value; SD, empirical standard 

deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; 

% To 0, percentage of estimates falling on zero; % To 1, percentage of estimates 

falling on one; Ratio, empirical mean ratio of variance of bias ...........................107 

3.4      Parameter estimates of constrained adaptive LASSO and constrained OLS in the 

linear probability model over all location contexts (n=189). 95% CI: 95% 

confidence interval ...............................................................................................114 

3.5     Parameter estimates of constrained adaptive LASSO and constrained OLS in the 

linear probability model based on the reduced location contexts (n=189). 95% CI: 

95% confidence interval  .....................................................................................116 

  



 

ix 

 

 

LIST OF FIGURES 

Page 

1.1      Random effects modeling of probability of answering the phone calls (n=288) ....19 

1.2      Mean proportions of time spent at each location context (n=288) .........................20 

2.1      An illustration of tangent cone ................................................................................43 

2.2      Effect of constraints on the probability density function for a parameter with 

expected value ߤே ..................................................................................................50 

 



 

1 

 

 

CHAPTER 1 

INTRODUCTION 

 

1.1   INTRODUCTION 

Tuberculosis is a potentially fatal contagious disease that is caused by the bacterium 

Mycobacterium tuberculosis (M. tuberculosis). The World Health Organization (WHO) 

estimated that 9.0 million people developed tuberculosis and 1.5 million died from the 

disease in 2013. Tuberculosis threatens the health of people all over the world, and is 

most prevalent in resource-limited countries such as the developing countries in Africa. It 

is estimated that 2.9 million new cases of tuberculosis occur per year on the sub-continent 

and that the incidence of tuberculosis is 125 cases per 100,000 population, 25 times the 

rate found in the US. 

Tuberculosis is transmitted through M. tuberculosis bacteria carried on droplets of 

secretions emitted by actively infected patients via exhaling, coughing, sneezing, or 

talking. Susceptible individuals sharing the same environment can inhale droplets that 

may leads to one of three different clinical outcomes: complete clearance of the pathogen, 

latent tuberculosis infection, or progression to primary active disease (Bhatt and Salgame, 

2007; Roach et al., 2002).  M. tuberculosis infection is unlikely to be transmitted through 

a casual contact in a single incident. Transmission of M. tuberculosis requires prolonged 

contact with an infectious case (Houk et al., 1968; Kenyon et al., 1996). The spread of M. 

tuberculosis from person to person is highly dependent upon the frequency and nature of 
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contacts between infected and susceptible members of the population (Horby et al., 2011; 

Rehkopf et al., 2015). 

In the late 1950s, Wells and Riley initiated the first study to evaluate the impact of indoor 

environment on tuberculosis transmission, in which guinea pigs were exposed to air from 

a tuberculosis ward and infection rates were measured under controlled conditions (Riley 

et al., 1962; Sultan et al., 1960). The transmission dynamics of index cases of 

tuberculosis within households is now well understood (Guwatudde et al., 2003; 

Lienhardt et al., 2003a; Lienhardt et al., 2003b; Reichler et al., 2002; Whalen et al., 

2011). Knowledge concerning the dynamics outside the household, however, is less 

complete. From previous reports on tuberculosis outbreaks, M. tuberculosis can be 

transmitted in community venues such as clinics, hospitals (Dooley et al., 1992), bars 

(Classen et al., 1999; Yaganehdoost et al., 1999), and homeless shelters (Barnes et al., 

1996). Although it is known that M. tuberculosis transmission does occur in settings 

outside household, the magnitude of transmission in these locations is not well quantified.   

Traditionally, self-report surveys have been conducted to measure contact patterns 

relevant to the transmission of tuberculosis.  The nature of social contacts is affected by 

demographic factors, the living and working environment, socio-cultural norms and 

individual lifestyle choices; all of which vary by place and time. Self-reported social 

contacts data suffer from a variety of biases, recall bias in particular. Study designs based 

on retrospective self-report data cannot assess complex and temporally dynamic 

psychological, behavioral, and physiological processes in the natural environment. 

Additionally, most social contact surveys have been conducted in developed western 

countries, yet the majority of the world’s population lives in less developed countries 
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where family structures, socio-cultural norms, population mobility and the living and 

work environment may differ in important ways from western countries (Horby et al., 

2011; Mossong et al., 2008). It is well acknowledged that infectious diseases such as 

tuberculosis and HIV are prevalent in developing countries in Africa. Contact networks 

may be very dense in countries where tuberculosis is prevalent, which makes it more 

difficult to quantify the nature of transmission due to rapid accumulation of tuberculosis 

cases. There is therefore a strong need to determine contact networks in developing 

countries. Whalen attempted to address this knowledge gap by conducting an Ecological 

Momentary Assessment (EMA) of contact patterns in the Rubaga Division of Kampala, 

Uganda. 

Ecological momentary assessment (EMA) is a method of data collection originating from 

the behavioral sciences that enables evaluation of within-person patterns of behavior and 

experience via repeated sampling of participants’ behaviors and experiences in their 

natural environments using diaries or surveys completed one or more times per day 

(Shiffman, Stone and Hufford, 2008). EMA data can be collected through the use of 

electronic devices such as personal digital assistants (PDAs) or mobile phones. EMA 

minimizes recall bias by requiring participants to immediately respond to random 

prompts regarding current as opposed to past states or record specific events on a daily 

basis in their natural environments (Stone and Shiffman, 2002). EMA is widely used in 

behavioral medicine research including studies of dieting (Carels et al., 2004) and 

smoking (Shiffman et al., 2002). EMA has also been employed to study the effects of 

momentary psychological states on chronic pain (Feldman, Downey and Schaffer-Neitz, 

1999), and hypertension (Kamarck et al., 2007). So far, a few studies using EMA have 
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been conducted to evaluate the impacts of momentary (Barta, Tennen and Kiene, 2010; 

Mustanski, 2007) and contextual factors including alcohol use (Barta et al., 2008; Yang et 

al., 2015) in HIV prevention behaviors. To the best of our knowledge, however, EMA 

has never been used to evaluate the effects of social contacts on the transmission 

dynamics of tuberculosis.  

EMA methods offer a number of important advantages over the traditional self-reported 

surveys as well as other longitudinal approaches (Shiffman et al., 2008; Wray, Merrill 

and Monti, 2014). One crucial merit of EMA methods is that it can characterize changes 

in dynamic processes occurring over relatively short periods of time. In particular, EMA 

data can capture the dynamic interplay between various situations, environments, and 

behavior (Shiffman et al., 2008).  In addition, EMA can avoid biases inherent in 

retrospective recall of momentary states.  In spite of the versatility and flexibility of EMA 

methods for measuring momentary phenomena, they are associated with some 

limitations. EMA methods obviously depend on subjects’ compliance with instructions to 

respond to prompts. Numerous repeated assessments according to EMA protocols over 

long periods of time may yield reduced compliance over time, which can pose significant 

challenges for the analysis of EMA data. In particular, non-compliance cannot only result 

in missing data, but introduce bias in the data that are collected as well. Moreover, EMA 

studies of contact patterns involving signal-contingent reports (e.g., participants are given 

the same number of phone calls over the study period) could have other limitations 

because respondents may be more or less likely to answer the phone calls in specific 

environments, so that the collected data might not be missing at random. A 

comprehensive understanding of the nature of missing data in EMA is needed when 
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choosing an analytic approach for EMA data. In this regard, measurement error in the 

current study does not only come from the random sampling process, but may also result 

from statistical approaches chosen for aggregating the EMA data.   

The objective of this prospectus is to propose statistical models to describe the risk of M. 

tuberculosis conversion as a function of social contact patterns as described by 

proportions of time spent in different location contexts (e.g., home, friend’s or relative’s 

homes, work places, bars, markets, etc.). Logistic regression is the most popular 

statistical model for estimating the probability of binary response. However, it is not 

considered here because the logistic regression score equations are nonlinear in the 

predictors. The classical approach to handling measurement errors in logistic regression 

treats the observed values of the predictors as being equal to the true value plus a random 

error.  In the current study, however, errors in the observed values are due to both random 

sampling as well random effects modeling, which causes uncertainty in the preciseness of 

parameter estimates in the logistic regression model. Therefore, this dissertation 

considers linear probability models instead, which ensures the unbiasedness of estimating 

equations and hence consistency of parameter estimators.  

The remainder of this chapter is organized as follows: the motivating data for this 

dissertation will be briefly introduced in Section 1.2. We will then discuss statistical 

inference for design-unbiased domain means in Section 1.3. Section 1.4 presents a brief 

review of random effects model for estimating the probability that participants responded 

to the phone calls. In Section 1.5, a brief review of model-base measurement error 

models will be given. In section 1.6, we will demonstrate how to obtain designed-

unbiased parameters in the constrained linear regression model. In section 1.7, we will 
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present the random effects model modeling results as exploratory analysis of the 

constrained linear probability model. This chapter will conclude with an outline of the 

contents for the rest of the dissertation. 

1.2 MOTIVATIVATING DATASET 

The motivating dataset for this dissertation is from the Community Health Study of 

Social Networks and Tuberculosis (COHSONET), Whalen’s ongoing study on 

transmission dynamics of M tuberculosis in the Rubaga Division of Kampala, Uganda. 

Whalen hypothesizes that some locations place subjects at greater risk than others FOR 

M tuberculosis transmission. So one aim of his study is to identify the source location 

contexts of transmission in a community where the tuberculosis infection occurs, and the 

types of human interaction which have the potential to facilitate the spread of the disease.  

Individuals aged between 15 and 45 years and were free of M. tuberculosis infection (i.e., 

TST < 5 mm) were eligible for inclusion in the COHSONET study. A random sample of 

cohort members was followed up for one year in an attempt to closely monitor the social 

contact patterns through EMA. Participants were prompted to answer a set of questions 

concerning the location and surrounding environment when the calls were answered. 

Sampling times when the phone calls were made were randomly generated via a self-

correcting point process. The self-correcting point process is a special type of a point 

process with conditional intensity 

                          λ(t|Ӻ௧) = exp൛ߙ଴ + ݐଵ൫ߙ − ൯ൟ(ݐ)ଶܰߙ  ݐ        , ∈ [0, ܶ]               (1.1)           

where ߙ଴ ,  ;ଶ are constants (Isham and M., 1979; Ogata and Vere-Jones, 1984ߙ ଵ, andߙ

Vere-Jones and Ogata, 1984), and ߙଵ,  ߙଶ > 0. This point process is a self-correcting in 
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the sense that if the number of events strays from the target 1/ߙଶ, then the assessment 

rate compensates to force this difference back towards zero. The baseline intensity is 

exp{ߙ଴}. The parameters ߙ଴  and  ߙଶ  govern the mean number of phone calls made per 

day, while ߙଵ controls the variability of the number of calls per day and the regularity of 

the spacing of the assessment times. Note that the self-correcting point process generates 

more regularly spaced assessment times and less variation in numbers of assessments per 

day than the Poisson process, reducing burden on the study subjects. In the COHSONET 

study, ߙ଴, ߙଵ,  ଶ were set equal to -0.602, 3, and 1.825, respectively, targeting 200ߙ ݀݊ܽ

random assessments per year.   

The TST test was used to assess whether participants contracted M. tuberculosis at the 

end of one-year cohort study according to standardized definitions of skin test conversion 

(Menzies 1999).  Cohort members who tested negative at baseline but had a TST > 10 

mm after one year and increment more than 6 mm from baseline are considered to be M. 

tuberculosis converters.   

1.3 DESIGNED-BASED INFERENCE FOR THE DOMAIN MEAN 

The objective of this dissertation is to describe the risk of M. tuberculosis conversion as a 

function of proportions of time participants spent in different location contexts. More 

specifically, the risk of M. tuberculosis conversion is modeled as a function of the 

domain means, the population proportions of time participants spent in different location 

contexts over a one-year period of EMA study, where the populations are comprised of 

the set of all times in the one-year study interval of each participant. More formally, let 

 denote a vector of indicator variables, whose j-th element takes the value one if the (ݐ)௜ݔ
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subject i is in location j at time t, and the value zero if otherwise. Then the vector of 

domain means (e.g., proportions of time participants spent in different location contexts) 

is 

                                     ܺ௜(ܶ) =  
ଵ

்
׬ .ݐ݀(ݐ)௜ݔ

்
଴

                                                (1.2) 

where the integral is over the study period [0, ܶ].  Evaluation of integral requires that the 

time-varying covariates ݔ௜(ݐ) be known functions of time.  Unless the subjects are 

observed 24 hours per day 7 days per week, these domain means are unknown. If, 

however, participants are sampled at times realized from a known probability-based 

sampling design, then design-unbiased estimators of the domain means may be obtained. 

The remainder of this section describes how the domain means can be estimated based on 

the EMA sampling strategy.  

Suppose that the subjects are sampled from a known temporal point process. A temporal 

point process models the occurrences of recurrent events over time. Let the measure N(t) 

represent the number of events in (0, t]. The behavior of a temporal point process N(.) is 

typically modeled by specifying its conditional intensity λ(t), which refers to the rate at 

which events occur per unit time conditional on the prior history of the point process. 

Assume that the time-varying covariates ݔ௜(ݐ) are sampled according to a temporal point 

process with conditional intensity  

                                               λ(t) = lim
ఋ→଴

ா{ே[௧,   ௧ାఋ]|Ӻ೟}

ఋ
ݐ        ,  ∈ [0, ܶ]                    (1.3)                                           

where T ⊂ ℝ is the sampling interval, N[t, t + δ] denotes the number of events in the 

interval [t, t + δ], and Ӻ௧, the smallest σ-algebra generated by {N(u, t]; 0 < u ≤ t}, 

denotes the entire history of the point process N up to time t. In the COHSONET study, 
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each participant was sampled at times realized from a self-correcting point process with 

intensity (1.1).   

If the time-varying covariates are sampled according to a point process with known 

intensity ߣ௜(ݐ), and ߣ௜(ݐ) > 0 for almost all ݐ ∈ ܶ, then a design-unbiased estimator can 

be obtained from 

                                                   ෠ܺ௜( ௜ܶ) =
ଵ

்
∑ ௫೔(௧)

ఒ೔(௧)௧∈ே೔
                                            (1.4) 

where ௜ܰ  denotes the set of times at which assessments were made for subject i. The 

above estimator is design unbiased in the sense that its expected value equal to 

ܺ௜(ܶ) under the probability model induced by the sampling design. The variance-

covariance matrix of the design-unbiased estimator may be computed using methods 

similar to those found in the proof of Theorem 1 of Ogata (1978) yielding 

}ݎܽݒ                                  ෠ܺ௜(ܶ)} =
ଵ

்మ ׬
௫೔(௧)௫೔(௧)೅

ఒ೔(௧)

்
଴

                                                       .  ݐ݀

A design-unbiased estimator for ݎܽݒ{ ෠ܺ௜(ܶ)} is 

൛ݎܽݒ                                  ෠ܺ௜(ܶ)ൟ =
ଵ

்మ ∑ ௫೔(௧)௫೔(௧)೅

ఒ೔
మ(௧)௧∈ே೔

.                                                (1.5) 

1.4 MISSING DATA MODELING 

 The methods described in Section 1.3 require that subjects respond to all calls.  

However, subjects only responded to approximately 63.7% of calls in the COHSONET 

study. Given the substantial amount of missing data, there is potential bias in estimates of 

model parameters describing the impact of location contexts on risk of M. tuberculosis 

conversion. The only information available for unanswered calls is the time and date at 

which each call was made. Therefore, it is only feasible to describe the pattern of 

answered phone calls as a function of calling times. Let ݌௜(ݐ) denote the probability that a 

call at time ݐ is answered by subject ݅. Let ܼ௜(ݐ) = 1 if a call is answered at time ݐ by 
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subject ݅, and ܼ௜(ݐ) = 0 if otherwise. Assume that ܼ௜(ݐ), ݐ ∈ ௜ܰ, are independently 

sampled from a Bernoulli distribution with thinning function ݌௜(ݐ), where ௜ܰ denotes the 

set of times at which calls are made to subject ݅, a realization of a point process with 

intensity ߣ௜(ݐ). Then the set of answered calls ௜ܰ
∗ is a realization of a thinned point 

process with intensity ߣ௜(ݐ)݌௜(ݐ)(Cressie 1991). Assume that the data are missing at 

random, the design-unbiased estimators in (1.5) may be replaced with corrected 

estimators 

                                      ෠ܺ௜(ܶ) =
ଵ

்
∑ ௫೔(௧)

ఒ೔(௧)௣೔(௧)௧∈ே೔
∗  .                                           (1.6)                   

In the COHSONET study, exploratory data analysis indicated that the missing data 

pattern depended on the time of day, a pattern that is likely to vary among study 

participants. The location contexts in which participants spend their time are also likely to 

be a function of time of day, a function that may also vary among study participants. 

Therefore, a random effects model is proposed for the thinning point process, which can 

be described through a logit link 

݃݋݈                                      
௣೔(௧)

ଵି௣೔(௧)
= ௜ߙ

                            (1.7)                                                       .(ݐ)௜ݖ்

Parameters ߙ௜
ᇱݏ are assumed to be independently sampled from a normal distribution with 

mean ߤ and variance-covariance matrix ∑.   

Rathbun and Shiffman (2016) proposed a method for fitting mixed effects models for the 

impact of partially-observed covariates on recurrent events data. They reviewed various 

methods for fitting such models, which include approaches for fitting models with 

gamma frailties (Lawless, 1987; Thall, 1988), Laplace approximations to the likelihood 

(Breslow and Clayton, 1993) and maximum hierarchical likelihood (Lee and Nelder, 

1996), etc. None of these methods produce consistent estimators if the sampling interval 

is small. The Expectation-Maximization (EM) algorithm can be used to obtain consistent 
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estimators in the mixed effects model. In most instances, however, it is challenging to 

determine the E-step in the mixed effects model because the conditional expectation of 

the complete data log-likelihood is an intractable integral (Steele, 1996). Steele (1996) 

used a second-order Laplace approximation for computation of conditional expectations 

within the E-step. Rathbun and Shiffman’s (2016) model is an extension of Steele’s 

(1996) modified EM algorithm for fitting generalized linear mixed models to recurrent 

events data with incompletely observed time-varying covariates.  

We assume that thinning function in (1.7) is a periodic as follows 

݃݋݈                                                        
௣೔(௧)

ଵି௣೔(௧)
= ∑ ) ௜௞cosݑ

ଶగ௞௧

ఛ
+ ߶௜௞)௄

௞ୀଵ , 

where ݑ௜௞  denotes the amplitude, ߬ represents the period set to 1 (day), and ߶௜௞  denotes 

the phase.  This model can be reparameterized as 

݃݋݈                    
௣೔(௧)

ଵି௣೔(௧)
= ௜଴ߛ + ∑ ቄߛ௜ଵ௞ cos ቀ

ଶగ௞௧

ఛ
ቁ + ) ௜ଶ௞sinߛ

ଶగ௞௧

ఛ
)ቅ ,௄

௞ୀଵ          (1.8)                

where the amplitude is 

௜௞ݑ                                = ටߛ௜ଵ௞
ଶ + ௜ଶ௞ߛ

ଶ ,  

and the phase is 

                              ߶௜௞ = )ଵି݊ܽݐ−
ఊ೔భೖ

ఊ೔మೖ
).  

Alternatively, we can also write the random effects logistic function as a cubic spline 

function, which takes the form 

݃݋݈         
௣೔(௧)

ଵି௣೔(௧)
= ௜଴ߙ + ݐ௜ଵߙ + ଶݐ௜ଶߙ + ଷݐ௜ଷߙ + ∑ ݐ)௜௞ݑ − ௞)ାܭ

ଷ௄
௞ୀଵ                                  

The function 

ݐ)                                   − ௞)ାܭ
ଷ = ൜

ݐ ݎ݋݂                   ,0 < ௞ܭ

ݐ) + ݐ ݎ݋݂   ,௞)ଷܭ > ௞ܭ
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represents a broken cubic line with a knot ܭ௞. Here, K denotes the number of knots.  

1.5 MODEL-BASED MEASUREMENT ERROR 

Since the maximum likelihood estimators (MLEs) in the logistic regression have a bias of 

order O(n-1) (Firth 1993) and its score equations are nonlinear functions of the design-

unbiased estimators,  the logistic regression model may yield biased parameter estimates, 

and thus is abandoned in the current study. Instead, we propose a linear probability model 

for determining the risk M. tuberculosis conversion   

൫ܧ                     ௜ܻหܺ௜(ܶ)൯ = Pr൫ ௜ܻ = 1หܺ௜(ܶ)൯ = ்ߚ
௜ܺ(ܶ);         ݅ = 1, … , ݊.                 (1.9) 

where 0 ≤ ௝ߚ ≤ ݆ ݎ݋݂ 1 = 1, … ,  and ௜ܻ is a binary variable denoting whether a subject ,݌

contracts M. tuberculosis (݅. ݁. , ௜ܻ = 1) or not (݅. ݁. , ௜ܻ = 0) at the end of the study, and 

ܺ௜(ܶ) is a vector of variables corresponding to the proportions of time subject ݅ spent in 

the different location contexts. Note that the linear probability model considered here 

does not contain an intercept term.  

Hellevik (2009) demonstrated that linear probability model is a compelling alternative to 

logistic regression model in many situations with a binary dependent variable. The major 

advantage of the linear probability model is its interpretability. In the current context, the 

regression coefficient ߚ௝ represents the risk of M. tuberculosis conversion if the 

participants spent 100% of time in location ݆;  ݆ = 1, … ,  Ordinary least squares (OLS) .݌

estimator is a popular parameter estimation in linear regression model, however, direct 

application of it in the data with a dichotomous outcome can produce estimated 

probabilities outside the unit interval [0, 1]. To obtain a meaningful modeling results, we 
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need to restrict the parameter estimates in the linear probability model within the unit 

interval.  

In the current context, proportions of time participants spent in different location contexts 

were not observed, but were estimated using the design-unbiased estimators (expression 

(1.6)). Ignoring measurement errors in the predictors can cause bias in the parameter 

estimation, a loss of power for detecting relationships among variables of interest, and 

therefore masks the features of the data.  

Let ܺ denote a predictor that cannot be observed exactly in a study (e.g., the proportions 

of time participants spent in each location), Y denote the response variable, and ෠ܺ  denote 

an observed value of ܺ which is subject to measurement error. If the conditional 

distribution of Y given both ܺ and ෠ܺ is the same as that of Y given തܺ (i.e., ݂௒|௑௑෠ = ௒݂|௑), 

then ෠ܺ is a surrogate for ܺ.  There are a number of ways to relate the measured ෠ܺ to the 

true variable ܺ. In practice, two simple error structures are commonly used: classical 

measurement error model and Berkson measurement error model.  

Classical measurement error model (Carroll et al., 2006b). The standard statistical model 

for the case in which ෠ܺ is a surrogate for ܺ is the additive model ෠ܺ = ܺ+U, where U has 

mean zero and is independent of ܺ. This is often called the classical error model. Since 

E( ෠ܺ | ܺ) = ܺ, ෠ܺ is unbiased measurement of ܺ. Therefore, the classical error model is an 

independent, unbiased, additive measurement error model. It is worth noting that not all 

measuring methods can yield unbiased measurements. However, it is often possible to 

obtain an unbiased measurement via calibration. 
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Berkson measurement error model (Berkson, 1950).  If ܺ varies around ෠ܺ, then the 

statistical model ܺ = ෠ܺ + U is appropriate. Here, U has mean zero and is independent of 

෠ܺ. This is the so called Berkson error model. For this model, we can see that E(ܺ | ෠ܺ) = 

෠ܺ, and ෠ܺ is called an unbiased Berkson predictor of ܺ. This error model is well suited to 

the experimental situations in which the observed variable ෠ܺ is under rigorous control, 

and the true experimental condition ܺ is an error-free variable and varies around ෠ܺ. 

Consequently, the unbiased Berkson error model is hardly suitable for sampling design or 

direct measurement. Nonetheless, it is possible to calibrate the biased measurement so 

that the assumption of the Berkson error model is satisfied. 

One reason that the classical and Berkson error models are popular is due to the fact that 

many error structures can be transformed from one to the other. Suppose that ෠ܺ∗ is a 

surrogate for ܺ,  ෠ܺ∗ = ଵߛ + ௫ܺߛ + ܷ∗, where ܷ∗ is independent of ܺ, then the 

transformed variable ෠ܺ =
௑෠ ∗ିఊభ

ఊೣ
  satisfies the classical error model ෠ܺ = ܺ + U (where U =

௎∗

ఊೣ
). Alternatively, the surrogate ෠ܺ∗ can be transformed to an unbiased additive Berkson 

error structure through the transformation ෠ܺ = E(ܺ| ෠ܺ∗). The transformation that changes 

an uncalibrated surrogate ෠ܺ∗ into a classical error model is called error calibration, while 

the one that maps ෠ܺ∗ into a Berkson error model is called regression calibration (Carroll 

et al., 2006a). 

In spite of appealing properties of classical and Berkson error models, the measurement 

error in the current study does not arise from additive errors in the measurement process. 

On the contrary, it originates from the sampling error inherent to the probability-based 
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sampling design used to sample the times when phone calls should be made, and from the 

random effect modeling procedure to estimate the probability of answering a phone call 

for subject ݅ at time ݐ. Therefore, more complicated measurement error models should be 

considered.  

1.6 DESIGN-BASED ALGORITHM 

The goal of this dissertation is to estimate the effects of the proportions of time 

participants spent in each location context on the risk of M. tuberculosis conversion. 

Consider substituting design-unbiased estimators ܺప෡ (ܶ) in expression (1.6) into the linear 

probability model in (1.9) to obtain  

൫ܧ               ௜ܻหܺ௜(ܶ)൯ = Pr൫ ௜ܻ = 1หܺ௜(ܶ)൯ = ்ߚ
పܺ෡ (ܶ);         ݅ = 1, … , ݊.                    (1.10)                                

In the current context, direct application of ordinary least squares (OLS) for parameter 

estimation appears to be inappropriate due to the following reasons. In the first place, the 

linear probability model in (1.10) violates the homoscedasticity assumption because its 

variance is not constant. Goldberger suggested estimating the parameters using weighted 

least squares (WLS) to achieve homoscedasticity (Goldberger, 1964). In the second 

place, since the response variable ௜ܻ is a binary variable, we need to ensure the 

probabilities (1.10) lie within the unit interval [0, 1]. Therefore, the linear probability 

model in (1.10) is subjected to the constraints 0 ≤ ௝ߚ ≤ ݆ ݎ݋݂ 1 = 1, … ,  ,In addition .݌

we proposed the constrained WLS as an alternative option to constrained OLS in an 

attempt to address the issue of heteroscedasticity, 

(ߚ)ܮ                       = ∑ ௜ݕ]௜ݓ − ்ߚ
௜ܺ(ܶ)]ଶ௡

௜ୀଵ  ,                                                    (1.11) 

where ݓ௜ =
ଵ

గ೔(ଵିగ೔)
௜ߨ , = Pr൫ ௜ܻ = 1หܺ௜(ܶ)൯, and 0 ≤ ௝ߚ ≤ ݆ ݎ݋݂ 1 = 1, … ,   .݌
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The predictors ܺ௜(ܶ) in expression (1.11) should be replaced with the design-unbiased 

estimators ܺప෡ (ܶ) since they are unobservable. In the current study, the error inherent in  

ܺప෡ (ܶ) is attributed to sampling error arises from the probability-model used to select 

random sampling times as well as from the random effect modeling. As a result, 

substitution ܺప෡ (ܶ) for ܺ௜(ܶ) may result in biased estimating equations because  

൛ܺప෡ܧ                           ప෡ܺ (௜ܣ) ൟ் (௜ܣ) = ܺ௜(ܶ) ௜ܺ(ܶ)் +
ଵ

்మ ׬
௫೔(௧)௫೔(௧)೅

ఒ೔(௧)

்
଴

 .ݐ݀

However, we can fix this problem by replacing the bias quadratic term ܺప෡ పܺ෡ (௜ܣ)  ் (௜ܣ)

with the design-unbiased estimators 

ଵ

்మ ∑ ௫೔(௦)௫೔(௧)೅

ఒ೔(௦)ఒ೔(௧)೅௦ஷ௧∈ே೔
 .                                                              

To facilitate the computation, we can use the following equation to substitute the above 

quantity, 

                         ܺప෡ (ܶ) పܺ෡ (ܶ) ் −
ଵ

்మ ∑ ௫೔(௧)௫೔(௧)೅

ఒ೔
మ(௧)௧∈ே೔

 .                                          (1.12) 

To obtain the unbiased estimates of ߚ using the constrained WLS is equivalent to find the 

solution which minimizes  

(ߚ)∗ܮ = ∑ ௜ݕ}௜ݓ
ଶ − ௜ܺప෡ݕ2 ߚ் (ܶ) + ప෡ܺ]்ߚ (ܶ) పܺ෡ (ܶ) ் −

ଵ

்మ ∑ ௫೔(௧)௫೔(௧)೅

ఒ೔
మ(௧)௧∈ே೔

௡{ߚ[
௜ୀଵ . (1.13)   

where 0 ≤ ௝ߚ ≤ ݆ ݎ݋݂ 1 = 1, … ,   .݌

Since direct application of OLS or WLS without any restrictions may yield nonsensible 

predictive values, we will employ constrained optimization algorithms to obtain 

meaningful estimates in the current study. So far, a wide variety of optimization 

algorithms including trust-region (Moré, Garbow and Hillstrom, 1981; Moré and 

Sorensen, 1983), conjugation gradient (Beale, 1972), Newton-Raphson (Koziel and 
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Yang, 2011), Nelder-Mead Simplex (Nelder and Mead, 1965), interior point (Mehrotra, 

1992), and quasi-Newton methods (Fletcher and Powell, 1963), have been proposed and 

developed statistical packages for solving the optimized parameters. Each optimization 

technique requires a continuous objective function. The majority of optimization 

algorithms require continuous first- and/or second-order derivatives of the objective 

function, but some of them are derivative free such as Simplex method. In spite of a wide 

availability of constrained optimization algorithms, no single one is invariably superior to 

others. In the current study, we employed the dual quasi-Newton technique (Powell, 

1982a, b) to obtain constrained OLS and WLS estimates.  All data analyses were 

performed in SAS 9.4 (SAS Inst., Cary, NC).  The NLP procedure as well as PROC IML 

language were used to constrained parameter estimates.  

1.7 COHSONET STUDY OF RISK OF TUBERCULOSIS CONVERSION 

We illustrate results of random effects modeling of the probability of answering a phone 

call at selected times here using the COHSONET data. The random effects model (1.8) 

with K = 4 was used to describe the periodic pattern of answering phone calls. Estimates 

of parameters in the random effects model for missing data patterns were obtain using a 

Fortran program available in the supplementary material of Rathbun and Shiffman 

(2016). Each subject was scheduled to receive 200 phone calls over one-year study 

interval. Observations from subjects receiving too few phone calls may not be reliable, 

and thus we considered only subjects received more than 30 phone calls. Consequently, a 

total of 288 subjects were included in the mixed effects analysis. Table 1.1 presents the 

estimated mean levels of the random effects in the random effects model. The large 

standard deviation in the intercept indicates that there is considerable variation among 
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subjects in the rates at which they answered the phone calls. Large standard deviations in 

the remaining terms would suggest that there is considerable variation among subjects in 

the patterns in which calls were answered. Figure 1.1 plots the expected probability of 

answering phone calls as a function time as estimated from Steele’s (1996) modified EM 

algorithm as obtained from the mean ߤ of the random effects ߛ. On average, participants 

were most likely to respond to the phone calls in the early morning (i.e., 7:00 am - 8:00 

am). There appeared to be an increasing trend between 9:00am and 7:00pm and a sharp 

decreasing trend between 8:00pm to 11:00pm, with subjects being most likely to answer 

phone calls at 7:00pm, and least likely to answer phone calls at the end of a day. 

Table 1.1 Mean levels of random effects describing the periodic pattern of the probability 

of answering phone calls (n=288). 

Variable Estimate Standard Deviation P-Value 

    Intercept 0.565 0.402 0.159 

sin(1*2πt/24) 0.894 0.444 0.044 

cos(1*2πt/24) -0.626 0.589 0.288 

sin(2*2πt/24) -0.651 0.475 0.171 

cos(2*2πt/24) -1.327 0.288 0.000 

sin(3*2πt/24) -0.105 0.239 0.660 

cos(3*2πt/24) -1.044 0.223 0.000 

sin(4*2πt/24) -0.236 0.087 0.007 

   cos(4*2πt/24) -0.288 0.102 0.005 
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Figure 1.1 Random effects modeling of probability of answering the phone calls (n=288). 

To adjust for effects of missing data, the design-unbiased estimators in expression (1.6) 

was used to estimate the proportions of time each participant spent in each location 

context (Figure 1.2). On average, participants spent the most time at homes (i.e. 32.4%), 

followed by work places (32.1%), public transports (7.1%), and shopping centers (4.1%). 

It seems that participants in the COHSONET study rarely spent time at women groups, 

gyms/recreations, clubs, schools, neighbors’ homes and hospital (less than 1%). 
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Figure 1.2 Mean proportions of time spent at each location context (n=288). 

We used the constrained linear probability model to estimate the effects of the 

proportions of time participants spent in each location context on the risk of M. 

tuberculosis conversion. Note that the statistical modeling was based upon complete 

cases with both M. tuberculosis conversion information and proportions of time spent in 

each location context. Therefore, only 189 subjects with complete information were 

included in the constrained linear probability models. We concerned that the biased 

quadratic term ܺప෡ (ܶ) పܺ෡ (ܶ) ் in the normal equation may lead to substantial difference in 

the parameter estimates, so we evaluated modeling results in both cases: (1) Biased 

estimator in which no manipulation was made to correct the potential biasness due to the 
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biased quadratic term; (2) Bias-corrected estimator in which we substituted the biased 

quadratic term with the design-unbiased estimators in expression (1.12).  

Table 1.2 presents parameter estimates in the linear probability model over all location 

contexts using constrained OLS and WLS approaches. In general, there appeared to be no 

substantial difference between biased estimates and bias-corrected estimates of the 

constrained OLS: both estimates indicated that there was almost no risk of M. 

tuberculosis conversion if people spent all their time at such location contexts as work 

places, clubs, saloons, gyms, hospitals, women groups, market places, and neighbors’ 

homes. On the contrary, the risk of M. tuberculosis conversion would be increased by 

100% if a person spent all their time at schools, worship centers, bars, and shopping and 

trading centers. Among constrained OLS biased estimates with values within the interval 

[0, 1], it appeared that the bias-corrected estimates tended to shrink them toward the 

closest boundary of constraints. Regarding constrained WLS estimates, there appeared to 

be no obvious relationship between biased and bias-corrected estimates. The constrained 

WLS bias-corrected approach tended to shrink more parameters toward the boundary. 

With respect to the bias-corrected estimate, the constrained OLS and WLS yielded the 

same or close estimates among most of location contexts except at friend’s home and 

public transport. For example, the constrained OLS revealed that friend’s homes were 

very dangerous location, while the constrained WLS indicated that the risk of contracting 

M. tuberculosis only increased by 13.74% if people spent all the time at friend’s homes. 

Finally, we failed to find any substantial associations in the biased estimates between the 

constrained OLS and WLS approach. 
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Table 1.2 Parameter estimates in the constrained linear probability model over all location contexts (n=189) 

Location context 

Constrained OLS Constrained WLS 

Biased estimator# Bias-corrected estimator# Biased estimator# 
Bias-corrected 

estimator# 

Home 0.2905 0.2722 0.3913 0.4291 

Friend's home 0.5472 1.0000 0.4413 0.1374 

Relative's home 0.0139 0.0000 0.2517 0.0000 

Work 0.0000 0.0000 0.1551 0.0992 

School 1.0000 1.0000 0.7560 0.6994 

Worship center 1.0000 1.0000 0.9629 1.0000 

Club/Association 0.0000 0.0000 0.0000 0.0000 

Bar 1.0000 1.0000 0.9983 1.0000 

Saloon 0.0000 0.0000 0.1470 0.0000 

Gym/Recreation 0.0000 0.0000 0.0000 0.0000 

Hospital/Clinic 0.0000 0.0000 0.0000 0.0000 

Shopping/Trading center 1.0000 1.0000 0.8824 1.0000 

Public transport 0.5007 0.3245 0.6370 0.8346 

Women group 0.0000 0.0000 0.0167 0.0000 

Market place 0.0000 0.0000 0.0000 0.0000 

Neighbor's home 0.0000 0.0000 0.0885 0.0000 

Elsewhere 0.6434 0.8614 0.7186 0.8077 

# Biased estimator: no manipulation was made on the biased quadratic term ܺ ప෡ (ܶ) పܺ෡ (ܶ) ்; 
   Bias-corrected estimator: the biased quadratic term was replaced with the design-unbiased quantity in expression (1.12). 
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We were concerned that including all location contexts in the linear probability model 

might lead to an overparameterized model. Therefore, we fitted another statistical 

modeling based on reduced location contexts by pooling friend’s, relative’s, and 

neighbor’s homes into one location context as “Other home”, and pooling the rest of 

locations other than home, other home, work place, and public transport as “Elsewhere”. 

Based on results shown as in Table 1.3, the greatest number of location contexts were 

found with zero risk of M. tuberculosis conversion through the constrained OLS bias-

corrected estimators. The biased estimator and bias-corrected estimator yielded similar 

estimates at homes in the constrained OLS. Nonetheless, parameter estimates at other 

homes and public transports were different between two estimators of the constrained 

OLS. In contrast, the biased estimator and bias-corrected estimator of constrained WLS 

appeared to yield very similar parameter estimates when the number of location contexts 

were reduced. Moreover, constrained OLS biased estimates tended to be similar to both 

biased and bias-corrected estimates of the constrained WLS.  
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Table 1.3 Parameter estimates in the constrained linear probability model over reduced 

location contexts (n=189). 

Location context 

Constrained OLS Constrained WLS 

Biased estimator# 
Bias-corrected 

estimator# 
Biased 

estimator# 
Bias-corrected 

estimator# 

Home 0.2575 0.2481 0.3653 0.3814 

Other home* 0.3022 0.0000 0.4161 0.2475 

Work 0.0000 0.0000 0.1577 0.1063 

Public transport 0.4129 0.0000 0.5742 0.6993 

New elsewhere* 0.6823 0.9432 0.6559 0.7305 

* Other home is a pooled location of “Friend’s home”, “Relative’s home”, and “Neighbor’s home”; 

New elsewhere is a pooled location of “School”, “Worship center”, “Club/Association”, “Bar”, “Saloon”, 

“Gym/Recreation”, “Hospital/Clinic”, “Shopping/Trading center”, “Women group”, “Market place” and 

“Elsewhere” in table 1.2. 

# Biased estimator: no manipulation was made on the biased quadratic term పܺ෡ (ܶ) పܺ෡ (ܶ) ்; 

Bias-corrected estimator: the biased quadratic term was replaced with the design-unbiased quantity in 

expression (1.12). 

1.8   DISSERTATION OUTLINE 

This dissertation aims to build statistical models to describe the risk of M. tuberculosis 

conversion as a function of proportions of time participants spent in different location 

contexts. We offered the linear probability model as an alternative to the logistic 

regression due to potential bias from the parameter estimate in the logistic regression. So 

as to restrict the parameter estimates to lie on the interval [0,1], we will propose two 

different constrained optimization approaches. In chapter 2, we will demonstrate the 

asymptotic properties of the constrained OLS and WLS in the linear probability model, 

and employ simulation studies to investigate the finite-sample properties of the proposed 

approaches and compare their performance with the logistic regression model. Since the 

constrained OLS or WLS in chapter 2 does not allow model selection, we will propose 
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the constrained adaptive LASSO as an alternative optimization approach. Similar to 

chapter 2, we will demonstrate the asymptotic properties of constrained adaptive LASSO 

estimates, and use simulation studies to explore the finite-sample properties.  

1.9   REFERENCES 

Global Tuberculosis Report 2014. World Health Organization Geneva. 

Barnes PF, el-Hajj H, Preston-Martin S, Cave MD, Jones BE, Otaya M, Pogoda J, and 

Eisenach KD. 1996. Transmission of tuberculosis among the urban homeless. 

JAMA 275(4):305-307. 

Barta WD, Portnoy DB, Kiene SM, Tennen H, Abu-Hasaballah KS, and Ferrer R. 2008. 

A daily process investigation of alcohol-involved sexual risk behavior among 

economically disadvantaged problem drinkers living with HIV/AIDS. AIDS 

Behav 12(5):729-740. 

Barta WD, Tennen H, and Kiene SM. 2010. Alcohol-involved sexual risk behavior 

among heavy drinkers living with HIV/AIDS: negative affect, self-efficacy, and 

sexual craving. Psychol Addict Behav 24(4):563-570. 

Beale EML. 1972. Numerical Methods for Nonlinear Optimization. London: Academic 

Press. 

Berkson J. 1950. Are there two regressions? Journal of American Statistical Association 

45:164-180. 

Bhatt K, and Salgame P. 2007. Host innate immune response to Mycobacterium 

tuberculosis. J Clin Immunol 27(4):347-362. 

Breslow NE, and Clayton DG. 1993. Approximate Inference in Generalized Linear 

Mixed Models. Journal of the American Statistical Association 88(421):9-25. 



 

26 

Carels RA, Douglass OM, Cacciapaglia HM, and O'Brien WH. 2004. An ecological 

momentary assessment of relapse crises in dieting. J Consult Clin Psychol 

72(2):341-348. 

Carroll RJ, Midthune D, Freedman LS, and Kipnis V. 2006a. Seemingly unrelated 

measurement error models, with application to nutritional epidemiology. 

Biometrics 62(1):75-84. 

Carroll RJ, Ruppert D, Stefanski LA, and Crainiceanu CM. 2006b. Measurement Error in 

Nonlinear Models: A Modern Perspective. New York: Chapman and Hall/CRC  

Classen CN, Warren R, Richardson M, Hauman JH, Gie RP, Ellis JH, van Helden PD, 

and Beyers N. 1999. Impact of social interactions in the community on the 

transmission of tuberculosis in a high incidence area. Thorax 54(2):136-140. 

Cressie N. 1991. Statistics for Spatial Data. New York: Wiley. 

Dooley SW, Villarino ME, Lawrence M, Salinas L, Amil S, Rullan JV, Jarvis WR, Bloch 

AB, and Cauthen GM. 1992. Nosocomial transmission of tuberculosis in a 

hospital unit for HIV-infected patients. JAMA 267(19):2632-2634. 

Feldman SI, Downey G, and Schaffer-Neitz R. 1999. Pain, negative mood, and perceived 

support in chronic pain patients: a daily diary study of people with reflex 

sympathetic dystrophy syndrome. J Consult Clin Psychol 67(5):776-785. 

Firth D. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80(1):27-38. 

Fletcher R, and Powell MJD. 1963. A Rapidly Convergent Descent Method for 

Minimizatio. Computer Journal 6:163-168. 

Goldberger AS. 1964. Econometric Theory. New York: John Wiley. 



 

27 

Guwatudde D, Nakakeeto M, Jones-Lopez EC, Maganda A, Chiunda A, Mugerwa RD, 

Ellner JJ, Bukenya G, and Whalen CC. 2003. Tuberculosis in household contacts 

of infectious cases in Kampala, Uganda. Am J Epidemiol 158(9):887-898. 

Horby P, Pham QT, Hens N, Nguyen TT, Le QM, Dang DT, Nguyen ML, Nguyen TH, 

Alexander N, Edmunds WJ et al. . 2011. Social contact patterns in Vietnam and 

implications for the control of infectious diseases. PLoS One 6(2):e16965. 

Houk VN, Baker JH, Sorensen K, and Kent DC. 1968. The epidemiology of tuberculosis 

infection in a closed environment. Arch Environ Health 16(1):26-35. 

Isham V, and M. W. 1979. A self-correcting point process. Stochastic Processes and their 

Applications 8(3):335-347. 

Kamarck TW, Muldoon MF, Shiffman SS, and Sutton-Tyrrell K. 2007. Experiences of 

demand and control during daily life are predictors of carotid atherosclerotic 

progression among healthy men. Health Psychol 26(3):324-332. 

Kenyon TA, Valway SE, Ihle WW, Onorato IM, and Castro KG. 1996. Transmission of 

multidrug-resistant Mycobacterium tuberculosis during a long airplane flight. N 

Engl J Med 334(15):933-938. 

Koziel S, and Yang XS. 2011. Computational Optimization, Methods and Algorithms. 

Poland: Springer-Verlag Berlin Heidelberg. 

Lawless JF. 1987. Regression Methods for Poisson Process Data. Journal of the 

American Statistical Association 82(399):808-815. 

Lee Y, and Nelder JA. 1996. Hierarchical generalized linear models. Journal of the Royal 

Statistical Society B 58:619-678. 



 

28 

Lienhardt C, Fielding K, Sillah J, Tunkara A, Donkor S, Manneh K, Warndorff D, 

McAdam KP, and Bennett S. 2003a. Risk factors for tuberculosis infection in sub-

Saharan Africa: a contact study in The Gambia. Am J Respir Crit Care Med 

168(4):448-455. 

Lienhardt C, Sillah J, Fielding K, Donkor S, Manneh K, Warndorff D, Bennett S, and 

McAdam K. 2003b. Risk factors for tuberculosis infection in children in contact 

with infectious tuberculosis cases in the Gambia, West Africa. Pediatrics 111(5 Pt 

1):e608-614. 

Mehrotra S. 1992. On the Implementation of a Primal-Dual Interior Point Method. SIAM 

J Optim 2(4):575–601. 

Moré JJ, Garbow BS, and Hillstrom KE. 1981. Testing Unconstrained Optimization 

Software. ACM Transactions on Mathematical Software 7:17--41. 

Moré JJ, and Sorensen DC. 1983. Computing a Trust-Region Step. SIAM Journal on 

Scientific and Statistical Computing 4:553--572. 

Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, 

Tomba GS, Wallinga J et al. . 2008. Social contacts and mixing patterns relevant 

to the spread of infectious diseases. PLoS Med 5(3):e74. 

Mustanski B. 2007. The influence of state and trait affect on HIV risk behaviors: a daily 

diary study of MSM. Health Psychol 26(5):618-626. 

Nelder JA, and Mead R. 1965. A Simplex Method for Function Minimization. Computer 

Journal 7:308-313. 

Ogata Y, and Vere-Jones D. 1984. Inference for earthquake models: a self-correcting 

model. Stoch Proc Appl 17:337-347. 



 

29 

Powell MJD. 1982a. Extensions to Subroutine VF02AD. In: R. F. Drenick and F. Kozin 

e, editor. Systems Modeling and Optimization, Lecture Notes in Control and 

Information Sciences Berlin-Heidelberg-New York: Springer-Verlag. 

Powell MJD. 1982b. VMCWD: A Fortran Subroutine for Constrained Optimization. 

DAMTP 1982/NA4. Cambridge, England. 

Rehkopf D, Furumoto-Dawson A, Kiszewski A, and Awerbuch-Friedlander T. 2015. 

Spatial Spread of Tuberculosis through Neighborhoods Segregated by 

Socioeconomic Position: A Stochastic Automata Model. Discrete Dynamics in 

Nature and Society 2015. 

Reichler MR, Reves R, Bur S, Thompson V, Mangura BT, Ford J, Valway SE, Onorato 

IM, and Contact Investigation Study G. 2002. Evaluation of investigations 

conducted to detect and prevent transmission of tuberculosis. JAMA 287(8):991-

995. 

Riley RL, Mills CC, O'Grady F, Sultan LU, Wittstadt F, and Shivpuri DN. 1962. 

Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected 

air: comparative infectiousness of different patients. Am Rev Respir Dis 85:511-

525. 

Roach DR, Bean AG, Demangel C, France MP, Briscoe H, and Britton WJ. 2002. TNF 

regulates chemokine induction essential for cell recruitment, granuloma 

formation, and clearance of mycobacterial infection. J Immunol 168(9):4620-

4627. 



 

30 

Shiffman S, Gwaltney CJ, Balabanis MH, Liu KS, Paty JA, Kassel JD, Hickcox M, and 

Gnys M. 2002. Immediate antecedents of cigarette smoking: an analysis from 

ecological momentary assessment. J Abnorm Psychol 111(4):531-545. 

Shiffman S, Stone AA, and Hufford MR. 2008. Ecological momentary assessment. 

Annual Review of Clinical Psychology 4:1-32. 

Steele BM. 1996. A modified EM algorithm for estimation in generalized mixed models. 

Biometrics 52(4):1295-1310. 

Stone AA, and Shiffman S. 2002. Capturing momentary, self-report data: a proposal for 

reporting guidelines. Ann Behav Med 24(3):236-243. 

Sultan L, Nyka W, Mills C, O'Grady F, Wells W, and Riley RL. 1960. Tuberculosis 

disseminators. A study of the variability of aerial infectivity of tuberculous 

patients. Am Rev Respir Dis 82:358-369. 

Thall PF. 1988. Mixed Poisson Likelihood Regression Models for Longitudinal Interval 

Count Data. Biometrics 44(1):197-209. 

Vere-Jones D, and Ogata Y. 1984. On the moments of a self-correcting process. J Appl 

Prob 21:335-342. 

Whalen CC, Zalwango S, Chiunda A, Malone L, Eisenach K, Joloba M, Boom WH, and 

Mugerwa R. 2011. Secondary attack rate of tuberculosis in urban households in 

Kampala, Uganda. PLoS One 6(2):e16137. 

Wray TB, Merrill JE, and Monti PM. 2014. Using Ecological Momentary Assessment 

(EMA) to Assess Situation-Level Predictors of Alcohol Use and Alcohol-Related 

Consequences. Alcohol Res 36(1):19-27. 



 

31 

Yaganehdoost A, Graviss EA, Ross MW, Adams GJ, Ramaswamy S, Wanger A, 

Frothingham R, Soini H, and Musser JM. 1999. Complex transmission dynamics 

of clonally related virulent Mycobacterium tuberculosis associated with 

barhopping by predominantly human immunodeficiency virus-positive gay men. J 

Infect Dis 180(4):1245-1251. 

Yang C, Linas B, Kirk G, Bollinger R, Chang L, Chander G, Siconolfi D, Braxton S, 

Rudolph A, and Latkin C. 2015. Feasibility and Acceptability of Smartphone-

Based Ecological Momentary Assessment of Alcohol Use Among African 

American Men Who Have Sex With Men in Baltimore. JMIR Mhealth Uhealth 

3(2):e67. 

 

 

  



 

32 

 

 

CHAPTER 2 

CONSTRAINED LINEAR PROBABILITY MODEL IN DETERMINNING THE 

PROBABILITY OF TUBERCULOSIS CONVERSION FROM ECOLOGICAL 

MOMENTATY ASSESSMENT OF SOCIAL PATTERNS 

 

2.1   INTRODUCTION 

Tuberculosis is an infectious disease that threatens the health of people all over the world, 

and it is most prevalent in resource-limited countries such as the developing countries in 

Africa (WHO 2014). Although transmission in certain common locations such as 

households, bars, and neighborhood clinics has been investigated (Dooley et al. 1992; 

Reichler et al. 2002; Yaganehdoost et al. 1999), the relative risks of transmission as a 

function of locations where susceptible people spend their time has yet to be quantified.  

The Community Health Study of Social Networks and Tuberculosis (COHSONET), is an 

ongoing study in Uganda aiming to evaluate the effects of social networks on the 

transmission dynamics of Mycobacterium tuberculosis. Disease-free participants are 

followed up for one year in an attempt to estimate risk of contracting tuberculosis as a 

function of the proportions of time spent in different location contexts (e.g., home, work, 

etc.). Time spent in different settings is quantified using Ecological Momentary 

Assessment (EMA), a method in the behavioral sciences that enables evaluation of 

subjects’ emotional states and environments through repeated sampling in their every-day 

environments using electronic devices (Shiffman et al. 2008; Stone and Shiffman 2002). 
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In the COHSONET study, participants are contacted on their cell phones at randomly 

selected times to answer questions regarding their current location contexts at the times 

of each call.  By selecting sampling times generated from a known probability-based 

sampling design, design-unbiased estimates (Cassel et al. 1977) of the proportions of time 

participants spend in each setting can be obtained.   

In the COHSONET study, the outcome variable indicating if participants have contracted 

M. tuberculosis is dichotomous, suggesting the application of logistic regression to 

predict this outcome as a function of location contexts. Since logistic regression is 

nonlinear, however, maximum likelihood estimators (MLEs) have a bias of order O(n-1) 

(Firth 1993), a bias that has been observed in a number of practical applications  (Firth 

1993; Gart and Zwifel 1967; Hirji et al. 1987; Park and Park 2003; Wagler 2011). 

Moreover, MLEs behave poorly in presence of separation (Albert and Anderson 1984; 

Heinze and Schemper 2002; Hirji et al. 1987; Kolassa 1997; Lesaffre and Albert 1989; 

Zorn 2005).  Separation occurs when one or more covariates in a logistic regression 

model perfectly predicts the binary outcome, which is associated with infinite coefficients 

and standard errors. Firth (1993) proposed a method to reduce bias in the parameter 

estimates in the logistic regression model through penalizing the likelihood using the 

Jeffreys invariant prior. A body of evidence demonstrated superiority of penalized 

maximum likelihood based models at a small to moderate sample size, and in existence 

of separation (Heinze and Schemper 2002; Wagler 2011; Zorn 2005). We suspect that a 

small portion of participants are likely to spend most of time in some uncommon settings 

(e.g., bar) but which may tend to have very high/low risk of contracting M. tuberculosis. 

In this case, penalized likelihood estimators in the logistic regression should be more 
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appropriate than MLEs for determining the risk of M. tuberculosis infection as a function 

of proportions of time spent at each location  

Linear probability model is another option for regression models with dichotomous 

dependent variable. There is evidence suggesting that the ordinary least squares (OLS) 

estimator in the linear probability model performs as well as or even outperform 

maximum likelihood estimates in the logistic regression model in certain situations (Deke 

2014; Hellevik 2009; Pedroza and Troung 2016). Several arguments contribute to 

decreasing popularity of linear probability model with binary dependent outcome. One 

concern of using linear regression model is obtaining meaningless predicted probability 

which falls outside the unit interval [0, 1]. Another limitation is that the OLS estimator in 

the linear regression model violate assumptions of heterogeneity and normality as in 

classic linear regression model.  In spite of these drawbacks, the linear probability model 

has a striking merit of ease of interpretation. The coefficient estimates in the linear 

probability model can be directly interpreted as the mean marginal effect of covariates on 

the outcome.  

Over the years, several researchers have been attracted to the linear probability model and 

have proposed different approaches to address problems as aforementioned. Goldberger 

(1964) suggested estimating the probability by OLS and then re-estimating the model by 

weighted least squares (WLS) to resolve the issue of heteroscedasticity (Goldberger 

1964). Unfortunately, Goldberger’s method fails to prevent production of inappropriate 

predicted probability, and thus the WLS estimation breaks down. To fix this problem, 

Goldfeld and Quandt (1972) proposed only using those observations having OLS 

estimates between 0 and 1 to do the WLS estimation (Goldfeld and Quandt 1972). 
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Hensher and Johnson (1981) proposed bounding the weights and assigning negative 

weights a constant value (Hensher and Johnson 1981). Mullahy (1990) proposed a quasi-

generalized least squares estimator which is a generalization of the Goldfeldt-Quandt and 

Hensher-Johnson estimators (Mullahy 1990). However, one annoying limitation of these 

methods is that different options of weighting strategies may lead to different conclusions 

and none of them guarantee predictive probability falls inside the unite interval. In this 

paper, we propose using constraints to force estimates within a meaningful range. 

The primary purpose of this paper is to compare the performance of constrained linear 

probability model with logistic regression model in situations with a binary response. In 

consideration of potential heterogeneity, we calculated and compared the behaviors of 

both inequality constrained least squares to weighted least squares estimators. Moreover, 

we studied the performance of bias-reduced penalized maximum likelihood in the logistic 

regression. 

The contents are distributed in five sections including the introduction. Section 2.2 is 

devoted to describing the constrained linear regression model and asymptotic properties 

of constrained estimators. In section 2.3, we demonstrate results of the simulation studies. 

We apply the proposed methods to the COHSONET study in Section 2.4. In section 2.5, 

we give a discussion of the results. 

2.2 CONSTRAINED LINEAR PROBABILITY MODEL 

The aim of COHSONET study is to estimate the risk of M. tuberculosis conversion as a 

function of proportions of time participants spent in different location contexts. Suppose 

that n subjects are randomly sampled and each subject ݅ is observed over a set of times 
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belonging to the Borel set ܶ ⊂ ℝ with Lebesgue measure |ܶ| < ∞. In the current context, 

the sampling domain ܶ is the union of finite number of disjoint time intervals 

corresponding to the set of times when the phone called is made, and |ܶ| is the total 

length of time subject ݅ is observed.  Let ܺ௜(ܶ) denote a 1×݌ vector corresponding to the 

proportions of time participants spent in each location context. The elements of the vector 

ܺ௜(ܶ) are between zero and one, and add up to one. Let ௜ܻ denote a Bernoulli dependent 

variable corresponding to M. tuberculosis conversion status which is observed over the 

time interval [0, ܶ].  Hence, the linear probability model considered is 

൫ܧ        ௜ܻหܺ௜(ܶ)൯ = Pr൫ ௜ܻ = 1หܺ௜(ܶ)൯ = ்ߚ
௜ܺ(ܶ);         ݅ = 1, … , ݊.                   (2.1) 

where 0 ≤ ௝ߚ ≤ ݆ ݎ݋݂ 1 = 1, … ,  Note that the linear probability model considered here .݌

does not contain an intercept term. The interpretation of coefficients in the linear 

probability model is straightforward. The coefficient ߚ௝  represents the risk of M. 

tuberculosis conversion if the participants spent 100% of time in location ݆;  ݆ = 1, … ,  .݌

Note that the constraints on the parameters and the predictors imply the 0 ≤ (ܶ)௜்ܺߚ ≤

1 for all subjects ݅ = 1,2, ⋯ , ݊. 

2.2.1 Fully Observed Location Contexts 

To motivate the proposed methods of statistical inference, we temporarily assume in this 

subsection that the vectors of location context proportions ܺ௜(ܶ) are known for all 

participants ݅ = 1, … , ݊. Define the objective function of the OLS estimator for the 

constrained linear probability model in expression (2.1) as 

(ߚ)ܳ                                  = ∑ ௜ݕ] − ்ߚ
௜ܺ(ܶ)]ଶ௡

௜ୀଵ  .                              (2.2)          

Note that the OLS estimator is unbiased for finite samples, a property that is not shared 

by logistic regression whose maximum likelihood estimators has bias of order O(n-1) 
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(Firth 1993). To overcome issue of heteroskedasticity, we also consider estimating 

parameters ߚ in the inequality constrained linear probability model using constrained 

WLS, whose objective function is defined as 

(ߚ)ܳ                               = ∑ ௜ݕ]௜ݓ − ௜(ܶ)]ଶ௡்ܺߚ
௜ୀଵ  ,                                       (2.3) 

where ݓ௜ = ௜(1ߨ] −   .௜)]ିଵߨ

Since the linear probability model in (2.1) is subject to inequality constraints, the typical 

optimization strategies such as Newton-Raphson algorithm are not applicable here. A 

wide variety of optimization approaches including sequential quadratic programming 

(SQP) (Nocedal and WrighT 2006), trust-region (Moré et al. 1981; Moré and Sorensen 

1983), conjugation gradient (Beale 1972), Newton-Raphson (Koziel and Yang 2011), 

Nelder-Mead Simplex (Nelder and Mead 1965), interior point (Mehrotra 1992), and 

quasi-Newton methods (Fletcher and Powell 1963) have been proposed and statistical 

packages have been developed for each approach. Each optimization approach requires a 

continuous objective function, a requirement that is satisfied by both OLS and WLS 

estimators. The majority of optimization techniques require continuous first- and/or 

second-order derivatives of the objective function, but some of them are derivative free 

such as Simplex method. In spite of a wide availability of constrained optimization 

approaches, no single one is invariably superior to others. In the current study, we 

employed the dual quasi-Newton technique (Powell 1982a; Powell 1982b) to obtain 

optimized parameter estimates for the constrained linear probability model.   

2.2.2 Partially Observed Location Contexts 

The OLS and WLS objective functions require that the vectors of location contexts ܺ௜(ܶ) 

be known for all participants. More formally, the location contexts ܺ௜(ܶ)are comprised of 
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the population proportions of time participants spent in each location context over the 

period of the EMA study, where the populations are comprised of the set of all times in 

the one-year study interval of each participant. Let ݔ௜(ݐ) denote a vector of indicator 

variables, whose j-th element takes the value one if the subject i is in location j at time t, 

and the value zero if otherwise.  Then the vector of population proportions is equal to the 

domain means 

                                            ܺ௜(ܶ) =  
ଵ

்
׬ ,ݐ݀(ݐ)௜ݔ

்
଴

                                

where the integral is over the study interval [0, ܶ]. Evaluation of integral requires that the 

time-varying covariates ݔ௜(ݐ) be known functions of time. Unless the subjects are 

observed 24 hours per day for 7 days per week, these domain means are unknown. If, 

however, EMA samples are collected at times realized from a known probability-based 

sampling design, then design-unbiased estimators of the domain means may be obtained.   

Suppose that for subject ݅, the time-varying covariates ݔ௜(ݐ) are sampled according to a 

temporal point process N(.) with conditional intensity  

                                               λ(t) = lim
ఋ→଴

ா{ே[௧,   ௧ାఋ]|Ӻ೟}

ఋ
ݐ        ,  ≥ 0                    

where N[t, t + δ] denotes the number of events in the time interval [t, t + δ], and Ӻ௧ , the 

smallest σ-algebra generated by {N(u, t]; 0 < u ≤ t}, represents the history of the point 

process N(.)  up to time t. 

If the time-varying covariates are sampled according to a point process ௜ܰ(ݐ) with known 

intensity ߣ௜(ݐ), and  ߣ௜(ݐ) > 0 for all ݐ ≥ 0 except on a set of measure zero, then a 
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design-unbiased estimator of a domain mean is 

                                                    ෠ܺ௜(ܶ) =
ଵ

்
∑ ௫೔(௧)

ఒ೔(௧)௧∈ே೔
 ,                                                (2.4) 

where ௜ܰ  is the set of times at which assessments were made for subject i. This estimator 

is design unbiased in the sense that its expected value is ܺ௜(ܶ) under the probability 

model induced by the sampling design. To investigate the large-sample inferential 

properties of the estimator ෠ܺ௜(ܶ), we can also write expression (2.4) as 

                                                ෠ܺ௜(ܶ) =
ଵ

்
׬

௫೔(௧)

ఒ೔(௧)

்
଴

݀ ௜ܰ(ݐ).                                             (2.5) 

Since the location contexts ܺ௜(ܶ) are unobservable in the current study, the design-

unbiased estimators ෠ܺ௜(ܶ) will be substituted into the OLS and WLS objective functions 

in expressions (2.2) and (2.3) to obtain the proposed parameter estimators.  

To demonstrate that the design-unbiased estimator ෠ܺ௜(ܶ) is consistent for the domain 

means ܺ௜(ܶ) as ܶ → ∞, we consider the following assumptions (Rathbun 1996): 

(A.1) The conditional intensity ߣ(t) is greater than zero except on a set of measures zero. 

(A.2)  ܺ௜(ܶ) is finite for all ܶ > 0. 

 (A.3)   
ଵ

்
׬

௫(௧)௫೅(௧)

ఒ(௧)
ݐ݀ < ∞

்
଴

 for all ܶ > 0. 

Assumption (A.1) is necessary to demonstrate that ෠ܺ௜(ܶ) is design-unbiased. 

Assumptions (A.2) and (A.3) allow us to bound the difference of ܺ௜(ܶ) − ෠ܺ௜(ܶ). Given a 

counting process ௜ܰ(ݐ), the martingale ܯ௜(ݐ) is defined as the difference of and its 

integrated intensity ∧௜  (ݐ)

(ݐ)௜ܯ = ௜ܰ(ݐ) −∧௜  .(ݐ)
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Note that the difference between ܺ௜(ܶ) and ෠ܺ௜(ܶ)is a zero-mean martingale. The 

following theorem proves that the design-unbiased estimators ෠ܺ௜(ܶ) converge in 

probability to the domain means ܺ௜(ܶ) as ܶ → ∞.  

THEOREM 1.   Suppose Assumptions (A.1) - (A.3) are satisfied, then 

ܺ௜(ܶ) − ෠ܺ௜(ܶ)
௉
→  0 

PROOF.   The boundedness of λ(t) and (ݐ)ݔ implies that 

                                  തܺ௜(ܶ) − ෠ܺ௜(ܶ) = (
௫೔(௧)

ఒ೔(௧)
∗ ்(௜ܯ =

ଵ

்
׬

௫೔(௧)

ఒ೔(௧)

்
଴

            ,(ݐ)௜ܯ݀

is a zero-mean,  Ӻ் −martingale.  Under Assumptions (A.1) - (A.3), 

ܧ்݌ݑݏ                     ൜ቀ
௫೔(௧)

ఒ೔(௧)
∗ ቁ(ݐ)௜ܯ

்

ଶ
ൠ < ∞. 

Hence, (
௫೔(௧)

ఒ೔(௧)
∗  is a square-integral function, and the process ்((ݐ)௜ܯ

                                 〈
௫೔(௧)

ఒ೔(௧)
∗ ்〈(ݐ)௜ܯ =

ଵ

்మ ׬
௫೔(௧)௫೔(௧)೅

ఒ೔(௧)

்
଴

݀t 

is the quadratic variation of (
௫೔(௧)

ఒ೔(௧)
∗  Since the square of a .(Kallianpur 1980) ்((ݐ)௜ܯ

square-integral martingale ቀ
௫೔(௧)

ఒ೔(௧)
∗ ቁ(ݐ)௜ܯ

்

ଶ
 is dominated by its quadratic variation, we 

can apply Lenglart’s inequality here (Karr 1986): 

ݎܲ ቊቤ
1
ܶ

න
(ݐ)௜ݔ

(ݐ)௜ߣ

்

଴
ቤ(ݐ)௜ܯ݀ ≥ ቋߝ ≤

ߟ
ଶߝ + ݎܲ ቊ

1
ܶଶ න

்(ݐ)௜ݔ(ݐ)௜ݔ

(ݐ)௜ߣ

்

଴
݀t ≥ ηቋ, 

for any ߝ, η > 0, and finite study interval [0, ܶ]. By Chebyshev’s inequality,  

ݎܲ ቊ
1

ܶଶ න
்(ݐ)௜ݔ(ݐ)௜ݔ

(ݐ)௜ߣ

்

଴
݀t ≥ ηቋ 

≤
1

ηଶܶଶ ܧ ቊන
்(ݐ)௜ݔ(ݐ)௜ݔ

(ݐ)௜ߣ

்

଴
݀tቋ 
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≤
1

ηଶܶଶ ܧ ቊsup
௧∈்

்(ݐ)௜ݔ(ݐ)௜ݔ

(ݐ)௜ߣ
ቋ 

By Assumptions (A.1) - (A.3), the right hand side of the above expression converges to 

zero as ܶ → ∞, which complete the proof that  

ܺ௜(ܶ) − ෠ܺ௜(ܶ)
௉
→  0.  ■ 

2.2.3 Asymptotic Properties of Constrained Estimators 

To demonstrate the asymptotic behavior of an estimator, a typical assumption is that the 

true value of the parameter lies in the interior of a parameter space. This assumption is 

convenient, but in the current context, the true parameter value may lie on the boundary 

of a parameter space in our constrained optimization problem. The asymptotic behaviors 

of estimators in constrained regression models have been examined by many 

investigators. Liew (1976) studied the asymptotic as well as small sample properties of 

inequality constrained least squares (ICLS) estimates (Liew 1976). However, inference 

based on Liew’s method may be misleading because his expression for the covariance 

matrix of the ICLS estimator is contingent upon knowing which constraints are active 

and which are not. Geweke (1986) points out that this variance matrix is ill-posed, since 

in practice it is hardly possible to know which constraints will be active ahead of time 

(Geweke 1986). Self and Liang (1987) considered the asymptotic behaviors of maximum 

likelihood estimators on the boundary relying on the Chernoff regularity conditions 

(Chernoff 1954; Self and Liang 1987). Let 〈ݔ,  denote the standard scalar product of 〈ݕ

two vectors ݔ, ݕ ∈ ܴ௉. And by ‖ݔ‖ = ,ݔ〉  ଵ/ଶ denote the Euclidean norm of vector. By〈ݔ

,ݔ)ݐݏ݅݀ ܵ) = ݅݊ ௭݂∈ௌ||ݔ −  ,||ݖ

we denote the distance from a point ݔ ∈ ܴ௉ to the set ܵ.  
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Chernoff conditions require that the parameter space ܵ ∈ ܴ௉ be approximated at ߠ଴ by a 

cone ܥௌ with vertex at ߠ଴.  More specifically, Self and Liang (1987) require that  

inf
௫∈஼ೄ 

|| ݔ − ݕ || = ݕ‖)݋ − ݕ∀   (‖଴ߠ ∈ ܵ 

and 

inf
௬∈ௌ

|| ݔ − ݕ || = ݔ‖)݋ − ݔ∀   (‖଴ߠ ∈  . ௌܥ

Recall that a cone is a set ܥ in ܴ௉ has the property that ݔ ∈ ݔ)ߣ implies ܥ − (଴ߠ + ଴ߠ ∈

ߣ for all ,ܥ ≥ 0.   

Geyer (1994) pointed out that the above definition is closely related to various tangent 

cones used in the optimization literature. The limit sets 

ௌܶ(ݔ) = lim sup
௧↓଴

ܵ − ݔ
ݐ

 , 

and 

തܶௌ(ݔ) = lim inf
௧↓଴

 ܵ − ݔ
ݐ

  

are respectively called contingent (Bouligand) and inner cones to ܵ at ݔ ∈ ܵ. A vector 

 ௡ decreasing toݐ lies in the contingent tangent cone if and only if there exist a sequence ߴ

0 and a sequence ݔ௡ in ܵ converging to ݔ such that 
௫೙ି௫

௧೙
→  lies in ߴ Similarly, a vector .ߴ

the inner tangent cone if and only if for every sequence ݐ௡ decreasing to 0 there exists a 

sequence ݔ௡ in ܵ converging to ݔ such that 
௫೙ି௫

௧೙
→  By definition of limits superior and .ߴ

inferior, we have തܶௌ(ݔ) ⊂ ௌܶ(ݔ). Both contingent and inner cones are closed. The 

parameter set ܵ is Chernoff regular at a point ݔ ∈ ܵ if തܶௌ(ݔ) = ௌܶ(ݔ) (Geyer 1994).  

Figure 2.1 illustrates a tangent cone which is Chernoff regular at a point ݔ, from which 

we can observe that contingent and inner cones coincide with each other. 
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                                    Figure 2.1 An illustration of tangent cone  

Let ܻ denote a random variable sampled from a probability distribution indexed by a 

parameter ߠ = ,ଵߠ) … , ܵ takes values in a parameter space ߠ ௣), whereߠ ⊂ ܴ௉, with some 

௝ߠ  possibly lying on the boundary of ܵ. Suppose that ଵܻ, … , ௡ܻ are independent sample of 

ܻ. Let {݂(∙; :(ߠ ߠ ∈ ܵ} denote a family of real-valued functions on ܻ such that 

,ܻ)݂}ܧ ܺ; {(ߠ < ∞, where ܺ are predictors of ܻ which can be either known or random 

variables. Let ߠ෠௡denote the M-estimator, obtained by maximizing an objective function  

(ߠ)௡ܨ = ෍ ݂( ௜ܻ , ܺ௜; (ߠ
௡

௜ୀଵ

 

subject to the constraint that ߠ෠௡ ∈ ܵ.  
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Inspired by Self and Liang (1987), and Wong et. Al (2016), we invoke the following 

assumptions throughout the paper.  

(B.1) The first three derivatives of ݂(∙; ݆)  ௝ߠ with respect to each (ߠ = 1, … ,  exist on (݌

the intersection of a neighborhood ܰ of the true parameter value ߠ଴ and ܵ. If ߠ௝  is on the 

boundary, then the derivatives are taken from the appropriate sides. 

(B.2) The first derivative of ܨ௡(ߠ଴) satisfies 

݊ିଵܷ௡(ߠ଴) = ݊ିଵ ൤
߲

଴ߠ߲
൨(଴ߠ)௡ܨ → 0,    

with probability one, as ݊ → ∞. 

(B.3) The Hessians 

݊ିଵ(ߠ)࢔ܪ = ݊ିଵ ቂ
డ૛

డఏడఏ೅  ,ቃ(ߠ)௡ܨ

݊ିଵܪ௡(ߠ) → ݊ with probability one, as (ߠ)ܫ− → ∞, and (ߠ)ܫ is positive definite. 

(B.4) There exists a function ܯ(ܻ) such that  

                                   ฬ
డయ

డఏೕఏೖఏ೗
݂(ܻ, ܺ; ฬ(ߠ   (ܻ)ܯ >

for all ܻ in the support of ݂(ܻ, ܺ;  on the intersection of neighborhood ℕ of ߠ and all(ߠ

{(ܻ)ܯ}ܧ ଴ and ܵ andߠ < ∞. 

(B.5) The intersections of ܵ and the closure of the neighborhood ℕ centered about ߠ଴ 

constitute closed subsets of ܴ௉.  

(B.6) The model is identifiable. 

Note that Assumptions (B.2) and (B.3) are not the same as in Wong et al. (2016). The 

revisions allow a more general result.  For example, Wong et al. (2016) assume that 

ܧ ቂ
డ

డఏబ
ቃ(଴ߠ)௡ܨ = 0 which together with independence implies (B.2) by the law of large 
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numbers. While this unbiasedness condition is still satisfied by the elements of the 

objective function with error-free predictors, it is not satisfied if we replace the error-free 

predictors with observed variables which are subject to measurement errors. However, 

assumption (B.2) remains satisfied provided that observed variables converges to the true 

variables (i.e., ෠ܺ௜(ܶ) → ܺ௜(ܶ)) as ݊ → ∞. Assumption (B.3) is modified as well so as to 

ensure that the constrained maximizer is unique. The following theorem demonstrates 

that ߠ෠௡ is a consistent estimator for ߠ଴: 

THEOREM 2.   Under Assumption (B.1) - (B.6), as ݊ → ∞ there exists a sequence of 

points ߠ෠௡ in the parameter set ܵ,  at which local maxima of ܨ௡(ߠ) occur, and that 

converges to ߠ଴ in probability. Moreover, ݊ଵ/ଶ൫ߠ෠௡ − ଴൯ߠ = ܱ௉(1). 

PROOF.   Take any ߜ > 0, let ܰ(ߠ଴,  ଴. Since theߠ denote the neighborhood of (ߜ

intersection of ܵ and the closure of ߜ is closed, ܨ௡(ߠ) must have a local maximum on this 

set. The consistency of ߠ෠௡ may be shown by proving that ܨ௡(ߠ) <  with (଴ߠ)௡ܨ

probability tending towards one for all ߠ in ܵ that are at a distance ߜ from ߠ଴.  Similar to 

arguments by Lehmann (1983, pp. 429-432), we expand ݊ିଵܨ௡(ߠ) about ߠ଴ through the 

Taylor series (Lehmann 1998), 

݊ିଵܨ௡(ߠ) − ݊ିଵܨ௡(ߠ଴) = ଵܶ + ଶܶ + ଷܶ, 

where 

ଵܶ = ݊ିଵܷ௡(ߠ଴)்(ߠ −  ,(଴ߠ

ଶܶ = (2݊)ିଵ(ߠ − ߠ)(଴ߠ)௡ܪ்(଴ߠ −  ,(଴ߠ

ଷܶ =
ଵ

଺
∑ ∑ ∑ ൫ߠ௝ − ௞ߠ)௝଴൯ߠ − ௟ߠ)(௞଴ߠ − (௟଴ߠ ଵ

௡
∑ డయ

డఏೕఏೖఏ೗
݂( ௜ܺ; ௡(∗ߠ

௜ୀଵ
௣
௟ୀଵ

௣
௞ୀଵ

௣
௝ୀଵ , 
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and ߠ∗ lies between ߠ and ߠ଴. To prove ܨ௡(ߠ) − (଴ߠ)௡ܨ < 0 for all ߠ in ܵ  that are at a 

distance ߜ from ߠ଴ with probability approaching one, we need to show that for any 

sufficiently small ߜ, the maximum of ଶܶ is negative, while ଵܶ and ଷܶ are smaller than ଶܶ. 

By Assumption (B.2), |݊ିଵܷ௡(ߠ଴)| < | ଶ and henceߜ ଵܶ| <  ଷ with probability tendingߜ݌

to one. For ଶܶ, consider 

2 ଶܶ = ߠ)− − ߠ)(଴ߠ)ܫ்(଴ߠ − (଴ߠ + ߠ) − (଴ߠ)௡ܪ଴)்{݊ିଵߠ + ߠ){(଴ߠ)ܫ −  .(଴ߠ

Analogous to the argument for ଵܶ, the absolute value for the second term is less than 

 ଷ with probability tending to one. The first term is a nonrandom quadratic form ofߜଶ݌

ߠ) − ∑ ଴). This can be reduced to a diagonal formߠ ௜ߦ௜ߣ
ଶ by an orthogonal transformation, 

which becomes ∑ ௜ߦ
ଶ = ܵ ଶ  within the closed setߜ ∩ ,଴ߠ)ܾ ∑ so that ,(ߜ ௜ߦ௜ߣ

ଶ ≤  .ଶߜଵߣ

Combining the first and second terms, there exists ܿ > 0 such that ଶܶ <  ଶ withߜܿ−

probability approaching one. By assumption (B.4), we have 

|
1
݊

෍
߲ଷ

௟ߠ௞ߠ௝ߠ߲
݂( ௜ܺ; (∗ߠ

௡

௜ୀଵ

| < 2݉ 

and hence | ଷܶ| < ܵ  ଷ  with probability tending to one in the closed setߜܾ ∩ ,଴ߠ)ܾ  ,(ߜ

where ܾ = ଷ݉݌ 3⁄ . Combining three inequalities, we have max( ଵܶ + ଶܶ + ଷܶ) <

ଶߜܿ− + (ܾ + ߜ ଷ. This quantity is less than zero ifߜ(݌ < ܿ (ܾ + ⁄(݌ , which proves the 

local maxima ߠ is consistent for estimating ߠ଴ with a closed set ܵ.    

The proof of root-݊ consistency (i.e., ݊ଵ/ଶ൫ߠ෠௡ − ଴൯ߠ = ܱ௉(1)) follows Lemma 1 of 

Chernoff (1954). By taking the Taylor series expansion of ݊ିଵܨ௡(ߠ) over the close set ܵ, 

we have 

݊ିଵܨ௡൫ ߠ෠௡൯ = ݊ିଵܨ௡( ߠ଴) + ݊ିଵܷ௡
ᇱ ෠௡ߠ൫(଴ߠ) − ଴൯ߠ + 2݊ିଵ൫ߠ෠௡ − ଴൯ߠ

ᇱ
ఆߠ)(଴ߠ)௡ܪ −  (଴ߠ

෠௡ߠ|+                                     − ଴|ଷߠ ∙ ܱ௉(1)                                                   (2.6)                                          
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Since ߠ෠௡ is consistent for ߠ଴, we have that for any ߳ > 0 there exists a sequence of ܿ௡ఢ →

0 and a ܭఢ such that with probability greater than 1 − ߳ 

หߠ෠௡ − ଴หߠ < ܿ௡ఢ , 

|݊ିଵܷ௡(ߠ଴)| <
ఢܭ

√݊
 , 

and 

෍ ෍(ܪ௡௝௞(ߠ଴) + ଶ((଴ߠ)௡௝௞ܫ

௣

௞ୀଵ

௣

௝ୀଵ

< ܿ௡ఌ 

and the third term is less than หߠ෠ௌ − ଴หߠ
ଷ

 ,ఢ. Provided that these inequalities are satisfiedܭ

there exists ܭఢ
∗ such that expression (2.6) is less than 

−
1
2

൫ߠ෠ௌ − ଴൯ߠ
ᇱ
෠ௌߠ൫(଴ߠ)ܫ − ଴൯ߠ + ఢܭ

∗ ቆ
หߠ෠ௌ − ଴หߠ

√݊
+  ܿ௡ఢหߠ෠ௌ − ଴หߠ

ଶ
ቇ < 0. 

The theorem follows since otherwise 
หఏ෡ೄିఏబห

√௡
 will diverge which contradicts the 

requirement that expression (2.6) is less than zero with probability tending to one as ݊ →

∞. ■ 

The next theorem describes the asymptotic distribution for the M-estimator θ෠ , some of 

which may lie on the boundary of its parameter space.  

THEOREM 3.    Let ܼ be a random variable with a multivariate Gaussian distribution 

with mean ߠ and covariance matrix ିܫଵ(ߠ଴), where ߠ is restricted to lie in ܥௌ −  ଴. Letߠ

 ܼ based on a single realization of ߠ ෠ ofߠ denote the distribution of the M-estimator ܩ

when ߠ = 0 , then under conditions (B.1) – (B.6), the limiting distribution is 

݊ଵ/ଶ൫ߠ෠௡ − ଴൯ߠ →ௗ  .ܩ
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PROOF.  The proof of the limiting distribution of ݊ଵ/ଶ൫ߠ෠௡ −  ଴൯ depends on twoߠ

approximations. First, ܵ is approximated by a cone ܥௌ in which ܨ௡(ߠ) is maximized. This 

can be proved through the root-n consistency of ߠ෠௡ and the definition of approximating 

cones shown previously. The second approximation relies on the argument in Lemma 1 

by Self and Liang (1987). For ߠ restricted in ܥௌ −  ෠௡ satisfyߠ ଴, the M-estimatorsߠ

෠௡ߠ − ଴ߠ = ܼ௡ +  ,௉൫݊ିଵ/ଶ൯݋

where ܼ௡ = ݊ିଵିܫଵ(ߠ଴)ܷ௡(ߠ଴). Moreover, the root-n consistency of the M-estimators 

indicate that ߠ෠௡ − ଴ߠ = ܱ௉൫݊ିଵ/ଶ൯. For large ݊, we thus have 

 2 ቀ݊ିଵܨ௡൫ߠ෠௡൯ − ݊ିଵܨ௡(ߠ଴)ቁ   

= 2݊ିଵܷ௡(ߠ଴)்൫ߠ෠௡ − ଴൯ߠ + ݊ିଵ൫ߠ෠௡ − ଴൯ߠ
்

෠௡ߠ൫(଴ߠ)௡ܪ − ଴൯ߠ + ܱ௉൫݊ିଵ/ଶ൯                                                                                                          

= 2݊ିଵܷ௡(ߠ଴)்൫ߠ෠௡ − ଴൯ߠ − ൫ߠ෠௡ − ଴൯ߠ
்

෠௡ߠ൫(଴ߠ)ܫ − ଴൯ߠ

+ ൫ߠ෠௡ − ଴൯ߠ
்

{݊ିଵܪ௡(ߠ଴) + ෠௡ߠ൫{(଴ߠ)ܫ − ଴൯ߠ + ܱ௉൫݊ିଷ/ଶ൯ 

Assumptions B.3 and B.4 together imply that the elements of ݊ିଵܪ௡(ߠ଴) +

 converge in distribution to a normal distribution as ݊ increases so that (଴ߠ)ܫ

݊ିଵܪ௡(ߠ଴) + ෠௡ߠ ௉൫݊ିଵ/ଶ൯.  Moreover, sinceܱ=(଴ߠ)ܫ −  ଴ is ܱ௉൫݊ିଵ/ଶ൯, the third term inߠ

this expression is ܱ௉൫݊ିଵ/ଶ൯. Therefore, the expression above equals  

−{൫ߠ෠௡ − ଴൯ߠ
்

෠௡ߠ൫(଴ߠ)ܫ − ଴൯ߠ − 2݊ିଵܷ௡(ߠ଴)்൫ߠ෠௡ − ଴൯ߠ + ݊ିଶܷ௡
{(଴ߠ)௡ܷ(଴ߠ)ଵିܫ(଴ߠ)்

+ ݊ିଶܷ௡
(଴ߠ)௡ܷ(଴ߠ)ଵିܫ(଴ߠ)் + ܱ௉൫݊ିଷ/ଶ൯ 

= −൛݊ିଵܷ௡
(଴ߠ)ଵିܫ(଴ߠ)் − ൫ߠ෠௡ − ଴൯ൟߠ

்
ଵܷ௡ି݊}(଴ߠ)ܫ

(଴ߠ)ଵିܫ(଴ߠ)் − ෠௡ߠ) − {(଴ߠ

+ ݊ିଶܷ௡
(଴ߠ)௡ܷ(଴ߠ)ଵିܫ(଴ߠ)் + ܱ௉൫݊ିଷ/ଶ൯ 
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= −൛ܼ௡ − ൫ߠ෠௡ − ଴൯ൟߠ
்

൛ܼ௡(଴ߠ)ܫ − ൫ߠ෠௡ − ଴൯ൟߠ + ݊ିଶܷ௡
(଴ߠ)௡ܷ(଴ߠ)ଵିܫ(଴ߠ)் +

ܱ௉൫݊ିଷ/ଶ൯. 

Letting ݑ = ݊ଵ/ଶ൫ߠ෠௡ −   ଴൯, we then haveߠ

(ݑ)௡ߖ = 2 ቀܨ௡൫ߠ଴ + ݊ଵ/ଶݑ൯ −  ቁ(଴ߠ)௡ܨ

= −൛݊ଵ/ଶܼ௡ − ൟݑ
்

൛݊ଵ/ଶܼ௡(଴ߠ)ܫ − ൟݑ + 2݊ିଵܷ௡
(଴ߠ)௡ܷ(଴ߠ)ଵିܫ(଴ߠ)் + ܱ௉൫݊ଵ/ଶ൯                                                                                                                      

→ௗ  − (ܹ − ܹ)(଴ߠ)ܫ்(ݑ − (ݑ + ܹ(଴ߠ)ܫ்ܹ =  (ݑ)ߖ

where W~N(0,  is dominated by the first (ݑ)௡ߖ ,As justified in Theorem 1 .((଴ߠ)ଵିܫ

quadratic term, thus ݑ maximizes ߖ௡(ݑ) in ܥ −  ෠௡൯ over theߠ௡൫ܨ ෠௡ maximizesߠ ଴whenߠ

cone ܥ. Since the limit law of W is multivariate Gaussian with mean 0 and covariance 

matrix ିܫଵ(ߠ଴), the proof is completed. ■  

Self and Liang (1987) demonstrated that the M-estimator ߠ෠ has an asymptotic normal 

distribution if the true value ߠ଴ is the interior point of ܵ. Otherwise, non-normal 

asymptotic behavior of optimized estimators can appear if ߠ଴ belongs to the boundary of 

the set of feasible solutions (Roese-Koerner et al. 2012; Self and Liang 1987). Figure 2.2 

illustrates the behaviors of probability density function (pdf) with versus without 

constraints for a single parameter. The dashed red curve represents the pdf under normal 

distribution, while the solid black line denotes the pdf restricted to the interval [0, 1]. 

Based on Figure 2.2 (A) (Figure 2.2 (C)), we can see that the constrained pdf is not 

normally distributed any more in the presence of constraints, and that we tend to obtain 

overestimated (underestimated) mean value (i.e., ்ߤ) when the expected mean value 

(݅. ݁. ,  ே) is closed to the lower (upper) bound of constraints. On the contrary, theߤ
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expected mean value and constrained mean value are almost the same when the true 

value falls within the interior of the parameter space.  

 

Figure 2.2 Effect of constraints on the probability density function for a parameter with 

expected value ߤே.  

Theorems 2 and 3 justify consistency and limiting distribution of local maxima when 

some estimators may lie on the boundary of the parameter space. However, it is not 

uncommon that the M-estimators calculated by an iterative optimization routine can be 

trapped in a locally optimal solution if the constrained objective function not convex. 

That is, root-n consistent sequence of local maximizers may have different asymptotic 

distribution as the global maximizers. Geyer (1994) and Shapiro (2000) argued that 

Chernoff regularity is not sufficient for asymptotic equivalence of root-n consistent local 

M-estimators to hold (Geyer 1994; Shapiro 2000). Assuming that the parameter set ܵ is 

approximated by a cone and is closed, Shapiro suggested that nearly convexity and prox-

regularity of ܵ is required for obtaining the asymptotic equivalence of the local and 

global maximum estimators on the boundary of a parameter space (Shapiro 2000). By 
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Shapiro (2000), the set ܵ is nearly convex if at a point ݔ଴ ∈ ܵ, there exist a neighborhood 

ℕ of ݔ଴ and a function ݇(ݔ, ݔ ᇱ) tending to zero asݔ → ′ݔ ,଴ݔ →   ଴, such thatݔ

ᇱݔ൫ݐݏ݅݀             − ,ݔ ௌܶ(ݔ)൯ ≤ ,ݔ)݇ ᇱݔ‖(ᇱݔ − ,ݔ∀     ‖ݔ ᇱݔ ∈ ܵ ∩ ℕ.   

The set ܵ is prox-regular if at a point ݔ଴ ∈ ܵ, there exist a neighborhood ℕ of ݔ଴ and a 

positive constant ܭ such that 

ᇱݔ൫ݐݏ݅݀                     − ,ݔ ௌܶ(ݔ)൯ ≤ ᇱݔ‖ܭ − ,ݔ∀     ଶ‖ݔ ᇱݔ ∈ ܵ ∩ ℕ.   

Therefore, the asymptotic properties for the M-estimators ߠ෠ in the current study implied 

in Theorems 2 and 3 depend on propositions as follows. 

Proposition 1. The parameter space ܵ in the current study is nearly convex and prox-

regular. 

Recall that a parameter space is combinations of all possible values for different 

parameters contained in a particular model. Since the candidate values for parameters in 

the inequality constrained models are restricted in a closed unit cube which is convex, it 

follows that the parameter set ܵ in the current study is nearly convex and prox-regular in 

terms of Shapiro (2000).  

The proof of convexity of the objective function in the current study requires the 

following lemma. 

Lemma 1. If a function ܨ is strictly convex, and ܵ ∈ ܴ௉ is closed convex set, then the 

optimization problem 

                                            ݉݅݊ .ݏ                    (ݕ)ܨ ݕ  .ݐ ∈ ܵ                                            

has a unique solution if it has any solutions in ܵ.           
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PROOF.    Assume both ݔଵ and ݔଶ are optimal solution to (ݔ)ܨ which is subject to ݔ ∈ ܵ, 

then we have 
௫భା௫మ

ଶ
∈ ܵ due to the convexity of set ܵ. By strictly convexity of ܨ, we have 

ܨ ൬
ଵݔ + ଶݔ

2
൰ <

1
2

(ଵݔ)ܨ +
1
2

(ଶݔ)ܨ = (ଵݔ)ܨ =  (ଶݔ)ܨ

This contradicts that ݔଵ and ݔଶ are both optimal solutions, and hence follows that the 

optimization problem has a unique solution if function ܨ is strictly convex, and ܵ ∈ ܴ௉ is 

closed convex set. Clearly, the OLS estimator in (2.2) is strictly convex, so parameter 

estimation based on it has a unique optimized solution on the unit cube. 

So far, we have demonstrated that the local and global optimized solutions are the same 

in current paper, and thus Self and Liang’s method can be applied to show the asymptotic 

behaviors for the parameter estimates in the constrained linear regression models. Next, 

we will demonstrate that Assumptions (B.1) to (B.6) are satisfied for the objective 

function defined as the negative value of (2.2) for the constrained linear probability 

model.  

Preposition 2. Assuming linear independence of vectors ܺ௜, assumptions (B.1) to (B.6) 

are satisfied in the constrained linear probability model with the objective function 

(ߠ)௡ܨ = − ∑ [ ௜ܻ − ௜]ଶ௡்ܺߠ
௜ୀଵ . 

PROOF.   The identifiability of the model is straightforward, and thus assumption (B.6) 

is satisfied. Assumption (B.5) is satisfied as well since the parameter space ܵ is the unit 

cube, a closed convex set. For each ߠ௝  (݆ = 1, … ,  on the intersection of neighborhood (݌

ℕ of the true parameter value ߠ଴ and ܵ, we obtain the first three derivative of ܨ௡(ߠ), 

߲
ߠ߲

(ߠ)௡ܨ = ෍ ( ௜ܻ − ௜)ܺ௜்ܺߠ

௡

௜ୀଵ
,       
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߲
்ߠߠ߲ (ߠ)௡ܨ = − ෍ ܺ௜ܺ௜

்
௡

௜ୀଵ
,       

and obviously the third derivative of ߠ is zero. Hence, assumption (B.1) is satisfied, and 

assumption (B.4) follows immediately. Assumptions (B.2) follows directly from  

ܧ ൤
߲

 ଴ߠ߲
݂(ܺ௜ , ଴ )൨ߠ = ൣܧ ௜ܻܺ௜

் −  ଴ߠ
்ܺ௜ܺ௜

்൧ = 0, 

and the law of large numbers since the terms in ݊ିଵܷ௡(ߠ଴ ) are bounded between -1 and 

1. Furthermore,  ݊ିଵܪ௡(ߠ଴ ) is the mean of i.i.d. random bounded variables ்ܺܺ,  so the 

convergence of ݊ିଵܪ௡(ߠ) follows from the law of large numbers. Convergence of 

݊ିଵܪ௡(ߠ)to a positive definite matrix (ߠ)ܫis ensured since the predictors are linearly 

independent. This completes the proof.  

Proposition 2 together with Theorem 3 demonstrates that the constrained OLS estimators 

-෠ are approximately distributed as a multivariate normal random vector with varianceߠ

covariance matrix: 

(்ܺܺ)ିଵ்ܸܺܺ(்ܺܺ)ିଵ 

restricted to lie on the unit cube, where ܸ is a diagonal matrix with diagonal elements 

௜ܸ௜ = ෠்ܺ௜(1ߠ − ݅) (෠்ܺ௜ߠ = 1, … , ݊). Assumption (B.2) is not satisfied for the objective 

function with a weighting term (i.e., ܨ௡(ߠ) = − ∑ ௜ݕ]௜ݓ − ௜(ܶ)]ଶ௡்ܺߠ
௜ୀଵ ), which implies 

that estimates it yields biased estimators.  

In the current study, the location contexts ܺ௜ are unobservable. We demonstrate that 

assumptions (B.1) to (B.6) are also satisfied when ܺ௜ is substituted by ෠ܺ௜ . Here, we 

assume that ௡ܶ → ∞ ܽ݊݀ ݊ → ∞, so that ܺ௜
௉
→ ෠ܺ௜  as demonstrated in Theorem 1. 
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Preposition 3. The assumptions (B.1) to (B.6) are also satisfied when unobserved ܺ௜ are 

replaced with design-unbiased estimators ෠ܺ௜ in the constrained linear probability model. 

PROOF.  Similar to justification of Preposition 3, assumptions (B.1) and (B.4) - (B.6) are 

satisfied when ܺ௜ are replaced with design-unbiased estimators ෠ܺ௜  in the objective 

function in the current study. To demonstrate that assumption (B.2) is satisfied, take  

                 
డ

డఏబ 
∑ ݂൫ ௜ܻ , ෠ܺ௜ , ଴ ൯ߠ

௡
௜ୀଵ  

=
డ

డఏబ 
∑ ݂( ௜ܻ , ܺ௜ , ( ଴ߠ

௡
௜ୀଵ + ቂ 

డ

డఏబ 
∑ ݂൫ ௜ܻ , ෠ܺ௜ , ଴ ൯ߠ

௡
௜ୀଵ −

డ

డఏబ 
∑ ݂( ௜ܻ , ܺ௜ , ( ଴ߠ

௡
௜ୀଵ ቃ,      

we can see that the first term 
డ

డఏబ 
∑ ݂( ௜ܺ , ( ଴ߠ

௡
௜ୀଵ  goes to zero under Preposition 2, and the 

second term also goes to zero since the function ݂ is continuous at ܺ௜ by the continuity 

theorem found in Theorem 1.1 in the book written by (Boos and Stefanski 2013). 

Therefore, assumption (B.2) is satisfied here. Similarly, assumption (B.3) follows from 

the continuity Theorem.  

2.2.4   Confidence interval estimation 

It is challenging to obtain the confidences intervals in the presence of constraints in the 

parameter space. The standard procedure for obtaining confidence intervals is not 

satisfactory under a constrained parameter space because it does not take into account the 

information regarding the constraints. Methods for constructing confidence bounds in a 

constrained parameter space have been widely investigated (Mandelkern 2002; Roe and 

Woodroofe 2001; Wang 2008; Zhang and Woodroofe 2003). Among various options for 

setting confidence intervals under boundary constraints, the Bayesian credible interval 

stands out because it yields the shortest expected length for confidence intervals in most 

cases (Wang 2008).  
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Analogous to the frequentist confidence interval, the Bayesian approach delineates a 

region which contains a large fraction of the posterior mass of a parameter. One approach 

for obtaining this is the region of the highest posterior density (HPD) (Box and Tiao 

1992), which treats the boundary constraints as its prior information and describing it 

with uniform distribution (Koch 1990). The practical implementation of HPD relies on 

Markov chain Monte Carlo (MCMC) techniques (Chen and Shao 1999). One appealing 

feature of the HPD confidence region is that it does not require the confidence region to 

be equal-tailed, so it performs well even when the parametric function is asymmetric (Liu 

et al. 2015; Vexler et al. 2016). Additionally, Tian et al. (2011) demonstrate that the HPD 

credible region is asymptotically unbiased for parameters with normal distribution (Tian 

et al. 2011). In the current study, we calculated HPD credible intervals for parameter 

estimates obtained from the constrained linear probability model. 

2.3 SIMULATIONS 

Simulations were carried out so as to mimic the properties of the COHSONET data. The 

constrained linear probability model (expression (2.1)) was used to generate independent 

observations of the Bernoulli random variable ௜ܻ , representing the TB conversion 

indicator, where the elements of the 1×݌ vector of parameters are constrained to lie 

between zero and one. The elements of the 1×݌ vector of covariates ܺ௜. give the 

proportions of time participants spent in in each of the ݌ location contexts and so are 

constrained to lie between zero and one and to sum up to one. Therefore, the vectors ܺ௜. 

were independently sampled from a Dirichlet distribution to fulfill such constraints. 
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The simulations aim to compare the performance of the constrained linear probability 

model to the logistic regression model. To be specific, we seek to evaluate the behavior 

of ordinary least square (OLS) and weighted least square (WLS) estimators in the 

constrained linear probability model, and maximum likelihood estimate (MLE) and bias-

reduced penalized maximum likelihood estimate (PMLE) in the logistic regression 

model. We conducted simulations of 3 different scenarios: (A) An ideal setting where 

Dirichlet means are not closed to zero; (B) One location context with a Dirichlet mean 

close to zero; and (C) The location contexts ܺ௜. are not directly observed but estimated 

from data. For each scenario, we explored the impacts of setting a parameter close to the 

boundary of the parameter space. To explore the impact of sample size, sample sizes 

were set to 100, 300, and 1000.  Each simulation was replicated 1000 times. We 

compared empirical mean bias, empirical standard deviation (SD) and percent coverage 

of nominal 95% confidence intervals (CR). 

2.3.1 Scenario A: known proportions, no small Dirichlet means 

Under this scenario,  ݌ = 3 with Dirichlet means for location contexts of 0.25, 0.35, and 

0.40, respectively. We fixed the parameters for the first two location contexts to ߚଵ =

0.20, and ߚଶ = 0.70.  For the last location context, we took ߚଷ equal to 0.01, to 0.50, and 

0.75, so as to investigate the potential impacts of setting this parameter at different 

location within the constrained parameter space on proposed statistical approaches.  

Simulation results for Scenario A are presented in Table 2.1. When ߚଷ lies well within 

the interior of parameter space (i.e.,  ߚଷ =  PMLE appeared to perform the ,(0.75 ݎ݋ 0.5

best with respect to empirical standard deviation, while OLS yielded the smallest 

empirical bias. Nevertheless, the s empirical standard deviations of the OLS estimates 
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were not much larger than those of the PMLE. Percentage coverage of 95% confidence 

intervals for OLS and MLE estimators were good, but PMLE had 100% coverage 

throughout. Increasing the sample size tended to reduce empirical bias and standard 

deviation of OLS, MLE, and PMLE estimates. As expected, WLS estimates had smaller 

standard deviations of parameter estimates than OLS estimates. However, WLS yielded 

large biases regardless of sample size, a result which is consistent with the observation 

that the derivative of the weighted sum of squared residuals with respect to the model 

parameter ߚ has non-zero expectation and hence yields an asymptotically biased 

estimating equation. Moreover, WLS tended to shrink parameters toward 0.5 because the 

empirical mean bias of WLS estimates tended to be positive when the true parameter 

value is less than 0.5, and tended to be negative when the true parameter value is greater 

than 0.5.  

When ߚଷ lies close to the boundary of the parameter space (i.e., ߚଷ = 0.01), OLS method 

appeared to perform best with respect to coverage of nominal 95% confidence intervals 

and empirical mean bias.  PMLE was successful in reducing bias relative to MLE method 

in the logistic regression model. WLS continued to perform poorly with respect to the 

empirical mean bias and percentage coverage of nominal 95% confidence intervals, 

especially for the larger sample sizes. 
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Table 2.1 Simulation results for Scenario A with known proportions: Bias, empirical mean difference of estimate and true parameter 
value; SD, empirical standard deviation of bias; CR, percentage coverage of nominal 95% confidence intervals. 

n Parameter 
True 
Value 

Constrained Linear Probability Model Logistic Regression Model 

OLS WLS MLE PMLE 

Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) 

100 
β1 0.2 -0.0050 0.1091 91.3 0.1355 0.0861 92.5 0.0184 0.1092 93.9 0.0291 0.1057 100.0 

β2 0.7 -0.0034 0.1031 92.7 -0.0674 0.0612 99.4 0.0327 0.0956 91.6 0.0226 0.0935 100.0 

β3 0.01 0.0177 0.0377 99.5 0.1349 0.0592 59.7 0.0523 0.0351 38.8 0.0050 0.0361 30.0 
300 

β1 0.2 -0.0037 0.0626 93.8 0.1402 0.0448 49.5 0.0128 0.0615 94.3 0.0168 0.0609 100.0 

β2 0.7 0.0023 0.0560 96.1 -0.0709 0.0319 94.2 0.0361 0.0516 90.5 0.0326 0.0513 92.3 

β3 0.01 0.0082 0.0236 98.6 0.1484 0.0443 8.1 0.0498 0.0204 3.9 0.0050 0.0020 1.8 
1000 

β1 0.2 -0.0021 0.0338 94.6 0.1417 0.0232 0.2 0.0113 0.0334 93.7 0.0125 0.0333 100.0 

β2 0.7 0.0005 0.0324 95.6 -0.0744 0.0180 29.9 0.0331 0.0298 79.3 0.0321 0.0297 100.0 

β3 0.01 0.0030 0.0136 98.7 0.1535 0.0226 0.0 0.0491 0.0110 0.0 0.0040 0.0111 0.0 
100 

β1 0.2 0.0006 0.1199 92.4 0.1321 0.0786 95.6 0.0208 0.1026 93.7 0.0304 0.1004 100.0 

β2 0.7 0.0011 0.1052 92.0 -0.0922 0.0588 97.6 -0.0028 0.0976 94.1 -0.0092 0.0952 100.0 

β3 0.5 -0.0001 0.1027 92.2 0.0001 0.0535 100.0 0.0002 0.1033 93.2 0.0000 0.1002 100.0 
300 

β1 0.2 -0.0017 0.0699 93.3 0.1375 0.0424 55.2 0.0160 0.0582 94.7 0.0194 0.0578 100.0 

β2 0.7 0.0047 0.0576 95.1 -0.0929 0.0315 88.3 0.0017 0.0537 95.3 -0.0005 0.0532 100.0 

β3 0.5 0.0003 0.0569 94.7 0.0007 0.0291 100.0 0.0002 0.0577 95.1 0.0000 0.0571 100.0 
1000 

β1 0.2 -0.0001 0.0379 94.1 0.1573 0.1029 0.7 0.0157 0.0319 92.1 0.0168 0.0318 100.0 

β2 0.7 0.0010 0.0325 95.2 -0.0842 0.0687 4.8 -0.0013 0.0303 95.5 -0.0020 0.0302 100.0 

β3 0.5 -0.0001 0.0321 94.3 0.0146 0.0855 96.9 0.0000 0.0326 94.9 0.0000 0.0325 100.0 

Table 2.1 (Continued) 
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Table 2.1 (Continued) 

n Parameter 
True 
Value 

Constrained Linear Probability Model Logistic Regression Model 

OLS WLS MLE PMLE 

Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) 

100 
β1 0.2 -0.0020 0.1187 93.7 0.1300 0.0770 96.4 0.0171 0.0992 94.6 0.0268 0.0973 100.0 

β2 0.7 -0.0003 0.1025 93.0 -0.0927 0.0591 98.1 -0.0034 0.0986 94.2 -0.0095 0.0959 100.0 

β3 0.75 0.0017 0.0896 94.1 -0.0112 0.0555 94.8 -0.0004 0.0828 95.4 0.0000 0.0811 100.0 
300 

β1 0.2 -0.0009 0.0699 93.7 0.1376 0.0418 56.3 0.0156 0.0570 94.2 0.0190 0.0567 100.0 

β2 0.7 0.0036 0.0561 95.6 -0.0929 0.0317 82.6 0.0021 0.0543 95.7 -0.0001 0.0538 100.0 

β3 0.75 0.0000 0.0512 94.2 -0.0117 0.0304 39.2 -0.0004 0.0477 94.1 0.0000 0.0473 100.0 
1000 

β1 0.2 -0.0010 0.0384 93.8 0.1438 0.0574 0.5 0.0142 0.0316 92.5 0.0152 0.0315 100.0 

β2 0.7 0.0010 0.0320 94.9 -0.0922 0.0375 6.2 0.0001 0.0309 95.4 -0.0005 0.0308 100.0 

β3 0.75 -0.0001 0.0280 96.0 -0.0115 0.0348 100.0 -0.0005 0.0261 95.5 0.0000 0.0260 100.0 
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2.3.2 Scenario B: known proportions & a small Dirichlet mean  

We consider the scenario where ݌ = 4 with Dirichlet means for each location contexts of  

0.25, 0.35, 0.35, and 0.05.  We fixed the marginal effects of the first three location 

contexts to ߚଵ = ଶߚ ,0.20 = 0.50, and ߚଷ = 0.75.  For the last location context, we took 

 ସ equal to 0.01, 0.50 and 0.99, to investigate the potential impacts of parameters closedߚ

to the boundary.  

Simulation results for scenario B are shown as Table 2.2. When ߚସ lies well within the 

interior of parameter space (i.e, ߚସ = 0.5), similar to Section 2.3.1, PMLE appeared to 

perform the best with respect to empirical standard deviation and percentage coverage of 

95% confidence intervals; OLS estimates yielded the smallest empirical bias; and WLS 

estimates tended to shrink parameters toward 0.5. Increasing the sample size appeared to 

reduce bias and empirical standard deviations of OLS, MLE, and PMLE estimates. WLS 

continued to perform poorly irrespective of sample size. 

When ߚସ lies close to the lower boundary of the parameter space (i.e., ߚସ=0.01), OLS 

appeared to perform best with respect to empirical mean bias and coverage of nominal 

95% confidence intervals, especially when the sample size is large. PMLE appeared to 

perform better than OLS in a smaller sample with respect to the coverage of nominal 

95% confidence intervals. However, a close examination revealed that OLS estimates 

yielded empirical standard deviations competitive with PMLE in small samples. 

Therefore, OLS is superior to PMLE when some parameters lie closed to the boundary. 

As expected, PMLE was successful in reducing bias relative to MLE in the logistic 

regression model. Additionally, we can see that WLS approach performed poorly with 
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respect to empirical mean bias, and coverage of nominal 95% confidence intervals, 

especially for the larger sample sizes. When ߚସ lies close to the upper bound of the 

parameter space (i.e., ߚସ=0.99), the performance of all approaches appeared to be slightly 

improved and achieved similar results as ߚସ=0.01.  
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Table 2.2 Simulation results for Scenario B with known proportions & a small Dirichlet mean: Bias, empirical mean difference of 
estimate and true parameter value; SD, empirical standard deviation of bias; CR, percentage coverage of nominal 95% confidence 
intervals. 

n Parameter 
True 
Value 

Constrained Linear Probability Model Logistic Regression Model 

OLS WLS MLE PMLE 

Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) 

100 β1 0.20 -0.0032 0.1198 90.7 0.1294 0.0818 95.2 0.0188 0.1048 93.3 0.0274 0.1018 100.0 

β2 0.50 -0.0040 0.1098 92.4 0.0008 0.0587 99.7 0.0033 0.1113 94.4 0.0002 0.1095 97.6 

β3 0.75 -0.0055 0.1060 92.5 -0.1134 0.0644 95.1 -0.0064 0.0952 94.0 -0.0163 0.0932 100.0 

β4 0.01 0.0899 0.1718 99.1 0.1559 0.1784 99.3 0.1135 0.1629 80.9 0.1429 0.1564 100.0 
300 β1 0.20 0.0009 0.0711 92.7 0.1393 0.0442 54.5 0.0182 0.0605 93.4 0.0215 0.0600 100.0 

β2 0.50 -0.0013 0.0600 96.1 0.0017 0.0310 100.0 0.0031 0.0618 96.2 0.0024 0.0610 100.0 

β3 0.75 -0.0013 0.0581 94.3 -0.1156 0.0336 54.5 -0.0044 0.0521 94.6 -0.0077 0.0517 96.5 

β4 0.01 0.0453 0.0872 99.1 0.1611 0.1190 93.6 0.0829 0.0798 56.9 0.0956 0.0817 100.0 
1000 β1 0.20 -0.0020 0.0377 94.5 0.1407 0.0345 0.3 0.0132 0.0320 92.6 0.0142 0.0319 93.3 

β2 0.50 -0.0022 0.0347 94.3 0.0013 0.0238 99.8 0.0009 0.0356 94.3 0.0007 0.0355 100.0 

β3 0.75 -0.0012 0.0329 94.2 -0.1177 0.0238 0.0 -0.0049 0.0296 93.5 -0.0059 0.0295 100.0 

β4 0.01 0.0227 0.0457 98.5 0.1798 0.0659 41.8 0.0747 0.0391 8.9 0.0789 0.0396 7.1 
100 β1 0.20 -0.0003 0.1201 91.4 0.1301 0.0810 94.8 0.0188 0.1038 93.4 0.0284 0.1013 100.0 

β2 0.50 -0.0010 0.1104 93.0 -0.0001 0.0583 99.8 -0.0005 0.1111 93.9 -0.0014 0.1093 97.4 

β3 0.75 -0.0030 0.1055 91.9 -0.1146 0.0642 94.8 -0.0105 0.0950 94.5 -0.0183 0.0929 100.0 

β4 0.50 -0.0020 0.2931 91.5 -0.0012 0.2172 96.4 -0.0018 0.2747 93.9 -0.0017 0.2425 100.0 
300 β1 0.20 0.0016 0.0712 93.0 0.1391 0.0436 55.6 0.0180 0.0595 93.4 0.0216 0.0591 100.0 

β2 0.50 0.0007 0.0614 95.4 0.0004 0.0315 100.0 0.0008 0.0626 95.8 0.0008 0.0618 100.0 

β3 0.75 0.0000 0.0586 94.2 -0.1172 0.0339 52.1 -0.0069 0.0527 94.6 -0.0096 0.0523 96.8 

β4 0.50 -0.0003 0.1893 90.0 -0.0001 0.1061 99.4 -0.0002 0.1798 92.8 -0.0002 0.1698 100.0 
1000 β1 0.20 -0.0014 0.0379 94.5 0.1425 0.0459 0.4 0.0140 0.0317 92.6 0.0151 0.0316 93.1 

β2 0.50 -0.0015 0.0350 93.5 0.0010 0.0327 99.6 -0.0014 0.0356 93.7 -0.0014 0.0355 100.0 

β3 0.75 -0.0006 0.0329 94.3 -0.1186 0.0294 0.1 -0.0070 0.0297 93.3 -0.0078 0.0297 100.0 

β4 0.50 0.0000 0.0973 94.3 -0.0003 0.0590 99.1 0.0003 0.0971 94.8 0.0002 0.0952 100.0 

Table 2.2 (continued) 
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Table 2.2 (continued)  

n Parameter 
True 
Value 

Constrained Linear Probability Model Logistic Regression Model 

OLS WLS MLE PMLE 

Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) 

100 β1 0.20 0.0018 0.1217 91.4 0.1288 0.0819 95.1 0.0153 0.1043 93.2 0.0273 0.1022 100.0 

β2 0.50 0.0008 0.1099 92.6 -0.0015 0.0583 99.8 -0.0048 0.1113 93.8 -0.0028 0.1074 97.6 

β3 0.75 -0.0004 0.1057 91.1 -0.1143 0.0651 94.5 -0.0117 0.0971 93.6 -0.0181 0.0944 100.0 

β4 0.99 -0.0098 0.1750 99.1 -0.0165 0.1814 99.9 -0.0121 0.1670 79.8 -0.0152 0.1614 100.0 
300 β1 0.20 0.0029 0.0725 92.7 0.1376 0.0441 57.6 0.0158 0.0602 93.5 0.0200 0.0598 100.0 

β2 0.50 0.0020 0.0607 95.5 -0.0011 0.0315 99.9 -0.0019 0.0627 96.2 -0.0013 0.0618 100.0 

β3 0.75 0.0010 0.0582 94.2 -0.1178 0.0341 50.9 -0.0075 0.0533 94.1 -0.0098 0.0528 96.3 

β4 0.99 -0.0047 0.0875 99.0 -0.0162 0.1183 94.1 -0.0083 0.0792 57.3 -0.0097 0.0812 100.0 
1000 β1 0.20 -0.0009 0.0380 94.2 0.1426 0.0550 0.7 0.0118 0.0316 92.6 0.0131 0.0316 93.4 

β2 0.50 -0.0011 0.0351 93.7 0.0005 0.0398 99.4 -0.0040 0.0360 94.0 -0.0038 0.0358 100.0 

β3 0.75 0.0002 0.0328 93.5 -0.1182 0.0339 0.2 -0.0067 0.0300 92.7 -0.0074 0.0299 100.0 

β4 0.99 -0.0023 0.0452 99.2 -0.0184 0.0954 42.4 -0.0072 0.0390 10.4 -0.0076 0.0040 8.1 
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2.3.3 Scenario C: estimated proportions, no small Dirichlet means 

The objective of this scenario is to assess the impact of replacing known proportions of time 

spent in each location context by a given participant with estimated proportions.  The simulation 

settings for scenario C with respect to Dirichlet means and regression coefficients were identical 

to those in scenario A. As in scenario A, proportions of time spent in each location context were 

independently sampled from a Dirichlet distribution. The frequencies at which participants were 

observed at the location contexts were then independently sampled from a multinomial 

distribution with parameters set according to the realization of the Dirichlet distribution and 

sample size generated from a Poisson distribution with mean 200, the targeted size of phone calls 

by the COHSONET study. Sample proportions computed from the realization of the multinomial 

distribution were then used to estimate the proportions of time spent in each location context as 

generated from the Dirichlet distribution. OLS and PMLE estimates were then obtained using 

estimated location contexts, and results were compared to OLS and PMLE estimates obtained 

using the known location contexts realized from the Dirichlet distribution.   

Table 2.3 presents the simulation results for OLS and PMLE estimates under the known and 

estimated location contexts. We can see that the empirical mean bias for OLS estimate in the 

constrained linear probability model was small under all simulation settings. The empirical bias 

of PMLE estimate was bigger than that of OLS estimates in the presence of a parameter close to 

the boundary. There appears to be no significant difference in the empirical mean bias of OLS 

estimate between models using known and estimated proportions. However, bias of PMLE 

modeling from estimated proportions appears to be slightly bigger than that from known 

proportions. Increasing sample size reduced empirical mean bias as well as standard deviations 

in both OLS and PMLE estimates. In contrast, changes in sample sizes do not appear to 
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substantially impact the coverage rates of OLS estimates. PMLE tends to perform better than 

OLS when all parameters are in the interior of the constrained boundary, but it does not behave 

as well as OLS when the true value of a parameter is near the boundary. Based on the ratio of 

empirical variance of known location contexts versus estimated location contexts, we failed to 

find any significant differences in the estimates obtained from known or estimated location 

contexts.
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Table 2.3 Comparison of simulation results between Scenarios A and C: Bias, empirical mean difference of estimate and true 
parameter value; SD, empirical standard deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; Ratio, 
empirical variance of known location contexts versus estimated location contexts. 

n Parameter 
True 
Value 

Constrained Linear Probability Model (OLS) 

Ratio 

Logistic Regression Model (PMLE) 

Ratio 

Known Proportions Estimated Proportions Known Proportions Estimated Proportions 

Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) 

 
100 

 

β1 0.2 -0.0050 0.1091 91.3 -0.0042 0.1091 91.4 0.999 0.0291 0.1057 100.0 0.0294 0.1057 100.0 1.001 

β2 0.7 -0.0034 0.1031 92.7 -0.0051 0.1031 92.8 1.000 0.0226 0.0935 100.0 0.0207 0.0937 100.0 0.996 

β3 0.01 0.0177 0.0377 99.5 0.0187 0.0382 99.1 0.972 0.0050 0.0361 30.0 0.0601 0.0364 29.3 0.982 
300 

β1 0.2 -0.0037 0.0626 93.8 -0.0030 0.0624 94.4 1.005 0.0168 0.0609 100.0 0.0172 0.0607 100.0 1.005 

β2 0.7 0.0023 0.0560 96.1 0.0005 0.0559 96.2 1.004 0.0326 0.0513 92.3 0.0305 0.0513 92.8 0.997 

β3 0.01 0.0082 0.0236 98.6 0.0092 0.0241 98.5 0.955 0.0050 0.0206 1.8 0.0529 0.0207 1.8 0.976 
1000 

β1 0.2 -0.0021 0.0338 94.6 -0.0015 0.0338 95.4 1.000 0.0125 0.0333 100.0 0.0129 0.0332 100.0 1.000 

β2 0.7 0.0005 0.0324 95.6 -0.0014 0.0325 95.3 0.993 0.0321 0.0297 100.0 0.0300 0.0299 100.0 0.987 

β3 0.01 0.0030 0.0136 98.7 0.0041 0.0140 98.5 0.944 0.0040 0.0111 0.0 0.0505 0.0111 0.0 0.987 
100 

β1 0.2 0.0006 0.1199 92.4 0.0022 0.1201 92.5 0.997 0.0304 0.1004 100.0 0.0317 0.1006 100.0 0.994 

β2 0.7 0.0011 0.1052 92.0 0.0002 0.1049 91.9 1.006 -0.0092 0.0952 100.0 -0.0101 0.0949 100.0 1.005 

β3 0.5 -0.0001 0.1027 92.2 -0.0002 0.1025 92.4 1.004 0.0000 0.1002 100.0 0.0000 0.1000 100.0 1.004 
300 

β1 0.2 -0.0017 0.0699 93.3 -0.0003 0.0698 93.1 1.001 0.0194 0.0578 100.0 0.0205 0.0579 100.0 0.997 

β2 0.7 0.0047 0.0576 95.1 0.0036 0.0577 94.7 0.998 -0.0005 0.0532 100.0 -0.0016 0.0533 100.0 0.995 

β3 0.5 0.0003 0.0569 94.7 0.0004 0.0568 94.8 0.100 0.0000 0.0571 100.0 0.0014 0.0570 100.0 1.002 
1000 

β1 0.2 -0.0001 0.0379 94.1 0.0014 0.0379 94.0 1.001 0.0168 0.0318 100.0 0.0179 0.0319 100.0 0.996 

β2 0.7 0.0010 0.0325 95.2 0.0000 0.0325 95.2 0.998 -0.0020 0.0302 100.0 -0.0029 0.0303 100.0 0.996 

β3 0.5 -0.0001 0.0321 94.3 -0.0001 0.0320 94.7 1.005 0.0000 0.0325 100.0 0.0000 0.0324 100.0 1.005 

Table 2.3 (Continued) 
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Table 2.3 (Continued) 

n Parameter 
True 
Value 

Constrained Linear Probability Model (OLS) 

Ratio 

Logistic Regression Model (PMLE) 

Ratio 

Known Proportions Estimated Proportions Known Proportions Estimated Proportions 

Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) Bias SD CR (%) 

100 
β1 0.2 -0.0020 0.1187 93.7 0.0002 0.1186 93.7 1.001 0.0268 0.0973 100.0 0.0285 0.0974 100.0 0.997 

β2 0.7 -0.0003 0.1025 93.0 -0.0009 0.1024 93.7 1.003 -0.0095 0.0959 100.0 -0.0100 0.0958 100.0 1.002 

β3 0.75 0.0017 0.0896 94.1 0.0009 0.0894 94.1 1.004 0.0000 0.0811 100.0 -0.0011 0.0810 100.0 1.003 
300 

β1 0.2 -0.0009 0.0699 93.7 0.0010 0.0700 93.3 0.996 0.0190 0.0567 100.0 0.0205 0.0570 100.0 0.990 

β2 0.7 0.0036 0.0561 95.6 0.0030 0.0563 95.5 0.995 -0.0001 0.0538 100.0 -0.0007 0.0539 100.0 0.994 

β3 0.75 0.0000 0.0512 94.2 -0.0001 0.0511 94.2 1.002 0.0000 0.0473 100.0 -0.0007 0.0473 100.0 1.000 
1000 

β1 0.2 -0.0010 0.0384 93.8 0.0009 0.0384 94.0 0.999 0.0152 0.0315 100.0 0.0167 0.0316 100.0 0.996 

β2 0.7 0.0010 0.0320 94.9 0.0006 0.0320 95.2 0.998 -0.0005 0.0308 100.0 -0.0009 0.0309 100.0 0.995 

β3 0.75 -0.0001 0.0280 96.0 -0.0002 0.0279 96.0 0.941 0.0000 0.0260 100.0 -0.0006 0.0260 100.0 1.003 
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2.4 APPLICATION OF THE COHSONET DATA 

The proposed approaches are illustrated using data from the COHSONET study which 

was designed to investigate the impact of social contact patterns on the risk of M. 

tuberculosis conversion. We hypothesize that the proportions of time participants spent in 

different location contexts may be regarded as a surrogate variable for social contact 

patterns. To evaluate the social contact patterns, a cohort of individuals aged between 15 

and 45 years and were free of M. tuberculosis infection at baseline were enrolled in the 

COHSONET study. Participants were prompted to answer a set of questions concerning 

the location and surrounding environment at the times when calls were answered during a 

one-year follow-up period. Sampling times when the phone calls were made were 

randomly generated from a self-correcting point process.  

The conditional intensity for a self-correcting point process takes the form 

                                          λ(t|Ӻ௧) = exp൛ߙ଴ + ݐଵ൫ߙ − ൯ൟ(ݐ)ଶܰߙ  ݐ        , ∈ [0, ܶ]                                          

where ߙ଴ ,  ;ଶ are constants (Isham and M. 1979; Ogata and Vere-Jones 1984ߙ ଵ, andߙ

Vere-Jones and Ogata 1984), and ߙଵ,  ߙଶ > 0. This point process is a self-correcting in 

the sense that if the number of events strays from the target 1/ߙଶ, then the assessment 

rate compensates to force this difference back towards zero. The baseline intensity is 

exp{ߙ଴}. The parameters ߙ଴  and  ߙଶ  govern the mean number of phone calls made per 

day, while ߙଵ controls the variability of the number of calls per day and the regularity of 

the spacing of the assessment times.  Note that the self-correcting point process generates 

more regularly spaced assessment times and less variation in numbers of assessments per 

day than the Poisson process, reducing burden on the study subjects. Sampling from the 
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self-correcting point process guarantees collection of representative samples from which 

design-unbiased estimates of the distributions of time participants spent in different 

location contexts may be obtained. In the COHSONET study, ߙ଴= -0.602, ߙଵ = 3, and 

  .ଶ = 1.825 targeting 200 random assessments per yearߙ

In the COHSONET study, only 63.7% of phone calls were answered. Given the 

substantial amount of missing data, there is potential for bias in estimates of model 

parameters describing the impact of location contexts on risk of M. tuberculosis 

conversion. The only information available for unanswered calls is the time and date at 

which each call was made. Therefore, it is only feasible to describe the pattern of 

answered phone calls as a function of calling times. Suppose ݌௜(ݐ) is the probability that 

a call at time ݐ is answered by subject ݅. Let ܼ௜(ݐ) = 1 if a call is answered at time ݐ by 

subject ݅, and ܼ௜(ݐ) = 0 if otherwise. Assume that ܼ௜(ݐ), ݐ ∈ ௜ܰ, are independently 

sampled from a Bernoulli distribution with thinning function ݌௜(ݐ), where ௜ܰ denotes the 

set of times at which calls are made to subject ݅, a realization of a point process with 

intensity ߣ௜(ݐ). Then the set of answered calls ௜ܰ
∗ is a realization of a thinned point 

process with intensity ߣ௜(ݐ)݌௜(ݐ)(Cressie 1991). Assume that the data are missing at 

random, the design-unbiased estimators in (2.4) may be replaced with corrected 

estimators 

                                      ෠ܺ௜(ܶ) =
ଵ

்
∑ ௫೔(௧)

ఒ೔(௧)௣೔(௧)௧∈ே೔
∗   .                                                   (2.7)                                        

Exploratory data analysis suggested that the missing data pattern depended on the time of 

day, a pattern that is likely to vary among study participants. The location contexts in 

which participants spend their time are also likely to be a function of time of day, a 
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function that may also vary among study participants. We assume that the thinning 

function is periodic, as described through its logit transformation, 

݃݋݈
(ݐ)௜݌

1 − (ݐ)௜݌
= ෍ ) ௜௞cosݑ

ݐ݇ߨ2
߬

+ ߶௜௞)

௄

௞ୀଵ

 

where ݑ௜௞  denotes the amplitude, ߬ represents the period set to 1 (day), and ߶௜௞  denotes 

the phase. The model may be reparameterized by writing 

݃݋݈
௣೔(௧)

ଵି௣೔(௧)
= ௜଴ߛ + ∑ ቄߛଵ௜ ݏ݋ܿ ቀ

ଶగ௞௧

ఛ
ቁ + ݊݅ݏଶ௜௞ߛ ቀ

ଶగ௞௧

ఛ
ቁቅ௄

௞ୀଵ , 

where the amplitude is ݑ௜௞ = ටߛଵ௜௞
ଶ + ଶ௜ߛ

ଶ  and the phase is ߶௜௞ = ଶ௜ߛ/ଵ௜௞ߛ)ଵି݊ܽݐ− ). 

As to describe variation among participants’ missing data patterns, the parameter vectors 

 ௜ are assumed to be independently sampled from a multivariate normal distribution withߛ

mean ߤ and variance-covariance matrix ߑ.   

 Laplace approximations to the likelihood (Breslow and Clayton 1993) and maximum 

hierarchical likelihood (Lee and Nelder 1996), both lead to inconsistent estimates when 

the sampling domain is small (Rathbun and Shiffman 2016). The Expectation-

Maximization (EM) algorithm can produce consistent estimates in the random effects 

model regardless of sampling domains. Nevertheless, it remains challenge to compute the 

E-step in the random effects model because the conditional expectation is an intractable 

integral. Steele (1996) proposed using a second-order Laplace approximation for 

computation of conditional expectations within the E-step (Steele 1996) for generalized 

linear mixed models. We implemented Steele’s (1996) method for parameter estimation 

in the random effects model using FORTRAN code available in the supplementary 

material of Rathbun and Shiffman (2016).  
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In current study, only the 288 subjects who responded to more than 30 phone calls over 

the study are eligible for inclusion in the data analysis. In the random effects modelling of 

probability of answering phone calls as a function of time, we set ݇ = 4, a value which 

we found well captured the periodic patterns of answering the phone calls in EMA data. 

Figure 1.1 in Chapter 1 plots the expected probability of answering phone calls as a 

function time as estimated from Steele’s (1996) modified EM algorithm as obtained from 

the mean ߤ of the random effects ߛ. On average, participants were most likely to respond 

to the phone calls in the early morning (i.e., 7:00 am -8:00 am). There appeared to be an 

increasing trend between 9:00am and 7:00pm and a sharp decreasing trend between 

8:00pm to 11:00pm, with subjects being most likely to answer phone calls at 7:00pm, and 

least likely to answer phone calls at the end of a day. 

As illustrated in Figure 1.2 concerning the estimated proportions of time participants 

spent in different location contexts, participants spent the most time at homes (i.e. 

32.4%), followed by work places (32.1%), public transports (7.1%), and shopping centers 

(4.1%). It seems that participants in the COHSONET study rarely spent time at women 

groups, gyms/recreations, clubs, schools, neighbors’ homes and hospitals (less than 1%). 

Comparisons of the proposed approaches were conducted based upon complete cases 

with both M. tuberculosis conversion information and proportions of time spent in each 

location context. In the rest of this section, a total of 189 subjects with complete 

information were included in the statistical modeling.   

Table 2.4 presents parameter estimates from inequality constrained linear probability 

models using OLS and WLS methods, as well as from logistic regression models using 

classical MLE and bias-reduced PMLE approaches based upon all location contexts 
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being observed. The fitted models suggested that schools, worship centers, bars, and 

shopping centers, were the most dangerous location contexts with estimated risks for M. 

tuberculosis conversion close to 100% if participants had spent all of their time at these 

public locations. Risk of M. tuberculosis conversion was also high in public transport and 

friends’ homes, with an estimated risk of approximately 50% for persons spending all of 

their time at these locations. In contrast, people who spent their time in gym/recreation, 

women groups, market places and neighbors’ homes were least likely to become infected 

with M. tuberculosis. 

Across all presented approaches, OLS in the constrained linear probability model yielded 

the largest number of estimates on the boundary. On the contrary, both MLE and PMLE 

methods in the logistic regression were least likely to produce parameter estimates on the 

boundary. In the constrained linear probability model, the OLS estimate trended towards 

zero when the corresponding WLS estimate was less than 0.25, while it trended towards 

one when the WLS estimated being greater than 0.75. Otherwise, the WLS estimates 

were shrunk towards the midpoint of the constrained interval by the OLS approach. The 

simulations suggested that constrained WLS estimates were shrunk toward 0.5. This also 

appeared to be the case for the analysis of the COHSONET data. For the most part, 

constrained WLS estimates tended to be closer to 0.5 than constrained OLS estimates. As 

compared to MLE estimates in the logistic regression model, PMLE appeared to force 

estimates towards the midpoint of the constrained parameter space. However, there 

appeared to be no significant differences in the parameter estimates between MLE and 

PMLE approaches since their 95% confidence intervals were almost the same. In 

addition, the length of the 95% confidence intervals appeared to be shortest in the OLS 
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estimates among all approaches, which indicated that the OLS estimates were subject to 

smallest uncertainty. Furthermore, the constrained OLS estimates tended to shrink MLE 

and PMLE estimates towards the closest boundary. For example, if the MLE or PMLE 

estimate was less than 0.5, then the OLS estimate tended to shrink it towards zero. 

Otherwise, the MLE and PMLE estimates were shrunk toward one. 
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Table 2.4 Parameter estimates using different approaches over all location contexts (n=189). 95% CI: 95% confidence interval. 

Location Context 

Constrained linear Probability Model Logistic Regression Model 

OLS WLS MLE PMLE 

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Home 0.2905 (0.0000-0.6022) 0.3913 (0.0360-0.7466) 0.3214 (0.0684-0.7292) 0.3252 (0.0684-0.7292) 

Friend's home 0.5472 (0.0525-1.0000) 0.4413 (0.0000-0.9477) 0.6697 (0.0000-1.0000) 0.6850 (0.0000-1.0000) 

Relative's home 0.0139 (0.0000-0.9372) 0.2517 (0.0000-0.9436) 0.0589 (0.0000-0.9997) 0.1081 (0.0000-0.9997) 

Work 0.0000 (0.0000-0.3144) 0.1551 (0.0000-0.4715) 0.0450 (0.0065-0.2238) 0.0523 (0.0065-0.2375) 

School 1.0000 (0.0609-1.0000) 0.7560 (0.0562-1.0000) 0.9657 (0.0004-1.0000) 0.9506 (0.0004-1.0000) 

Worship center 1.0000 (0.0767-1.0000) 0.9629 (0.0742-1.0000) 0.9299 (0.0073-1.0000) 0.8953 (0.0073-1.0000) 

Club/Association 0.0000 (0.0000-0.9473) 0.0000 (0.0000-0.9477) 0.1341 (0.0000-1.0000) 0.3216 (0.0000-1.0000) 

Bar 1.0000 (0.0726-1.0000) 0.9983 (0.0721-1.0000) 0.9864 (0.0294-1.0000) 0.9746 (0.0294-1.0000) 

Saloon 0.0000 (0.0000-0.9412) 0.1470 (0.0000-0.9444) 0.0967 (0.0000-1.0000) 0.1984 (0.0000-1.0000) 

Gym/Recreation 0.0000 (0.0000-0.9479) 0.0000 (0.0000-0.9482) 0.0000 (0.0000-0.9669) 0.0000 (0.0000-0.9972) 

Hospital/Clinic 0.0000 (0.0000-0.9448) 0.0000 (0.0000-0.9456) 0.0336 (0.0000-1.0000) 0.1288 (0.0000-1.0000) 

Shopping/Trading center 1.0000 (0.0717-1.0000) 0.8824 (0.0649-1.0000) 0.9599 (0.0033-1.0000) 0.9507 (0.0033-1.0000) 

Public transport 0.5007 (0.0298-0.9716) 0.6370 (0.0627-1.0000) 0.8195 (0.0029-0.9998) 0.7860 (0.0029-0.9998) 

Women group 0.0000 (0.000-0.9497) 0.0167 (0.0000-0.9498) 0.0005 0.0000-1.0000) 0.0653 (0.0000-1.0000) 

Market place 0.0000 (0.0000-0.9410) 0.0000 (0.0000-0.9424) 0.0538 (0.0000-1.0000) 0.0936 (0.0000-1.0000) 

Neighbor's home 0.0000 (0.0000-0.9472) 0.0885 (0.0000-0.9480) 0.0139 (0.0000-1.0000) 0.0426 (0.0000-1.0000) 

Elsewhere 0.6434 (0.0781-1.0000) 0.7186 (0.0818-1.0000) 0.8964 (0.0373-0.9995) 0.8711 (0.0374-0.9995) 
† Parameter estimates and 95%CI from the logistic regression models are converted using the formula ݁ఈ/(1 + ݁ఈ)as to be comparable to those in the linear probability 

models. 
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The results in Table 2.4 tended to yield wide confidence intervals, covering most of the 

parameter space. Hence, the full model including all location contexts might be regarded 

as over-parameterized because over-parameterized models often yield estimates with 

high levels of uncertainty. Next, we performed statistical analyses based on reduced 

location contexts by pooling friend’s, relative’s, and neighbor’s homes into one location 

context as “Other home”, and pooling the remaining locations except for home, other 

home, work place, and public transport into “Elsewhere”. As shown in Table 2.5, the 

estimated risk of M. tuberculosis conversion at home dropped about 3 to 5 percent 

compared to the modeling results in Table 2.4. People remained at zero risk of 

contracting tuberculosis if they spent all the time at work places according to OLS 

estimates in the constrained linear probability model. Nonetheless, the estimated risk of 

M. tuberculosis conversion at work places increased substantially based upon WLS, MLE 

and PMLE estimates. Similar to results in Table 2.4, WLS estimates tended to be closer 

to 0.5 compared to OLS estimates in the linear probability model, and PMLE tended to 

yield estimates closer to the midpoint relative to MLE method in the logistic regression. 

However, it appeared that MLE and PMLE produced narrower confidence intervals than 

those of constrained OLS in the constrained linear probability model. 
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Table 2.5 Parameter estimates based on reduced location contexts (n=189). 95% CI: 95% confidence interval. 

Location Context 

Constrained linear Probability Model Logistic Regression Model 

OLS WLS MLE PMLE 

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Home 0.2575 (0.0000-0.5566) 0.3653 (0.0272-0.7033) 0.2722 (0.0588-0.6624) 0.2816 (0.0588-0.6624) 

Other home* 0.3022 (0.0000-0.9360) 0.4161 (0.0000-0.9422) 0.2960 (0.0002-0.9988) 0.3187 (0.0002-0.9988) 

Work 0.0000 (0.0000-0.3018) 0.1577 (0.0000-0.4588) 0.0458 (0.0074-0.2104) 0.0490 (0.0074-0.2175) 

Public transport 0.4129 (0.0000-0.9372) 0.5742 (0.0603-1.0000) 0.6072 (0.0016-0.9991) 0.6122 (0.0016-0.9991) 

New elsewhere* 0.6823 (0.2136-1.0000) 0.6559 (0.1766-1.0000) 0.8126 (0.2184-0.9855) 0.8006 (0.2147-0.9856) 
† Parameter estimates and 95%CI from the logistic regression models are converted using the formula ݁ఈ/(1 + ݁ఈ)as to be comparable to those in the linear probability 

models. 

* Other home is a pooled location of “Friend’s home”, “Relative’s home”, and “Neighbor’s home”; 

New elsewhere is a pooled location of “School”, “Worship center”, “Club/Association”, “Bar”, “Saloon”, “Gym/Recreation”, “Hospital/Clinic”, “Shopping/Trading 

center”, “Women group”, “Market place” and “Elsewhere” in table 2.4. 
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2.5 DISCUSSION 

When analyzing binary dependent variable, the logistic regression model is commonly used. In 

this paper, we propose using constrained linear probability model as an alternative to the logistic 

regression model for fitting a binary outcome. We compared the performance of four different 

approaches in modeling dichotomous dependent variable: the OLS and WLS approaches in 

constrained linear probability models, and classical MLE and bias-reduced PMLE methods in 

logistic regression models. We conducted intensive simulations demonstrating that the OLS 

estimates in the constrained linear probability model were superior to both classical MLE and 

bias-reduced PMLE estimates in logistic regression models with respect to empirical mean bias, 

especially when one or some parameters of interest are closed to the boundary of parameter 

space. Moreover, the simulation study confirmed that the proposed OLS estimates in the 

constrained linear probability model are consistent and asymptotically unbiased. 

The bias-reduced PMLE approach in the logistic regression model is based on penalizing the 

likelihood using the Jeffreys invariant prior (Firth 1993), and intends to reduce bias in parameter 

estimates relative to the classical MLE method, especially for small samples. As expected, 

simulation results revealed that the empirical bias from the PMLE method was always smaller 

than the MLE method in the logistic regression, and increasing the sample size tended to narrow 

the difference between them.  

Although weighted least squares has been intensively studied in resolving the problem of 

heteroscedasticity in the linear probability model (Goldberger 1964; Goldfeld and Quandt 1972; 

Hensher and Johnson 1981; Mullahy 1990), it performs poorly in the constrained linear 
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probability model. As suggested by the observation that the derivative of the weighted sum of 

squared residuals with respect to the model parameter ߚ has non-zero expectation and thus hence 

yields an asymptotically biased estimating equation, we obtained substantial bias in the WLS 

estimates in the simulation study. Therefore, when constrains are posed on the linear regression 

model, it becomes problematic in applying WLS approach.  

In the COHSONET study, the true proportions of time participants spent in different location 

contexts were unavailable, we instead substituted them with design-unbiased estimators in the 

proposed statistical models. The current methods did not take into account sources of variation 

due to sampling and random effects modeling because it is challenging to obtain estimates of the 

variation due to these sources. Nonetheless, simulation studies based on estimated location 

contexts suggested that such errors were ignorable, so we can obtain similar parameter estimates 

using the design-unbiased estimators as using the true location contexts in the COHSONET data. 

To sum up, OLS approach is a robust approach in the linear probability model which subjected 

to unit interval constraints. Estimates from the constrained OLS are consistent and 

asymptotically unbiased. In spite of these advantages, one limitation of constrained OLS is that it 

does not perform model selection. However, it may be essential to identify significant subset of 

location contexts from a great number of candidates. The constrained adaptive lasso, which 

enjoys the merits of model selection and asymptotically consistency (Wong et al. 2016; Zou 

2006), can serve be a promising direction in the future research.   
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CHAPTER 3 

CONSTRAINED ADAPTIVE LASSO APPROACH FOR ESTIMATING THE PROBABILITY 

OF TUBERCULOSIS CONCERSION FROM ECOLOGICAL MODEMNTAR ASSESSMENT 

OF SOCIAL PATTERNS 

 

3.1   INTRODUCTION 

Tuberculosis is an infectious disease that threatens the health of people all over the world, and it 

is most prevalent in resource-limited countries such as the developing countries in Africa (WHO 

2014). Transmission of Mycobacterium tuberculosis requires prolonged contact with infectious 

people (Houk et al. 1968; Kenyon et al. 1996). Therefore, the social contact patterns regarding 

how and where susceptible members interact with infected patients may determine whether 

tuberculosis is transmitted or not (Horby et al. 2011; Rehkopf et al. 2015).  

The Community Health Study of Social Networks and Tuberculosis (COHSONET), is an 

ongoing study in Uganda aiming to evaluate the effects of social networks on the transmission 

dynamics of M. tuberculosis. In the COHSONET study, social contacts data were collected 

through Ecological Momentary Assessment (EMA), a method in the behavioral sciences that 

enables evaluation of subjects’ emotional states and environments through repeated sampling in 

their every-day environments using electronic devices (Shiffman et al. 2008; Stone and Shiffman 

2002). The proportions of time patients spent in different location contexts can serve as a 

surrogate variable for social contacts, which can be design-unbiased estimators (Cassel et al. 
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1977) as long as the EMA samples are generated from a known probability-based sampling 

design.  

In the COHSONET study, the outcome variable indicating if participants have become infected 

with M. tuberculosis is dichotomous, suggesting the applicability of logistic regression to predict 

this outcome as a function of location contexts. Since logistic regression is nonlinear, however, 

maximum likelihood estimators (MLEs) have a bias of order O(n-1) (Firth 1993), a bias that has 

been observed in a number of practical applications  (Firth 1993; Gart and Zwifel 1967; Hirji et 

al. 1987; Park and Park 2003; Wagler 2011). Linear probability model is an appealing option for 

dichotomous dependent variable due to its ease of implementation, interpretability and good 

predictive performance. There is evidence suggesting that the ordinary least squares (OLS) 

estimator in the linear probability model performs as well as or even outperform maximum 

likelihood estimates in the logistic regression model in certain situations such as modeling the 

treatment effect in the randomized controlled trial (Deke 2014; Hellevik 2009; Pedroza and 

Troung 2016). In most cases, however, direct application of OLS estimates in the linear 

probability model is ill-posed due to the possibility of yielding predicted probabilities fall outside 

the unit interval zero and one. Therefore, a mathematical approach which can restrict the 

predicted values into the unit interval is required by the linear probability model. 

In the classical regression problem, there are generally two approaches for estimation and model 

selection when there are a great number of parameters: variable selection methods such as 

stepwise regression that do not perform regularization, and regularization methods such as 

݈ଶ penalty which do not lead to variable selection. The LASSO (Least Absolute Shrinkage and 

Selection Operator), which places an ݈ଵ penalty on the coefficients, is a method combining the 
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advantages of both approaches and thus can perform model selection and regularization at the 

same time (Tibshirani 1996). One appealing feature of LASSO is that it can enhance the 

predictive accuracy and interpretability of the statistical model by simultaneously applying 

model selection and regularization. LASSO deliberately introduces bias into the estimation by 

adding an ݈ଵ penalty to the objective function so as to reduce the variability of the estimate. In 

general, LASSO estimators yield smaller mean square error than the OLS estimates, especially in 

the presence of multicollinearity. Although the LASSO was originally defined for penalized least 

squares, it can be easily extended to a wide variety of statistical models including generalized 

linear models, generalized estimating equations, M-estimators, and constrained linear regression 

models (James et al. 2013; Tibshirani 1997).  

Although the LASSO performs variable selection, it does not satisfy the oracle property (Fan and 

Li 2001; Zou 2006); that is, the LASSO estimator does not perform as well as an oracle estimator 

under which parameters taking the value zero are known in advance. The adaptive LASSO 

which contains a weighting term in the ݈ଵ penalty, on the other hand, produces oracle estimates 

(Zhang and Lu 2007). Specifically, the adaptive lasso enjoys the following properties: (1) 

selection consistency, if a true parameter value belongs to the prespecified set, the corresponding 

estimators converges to the true value with probability tending to one, and (2) shares the same 

asymptotic distribution as the oracle estimator. 

The current study aims to use a constrained linear probability model to fit the probability of M. 

tuberculosis conversion as a function of proportions of time participants spent in different 

location contexts. Huang et al. (2013) proposed using the constrained LASSO to restrict the 

parameter estimate to be in a unit interval to ensure that the outcome variable, probabilities 
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associated with the presence of a certain peptide, falls within a reasonable prediction region, as 

well as to identify an optimal subset of candidate proteins that significantly contributing to the 

presence of  a specific peptide (Huang et al. 2013). To overcome the potential issue of 

inconsistent model selection in the constrained LASSO, we employed the constrained adaptive 

LASSO proposed by Wong et al. (2016), to estimate the probability of M. tuberculosis 

conversion as a function of proportions of time participants spent in each location context using a 

linear probability model.  

The rest of paper is structured as follows. In section 3.2, we demonstrate oracle properties for 

constrained adaptive LASSO procedure. Section 3.3 is devoted to comparing simulations results 

between different statistical approaches. We present application results of proposed methods to 

the COHSONET study in section 3.4. We conclude with a discussion of this work in section 3.5.  

3.2 CONSTRAINED ADAPTIVE LASSO 

The aim of the COHSONET study is to estimate the risk of M. tuberculosis conversion as a 

function of the proportions of time participants spent in different location contexts. Suppose that 

n subjects are randomly sampled and each subject ݅ is observed over a set of times belonging to 

the Borel set ܶ ⊂ ℝ with Lebesgue measure |ܶ| < ∞. Let ܺ௜(ܶ) denote a 1×݌ vector 

corresponding to the proportions of time participants spent in each location context during a 

study interval [0, T] so that the elements of the vector ܺ௜(ܶ) are constrained to lie between zero 

and one and sum to one. Let ௜ܻ denote a Bernoulli dependent variable corresponding to M. 

tuberculosis conversion status which is observed over the time interval [0, ܶ].  The probability of 

M. tuberculosis conversion is described by the linear probability model 
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൫ܧ          ௜ܻหܺ௜(ܶ)൯ = Pr൫ ௜ܻ = 1หܺ௜(ܶ)൯ = ்ߚ
௜ܺ(ܶ);         ݅ = 1, … , ݊.                   (3.1) 

where 0 ≤ ௝ߚ ≤ ݆ ݎ݋݂ 1 = 1, … ,  Note that the linear probability model considered here does .݌

not contain an intercept term. The interpretation of coefficients in the linear probability model is 

straightforward. The coefficient ߚ௝  represents the risk of M. tuberculosis conversion if the 

participants spent 100% of time in location ݆;  ݆ = 1, … ,   .݌

The location contexts ܺ௜(ܶ) are comprised of the population proportions of time participants 

spent in each location over the period of the EMA study, where the population is a set of 

randomly selected times in a one-year study interval for each participant. In practice, however, it 

is not practical to observe the location contexts in which participants spend their time at all 

points in time during study interval [0, T]. Therefore, the true location contexts ܺ௜(ܶ) are 

unknown. In practice, if the time-varying covariates are sampled according to a point process 

௜ܰ(ݐ) with known intensity ߣ௜(ݐ), and  ߣ௜(ݐ) > 0 for all ݐ ≥ 0 except on a set of measure zero, 

then we can obtain design-unbiased estimators of the location contexts ܺ௜(ܶ) from 

                                                    ෠ܺ௜(ܶ) =
ଵ

்
∑ ௫೔(௧)

ఒ೔(௧)௧∈ே೔
 ,                                       (3.2) 

where ௜ܰ  is the set of times at which assessments were made for subject i. This estimator is 

design unbiased in the sense that the expected value ෠ܺ௜(ܶ) equal to ܺ௜(ܶ) under the probability 

model induced by the sampling design. Given boundedness of ܺ௜(ܶ) and λ(t), design-unbiased 

estimators ෠ܺ௜(ܶ)  converge to the true location contexts ܺ௜(ܶ) with the probability of one when 

ܶ → ∞ as ݊ → ∞ (see Theorem 1 in Section 2.2.2). For ease of demonstration, we demonstrate 

the limiting distribution of constrained adaptive LASSO estimators assuming the true location 

contexts ܺ௜(ܶ) are known. Given the continuity of the objective function, LASSO estimators 
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based on estimated location contexts ෠ܺ௜(ܶ) will share the same limiting distribution provided 

that ෠ܺ௜(ܶ) → ܺ௜(ܶ) as ܶ → ∞ with ݊ → ∞. 

3.2.1 Oracle properties of adaptive LASSO under boundary constraints 

The purpose of this study is to fit the linear probability model under the boundary constraints 

using the adaptive LASSO. Let ଵܻ, … , ௡ܻ  denote i.i.d. random vectors of random variable 

sampled from a parametric family of probability distributions with parameter ߠ, where ߠ takes 

values in a parameter space ܵ ⊂ ܴ௉, with ߠ௝  possibly lying on the boundary of ܵ. In our 

application, ܵ is the ݌ −dimensional unit cube. Let {݂(∙; :(ߠ ߠ ∈ ܵ} denote a family of real-

valued functions on ܻ such that ܧ{݂(ܻ; {(ߠ < ∞. Let ߠ෨௡ denote the M-estimator, obtained by 

maximizing an objective function  

(ߠ)௡ܨ = ෍ ݂( ௜ܻ; (ߠ
௡

௜ୀଵ

. 

Similar to Lehmann (1998), Self and Liang (1987), and Wong et al. (2016), we invoke the 

following assumptions throughout the paper.  

(1) The first three derivatives of ܨ௡(ߠ)  with respect to each ߠ௝  (݆ = 1, … ,  exist on the (݌

intersection of a neighborhood ܰ of the true parameter value ߠ଴ and ܵ. If ߠ௝  is on the boundary, 

then the derivatives are taken from the appropriate sides. 

(2) The first derivative of ܨ௡(ߠ) satisfies 

݊ିଵܷ௡(ߠ଴) = ݊ିଵ ൤
߲

଴ߠ߲
൨(଴ߠ)௡ܨ → 0,    

with probability one, as ݊ → ∞. 

(3) The Hessians 
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݊ିଵ(ߠ)࢔ܪ = ݊ିଵ ቂ
డ૛

డఏడఏ೅  ,ቃ(ߠ)௡ܨ

݊ିଵܪ௡(ߠ) → ݊ with probability one, as (ߠ)ܫ− → ∞, and (ߠ)ܫ is positive definite. 

(4) On the intersection of neighborhood ℕ of ߠ଴ and ܵ, ݊ିଵ times the absolute value of the third 

derivative of ݈௡(ߠ) is bounded by ܯ(ܻ) with {(ܻ)ܯ}ܧ < ∞ for some function ܯ(. ). 

(5) The intersections of ܵ and the closure of the neighborhood ℕ centered about ߠ଴ constitute 

closed subsets of ܴ௉.  

(6) The model is identifiable. 

Note that Assumptions (2) and (3) are not the same as those in Wong et al. (2016). The revisions 

allow a more general result. For example, they assume that ܧ ቂ
డ

డఏబ
ቃ(଴ߠ)௡ܨ = 0 which together 

with independence implies (2) by the law of large numbers (Wong et al. 2016). While this 

unbiasedness condition is still satisfied by the elements of the objective function with error-free 

predictors, it is not satisfied if we substitute the observed covariates which are subject to 

measurement errors for error-free true predictors. However, assumption (2) remains satisfied 

provided that observed variables converges to the true variables ෠ܺ௜(ܶ) → ܺ௜(ܶ) as ݊ → ∞. 

Assumption (3) is modified as well so as to ensure that the constrained maximizer is unique. 

Let ൛ߠ௝
ଵ, … , ௝ߠ

௞ൟ denote the set of values possibly on the boundary of parameter space ܵ for each 

௝ߠ  (݆ = 1, … ,  Inspired by Wong et al. (2016), we construct the objective function for .(݌

constrained adaptive LASSO as: 

(ߠ)௡ߔ                         = (ߠ)௡ܨ − ௡ߛ ∑ ∑ ෥௝ݓ
௞௞ೕ

௞ୀଵ
௣
௝ୀଵ หߠ௝ − ௝ߠ

௞ห,                    (3.3)                                

where ݓ෥௝
௞ = หߠ෨௝ − ௝ߠ

௞ห
ିଵ

 (݇ = 1, … , ௝݇; ݆ = 1, … , ௝ߠ ෨௝ being the M-estimator ofߠ with (݌ , and ߛ௡ 

is a tuning parameter. Recall that the standard LASSO does not have any constraints but is 
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constructed to shrink estimators towards zero. Under the constrained LASSO, estimators are 

shrunk towards the closest boundary. What makes it adaptive is that the weights are based on 

estimates obtained without any shrinkage. Obviously, the standard adaptive LASSO is a special 

case of constrained adaptive LASSO procedure in which the candidate set of boundary 

constraints has only one value with ௝݇ = 1 and ߠ௝
ଵ = 0.  

Let ߠ଴ be the true parameter value, ऋ denote the set of parameters away from the boundary, and 

ऌ be the set parameters that lie on the boundary. Write ߠ଴ = ଴ଵߠ)
் , ଴ଶߠ

் )், where ߠ଴ଵ and ߠ଴ଶ are 

ଵ݌ − and ݌ଶ −dimensional vectors corresponding to indices in ऋ and ऌ, respectively, similarly 

followed by ߠ෠௡ = ෠௡ଵߠ)
் , ෠௡ଶߠ

் )். In a proof similar to that of Theorem 1 of Wong et al. (2016), it 

can be proved that the constrained adaptive estimates ߠ෠௡ are root-n consistent under assumptions 

(1) - (6) with ݊ିଵ/ଶߛ௡ → 0 and ߛ௡ → ∞ as ݊ → ∞. That is, the probability that the constrained 

adaptive estimates equal the true value tends to one irrespective of whether or not any of the true 

parameters lie on the boundary. Also, Theorem 1 in Wong et al. (2016) demonstrates that 

constrained adaptive LASSO estimates of ߠ෠ଵ, a subset of parameter estimates not on the 

boundary, have an asymptotically normal distribution with mean ߠ଴ଵ and variance-covariance 

matrix ܫଵଵ
ିଵ(ߠ଴ଵ)within the constrained parameter space ܵ, where ܫଵଵ(ߠ଴ଵ) is the upper left ݌ଵ×

-ଵ submatrix of the information matrix  (Wong et al. 2016). In our example, the variance݌

covariance matrix ܫଵଵ
ିଵ(ߠ଴ଵ) equals 

(ܺ௣ଵ
் ܺ௣ଵ)ିଵܺ௣ଵ

்
௣ܸଵܺ௣ଵ(ܺ௣ଵ

் ܺ௣ଵ)ିଵ, 

where ܺ௣ଵis a vector of predictors away from the boundary, and ௣ܸଵ is a diagonal matrix with 

diagonal elements ௜ܸ௜ = ෠ଵߠ
்

ܺ௜௣ (1 − ෠ଵߠ
்

ܺ௜௣ ) (݅ = 1, … , ݊).  
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3.2.2 Coordinate decent algorithm and global maximization 

To obtain the constrained adaptive LASSO solution we use the coordinate decent algorithm 

(Wright 2015). We start with an initial estimator (e.g., the constrained OLS estimate) for the 

parameters in the objective function. At each subsequent iteration, we fix all but one parameter 

and optimize the objective function with respect to that specific parameter. If the optimized 

estimate for the parameter is achieved outside the boundary of the parameter space, the estimate 

is set to be on the closet boundary. The entire optimization process is repeated until the resulting 

estimators converge at which the algorithm terminates.  

Note that estimators obtained by an iterative routine such as coordinate decent can be trapped in 

a locally optimal solution if the corresponding objective function is not convex (Shapiro 2000). 

To avoid achieving inconsistent estimates, it is required that the corresponding problem meets 

the conditions of “nearly convexity” and “prox-regularity”. In the current study, the parameter 

space is restricted in a closed unit cube which is convex (and hence, nearly convex) and prox-

regular as defined by Shapiro (2000). Therefore, the maximizers obtained in the current study are 

global maximizers.  

The tuning parameter is a key element in the penalized function as in expression (3.3), which 

determines whether the model selection is consistent or not. In the current study, the tuning 

parameter ߛ௡ was selected via minimizing the Bayesian information criterion (BIC) (Schwarz 

1978; Wang et al. 2007) 

(ߛ)ܥܫܤ = log൫ߪොఊ
ଶ൯ +

log(݊) (ߛ)݂݀
݊
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where ߪොఊ
ଶ = ∑ ௜ݕ) − ܺ௜

መఊ)ଶ௡ߚ்
௜ୀଵ /݊. The BIC is a consistent model selector in the sense that it 

identifies the true model from a set of candidate models with a probability approaches to 1 in 

large samples (Zhang et al. 2010). 

3.2.3   Confidence interval estimation 

It is challenging to obtain the confidences intervals in the presence of constraints in the 

parameter space. The standard procedure obtaining symmetric confidence intervals is not 

satisfactory for the constrained parameter space because it does not take into account the 

information regarding the constraints. Methods for constructing confidence bounds in a 

constrained parameter space have been widely investigated (Mandelkern 2002; Roe and 

Woodroofe 2001; Wang 2008; Zhang and Woodroofe 2003). Among various options for setting 

confidence intervals under boundary constraints, the Bayesian credible interval stands out 

because it yields the shortest expected length for a given confidence interval 1 −  in most cases ߙ

(Wang 2008).  

Analogous to the frequentist confidence interval, the Bayesian approach delineates a region 

which contains a large fraction of the posterior mass of a parameter. One approach for obtaining 

this is the region of the highest posterior density (HPD) (Box and Tiao 1992), which treats the 

boundary constraints as its prior information and describing it with uniform distribution (Koch 

1990). The practical implementation of HPD relies on Markov chain Monte Carlo (MCMC) 

techniques (Chen and Shao 1999). One appealing feature of the HPD confidence region is that it 

does not require the confidence region to be equal-tailed, so it performs well even when the 

parametric function is asymmetric (Liu et al. 2015; Vexler et al. 2016). Additionally, Tian et al. 

(2011) demonstrate that the HPD credible region is asymptotically unbiased for parameters with 
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normal distribution (Tian et al. 2011). In the current study, we calculated HPD credible intervals 

for parameter estimates obtained from the constrained linear probability model. 

3.3 SIMULATIONS 

Simulations were carried out so as to mimic the properties of the COHSONET data. The linear 

probability model (i.e., expression (2.1)) was used to generate independent observations of the 

Bernoulli random variable ௜ܻ , representing the M. tuberculosis conversion indicator, where the 

elements of the 1×݌ vector of parameters are constrained to lie between zero and one. The 

elements of the 1×݌ vector of covariates ܺ௜. provide the proportions of time participants spent in 

in each of the ݌ location context and thus are restricted to lie between zero and one and to sum 

up to one. Therefore, the vectors ܺ௜. were independently sampled from a Dirichlet distribution to 

fulfill such restrictions. 

The objective of the simulations is to compare the performance of the adaptive LASSO to 

ordinary least squares (OLS) estimates in the linear probability model under the boundary 

constraints. We performed simulations of three different scenarios: (A) An ideal setting where 

Dirichlet means are not close to zero; (B) One location context with a Dirichlet mean close to 

zero; and (C) The location contexts ܺ௜. are not directly observed but estimated from data. Under 

each scenario, we evaluated the impacts of setting a parameter on the boundary of the parameter 

space. To explore the impact of sample size, sample sizes were set to 100, 300, and 1000.  Each 

simulation was replicated 1000 times. We compared empirical mean bias, empirical standard 

deviation (SD), percentage coverage of nominal 95% confidence intervals (CR), and percentage 

of estimates falling on each of the boundaries zero and one. 
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3.3.1 Scenario A: known proportions, no small Dirichlet means 

Under this scenario, the number of location contexts ݌ was fixed at 4 with Dirichlet means of 

0.15, 0.20, 0.30, and 0.35, respectively. The parameters for the first three location contexts were 

held constant at ߚଵ = ଶߚ  ,0.50 = 0.20, and ߚଷ = 0.80.  For the last location context, we took 

 ସ equal to 0.0, to 0.5, and 1.0, so as to investigate the potential impacts of setting a parameter onߚ

the boundary of the parameter space on proposed statistical approaches.  

Simulation results for Scenario A are presented in Table 3.1. When ߚସ lies on the lower bound of 

the parameter space (i.e., ߚସ = 0.0 ), the performance of the constrained OLS approach appeared 

to be not inferior to or even better than the constrained adaptive LASSO with respect to 

estimating parameters known to fall in the interior of the parameter space. Regarding the 

parameter ߚସ, whose true value was zero, the constrained adaptive LASSO appeared to be 

superior to the constrained OLS with respect the percentage of estimates of zero. The constrained 

OLS yielded zero estimates of ߚସ at zero regardless of sample size. In contrast, approximately a 

half of replicate adaptive LASSO took values of zero for ߚସ. Since the percentage taking the 

value zero appeared to not increase with increasing sample size, this suggested that the tuning 

parameter selected based on BIC was small. However, further exploration found that similar 

results were obtained using the tuning parameter selected from the fivefold cross-validation 

(results not presented here). As expected, empirical biases of constrained adaptive LASSO and 

constrained OLS estimates both trended toward zero as the sample size increases. At the sample 

size of 1000, the empirical mean biases and standard deviations of the constrained adaptive 

LASSO were almost the same or even smaller relative to those of the constrained OLS. As 
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expected, the empirical bias for the constrained adaptive LASSO and constrained OLS trended 

towards zero with increasing sample size. 

When ߚସ lies on the upper bound of the constraints (i.e.,  ߚସ = 1.0 ), the constrained OLS 

approach tended to perform better than the constrained adaptive LASSO for samples of up to 300 

subjects. However, the constrained adaptive LASSO appeared to be superior to the constrained 

OLS estimates with respect to the empirical mean bias at a sample size of 1000. Similar to ߚସat 

the lower bound, the bias of constrained adaptive LASSO and OLS estimates both trended 

towards zero as the sample size increases. Unlike situation of ߚସ equal to 0.0 in which 

constrained OLS yielded 0% of estimates of zero, a small proportion of ߚସ estimates from the 

constrained OLS were set exactly equal to one. 

When ߚସ lies within the interior of the parameter space (i.e.,  ߚସ = 0.5 ), the empirical mean bias 

was lower under the constrained adaptive LASSO than under the constrained OLS. The 

constrained OLS appeared to perform better than the constrained adaptive LASSO with respect 

to percentage coverage of nominal 95% confidence intervals for parameters with relatively small 

Dirichlet means, while the constrained adaptive LASSO seemed to yield higher percentage 

coverage of nominal 95% confidence interval for the parameter with a relatively large Dirichlet 

mean. Furthermore, neither of these two approaches shrunk the estimates towards the boundary 

when the parameter lies well within the interior of the parameter space.  
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Table 3.1 Simulation results for Scenario A with known proportions: Bias, empirical mean difference of estimate and true parameter 
value; SD, empirical standard deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; % To 0, percentage of 
estimates falling on zero; % To 1, percentage of estimates falling on one. 

n Parameter 
True 
Value 

Constrained Adaptive LASSO Constrained OLS 

Bias SD CR (%) % To 0 % To 1 Bias SD CR (%) % To 0 % To 1 

100 β1 0.5 -0.0106 0.1734 91.9 -0.0132 0.1697 92.5 

β2 0.2 0.0132 0.1263 91.1 0.0006 0.1234 91.3 

β3 0.8 -0.0052 0.1063 92.0 -0.0049 0.1043 92.9 

β4 0.0 0.0268 0.0412 99.2 48.6 0.0 0.0246 0.0391 99.7 0.0 0.0 
300 β1 0.5 0.0000 0.0981 94.1 -0.0020 0.1003 93.5 

β2 0.2 0.0018 0.0736 93.8 -0.0029 0.0718 94.8 

β3 0.8 -0.0024 0.0607 95.4 -0.0033 0.0625 94.1 

β4 0.0 0.0140 0.0213 99.3 51.8 0.0 0.0131 0.0207 99.3 0.0 0.0 
1000 β1 0.5 -0.0020 0.0541 95.3 -0.0008 0.0541 95.3 

β2 0.2 -0.0023 0.0409 93.6 -0.0025 0.0390 95.3 

β3 0.8 -0.0003 0.0333 94.7 -0.0013 0.0336 94.4 

β4 0.0 0.0081 0.0118 99.0 50.0 0.0 0.0077 0.0117 98.6 0.0 0.0 
100 β1 0.5 0.0012 0.1746 93.0 -0.0087 0.1731 93.3 

β2 0.2 0.0033 0.1323 90.5 0.0059 0.1281 95.5 

β3 0.8 0.0045 0.1041 92.7 0.0005 0.1040 93.6 

β4 0.5 -0.0001 0.1087 94.0 0.0 0.0 -0.0005 0.1127 93.2 0.0 0.0 
300 β1 0.5 -0.0010 0.0991 94.6 0.0015 0.1029 93.9 

β2 0.2 -0.0005 0.0792 93.9 -0.0001 0.0778 94.5 

β3 0.8 0.0017 0.0608 94.3 0.0008 0.0633 92.3 

β4 0.5 -0.0003 0.0617 95.4 0.0 0.0 0.0004 0.0627 94.9 0.0 0.0 
1000 β1 0.5 -0.0003 0.0551 94.7 -0.0001 0.0568 95.0 

β2 0.2 -0.0017 0.0443 93.6 -0.0010 0.0424 95.2 

β3 0.8 0.0018 0.0335 94.7 -0.0003 0.0333 95.8 

β4 0.5 0.0000 0.0340 95.1 0.0 0.0 0.0038 0.0350 93.6 0.0 0.0 

Table 3.1 (Continued) 
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Table 3.1 (Continued) 

n Parameter 
True 
Value 

Constrained Adaptive LASSO Constrained OLS 

Bias SD CR (%) % To 0 % To 1 Bias SD CR (%) % To 0 % To 1 

100 β1 0.5 0.0046 0.1719 92.2 0.0005 0.1697 92.2 

β2 0.2 0.0087 0.1328 89.3 0.0121 0.1295 95.9 

β3 0.8 0.0031 0.0997 93.1 0.0048 0.0968 92.2 

β4 1.0 -0.0026 0.0393 99.5 0.0 50.7 -0.0023 0.0373 99.7 0.0 7.3 
300 β1 0.5 0.0007 0.0978 94.2 0.0040 0.0987 93.7 

β2 0.2 0.0026 0.0794 92.2 0.0036 0.0787 94.4 

β3 0.8 0.0015 0.0556 95.4 0.0036 0.0573 92.8 

β4 1.0 -0.0014 0.0210 99.6 0.0 49.6 -0.0014 0.0203 99.3 0.0 5.8 
1000 β1 0.5 0.0004 0.0546 94.4 0.0012 0.0550 95.0 

β2 0.2 0.0008 0.0445 91.0 0.0012 0.0431 95.4 

β3 0.8 0.0017 0.0302 96.3 0.0020 0.0300 95.6 

β4 1.0 -0.0007 0.0105 99.2 0.0 50.2 -0.0007 0.0104 98.5 0.0 2.8 
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3.3.2 Scenario B: known proportions & a small Dirichlet mean  

Under this scenario, we consider ݌ = 4 with Dirichlet means for the first three location contexts 

of  0.35, 0.32, 0.30, and a small Dirichelet mean for the last location of 0.03. We set the 

parameters for the first three location contexts at ߚଵ = ଶߚ ,0.80 = 0.20, and ߚଷ = 0.50.  For the 

last location context, we took ߚସ equal to 0.0, 0.5 and 1.0, aiming to investigate the potential 

impacts of parameters on the boundary of the parameter space.  

Simulation results under this scenario are shown in Table 3.2. The empirical mean bias and 

especially the empirical standard deviation for both constrained adaptive LASSO and 

constrained OLS estimates were much bigger in the location context with small a Dirichlet mean. 

The empirical standard deviation of estimate of the low Dirichlet mean group appeared to be 

smaller around the boundary (i.e., ߚସ = 0.0 or 1.0) relative to within the interior (i.e., ߚସ =

0.5) of the parameter space.  

When ߚସ lies on the lower boundary of the parameter space (i.e.,  ߚସ = 0.0 ), the constrained 

adaptive LASSO approach appeared to perform better than the constrained OLS with respect to 

empirical mean bias at large samples. Nonetheless, we failed to find any significant difference 

between two approaches when the sample size is small. The constrained OLS estimate was 

inferior to constrained adaptive LASSO with respect to the percentage of estimates of ߚସ at zero. 

In contrast, the constrained adaptive LASSO approach led more than 50% of estimates for ߚସ 

well on the lower bound for the constraints. As expected, the empirical mean bias for constrained 

adaptive LASSO and constrained OLS trended towards zero as the sample size increases. 
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Unlike ߚସ on the lower bound, the constrained OLS yielded a substantial number of ߚସ estimates 

well on the upper bound (i.e.,  ߚସ = 1.0). Moreover, the constrained adaptive LASSO appeared 

to be superior to the constrained OLS estimates with respect to the empirical mean bias when 

ସߚ = 1.0. In general, there were no significant difference in the performance of constrained 

adaptive LASSO relative to constrained OLS when ߚସ lies well on the upper bound (i.e.,  ߚସ =

1.0 ) or within the interior (i.e.,  ߚସ = 0.5 ) of the parameter space. However, it appeared that the 

constrained adaptive LASSO was more likely to yield estimates of zero and one when the true 

value of ߚସ equal to 0.5 at small sample sizes (i.e., n=100 or 300).
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Table 3.2 Simulation results for Scenario B with known proportions & a small Dirichlet mean: Bias, empirical mean difference of 
estimate and true parameter value; SD, empirical standard deviation of bias; CR, percentage coverage of nominal 95% confidence 
intervals; % To 0, percentage of estimates falling on zero; % To 1, percentage of estimates falling on one. 

n Parameter 
True 
Value 

Constrained Adaptive LASSO Constrained OLS 

Bias SD CR (%) % To 0 % To 1 Bias SD CR (%) % To 0 % To 1 

100 β1 0.8 0.0021 0.1139 94.6 0.0012 0.0941 93.6 

β2 0.2 0.0097 0.1069 91.8 0.0071 0.1009 93.1 

β3 0.5 0.0011 0.0922 94.3 -0.0017 0.1171 93.5 

β4 0.0 0.1330 0.2352 96.9 56.7 2.1 0.1400 0.2511 98.2 0.0 3.5 
300 β1 0.8 -0.0006 0.0678 94.5 -0.0013 0.0549 94.2 

β2 0.2 0.0001 0.0589 94.6 -0.0007 0.0593 93.3 

β3 0.5 -0.0025 0.0562 93.2 0.0008 0.0675 95.2 

β4 0.0 0.0708 0.1152 99.3 51.7 0.0 0.0692 0.1199 98.8 0.0 0.0 
1000 β1 0.8 -0.0003 0.0362 95.9 0.0002 0.0309 94.8 

β2 0.2 0.0009 0.0327 94.1 -0.0010 0.0319 94.7 

β3 0.5 0.0008 0.0286 95.6 -0.0011 0.0361 95.9 

β4 0.0 0.0345 0.0537 99.0 51.6 0.0 0.0406 0.0608 98.8 0.0 0.0 
100 β1 0.8 0.0010 0.1159 94.8 0.0038 0.0943 93.5 

β2 0.2 0.0041 0.1066 91.4 0.0086 0.1014 93.6 

β3 0.5 -0.0003 0.0932 94.6 -0.0001 0.1174 93.5 

β4 0.5 -0.0005 0.3555 67.1 15.3 15.7 -0.0007 0.3566 92.8 0.0 14.2 
300 β1 0.8 0.0000 0.0675 94.6 -0.0001 0.0552 94.3 

β2 0.2 -0.0002 0.0589 94.9 0.0005 0.0598 93.6 

β3 0.5 -0.0020 0.0566 93.4 0.0015 0.0675 95.4 

β4 0.5 0.0021 0.2395 89.3 2.5 2.5 -0.0005 0.2356 91.0 0.0 1.7 
1000 β1 0.8 -0.0003 0.0362 95.8 0.0008 0.0311 94.4 

β2 0.2 0.0008 0.0329 94.4 -0.0004 0.0320 94.4 

β3 0.5 0.0014 0.0286 95.6 -0.0003 0.0361 95.7 

β4 0.5 -0.0003 0.1203 94.9 0.0 0.0 0.0018 0.1235 94.5 0.0 0.0 

Table 3.2 (continued)  
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Table 3.2 (continued)  

n Parameter 
True 
Value 

Constrained Adaptive LASSO Constrained OLS 

Bias SD CR (%) % To 0 % To 1 Bias SD CR (%) % To 0 % To 1 

100 β1 0.8 0.0001 0.1144 94.4 0.0056 0.0934 93.4 

β2 0.2 -0.0015 0.1018 92.5 0.0098 0.1020 93.1 

β3 0.5 -0.0052 0.0941 94.3 0.0028 0.1179 93.2 

β4 1.0 -0.0140 0.2407 96.8 2.4 54.6 -0.0143 0.2504 98.7 0.0 47.3 
300 β1 0.8 0.0001 0.0671 94.5 0.0009 0.0556 94.0 

β2 0.2 0.0007 0.0587 95.0 0.0017 0.0599 93.5 

β3 0.5 -0.0022 0.0560 93.4 0.0025 0.0675 95.2 

β4 1.0 -0.0065 0.1101 99.3 0.0 54.3 -0.0072 0.1182 99.1 0.0 48.3 
1000 β1 0.8 -0.0002 0.0361 96.1 0.0013 0.0309 94.4 

β2 0.2 0.0013 0.0329 94.1 0.0002 0.0317 94.8 

β3 0.5 0.0012 0.0285 95.2 0.0002 0.0359 95.9 

β4 1.0 -0.0034 0.0526 99.5 0.0 51.1 -0.0035 0.0542 99.3 0.0 34.2 
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3.3.3 Scenario C: estimated proportions, no small Dirichlet means 

The objective of this scenario is to assess the impact of replacing known proportions of time 

spent in each location context by a given participant with estimated proportions.  The simulation 

settings for scenario C with respect to Dirichlet means and regression coefficients were identical 

to those in scenario A. As in scenario A, proportions of time spent in each location context were 

independently sampled from a Dirichlet distribution. The frequencies at which participants were 

observed at the location contexts were then independently sampled from a multinomial 

distribution with parameters set according to the realization of the Dirichlet distribution and 

sample size generated from a Poisson distribution with mean 200, the targeted size of phone calls 

by the COHSONET study. Sample proportions computed from the realization of the multinomial 

distribution were then used to estimate the proportions of time spent in each location context as 

generated from the Dirichlet distribution. Constrained adaptive LASSO estimates were then 

obtained based on estimated location contexts, and results were compared to constrained 

adaptive LASSO estimates obtained using the true location contexts realized from the Dirchlet 

distribution.   

Table 3.3 presents the simulation results of constrained adaptive LASSO under Scenario C 

versus Scenario A under the known and estimated location contexts. It appeared that the 

constrained adaptive LASSO estimates yielded smaller empirical mean biases under known 

location contexts relative to estimated location context when the sample size is sufficiently big. 

The ratio of variance of constrained adaptive LASSO estimates modeling from known versus 

estimated location contexts always varied around 1, which revealed that uncertainty due to 

variation from sampling and statistical modeling did not pose a substantial impact on the 
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parameter estimates in the constrained adaptive LASSO estimates. Moreover, there appeared to 

be equal likelihood for constrained adaptive LASSO under either known or estimated location 

contexts to shrink parameter estimates to the boundary (i.e., ߚସ = 0.0 or 1.0 ). 
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Table 3.3 Comparison of simulation results between Scenarios A and C: Bias, empirical mean difference of estimate and true 
parameter value; SD, empirical standard deviation of bias; CR, percentage coverage of nominal 95% confidence intervals; % To 0, 
percentage of estimates falling on zero; % To 1, percentage of estimates falling on one; Ratio, empirical mean ratio of variance of 
bias. 

n Parameter 
True 
Value 

Known Proportions Estimated Proportions 

Ratio Bias SD CR (%) % To 0 % To 1 Bias SD CR (%) % To 0 % To 1 

100 β1 0.5 -0.0106 0.1734 91.9 -0.0029 0.1712 92.5 1.025 
β2 0.2 0.0132 0.1263 91.1 -0.0009 0.1275 89.6 0.982 
β3 0.8 -0.0052 0.1063 92.0 -0.0019 0.1018 93.0 1.091 
β4 0.0 0.0268 0.0412 99.2 48.6 0.0 0.0261 0.0394 99.7 51.7 0.0 1.095 

300 β1 0.5 0.0000 0.0981 94.1 -0.0018 0.0963 94.3 1.039 
β2 0.2 0.0018 0.0736 93.8 0.0030 0.0743 93.0 0.983 
β3 0.8 -0.0024 0.0607 95.4 -0.0074 0.0601 94.4 1.021 
β4 0.0 0.0140 0.0213 99.3 51.8 0.0 0.0153 0.0224 99.0 48.7 0.0 0.909 

1000 β1 0.5 -0.0020 0.0541 95.3 0.0006 0.0534 94.1 1.025 
β2 0.2 -0.0023 0.0409 93.6 0.0002 0.0401 94.4 1.038 
β3 0.8 -0.0003 0.0333 94.7 -0.0053 0.0326 95.1 1.043 
β4 0.0 0.0081 0.0118 99.0 50.0 0.0 0.0089 0.0120 98.5 45.2 0.0 0.977 

100 β1 0.5 0.0012 0.1746 93.0 0.0031 0.1744 92.4 1.003 
β2 0.2 0.0033 0.1323 90.5 -0.0001 0.1333 90.3 0.986 
β3 0.8 0.0045 0.1041 92.7 0.0021 0.1025 92.3 1.032 
β4 0.5 -0.0001 0.1087 94.0 0.0 0.0 -0.0001 0.1090 93.5 0.0 0.0 0.994 

300 β1 0.5 -0.0010 0.0991 94.6 0.0006 0.0998 93.5 0.986 
β2 0.2 -0.0005 0.0792 93.9 0.0024 0.0771 93.8 1.057 
β3 0.8 0.0017 0.0608 94.3 -0.0036 0.0601 95.2 1.024 
β4 0.5 -0.0003 0.0617 95.4 0.0 0.0 0.0003 0.0620 94.2 0.0 0.0 0.989 

1000 β1 0.5 -0.0003 0.0551 94.7 0.0031 0.0543 94.4 1.030 
β2 0.2 -0.0017 0.0443 93.6 0.0011 0.0436 93.4 1.030 
β3 0.8 0.0018 0.0335 94.7 -0.0027 0.0331 95.1 1.023 
β4 0.5 0.0000 0.0340 95.1 0.0 0.0 0.0010 0.0344 95.0 0.0 0.0 0.981 

    Table 3.3 (Continued) 
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Table 3.3 (Continued) 

n Parameter 
True 
Value 

Known Proportions Estimated Proportions 

Ratio Bias SD CR (%) % To 0 % To 1 Bias SD CR (%) % To 0 % To 1 

100 β1 0.5 0.0046 0.1719 92.2 0.0090 0.1636 93.5 1.103 
β2 0.2 0.0087 0.1328 89.3 0.0044 0.1354 87.7 0.963 
β3 0.8 0.0031 0.0997 93.1 0.0006 0.0959 93.1 1.081 
β4 1.0 -0.0026 0.0393 99.5 0.0 50.7 -0.0024 0.0359 99.9 0.0 49.2 1.198 

300 β1 0.5 0.0007 0.0978 94.2 0.0037 0.0974 94.0 1.008 
β2 0.2 0.0026 0.0794 92.2 0.0073 0.0782 92.3 1.029 
β3 0.8 0.0015 0.0556 95.4 -0.0026 0.0559 96.5 0.991 
β4 1.0 -0.0014 0.0210 99.6 0.0 49.6 -0.0015 0.0209 99.2 0.0 46.0 1.013 

1000 β1 0.5 0.0004 0.0546 94.4 0.0057 0.0518 95.0 1.110 
β2 0.2 0.0008 0.0445 91.0 0.0036 0.0436 92.5 1.039 
β3 0.8 0.0017 0.0302 96.3 -0.0008 0.0300 96.1 1.011 
β4 1.0 -0.0007 0.0105 99.2 0.0 50.2 -0.0008 0.0111 98.9 0.0 49.1 0.894 
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3.4 APPLICATION OF COHSONET DATA 

The proposed approaches are illustrated using data from the COHSONET study which 

was designed to investigate the impact of social contact patterns on the risk of M. 

tuberculosis conversion. We hypothesize that the proportions of time participants spent in 

different location contexts may be regarded as a surrogate variable for social contact 

patterns. To evaluate the social contact patterns, a cohort of individuals aged between 15 

and 45 years and were free of M. tuberculosis infection at baseline were enrolled in the 

COHSONET study. Participants were prompted to answer a set of questions concerning 

their location and surrounding environment at the times when calls were answered during 

a one-year follow-up period. Sampling times when the phone calls were made were 

randomly generated from a self-correcting point process.  

The conditional intensity for a self-correcting point process takes the form 

                                          λ(t|Ӻ௧) = exp൛ߙ଴ + ݐଵ൫ߙ − ൯ൟ(ݐ)ଶܰߙ  ݐ        , ∈ [0, ܶ]                                          

where ߙ଴ ,  ;ଶ are constants (Isham and M. 1979; Ogata and Vere-Jones 1984ߙ ଵ, andߙ

Vere-Jones and Ogata 1984), and ߙଵ,  ߙଶ > 0. This point process is a self-correcting in 

the sense that if the number of events strays from the target 1/ߙଶ, then the assessment 

rate compensates to force this difference back towards zero. The baseline intensity is 

exp{ߙ଴}. The parameters ߙ଴  and  ߙଶ  govern the mean number of phone calls made per 

day, while ߙଵ controls the variability of the number of calls per day and the regularity of 

the spacing of the assessment times. The self-correcting point process generates more 

regularly spaced assessment times and less variation in numbers of assessments per day 
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than the Poisson process, reducing burden on the study subjects. In the COHSONET 

study, ߙ଴= -0.602, ߙଵ = 3, and ߙଶ = 1.825 targeting 200 random assessments per year.  

In the COHSONET study, only 63.7% of phone calls were answered. Given the 

substantial amount of missing data, there is potential for bias in estimates of model 

parameters describing the impact of location contexts on risk of TB conversion. The only 

information available for unanswered calls is the time and date at which each call was 

made. Therefore, it is only feasible to describe the pattern of answered phone call as a 

function of calling times. Let ݌௜(ݐ) denote the probability that a call at time ݐ is answered 

by subject ݅. Let ܼ௜(ݐ) = 1 if a call is answered at time ݐ by subject ݅, and ܼ௜(ݐ) = 0 if 

otherwise. Assume that ܼ௜(ݐ), ݐ ∈ ௜ܰ, are independently sampled from a Bernoulli 

distribution with thinning function ݌௜(ݐ), where ௜ܰ denotes the set of times at which calls 

are made to subject ݅, a realization of a point process with intensity ߣ௜(ݐ). Then the set of 

answered calls ௜ܰ
∗ is a realization of a thinned point process with intensity 

-Assume that the data are missing at random, the design .(Cressie 1991)(ݐ)௜݌(ݐ)௜ߣ

unbiased estimators in (3.2) may be replaced with corrected estimators 

                                      ෠ܺ௜(ܶ) =
ଵ

்
∑ ௫೔(௧)

ఒ೔(௧)௣೔(௧)௧∈ே೔
∗   .                                                   (3.4)                                        

Exploratory data analysis suggested that the missing data pattern depended on the time of 

day, a pattern that is likely to vary among study participants. The location contexts in 

which participants spend their time are also likely to be a function of time of day, a 

function that may also vary among study participants. We assume that the thinning 

function is periodic, as described through its logit transformation, 
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݃݋݈
(ݐ)௜݌

1 − (ݐ)௜݌
= ෍ ) ௜௞cosݑ

ݐ݇ߨ2
߬

+ ߶௜௞)

௄

௞ୀଵ

 

where ݑ௜௞  denotes the amplitude, ߬ represents the period set to 1 (day), and ߶௜௞  denotes 

the phase. The model may be reparameterized by writing 

݃݋݈
௣೔(௧)

ଵି௣೔(௧)
= ௜଴ߛ + ∑ ቄߛଵ௜ ݏ݋ܿ ቀ

ଶగ௞௧

ఛ
ቁ + ݊݅ݏଶ௜௞ߛ ቀ

ଶగ௞௧

ఛ
ቁቅ௄

௞ୀଵ , 

where the amplitude is ݑ௜௞ = ටߛଵ௜௞
ଶ + ଶ௜௞ߛ

ଶ  and the phase is ߶௜௞ = ଶ௜ߛ/ଵ௜௞ߛ)ଵି݊ܽݐ− ).  

As to describe variation among participants’ missing data patterns, the parameter vectors 

 ௜ are assumed to be independently sampled from a multivariate normal distribution withߛ

mean ߤ and variance-covariance matrix ߑ.   

Laplace approximations to the likelihood (Breslow and Clayton 1993) and maximum 

hierarchical likelihood (Lee and Nelder 1996), both lead to inconsistent estimates when 

the sampling domain is small (Rathbun and Shiffman 2016). The Expectation-

Maximization (EM) algorithm can produce consistent estimates in the random effects 

model regardless of sampling domains. Nevertheless, it remains challenge to compute the 

E-step in the random effects model because the conditional expectation is an intractable 

integral. Steele (1996) proposed using a second-order Laplace approximation for 

computation of conditional expectations within the E-step (Steele 1996) for generalized 

linear mixed models. We implemented Steele’s (1996) method for parameter estimation 

in the random effects model using FORTRAN code available in the supplementary 

material of Rathbun and Shiffman (2016).  
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In current study, only subjects who responded to more than 30 phone calls over the study 

are eligible for inclusion in the data. A total of 288 subjects who received more than 30 

phone calls were included in the random effects modeling. Previous investigation 

revealed that participants were most likely to respond to the phone calls in the early 

morning (i.e., 7:00 am -8:00 am), and least likely to answer phone calls at the end of a 

day (Figure 1.1). In addition, there appeared to be an increasing trend in the patterns of 

answering phone calls between 9:00am and 7:00pm.  

We found that on average participants spent the most time at homes (i.e. 32.4%), 

followed by work places (32.1%), public transports (7.1%), and shopping centers (4.1%). 

It seems that participants in the COHSONET study rarely spent time at women groups, 

gyms/recreations, clubs, schools, neighbors’ homes and hospitals (less than 1%) (Figure 

1.2). To evaluate different approaches in the linear probability model, only complete 

cases containing both M. tuberculosis conversion information and proportions of time 

spent in each location context available were included, and thus observations from a total 

of 189 participants were included in the statistical modeling in the rest of this section.   

Table 3.4 presents parameter estimates of constrained adaptive LASSO and constrained 

OLS in the linear probability model over all location contexts. Adaptive LASSO 

estimates falling on either boundary are treated as known, and so confidence intervals are 

not computed (Wong et al. 2016). Based on the outputs from the constrained adaptive 

LASSO approach, we can see that a total of seven location contexts were of zero risk of 

contracting M. tuberculosis including the relatives’ homes, work places, 

clubs/associations, saloons, gyms/recreations, women groups and neighbors’ homes, 
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while there appeared to be 100% risk of infection with M. tuberculosis for people 

spending all of their time at four different location contexts including schools, worship 

centers, bars and shopping/trading centers. Similar conclusions were implied by the 

constrained OLS estimates except in hospitals/clinics, where the constrained OLS yielded 

an estimate of zero compared to the constrained adaptive LASSO estimate of 0.3693. 

Moreover, the widths of 95% confidence intervals in the constrained adaptive LASSO 

appeared to be narrower than those in the constrained OLS estimates. Therefore, the 

constrained adaptive LASSO estimates were subject to less uncertainty relative to the 

constrained OLS estimates. 
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Table 3.4 Parameter estimates of constrained adaptive LASSO and constrained OLS in the linear probability model over all location 

contexts (n=189). 95% CI: 95% confidence interval. 

Location Context 

Constrained Adaptive LASSO Constrained OLS 

Estimate 95% CI Estimate 95% CI 

Home 0.2023 (0.0000-0.4463) 0.2905 (0.0000-0.6022) 
Friend's home 0.3089 (0.0000-0.9437) 0.5472 (0.0525-1.0000) 
Relative's home 0.0000 ---- 0.0139 (0.0000-0.9372) 
Work 0.0000 ---- 0.0000 (0.0000-0.3144) 
School 1.0000 ---- 1.0000 (0.0609-1.0000) 
Worship center 1.0000 ---- 1.0000 (0.0767-1.0000) 
Club/Association 0.0000 ---- 0.0000 (0.0000-0.9473) 
Bar 1.0000 ---- 1.0000 (0.0726-1.0000) 
Saloon 0.0000 ---- 0.0000 (0.0000-0.9412) 
Gym/Recreation 0.0000 ---- 0.0000 (0.0000-0.9479) 
Hospital/Clinic 0.3693 (0.0000-0.9475) 0.0000 (0.0000-0.9448) 
Shopping/Trading center 1.0000 ---- 1.0000 (0.0717-1.0000) 
Public transport 0.7257 (0.0806-1.0000) 0.5007 (0.0298-0.9716) 
Women group 0.0000 ---- 0.0000 (0.000-0.9497) 
Market place 0.1029 (0.0000-0.9387) 0.0000 (0.0000-0.9410) 
Neighbor's home 0.0000 ---- 0.0000 (0.0000-0.9472) 

Elsewhere 0.8927 (0.1501-1.0000) 0.6434 (0.0781-1.0000) 
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Since results in Table 3.4 tended to yield wide confidence intervals, covering most of the 

parameter space, the full model including all location contexts might be regarded as over-

parameterized. Therefore, we fit models based on the reduced location contexts by 

pooling friend’s, relative’s, and neighbor’s homes into one location context as “Other 

home”, and pooling the remaining locations expect for home, other home, work place, 

and public transport into “Elsewhere”. Based on Table 3.5, the estimated risk of M. 

tuberculosis conversion at home and public transport appeared to decrease as compared 

to the modeling results in Table 3.4. In particular, the estimated risk of contracting M. 

tuberculosis at public transport reduced by about 25% using the constrained adaptive 

LASSO approach. People remained at zero risk of infecting M. tuberculosis at work place 

in terms of both constrained OLS and constrained adaptive LASSO estimates. In general, 

there were no significant difference between constrained adaptive LASSO and 

constrained OLS estimates under the reduced location contexts setting in terms of the 

95% confidence intervals.  
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Table 3.5 Parameter estimates of constrained adaptive LASSO and constrained OLS in 

the linear probability model based on the reduced location contexts (n=189). 95% CI: 

95% confidence interval. 

Location Context 

Constrained Adaptive LASSO Constrained OLS 

Estimate 95% CI Estimate 95% CI 

Home 0.2212 (0.0000-0.5174) 0.2575 (0.0000-0.5566) 

Other home* 0.5330 (0.0568-1.0000) 0.3022 (0.0000-0.9360) 

Work 0.0000 ---- 0.0000 (0.0000-0.3018) 

Public transport 0.4816 (0.0114-0.9518) 0.4129 (0.0000-0.9372) 

New elsewhere* 0.6767 (0.2385-1.0000) 0.6823 (0.2136-1.0000) 

* Other home is a pooled location of “Friend’s home”, “Relative’s home”, and “Neighbor’s home”; 

New elsewhere is a pooled location of “School”, “Worship center”, “Club/Association”, “Bar”, “Saloon”,” 

Gym/Recreation”, “Hospital/Clinic”, “Shopping/Trading center”, “Women group”, “Market place” and 

“Elsewhere” in table 3.4. 

 

3.5 DISCUSSION 

The proposed adaptive LASSO for the constrained linear probability model is offered as 

an alternative to the constrained OLS method. The simulation study reveals that the 

constrained adaptive LASSO is a competitive alternative to the constrained OLS in the 

linear probability model. In particular, the constrained adaptive LASSO performs better 

than constrained OLS in the presence of some parameters lying on the boundary of the 

parameter space.  

In the COHSONET study, the true proportions of time participants spent in different 

location contexts were unavailable, so we instead substituted them with design-unbiased 

estimators in the proposed statistical models. Since the estimated proportions of time 

participants spent in different location contexts are subjected to variation sourced from 
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random sampling and missing data modeling, it is challenging to obtain estimate of 

variation due to these sources. Nonetheless, simulation studies based on estimated 

covariates suggested that such errors had little impact on the parameter estimates, so we 

can obtain unbiased parameter estimates using the design-unbiased estimators in the 

COHSONET data. 

In summary, the constrained adaptive LASSO is a robust approach in the linear 

probability model under constraints that parameters lie in the unit interval. It has good 

performance regardless of the assumption of heteroscedasticity. Moreover, constrained 

adaptive LASSO estimators are consistent and asymptotically unbiased.  
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CHAPTER 4 

CONCLUSIONS 

 

4.1 SUMMARY  

Ecological Momentary Assessment (EMA) captures real-time states and behaviors in 

subjects’ natural environments. The time-stamped EMA technique has several advantages 

over the traditional methods such as reducing recall biases and establishing the temporal 

ordering of events (Shiffman et al. 2008; Stone and Shiffman 1994; Stone and Shiffman 

2002). The implementation of EMA study relies on portable electronic devices such as 

personal digital assistants and smart phones. Technological advancement has made EMA 

possible in more and more contexts. In recent years, EMA has been applied to study the 

prevention behaviors of infectious diseases such as HIV (Barta et al. 2008; Cook et al. 

2016). 

In the Community Health Study of Social Networks and Tuberculosis (COHSONET), 

Whalen’s ongoing studies on transmission dynamics of M tuberculosis in the Rubaga 

Division of Kampala, Uganda, EMA was employed to investigate social contact patterns 

among M. tuberculosis free subjects at baseline and for one year of follow up. We treated 

proportions of time patients spent in different location contexts as a surrogate variable for 

social contacts, and estimated them through design-unbiased estimators (Cassel et al. 
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1977) since the EMA samples were generated from a known probability-based sampling 

design.  

This dissertation aims to model the risk of M. tuberculosis conversion as a function of 

proportions of time participants spent in different location contexts. Logistic regression is 

the most commonly method being applied to the data with a dichotomous outcome. 

However, the maximum likelihood estimates (MLEs) of the logistic regression model 

have a bias of order O(n-1) (Firth 1993). Although a penalized MLE approach has been 

proposed by Firth (1993) to reduce bias in MLE, we did not favor the logistic regression 

model because it is nonlinear. We were concerned that the use of design-unbiased 

predictors (i.e., proportions of time participants spent in different location contexts) might 

lead to unpredictable uncertainty in the parameter estimates from the logistic regression 

model. Therefore, we proposed a linear probability model, which we hoped would reduce 

the uncertainty related to the logistic regression model, as an alternative option. One 

salient issue that confronts us in the linear probability model is that direct application of 

any estimating approaches such as ordinary least squares (OLS) may produce 

meaningless results that the predictive value of the outcome is outside the interval of zero 

to one.  

In order to address this limitation, we proposed two different approaches which constrain 

the predicted values from the linear probability model to lie on the unit interval between 

zero and one. The first approach that we proposed was the constrained OLS in Chapter 2, 

the implementation of which leans on the quasi-Newton technique (Powell 1982a; Powell 

1982b). Inspired by previous work concerning optimized estimators under constraints 



 

125 

 

(Self and Liang 1987; Shapiro 2000; Wong et al. 2016), we demonstrated that the 

constrained estimators are root-n consistent and have a unique asymptotic distribution. 

Since heteroscedasticity is a potential threat in the linear probability model, we also 

investigated constrained weighted least squares (WLS) estimates. However, both 

theoretical demonstration and simulations studies suggested that the constrained WLS 

yielded biased parameter estimates due to a nonlinear, parameter-dependent weighting 

term. 

The second approach, the constrained adaptive LASSO in Chapter 3, was more desirable 

due to its capabilities in model selection, regularization as well as imposing boundary 

constraints on the parameter estimation. There is evidence that the adaptive LASSO is an 

oracle procedure. That is, the model selection is consistent, and parameter estimation is 

consistent as well as asymptotically normal. Following Wong et al. (2016), the 

constrained adaptive LASSO estimates are consistent and approach a limiting distribution 

in the constrained parameter space. Particularly, estimates of the constrained adaptive 

LASSO are asymptotically normal if none of parameter estimates falls on the boundary 

of the constraints.  

All proposed approaches were compared through a set of simulation studies. Overall, the 

constrained OLS performed as well as the constrained adaptive LASSO except for 

parameters lying on the constrained boundaries. It appeared that the constrained OLS was 

poor at forcing estimates to the boundary. However, the constrained OLS was not inferior 

to the constrained adaptive LASSO if the location context with a small Dirichlet mean 

but with strong impact on the risk of dependent variable (e.g., the true parameter value 
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for this location context equal to 1.0). In addition, simulation studies revealed that the 

constrained OLS in the linear probability model was a competitive option for the logistic 

regression. The constrained OLS estimates tended to be less biased than the MLE and 

penalized MLE estimates in the logistic regression. In particular, the logistic regression 

model had a poor performance in the presence of parameters close to the boundary of the 

parameter space. Furthermore, simulation studies indicated that the potential variations 

due to random sampling of the EMA data as well as from the random effects modeling of 

the probability of answering the phone calls might not pose substantial threats on the 

parameter estimation in both logistic regression and constrained linear probability 

models. 

4.2 FUTURE RESEARCH 

Together with its ease of interpretability, this dissertation demonstrated that the 

constrained linear probability model is competitive alternative to the logistic regression 

model. The proposed constrained OLS and adaptive LASSO estimates in the linear 

probability model are not only less biased than the MLE and penalized MLE estimates in 

the logistic regression model, but they also perform far better when some parameters in 

the model have values close to or lie on the boundary of the constrained parameter space.  

In spite of these appealing merits of the proposed constrained approaches, there are 

further areas of research remain untouched in this dissertation.  
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4.2.1 Measurement error model 

In the COHSONET study, the true proportions of time participants spent in different 

location contexts were not available, so we replaced them with design-unbiased 

estimators. The calculation of design-unbiased estimators relied on two assumptions: (1) 

The sampling times of the EMA data were randomly selected from a self-correcting point 

process with known intensities; (2) The made phone calls were not responded randomly, 

and thus a random effects model proposed by Rathbun and Shiffman (2016) was well 

suited to predict the probability of answering a phone call (Rathbun and Shiffman 2016). 

Therefore, parameter estimates in the proposed statistical models are subjected variation 

due to sampling as well as random effects modeling. Although simulations studies 

indicated these two sources of variation had minimal impacts on parameter estimates, 

quantifying that impact remains a future direction of research.  

4.2.2 Estimation of confidence interval bounds 

The construction of confidence intervals is beyond the scope of the current work, but it is 

crucial to obtain unbiased confidence intervals in the field of statistical modeling. 

According to Wong et al. (2016), confidence intervals can be constructed based upon the 

standard (i.e., not constrained) estimations if all parameter estimates lie within the 

interior of the boundaries. While for modelling results containing some parameter 

estimates on  the boundary, treating these parameters as known and establishing the 

confidence intervals based upon the rest of parameters which are within the interior of the 

constraints (Wong et al. 2016). However, confidence intervals built upon Wong et al.’s 

assumption could lead to estimates beyond the boundary, especially when the sample size 
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is small, or a parameter estimate is close to the boundary, or the interval of the boundary 

is narrow, or any combination of the listed situations. To address this issue, the current 

dissertation used the highest posterior density (HPD) (Box and Tiao 1992) to obtain 

confidence regions. In spite of its good performance among parameters with asymmetric 

distributions, the HPD confidence regions have been criticized by some researchers for 

being too dependent on the parametric assumption (Roese-Koerner et al. 2012; Vexler et 

al. 2016; Zhou and Reiter 2010). Zhou and Reiter (2010) demonstrated that the HPD 

estimators are biased if the parametric assumptions are not correct. In consideration of the 

under-coverage rate of 95% confidence intervals in the proposed constrained estimators, 

we suspect that HPD confidence regions might not be suitable here. Therefore, it can be a 

future research direction to develop optimal confidence intervals for parameter estimates 

under certain constraints. 
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