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ABSTRACT 

 Since the turn of the century, the way energy is produced and consumed across the United 

States has changed substantially. The objective of this dissertation is to provide an overview of the 

economic efficiency and distributional equity implications of changing the way energy is both 

produced and consumed. This work is outlined in three separate essays. The first essay entitled, 

“Gone with The Wind: Understanding the Impact of Intermittent Renewable Resources on Power 

System Reliability Across the United States,” investigates if increasing the capacity of electricity 

generated by intermittent renewable resources affects the ability of electric utility companies 

across the United States to provide a reliable supply of power to their customers. Results suggest 

as the capacity of electricity generated by intermittent renewable resources increases, customers 

can expect to experience longer power system outages. The second essay, entitled “Estimating and 

Comparing Empirical Measures of Household Energy Insecurity,” examines the extent to which 

different classification procedures used for identifying energy insecure households provide an 

accurate representation of what it means to be energy insecure in the United States. In this essay 

we compare and contrast five different approaches used for measuring household energy insecurity 

and propose one of these as a unique, conceptually and empirically strong, and preferred measure. 



Across the different measures, we find between 9 to 22% of households living in the U.S. identify 

as energy insecure. The third essay entitled, “Examining the Theoretical and Empirical 

Relationships Between Household Energy Efficiency and Security,” develops a theoretical model 

and empirical procedure for examining how investing in energy efficiency affects household 

energy insecurity. We use our preferred measure of energy insecurity developed in the second 

essay to test our hypothesis that investing in energy efficiency has a significant negative effect on 

a household self-identifying as being energy insecure. The results of this essay indicate investing 

in energy efficiency decreases the likelihood that a household will become more energy insecure. 

This dissertation concludes in the last chapter with a brief summary and general conclusions from 

this research. 
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CHAPTER 1 

INTRODUCTION  

1.1 RESEARCH MOTIVATION 

Since the OPEC oil embargo of the 1970s, the energy policy agenda of the United States has been 

concentrated on achieving three main goals: (1) ensuring an adequate and secure supply of energy 

remains available for both current and future consumption; (2) guaranteeing energy prices remain 

affordable to consumers, especially for low-income and other economically marginalized 

households; and (3) reducing the environmental impacts associated with producing and consuming 

energy resources (Yacobucci 2016). In pursuit of these goals, countless public policies and 

programs have been implemented to “improve” the way energy is produced and consumed across 

the United States (Yacobucci 2016).  

Recently, many of these policies and programs have called for a modification of the energy 

resource mix to include a greater share of intermittent renewable resources (e.g., wind energy and 

solar radiation), as well as a reduction in overall energy consumption through increased energy 

efficiency (Yacobucci 2016). The energy changes described above have implications related to 

both the efficiency and equity of energy production and consumption in the United States. For 

example, modifying the energy resource mix to include more intermittent renewable resources and 

fewer traditional fossil fuels can help to reduce carbon dioxide emissions, but perhaps with 

tradeoffs in the efficiency of energy production and/or equity of energy consumption. In addition, 

if traditional fossil fuel resources are still economically feasible to extract and utilize, then phasing 
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them out too quickly for intermittent renewables could potentially lead to lost profits (Hotelling 

1931). 

Other energy policies including home energy assistance programs have focused on 

reducing energy insecurity in the United States. Energy insecurity refers to situations where 

households do not have adequate access to energy services such as adequate home heating and 

cooling.  Household energy insecurity is similar to household food insecurity where households 

do not have adequate access to food services such as adequate calorie and nutrition intake. As with 

the transition to the use of more renewable resources in the power grid, household access to 

adequate energy services has both efficiency and equity considerations and implications related to 

energy production and consumption. 

1.2  ECONOMIC EFFICIENCY AND DISTRIBUTIONAL EQUITY  

From a positive (“what is”) economics perspective, economists tend to focus on achieving 

economic efficiency as the leading objective when evaluating any proposed policy change. In 

general, policies that achieve economic efficiency are those that allocate resources in such a way 

that it would be impossible to reallocate the same resources to make someone better off without 

simultaneously making someone else worse off (Bergstrom and Randall 2016). Economic 

efficiency occurs when desired outputs are produced at minimum cost, while taking individual 

consumer preferences into account.  

As a policy assessment criterion, a presumed advantage of economic efficiency is it does 

not necessitate equal distribution of society's scarce resources across all individuals and groups 

(Bhattacharrya 1995). Another major advantage of economic efficiency as a policy assessment 

criterion is that it prevents wasteful use and allocation of society’s scarce resources to economic 

production and consumption. A disadvantage of this criterion, however, is that it allows economic 
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injury to occur and ignores who gains and who loses (Bergstrom and Randall 2016). Thus, 

economic efficiency alone may be insufficient to evaluate proposed policy changes in the U.S. 

energy industry. Instead, other criteria which take into account the distribution of benefits and 

costs across households, income groups, geographical regions, and states should also be considered 

(Goulder and Perry 2008).  

Examining the equity or “fairness” of policy changes involves considering normative 

(“what should be”) types of questions and issues. Distributional equity is often a concern when a 

proposed policy change could potentially harm certain individuals or groups. For example, if a 

policy is pursued that leads to higher energy prices, then low-income households may be unable 

to afford the expenses necessary to provide adequate household energy services (e.g., maintenance 

of comfortable indoor air temperatures). 1 From a distributional equity perspective, these 

households are made “worse off” when policies are adopted that lead to higher energy prices. 

1.3  ARE U.S. ENERGY POLICIES EFFICIENT AND EQUITABLE?  

Currently, around 63 percent of the energy resources used to generate electricity in the United 

States are traditional fossil fuels (e.g., coal and natural gas) (United States Energy Information 

Administration [EIA] 2018). While these types of energy resources outperform other types of 

energy resources used to produce electricity (e.g., intermittent renewables) in terms of their 

predictability and reliability, the potential hazardous risks burning fossil fuel resources imposes 

on the environment are hard to ignore. From an economics perspective, one way to motivate a shift 

in production away from fossil fuels would be to assign a price to emissions, either through taxes 

or the implementation of a cap-and-trade program.   

                                                 
1 We assume economically marginalized households include households whose characteristics and resources render them 

potentially vulnerable to economic hardship. Examples might include households with differently abled persons, households with 

low incomes, households aged 60 and over, or households where an adult is unable to provide a sufficient source of income due to 

economic hardship (e.g., unemployment). 
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Previous studies have examined the economic implications of fossil fuel emission control 

policies and conclude that in most cases the benefits outweigh the costs and implementation of 

such programs results in positive impacts for the environment (Palmer and Burtraw 2005; Palmer 

et al. 2011; Rocha et al. 2015; Schmalensee and Stavins 2017). However, in isolation, these 

policies could lead to higher electricity prices for consumers. For example, when a cap-and-trade 

program goes into effect, the “cap” on emissions lowers from year to year. As a result, electricity 

prices go up to reflect the increasing scarcity of the “right” to emit pollutants (Morris 2009; Bird 

et al. 2011; Palmer et al. 2011; Linn and Richardson 2013).  

When electricity prices increase, low-income households may struggle to pay their home 

energy bills. As a result, these households could end up being disconnected from their electric 

utility service provider and forced to go without electricity for an extended period of time. 

Therefore, while a cap-and-trade program represents a cost-effective policy solution for reducing 

emissions, the resulting increase in home energy prices can have adverse, inequitable effects on 

low-income households (Stone 2015). As a result of these and other equity concerns, U.S. public 

policy and decision makers have yet to fully embrace a national cap-and-trade program as a first-

best means to mitigating emissions (Murray 2015).  

Instead, a number of policy initiatives have been proposed to reduce emissions by directly 

shifting production toward cleaner, more sustainable, intermittent renewable energy resources. 

Principal among these initiatives are renewable portfolio standards (RPS), which are state-level 

regulatory mandates that require a minimum amount of electricity to be generated from renewable 

energy resources (National Renewable Energy Laboratory [NREL] 2015).2 Currently 29 states 

                                                 
2 Several cities across the United States have also committed to having a greater share of their electricity generated by 

renewable energy resources. Examples include the city of Atlanta, GA who has committed to have 100% of its 

electricity supplied by renewables by 2035, the city of Blacksburg, VA who has committed to 100% renewables by 

2050, and Denver, CO who plans to be 100% renewable by 2030 (Sierra Club 2019).  



 

5 

 

across the U.S. have a standing RPS in place (EIA 2012). To meet the requirements of their state’s 

RPS, electric utility companies can choose to either generate electricity from renewable energy 

resources themselves, or purchase renewable energy credits (RECs) from other utilities.  

Palmer and Burtraw (2005) examined the economic impacts of state-level RPS at a time 

when only six states had active policies in place. 3 Their results suggest that because fossil fuel 

generation declines over time as the level of the state RPS increases, emissions reductions targets 

are achieved. However, they find that implementation is often accompanied by an increase in the 

price of electricity for consumers, which as discussed earlier can result in inequitable outcomes 

across different household groups. 

A more recent report by Wiser et al. (2016) however, suggests the opposite. Analyzing 

RPS in place up to the year 2013, Wiser et al. (2016) finds compliance obligations are not met 

with electricity price increases. Instead, Wiser et al. (2016) suggests that as more renewable energy 

resources are being brought online, the supply curve for electric power is likely shifting outward. 

This outward shift in the supply curve results in lower wholesale electricity prices overall. If 

wholesale prices decrease, then so too will retail electricity prices overtime.  

As Wiser at al. (2016) also points out while decreasing electricity prices are good for 

consumers, it is important to understand that these cost savings likely come at the expense of the 

producer (e.g. owners and other shareholders who experience reduced revenues when electricity 

prices go down). Thus, any reduction in the wholesale price of electricity does not necessarily 

represent an overall gain in economic welfare, but rather a transfer of wealth from the producer to 

                                                 
3 In 2004, only Connecticut, Maine, Nevada, Massachusetts, New Jersey, and California had RPS policies in place (Palmer and 

Burtraw 2005).  
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the consumer (Felder 2011). This wealth redistribution again raises a concern over the equity 

implications of such policies.  

In addition to motivating a shift in production toward renewable energy resources, many 

public policies and programs have called for increased investment in energy efficiency to reduce 

harmful pollutants and emissions. Because energy efficiency investments enable households to 

provide energy services while consuming fewer units of energy, they decrease demand and lower 

household fuel expenditures. Thus, from a theoretical perspective, households should invest in 

energy efficiency as long as the marginal benefits of the investment outweigh the marginal costs. 

Investments in energy efficiency are also advocated for because they can help to displace 

generation from traditional fossil fuels and help to lower operation and maintenance costs for 

utilities by preventing the need to invest in additional operating capacity (Environmental 

Protection Agency [EPA] 2018).  

As stated earlier, when a customer invests in energy efficiency such as an Energy Star® 

appliance, they consume fewer units of energy to produce household energy services. If consumers 

require fewer units of energy to produce the same level of household energy services, then utility 

companies, especially those who face consumer price regulation, can expect profits to decline. 

Especially, if their lower operating and maintenance costs are more than offset by their decreased 

revenue from customers consuming fewer units of energy. If profits are declining, then utility 

companies are becoming worse off as a result of the household’s decision to invest in energy 

efficiency. These distributional effects again raise concerns about the equity implications of 

investing in energy efficiency as a means to achieving the three main goals of the U.S. energy 

policy agenda listed in Section 1.1.   
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1.4 OVERALL AND SPECIFIC RESEARCH OBJECTIVES  

The overall objective of this dissertation is to better understand, both theoretically and empirically, 

how firms and households are affected by changes in energy production and consumption from 

economic efficiency and distributional equity perspectives. The specific research objectives of this 

dissertation corresponding to the three essays contained therein, are as follows:   

1. Examine how modifying the energy resource mix to include a greater share of intermittent 

renewable resources (i.e., wind energy and solar radiation) affects the efficiency and 

reliability of energy production and delivery to consumers. 

2. Develop and compare alternative measures of household energy insecurity as indicators of 

the distributional equity of energy consumption. 

3. Examine theoretically and empirically how household investments in energy efficiency 

influences a household’s level of energy insecurity.   

1.5 STRUCTURE OF THE DISSERTATION  

The remainder of this dissertation is structured as follows. In Chapter 2 (Essay 1) entitled, “Gone 

with the Wind: The Unintended Consequences of Increasing the Capacity of Intermittent 

Renewable Resources Used for Electricity Generation,” we investigate how increasing the 

capacity of intermittent renewable resources (e.g., wind energy and solar radiation) impacts 

electric system reliability. We model disruptions in reliability of service using a state-contingent 

production function approach. Using data from the U.S. Energy Information Administration (EIA), 

we examine whether or not the average frequency and/or duration of disturbances has increased 

over time as more intermittent renewable resources have been brought online. 

 In Chapter 3 (Essay 2) entitled, “Estimating and Comparing Empirical Measures of 

Household Energy Insecurity,” we compare and contrast five different approaches for measuring 
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the extent and severity of energy insecurity. These five measures all measure household energy 

insecurity on discrete scales that are designed to represent the full extent and severity of energy 

insecurity being experienced by households living in the United States. Our overall objective in 

this chapter (essay) is to identify an energy insecurity measure that can be universally applied and 

produces consistent and accurate measurements of the experience of being energy insecure. We 

use household responses to the 2015 Residential Energy Consumption Survey (RECS) to construct 

the different index measures, and then compare the validity of the different index measure results 

using three separate validity tests.   

In Chapter 4 (Essay 3) entitled, “Examining the Theoretical and Empirical Relationships 

Between Household Energy Efficiency and Security,” we develop a theoretical model and 

empirical procedure for examining how improvements in household energy efficiency affect the 

presence of household energy security/insecurity. Our theoretical approach relies on the theory of 

household production, which allows us to capture a household’s demand for and production of 

energy services. We then utilize a stochastic production frontier approach to explain why 

households who are inefficient in their production of household energy services might choose to 

invest in energy efficiency. We explain how the return to such an investment could lead to higher 

felt-levels of household energy security. Using the index measure identified in Chapter 3 (Essay 

2) we empirically examine how making energy efficiency improvements in the home affects the 

presence of household energy insecurity. The key findings, general conclusions, and policy 

implications from all three essays are discussed in the concluding chapter (Chapter 5) of the 

dissertation.   
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CHAPTER 2 

ESSAY 1: GONE WITH THE WIND: THE IMPACT OF INTERMITTENT RENEWABLE 

RESOURCES ON POWER SYSTEM RELIABILITY ACROSS THE UNITED STATES* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Harker Steele, Amanda. To be submitted to Energy Policy.  

This chapter has benefited from comments received at the 2017 AERE Annual Meetings and 2017 

Columbia University Sustainable Development Workshop.   
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ABSTRACT 

Using intermittent renewable resources (e.g., wind and solar) to generate electricity has long been 

cited as one potential solution to reduce carbon dioxide and other harmful greenhouse gas 

emissions. However, given their sporadic nature, electricity generation using intermittent 

renewable resources raises concerns about reliability of power production and delivery. This 

chapter provides a theoretical and empirical examination of how increasing the capacity of 

intermittent renewable resources impacts power system reliability across the United States. Our 

theoretical motivation relies on a state-contingent production function approach, which allows us 

to account for the uncertainty presented by the use of intermittent renewable resources. Our 

empirical analysis focuses on end-user interruptions as measured by the System Average 

Interruption Duration Index and the System Average Interruption Frequency Index. Overall, our 

results suggest increasing the capacity of intermittent renewable resources used to generate 

electricity, on average leads to longer power disturbances for end-consumers. However, at the 

margin, these effects are relatively small, indicating a significant amount of intermittent renewable 

resources would need to be added to the grid before large-scale power system interruptions are 

realized. Nevertheless, given the current policy landscape, the capacity of electricity generated by 

intermittent renewable resources is likely and expected to increase. Therefore, to provide some 

insight on the policy implications of our results, we use one set of our estimation results to forecast 

interruptions in power system reliability and the associated costs under different renewable energy 

policy scenarios.  

 

Keywords: Electricity Reliability, Intermittent Renewables, Reliability Metrics, Power System 

Interruptions, Costs  
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2.1 INTRODUCTION  

Moving away from a carbon-intensive electric utility industry continues to remain a key policy 

objective for many public and private decision makers across the United States. Since the early 

1900s, electricity in the United States (U.S.) has been predominantly supplied by conventional 

fossil fuels including coal, oil, and natural gas. Although these fossil fuels still dominate the 

market, there has been much public concern about the negative environmental impacts associated 

with utilizing these resources.  As a result of this concern, interest has been expressed in modifying 

the energy resource mix used to generate electricity across the U.S. to include a greater share of 

intermittent renewable resources (e.g., wind and solar energy) (Energy Information Administration 

[EIA] 2017). 

Transforming the electric utility sector to include more intermittent renewables has raised 

some key, fundamental questions within the electric utility industry. Perhaps the most important 

of which is: "How will increasing the capacity of intermittent renewable resources impact power 

system reliability?" The overall objective of this chapter (essay) is to help answer this question 

and contribute to helping to fill an important information gap in the literature. More specifically, 

drawing from economics and engineering literature, we provide a theoretical and empirical 

analysis of the effects of expanding the capacity of intermittent renewable resources used to 

generate electricity on the ability of electric utility companies across the United States to provide 

a consistent and reliable supply of electricity to end-consumers. 

 Currently, there are many different definitions of electrical system reliability available in 

the literature. 4 For the purposes of this study, we assume electrical system reliability can be 

                                                 
4 According to North American Electric Reliability Corporation (NERC), a "reliable" power system is one that ensures “adequacy 

of supply” and “operational reliability.” Ensuring adequacy of supply involves being able to provide the electricity required to meet 

the energy requirements of all electricity consumers at all times, considering both scheduled and unscheduled power outages (2013). 

A power system is operationally reliable if it is able to withstand sudden interruptions from an unanticipated loss of system 
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defined as the ability of the electrical grid generating system and its components to provide a 

consistent, steady, uninterrupted supply of power to end-consumers. Following this definition, our 

empirical analysis on power system reliability focuses on end-user interruptions as measured by 

two indices, namely the System Average Interruption Duration Index (SAIDI) and the System 

Average Interruption Frequency Index (SAIFI). 5 

 Many prior published examinations of U.S. electric system reliability have been motivated 

by attempts to uncover time-trends in bulk power system interruptions, which have implications 

for public policy and investment decisions surrounding the revitalization of the U.S. electrical grid 

(Eto and LaCommare 2008; Hines et al. 2009; Larsen et al. 2015, 2016). Past research findings 

have suggested, even as technology advances, the frequency of adverse system interruptions (e.g., 

blackouts and large-scale brownouts) has not decreased over time. Moreover, the majority of these 

interruptions, when and if they do occur, are happening within the utility’s distribution system; 

which indicates it may be worthwhile to focus on outages experienced by end-consumers when 

addressing grid reliability concerns (Eto et al. 2012). 

In its current state, electricity along the electrical power grid of the United States only flows 

in one direction, from central generation to the end-consumer (U.S. Department of Energy 2015). 

6 As a result, any disruption that occurs at any point along the grid (e.g., during the generation, 

transmission, or distribution process) can impact the ability of customers to receive an 

uninterrupted supply of electricity. And while there is an agreement among public and private 

decision makers alike that the electrical grid generating system needs to be revitalized, investments 

                                                 
components. Burtraw et al. (2013) define reliability more generally, as the potential to account for disruptions in the supply of 

electricity, including shortages in generation capacity and available reserve margins, or an inability of an electrical utility to meet 

the reliability standards currently in place. 
5 Both SAIDI and SAIFI are indices constructed from outage information reported by customers of electric utilities. These indices 

are discussed in more detail later on in the paper under Section 3. Measuring Reliability of Service.  
6 For further clarification see Figure 2. A1. Three Phases of the Electricity Production Process in the list of figures at the end of the 

paper.   
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thus far to improve and modernize the grid have been insufficient (Campbell 2018). Moreover, 

what is needed are not just a few additional distribution lines, but rather a complete modification 

of the grid, including the addition of advanced infrastructure that is able to accommodate new 

technologies such as rooftop solar and electric vehicles (O’Connor 2018).  

A specific issue that makes increasing the capacity of intermittent renewable resources 

used to generate electricity difficult is the lack of economically viable, commercial storage along 

the grid. Unlike traditional fossil fuels, the availability of intermittent renewable resources depends 

on the daily weather. Thus, intermittent renewable resources are inherently sporadic and without 

available storage capacity, their forecasted output must be continuously updated and significant 

errors can occur (Delaure and Morris 2015). Lastly, because the bulk of intermittent renewable 

resources are located in rural regions in the central United States, away from major population 

centers where demand is normally the highest, new transmission infrastructure is needed to ensure 

supply from intermittent renewables can instantaneously meet demand (Crabtree et al. 2011).  

 Nevertheless, calls from both public and private decision makers for increased capacity in 

the power grid from intermittent renewable resources continue to persist – and utility companies 

all across the United States are responding.  For example, in 2017 wind energy accounted for close 

to 6% of total U.S. electricity generation and approximately 37% of the total electricity generated 

from renewable energy resources overall (EIA 2018). Additionally, according to the Solar Energy 

Industries Association (SEIA), solar energy was the number one resource of additional capacity 

added to the grid in the first quarter (January to March) of 2018, surpassing all other types of 

energy resources (both renewable and non-renewable).  

However, concerns over how grid reliability will be affected from increasing the capacity 

of electricity generated by intermittent renewable resources across the United States has yet to be 
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adequately addressed in the economics literature. In fact, the majority of studies that have 

examined the reliability implications of transitioning to an electrical power system that relies more 

heavily on intermittent renewable resources to generate capacity have been focused on areas 

outside of the United States. Examples include studies of grid reliability in Germany (Schmid, 

Pahle, and Knopf 2013; Abrell and Kunz 2015; Abrell and Rausch 2016), Canada (Zaidi 2007), 

China (Chang and Wu 2011), and France and Great Britain (Pean, Pirouti, and Qadrdan 2016).  

Hibbard, Tierney, and Franklin (2017) examined how the reliability of the U.S. electrical 

power grid has been affected by policy and market changes that have resulted in decreasing 

financial viability of conventional power plant technologies (e.g., power plants fueled by coal). 

They find no supporting evidence that reliability has been negatively affected by the replacement 

of coal-fired power plants. Instead, they suggest that as conventional, but no longer economically 

profitable coal-fired power plants/generating units are being phased out and replaced by natural 

gas turbines and other intermittent energy resources, services to ensure power system reliability 

are likely becoming more prevalent.7  

Some previous research has been done to investigate issues beyond electricity sector 

operations that can negatively influence power grid reliability across the United States. More 

specifically, recent work by Pless and Fell (2017) examines how bribes (i.e., informal payments 

made by firms to utilities to obtain kilowatt-hours of electricity) might negatively influence 

electrical system reliability. The idea behind their analysis is that a bribe to secure a connection to 

the electrical grid often goes unseen by the capacity resource planner.  This unseen or stealth bribe 

can result in an inadequate supply of electricity on the grid to meet demand, which would result in 

                                                 
7 Examples of reliability services include frequency and voltage management, increasing ramping and load following capabilities, 

ensuring the provision of contingency and replacement reserves, and having black start capability (Hibbard, Tierney, and Franklin 

2017).  
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more power system interruptions being experienced by end-consumers. Using five years of bribery 

and electricity reliability data, Pless and Fell (2017) find stealth bribes for electricity connections 

lead to significant increases in monthly power outages for all consumers. 

There has also been some work done to address reliability concerns brought about by U.S. 

public policy initiatives designed to reduce the amount of greenhouse gas (GHG) emissions from 

electricity power plants. For example, Burtraw et al. (2013) examine the impacts of the Cross-

State Air Pollution Rule (CSAPR) and the Mercury and Air Toxins Standards (MATS) on 

electrical system reliability in the United States. Using the Haiku electricity market simulation 

model developed by Resources for the Future (RFF), Burtraw et al. (2013) find that instead of 

leading to changes in the energy resource mix used to generate electricity, both regulations lead to 

investments in pollution control technology, which provide the opportunity for utilities to reduce 

emissions without necessarily changing inputs.  

The findings of Burtaw et al. (2013) raise the question, “What happens when the energy 

resource inputs used to generate electricity are changed to include a greater share of intermittent 

renewable resources?” This fundamental question has been considered in the engineering literature 

for some time now. A recent example includes Wangdee (2014) who uses a systems well-being-

analysis framework to investigate the effect of adding wind capacity to a generating system that 

has historically relied on traditional fossil fuels. Wangdee (2014) finds that grid generating systems 

that utilize wind resources are more likely to encounter loss of load situations as compared to grid 

generating systems that do not utilize wind resources and instead depend on traditional fossil fuels. 

Wangdee’s (2014) main analysis is theoretical in nature, which illustrates a gap in the 

literature of empirical studies that examine relationships between grid system reliability and 

increasing the capacity of electricity generated by intermittent renewable resources. In order to 
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help to fill this gap in the literature, this paper reports on a theoretical and empirical analysis which 

shows that increasing the capacity of intermittent renewable resources has a positive and 

significant effect on the duration of power outages experienced by end-consumers.  

In the next section of this paper (Section 2.2) we provide some background context for our 

analysis by briefly outlining the different types of energy resources used to generate electricity 

across the United States, distinguishing between the characteristics of traditional fossil fuels and 

intermittent renewable resources. In Section 2.3 we discuss the electricity generation (i.e., 

production) process in detail, focusing on how power system operators make decisions about 

which generating units to bring online and when. Building on Sections 2.2 and 2.3, in Section 2.4   

we employ a state-contingent production function approach to examine how the uncertainty 

surrounding the use of intermittent renewable resources might influence a power system operator’s 

decision to bring those resources online, and how the decision to bring them online could lead to 

disruptions in power system reliability.  

The theoretical model in Section 2.4 provides motivation for our empirical analysis starting 

in Section 2.5 where we provide a more detailed explanation of how we empirically measure 

reliability of service focusing on end-user interruptions. In Section 2.6 we describe the data set 

used for our empirical analysis and provide an outline and explanation of our empirical model 

specifications.  In Section 2.7 we discuss the results of our analysis in detail along with policy 

implications, focusing on projected service interruptions and associated costs resulting from 

implementation of different renewable energy resource standards across the United States. In 

Section 2.8 we provide a brief summary of our study and offer some conclusions including needed 

future research.  
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2.2 ENERGY RESOURCES USED TO PRODUCE ELECTRICITY 

Currently, there are inconsistencies in the terminology used to distinguish between the types of 

energy resources used to generate electricity. From an economics perspective, energy resources 

used to produce electricity can be divided into two main categories: fund resources and flow 

resources. Fund resources include energy resources that exist as a given fixed stock, both in terms 

of quality and quantity (Bergstrom and Randall 2016). Fund resources can be further categorized 

as being either exhaustible, non-renewable resources or exhaustible, renewable resources.  

Exhaustible, non-renewable resources are resources whose supply is depletable, or in other 

words, is not able to be renewed within a practical planning horizon (Bergstrom and Randall 2016). 

In terms of the energy resources used to generate electricity in the United States, exhaustible, non-

renewable fund resources include traditional fossil fuels such as coal, oil, and natural gas. 

Conversely, an exhaustible, renewable fund resource is one in which the supply is able to be 

depleted but also renewed within a practical, designated planning horizon (Bergstrom and Randall 

2016).  

An example of an energy resource used to generate electricity that is exhaustible and 

renewable would be woody biomass or bio-fuels. The natural commodities (e.g., timber and maze) 

used to produce these energy resources can be extracted. However, due to natural ecosystem 

processes and functions and in some cases human intervention (e.g., farming, planting, cultivating) 

they can also be replenished (Bergstrom and Randall 2016).  In contrast, to exhaustible, renewable 

and non-renewable fund resources, flow resources are resources that exist as a continuous stream, 

also with given quantity and quality dimensions (Bergstrom and Randall 2016).  

Flow resources can be further categorized as being either storable or non-storable. In terms 

of electricity generation, because there is currently no economic solution to commercial energy 
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storage, the term “storable” is often used synonymously with the term “dispatchable.” 8 The 

dispatchability of an energy resource refers to the energy resource’s ability be brought online at 

any time or stored for future use. 9 Dispatchable (storable), flow resources include energy resources 

that can be stored for future use and therefore, are always available for electricity production when 

and if they are needed. In terms of electricity generation, dispatchable (storable), flow resources 

include renewable energy resources such as hydropower and geothermal energy (Nikoletatos and 

Tselepis 2015).  

Non-dispatchable (non-storable), flow resources are resources that are unable to be stored 

for future use. Instead, their availability primarily depends on real-time meteorological conditions. 

Energy resources that are considered to be non-dispatchable (non-storable) flow resources include 

wind energy and solar radiation. These types of energy resources are commonly referred to as 

“variable” or “intermittent” renewable resources (Nikoletatos and Tselepis 2015). 10  

The difficulty associated with integrating intermittent renewable energy resources into the 

energy resource mix used to generate electricity stems from the fact that the electrical power grid 

of the United States was originally designed around the concept of large, controllable electrical 

power system generators (i.e., power plants). These types of power plants can be brought online 

at any time as needed because the availability of the energy resources inputs used to power them 

(e.g., coal, natural gas, and nuclear energy) are readily available (Federal Energy Regulatory 

Commission [FERC] 2015).  

                                                 
8 The term energy storage is typically used to describe technology or devices that store energy for future use. The devices are 

generally large-scale lithium-ion based batteries. Because storage is not used on a large scale yet, when classifying energy resources 

used to produce electricity, system operators and utilities refer to resources as being either dispatchable or non-dispatchable 
9 By their nature, all exhaustible, fund resources (both renewable and non-renewable) are dispatchable. 
10 See Figure 2. A2. Energy Resources Used to Produce Electricity for a graphic that explains the difference between the types of 

energy resources used to generate electricity.  
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Compared to traditional fossil fuels, the availability of intermittent renewable resources is 

largely sporadic, making it difficult to accurately predict the contribution these type of resources 

can make to overall power generation capacity (Skea et al. 2008).  Additionally, in its current state, 

the U.S. electrical grid operates as a one-way street where electrons are passed through the three 

phases of production sequentially (Gerrity and Lantero 2014). 11 Therefore, any disturbance in the 

generation and/or transmission phases of the electricity production process can affect the ability 

of distribution centers to ensure customers are able to receive an uninterrupted supply of electricity.  

Furthermore, while the development of a smart grid 12 has been discussed and considered 

by public policy and decision makers for some time now, investments thus far have been marginal 

and mostly only consist of the addition of advanced metering infrastructure used by end-customers 

(Campbell 2018).13 Another option available to help control the contribution made by intermittent 

renewable resources includes the use of energy storage devices (e.g., large and small-scale 

commercial batteries). Energy storage devices have the potential to revolutionize the way electric 

grid systems operators meet projected demand because access to storage would allow operators to 

smooth out the availability of intermittent renewable resources over time. In other words, if storage 

                                                 
11 The electricity production process begins when the energy produced from burning fossil fuels, or harnessing power from the 

wind, the sun, or a nuclear reaction is converted into kinetic energy to begin the power generation process. The electricity generated 

by these power plants is then transported through a system of high-voltage transmission lines to a transformer. The transformer 

operates to lower the voltage so the electricity can be passed off to consumers through the system of distribution power lines 

(Gerrity and Lantero 2014). For further information on the traditional one-way flow of power along the grid see Figure 2. A1. Three 

Phases of the Electricity Production Process. 
12 Currently, there is no universally accepted definition of the smart grid. However, in a general sense, the smart grid refers to an 

interconnected electrical grid system that permits electricity to flow in both directions (e.g., from producer to consumer and vice 

versa), permits flexible generation and can provide real-time feedback to consumers and producers tracking energy consumption. 

It is anticipated that when power outages occur on the smart grid, the technology in place will be able to detect and isolate the 

outage, containing it before it becomes a large-scale brownout or blackout. The smart grid technologies will also make it easier for 

customers to become net suppliers to the grid (Department of Energy 2015). 
13 Advanced metering infrastructure (AMI) is an integrated system of smart meters, communications networks, and data 

management systems that enable two-way communication between utilities and customers. These are used by households who 

supply electricity to the grid through their own solar panels or wind turbines, or whose utility charges time of use pricing and 

therefore need to be able to remotely measure electricity use. Additionally, AMI provides several important functions, not 

previously available for utilities and their customers. Examples include the ability to automatically connect and disconnect service, 

identify and isolate outages, and monitor voltage (Department of Energy 2016).  
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was an option, then the energy produced by intermittent renewable resources (for example wind 

energy at night) could be stored in batteries and brought online to be dispatched as needed to meet 

system demand. However, the batteries currently available are all lithium-ion based batteries, and 

therefore can only store energy in small quantities for a certain amount of time (Department of 

Energy 2016; Rathi 2017).   

While the complexities of the evolving U.S. power system have implications for this 

research, a more detailed explanation and assessment of its intricacies is beyond the scope of this 

chapter (essay). Instead, for the purposes of this chapter (essay), we concentrate on how current 

operations can contribute to the frequency and duration of power system outages being 

experienced by end-consumers, assuming the electrical grid generating system still only operates 

in one direction. In this one-directional operation, power first flows from generation to 

transmission, and then to distribution and without access to adequate storage technology along the 

way. In this system, the ability of end-customers to receive an uninterrupted and reliable supply of 

electricity can be impacted by disturbances in the power generation phase and/or the electricity 

transmission phase.  

2.3 ELECTRICITY PRODUCTION 

The electricity production process begins when one of the energy resources discussed previously 

(i.e., non-renewable and renewable fund resources or storable and non-storable flow resources) is 

used to spin a turbine that converts the kinetic energy from the energy resource into mechanical 

energy available for work. The mechanical energy is then converted into electricity via 

electromagnetic induction. The electricity produced from different generating units moves through 

a complex system, called the electrical power grid, which consists of electricity substations, 

transformers, and power lines that are used to connect electricity generators (i.e., producers) to 
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end-consumers (EIA 2018). Electricity must be generated before it can be transported along the 

grid and distributed to end-consumers.  

The first-stage of the electricity production process (i.e., generation) takes place inside a 

power system generator, also known as generating unit or power plant. Some electric utility 

companies generate all the electricity they sell to consumers using only the generating units they 

own and operate. Other utilities purchase their electricity directly from other utilities, different 

power producers, or sometimes even from the wholesale market (EIA 2018). 14 Generating units 

(i.e., power plants) are categorized by both the energy resource inputs they consume to produce 

electricity and their specific operational technology. The costs to operate the unit, which depend 

on the unit’s individual characteristics, determine when, where, and how each generating unit will 

be brought online to produce electricity and contribute to overall capacity (FERC Primer 2017).  

The electricity provided to end-consumers by their electric utility can be produced from 

multiple different types of generating units. The combination of generating units used to serve 

customers can also change depending on the type and location of the customer to be served. For 

example, the electricity provided to one group of customers could be being supplied by a natural 

gas-fired generating unit while the electricity supplied to a different group of customers, served by 

the same utility, could be being supplied from a coal-fired generating unit. Utilities often serve 

customers in multiple states, which can dictate what type and combination of generating units are 

assigned to serve different customer groups.  

For example, First Energy Corp. is an electric utility company based in Akron, Ohio. It 

services 6 million customers across six different states: Ohio, West Virginia, Pennsylvania, 

                                                 
14 The electricity production process is different for regulated and unregulated electric utility companies. Regulated electric utilities 

are normally vertically integrated, meaning the own and operate each phase of their production process (Froger et al. 2016). 

Unregulated electric utility companies but power from the market to supply to their customers (Froger et al. 2016).  
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Virginia, Maryland, and New Jersey (First Energy 2018). First Energy Corp. owns and operates 

its own coal-fired power plants, as well as numerous other hydroelectric power facilities in the 

states of Virginia, New Jersey, and Pennsylvania (First Energy 2018). The type of power plants 

used by First Energy Corp. to generate the electricity it provides to its end customers, changes 

depending on which state the customer resides in. For example, from 2001 to 2017, 93% of the 

electricity provided to customers who live in West Virginia and are served by First Energy, was 

supplied by coal-fired generating units (Popovich 2018). In New Jersey however, only 16% of the 

electricity supplied to end consumers was produced by coal (Popovich 2018).  

As stated early, large-scale batteries are currently not economically viable, and as a result 

commercial storage for electricity does not presently exist along the electrical power grid 

generating system of the United States. Electricity must therefore be produced in real-time, the 

instant that it is needed to insure that supply (generation) equals demand (load) at all times. To 

insure that demand and supply are able to match exactly at every moment throughout the day, in 

every day of the year, and in every location, an electrical power system operator must determine 

in advance which generating units will be brought online and when (FERC Primer 2015).  

The combination of power plants scheduled to be online by the electrical power system 

operator provides the solution to the utility’s “unit commitment problem.” 15 When solving the 

unit commitment problem, the objective of the electrical power system operator is to determine 

the least-cost combination or supply order of generating units that should be brought online to 

meet forecasted demand over a discrete period of time (Yang et al. 2017; Foger et al. 2016; 

Saravanan et al. 2013).  

                                                 
15 The solution to the unit commitment problem is considered to be the least cost schedule of generating units that can supply 

enough power to meet forecasted demand over a pre-designated period of time (Saravanan et al. 2013; Ozturk, Mazumdar, and 

Norman 2004).  
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Generating units scheduled to be online can be units that are owned and operated by an 

individual utility or units that the utility has access to (Villumsen, Clausen, and Pisinger 2011; 

Blumsack 2018). The electrical power system operator uses mathematical dynamic programing 

models (e.g., mixed-integer linear programming models) to solve the unit commitment problem 

(Yang et al. 2017; Foger et al. 2016). The solution to the unit commitment problem considers both 

the cost to operate each individual unit, the specific operational capabilities of the units chosen, 

and operational constraints that are present on the system (Saravanan et al. 2013; Ozturk, 

Mazumdar, and Norman 2004). 

Of specific interest to the power system operator is how long it takes to start up and shut-

down each generating unit, which is also known as each generating unit’s ramp rate (i.e., how 

quickly its total output can be increased or decreased) and its minimum run time. Some generating 

units by design usually take longer to start up and shut down. As a result, they are normally 

scheduled to be online for a longer period of time, as compared to other generating units that do 

not take as long to start up or shut down (EIA 2012).16  

For example, a generating unit fueled by coal or nuclear energy takes a significant amount 

of time to start up and shut down. As a result, coal and nuclear generating units are normally 

scheduled to stay online for an entire day, or in some cases for multiple days, unless periodic 

maintenance has been scheduled (EIA 2012). Generating units fueled by coal and nuclear energy 

are also difficult to ramp up (startup) and ramp down (shut down). Instead, they produce a steady 

amount of electricity at a near constant rate. Therefore, they are often used as baseload generating 

                                                 
16 Intermediate generating units fill the gap between baseload demand and peak demand. They are typically fueled by natural gas.  

Their total output is easier to control than baseload unites and as a result their power levels can be adjusted as needed by power 

system operators. Peaking units, on the other hand, run very little, sometimes only for a few hours per year. These plants, however, 

can be brought online within minutes and are often used during summer heat waves or on other occasions when demand surges 

(Penwell Corp 2019).  
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units, which are designed to run continuously to meet base load demand (i.e., the minimum level 

of demand that exists on an electrical power grid at all times) (EIA 2012). 

Hydropower and geothermal generating units can also be used as baseload generating units, 

but only if those resources are available to the power system operator for use. For example, 

electricity produced using hydropower is less common in Florida and Kansas because these states 

have low topography, which does not allow for enough force to be produced from the falling water 

resources which is required to spin turbines in a hydropower facility being used to produce 

electricity (United States Geological Survey [USGS] 2018). In Idaho, Washington, and Oregon 

however, hydropower contributes to a greater share of the overall electricity produced because 

water resources are readily available in these states and their natural topography allows for both 

enough force to be produced from falling water resources and an opportunity to store water for 

future use (USGS 2018).  

In these states where hydropower can be directly controlled, it is often used for baseload 

generation. Unlike generating units fueled by coal and nuclear power, generating units fueled by 

natural gas take a shorter amount of time to start up and shut down. They can also more easily be 

ramped up or ramped down to meet demand. As a result, they are typically brought online by 

power system operators as intermediate or peaking units, which are used during times when the 

power produced by baseload generating units is insufficient to meet customer demand (EIA 2012).  

As stated earlier, in terms of electricity production, wind energy and solar radiation are 

considered to be non-dispatchable (non-storable) flow resources. Therefore, they cannot be 

completely controlled nor dispatched whenever needed by power system operators. Instead, their 

availability depends primarily on real-time meteorological conditions. As a result, generating units 

fueled by intermittent renewable resources (i.e., wind and solar) tend to work best as intermediate 
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units because the resources they depend on are sporadic in nature. Thus, they are unable to be 

completely relied upon to meet the constant electricity supply needs present during baseload 

demand or the immediate supply needs present during peak load demand. 

If a generating unit (baseload, intermediate, or peaking) is scheduled to be online during a 

given time period, then that generating unit is said to have been "committed" to produce electricity 

during the time period under consideration. Once the power system operator has decided which 

generating units to bring online, it must then decide when exactly each unit will come online during 

the predesignated time period. Determining when each unit will come online is more commonly 

known as determining the “order of dispatch,” and involves examining a variety of different 

economic factors including the cost to operate each individual unit. Typically, a power system 

operator will choose to bring generating units with lower operating costs online first, and then 

generating units with higher operating costs online later, unless regulatory constraints exist that 

prevent the preferred order of dispatch.  

The unit commitment problem is solved and the order of dispatch is determined by the 

power system operator at least one day (24 hours) in advance of the need to meet real-time 

electricity demand (Blumsack 2018). A troubling consequence is that the dispatch schedule is 

determined in advance of actual operations, when the future state-of-the-world is not known to the 

power system operator (Yang et al. 2017). Therefore, the power system operator must take into 

consideration the uncertainty that exists about the future state-of-the-world when making decisions 

about which generating units to bring online and when each unit will be dispatched.  

The uncertainty involving the future state-of-the-world used to only be a function of 

potential variations in consumer demand, which due to technological advances can now be 

forecasted quite effectively by power system operators (Hahn 2009). However, in more recent 
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years, increased grid capacity from intermittent renewable resources has significantly increased, 

resulting in increased uncertainty over resource availability. Compared to coal, nuclear energy, 

natural gas, geothermal energy and hydroelectricity, the ability of intermittent renewable resources 

to supply power to the grid through a generating unit depends largely on real-time (daily) weather 

conditions. Therefore, the key issue faced by power system operators who decide to bring 

intermittent renewable resources online, is being able to accurately predict the contribution the 

resources will be able to make to meet system demand in order to maintain adequate system 

reliability at all times (Skea et al. 2008).  

For example, if wind and/or solar are “committed” to be online but the wind is not blowing 

or the sun is not shining as expected, then the power scheduled to be provided by these resources 

does not exist or is diminished. In this case, there is not enough power available along the grid to 

meet system demand. The lack of power availability along the grid will cause the power system’s 

voltage to drop below its minimum requirement, which will cause circuit breakers to trip and in 

some cases shut off in order to prevent equipment damage. When circuit breakers trip and/or shut 

off, power system outages are experienced by end-consumers (Apogee Interactive 2013).  

While not having enough power available to meet demand represents one problem to be 

solved from increasing the capacity of electricity supplied by intermittent renewables, another 

problem for power system operators arises when there is too much wind and/or solar energy being 

produced. One country in particular has experienced first-hand just how increasing the grid 

capacity of intermittent renewable resources by too much too soon can impact its power generating 

system. In 2013, in order to address global climate change concerns, Germany had plans in place 

that by the year 2050; at least 80% of its energy supplied would be from intermittent renewable 
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resources. As a result, Germany began phasing out its nuclear power plants in favor of wind and 

solar.  

However, this sudden shift in the inputs needed for a more diversified, climate change 

conscious generation resource mix resulted in more than one third of all wind turbines being 

developed in the country’s eastern region (Institute for Energy Research [IER] 2013). During 

certain time periods with sustained high winds, this large concentration of turbines in one location 

led to the region producing three to four times the total amount of electricity actually being 

consumed. This drastic increase in the amount of electricity being supplied by intermittent 

renewables resulted in massive overloads along the grid which led to massive power outages being 

experienced by end-consumers.  

To prevent power outages (like those in Germany) from being experienced by end-

consumers as more intermittent renewable resources are brought online, power system operators 

must consider how the uncertainty of the availability of the resources could influence its 

production process (i.e., unit commitment and scheduled order of dispatch). A number of 

mathematical models have been suggested in the engineering literature including dynamic 

programming models, integer and mixed integer linear programming models, and decomposition 

models (Tahanan et al. 2015). For the purposes of this chapter (essay) however, we focus only on 

the production decision of the utility and its corresponding power system operator using a state-

contingent production function approach.  

2.4 STATE-CONTINGENT PRODUCTION THEORY 

In order to build the theoretical foundation for this chapter, we draw on previous economic theory-

based literature on the efficiency of electricity production to model electricity market operations 

and develop a unique theoretical approach which motivates our empirical analysis. Following the 
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work of Fu, Li, and Shahidephpor (2004) and Moghaddam et al. (2014) we begin by assuming the 

objective of each electric utility company is to maximize its expected profit. However, each utility 

is still regulated by the price it can charge to provide electricity to end-consumers (Averch and 

Johnson 1962).  

We model the objective of the electric utility company as follows: 

(1) max 𝐸[𝜋𝑖𝑡] = 𝐸( ∑ ∑ [𝐸𝑖𝑡 ∗ �̅� − 𝐶𝑖𝑡] 𝐼
𝑖=1

𝑇
𝑡=1 ), 

where 𝐸[𝜋𝑖𝑡] is the expected profit for each utility 𝑖 in time period 𝑡; �̅� represents the fixed, 

regulated price per kilo-watt hour (kWh) of electricity the utility company can charge end-

consumers; 𝐶𝑖𝑡 is the cost to produce electricity the electric utility company; and 𝐸𝑖𝑡 is the quantity 

of electricity actually produced (e.g., total capacity generated) by each utility 𝑖 in time period 𝑡. 

17We assume electric utility companies produce electricity using a set of inputs, including capital 

technology inputs, labeled here as 𝐾𝑖𝑡, labor inputs, labeled here as 𝐿𝑖𝑡, and energy resource inputs, 

labeled here as 𝑅𝑖𝑡 according to the following production function:  

(2) 𝐸𝑖𝑡 = 𝐸(𝐾𝑖𝑡, 𝐿𝑖𝑡 , 𝑅𝑖𝑡). 

We assume the production function in (2) is well-behaved such that electricity production is 

continuous; strictly increasing in all inputs and all three inputs are necessary for production to 

occur.  

The energy resource inputs 𝑅𝑖𝑡 used by the electric utility company and its corresponding 

power-system operator are used to represent a variety of different energy resource inputs including 

                                                 
17 In a regulated electricity market, electric utility companies own and operate all aspects of their electricity supply chain, including 

power plants, transmission and distribution systems (EIA 2018). To prevent these utilities from having monopoly power in the 

market, the price they can charge end-consumers is set in advance by an acting third party and remains fixed. In an unregulated 

electricity market structure, the price per kWh of electricity supplied is not fixed, but rather determined by interactions between 

competing parties in the market (EIA 2018). Customers can compare pricing structures of different utilities and decide who to 

purchase electricity from. Because deregulated electric utility companies do control the generation aspect of their supply, they have 

little incentive to ensure reliability of service in the generation phase of production. 
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both exhaustible, non-renewable (e.g., coal, oil, natural gas, and nuclear energy) and exhaustible, 

renewable fund resources (e.g., woody biomass), as well as dispatchable (storable) flow resources 

(e.g., geothermal energy and falling water for hydroelectricity) and non-dispatchable (non-

storable) flow resources (e.g., solar radiation and wind energy). Therefore, we assume the energy 

resources used to produce electricity 𝑅𝑖𝑡  can be written as a function of the four different types of 

energy resources as follows,  

(3) 𝑅𝑖𝑡 = 𝑅[ 𝑟1, 𝑟2, 𝑟3, 𝑟4] . 

We label exhaustible, non-renewable fund resources as 𝑟1, exhaustible renewable fund resources 

as 𝑟2, dispatchable (storable) flow resources as 𝑟3, and non-dispatchable (non-storable) flow 

resources as 𝑟4.  

Under the proceeding assumption, we can modify the production function in (2) by 

replacing for 𝑅𝑖𝑡 as follows,  

(4) 𝐸𝑖𝑡 = 𝐸(𝐾𝑖𝑡, 𝐿𝑖𝑡 , 𝑅[ 𝑟1, 𝑟2, 𝑟3, 𝑟4]). 

To examine how increasing the capacity of non-dispatchable (non-storable) flow resources, 𝑟4 (i.e., 

intermittent renewable resources) will impact the ability of electric utility companies across the 

United States to provide a consistent and reliable supply of electricity to end-consumers, we 

modify the production function in (2) using a state-contingent production function approach, 

outlined in the literature by Chambers and Quiggin (2000).  

Under the state contingent approach, we assume the electric utility company and 

corresponding power system operator intend to produce only one output, electricity labeled here 

still as  𝐸𝑖𝑡 using the same inputs as before: 𝐾𝑖𝑡, 𝐿𝑖𝑡, 𝑟1, 𝑟2, 𝑟3, 𝑟4. However, when solving its unit 

commitment problem and deciding on its preferred order of dispatch, the power system operator 
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must also consider the probability 𝛼𝑠 that a random state of nature 𝑠 will occur in the future, after 

the operating decision (solution to the unit commitment problem) has been made.  

As stated earlier, the availability of intermittent renewable resources primarily depends on 

real-time weather conditions. Therefore, when deciding on whether or not to include intermittent 

renewable resources in the unit order of dispatch (i.e., energy resource mix used to generate 

electricity), power system operators must also consider the probability that the weather conditions 

for intermittent renewable resources will be favorable in the future. More specifically, utility 

company operators have to consider the probability that the intermittent renewable resources 

included in the unit order of dispatch (i.e., generating units they have scheduled to be online) will 

be available as expected. 

For ease of exposition and without loss of generality,  we consider only two states of nature 

𝑠 ∈ {1,2}. More specifically, we assume state of nature 𝑠 = 1 represents a state-of-the-world 

where meteorological conditions for intermittent renewable resources are as expected, while state 

of nature 𝑠 = 2  represents a state-of-the-world where meteorological conditions for intermittent 

renewables are not as expected. Thus, depending on which state of nature prevails, electricity 

produced using intermittent renewable resources will either be as the operator expected for meeting 

customer demand, or will be more or less than expected which can result in grid problems and 

power delivery interruptions and outages.  

Under the state-contingent production approach, if we assume outputs are independent 

from one another, in the sense that the electricity produced under state-of-the-world 𝑠 = 1 does 

not influence and is not influenced by the lack of electricity produced under state-of-the-world 𝑠 =

2, then we can assume the production of electricity is non-joint in inputs (Chambers 1998). Under 

this scenario, we can model the production of electricity 𝐸𝑖𝑡 as follows, 
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(5) 𝐸𝑖𝑡 = 𝐸(𝐾𝑖𝑡, 𝐿𝑖𝑡 , 𝑅[𝑟1, 𝑟2, 𝑟3, 𝑟4])      𝑠 ∈ Ω = {1,2}. 

Under this specification,  at the time when the state of nature reveals itself, the production 

decision regarding the use of inputs has already been made and therefore the inputs including 

capital and labor (𝐾𝑖𝑡, 𝐿𝑖𝑡) and energy resource inputs (𝑟1, 𝑟2, 𝑟3, 𝑟4) have already been committed 

to and/or scheduled to be online for the production of electricity by each utility 𝑖 in time period 𝑡. 

That is, the inputs are committed based on forecasts, ex ante (e.g., prior to the state of nature being 

realized) while the total number of kWh of electricity produced is realized ex post (e.g., after the 

state of nature has revealed itself).  

 Using the state-contingent production approach we can modify the electric utility’s 

objective to maximize expected profit in (1) in the following way: 

(6)  max 𝐸[𝜋𝑖𝑡𝑠] = 𝛼 ∙ [∑ ∑ (𝐸𝑖𝑡𝑠 ∗ �̅� − 𝐶𝑖𝑡) 𝐼
𝑖=1

𝑇
𝑡=1 ] + (1 − 𝛼) ∙ [∑ ∑ (𝐸𝑖𝑡𝑠 ∗ �̅� − 𝐶𝑖𝑡) 𝐼

𝑖=1
𝑇
𝑡=1 ], 

subject to the following constraint  

(7) 𝐸𝑖𝑡𝑠 = 𝐸(𝐾𝑖𝑡, 𝐿𝑖𝑡 𝑟1, 𝑟2, 𝑟3, 𝑟4)        𝑠 ∈ Ω = {1,2}.  

Because we assume there are only two possible states of nature, we remove the 𝑠 subscript from 

the probability and assume 𝛼 represents the probability that state-of-the-world 𝑠 = 1 occurs, and 

(1 − 𝛼) represents the probability that state-of-the-world 𝑠 = 2 occurs. Under this framework we 

can see the cost to produce electricity 𝐶𝑖𝑡 is constant and does not depend on which state of 

nature 𝑠 prevails.  

 However, the total revenue received by each utility 𝑖 in time period 𝑡, which is displayed 

in the expected profit function (6) as follows, 𝐸𝑖𝑡𝑠 ∗ �̅�  , does depend on which state of nature 

𝑠 reveals itself. In the case where the state of nature 𝑠 = 1 reveals itself, the utility can expect to 

receive a profit of [∑ ∑ (𝐸𝑖𝑡𝑠 ∗ �̅� − 𝐶𝑖𝑡) 𝐼
𝑖=1

𝑇
𝑡=1 ].  However, in the case where state of nature 𝑠 = 2 

reveals itself, and the electric utility company has scheduled intermittent renewable resources to 



 

32 

 

be online but conditions for these resources do not match operator expectations, the utility can 

expect electricity 𝐸𝑖𝑡𝑠 will not delivered to end consumers in a reliable manner – for example, due 

to power interruptions and outages some end-consumers will experience reduced electricity 

delivery for a certain amount of time.   

If a power system interruption or outage occurs and electricity is not delivered to end-

consumers, the utility will not receive any revenue from the customers who are affected by the 

power system outage. Because, in the case of a power system outage, those end-consumers who 

are affected by the outage do not consume any kWh of electricity or pay price �̅� and as a result, 

𝐸𝑖𝑡𝑠 ∗ �̅� = 0 for the duration of the outage. However, the electric utility company still faces costs 

𝐶𝑖𝑡  even if electricity is not delivered to all end-consumers.  

In the case when the electric utility company utilizes wind and/or solar as one of its energy 

resource inputs and has scheduled those resources to be online but state of nature 𝑠 = 2 reveals 

itself, a power system outage is expected to occur. In the case of a power system outage, the 

electricity production process can be modeled as follows: 

(8) 𝐸𝑖𝑡2 = 𝐸(𝐾𝑖𝑡, 𝐿𝑖𝑡 , 𝑅[𝑟1, 𝑟2, 𝑟3, 𝑟4]) ≡ 𝑂𝑈𝑇𝑖𝑡, 

where the variable 𝑂𝑈𝑇𝑖𝑡 is used to represent a power system outage. As stated earlier, all 

scheduled inputs are strictly necessary for production to occur. Therefore, if wind and/or solar are 

used by the electric utility company and scheduled to be online but the conditions for those 

resources are not as expected (i.e., the wind is not blowing or the sun is not shining), then the utility 

can expect to experience an outage in power system reliability (i.e., a power system outage).  

In addition to permitting total electrical output (e.g., the number of kWh of electricity 

produced) to vary under two separate states of the world, the state-contingent production approach 

outlined above also allows us to consider how the amount electricity delivered to end-consumers 
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who are all serviced by the same electric utility company might be different, even during the same 

time of day. For example, it could be the case that only some of the customers serviced by an 

electrical utility company are experiencing a disturbance in power system reliability as a result of 

the utility’s decision to utilize intermittent renewable resources, while others are not. Using the 

state-contingent production allows us to consider the case where customers serviced by the same 

utility operate receive two different outputs under the same state-of-the-world.  

For example, Georgia Power is the primary electricity provider for the State of Georgia. It 

provides service to approximately 2.4 million customers in 155 of the 159 counties (Georgia Power 

2018). To generate enough power for all of its customers, Georgia Power utilizes a variety of 

different energy resources, including coal, nuclear energy, natural gas, woody biomass, wind 

energy, and solar radiation as inputs for the many generating units (i.e., power plants) it operates 

(Georgia Power 2018). When determining which generating units to bring online to supply 

electricity, it is plausible that power system operators working at Georgia Power could assign 

different combinations of generating units (i.e., power plants) to supply power for customers who 

live in different regions of the state.  

Figure 2.1 below provides a map of Georgia Power’s network of generating plants. 
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Source: Georgia Power Generating Plants (www.georgiapower.com) 

Figure 2.1 Network of Power Plants Owned and Operated by Georgia Power 

For example, it could be the case that only hydroelectric power plants are scheduled to be online 

to provide electricity to customers who live in the Northeast Region of the state, while a 

combination of hydro, solar, and nuclear power plants have been scheduled to be online to provide 

electricity to customers living in the Southeastern part of the state. 

  If such is the case, then assuming state-of-the-world 𝑠 = 2 reveals itself, the subset of 

customers who receive electricity from wind or solar energy resources as part of the power supply 

generating order will likely experience a power system interruption. However, the other group of 

customers, who only receive electricity from hydroelectric energy sources as part of the power 

supply generating order will likely not experience a disturbance in power system reliability. As a 

result, in the case when state-of-the-world 𝑠 = 2 reveals itself, only a portion (i.e., fraction) of the 
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total number of customers serviced by the electric utility will experience a disturbance in power 

system reliability.  

Under this framework, the utility’s expected profit function can still be modeled as it is in 

equation (6). The amount of electricity produced, or lack thereof, will depend on the number of 

customers serviced by the utility. The framework outlined above is justified by the structure of our 

data, given that it measures power outages as function of the specific subset of customers served 

by an individual utility who experienced an outage as a function of the total number of customer 

served overall by an electric utility company. 18 

Equation (8) represents a theoretical model for a disruption in power system reliability (i.e., 

a power system outage) being experienced by a subset of end-consumers serviced by an electricity 

utility when state of nature 𝑠 = 2 reveals itself and the electric utility company has decided ex ante 

to utilize wind and/or solar as one of its primary energy resource inputs. The equation can be 

empirically estimated using regression analysis techniques, assuming a measure for power system 

outages as the dependent variable as follows, 

(9) 𝑂𝑈𝑇𝑖𝑡 ≡ 𝐸(𝐾𝑖𝑡, 𝐿𝑖𝑡, 𝑅[𝑟1, 𝑟2, 𝑟3, 𝑟4]). 

Here we have replaced the variable 𝐸𝑖𝑡2 in equation (8) with the variable 𝑂𝑈𝑇𝑖𝑡 which as stated 

earlier is assumed to measure interruptions in power system reliability.  

The equation shows that disturbances in power system reliability (i.e., power system 

outages) 𝑂𝑈𝑇𝑖𝑡 depends on many factors including capital, labor, and energy resources inputs, 

which are committed ex ante by the electrical utility company with the intention of producing 

electricity before the power system outage occurs. Table 2.1 below shows the theoretical 

expectation for the estimated sign of the regression coefficient for each of the theoretical variables 

                                                 
18 The data is described in more detail in the section on Empirical Analysis.  
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included in equation (9), assuming the electrical utility company is operating in either the first or 

second stage of production under state-of-the-world 𝑠 = 2 and all other variable inputs are held 

fixed.   

Table 2.1 Theoretical Variables  

Variable Expected Sign of Estimated Regression Coefficient 

𝐾𝑖𝑡 Positive 

𝐿𝑖𝑡 Positive 

𝑟1 Negative 

𝑟2 Negative 

𝑟3 Negative 

𝑟4 Positive 

 

 Because capital and labor inputs are assigned ex ante and outages are defined to be equal 

to electrical output, theoretically the marginal products of capital and labor inputs are expected to 

be positive in the first two stages of production, assuming all other inputs remain fixed. Energy 

resource inputs, 𝑟1, 𝑟2, 𝑟3, 𝑟4 are also assigned ex ante via the unit commitment problem. However, 

the availability of 𝑟4 dictates whether or not a power system outage occurs or does not under state-

of-the-world 𝑠 = 2. If scheduled to be online but not available as needed, as 𝑟4 decreases it should 

have a direct positive effect on power system outages. Conversely, it is expected that other energy 

resource inputs, 𝑟1, 𝑟2, 𝑟3 will have a negative effect on power system outages, leading to a more 

reliable power system under state-of-the-world 𝑠 = 2.  

2.5 MEASURING RELIABILITY OF SERVICE 

For our empirical analysis of electrical power system reliability, the state-contingent theoretical 

approach discussed above suggests the need for a measure of power system interruptions and 

outages experienced by end-customers. Focusing on end-customers is also consistent with past 

research findings suggesting that the majority of power system outages, when and if they do occur, 
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take place within the utility's distribution system, while only a small percentage occur within the 

bulk power generating system (Eto et al. 2012). Under the state-contingent approach, the electric 

utility’s (firm’s) expected profit function (equation 6) depends on the amount of electricity 

produced by a utility that reaches end-consumers as expected. Recall, we assume electrical system 

reliability can be defined as the ability of the electrical grid generating system and its components 

to provide a consistent, steady, and uninterrupted supply of power to end-consumers. An empirical 

measure of electrical power reliability should also account for the number of end-customers who 

are affected and not affected by power system outages.  

 Therefore, our empirical analysis focuses on end-user interruptions as measured by two 

metrics reported by the U.S. Energy Information Agency (EIA). The two metrics we consider 

include the system average interruption frequency index (SAIFI) and the system average 

interruption duration index (SAIDI), both of which provide measures of disruptions in power 

system reliability that are consistent with the state-contingent theoretical model and criteria. SAIFI 

and SAIDI measure end-customer power outages within a utility’s distribution system consistent 

with power grid and electricity delivery problems caused when wind and solar energy generation 

does not meet operator expectations (e.g., state-of-the-world 𝑠 = 2 occurs). In addition, these 

metrics account for the number of end-customers affected by power interruptions and outages as 

called for the state-contingent profit function. In particular, these metrics measure the specific 

subset of customers served by an individual utility who experienced an outage as a function of the 

total number of customer served overall by an electric utility company (firm).   

Since 2013, respondents to EIA survey Form EIA-861 have been mandated to report values 

for SAIDI and SAIFI, which measure the duration and frequency of power outages experienced by 
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end-consumers respectively. More specifically, SAIDI is an index value used to measure the 

duration of a power interruption for the average utility customer and is calculated as follows: 

(10) 𝑆𝐴𝐼𝐷𝐼 =
∑ (𝑑𝑖∗𝑁𝑖)𝑛

𝑖=1

𝑁𝑡
. 

Here 𝑑𝑖 is used to represent the restoration time in minutes (i.e., the duration of the power outage 

or the amount of time it takes for power to be restored for the customer); 𝑁𝑖 is used to denote the 

number of customers who experienced the power disruptions; and 𝑁𝑡 is equal to the total number 

of customers an individual utility serves during a given time 𝑡.  

The other measure, SAIFI is an index used to measure the frequency of power outages 

experienced by a utility over a given period (i.e., the number of times a customer goes without 

power during a year). SAIFI is calculated as follows: 

(11) 𝑆𝐴𝐼𝐹𝐼 =
∑ 𝑁𝑖

𝑛
𝑖=1

𝑁𝑡
, 

where, as before, 𝑁𝑖 is equal to the number of customers who experienced a disruption in power, 

and 𝑁𝑡 is equal to the total number of customers an individual utility serves. Larger values of 

SAIDI and SAIFI indicate less reliable electricity service (i.e., customers on average, experience 

longer or more frequent power interruptions), while smaller values of SAIDI and SAIFI represent 

a more reliable supply of electricity service is being supplied to end-consumers.  

While SAIDI and SAIFI are both widely recognized metrics used to measure power system 

reliability, there are differences among the ways utilities define and measure interruptions using 

these two indices (Eto at al. 2012; Malla 2013). For example, while some follow the IEEE-1366 

Standard to measure values for SAIDI and SAIFI, others use their own set of criteria to measure 

disturbances using the indices. To control for the differences in criteria used to record and measure 

outages we include an indicator variable equal to one if the utility used the IEEE 1366 standard to 
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measure values for SAIDI and SAIFI and zero otherwise in our empirical model specification, 

which is described in detail below in Section 2.6.  

According to Eto et al. (2012), when examining reliability data, outages that occur during 

major event days (MEDs) should be analyzed separately from outages that do not occur during 

MEDs.19 Similarly, Malla (2013) argues that failure to separate out major weather events could 

degrade the comparability of the indices across different utilities because depending on which 

region the electric utility operates in, they could naturally be more prone to experiencing major 

weather events. For example, utilities that operate along the coast are inherently more prone to 

hurricanes than those who operate inland.  

When completing EIA Form-861 utilities are instructed to separate outages based on 

whether or not they occurred during a MED. Because we are only interested in understanding the 

impact of using intermittent renewable resources on reliability, we exclude the values for SAIDI 

and SAIFI that occur during MEDs. While it is true that extreme weather events will likely 

contribute to shortages in supply from intermittent renewables, we are more interested in non-

severe weather-related events that impact the intermittency of intermittent renewable resources, 

such as unexpected cloud cover. Separating power outages that occur during MEDs with those that 

do not occur during allows us to control for weather.  

2.6 DATA AND EMPIRICAL METHODS 

This section provides an overview of the data, statistical analysis techniques, and model 

specifications we use to test whether or not increasing the capacity of electricity generated by 

                                                 
19 A major event day is defined as a day where a power system interruption is likely the result of from some kind of faulty weather-

related event (e.g., a lightning strike, snowstorm, hurricane, flood, or other major weather occurrences). During major event days, 

power outages tend to last longer because multiple people are affected at once.  
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intermittent renewable resources (e.g., wind and solar) affects disturbances in electrical power 

system reliability, as measured by SAIDI and SAIFI.  

DATA 

To measure power system outages, we collected data from two annual surveys administered by 

the U.S. Energy Information Administration (EIA). More specifically we obtained utility-level 

disturbance data from survey Form EIA-861 and operational, power-plant level data from survey 

Form EIA-923. Because the reliability indices (SAIDI and SAIFI) we use for our study have only 

been reported on survey Form-861 since 2013, our dataset spans only five years (2013-2017). The 

additional data collected from survey Form EIA-861 included: information on whether or not the 

utility transmitted, distributed, and/or generated its own electricity in each year; the total 

summer/winter peak load demand measured in megawatts (MW); the total retail sales and total 

revenue received as measured in US dollars ($); and the number of customers served by each utility 

in each year.  

The data obtained for our study from survey Form EIA-923 included: the net electricity 

generated, as measured in megawatt-hours (MWh), the primary fuel source used to generate 

electricity, and the net capacity generated from intermittent resources (e.g., wind energy and solar 

radiation) measured in MWh by the individual power plants operating under each specific utility. 

Additionally, from Form EIA-923 we collected information on the North American Electric 

Reliability Council (NERC) region and census division in which each utility operates a power 

plant (see Figure 2. A3). Data from survey Form EIA-923 and survey Form EIA-861 were matched 

by operator id and utility id. Because different electric utilities collected and retained data for 

varying numbers of years, our data exists as an unbalanced panel with 276 observations from 

individual utilities across the five years. The summary statistics are presented below in Table 2.2. 
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Table 2.2 Summary Statistics EIA Form-861 and EIA Form-923 (2013-2017) 

Variable  Description Mean Std. Dev. Min Max 

Utility  Individual Utilities 12,000.89 7,818.14 84 56,146 

SAIDI System Average Interruption Duration Index 67.67 76.86 0 700.20 

SAIFI System Average Interruption Frequency Index 0.82 1.77 0 43.20 

Customers  Number of Customers Served 382,958.20 785,668.90 0 5,517,212 

 Voltage  Voltage (kV) 24.38 15.98 0 69 

 Year  Year 2014.86 1.28 2013 2017 

 Auto  =1 if Utility has an Automated OMS 0.46 0.50 0 1 

IEEE =1 if Utility uses IEEE Standard 0.57 0.50 0 1 

Circuits  Number of Distribution Circuits 427.73 712.71 1 4,552 

Meters  Number of AMI Meters 178,478.20 678,715.90 0 5,262,080 

Summer Peak  Summer Peak Demand (MWh) 2,137.39 3,929.07 1.80 23,858 

Winter Peak Winter Peak Demand (MWh) 1,784.89 3,293.21 1.40 20,541 

Retail Sales Total Electric Retail Sales ($) 9,091,348 16,800,000 0 110,000,000 

Revenue Total Operating Revenue ($1,000) 1,122,687 2,101,950 0 14,500,000 

Transmit  =1 Utility Transmits Electricity 0.65 0.48 0 1 

Buy Transmit  =1 Utility Buys Transmitted Electricity 0.71 0.45 0 1 

Distribute  =1 if Utility Distributes Electricity 1.00 0.06 0 1 

Buy Distributed  =1 if Utility Buys Distributed Electricity 0.11 0.31 0 1 

Generation  =1 if Utility Generates Electricity 0.91 0.30 0 1 

Total Generation Total Capacity Generated (MWh) 69,600,000 147,000,000 0 984,000,000 

Net Generation Net Capacity Generated (MWh) 7,237,104 15,600,000 -113,055 116,000,000 

Renewable  Net Renewable Capacity Generated 98,929.21 646,377.20 0 11,700,000 

Renew w/o Hydro =1 if Utility Uses Wind or Solar as Prime Mover 0.23 0.42 0 1 

Renew w/ Hydro =1 if Utility Uses Hydro as Prime Mover 0.35 0.48 0 1 

Observations                                            937 
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EMPIRICAL METHODS 

Our empirical analysis followed four main steps. First, consistent with Eto et al. (2012), we 

transformed both reliability metrics using a log-transformation. We also employed an inverse 

hyperbolic sine (IHS) transformation of the reliability metrics. Second, we conducted F-tests on 

both sets of the transformed reliability metrics to determine if accounting for utility-level specific 

effects was warranted. Third, we conducted a Hausman (1978) specification test to determine 

rather a fixed effects or random effects specification was more appropriate for our analysis. Fourth, 

we estimated two sets of models using the transformed values of SAIDI and SAIFI as the dependent 

variable. The first set of models included the log-transformed values of SAIDI and SAIFI as the 

dependent variable, while the second set of models included the IHS transformed values of SAIDI 

and SAIFI as the dependent variable. The raw (untransformed) data for values of SAIDI and SAIFI 

are presented below in Figure 2.2 and 2.3.  

 
Figure 2.2 Raw Data SAIDI (System Average Interruption Duration Index)  
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Figure 2.3 Raw Data SAIFI (System Average Interruption Frequency Index)  

 There are two main reasons for applying a log-transformation to the reliability metrics 

SAIDI and SAIFI. First, because the metrics themselves tend to follow a log-normal distribution, 

transforming them into natural logs can result in a relatively normal distribution (Eto et al. 2012; 

Larsen et al. 2017). Second, using the log-transformed values of the reliability metrics as the 

dependent variable allows us to interpret the coefficients on our parameters of interest as semi-

elasticities. In other words, after multiplying the parameter estimates of interest from the regression 

equations by 100, we can interpret them as percentage changes in reliability given a one unit 

change in the variable of interest (Eto et al. 2012; Wooldridge 2015)  

However, while the log-transformation is convenient, applying such a transformation does 

not always work well with data that contain a large number of zeros, as the log transformation of 

zero is undefined. As suggested by Eto et al. (2012), one way to alleviate this issue is to code all 

the zeros as ones, and then apply the log-transformation to the reliability metrics. We follow Eto 

et al. (2012)’s suggestion first and log-transform the reliability metrics after coding the zeros as 

ones. However, another issue with the log-transformation approach is that it leads to negative 

values for our reliability metrics, which is problematic as the negative of a power outage is 
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nonsensical. In addition, the estimated skewness and kurtosis values from applying the log-

transformation indicated a non-normal distribution of the reliability metrics. The log-transformed 

values for SAIDI and SAIFI are presented below is Figures 2.4 and 2.5. 

 
Figure 2.4 Log-Transformed Values SAIDI (System Average Interruption Duration Index) 

 

 
Figure 2.5 Log-Transformed Values SAIFI (System Average Interruption Frequency Index)  

Therefore, in addition to applying the log-transformation, we also transformed both the 

values of SAIDI and SAIFI using an IHS transformation, originally proposed in the literature by 

Johnson (1949). To apply the inverse hyperbolic sign transformation, we take the reliability 
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metrics SAIDI and SAIFI, defined here for simplicity as 𝑦𝑖𝑡 and apply the following formula: 

log (𝑦𝑖𝑡 + (𝑦𝑖𝑡
2 + 1)

1

2).  The HIS transformed values of SAIDI and SAIFI are presented below in 

Figures 2.6 and 2.7.  

 
Figure 2.6 IHS Transformed Values SAIDI (System Average Interruption Duration Index)  

 

 
Figure 2.7 IHS Transformed Values SAIFI (System Average Interruption Frequency Index)  

Except for very small values of the dependent variable, the IHS transformation is approximately 

equal to, log (2𝑦𝑖𝑡) or log(2) + log(𝑦𝑖𝑡). Therefore, when using the IHS transformed values of the 

reliability metrics as the dependent variable we can interpret the coefficients on our parameters of 
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interest in exactly the same way as a standard logarithmic dependent variable, that is, the 

percentage change in the reliability metric given a one unit change in the variable of interest.  

 Moreover, unlike the log-transformation, the IHS transformation is defined at zero and 

therefore we do not need to recode the zeros as ones, and do not lose any information. More 

specifically, given the large presence of zeros in our dataset, applying the IHS transformation 

allows us to examine what factors might lead no power disturbances. Moreover, after applying the 

IHS transformation, we find skewness and kurtosis values are within range to assume that SAIDI 

and SAIFI are both normally distributed (𝑁(𝜇, 𝜎2)). Therefore, we can estimate the regression 

equations assuming left censoring at zero.  

After applying the log-transformation and IHS transformation to the reliability metrics, we 

conduct F-tests on both sets of the transformed values to confirm that accounting for utility- level 

specific effects is warranted in our analysis. The F-test is a standard statistical analysis technique 

used to determine if unobserved individual effects have the potential to influence the outcome 

variable of interest. In the case of the electric utility industry, these unobserved effects might 

include things such as location, climate region, structure, size, or ownership. If the null hypothesis 

that no unobserved effects are present can be rejected with a degree of statistical certainty, then 

estimating fixed-effects and/or random-effects is warranted. The results our F-test indicate utility-

level specific effects are present and therefore fixed or random effects are appropriate for our 

analysis.  

To determine whether the fixed or random effects approach was more appropriate for our 

analysis we applied the Hausman (1978) specification test. The Hausman test examines whether, 

under the null hypothesis, the utility-specific and time-specific effects are uncorrelated with the 

other regressors of interest included in the model (Wooldridge 2010; Malla 2013). Failure to reject 
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the null hypothesis indicates both specifications are consistent, but that the random effects 

specification is more efficient than the fixed effects specification. The results of the Hausman test 

for both sets of transformed SAIDI and SAIFI values indicate that we fail to reject the null 

hypothesis in favor of the alternative. Therefore, we estimated the model using a random-effects 

regression model. 20 Additionally, we estimate the model using a random effects specification 

because there are time-invariant variables of interest, believed to influence reliability such as 

ownership type and NERC region operated in.  

EMPIRICAL MODEL SPECIFICATION 

For our empirical analysis, we use the frequency and duration of power system outages, as 

measured by the transformed values of SAIDI and SAIFI, as measures of interruptions in electric 

utility service reliability. The basic model used to test our hypothesis takes the following form: 

(12) 𝑂𝑢𝑡𝑎𝑔𝑒𝑖𝑡 = 𝛽0 + 𝛽1𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡𝑖𝑡 + 𝛽𝑋𝑖𝑡 + 𝛿𝑌𝑒𝑎𝑟𝑡−1 + 𝑐𝑖 + 𝜇𝑖𝑡. 

In this model, interruptions in electric utility service reliability for each utility 𝑖 in time period 𝑡 is 

measured by the dependent variable, 𝑂𝑢𝑡𝑎𝑔𝑒𝑖𝑡 which is equal to either the natural log or the IHS 

transformed values of the reliability metrics used (e.g., SAIDI and SAIFI). We control for year 

fixed effects by including the variable 𝑌𝑒𝑎𝑟𝑡−1, which is used to represent a set of year dummy 

variables included for all but one of the five years of observation. The unobserved individual-

utility-level characteristics, which are believed to influence power system reliability, are denoted 

by the term 𝑐𝑖, and the idiosyncratic error term is represented here by 𝜇𝑖𝑡.  

The term 𝑋𝑖𝑡 is used to represent a vector of observable variables that capture operational 

characteristics of each electric utility 𝑖 believed to influence power system reliability. More 

                                                 
20 The random effects specification also allows us to examine the effects of time-invariant variables of interest (Wooldridge 2010). 
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specifically, the operational characteristics in 𝑋𝑖𝑡 include: 𝐴𝑢𝑡𝑜𝑖𝑡, an indicator variable equal to 

one if the electric utility has an automated outage management system that can be used to 

automatically detect disturbances; 𝑇𝑅𝑖𝑡 an indicator variable equal to one if the utility transmits 

electricity; 𝐷𝑖𝑡 is an indicator variable equal to one if the utility operates the distribution lines; 𝐺𝑖𝑡  

an indicator variable equal to one if the electric utility identifies as a generator; and 𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑠𝑖𝑡, 

which is a continuous variable equal to the number of distributional circuits operated by each utility 

𝑖 in time period 𝑡. 

Consistent with the previous literature, we also control for the size and operations of each 

electric utility by including additional variables in 𝑋𝑖𝑡, including 𝑆𝑎𝑙𝑒𝑠𝑖𝑡, which is equal to the 

total retail sales of each electric utility (measured in megawatt-hours [MWh]); and 𝐼𝐸𝐸𝐸𝑖𝑡, which 

is an indicator dummy variable equal to one if the utility uses the IEEE Standard 1366 to record 

and measure values for SAIDI and SAIFI; the total number of customers serviced by each utility 𝑖 

in a given year 𝑡, labeled as 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠𝑖𝑡 (Fenrick and Getachew 2012; Malla 2013).21  To account 

for differences in the way reliability standards are monitored and enforced, we include a set of 

indicator variable for all but one of the ten North American Electrical Reliability (NERC) regions 

individual utilities can operate in, labeled here as 𝑁𝐸𝑅𝐶𝑖𝑡. Additionally, because different types of 

utilities have different procedures for measuring and ensuring the reliability of service using the 

indices SAIDI and SAIDI, we include an indicator variable for each ownership type excluding one, 

labeled here as 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖𝑡.  

Lastly, because the primary focus of this study is to investigate the relationship between 

using intermittent renewables resources and power system reliability, we include two key variables 

                                                 
21 According to Fenrick and Getachew (2012) and Malla (2013) utilities serving fewer customers can be at a disadvantage when 

measuring the reliability of service using SAIDI and SAIFI values because they have fewer customers overall.   
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to account the use of intermittent renewable resources by electric utility companies in our sample. 

First, we include the variable 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑖𝑡, an indicator variable equal to one if the utility 

identifies either wind or solar (photovoltaics) as the prime mover for at least one of the power 

plants they operate and zero otherwise. 22 Second, we include the variable 𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡𝑖𝑡, a 

continuous variable equal to the net capacity of electricity generated (as measured in MWh) by 

intermittent renewable resources by each utility 𝑖 in time period 𝑡.  

Table 2.3 below lists all of the variables used for our empirical analysis. To provide a clear 

connection to our theoretical framework, we also include a label for each variable’s theoretical 

counterpart and the hypothesized sign of their respective regression coefficients. For variables not 

included in our theoretical framework, we include information from the literature to include them. 

Due to limitations within our data, we do not have an empirical measure for labor.  

Table 2.3 Empirical Explanatory Variables used to Model Power System Outages 

Empirical Variable Label 
Theoretical 

Counterparts 

Expected Sign 

of Estimated 

Coefficient 

=1 if Utility has an Automated Outage 

Management System 
𝐴𝑢𝑡𝑜𝑖𝑡 𝐾𝑖𝑡 Positive 

=1 if Utility Transmits Electricity 𝑇𝑅𝑖𝑡 𝐾𝑖𝑡 Positive 

=1 if Utility Distributed Electricity 𝐷𝑖𝑡 𝐾𝑖𝑡 Positive 

=1 if Utility Generates Electricity 𝐺𝑖𝑡 𝐾𝑖𝑡 Positive 

Number of Distributional Circuits 𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑠𝑖𝑡 𝐾𝑖𝑡 Positive 

=1 if Utility Identifies Wind/Solar as 

Prime Mover and 0 otherwise 
𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑖𝑡 𝑅𝑖𝑡 Positive 

Net capacity of Electricity Generated by 

Intermittent Renewables (MWh) 
𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡𝑖𝑡 𝑟4 Positive 

                                                 
22 According to the EIA, a prime mover is the engine, turbine, water wheel, or another similar machine responsible for driving the 

electric generator in a power plant; or, for reporting purposes, the device that converts energy to electricity directly.  
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Empirical Variable Label Literature 

Expected Sign 

of Estimated 

Coefficient 

Total Retail Sales (MWh) 𝑆𝑎𝑙𝑒𝑠𝑖𝑡 
Eto et al. 

(2012) 
Positive 

=1 if Utility uses the IEEE Standard 

1366 
𝐼𝐸𝐸𝐸𝑖𝑡 

Eto et al. 

(2012) 
Positive 

Number of Customers 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠𝑖𝑡 Malla (2013) Positive 

North American Electrical Reliability 

(NERC) Regions 
 𝑁𝐸𝑅𝐶𝑖𝑡 

Eto et al. 

(2012) 
Indeterminant 

 

When analyzing short (e.g., many entities 𝑖 but few time periods 𝑇), unbalanced (𝑇𝑖 ≠ 𝑇 

for some 𝑖) panel datasets, the conventional technique used in economics is to rely on multivariate 

regression models that specifically account for unobserved heterogeneity (Cameron and Trivedi 

2009; Wooldridge 2010). Similar to Eto et al. (2012), our panel dataset is unbalanced because it 

does not contain reliability metrics for each electric utility across all five years of observation 

(Wooldridge 2010). The most common multivariate regression models used when analyzing panel 

data of this nature are fixed effects and random effects models. The choice of which depends on 

assumptions surrounding the correlation between the individual unobserved effects 

(heterogeneity) and included explanatory variables of interest.  

Because fixed effects models allow for correlation between the unobserved effect and any 

included explanatory variables of interest, they are often preferred. However, random-effects 

models are still used, especially in cases when key explanatory variables of interest do not vary 

over time. In our specific case, the time-invariant variable of interest is the regional reliability 

organization of each individual utility, also known as its NERC region. Regional reliability 

organizations are charged with monitoring and enforcing reliability standards. Being able to 
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estimate the impact of the operations of these specific organizations on reliability is the first reason 

we prefer the random effects model specification over the fixed effects. 

The second reason we preferred the random effects model to the fixed effects model is 

based on the results of our Hausman test. For both sets of transformed values of SAIDI and SAIFI, 

we find a statistically significant difference in the parameter estimates for the time-varying 

explanatory variables of interest produced by both models, which indicates the random effects 

specification is preferred to the fixed effects. Therefore, we begin the empirical analysis by 

estimating equation (1) using both sets of transformed reliability metrics (log-transformed and IHS 

transformed values of SAIDI and SAIFI) assuming a random effects model specification.   

It is important to note, however, that a common problem when analyzing strictly positive 

microeconomic data, such as the frequency and duration of power outages, is censoring of the 

dependent variable. A dependent variable is censored when all values within a certain range (e.g., 

values less than zero) are all reported as a single value (e.g., zero). As a result, conventional 

regression analysis techniques including ordinary least squares (OLS), are not sufficient because 

they allow for the prediction of negative outcomes of the dependent variable. The reliability 

metrics (SAIDI and SAIFI) from our dataset are strictly positive in nature, and thus censored at 

zero. The standard model used on panel datasets whenever the dependent variable is censored at 

zero is the Random Effects Tobit Model. 23 

While the Random Effects Tobit Model makes use of the strictly positive censored nature 

of the indices used to measure the reliability of service, the specification also assumes each 

                                                 
23 The results from the estimating the model in equation (3) assuming a random-effects Tobit model specification are included in 

the Appendix for completeness. See Table 2. A1 in the list of tables. We estimate the random effects Tobit model using only the 

IHS transformed values of SAIDI and SAIFI, as these values are all strictly greater than or equal to zero, while the log-transformed 

values are not. 
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explanatory variable of interest in our model affects the probability that a customer will experience 

a disturbance in power system reliability in the same direction as the intensity of disturbance given 

that it has occurred. That is, across the two separate regimes, any included explanatory variable of 

interest (e.g., the net capacity generated by intermittent renewable resources or whether or not the 

utility can automatically detect disturbances) will impact the probability that a customer 

experiences a disturbance in power system reliability in the same way that it would impact the 

duration of the disturbance given that it has occurred.  

This restriction might be slightly unreasonable in an economic setting involving utility 

firm-level disturbance data, where it is conceivable that given a certain level of technology, some 

electric utilities may be able to better manage the duration of power outages when and if they do 

occur. Therefore, in addition to estimating a random effects model using the log and IHS 

transformed values of SAIDI and SAIFI as the dependent variable, our statistical approach also 

employs the use of a two-step Cragg-Hurdle Model (Cragg 1971; Greene 2012). The Hurdle 

model, as it is more commonly known, is not only well-suited to handle the excess zeros problem 

(i.e., censoring of the dependent variable) but also allows us to estimate separate equations for the 

bounded and non-bounded outcomes. That is, it allows us to model the probability of experiencing 

a disturbance in power system reliability separately from the intensity of the disturbance, given it 

has occurred.  

We employ the Hurdle model and estimate equation (1) using only the IHS transformed 

values of SAIDI and SAIFI, as these values are all strictly greater than or equal to zero, while the 

log-transformed values are not. Empirically, the Hurdle model is characterized by the following 

relationship: 

(13) 𝑦𝑖𝑡 = 𝑠𝑖𝑡𝐷𝑖𝑡
∗  .  
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In equation (12) 𝑦𝑖𝑡 represents the observed value of the dependent variable (i.e., the IHS 

transformed value of SAIDI or SAIFI);  𝑠𝑖𝑡 represents the “participation decision” which is a binary 

variable that determines whether 𝑦𝑖𝑡 is zero or strictly positive; and 𝐷𝑖𝑡
∗  is a continuously 

distributed, non-negative latent variable that is only observed if 𝑠𝑖𝑡 = 1.24  

Under the Hurdle model specification, the participation “decision” or selection variable 

𝑠𝑖𝑡 is structured as follows: 

(14) 𝑠𝑖𝑡 = {
= 1    𝑖𝑓 𝒁𝑖𝑡𝛾 + 𝑣𝑖𝑡 > 0
= 0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

.  

Here 𝒁𝑖𝑡  represents a vector of explanatory variables believed to influence whether or not an 

electric utility experiences a disturbance in power system reliability; γ represents the coefficients 

to be estimated, and 𝑣𝑖𝑡 is the standard normal error term. The variables in 𝒁𝑖𝑡 include: = 𝐴𝑢𝑡𝑜𝑖𝑡, 

an indicator variable equal to one if the electric utility has an outage management system that can 

be used to automatically detect disturbances in power system reliability; 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠𝑖𝑡, a 

continuous variable equal to the total number of customers served by each utility in a given year; 

and 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑖𝑡 an indicator variable equal to one if the utility lists wind or solar as their prime 

mover. These variables were chosen because based on how they are defined and recorded, it is 

highly probable they contribute to whether or not a utility experiences an interruption in power 

system reliability.  

In the Hurdle model, the second regime is specific to the participation decision. That is, the 

second regime is used to analyze the intensity of a power system outage given that it has occurred. 

The intensity of the outage is modeled as follows: 

                                                 
24 Other than 𝑠𝑖𝑡  being binary and 𝑑𝑖𝑡

∗  being continuous, there is another critical difference between 𝑠𝑖𝑡 and 𝑑𝑖𝑡
∗ : we effectively 

observe 𝑠𝑖𝑡 because it is observationally equivalent to the indicator 1[𝑦𝑖𝑡 > 0]. However, we only observe 𝑑𝑖𝑡
∗  when 𝑠𝑖𝑡 = 1. 
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(15) 𝐸[𝑂𝑢𝑡𝑎𝑔𝑒𝑖𝑡 | 𝑠𝑖𝑡 = 1] = 𝜋0 + 𝜋1𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡𝑖𝑡 + 𝜋𝑋𝑖𝑡 + 𝜆𝑌𝑒𝑎𝑟𝑡−1 + 𝛼𝑖 + 𝜀𝑖𝑡, 

where 𝐼𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑡𝑖𝑡 represents the net capacity of electricity generated by intermittent 

renewable resources; 𝑋𝑖𝑡 is the vector of explanatory variables outlined above; 𝑌𝑒𝑎𝑟𝑡−1 is used to 

represent a set of year dummy variables included for all but one of the five years of observation; 

𝜋 and 𝜆 represent parameters to be estimated; 𝛼𝑖 is used to represent the unobserved individual-

utility-level characteristic believed to influence reliability of service; and 𝜀𝑖𝑡 is the idiosyncratic 

error term. 25 

In the case when the Hurdle model outlined is assumed to be linear, the selection model 

can be viewed as a Probit model, while 𝐷𝑖𝑡
∗  is assumed to follow a truncated normal distribution.  

The model is unique in that the parameters and covariates in both models are allowed to differ. 

The marginal effects are assumed to estimate the marginal impact of each explanatory variable of 

interest on the dependent variable (e.g., transformed values of SAIDI or SAIFI) conditional on a 

power system outage occurring. Applying the hurdle model to examine power system interruptions 

is a convenient way to allow different mechanisms to account for the “participation” and “extent” 

of power outages experienced by end-consumers, which is the primary reason we use it in this 

analysis.  

2.7 RESULTS AND DISCUSSION 

The results from the application of the F-test are presented below in Table 2.4.  

Table 2.4 F-Test Results for Hypothesis that Utility-Level Specific Effects Are Not Present  

Reliability Metric F-test 
Degrees of Freedom 

(between/within) 
Prob. > F 

ln (𝑆𝐴𝐼𝐷𝐼) 7.96 (247/662) < 0.000 

ln (𝑆𝐴𝐼𝐹𝐼) 7.11 (247/662) < 0.000 

IHS (𝑆𝐴𝐼𝐷𝐼) 9.12 (247/662) < 0.000 

IHS (𝑆𝐴𝐼𝐹𝐼) 7.24 (247/662) < 0.000 

                                                 
25 Under the specification outline above 𝑑𝑖𝑡

∗  is observationally equivalent to equation (6).  
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Our findings suggest that both utility and year specific effects are statistically significant (at the 

0.01% confidence level) for both the log-transformed and IHS transformed values of SAIDI and 

SAIFI. The results suggest there is a strong correlation between the individual characteristics of 

the utilities and the reliability metrics recorded, as well as between the reliability metrics and the 

year in which they were recorded. Similar to Eto et al. (2012) we assume this effect is due to the 

differences in reporting and monitoring practices of the individual utilities. By taking the time 

effects and utility-specific characteristics into account within our model, we can assume the utility-

specific and time effects are not contaminating the estimated coefficients on any other explanatory 

variables of interest.  

Equation (11) was estimated using the transformed values of SAIDI and SAIFI (i.e., the 

log-transformed and IHS transformed values) as dependent variables, assuming a simple linear 

random effects model specification with standard errors corrected for both heteroscedasticity and 

autocorrelation. The estimation results are presented below in Table 2.5. 

Table 2.5 Log-linear and IHS Random Effects Specification Results 

 
𝐥𝐧 (𝑺𝑨𝑰𝑫𝑰) 

(1) 
𝐥𝐧 (𝑺𝑨𝑰𝑭𝑰) 

(2) 
𝐈𝐇𝐒 (𝑺𝑨𝑰𝑫𝑰) 

(3) 
𝐈𝐇𝐒 (𝑺𝑨𝑰𝑭𝑰) 

(4) 

Customers 
−4.46 × 10−7*** 

(1.95 × 10−7) 

−3.17 × 10−7* 

(2.00 × 10−7) 

−4.25 × 10−7** 

(2.09 × 10−7) 

−1.66 × 10−7** 

(8.56 × 10−8) 

IEEE 
1.2504*** 

(0.2002) 

-0.1800* 

(0.0964) 

1.406*** 

(0.2107) 

0.2601*** 

(0.0427) 

Auto 
0.1211 

(0.1099) 

0.0409 

(0.0633) 

0.1174 

(0.1217) 

0.0571* 

(0.0316) 

Circuits 
0.0004* 

(0.0002) 

0.0002 

(0.0001) 

0.0004* 

(0.0002) 

0.0001 

(0.0001) 

Retail Sales 
9.95 × 10−9 

(6.92 × 10−9) 

7.03 × 10−9 

(5.11 × 10−9) 

9.10 × 10−9 

(7.68 × 10−9) 

2.72 × 10−9 

(2.34 × 10−9) 

Transmit 
0.1662 

(0.1251) 

0.1259* 

(0.0707) 

0.1228 

(0.1384) 

0.0596 

(0.0447) 
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Distribute 
0.4703 

(0.4965) 

0.0940 

(0.1788) 

0.5405 

(0.5389) 

0.1920* 

(0.1120) 

Generation 
-0.2400 

(0.1920) 

0.3002** 

(0.1449) 

-0.2625 

(0.2148) 

0.0224 

0.0487 

Renewable 

W/O Hydro 

-0.2922*** 

(0.1121) 

-0.0396 

(0.0725) 

-0.3065*** 

(0.1203) 

-0.0966*** 

(0.0372) 

Renewable 

Generation 

3.42 × 10−7*** 

(1.38 × 10−7) 

2.21 × 10−8 

(7.72 × 10−8) 

3.27 × 10−7** 

(1.42 × 10−7) 

4.71 × 10−8 

(4.39 × 10−8) 

NERC Region 

Dummies 
Yes Yes Yes Yes 

Ownership 

Dummies 
Yes Yes Yes Yes 

Year Dummies Yes Yes Yes Yes 

Constant 
3.96*** 

(0.71) 

0.32 

(0.30) 

4.54*** 

(0.80) 

0.81*** 

(0.19) 

𝜎𝑢 1.189 0.632 1.318 0.330 

𝜎𝜀 0.903 0.513 0.931 0.284 

𝜌 0.635 0.603 0.667 0.574 

Observations 937 937 937 937 

     

Hausman test 

(m-value) 
7.68 13.99 8.11 7.73 

Hausman 

𝝌𝟐(𝟏𝟏) 
0.7417 0.2335 0.7034 0.7375 

Standard errors in parenthesis   

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 

The results from all but one of our regression models indicate measuring and recording 

values for SAIDI and SAIFI following the IEEE 1366 Standard, has a positive and significant effect 

on the frequency and duration of power outages recorded by utilities. Additionally, consistent with 

our theoretical expectations, we find utilities who transmit and distribute their own electricity can 

expect to have longer and more frequent power outages. However, this result is not statistically 
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significant. Our results indicate utilities who operate more distributional circuits can expect to 

experience longer power outages, as measured by the transformed values of SAIDI.  

Across all random effects model specifications, we find utilities who identify wind or solar 

(photovoltaics) as a prime mover of at least one of their power plants, on average can expect to 

experience shorter and less frequent power outages than utilities who do not identify as such. This 

result is not consistent with our theoretical expectation. However, this result could be related to 

the fact that utilities who operate at least one power plant that relies on intermittent renewable 

resources to generate power might be better at managing periods when wind and/or solar 

availability is likely to be limited. As a result, theses utilities may be more prone to take the actions 

necessary to avoid power system outages. For example, utilities who operate a power plant or set 

of power plants that primarily depend on wind and/or solar might decide to take those power plants 

offline during periods of severe weather and replace them with a natural gas-fired generating plant. 

However, our results also indicate as the net capacity of electricity generated from 

intermittent renewable resources increases, longer power system outages, as measured by the 

transformed values of SAIDI, can be expected. This result is consistent with our theoretical 

expectation. Although increasing the net capacity of electricity generated by intermittent 

renewables was found to have a statistically significant impact on power system reliability 

according to models (1) and (3), where the log-transformed and IHS transformed values of SAIDI 

serve as the dependent variable, the result is marginal. More specifically, the random effects model 

results indicate, all else equal, generating one additional MWh of electricity from intermittent 

renewable resources results in only a 0.00003% increase at the margin in the duration of 

disturbances as measured by both the IHS and log-transformed values of SAIDI.  
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In addition to estimating equation (11) assuming a simple random effects model 

specification, we also estimate the model in equation (11) using a Cragg-Hurdle model 

specification, as outlined by equations (12) and (13).  The results from estimating the Hurdle 

model, using both the IHS transformed values of SAIDI and SAIFI are listed in Table 2.6 below.  

Table 2.6 Linear Hurdle Model Results   

 
𝐈𝐇𝐒 (𝑺𝑨𝑰𝑫𝑰) 

(5) 
𝐈𝐇𝐒 (𝑺𝑨𝑰𝑭𝑰) 

(6) 

Customers 
2.88 × 10−6*** 

(7.73 × 10−7) 

4.77 × 10−7*** 

(1.45 × 10−7) 

IEEE 
0.3477*** 

(0.1047) 

0.0552 

(0.0426) 

Auto 
0.2868 

(0.1798)  

0.0580 

(0.0409) 

Circuits 
 0.0003 

(0.0001) 

0.00004 

(0.0001) 

Retail Sales  
7.94 × 10−9*** 

(3.83 × 10−9) 

1.52 × 10−9 

(1.93 × 10−9) 

Transmit 
0.3634*** 

(0.1138) 

0.0837 

(0.0514) 

Distribute 
-0.6785*** 

(0.1704) 

-0.1844*** 

(0.0644) 

Generation 
-0.0018 

(0.1371) 

0.1423* 

(0.0767) 

Renewable w/o 

Hydro 

-0.3360 

(0.2580) 

-0.0901 

(0.0637) 

Renewable 

Generation 

4.44 × 10−7*** 

(1.12 × 10−7) 

6.03 × 10−8 

(5.06 × 10−8) 

NERC Region 

Dummies 
Yes Yes 

Ownership 

Dummies 
Yes Yes 

Year Dummies Yes Yes 

Constant 
6.4375*** 

(0.3077) 

1.5241*** 

(0.1789) 

Selection Model   

Auto 
0.2062 

(0.1843) 

 0.4075 

(0.1824) 

Customers 
3.74 × 10−6*** 

(8.82 × 10−7) 

3.80 × 10−6*** 

(8.56 × 10−7) 
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Renewable w/o 

Hydro 

-0.1262 

(0.2641) 

-0.2616 

0.2392 

Constant 
0.4919*** 

(0.1250) 

0.3774*** 

0.1247 

Ln(Sigma)   

Constant 
-0.0968 

(0.0581) 

-0.8464 

0.1270 

Sigma 
0.9077 

(0.0527) 

0.4289 

(0.0545) 

Log-likelihood -1,365.43 -643.21 

Observations 937 937 

Standard errors in parenthesis 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01  

Consistent with our previous results, we find using the IEEE 1366 Standard to measure and 

record values of SAIDI, leads to longer disturbances on average being recorded by electric utility 

companies (firms). Additionally, we find electric utility companies (firms) who distribute their 

own electricity are approximately 70% less likely to experience a disturbance in power system 

reliability as measured by the IHS transformed value of SAIDI, and 20% less likely to experience 

a disturbance in power system reliability as measured by the IHS transformed value of SAIFI.  

Based on the results from the selection model, we can conclude electricity companies (firms) with 

more customers are more likely to experience an outage as measured by SAIDI and SAIFI than 

not.  

Consistent with the linear random effects model specification results for the log-

transformed values of SAIDI we find generating more net capacity from intermittent renewable 

resources leads to longer outages (i.e., disruptions in network system reliability). Based on our 

results we can infer, utilities who experience a power outage can on average, expect a 0.00004% 

increase in the duration of the disturbance as measured by the IHS transformed value of SAIDI if 

they generating one additional MWh of net capacity from intermittent renewable resources. While 
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our findings are statistically significant, it is important to note, however, that they currently are not 

necessarily economically significant.  

For example, in terms of customer minutes without power, across all model specifications, 

our results indicate increasing the net capacity of electricity generated by intermittent renewable 

resources will lead to power system outages that on average last less than one second for end-

consumers. Moreover, in order for the reliability of service for end-consumers, as measured by 

IHS transformed values of SAIDI to decrease by 100% (a power outage lasting additional one 

minute), electric utility companies would need to generate on average between 2.3 to 3.1 million 

MWh of net capacity from intermittent renewable resources each year. Currently, only 5 (less than 

1%) of the electric utility companies in our sample meet this criterion; an indication that it may be 

a while before large-scale power interruptions are realized.  

Nevertheless, in areas where relatively large, non-marginal increases in the proportion of 

electricity generated from intermittent renewables are expected in the near future (or in some cases 

mandated) our estimation results imply that electrical power system reliability could decrease 

substantially. For example, currently across the United States more than 90 cities, ten counties, 

and two states have renewable energy policies in place requiring electric utility companies to 

generate 100% of their net capacity from renewable energy resources (Sierra Club 2019). These 

imposed increases in intermittent renewable resource capacity beg the question: “If power system 

reliability is already being negatively affected at the margin by the use of intermittent renewable 

resources, how will rapid, large-scale transitions to renewable energy resources affect network 

system reliability in the future both technically and economically?   

To provide some perspective on the policy implications of our results, in the following 

section of this paper we forecast interruptions in power system reliability assuming different 
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renewable energy policy scenarios. We then use these forecasts to predict costs associated with 

forecasted interruptions in power system reliability using the Interruption Cost Estimator (ICE) as 

suggested by Sullivan et al. (2018). Our forecasted results are based on Renewable Energy 

Standards (RES) which are regulatory mandates that require electric utility companies within a 

given area (i.e., city, state, or region) to source a certain amount of the electricity they generate 

from intermittent renewable resources.26 Most RES are designed to incrementally increase the 

capacity of electricity generated by intermittent renewables over time.27 More than half of all U.S. 

states have some type of RES policy or goal in place (SEIA 2019). 

FORECASTING POWER SYSTEM RELIABILITY UNDER RENEWABLE ENERGY STANDARDS 

To begin our forecasting procedure, we identified ten states that currently have some type of RES 

in place. The states identified include California, Texas, Hawaii, Iowa, Kansas, Michigan, New 

Mexico, Oregon, Vermont, and Colorado. Of these states, California, Hawaii, and Vermont were 

found currently to have the most aggressive RES in place. For example, California has a renewable 

energy policy in place requiring utilities to generate 33% of the electricity they sell from renewable 

energy resources by the year 2020; 40% by the year 2024; 45% by the year 2027; and 50% by the 

year 2030. Hawaii, on the other hand, has plans in place to source 100% of its electricity from 

intermittent renewable resources by the year 2045 while Vermont’s plans include having 55% of 

its electricity generated by renewables by 2017 and 75% by the year 2032. 

                                                 
26 There are many different variations of RES, including clean energy targets, which allow utilities to utilize nuclear energy 

resources and other low-polluting non-renewable alternatives such as natural gas, and renewable portfolio standards (RPS) which 

require utilities to ensure a specified amount of the electricity they sell comes from renewable energy resources and other low-

pollution alternatives. 
27 For example, an RES might require utilities to increase the capacity of electricity generated by renewables by 1% each year for 

the next ten years, resulting in a cumulative 10% increase in renewable generation in that state. Conversely, an RES might specify 

that by a certain date (e.g., ten years in the future) at least 10% of the electricity generated in a given state must come from 

intermittent renewables. 
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 To obtain the predicted outcomes, we use the to calculate the total net capacity associated 

with a given percentage increase in net capacity generated by intermittent renewable resources. 

For example, if the net capacity currently generated by an individual utility in a given state is 

100,000-megawatt hours (MWh), then a 10% increase in capacity generated by intermittent 

renewables would be equivalent to 10,000 MWh. Based on current RES in place, when forecasting 

outages in power system reliability we considered increases in capacity from renewables ranging 

from 5% to 100%. The results from our forecasting procedure are listed below in Table 2.7.28

                                                 
28 A detailed description of the forecasting procedure used for our analysis can be found in the Chapter 2 Appendix.  
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Table 2.7 Predicted Outcomes for SAIDI and SAIFI assuming a Random Effects Model and Estimation Results  

Percentage of 

Net Capacity 

Generated by 

Intermittent  

California Texas Hawaii Iowa Kansas 

Renewables SAIFI SAIDI SAIFI SAIDI SAIFI SAIDI SAIFI SAIDI SAIFI SAIDI 

5% .599 131 .755 195 1.351 147 .671 273 .895 230 

10% .610 153 .795 228 1.356 153 .694 413 .907 254 

15% .622 187 .815 268 1.362 159 .719 640 .920 286 

20% .633 238 .836 318 1.369 165 .745 1,008 .933 326 

25% .646 317 .857 381 1.375 172 .772 1,605 .946 379 

30% .658 441 .878 459 1.381 179 .801 2,578 .960 447 

50% .713 2,361 .970 1,038 1.405 210 .937 18,008 1.020 999 

75% .795 27,275 1.098 3,286 1.437 261 1.161 215,142 1.106 3,379 

100% .899 344,745 1.247 11,567 1.470 329 1.471 2,638,574 1.207 12,789 

           

Percentage of 

Net Capacity 

Generated by 

Intermittent  

Michigan New Mexico Oregon Vermont Colorado 

Renewables SAIFI SAIDI SAIFI SAIDI SAIFI SAIDI SAIFI SAIDI SAIFI SAIDI 

5% .828 252 .671 135 .836 232 .747 31 .879 269 

10% .854 372 .681 156 .846 249 .747 31 .914 356 

15% .882 599 .692 183 .855 269 .748 31 .951 485 

20% .911 1,035 .703 215 .865 292 .749 32 .989 678 

25% .943 1,882 .715 256 .875 319 .749 32 1.029 967 

30% .977 3,535 .726 306 .886 350 .750 32 1.071 1,398 

50% 1.144 50,726 .775 657 .928 536 .753 33 1.256 6,650 

75% 1.449 1,553,039 .844 1,833 .986 1,020 .757 34 1.545 49,860 

100% 1.922 4,8936,440 .922 5,303 1.048 2,122 .760 34 1.917 379,132 
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Before we interpret the results of the policy simulation above, it is important to recall how 

values for SAIDI and SAIFI are measured and recorded by electric utility companies. Both SAIDI 

and SAIFI are index measures that were originally developed by the IEEE to quantify sustained 

interruptions in power system reliability (i.e., interruptions lasting longer than 5 minutes). Based 

on how the indices are calculated, values for SAIDI can be interpreted as the total number of 

minutes a customer went without power during a disturbance, while values for SAIFI can be 

interpreted as the probability that a customer will experience a power system outage.  

 Assuming technology remains constant, based on the forecasting results we can expect as 

the net capacity of electricity generated by intermittent renewable resources reaches 5%, customers 

can expect to go without power for an additional 190 minutes per year, on average. That is, 

customers across all ten states can expect to experience disruptions in power system reliability that 

last for approximately two and half hours per year when 5% of the total net capacity is supplied 

by intermittent renewables. Conversely, if the net capacity of electricity generated by intermittent 

renewables exceeds 50%, the number of customer minutes without power is expected to exceed 

1,000 in five of the ten states. Moreover, as the percentage of net capacity generated by intermittent 

renewables exceeds 50%, the probability a customer will experience a disruption in power system 

reliability reaches 1 in four separate states. 

Again, assuming technology remains constant, customers in all states except Hawaii and 

Vermont can expect the length of time without power to nearly double as the percentage of net 

capacity generated by intermittent renewables increases from 30% to 50% for all but two states, 

Vermont and Hawaii. Lastly, given current technology, our forecasting results indicate generating 

between 50% to 100% of net capacity from intermittent renewable resources will on average 
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increase the probability of experiencing a power outage by 30% as measured by SAIFI, across all 

ten states.   

POWER SYSTEM INTERRUPTION COSTS RESULTS  

Following the suggestion of Sullivan et al. (2018) we utilized the Interruption Cost Estimate (ICE) 

Calculator, co-developed by the Lawrence Berkeley National Laboratory and Nexcant Inc., to 

predict outage cost estimates associated with our forecasted interruptions in power system 

reliability resulting from increasing the capacity of electricity generated by intermittent renewable 

resources (see Table 2.7). The publicly-available ICE Calculator is an interactive, user-friendly 

tool that enables utilities, reliability planners, government organizations, and other interested 

parties to estimate the benefits associated with improving power system reliability and/or the costs 

associated with interruptions in power system reliability (Sullivan et al. 2018).  

 To produce outage cost estimates, the ICE calculator relies on data from 34 prior published 

papers that estimate the costs associated with interruptions in power system reliability (Sullivan et 

al. 2018). 29 More specifically, the ICE calculator relies on work by Lawton et al. (2003) and 

Sullivan et al. (2009) who perform a meta-analysis of customer survey data to create a single 

database which can be used to estimate electricity customer outage costs. As a result, the ICE 

Calculator contains information from 105,000 different customer surveys collected by 10 different 

electric utilities between the years 1989 and 2012. 30  

                                                 
29 The data provided was collected from individual utilities, who in the interest of estimating the costs associated with customer 

interruptions, administered a set of surveys that described hypothetical interruptions and asked customers to estimate the costs they 

would occur if they experienced interruptions of varying duration, at different times of the day, and during different seasons. 

Residential customers were asked to indicate the amount they would be willing to pay to avoid interruptions occurring under these 

conditions. Respondents were typically asked to estimate their costs for between four and eight hypothetical interruptions (Sullivan 

et al. 2009).  
30 For a complete outline of the methods used to estimate the interruption costs using customer survey data see Sullivan et al. 

(2009).  
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 To utilize the ICE calculator, one simply needs to input information on the total number 

and type of customers (i.e., residential or non-residential) served by each utility, the geographic 

location of the electric utility (i.e., the state in which the utility operates in), and estimated values 

for the anticipated changes in reliability of service (i.e., values for SAIDI and SAIFI). 31  Using the 

above information, the ICE Calculator produces estimates for four key outage cost metrics: (1) the 

cost per interruption event; (2) the cost per average kW; (3) the cost per unserved kWh of 

electricity (i.e., lost load); and (4) the total cost of sustained interruptions. Based on suggestions 

from Sullivan et al. (2009), we estimate the economic costs of power system interruptions using 

metric (3) and metric (4).  

 While the ICE Calculator is a useful tool, it is important to note that it does have some 

limitations. For example, as pointed out by Sullivan et al. (2018), the formula used to calculate the 

cost per un-served kWh of electricity likely oversimplifies the calculation necessary to determine 

the quantity of electricity that would have been consumed if a power outage had not occurred. 32 

In addition, the surveys used to create the meta-database were conducted sporadically over a 20-

year period. Thus, their resulting cost-estimates must be must be temporally adjusted. 33 Moreover, 

because the underlying costs estimates are based on hypothetical interruption scenarios presented 

in prior surveys, the ICE it is not designed to predict costs associated with power system 

                                                 
31 In addition to using values for SAIDI and SAIFI to measure changes in the reliability of service, the ICE Calculator allows utility 

companies or other interested parties to use values for the Customer Average Interruption Duration Index (CAIDI). CAIDI is 

similar to SAIFI, except the denominator is the number of customers interrupted instead of the total number of utility customers 

served by the utility. 
32 To determine the cost per un-served kWh of electricity, the ICE calculator uses the following formula: 

Cost per un-served kWh = Total Interruption Cost Per Event ($) (Annual kWh 8760⁄ )×Duration of the Interruption⁄   
33 The ICE calculator adjusts the estimates using the Bureau of Economic Analysis's GDP deflator and reports all cost in 2016 

dollars. 
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interruptions that last longer than 32 hours (1,920 minutes). As a result, we are not able to predict 

outage costs for forecasted interruptions in power system reliability if the value of SAIDI > 1,920.34 

 To determine the average number of residential and non-residential customers served by 

utilities within a given state, we rely on historical information from the U.S. EIA. More 

specifically, we multiply the average total number of customers served by electric utilities within 

a given state from our dataset, by the average proportion of residential and non-residential 

customers served by utilities in the same state over the past five years. For example, from 2013 to 

2017, on average 88% of the customers served by utilities in California were residential, while 

12% were non-residential customers. The average number of customers served by utilities in the 

state of California from our data set is 935,728 customers. Therefore, when using the ICE 

calculator to predict outage costs, we assume there are 795,368 residential customers and 140,360 

non-residential customers. Table 2.8 below outlines this procedure for all ten states.  

Table 2.8 Residential and Non-Residential Customer Estimates for States with RES in Place 

State Residential Non-Residential # of Customers 

California 795,368 (88%) 140,360 (12%) 935,728 

Texas 253,743 (87%) 37,916 (13%) 291,659 

Hawaii 111,567 (87%) 16,671 (13%) 128,238 

Iowa 134,787 (85%) 23,786 (15%) 158,573 

Kansas 124,297 (83%) 25,458 (17%) 149,755 

Michigan 426,803 (89%) 52,752 (11%) 479,555 

New Mexico 120,994 (86%) 19,697 (14%) 140,691 

Oregon 328,427 (87%) 49,083 (13%) 377,555 

Vermont 69,742 (85%) 12,307 (15%) 82,049 

Colorado 500,435 (85%) 88,312 (15%) 588,747 

The results from our application of the ICE Calculator to the forecast outages in power system 

reliability are listed below in Tables 2.9 and 2.10.   

                                                 
34 The same holds true if the value of SAIFI ≥ 100 or if the value of CAIDI ≥ 960.  It is important to note that the ICE Calculator 

assumes 𝐶𝐴𝐼𝐷𝐼 =
𝑆𝐴𝐼𝐷𝐼

𝑆𝐴𝐼𝐹𝐼
 (Sullivan et. al 2018).  
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Table 2.9 Cost per kWh of Unserved Energy Derived from the ICE Calculator ($2016) 

Percentage of 

Net Capacity 

Generated by 

Intermittent  

California Texas Hawaii Iowa Kansas 

Renewables      

5% $81 $37 $61 $42 $39 

10% $81 $37 $61 $46 $40 

15% $82 $38 $59 $43 $41 

20% $85 $39 $59 - $42 

25% $90 $40 $58 - $43 

30% $93 $42 $57 - $45 

50% - - $55 - - 

75% - - $53 - - 

100% - - $52 - - 

Percentage of 

Net Capacity 

Generated by 

Intermittent  

Michigan New Mexico Oregon Vermont Colorado 

Renewables      

5% $39 $44 $42 $108 $60 

10% $42 $44 $42 $108 $64 

15% $46 $44 $43 $108 $68 

20% - $45 $43 $106 $71 

25% - $47 $44 $106 $62 

30% - $49 $45 $106  

50% - $50 $49 $104  

75% - - - $102  

100% - - - $103  
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Table 2.10 Total Costs of Sustained Power System Interruptions ($2016) 

Percentage of Net 

Capacity 

Generated by 

Intermittent  

California Texas Hawaii Iowa Kansas 

Renewables      

5% $378,389,323 $116,758,732 $48,823,689 $103,667,456 $74,007,935 

10% $441,530,518 $116,758,732 $50,085,182 $171,800,467 $82,373,782 

15% $546,919,059 $166,075,951 $51,380,177 $247,091,716 $94,661,329 

20% $721,139,099 $203,390,402 $52,709,761 - $110,921,454 

25% $1,013,475,610 $253,100,645 $54,255,240 - $133,882,770 

30% $1,454,679,779 $316,476,207 $55,803,719 - $164,948,663 

50% - - $62,919,566 - - 

75% - - $75,351,087 - - 

100% - - $93,497,940 - - 

Percentage of Net 

Capacity 

Generated by 

Intermittent  

Michigan New Mexico Oregon Vermont Colorado 

Renewables      

5% $201,712,744 $35,012,536 $177,264,496 $9,065,974 $376,627,613 

10% $323,822,946 $40,486,361 $191,960,127 $9,065,974 $527,912,925 

15% $564,339,402 $48,049,758 $209,900,097 $9,084,157 $772,761,835 

20% - $57,706,787 $231,812,065 $9,163,558 $1,135,217,861 

25% - $71,094,319 $257,200,934 $9,163,558 $1,394,960,580 

30% - $88,661,864 $287,910,104 $9,163,558 - 

50% - $197,158,491 $483,105,475 $9,280,432 - 

75% - - - $9,398,390 - 

100% - - - $9,435,474  
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An unserved kWh of electricity is an amount of electricity demanded but not supplied due to an 

unplanned interruption in power system reliability. In other words, it is the amount of electricity 

that would have been consumed if the power outage had not occurred. Therefore, the costs per 

unserved kWh of electricity in Table 2.9 should be interpreted as the cost incurred by customers 

when their desired amount of electricity was not supplied because of an unplanned interruption.  

 Overall, we find that for seven out the ten states the cost per unserved kWh of electricity 

resulting from longer power outages increased as the percentage of capacity supplied by 

intermittent renewable resources increased, holding technology constant. However, we observed 

the opposite result in Vermont and Hawaii where the cost per un-served kWh of electricity 

decreased as the capacity of electricity supplied by intermittent renewable resources increased, 

holding technology constant. Across all ten states, the cost per unserved kWh of electricity is 

nearly 100 times more than the price actually paid per kWh electricity delivered.  

 For example, in 2016 customers in the state of Hawaii (which typically has the highest 

electricity rates) paid on average 23.87 cents per kWh of electricity they consumed. However, 

going without power is expected to cost them between $52-$62/kWh of electricity not delivered. 

The same holds true for customers in Texas, who paid less than 10 cents per kWh of electricity 

they consumed in 2016. Thus, the implication is that the costs of going without power, even for a 

short amount of time, far exceed the price of delivering a reliable supply of electricity to end-

consumers.  

The total cost of sustained power system interruptions in Table 2.10 are the overall costs 

of power system interruptions lasting longer than five minutes. These costs include the costs 

customers face when they experience a disruption in power system reliability, as well as the costs 

utilities incur when interruptions occur. Utility costs are referred to as component costs, and 
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include costs such as lost production/sales, damage to equipment or materials, extra overhead, 

additional labor and overtime costs necessary to restore power, as well as any other costs associated 

with interruptions in power system reliability.  

 As shown in Table 2.10, for all 10 states the total costs of sustained interruptions in power 

system reliability resulting from longer and more frequent power outages for utilities and their 

customers alike increased as the percentage of capacity supplied by intermittent renewable 

resources increased, holding technology constant. The total costs of sustained interruptions in 

power system reliability appear to be the lowest in Vermont, staying within the range of $9-10 

million (USD). However, as the percentage of capacity generated by renewables exceeds 20% 

such as in California and Colorado, the total cost of sustained interruptions in power system 

reliability begin to exceed $1 billion (USD).  

2.8 SUMMARY AND CONCLUSIONS  

The overall purpose of this chapter (essay) was to present a theoretical and empirical analysis of 

the effects on energy reliability of increasing the capacity of intermittent renewable resources such 

as wind and solar in the electric power grid.  Our state-contingent theoretical model illustrates the 

fundamental problem faced by power utility operators who need to decide on how much 

intermittent resource power to bring on-line in the future under uncertainty, including uncertain 

weather conditions. The theoretical model suggests that if the weather and associated wind and 

solar conditions in the future are not as the operator expected, the result can be too little or too 

much power generated by intermittent renewable resources resulting in power system outages.  

Such outages result in less electricity delivered to end-customers and less profit to utility 

companies.  
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In the empirical portion of this study, we examine whether or not increasing the net capacity 

of electricity generated by intermittent renewable resources (i.e. wind and solar energy) affects the 

frequency and/or duration of disturbances in the electrical power generating system of the United 

States. Consistent with the state-contingent theoretical model, we used two measures of power 

interruptions or outages to end-customers; the System Average Interruption Duration Index 

(SAIDI) and the System Average Interruption Frequency Index (SAIFI) collected from two annual 

surveys administered by the U.S. Energy Information Administration (EIA). Our econometric 

model of energy reliability uses end-user interruptions or outages as measured by SAIDI and SAIFI 

as proxies for in-service reliability, such that higher values of SAIDI and SAIFI indicate lower 

levels of service reliability. 

 Using an unbalanced panel of 276 U.S. electric utility companies from 2013 to 2017, we 

modeled reliability of service (as measured by SAIDI and SAIFI) as a function of the net capacity 

of electricity generated by intermittent renewable resources, while controlling for other operational 

level characteristics of individual utilities believed to influence the reliability of service. Given the 

panel nature of our data, we conducted a Hausman test, the results of which indicated estimating 

the model assuming a random effects model specification, rather than a fixed effect specification, 

was preferred. Overall, our empirical results suggest increasing the net capacity of electricity 

generated by intermittent renewable resources has a statistically significant negative marginal 

effect on electrical system reliability.  The magnitude of this marginal effect was relatively small. 

More specifically, our findings suggest that over a one-year period, increasing the net 

capacity of electricity generated by intermittent renewable resources, on average has led to less 

than a 1% increase in the duration of outages for end-consumers, as measured by SAIDI. In terms 
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of customer minutes without power, we find increasing the net capacity of electricity generated by 

intermittent renewable resources leads to power outages that on average last less than one second.  

Although our regression model results showed a statistically significant positive marginal 

effect of increasing intermittent resource capacity on electric grid reliability, this negative effect 

may not be economically significant at the margin because of its relatively small in magnitude. 

However, our analysis suggests that non-marginal increases in net capacity generated by 

intermittent renewables of 25% or more may result in substantial increases in power system 

outages. Thus, intermittent resource-inducted power interruptions could become more problematic 

in the future, especially in regions of the United States experiencing rapid, non-marginal increases 

in intermittent renewable capacity driven by public policy such as Renewable Energy Standards.  

To provide some perspective on the economic and policy implications of our results, we 

forecast outages in power system reliability assuming different renewable energy policy scenarios 

for ten different states. We use these forecasts to predict the costs associated with forecasted power 

outages using the Interruption Cost Estimator (ICE). Our forecasted results indicate that as the 

percentage of power grid capacity generated by intermittent renewable resources increases, so too 

will the frequency and duration of power system interruptions. Moreover, once the capacity 

supplied by intermittent renewables exceeds 50%, outages will go from lasting a few hours to 

lasting a few days, for one-half of the states, assuming technology remains the same.  

Moreover, the costs associated with un-delivered kWh of electricity will increase as the 

percentage of capacity generated by intermittent renewables increases. In all cases, these costs far 

exceed what customers currently pay per kWh of electricity delivered thereby making electricity 

less affordable to consumers. More expensive electricity can reduce private and commercial 

business profitability and the ability of households to obtain adequate levels of energy security and 
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avoid energy poverty. As a society such as the United States transitions to a renewable energy 

economy over time (e.g., exhaustible, nonrenewable fossil fuels will eventually run out, at least 

economically), there will be a continual need to assess both the benefits and costs of increased 

reliance on intermittent energy resources such as wind and solar. 

 A limitation of our analysis is the lack of an empirical measure for labor. The number of 

workers (i.e., technicians) needed to manage a power system operation likely remain constant from 

year to year. However, larger utilities are likely to employ more units of labor than smaller utilities. 

Depending on the returns to scale of labor, having access to more employees could help prevent 

interruptions in power system reliability. Additionally, access to skilled workers, especially those 

who are knowledgeable on how to account for the variable nature of intermittent renewable 

resources, could have a direct impact on the frequency and duration of power system interruptions.  

 It is our hope that this study will help stimulate additional theoretical and empirical 

investigations of how power grid reliability is being managed as the capacity of intermittent 

renewable resources in the U.S. electrical grid increases. Additionally, we hope to contribute to 

the overall policy discussion on power grid reliability, including how to properly manage the influx 

of renewable energy resources. Moving forward, we plan on extending the policy implications of 

our results by forecasting power system outages using the estimation results from our two-step 

Cragg Hurdle model. Additionally, we plan to explore alternatives to the ICE calculator for 

estimating the economics losses (i.e., costs) customers experience from power interruptions using 

our empirical model and data. 
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APPENDIX CHAPTER 2 

 

 
Source: U.S. Energy Information Administration Modified from the National Energy Education Development Project 

Figure 2. A1 Three Phases of the Electricity Production Process 

 

 

 

 
Figure 2. A2 Energy Resources Used to Produce Electricity 
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Source: U.S. Environmental Protection Agency EGrid Map 

Figure 2. A3 North American Reliability Council (NERC) Regions 
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Table 2. A1 Random Effects Tobit Model  

 IHS SAIDI IHS SAIFI 

Customers −5.15 × 10
−7

 

4.33 × 10
−7

 

−2.05 ×  10
−7

 

1.15 ×  10
−7

 
IEEE 1.6362*** 

0.1535 

0.3801*** 

0.0455 

Auto 0.0494 

0.1413 

0.0660 

0.0418 

Circuits 0.0005 

0.0004 

0.0002 

0.0001 

Retail Sales (MWh) 9.69E-09 

1.54E-08 

2.76E-09 

4.09 E-9 

Transmit 0.1431 

0.1831 

0.0865 

0.0543 

Distribute -0.4603 

0.9193 

-0.1077 

0.2760 

Generation -0.4985* 

0.2952 

-0.0408 

0.0840 

Renewable W/O 

Hydro 

-0.3353 

0.2104 

-0.1131 

0.0611 

Renewable Generation 3.23 ×  10
−7

 

3.86 × 10
−7

 

5.76 ×  10
−8

 

1.11 ×  10
−7

 
Ownership 

Dummies 

Yes Yes 

NERC Region 

Dummies 

Yes Yes 

Year  

Dummies 

Yes Yes 

Constant 5.9610*** 

0.1831 

1.1704*** 

0.3372 

𝜎𝑢 1.6056 

0.0935 

0.4109 

0.0251 

𝜎𝜀 1.0137 

0.0302 

0.3116 

0.0092 

𝜌 0.7150 

0.0269 

0.6349 

0.0320 

 

Log-Likelihood -1,464.42 -492.79 

 

Observations 924 924 

Standard errors in parenthesis 

 ∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01  
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A Solution for Predicted Values of 𝒚𝒊𝒕 

The data generating process assumed for a random effects model specification where an inverse 

hyperbolic sine transformation has been applied to the dependent variable (𝑦𝑖𝑡) can be expressed 

as follows:  

(A.1) ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1) = 𝑋𝑖𝑡

′ 𝛽 + 𝑎𝑖 + 𝑢𝑖𝑡. 

Here 𝑋𝑖𝑡
′  represents the individual observations; 𝛽 represents a vector of parameters to be 

estimated; 𝑎𝑖 represent the unobserved individual-level effect (i.e., unobserved heterogeneity); and 

𝑢𝑖𝑡 represents the idiosyncratic error term.  Suppose we are interested in obtaining predicted 

outcomes (i.e., forecasts) for the transformed value of the dependent variable, ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1)

̂
. 

In addition, assume we know the true value for each of the parameters in the vector 𝛽.  

To obtain the predicted outcomes, we would simply need to substitute in values for the 

known parameters and then take the expected value of the right-hand side, conditioning on the 

known observations 𝑋𝑖𝑡 as follows: 

(A.2)  ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1)

̂
= 𝐸[𝑋𝑖𝑡

′ 𝛽 + 𝑎𝑖 + 𝑢𝑖𝑡|𝑋𝑖𝑡].  

Because the 𝛽’s are constant and the values for each individual observation are known,  

 𝐸[𝑋𝑖𝑡
′ 𝛽] = 𝑋𝑖𝑡

′ 𝛽. Moreover, given that we included an intercept and assumed the idiosyncratic 

error term was normally distributed, we can assume 𝐸[𝑎𝑖] = 0 ∀ 𝑖 without loss of generality and 

𝐸[𝑢𝑖𝑡|𝑋𝑖𝑡] = 0 ∀ 𝑖 𝑎𝑛𝑑 𝑡. Therefore, the predicted value of a dependent variable that has been 

transformed using an IHS can be expressed as follows: 

(A.3) ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1)

̂
= 𝑋𝑖𝑡

′ 𝛽  ∀ 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖 𝑎𝑛𝑑 𝑡. 
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The situation for predicting values for the non-transformed value of 𝑦𝑖𝑡, however, is a bit 

more complicated. To predict values for 𝑦𝑖𝑡, we must first solve for 𝑦𝑖𝑡 by taking the inverse of 

the inverse hyperbolic sine. Assuming the same data generating process as before 

(A.4) ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1) = 𝑋𝑖𝑡

′ 𝛽 + 𝑎𝑖 + 𝑢𝑖𝑡 

and letting 𝜀𝑖𝑡 = 𝑎𝑖 + 𝑢𝑖𝑡 represent the composite error term, we can rewrite the proceeding 

equation as follows 

(A.5) ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1) = 𝑋𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡. 

To solve for 𝑦𝑖𝑡 we first exponentiate both sides of the equation 

(A.6) exp [ln (𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1)] = exp[𝑋𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡], 

which produces the following result 

(A.7) 𝑦𝑖𝑡 + √𝑦𝑖𝑡
2 + 1 = exp[𝑋𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡]. 

Substituting in 𝑤 𝑓𝑜𝑟 𝑋𝑖𝑡
′ 𝛽 + 𝜀𝑖𝑡, subtracting 𝑦𝑖𝑡 from the left hand side, and squaring both sides 

of the equation  we obtain the following: 

(A.8) 𝑦𝑖𝑡
2 + 1 = exp[𝑤] ∗ exp[𝑤] − 2 exp[𝑤] ∗ 𝑦𝑖𝑡 − 𝑦𝑖𝑡

2 . 

Next, by subtracting 𝑦𝑖𝑡
2  from both sides of the equation we can rearrange the equation, and  solve 

for 𝑦𝑖𝑡 as follows:  

(A.9) 𝑦𝑖𝑡 =
exp[𝑤]∗exp[𝑤]−1

2 exp[𝑤]
 

or equivalently  

(A.10) 𝑦𝑖𝑡 =
exp[𝑤]

2
−

1

2 exp[𝑤]
. 
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Next, pulling out the common factor of 1 2⁄  and substituting 𝑋𝑖𝑡
′ 𝛽 + 𝜀𝑖𝑡 back in for 𝑤 we obtain 

the following expression for values of 𝑦𝑖𝑡: 

(A.11) 𝑦𝑖𝑡 =
1

2
(exp[𝑋𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡] − exp[−𝑋𝑖𝑡
′ 𝛽 − 𝜀𝑖𝑡]). 

To obtain the predicted outcomes (i.e., values for �̂�𝑖𝑡) we proceed as before and take the 

expected value of the right-hand side, conditioning on the set of known covariates 𝑋𝑖𝑡, 

(A.12) �̂�𝑖𝑡 = 𝐸 [
1

2
(exp[𝑋𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡] − exp[−𝑋𝑖𝑡
′ 𝛽 − 𝜀𝑖𝑡])|𝑋𝑖𝑡]. 

Because 1
2⁄  is a constant its expected value is just its value. Moving the expectation operator 

through the equation, we obtain the following 

(A.13) �̂�𝑖𝑡 =
1

2
∗ (𝐸[exp(𝑋𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡)] − 𝐸[exp(−𝑋𝑖𝑡
′ 𝛽 − 𝜀𝑖𝑡)]) 

Using the rules of exponents, we can rewrite the proceeding equation as follows 

(A.14) �̂�𝑖𝑡 =
1

2
∗ (𝐸[exp(𝑋𝑖𝑡

′ 𝛽) ∗ exp(𝜀𝑖𝑡)] − 𝐸[exp(−𝑋𝑖𝑡
′ 𝛽) ∗ exp(−𝜀𝑖𝑡)]). 

As before, because the variables 𝑋𝑖𝑡
′  are constant for each observation 𝑖 at any given time period 

𝑡, and we know the true values for the parameters of interest 𝛽, we can assume the value 

for exp( 𝑋𝑖𝑡
′ 𝛽) is also a constant and therefore, 𝐸[exp( 𝑋𝑖𝑡

′ 𝛽)] = exp( 𝑋𝑖𝑡
′ 𝛽). The same holds true 

if we replace the true values of 𝛽 with their estimates (i.e., �̂� ).  

Moreover, because exp( 𝑋𝑖𝑡
′ 𝛽) is a constant it is assumed to be independent of exp( 𝜀𝑖𝑡), 

we can separate the two terms and as a result, the equation for obtaining the predicted values for 

𝑦𝑖𝑡 becomes 

(A.15) �̂�𝑖𝑡 =
1

2
∗ [exp(𝑋𝑖𝑡

′ �̂�) ∗ 𝐸[exp(𝜀𝑖𝑡)] − exp(−𝑋𝑖𝑡
′ �̂�) ∗ 𝐸[exp(−𝜀𝑖𝑡))]]. 

We’d like to be able to write, 

(A.16) �̂�𝑖𝑡 =
1

2
∗ [exp(𝑋𝑖𝑡

′ �̂�) − exp(−𝑋𝑖𝑡
′ �̂�)] 
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Which looks like it should work considering the mean of the composite error term is assumed to 

be zero and exp(0) = 1. The problem, however, is that 

(A.17) 𝐸[exp(𝜀𝑖𝑡)] ≠ exp(𝐸[𝜀𝑖𝑡]). 

The expected value of the formula exp(𝜀𝑖𝑡) depends on the assumed distribution of 𝜀𝑖𝑡 and because 

𝜀𝑖𝑡 represents a composite error term we must consider the distribution of each part. Because we 

included an intercept it is safe to assume 𝐸[𝑢𝑖𝑡|𝑋𝑖𝑡] = 𝐸[𝑎𝑖|𝑋𝑖𝑡] = 0. Additionally, to solve for the 

predicted values of 𝑦𝑖𝑡,  for simplicity we assume [𝑢𝑖𝑡
2 |𝑋𝑖𝑡] = 𝜎𝑢

2 ,  𝐸[𝑎𝑖
2|𝑋𝑖𝑡] = 𝜎𝑎

2, and 

𝐸[𝑢𝑖𝑡𝑎𝑖|𝑋𝑖𝑡] = 0.  As a result, the variance of the composite error term 𝜀𝑖𝑡 is equal to 𝜎𝑢
2 + 𝜎𝑎

2.  

 To solve for the 𝐸[exp(𝜀𝑖𝑡)] we need to be aware of the following relationship between 

the normal and log-normal distribution. In general, if a variable 𝐴 ~ 𝑁(𝜇, 𝜎2) then 𝐵 = exp(𝐴) is 

assumed to be ~ 𝑙𝑜𝑔 − 𝑁(𝑚, 𝑣) where 𝑚 = exp[𝜇 + 𝜎2

2⁄ ]. In our case 𝜇 = 𝐸[𝜀𝑖𝑡] = 0 and 𝜎2 =

𝑣𝑎𝑟 (𝜀𝑖𝑡) = 𝜎𝑢
2 + 𝜎𝑎

2. Therefore, we can solve for 𝐸[exp(𝜀𝑖𝑡)] =
1

2
[𝜎𝑢

2 + 𝜎𝑎
2]. Now we can 

generate our predictions (“fitted values”) for 𝑦𝑖𝑡 using the following equation:  

(A.18) �̂�𝑖𝑡 =
1

2
∗ ([exp(𝑋𝑖𝑡

′ �̂�) + .5𝜎𝑎
2 + .5𝜎𝑢

2] − [exp(−𝑋𝑖𝑡
′ �̂�) − .5𝜎𝑎

2 − .5𝜎𝑢
2])  
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CHAPTER 3 

ESSAY 2: ESTIMATING AND COMPARING EMPIRICAL MEASURES OF HOUSEHOLD 

ENERGY INSECURITY* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Harker Steele, Amanda. To be submitted to Contemporary Economic Policy 
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ABSTRACT 

While a large body of the applied economics literature has been dedicated to accurately measuring 

food insecurity, relatively little has been done so far to define and measure household energy 

insecurity. One reason household energy insecurity has been largely ignored is that no consistent 

and universally accepted index measure has been developed to measure it. The objective of this 

chapter is to help fill this gap in the literature by estimating and comparing alternative empirical 

measures of household energy insecurity. Using household responses from the 2015 Residential 

Energy Consumption Survey we compare and contrast five different classification procedures and 

empirical measures of household energy insecurity. We discuss the validity of each of the measures 

in terms of their ability to achieve construct, content, and convergent validity. We conclude that a 

measure of energy insecurity based on the Rasch model results provides a conceptually and 

empirically strong and valid measure of household energy insecurity. Therefore, the Rasch model 

results are used to create the preferred energy insecurity index, a four group energy insecurity 

index measure.  
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3.1 INTRODUCTION 

Being able to meet basic, daily household energy service needs is becoming exceedingly difficult 

for many families living in the United States (Hernandez 2016). According to the World Health 

Organization (WHO), just as food, water, and shelter are considered to be physiological 

requirements for human survival, having access to enough energy to provide adequate household 

energy services is considered to be an essential component for sustaining a healthy quality of life 

(WHO 2006). The consequences of not having access to adequate household energy services 

include being unable to keep indoor air temperatures at a “safe” level, increased susceptibility to 

illnesses, and reducing and forgoing expenditures on other basic household necessities such as 

food and/or healthcare in order to afford energy services (Thomson 2017).  

 Despite the hardships having inadequate access to energy services cause households, little 

to no attention has been paid to this issue in the applied economics literature (Hernandez 2016). 

One factor contributing to this lack of attention is the absence of a single, consistent, and 

universally accepted metric that can be used to quantify energy service-related hardships faced by 

individual households (Hernandez 2016). The objective of this chapter is to help fill this gap in the 

literature by estimating and comparing alternative empirical measures that are used to gauge 

whether or not a household is energy insecure.   

 In this chapter we compare and contrast five different approaches for assessing whether or 

not households face energy service-related hardships. We define the term energy service-related 

hardship as any circumstance that prevents a household from being able to maintain consistent and 

adequate access to basic, daily household energy service needs. Examples of energy service-

related hardships include financial constraints, broken service equipment, or unforeseen 

circumstances beyond the control of the household. 
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 We define the term “energy security” as a state where a household has consistent physical 

and economic access to a sufficient, safe, and affordable energy supply to meet each household 

members’ most basic daily energy service needs. 35 This definition of energy security is similar to 

the definition of “food security,” which refers to a state where individuals or households have 

consistent, reliable access to a sufficient quantity of affordable, nutritious food (Nord 2009). 

Households who are able to maintain consistent, reliable access to adequate energy services are 

considered “energy secure,” while households who are unable to maintain consistent, reliable 

access to adequate energy services are considered to be “energy insecure” (O’Mera 2016; 

Hernández 2016; Middlemiss and Gillard 2015).  

Thus, the state of being energy secure implies the existence of little or no energy-related 

hardships (i.e., little or no circumstances that prevent a household from being able to maintain 

access to basic, daily energy service needs). The state of being energy insecure however, implies 

the existence of at least one to many energy-related hardships (i.e., several circumstances that 

prevent a household from being able to maintain access to basic, daily energy service needs). Based 

on our definition of energy security, households who face more energy-related hardships are 

considered to be worse off than households who face fewer energy-related hardships and therefore 

are considered to be less energy secure. 

 Consistent with the previous literature, we assume the term “energy services” can be used 

to describe any function performed inside the household that uses energy (e.g. electricity, natural 

gas, or propane) as an input to produce a desired output (Fell 2017; Fowlie, Greenstone, and 

Wolfram 2018). Examples of household energy services include maintaining safe, comfortable 

                                                 
35 The definition provided for household energy security is based on the definition of food security as defined by the United States 

Department of Agriculture (USDA). More specifically, the USDA defines household Food Security as having access at all times 

to enough food for an active, healthy life. 
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indoor room temperatures, having access to cold or hot food and beverages, or sufficient indoor 

room lighting for leisure activities such as reading and/or writing. Energy services are generated 

from household appliances such as air conditioners, refrigerators, lamps, and stoves – and the 

operation of these appliances by members of the household. 

 Maintaining consistent access to household energy services has become increasingly 

difficult for many low-income and other economically marginalized households, including those 

with elderly and differently abled individuals living in the home (Wilkinson et al. 2004; Hernández 

2013; Drehobl and Ross 2016; O’Mera 2016). From an economics point of view, low-income and 

other economically marginalized households may struggle to maintain consistent and reliable 

access to energy services due to poor housing conditions, financial constraints, and/or 

unreasonably high home energy costs. As a result, these types of households are overwhelmingly 

more likely to identify as being energy insecure (Hernandez 2016; 2014). 

 While the notion of “energy insecurity” exists in the literature, the phenomenon is not well 

understood (Murray and Mills 2012; Hernandez 2016). 36 Furthermore, a review of the household 

energy insecurity literature revealed inconsistencies in the way household energy insecurity is both 

defined and measured. For example, households who are energy insecure have historically been 

defined in other previous studies as households who are experiencing "fuel poverty," where 10% 

or more of a household’s disposable income is being spent on fuel (Boardman 1991). Existing 

                                                 
36 There have been numerous other terms used in the literature to describe a household's energy security status. For example, the 

terms "energy poverty" and "fuel poverty" have both been used to describe households who are energy insecure. The term fuel 

poverty has been used to describe situations where a household is unable to keep their home sufficiently warm at a reasonable cost, 

given their income. Conversely, the term energy poverty has been used to refer to a situation where a household is unable to access 

modern-day energy services (World Watch Institute 2019).  
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studies have also utilized the term “energy insecure” to refer to the United States’ reliance on 

foreign energy imports (International Energy Agency [IEA] 2019).  

 However, as Murray and Mills (2012) suggest, the IEA’s definition of energy insecurity 

disregards the importance on a household’s overall well-being of having access to enough energy 

resource inputs to produce adequate energy services. For example, when a household does not 

have access to energy resource inputs, it may be unable to properly heat and/or cool the home. 

Houses that are improperly heated are often cold and damp, and as a result are more susceptible to 

mold and dust which can activate or exasperate respiratory conditions in members of the household 

(Dear and McMichael 2011).  

 To understand more fully the different dimensions of household energy insecurity, we 

estimate and compare empirical measures of energy insecurity using responses from the 2015 

Residential Energy Consumption Survey (RECS). In Section 3.2 we first explore several prior 

published techniques that have been used to determine whether or not a household faces any 

energy-service related hardships (i.e., is energy insecure).  In Section 3.3 we outline our general 

methodological approach to determine whether or not a household is energy secure or energy 

insecure. 

Section 3.4 discusses the data used for our analysis in detail. Section 3.5 outlines the five 

different techniques we employ to determine a household’s energy security status. Section 3.6 

presents the model results from the five techniques described previously in Section 3.5. In Section 

3.6 we compare and contrast the results from applying all five approaches, and discuss the content, 

construct, and convergent validity of our different results. We conclude this chapter (essay) in 

Section 3.7.   
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3.2 MEASURING HOUSEHOLD ENERGY SECURITY 

Historically, a household’s energy security status (i.e., whether they are energy insecure or energy 

secure) has been determined using three main approaches: (1) the expenditure approach; (2) the 

prediction approach; and (3) the self-report, subjective survey approach (O’Mera 2016). The 

expenditure approach is directly linked to the amount of money a household spends on energy/fuel. 

Households who spend more than 10% of their disposable income on energy/fuel are considered 

to be energy insecure (Boardman 1991). However, as suggested by Hills (2012) this method 

directly excludes low-income households that might end up spending less than 10% of their 

disposable income on energy/fuel simply because they are unable to afford to spend more.  

 The prediction approach estimates how much money a household would need to spend on 

energy/fuel to achieve a “livable” indoor air temperature, as suggested by the WHO. According to 

the WHO, suggested “livable” indoor air temperatures are 21°C (69.8℉) in the living room and 

18°C (64.4℉) in any other occupied rooms. If spending the required amount leaves the household 

with a remaining income that places the household below the designated national poverty line, 

then the household is considered to be energy insecure (O’Mera 2016; Department of Energy and 

Climate Change [DECC] 2013). 37 While this method directly avoids excluding households who 

spend less than 10% of their income on fuel costs but are still energy insecure, it still assumes one 

uniform level of comfort exists across households of a similar size and make-up, such that 

household’s preferences for indoor air temperatures are homogenous.  

 The third approach used to determine a household’s energy insecurity status is the self-

report, subjective survey approach wherein households respond to questions directly related to 

                                                 
37 The forecasted required amount is based on the size and demission of the dwelling, the price of fuel inputs, the household’s 

income, and the median level of fuel expenditures for a household of a similar size. 
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their ability or inability to maintain consistent access to adequate household energy services. For 

example, previous large-scale surveys such as the European Union's Survey on Income and Living 

Conditions (SILC) and the Spanish Living Conditions Survey (SLCS) have included a subset of 

questions that specifically ask households to report on circumstances they are currently facing or 

have faced that have prevented them from maintaining access to adequate energy services (O’Mera 

2016).  

 Questions in the SILC specifically ask households to report on whether or not they have 

had to go without heating or cooling in the home for an extended period of time, been unable to 

afford to heat or cool their home “adequately,” or afford their home energy bills (O’Mera 2016). 

Households who respond affirmatively to the questions are considered to be energy insecure. 

However, as Watson and Maitre (2015) point out, one potential issue with using the self-report, 

subjective survey approach to determine a household’s energy security status is that it relies on an 

individual’s perception of their personal, current energy security situation.  

 This type of subjective indicator could lead to households with higher incomes reporting 

they are energy insecure, even though they do not necessarily lack the financial resources to afford 

their home energy bills and/or maintain consistent access to adequate household energy services. 

For example, in some cases, higher income households may experience difficulty affording 

energy/fuel expenses due to other constraints on their income such as debt payments (i.e. car 

payments, mortgages), higher household maintenance costs, and health care expenditures (O’Mera 

2016). These households might respond affirmatively to questions related to struggling to afford 

their home energy bills and therefore, be considered “energy insecure.”  

 In addition, whatever the cause, some people just naturally do not feel as secure as others. 

For example, from an objective perspective a person may actually have adequate food, water, and 
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shelter, but still does not feel secure from a personal, subjective perspective. While the three 

approaches outlined above provide a useful way to place households in binary energy 

security/insecurity categories (e.g., “1 = energy secure; 0 = energy insecure”) the development of 

an index that provides a continuum of household energy insecurity “ratings” would provide more 

information on the relative levels of household energy security/insecurity that exist on a larger 

scale (Murray and Mills 2012). 

 We are currently only aware of three prior attempts to define and create a specific index to 

measure the extent/level of energy insecurity being experienced in the United States. In the first 

study Colton (2003) created a Home Energy Insecurity Scale (HEIS) in an effort to estimate the 

extent to which an energy assistance program could help improve a household’s energy security 

status. The HEIS contains five different energy security status thresholds: 1) Thriving; 2) Capable; 

3) Stable; 4) Vulnerable; and 5) In-Crisis. 38 Households are placed at different thresholds, along 

the HEIS based on their responses to a set of survey questions. The survey questions ask 

households to report on “how often” they have had to adjust their energy use consumption patterns 

over the past twelve months due to financial strain (Colton 2003).39 

 Along the HEIS, thriving households are households who can participate in the full range 

of home energy uses without needing outside assistance and without financial strain. A capable 

household is a household that may have some energy-related debts because they cannot afford to 

                                                 
38 In their simplest form, a threshold is defined as individual points along the HEIS. Thresholds can be thought of as benchmarks 

along a scale that indicate a household’s current energy security status (Colton 2003). 
39 Colton (2003) relies on household responses to questions on the HEIS survey. Questions included in the HEIS survey are adapted 

from questions used by the U.S. Department of Agriculture (USDA) to measure “food insecurity” in the United States (Hamilton 

et al. 1997). Once the Home Energy Insecurity Scale survey has been completed by each household, households are assigned to an 

energy security status threshold based on their individual responses. For example, all respondents found to exhibit the indicators 

of a “thriving” household are assigned to the “thriving” threshold (Colton 2003).  
 



   

 

91 

 

pay their energy bills, but debts are only accumulated on occasion. Stable households are 

households who may have a need to access outside assistance to pay current energy bills, but this 

need does not arise more than “sometimes.” Energy-related debts are accumulated by stable 

households more frequently than they are accumulated by capable households.  

 Vulnerable households are households who occasionally face energy-related choices that 

require members of the household to compromise not merely on comfort and/or convenience, but 

also on basic household energy needs such as food and/or medicine. Vulnerable household 

accumulate energy-related debts more frequently and debts are often large. An in-crisis household 

is a household who faces immediate energy needs that threaten the household’s physical and/or 

emotional safety. An in-crisis household may experience recurring periods of going without home 

energy services. In-crisis households routinely engage in energy use choices that compromise other 

basic household needs (Colton 2003).  

 Based on the household’s pattern of responses to the questions posed in the Home Energy 

Insecurity Scale Survey, the household is placed at one of the five thresholds. Because outcomes 

along the HEIS are defined in terms of changes in a household’s energy security status from 

receiving energy assistance, placing households along the scale requires information to be 

collected before receiving energy assistance (to establish baseline within the data) and after 

receiving energy assistance to determine to what extent, if at all, the household energy security 

status has changed as a result of receiving energy assistance.  

 Thresholds are defined such that households either fit or do not fit within a specific 

threshold based on their responses to the individual questions. If a household does not fit into one 

of the thresholds, it is eliminated from that threshold. This process repeats itself until all 

households have been sorted into at least one threshold. However, as Murray and Mills (2012) 
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point out, while the development of the HEIS represents a significant contribution to the literature, 

the broad nature of the five thresholds used to measure energy insecurity is a limitation. Also, the 

HEIS does not derive a numerical measure for the thresholds used to represent levels of energy 

insecurity. Therefore, the results can be difficult to interpret (Division of Energy Assistance 2008).  

 In the second study, Cook et al. (2008) developed an energy insecurity index using 

responses to a set of four questions from a household survey administered as part of the ongoing 

Children’s Sentinel Nutrition Assessment Program (C-SNAP). Households who answered “no” to 

all of the questions were considered “energy secure.” Households who answered “yes” to only the 

first question were considered to be moderately energy insecure, whereas households who 

answered yes to any additional question(s) (questions 2, 3, or 4) were categorized as severely 

energy insecure. While notable, the index developed by Cook et al. (2008) is based solely on the 

number of affirmative responses by households to a set of four questions.  

 As Balistreri (2016), Dutta and Gundersen (2007) and Gundersen (2008) point out, an 

index based on the number of affirmative responses at an aggregate level neglects to take full 

advantage of the information available in each specific question asked.  40 Additionally, using only 

the number of affirmative responses to define an energy security index could disregard several 

other key factors that could strongly indicate the presence of energy insecurity in the household. 

For example, households who are energy insecure may keep indoor air temperatures at unsafe 

levels to avoid high electric utility bills. As a result, they may be forced to seek medical attention. 

                                                 
40 The objective of the paper by Gundersen (2008) is to measure the extent of food insecurity being experienced by households 

across the United States. As Gundersen (2008) points out, if the objective when examining food insecurity is to determine the level 

of severity of “food insecurity” being experienced by a household, then solely counting the number affirmative responses assumes 

households who respond affirmatively to having skipped meals are no more food insecure than households responded affirmably 

to not eating balanced meals. 
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Therefore, responding affirmatively to a question of this nature should bear more weight than 

responding “yes” to whether or not a household has received a shut-off notice. 

 Inspired by the creation of the food insecurity index developed by the USDA (Hamilton et 

al. 1997), in the third study Murray and Mills (2012) generate a household energy insecurity index 

using two different types of Rasch models: a Dichotomous Rasch model and a Polytomous Rasch 

model. They rely on data from the 2005 Residential Energy Consumption Survey (RECS) and 

generate an energy insecurity index that is consistent with the USDA food insecurity index. While 

their approach is notable, as Murray and Mills (2012) point out, questions from the 2005 RECS 

data set are quite broad.  

 Moreover, not all households surveyed in the 2005 RECS had a chance to respond to 

questions about their energy insecurity status. Instead, only households who were eligible to 

receive funding from the Low-Income Home Energy Assistance Program (LIHEAP) or whose 

incomes were less than 150% of the federal poverty level were asked to respond. As a result, the 

energy insecurity index developed by Murray and Mills (2012) is limited in scope.  Furthermore, 

the primary objective of the analysis by Murray and Mills (2012) was to compare and contrast the 

severity parameter estimates (i.e., item calibrations) produced from the Polytomous Rasch model 

and Dichotomous Rasch model.  

 While they classify households as being “energy secure” or “energy insecure,” based on 

severity parameter estimates produced from the two models, Murray and Mills (2012) make no 

attempt to estimate the extent or overall severity of energy insecurity being experienced by the 

larger population. They fail to utilize suggestions from Dutta and Gundersen (2007) and 

Gundersen (2008) to explore the information contained in the individual questions in more detail 

to create an aggregate index measure. Lastly, Murray and Mills (2012) only considered two 
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statistical analysis techniques to create their energy insecurity index, a Dichotomous Rasch model 

and a Polytomous Rasch Model. We consider five.  

 Their use of the Polytomous Rasch model was motivated by the only response options 

available to households in the 2005 RECS being “how often.” In more recent iterations of the 

survey (i.e., the 2009 and 2015 iterations) the response options available to households are a 

combination of yes/no and “how often.” Therefore, the Polytomous Rasch model is not applicable. 

To address the need for an updated index measure of household energy insecurity, we generate an 

energy insecurity index using data from the 2015 RECS, considering five separate methods used 

previously to determine whether or not a household is energy secure or energy insecure. An outline 

of our general methodological approach, considering each of the five different alternatives, is 

outlined below.  

3.3 METHODOLOGICAL APPROACH 

Following the literature on food security, one way we could determine whether or not a household 

is energy insecure is by assessing whether not the household is consuming enough fuel to provide 

a standard level of household energy services.  In the case of a household whose primary fuel 

source is electricity, we would need to determine the total number of kilowatt-hours (kWh) of 

electricity necessary to provide a standard level of household energy services. For example, we 

would need to determine how many kWh are required to produce a standard number of cooked 

meals, reach a standard indoor air temperature, or generate a standard amount of clean laundry.  

 For households who consume fewer kWh of electricity than deemed necessary, the extent 

of a household’s level of insecurity (i.e. lack of security) could be inferred by calculating the 

difference between the number of kWh actually consumed by the household and the number of 

kWh necessary to provide this pre-determined standard level of energy services. However, based 
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on our dataset, it is only possible for us to observe the number of kWh actually consumed by the 

household.  As a result, we are not able to determine whether or not a household is energy secure 

or energy insecure by examining the number of kWh consumed.  

Therefore, in an attempt to accurately gauge each household 𝑖’s level of energy insecurity 

we use a proxy, a unique index measure of household energy insecurity. To construct our energy 

insecurity index, we first let 𝑛 = {1,2, … , 𝑁} denote a set of households, such that 𝑛 is equivalent 

to the total number of households within a given set (Dutta and Gundersen 2007; Gunderson 2008; 

Balistreri 2016). For each household  𝑖 ∈ 𝑁, we establish a value 𝑠𝑖 which is used to denote any 

“energy service-related hardships” faced by the individual household 𝑖, such that a higher value of 

𝑠𝑖 corresponds with more energy service related hardships being experienced by members of the 

household.  

As mentioned in Section 3.1, the term “energy service-related hardship,” refers to any 

circumstance or situation inside the home that might prevent the household’s from being able to 

produce and consume its adequate level of energy services (i.e., maintain access to heating and 

cooling, cook meals at home). Therefore, based on our definition of household energy security, 

more energy service-related hardships within a household correspond with higher levels of 

household energy insecurity. Furthermore, we assume that for all 𝑖 ∈ 𝑁, values for 𝑠𝑖 lie within 

the interval [0, 𝑆], such that a value 0 denotes the complete absence of any energy service-related 

hardships (i.e., no energy insecurity), while a value of 𝑆 denotes the existence of multiple energy 

service related hardships (i.e., the most energy insecurity) (Balistreri 2016).  

To gauge each household 𝑖’s energy security status based on its ability to maintain access 

to an adequate level of energy services, we construct individual values for 𝑠𝑖 using responses by 

households to questions included in the 2015 RECS. The questions used to construct individual 
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values of 𝑠𝑖 change depending on which of the five metrics are used. In general, individual values 

for 𝑠𝑖 are constructed as follows: 

(1) 𝑠𝑖 = 𝑓(𝑎𝑗)  ∀ 𝑗 = 1, … , 𝐽 

where 𝑠𝑖 is used to represent the energy service related hardships faced by the individual household 

𝑖; 𝑎𝑗  is used to represent the set of 𝐽 questions from the 2015 RECS used to construct the individual 

index measure; and 𝑓(∙) is a general “function” used to represent one of the five different 

techniques we apply in this chapter to construct the energy insecurity index: the expenditure 

approach, whether the household has received home energy assistance, cluster analysis, principal 

components analysis, or a Dichotomous Rasch model. 

 To generate the energy insecurity index based on values of 𝑠𝑖 produced from using the 

different methods, we first have to establish a benchmark (i.e., a cut point) 𝜏 such that a household 

is considered to be energy insecure if and only if 𝑠𝑖 > 𝜏 and energy secure if and only if 𝑠𝑖 ≤ 𝜏 

(Gundersen 2008). In this case, 𝜏 can be thought of simply as the dividing line between what 

energy service related hardships experienced by households separate energy secure households 

from energy insecure households.41  

In general, for each household 𝑖, the energy insecurity index which we label as 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 

produced by any of the five different methods is defined to be 0 if 𝑠𝑖 ≤ 𝜏 and defined to be equal 

to (𝑠𝑖 − 𝜏) if  𝑠𝑖 > 𝜏. 42 Therefore, an energy insecurity index value equal to zero (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 =

0) is an indication that the household has experienced fewer or exactly the number of energy 

service-related hardships implied by the threshold value of 𝜏 and therefore, is considered to be 

                                                 
41 As Gundersen (2008) points out, 𝜏 is akin to the federal poverty line, which divides household’s in poverty from households not 

in poverty.  
42 Similar to how incomes of households above the poverty line are not reflected in measures of overall poverty, the energy 

security status of energy secure households is not reflected in the energy insecurity measure used (Gunderson 2008). 
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“energy secure.” An energy insecurity index value equal to something besides zero implies the 

household has faced more energy service related hardships than the number of energy service 

related hardships implied by the value of 𝜏 and therefore, is considered to be “energy insecure.” 

As the extent of energy insecurity experienced by the household increases, the greater is 

the distance between  𝑠𝑖  and  𝜏. Thus, similar to how the food insecurity index is constructed, the 

constructed energy insecurity index 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 measures the degree to which a household is 

energy insecure, rather than energy secure. What is left to choose is an appropriate threshold value 

of 𝜏, which will depend on which of the five metrics is used to determine a households energy 

security status. 43 Once a threshold value of 𝜏 has been determined, households can divided into 

mutually exclusive energy insecurity categories based on the individual values of 𝑠𝑖 they receive. 

The different energy insecurity categories generated can then be used to produce the energy 

insecurity index 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 value for each household. 

3.4 DATA 

Data for constructing our energy insecurity index comes from responses by households to a subset 

of questions included in the 2015 Residential Energy Consumption Survey (RECS). The RECS is 

a national multiphase survey administered by the United States Energy Information Administration 

(U.S. EIA) once every three years.  Households surveyed in the RECS are assumed to provide a 

representative sample of the U.S. population as a whole. The RECS samples only households that 

are occupied as primary residences. It therefore excludes secondary homes (i.e., vacation homes), 

vacant units, and military barracks.   

                                                 
43 For example, following the literature on food security when applying the Rasch Model to distinguish between households that 

are energy insecure or energy secure, a threshold value of 𝜏 equal to zero is most appropriate, because it implies zero affirmative 

responses to any of the survey questions that indicate any energy related hardships have being experienced in the home (Hamilton 

et al. 1997; Gundersen 2008). Gundersen (2008) describes an unfavorable food situation in the home as the existence of a struggle 

to maintain access to enough food due to circumstances faced by the household. 
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 Information from the 2015 RECS was collected from respondents via telephone surveys 

and web-based questionnaires. The surveys and questionnaires are identical and asked households 

to reveal information about energy use consumption patterns. We specifically utilize data from 

Sections K and L of the 2015 RECS. Section K includes information on household level 

characteristics including household size, income, age, and employment status. Information was 

collected from Section L of the 2015 RECS because this section of the survey specifically asks 

households to report on challenges they may have faced over the past twelve months in paying 

their energy bills or maintaining access to heating and/or cooling inside the home.  

 We interpret these questions as indicators that a household was unable to produce an 

adequate level of energy services and therefore is energy insecure, to some degree. Table 3.1 below 

provides a complete description of the seven questions used to capture energy insecurity.   

Table 3.1 2015 Residential Energy Consumption Survey Questions (Section L) 

2015 RECS 

SECTION L: ENERGY INSECURITY and ASSISTANCE 

Question/Item 

Label 

1. In the last year, how many months did your household reduce or forego 

expenses for basic household necessities, such as medicine or food, in 

order to pay an energy bill? 

Reduce 

2. In the last year, has your household kept your home at a temperature 

that you felt was unsafe or unhealthy? 
Unsafe 

3. In the last year, how many months did your household received a 

disconnection notice, shut off notice, or non-delivery notice for an energy 

bill? 

Notice 

4. In the last year, was there ever a time your household was unable to use 

your main source of heat or air conditioning because you could not afford 

the fuel source and it was disconnected? 

No Fuel 

5. In the last year, was there ever a time your household was unable to use 

your main source of heat or air conditioning because equipment was 

broken and you couldn't afford to pay to repair or replace the equipment? 

HVAC 

6. In the last year, has anyone in your household needed medical attention 

because your home was too hot or too cold? 
Medical 
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7. About how many days over the past year, has your household gone 

without heat and/or air conditioning over the past year? 
Days 

 

Unlike prior iterations of the RECS, all households surveyed in the 2015 RECS had the opportunity 

to respond to the questions included in Table 3.1. 44 Observations with missing responses for one 

or more of the seven energy assistance questions included in Table 3.1 were dropped from the final 

RECS data set.  

 Additionally, response choices for questions in the 2015 RECS varied. For questions 1, 2, 

and 3 households were instructed to state “how often” over the past twelve months they have dealt 

with an energy-related hardship described in the questions. Response options for questions 1, 2, 

and 3 included “never,” true for “some months,” true for “only one or two months,” or true for 

“almost every month.” Response options for questions 4, 5, and 6 included only “yes” or “no.” 

Question 7 asked households to report on the number of days over the past twelve months they 

went without heating or cooling.  

 To create the energy insecurity index, we collapse responses to questions 1 to 7 into 

dichotomous questions and coded responses as binary variables following the standard methods 

used in the food security literature (Bickel et al. 2000). More specifically, for questions requiring 

a “how often” response, a response of “almost every month” or “some months” were coded as 

affirmative (value = 1), while a response of “only 1 or 2 months” or “never” were coded as negative 

(value = 0). For yes/no responses, “yes” was coded as a 1 and “no” was coded as a 0. For responses 

                                                 
44 In prior iterations of the RECS, only households who were eligible to receive funds from the LIHEAP were asked questions 

related to energy insecurity (Murray and Mills 2012).  
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on the number of days, “days ≥ 36” were coded as a 1 and “days < 36” were coded as a 0. The 

data structure for questions 1 through 7 is illustrated in Table 3.2. 

Table 3.2 The Data Structure 

 Responses to Questions 

Respondent 
Q1 

Reduce  

Q2 

Unsafe 

Q3 

Notice 

Q4 

No Fuel 

Q5 

HVAC 

Q6 

Medical 

Q7 

Days 

1 0 1 1 0 1 0 0 

2 0 0 0 0 0 1 1 

3 1 0 1 0 0 0 0 

4 1 1 0 1 1 1 0 

5 0 1 0 0 0 1 1 

6 0 1 1 1 1 0 0 

7 0 0 0 1 1 0 1 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

𝑛 1 1 0 0 0 1 0 

 

Because the energy insecurity questions are all negative in nature, households who respond 

affirmatively more frequently are considered to be more energy insecure (less energy secure) than 

households who respond negatively more frequently. Because there are only seven questions, the 

total number of affirmative responses by a household, based on recoding the questions as 
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dichotomous choice questions, can range from zero to seven. The precise severity level of each 

question is unknown a priori. 

3.5 ENERGY INSECURITY MODELS 

To create a consistent energy insecurity index, we begin by comparing and contrasting five 

different classification procedures used to determine if a household is energy insecure or energy 

secure: 1) whether or not the household has applied for and received home “energy assistance” to 

help pay energy bills and/or cover expenses to fix broken HVAC equipment; 2) whether or not, 

over the past year the household has spent more than 6 or 10 percent of their disposable income 

on fuel/energy (i.e., the expenditure approach); 3) Cluster Analysis; 4) Principal Components 

Analysis; and 5) a Dichotomous Rasch model. Because not all of the questions included in 2015 

RECS required “how often” responses, we do not explore the Polytomous Rasch Model suggested 

and explored previously by Murray and Mills (2012).  

ENERGY ASSISTANCE 

The first metric used to determine if a household is energy insecure or energy secure is based on 

whether or not the household applied for and received “energy assistance.” Using this metric, we 

consider households to be energy insecure if they received home energy assistance to help restore 

heating and/or cooling or to help fix broken HVAC equipment sometime over the past twelve 

months. To determine the energy insecurity status of all household's surveyed, we focus on 

individual household's responses to the following three questions in the 2015 RECS:  

1. Has your household participated in a home energy assistance program that helps pay energy 

bills or fix broken equipment? 

2. Did your household apply for and receive home energy assistance to help pay your energy 

bill as a result of receiving a disconnection notice? 
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3. Did your household apply for and receive home energy assistance to help restore your 

heating or cooling because either your equipment was broken and you could not afford to 

pay for the repair/replacement or you could not pay for the fuel inputs, and as a result were 

disconnected from service? 

We separated households into mutually exclusive groups based on their responses to the 

proceeding questions. We examined overall responses from households and also differentiated 

household responses by housing type. In terms of the general methodological approach described 

in Section 3.3, a household is said to be facing energy service-related hardships if it responded 

“yes” to any of the three questions listed previously. The energy service related hardships, 𝑠𝑖 faced 

by the individual household are constructed as binary response variables as follows: 

(2) 𝑠𝑖 = {
= 1 [Household provided a "Yes" reponse to 1 or more of the 3 questions]

= 0 [Otherwise]    
.  

Using the receipt of energy assistance as a proxy for energy service-related hardships, the energy 

insecurity index 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 index is constructed as follows,  

(3) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = {
= 1 if 𝑠𝑖 = 1
= 0 if 𝑠𝑖 = 0

. 

Here households who receive an energy insecurity index value, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖, equal to one are 

considered to be energy insecure, while household who receive and energy insecurity index value, 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 , equal to zero are considered to be energy secure.  

 We interpret questions 1, 2, and 3 above as indicators of whether or not the household 

participated in the LIHEAP or some other type of home energy assistance program. The LIHEAP 

is a federally funded program that provides financial assistance to help households pay to heat 

and/or cool their homes (U.S. Department of Health and Human Services 2018).  Funds from the 

LIHEAP are paid directly to utilities, on behalf of households who apply for and receive assistance. 
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The amount of financial assistance a household is eligible to receive depends on the size of the 

household, the household’s overall income, and the type of fuel used to heat and/or cool the 

home.45 To be eligible to receive energy assistance from the LIHEAP, the household must have an 

income that is below 150 percent of the Federal Income Poverty Guideline (Department of Health 

and Human Services 2018). 

 Since its inception in 1981, the LIHEAP has helped millions of low-income families pay 

their home energy bills (Edison Electric Institute [EEI] 2018). However, funds in general are 

limited and have decreased substantially over the past five years (United States Department of 

Health and Human Services 2017). For example, in 2011 funding for the Low-Income Home 

Energy Assistance Program (LIHEAP),46 was $4.7 billion (USD). Since then, funding has been 

cut by nearly 25% and the projected budget for LIHEAP in 2019 is estimated to be only $3.69 

billion (USD) (Edison Electric Institute [EEI] 2018). 47 Furthermore, unlike some other federal 

assistance programs, for example Medicaid, simply being eligible for the LIHEAP does not 

guarantee a household will receive benefits (Perl 2018).  Benefits are limited by the amount that 

Congress appropriates each year. The number of households who receive benefits depends both 

on the total appropriations and how states decide to disperse funds (Perl 2018). 48 

While the receipt of home energy assistance provides a proxy for being energy insecure, 

as pointed out by Murray and Mills (2012), the share of households who receive home energy 

                                                 
45 To be eligible to receive assistance the household must have an income that is below 150 percent of the Federal Income 

Poverty Guidelines (Department of Health and Human Services 2018). 
46 LIHEAP IS a federally funded program that helps low-income, impoverished households pay for heating or cooling and make 

home energy efficiency upgrades (i.e., weatherization). 
47 Furthermore, it is estimated that only one in five households who are eligible to receive assistance from LIHEAP are actually 

able to receive it, indicating the need for energy assistance far exceeds the available supply. 
48 The number of households who apply for the LIHEAP consistently exceeds the number of households for which funding is 

available (DeNavas-Walt and Proctor 2014; Perl 2018). 
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assistance (i.e., participate in the LIHEAP) are disproportionately non-rural. 49 Recent work by 

Ross, Drehobl, and Stickles (2018) finds that compared to their metropolitan counterparts, home 

energy burdens (defined as the percentage of disposable income a household spends on its energy 

bills) faced by rural households are much higher. 50 Thus, it appears that rural households who 

need energy assistance the most (i.e., are more energy insecure) are not applying for or 

participating in an energy assistance program. As a result, using participation in a home energy 

assistance program to determine a household energy insecurity status could provide an inaccurate 

representation of the true severity of energy insecurity across the United States.  

THE EXPENDITURE APPROACH 

The second metric used to determine a household's energy insecurity status is the expenditure 

approach. As stated earlier, the expenditure approach to measuring household energy insecurity is 

directly related to the amount of money a household spends on fuel (Boardman 1991). According 

to the expenditure approach, households who spend above a certain percentage of their disposable 

income on energy/fuel costs are considered energy insecure (O’Mera 2016).  

Following Boardman (1991) we assume the threshold beyond which expenditures on 

energy/fuel cease to be affordable is 10 % of net disposable income. Therefore, households who 

spend more than 10% of their annual income on energy/fuel expenditures are considered to be 

energy insecure while households who spend less than 10% of their annual income on energy/fuel 

are considered to be energy secure.  

                                                 
49 Rural households across the United States tend to live farther away from city centers (Scally et al. 2018). As a result, applying 

for energy assistance to restore heating or cooling may be more difficult.  
50 Rural households have a median home energy burden of 4.4%, compared to the national average of 3.3% (Ross, Drehobl, and 

Stickles 2018). 
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 Using data from the 2015 RECS, we determine a household’s energy security status as 

follows: 

(4) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = {
= 1 if (

𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 ($)

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒 ($)
∗ 100) ≥ 10 

= 0  if (
𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 ($)

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒 ($)
∗ 100) < 10.

 

Here the energy service related hardships, 𝑠𝑖 faced by the individual household are represented  by 

the proportion of annual income the household spends on energy/fuel as represented by,  

(5) 𝑠𝑖 =  (
𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 ($)

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒 ($)
∗ 100).  

If the value of 𝑠𝑖 ≥ 10, then the household is said to be facing energy related hardships that are 

preventing it from maintaining consistent access to energy services. Under this framework, 

households who receive an energy insecurity index value, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖, equal to one (i.e., 

households who spend more than 10% of their income on energy/fuel) are considered to be energy 

insecure, while household who receive and energy insecurity index value, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 equal to 

zero are considered to be energy secure.  

Following suggestions by Chandler (2016), we also consider the case where a household’s 

expenditures on energy/fuel exceed 6% of their net disposable income.  We consider households 

who spend more than 6% of their annual income on energy/fuel expenditures to be energy insecure 

while households who spend less than 6% of their annual income on energy/fuel are considered to 

be energy secure. Under this case, the energy security status of a household is determined as 

follows: 

(6) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = {
= 1 if (

𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 ($)

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒 ($)
∗ 100) ≥ 6 

= 0 if (
𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 ($)

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑛𝑛𝑢𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒 ($)
∗ 100) < 6.
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Again, under the framework specified above, households who receive an energy insecurity index 

value, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖, equal to one are considered to be energy insecure, while household who 

receive and energy insecurity index value, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 equal to zero are considered to be energy 

secure. Using the expenditure approach as outlined above is the preferred metric for measuring 

household energy insecurity in the United Kingdom and the Republic of Ireland (Boardman 2010).   

However, as pointed out by Hills (2012) using the expenditure approach to measure 

household energy insecurity can directly exclude households who spend less than 10 percent of 

their income on fuel expenditures, simply because they are unable to afford to spend more. For 

example, it may be the case that even if the amount of the household’s fuel bill exceeds 10 percent 

of their overall income, the amount the household actually ends up paying toward the bill is less 

than 10 percent of their disposable income because they can only afford to pay a fraction of the 

cost of their total utility bill. Therefore, if the expenditure approach is used to determine a 

household’s energy security status, households who spend below the threshold of 10% because 

they are unable to afford to spend more would be considered to be energy secure.  

Furthermore, as pointed out by Hills (2012) and Drehobl and Ross (2016) using the 

expenditure approach to measure household energy insecurity does not account for specific 

household characteristics, such as differences in household composition (i.e., number of people 

living in the home), square footage of the household, or the thermal energy efficiency rating of the 

residence occupied. For example, families who rent might consume more fuel on average than 

families who own residences of a similar size and make-up because the decision to make an in-

home energy efficiency investment to reduce fuel consumption (i.e., purchasing an Energy Star® 

certified appliance or adding insulation) is beyond their control (Carliner 2013).  
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Also, when measuring household energy insecurity using the expenditure approach, it is 

important to control for the composition of the household, especially when determining what 

amount of money is “reasonable” for a household to have to spend on energy/fuel to provide energy 

services (Hills 2012). Similar to how households with more individuals living in the home will 

require more food to be considered "food secure," households with more individuals living in the 

home will likely need to consume more energy/fuel to provide the level of household energy 

services that results in the household being energy secure. In addition, residences with more square 

feet will likely require more energy/fuel to provide the same level of warmth that is achievable in 

a smaller household while consuming less energy/fuel.  

Thus, when determining a household energy security status, it is critical to consider the 

fuel efficiency rating of a household, the household’s size and composition, and the amount of 

money a household spends on energy/fuel costs. Failure to control for household level 

characteristics could lead to biased results. Therefore, in addition to using the expenditure 

approach to determine a household’s energy security status, we also consider three additional 

multivariate techniques which allow us to control for household level characteristics: (1) Cluster 

Analysis; (2) Principal Components Analysis (PCA); and (3) a Dichotomous Rasch Model.  

These three techniques examine how households responded to the questions from the 2015 

RECS included in Table 3.1. The idea underlying the use of responses to multiple questions to 

determine a household’s energy security status is that, just as in the case of food insecurity, no 

single question can accurately portray the full concept of energy insecurity (Gundersen 2008).  

Each of the questions included in Table 3.1 are believed to reveal some aspect of household energy 

insecurity. Therefore, by examining each household’s pattern of responses to the questions, we 



   

 

108 

 

should be able to understand more clearly what factors contribute to a household identifying as 

being energy insecure versus being energy secure.  

A general question faced by practitioners of applied economics who use surveys such as 

the RECS, is how to effectively organize data from the survey into meaningful structures. Surveys, 

by their nature, result in data structures that are multivariate (Abeyssekera 2003). That is, all of 

the data collected in a survey, by construction, should be related to the individual outcome variable 

of interest. The use of multivariate methods to analyze survey data allows for a deeper exploration 

into possible patterns that might exist within the data (Abeyasekera 2003). Multivariate methods 

also allow many variables to be considered simultaneously (Abeyasekera 2003).  

CLUSTER ANALYSIS  

The third method we used to determine a household’s energy security status is cluster analysis. 

Cluster analysis is an exploratory, statistical analysis classification technique which aims to divide 

observations from a single data set into different groups, such that the degree of association 

between observations in the same group is maximized and minimized otherwise. Groups are 

referred to as “clusters.” While the use of cluster analysis can lead to the discovery of different 

structures within the data, cluster analysis provides little to no explanation of why the individual 

clusters identified exist. The only thing assumed by the application of cluster analysis is that 

observations in an individual cluster are more similar to one another than observations in any other 

cluster (Everitt et al. 2001). 51   

To generate an energy insecurity index using cluster analysis, two decisions have to be 

made. First, one must determine the distance measure to be used which specifies the degree of 

                                                 
51 For more information on the methods of cluster analysis please refer to the appendix.  
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similarity or dissimilarity desired between observations within an individual cluster. The distance 

measure is a numerical value reflecting the degree of "closeness" between each pair of 

observations. In our case, similarity measures for binary responses to the questions included in 

Table 3.1 are based on four different values from the cross-tabulation of responses to the questions 

by individual household’s 𝑖 and 𝑗.  

The cross-tabulation for comparing individual households 𝑖 and 𝑗 is displayed below in  

  Observation 

𝑗 

  1 0 

 

Observation 
1 w x 

𝑖 0 y z 

Figure 3.1 Cross-Tabulation for Matching Households 

Here w is the number of questions for which individual households 𝑖 and 𝑗 both responded in the 

affirmative (i.e., both received a value of 1); z is the number of questions for which individual 

households 𝑖 and 𝑗 both did not respond affirmatively (i.e., both received a value of zero); x is the 

number of questions which individual household 𝑖 responded in the affirmative but individual 

household 𝑗 did not; and y is the number of questions which individual household 𝑗 responded in 

the affirmative but individual household 𝑖 did not (Abeyaskera 2003).  

 Given the survey responses being considered for our analysis are coded as binary variables, 

we rely on the matching technique discussed in Zubin (1938) where the degree of similarity 

between individual observations is determined by the proportion of matches between any two 

observations in the same cluster. The degree of similarity between any two observations is 

calculated as follows:   
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(7) 
𝑤+𝑧

𝑤+𝑥+𝑦+𝑧
 . 

Once the distance measure has been determined, what is left is to determine which method of 

clustering is most appropriate given the structure of our data (Abeyaskera 2003). Because 

responses to the questions in Table 3.1 are coded as binary variables, to create an energy insecurity 

index using cluster analysis, we utilize hierarchical clustering. With hierarchical clustering, it is 

assumed at the start that each observation (household) belongs to its own unique cluster. 

Households are assumed to be clustered individually. Individual clusters are combined 

sequentially with other clusters based on the degree of similarity between the households in the 

individual clusters. The partitioning of households into different clusters continues until the 

predesignated number of clusters as specified by the researcher is met, or until no observations 

change groups. 

Based on how food insecurity is measured in the United States, we set the predesignated 

number of clusters to four. 52 As a result, we have four different energy insecurity index 

(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖) categories. By applying hierarchal clustering, we were able to separate households 

into mutually exclusive clusters (i.e., groups) such that each cluster represents a distinct energy 

insecurity group. The energy related hardships 𝑠𝑖 faced by individual households in the same 

cluster are assumed to be similar and are based on household responses to the questions included 

in Table 3.1.  

 

 

                                                 
52 The latent food security status of individual household is assumed to lie along a continuum, which extends from high food 

security to very low food security. This continuum is divided into four mutually exclusive categories: (1) high food security; (2) 

marginal food security; (3) low food security; (4) very low food security.  
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PRINCIPAL COMPONENTS ANALYSIS 

The fourth method we used to determine a household’s energy insecurity status is principal 

components analysis (PCA). PCA is a statistical analysis technique that considers how different 

individual variables can be linked together to measure a single outcome variable of interest. The 

outcome variable of interest in our case is whether the household is energy secure or insecure. 

PCA is normally used when collecting first-hand data on the outcome variable of interest is outside 

the scope of the project, either because it is too time-consuming or requires extensive resources.  

In our case, PCA is applied to the seven questions included in Table 3.1. The seven 

questions are assumed to contain information about specific conditions, experiences, and behaviors 

that indicate a household is energy insecure. Responses to the seven questions are combined 

together to generate values of 𝑠𝑖 for each individual household 𝑖 as follows:  

(8) 𝑠𝑖 = 𝑓(𝑎1, 𝑎2, … , 𝑎7)   ∀ 𝑗 = 1, 2, … ,7 

Recall, values of 𝑠𝑖 are used to represent the energy service-related hardships faced by each 

individual household, such that higher values of 𝑠𝑖 correspond with more energy service-related 

hardships.  

Because each of the seven questions included in Table 3.1 measures some facet of 

household energy insecurity (i.e., an inability of the household to produce and consume an 

adequate level of household energy services), it is assumed that responses to the questions are 

likely to be correlated with one another. The application of PCA attempts to capture this correlation 

and use it to establish a set of weights for each of the questions of interest. These weights are then 

used to create individual principal-components such that each individual principal component 

represents a different linear weighted combination of the initial variables of interest (Vyas and 

Kumaranayake 2006).  
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All principal components produced contain the same information as the original variables 

of interest. However, the information is partitioned over the components in a particular way such 

that earlier components contain more information than later components. By using the PCA results  

to generate values for 𝑠𝑖, we are assuming the reason households respond differently to the 

questions of interests is that the energy service-related hardships  they face varies and as a result, 

so does their energy security status. Using the responses to the seven questions, labeled here as 

𝑎1through 𝑎7, the application of PCA produces the following:  

(9) 𝑃𝐶𝑚 = 𝑤𝑚1𝑎1 + 𝑤𝑚2𝑎2 + ⋯ + 𝑤𝑚7𝑎7     ∀𝑚 = 1, … ,7, 

where 𝑤𝑚 is used to represent the individual weight assigned to each specific question 𝑎 for the 

𝑚th corresponding principal component. The first principal component produced 𝑚 = 1 is 

considered to be the linear combination that explains as much variation as possible among the 

variables of interest (Abeyaskera 2003).  

The first step in the application of PCA to create a single index measure from a set of 

correlated variables is to estimate a correlation matrix for the individual variables of interest. Most 

PCA procedures calculate this first step using Pearson correlations, which assume the variables of 

interest are normally distributed. Responses to the questions included in Table 3.1 and used to 

create our index measure for energy insecurity, however, are binary. As a result, to create an energy 

insecurity index using PCA we first have to generate a tetrachoric correlation matrix for each of 

the seven binary response variables included in our analysis. In its simplest form, a tetrachoric 

correlation matrix can be thought of as a matrix of the Pearson correlation coefficients for a set of 

bivariate normally distributed variables.  

In addition to being coded as binary response variables, an essential characteristic of the 

questions included in Table 3.1 is that the severity of the questions varies. The severity of the 
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conditions identified by the different questions is somewhat intuitive from reviewing them. For 

example, the question, "In the last year, has anyone in your household needed medical attention 

because your home was too hot or too cold?” is a more severe hardship and represents less 

favorable energy service circumstances inside the home compared to the hardship represented by 

the question, “In the last year, how many months did your household receive a disconnection 

notice, shut off notice, or non-delivery notice for an energy bill?” However, the precise severity 

level of each specific question is unknown a priori.  

For our analysis, we interpret the weights produced in the first principal component as 

factor scores. Based on how responses to the survey questions included in Table 3.1 are coded, if 

a household responds affirmatively to an individual question then it is assumed that sometime over 

the past twelve months the household has faced the particular hardship identified by the question. 

Therefore, to obtain values for 𝑠𝑖, the factor scores �̂�1𝑖 associated with the specific questions the 

household responds affirmatively to are added together. 

The result of this summation is outlined below  

(10) 𝑠𝑖,𝑝𝑐𝑎 = �̂�11𝑎1 + �̂�12𝑎2 + ⋯ + �̂�17𝑎7, 

Where 𝑠𝑖,𝑝𝑐𝑎 corresponds with the individual value for 𝑠𝑖 produced specifically from the 

application of PCA.  

Based on how the values of 𝑠 𝑖,𝑝𝑐𝑎 are constructed we can interpret 𝑠𝑖,𝑝𝑐𝑎  as each individual 

household’s “energy insecurity score,” where higher energy insecurity scores indicate more  

energy service hardships within the household. Furthermore, based on how the values of 𝑠𝑖,𝑝𝑐𝑎 are 

constructed, values of 𝑠𝑖,𝑝𝑐𝑎 produced that are equal to zero (𝑠𝑖,𝑝𝑐𝑎 = 0) indicate the household did 

not respond affirmatively to any of the questions listed in Table 3.1 (i.e., has not faced any 
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hardships over the past twelve months).  Conversely we assume households who receive a positive 

energy insecurity score (i.e., a value for 𝑠𝑖,𝑝𝑐𝑎 > 0) have faced at least one hardship that has 

prevented access to adequate energy services within the household.  

Thus, households facing more hardships, both in terms of quantity and level of severity, 

are associated with larger energy insecurity scores being received (i.e., greater values of 𝑠𝑖,𝑝𝑐𝑎 

being produced). To construct an energy insecurity index using the results from PCA, we assume 

a threshold value of 𝜏 = 0. We then use two separate techniques to partition households into 

mutually exclusive energy insecurity categories and assign energy insecurity index values. The 

different energy insecurity categories are designed to separate energy insecure households from 

households who identify as being energy secure. The energy insecurity category to which each 

household is assigned depends on the value of the individual energy insecurity score (𝑠𝑖,𝑝𝑐𝑎) the 

households receives and how that value relates to the value of the chosen threshold, 𝜏 = 0.  

Under the first method of partitioning, households with an energy insecurity score (𝑠𝑖,𝑝𝑐𝑎) 

equal to zero, were assigned an energy insecurity index value equal to zero or  𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0. 

Conversely, households who received an energy insecurity value of 𝑠𝑖,𝑝𝑐𝑎 > 0  were assigned an 

energy insecurity index value equal to one or 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1. Mathematically, this method of 

partitioning households into different energy insecurity categories to construct an energy insecurity 

index is  represented as:  

(11) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = {
= 1  𝑖𝑓 𝑠𝑖,𝑝𝑐𝑎 > 0 

= 0    𝑖𝑓 𝑠𝑖,𝑝𝑐𝑎 =  0 
. 

Using this method of partitioning we have only two index values to measure household energy 

security: 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0 and 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.  
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Recall that each individual household 𝑖’s energy insecurity score (𝑠𝑖,𝑝𝑐𝑎) is determined by 

the number of questions in Table 3.1 to which the household responds affirmatively. An 

affirmative response to any of the questions is an indicator that a household was not able to access 

an adequate level of energy services inside the household during sometime over the past twelve 

months. We consider households who are unable to produce adequate household energy services 

(i.e., meets each household members’ most basic daily energy service needs) as energy insecure. 

Therefore,  following the first method of partitioning households who receive an 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0 

are considered “Energy Secure,” while households who receive 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1 are considered  

“Energy Insecure.” 

 Because we assume all values of 𝑠𝑖,𝑝𝑐𝑎 > 0 indicate the household has faced energy service 

hardships over the past twelve months that have prevented the household from maintaining access 

to adequate energy services, we also create a second energy insecurity index using the PCA results  

which allows us to measure the extent of energy insecurity experienced by households.  To create 

the second energy insecurity index, we assume if 𝑠𝑖,𝑝𝑐𝑎 > 0, then the difference between 𝑠𝑖,𝑝𝑐𝑎 and 

the chosen value of threshold 𝜏 = 0 is equivalent to the extent of energy insecurity experienced by 

the household.  

 Under this framework, households are either energy secure or energy insecure. The extent 

of energy insecurity for households who identify as “Energy Insecure” however, is determined by 

the difference between the threshold value of 𝜏 set equal to zero and the value of 𝑠𝑖,𝑝𝑐𝑎 received 

by the household. As before we assign households who received an 𝑠𝑖,𝑝𝑐𝑎 value equal to 0 and an 

energy security index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0. Households who received value of  𝑠𝑖,𝑝𝑐𝑎 > 0 are 

assigned an energy security index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = (𝑠𝑖,𝑝𝑐𝑎 − 0). Mathematically this method 
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of partitioning households into different energy insecurity categories to construct an energy 

insecurity index is represented as follows:  

(12) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = {
= (𝑠𝑖,𝑝𝑐𝑎 − 0) if 𝑠𝑖,𝑝𝑐𝑎 > 0 

= 0 if  𝑠𝑖,𝑝𝑐𝑎 ≤  0                     
. 

 In this case, households who receive an energy insecurity index value of zero or 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0 are considered  energy secure. Households who receive an energy insecurity 

index value equal to (𝑠𝑖,𝑝𝑐𝑎 − 0) however, are  considered energy insecure. The degree of severity 

of energy insecurity experienced by the household is determined by the absolute difference 

between the individual energy insecurity score received 𝑠𝑖,𝑝𝑐𝑎 and 𝜏, the chosen value of the 

threshold, which is assumed to be zero. The energy insecurity index, for energy insecure 

households ranges in value from zero to the highest energy insecurity score received by an 

individual household such that 𝑠𝑖,𝑝𝑐𝑎 ∈ [0, 𝑆𝑝𝑐𝑎] Here 𝑆𝑝𝑐𝑎 represents the highest energy insecurity 

score a household is able to receive from the application of PCA. Using this method of partitioning, 

the higher the energy insecurity index value assigned to the household, the less energy secure the 

household.  

DICHOTOMOUS RASCH MODEL 

The fifth method we used to determine a household’s energy insecurity status is the Dichotomous 

Rasch Model. The Dichotomous Rasch Model is a type of item response theory (IRT) model used 

currently by the USDA to measure food insecurity in the United States (Opsomer, Jensen, and Pan 

2003). 53 IRT models are mathematical models that attempt to explain relationships between latent, 

                                                 
53 For a detailed explanation of how the Dichotomous Rasch Model is applied by the USDA to measure food insecurity, see the 

Appendix.   
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unobservable traits and observed outcomes. 54 The theory underlying all IRT models is that the 

probability an individual will respond affirmatively to an item/question is determined by the 

difference between the item/question’s level of difficulty (level of severity) and the individual 

person’s unobserved ability (position or trait) (Kilanowski and Lin 2012). Questions are assumed 

to become increasingly more difficult (i.e., more severe) as fewer individuals respond affirmatively 

to them. 

All IRT models make the following key assumptions: (a) individuals differ from each other 

based on their unobserved latent traits (i.e., unobserved ability); (b) the probability an of an 

individual responding affirmatively to an item/question of interest is a function of their unobserved 

latent traits; (c) an individual person’s responses to different items/questions are assumed to be 

independent of one another (i.e., responses are assumed to be locally independent); and (d) 

responses from different individuals are assumed to independent of each other (Lalor, Wu, and Yu 

2016). 

If the local independence assumption is not violated and the items/questions under 

consideration are a “good fit,” then the estimated severity levels of the individual items can be 

used to create a scale. The scale is assumed to measure the full extent of the unobserved latent 

trait. 55 Items/questions are placed along that scale based on their estimated level of difficulty 

(severity) (Opsomer et al.  2003). Respondents can be placed along the same scale based on their 

                                                 
54 They have been used extensively in the educational testing industry to measure student’s academic abilities (Yang and Kao 2014; 

Ames and Penfield 2015). 
55  Infit and outfit statistics are used to determine how “good” the questions identified are at measuring an underlying construct 

(Murray and Mills 2012). The outfit statistic is an unweighted fit statistic based on standardized residuals (Hamilton et al. 1997). 

The infit statistic is a weighted fit statistic based on standardized residuals (Hamilton et al. 1997). As the infit and outfit statistics 

of items of interest deviate from their expected value, they are considered as candidates for removal (Hamilton et al. 1997). 
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overall ability (i.e., latent unobserved trait) (Opsomer et al.  2003). The latent trait under 

consideration for our study is a household’s true energy insecurity status.  

Similar to how the experience of being food insecure is considered to be too complex to be 

captured by any single indicator (Bickel et al. 2000), the experience of being energy insecure is 

also too complex to be captured by any single indicator. Furthermore, similar to how there is no 

commonly used language that describes the entire continuum of what it means food insecure (Nord 

2014), there is also no commonly used language the describes the entire continuum of what it 

means to be energy insecure (Murray and Mills 2012). Energy insecurity is a latent trait and not 

directly observable. People do not say, on a scale from 1 to 10, my energy insecurity is at level 3 

(Nord 2014). Instead, people reveal information about their level of energy insecurity based on 

how they respond to different questions regarding energy service-related hardships they have faced 

or are currently facing.  

Information about these experiences can be elicited from survey questions (Nord 2014). 

To determine a household’s energy insecurity status, we apply the Dichotomous Rasch model to 

the seven questions from the 2015 RECS listed in Table 3.1. The Dichotomous Rasch model allows 

us to consider how responses to this set of survey questions can be combined together to create an 

energy insecurity scale (Nord 2014). The energy insecurity scale represents the full continuum of 

what it means for a household to be energy insecure. That is, it captures information on the set of 

experiences faced by households, ranks those experiences in terms of severity. Households are 

placed along the energy insecurity scale based on information they reveal from their responses to 

the questions.  

As stated earlier in Section 3.3, responses to the questions in Table 3.1 are coded as binary 

response variables and each household receives the opportunity to respond to all seven questions. 
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We assume each household in our sample responds to each question based on its underlying (e.g., 

latent) true level of energy insecurity. The more energy insecure the household, the higher the 

probability the household will give a positive (e.g., yes) response to the questions. In the 

Dichotomous Rasch model, each question that is asked represents a different level of energy 

service-related hardships being experienced by the household.  

Therefore, each question is assumed to indicate a different severity of energy insecurity 

being experienced by the household, such that questions representing higher severity levels are 

more likely to be answered negatively (e.g., “no” answer). Conversely, questions representing 

lower levels of severity are more likely to be responded to affirmatively (e.g., “yes” answer), which 

indicates more severe energy service-related hardships are occurring less frequently in the home. 

The Dichotomous Rasch model can be expressed as a logistic model of the form: 

(13) 𝑃𝑟𝑜𝑏(𝐼𝑖𝑗 = 1|𝛼𝑖, 𝜃𝑗) =
exp(𝛼𝑖−𝜃𝑗)

1+exp(𝛼𝑖−𝜃𝑗)
, 

such that the probability a household responds affirmatively to household energy insecurity 

question 𝐼𝑖𝑗 = 1 is conditional on the individual household respondent’s ability (underlying latent 

energy insecurity status), 𝛼𝑖, and the individual question's level of hardship severity (difficulty), 

𝜃𝑗 . The indicator variables 𝐼𝑖𝑗 are assumed to be independent of each other, conditional on the 

parameters 𝛼𝑖 and 𝜃𝑗 .  

An easy way to interpret the model in equation (13) is to note when 𝛼𝑖 = 𝜃𝑗 , the individual 

household 𝑖 has a 50% chance of responding to the question 𝑗 affirmatively. When 𝛼𝑖 > 𝜃𝑗 , the 

probability that individual household 𝑖 responds affirmatively to question 𝑗 is greater than 50% 

and, conversely when, 𝛼𝑖 < 𝜃𝑗  the probability a household responds affirmatively to question 𝑗 is 
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less than 50% (Opsomer et al. 2003). The model for all questions and households aggregates to 

the following:  

(14) 𝑃𝑟𝑜𝑏(𝐼𝑖𝑗 = 1|𝛼𝑖, 𝜃𝑗) = ∏ ∏
exp(𝛼𝑖−𝜃𝑗)

1+exp(𝛼𝑖−𝜃𝑗)

𝑚
𝑗

𝑛
𝑖 , 

such that 𝑛 represents the number of households in the sample and 𝑚 represents the number of 

questions, which in our case is seven. Although, the model in equation (14) is an exponential 

model, it cannot be fitted directly via maximum likelihood estimation unless appropriate 

constraints are added to prevent over parameterization (Opsomer et al. 2003). To get unique 

parameter estimates, ∑ 𝜃𝑗
𝑚
𝑗=1  must be set equal to zero (Opsomer et al. 2003). 

 Conditional maximum likelihood estimation of equation (14) produces item severity 

parameter estimates (𝜃𝑗) for each of the 𝐽 = 7 items/questions we consider. The severity parameter 

estimates are consistent with observed household responses to the items/questions (Nord 2014). In 

the food security literature, severity parameter estimates are referred to as “item calibrations” 

(Hamilton et al. 1997). The severity parameter estimates (i.e., item calibrations) for the questions 

are combined together to create an energy insecurity scale (i.e., a continuous interval-level measure 

of household energy insecurity).  

 The energy insecurity scale is a continuous, linear scale designed to measure the degree of 

energy insecurity experienced by an individual household in terms of a single numerical scale 

(Bickel et al. 2000). The range of values on the scale are assumed to expresses the full range of 

severity of energy insecurity as observed in all households across the United States (Bickel et al. 

2000). The unit of measure for the scale is a matter of convention (Bickel et al. 2000). 56 Following 

                                                 
56 Application of the Rasch model initially assigns scale values in a range that yields a mean of zero, which can produce both 

positive and negative estimated severity parameter estimates. Because the presence of both positive and negative values on a scale 

can be difficult to interpret, it is conventional to transform values into a range such as 0 to 10 or 0 to 100. The estimated severity 

level of each parameter estimate is transformed to a mathematically equivalent value of the chosen scale (Bickel et al. 2000).  
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the literature on food security (Bickel et al. 2000), we let the energy insecurity scale range in value 

from zero to the most severe level of energy insecurity, which is numerically equivalent to the 

severity parameter estimate of the most severe question we consider.  

A household’s placement along the scale is determined by the number of increasingly 

severe indicators of energy insecurity that the household has experienced, which is determined by 

the number of questions the household responds affirmatively to (Bickel et al. 2000), also known 

as the household’s “raw score” (Bickel et al. 2000). The household’s “raw score” is used to 

determine where on the energy insecurity scale the household will fall and what energy insecurity 

score will be received by the household. Because there are seven questions in Table 3.1, there are 

at most eight possible energy insecurity scores households can receive.  

As a result, there are at most eight different locations along the scale where households can 

be placed. Households who respond to none of the questions included in Table 3.1 are considered 

to be fully energy secure (i.e., not energy insecure) and as a result are assigned a scale value of 

zero and placed at the bottom of the scale. Households who respond to all seven questions in the 

affirmative are considered to be completely energy insecure. These households are assigned a scale 

value equal to the parameter estimate of the most severe indicator of household energy insecurity 

(i.e., the parameter estimate associated with the most difficult questions) and placed at the top of 

the scale.  

Other households are placed along the scale based on the number of questions they respond 

affirmatively. They are assigned a scale value that is equivalent to the estimated severity parameter 

estimate that corresponds to the number of questions to which they responded in the affirmative. 

For example, if the parameter estimate produced for the 4th most severe indicator of household 
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energy insecurity is equal to 3.0, then households who respond affirmatively to four questions are 

assigned a scale value (i.e., energy insecurity score) equal to 3.0.  

Households can be ranked, based on the energy insecurity scale value they are assigned, 

which represents the severity of energy insecurity experienced within the household. If the scale 

is subdivided into groups or categories, which is what is commonly done in the food security 

literature (see Hamilton et al. 1997), then households can also be ranked based on which of the 

energy insecurity categories they are assigned to (Nord 2003). Each category represents a distinct 

range of values along the energy insecurity scale. Households are separated into energy insecurity 

categories, based on which range of values along the scale include the value of the energy 

insecurity score received by the household.  

For example, following the literature on food security (Bickel et al. 2000) we could classify 

households as being “Very Low Energy Secure,” “Low Energy Secure,” “Marginally Energy 

Secure,” or “High Energy Secure” by first establishing those ranges along the scale and then 

determining to which category a household belongs based on their current position along the 

energy insecurity scale.57 However, as Gundersen (2008) and Balistreri (2016) point out, while 

classifying households into different energy insecurity categories is convenient, as an aggregation 

technique it does not provide a complete and accurate representation of the extent, depth, and 

severity of energy insecurity being experienced by households living across the United States. 

Because households are placed into different categories based on their position along the 

scale and the range of values on scale is established from the severity parameter estimates of the 

                                                 
57 The USDA classifies households into one of four groups (very low food security, low food security, marginal food security, and 

high food security) based on the number of questions from the 18-itm food security scale the household responds affirmatively to. 

For example, based on the 18-item scale, if a household responds affirmatively to four, five, six, seven, or eight questions then the 

household is classified as being “Marginally Food Secure” (Nord 2014).  
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different items, households who respond affirmatively to a similar number of items are all 

classified in the same group. Even though the energy service related hardships between households 

within the same group could vary substantially.  For example, assume positive responses to three, 

four, or five questions results in a household being categorized as being “Low Energy Secure.” It 

is obvious that these households are not full energy secure or fully energy insecure based on the 

number of questions they response positively to. 

However, categorizing all of these household as being “Low Energy Secure,” does not 

account for the fact that the energy service-related hardships faced by these households is likely to 

vary widely. Therefore, when examining the extent, depth, and severity of energy insecurity being 

experienced by households living across the United States, it is important to consider the individual 

energy insecurity scores received by households within the same group. To establish a more 

accurate aggregate measure of energy insecurity, while considering the information contained in 

each of the questions used to determine a household’s energy insecurity score, Dutta and 

Gundersen (2007), Gundersen (2008), and Balistreri (2016) suggest creating a normalized 

insecurity index.  

The normalized energy insecurity index provides an estimate for the full extent, depth, and 

severity of energy insecurity being experienced by households living in the U.S. The normalized 

insecurity index is adapted from the index measure for general poverty (Dutta and Gundersen 

2007; Gundersen 2008; Balistreri 2016). We follow this advice and create a normalized energy 

insecurity index (NEII) using the Rasch model results, assuming three different ways of 

partitioning households into different energy insecurity categories. The NEII is a normalized 

version of the energy insecurity index outlined in Section 3.3.  
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Recall from Section 3.3. that the extent of energy insecurity experienced by each household 

𝑖 depends on the energy service-related hardships faced by the household. The value 𝑠𝑖 is used to 

denote the “energy service-related hardships” faced by an individual household 𝑖, such that higher 

values of 𝑠𝑖 corresponds with more energy service-related hardships being experienced by 

members of the household (i.e., the latent value of energy insecurity experienced by each 

household 𝑖). Values for 𝑠𝑖 are assumed to exist within the interval [0, 𝑆], such that 0 represents no 

energy service-related hardships being experienced by the household and 𝑆 represents the most 

energy service-related hardships possible being experienced by the household. 

Households are considered to be energy insecure if the energy service-related hardship they 

face, exceed the threshold of energy service-related hardships considered to be acceptable (i.e., 

𝑠𝑖 > 𝜏 where 𝜏 is used to represent the threshold). Conversely households are considered energy 

secure if 𝑠𝑖 ≤ 𝜏 (Gundersen 2008). If the objective is to classify households into different energy 

insecurity groups, while still taking advantage of the information contained in each question, the 

group to which the household is classified should depend on the distance between the energy 

insecurity score the household receives and the threshold value chosen. Households who are of 

similar distance away from the chosen threshold can be placed in the same category. The higher 

the value of the 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖, the farther the household is from the threshold of being energy secure 

(Gundersen 2008, Balistreri 2016).  

No matter the number of groups considered, the normalized 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖, represents an 

aggregation of energy security levels for all different household living across the United States 

(Gundersen 2008; Balistreri 2016). The normalized energy insecurity index is denoted here as 𝑑𝑖 

and calculated as follows: 
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(15) 𝑑𝑖 =
𝑠𝑖−𝜏

𝑧−𝜏
 if 𝑠𝑖 > 𝜏 ;  𝑑𝑖 = 0 if 𝑠𝑖 ≤ 𝜏  .  

Here 𝑑 is denotes the degree of energy insecurity suffered by the group of all households 𝑁 

(Gundersen 2008; Balistreri 2016); 𝑠𝑖 is the energy insecurity score received by the household 

from applying the Dichotomous Rasch model; 𝑧 is the maximum possible energy insecurity score 

able to be received  by a household from the application of the Rasch model (i.e., the severity 

parameter estimate associated with the most severe question in Table 3.1); and 𝜏 is the chosen 

value of the threshold.  

 Following Gundersen (2008) we assume 𝑑 is real valued function of 𝑑1, 𝑑2, … , 𝑑𝑛 that is 

the “rule” for aggregating household’s energy insecurity levels. The aggregation rule more 

specifically is a function 𝐷: [0,1]𝑛 → 𝑅𝑛 such that 𝐷 aggregates the energy insecurity levels 

𝑑1, 𝑑2, … , 𝑑𝑛 of the different households groups on an index, 𝑑 (Gundersen 2008). The 

normalization of the index requires that 𝑑 be zero when the normalized energy insecurity index is 

zero for all households. In addition, it requires 𝑑 be equal to one when  the normalized energy 

insecurity index is one for all households.  

 Following Gundersen (2008) and Balistreri (2016) we use three different aggregation rules 

for the function 𝐷 and create three separate energy insecurity indices using the Rasch model results 

and the following formula: 

(16) 𝑑𝛼 =
∑ (𝑑𝑖)𝛼𝑛

𝑖=1

𝑛
.  

Here 𝑛 denotes the total number of in the population of interest (i.e., households living across the 

United States) and 𝑑𝑖 represents the normalized energy insecurity index value received by the 

households following equation (15). When 𝛼 = 0, 𝑑 defines the energy insecurity rate of the 

population, or the proportion of households living in the United States that are energy insecure 
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(Gundersen 2008). When 𝛼 = 1, equation (16) represents the energy insecurity gap or depth of 

energy insecurity experienced.  

 One can think of the energy insecurity gap as the average proportionate gap in energy 

insecurity, or the amount on average that households fall below the energy insecurity threshold 

chosen (Balistreri 2016). When 𝛼 = 2, equation (16) is assumed to measure the severity of energy 

insecurity being experienced by households living in the United States (Gundersen 2008; Balistreri 

2016). These different measures are useful for understanding how when one household becomes 

more energy insecure, the prevalence of energy insecurity is unchanged in the United States, but 

the gap between energy security and energy insecurity becomes increasingly worse.   

3.6 RESULTS 

Results from the five different approaches considered to determine a household’s energy security 

status are presented below.  

ENERGY ASSISTANCE RESULTS 

Tables 3.3 through 3.7 present estimates for the number of households who identify as being 

“energy insecure,” according to how households responded to the three questions in the RECS 

survey related to home energy assistance. Households are considered to be energy insecure if they 

responded affirmatively to any of the three questions. Table 3.3 presents results for all housing 

types, considering single family attached homes, single-family detached homes, apartments, and 

mobile homes. 

Table 3.3 Energy Assistance (All Housing Types)  

Energy Assistance Questions from the 2015 RECS 
Number of 

Households 

Percentage 

(%) 

Household Participated in a Home Energy Assistance Program that 

helps Pay Energy Bills and/or Replace/Fix Broken HVAC  
345 6.07 
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Household Applied for and Received Energy Assistance to Help 

Pay Home Energy Bills after Receiving a Disconnection Notice 
116 2.04 

Household Applied for and Received Energy Assistance to Help 

Restore Heating and/or Cooling in the Home 
41 0.25 

Total Number of Households  N = 5,686 

 

Using participation in an energy assistance program as a proxy for a household’s energy security 

status, 345 households identify as being energy insecure. Approximately 2% of the households in 

our sample responded affirmatively to applying for and receiving home energy assistance to help 

pay their home energy bills after receiving a disconnection notice. Information on applicants that 

applied for but did not receive home energy assistance to help pay their home energy bills is not 

available. Only 41 of the households in our sample responded affirmatively to receiving energy 

assistance to help restore heating and/or cooling inside the home, either due to equipment failure 

or an inability to afford energy resource inputs (i.e., electricity, propane, heating oil). 

Tables 3.4 through 3.7 below provide estimates for the number of households living in different 

types of housing units (i.e., single-family detached and attached homes, apartment buildings, and 

mobile homes) who identify as being “energy insecure,” according to whether or not the household 

received home energy assistance.  

Table 3.4 Energy Assistance (Single Family Detached Homes) 

Energy Assistance Questions from the 2015 RECS 
Number of 

Households 
Percentage 

Household Participated in a Home Energy Assistance Program that 

helps Pay Energy Bills and/or Replace/Fix Broken HVAC  
179 4.77 

Household Applied for and Received Energy Assistance to Help 

Pay Home Energy Bills after Receiving a Disconnection Notice 
58 1.55 
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Household Applied for and Received Energy Assistance to Help 

Restore Heating and/or Cooling in the Home 
18 0.48 

Total Number of Households living in Single Family Detached 

Homes  
N = 3,752 

 

Table 3.5 Energy Assistance (Single Family Attached Homes) 

Energy Assistance Questions from the 2015 RECS 
Number of 

Households 
Percentage 

Household Participated in a Home Energy Assistance Program that 

helps Pay Energy Bills and/or Replace/Fix Broken HVAC  
33 6.89 

Household Applied for and Received Energy Assistance to Help 

Pay Home Energy Bills after Receiving a Disconnection Notice 
12 2.51 

Household Applied for and Received Energy Assistance to Help 

Restore Heating and/or Cooling in the Home 
4 0.84 

Total Number Households living in Single Family Attached 

Homes 
N = 479 

 

Table 3.6 Energy Assistance (Apartments) 

Energy Assistance Questions from the 2015 RECS 
Number of 

Households 
Percentage 

Household Participated in a Home Energy Assistance Program that 

helps Pay Energy Bills and/or Replace/Fix Broken HVAC  
100 8.55 

Household Applied for and Received Energy Assistance to Help 

Pay Home Energy Bills after Receiving a Disconnection Notice 
29 2.48 

Household Applied for and Received Energy Assistance to Help 

Restore Heating and/or Cooling in the Home 
10 0.86 

Total Number of Households living in Apartments N = 1,169 

 

Table 3.7 Energy Assistance (Mobile Homes) 

Energy Assistance Questions from the 2015 RECS 
Number of 

Households 
Percentage 
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Household Participated in a Home Energy Assistance Program that 

helps Pay Energy Bills and/or Replace/Fix Broken HVAC 
33 11.54 

Household Applied for and Received Energy Assistance to Help 

Pay Home Energy Bills after Receiving a Disconnection Notice 
17 5.94 

Household Applied for and Received Energy Assistance to Help 

Restore Heating and/or Cooling in the Home 
9 3.14 

Total Number of Households living in Mobile Homes N = 286 

 

A single family detached home is defined as a standalone house or a free-standing 

residential building. A single family attached home is a home that shares at least one wall with 

another home. Examples of single family attached homes include townhouses, condos, row houses, 

and duplexes.  An apartment is considered to be a residence in a building with at least two or more 

units. Mobile homes include manufactured and mobile residences that are occupied and used as 

permanent living accommodations throughout the year.  

Seventy percent of the households surveyed in the 2015 RECS indicated they live in single-

family detached houses (i.e., stand-alone homes). The second largest housing category was 

apartment living. Examining household types individually and using the receipt of energy 

assistance as a proxy for energy insecurity, we find the percentage of households who identify as 

energy insecure is highest among households who live in mobile homes. Mobile homes are 

constructed in factories, delivered in pieces and assembled on site.  By design, they have poorly 

insulated floors, walls, and ceilings (Department of Energy 2010).  

Poor insulation can result in more energy consumption by households to maintain 

comfortable indoor air temperatures. As energy consumption increases, households could face 

higher home utility bills, which could cause some households, especially those with lower 

incomes, to apply for home energy assistance. The percentage of households who apply for and 
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receive home energy assistance and live in single-family detached homes is lower than the 

percentage of households who apply for and receive home energy assistance from any other 

housing type.  

THE EXPENDITURE APPROACH RESULTS 

Table 3.8 below presents estimates for the number and percentage of households who identify as 

being “Energy Insecure” according to the expenditure approach considering all household types.  

Table 3.8 Expenditure Approach Results (All Households) 

 Number of Households Percentage 

Spend More than 6% of Disposable 

Income 
999 17.57 

Spend More than 10% of Disposable 

Income 
487 5.86 

Total Number of Households N = 5,686 

 

Following the suggestions of Boardman (1991) and Chandler (2016) we consider households who 

spend more than 10% or 6% of their income on energy/fuel to be "Energy Insecure.” Considering 

all household types (i.e., single-family detached and attached homes, apartments and mobile 

homes) approximately 999 households surveyed in the 2015 RECS spend more than 6% of their 

annual income on energy/fuel, while approximately 487 households spend more than 10%. Using 

6% of income as the threshold beyond which expenditures of energy/fuel cease to be affordable, 

17.57% of the households surveyed in the 2015 RECS identify as being energy insecure. 

 Tables 3.9 through 3.12 below provides estimates for the number and percentage of 

households living in different types of housing units (i.e., single-family detached and attached 

homes, apartment buildings, and mobile homes) who identify as “Energy Insecure” according to 

the expenditure approach. Based on how the individual values of 𝑠𝑖 were calculated, households 
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who spend more than 10% of their income on energy/fuel also spend more the 6% of the income 

of energy/fuel.  

Table 3.9 Expenditure Approach Results (Single Family Detached Homes) 

 Number of Households Percentage 

Spend More than 6% of Disposable 

Income 
514 13.70 

Spend More than 10% of Disposable 

Income 
274 7.30 

Total Number of Households Living 

in Single Family Detached Homes 
N = 3,752 

 

Table 3.10 Expenditure Approach Results (Single Family Attached Homes) 

 Number of Households Percentage 

Spend More than 6% of Disposable 

Income 
83 17.33 

Spend More than 10% of Disposable 

Income 
35 7.31 

Total Number of Households Living 

in Single Family Attached Homes 
N = 479 

 

Table 3.11 Expenditure Approach Results (Apartments) 

 Number of Households Percentage 

Spend More than 6% of Disposable 

Income 
270 23.10 

Spend More than 10% of Disposable 

Income 
119 10.18 

Total Number of Households Living 

in Apartments 
N = 1,169 

 

Table 3.12 Expenditure Approach Results (Mobile Homes) 

 Number of Households Percentage 

Spend More than 6% of Disposable 

Income 
132 46.15 

Spend More than 10% of Disposable 

Income 
86 30.07 

Total Number of Households Living 

in Mobile Homes 
N = 286 
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Approximately 23% of the households surveyed in the 2015 RECS who live in an apartment 

identified as being energy insecure when 6% of one’s annual income was assumed to be the 

threshold beyond which energy/fuel expenditures cease to be affordable. While fewer households 

overall identified as living in mobile homes as permanent residents, the percentage of households 

living in mobile homes who identified as energy insecure according to the expenditure approach 

is the highest among all the different housing types considered.  

Of the 286 households who live in mobile homes, 132 of them spend more than 6% of their 

disposable income of energy/fuel each year. Moreover, close to one-third of these households 

spend more than 10% of their annual income on energy/fuel. For each of the different household 

types, the number of households who identify as being energy insecure because they spend more 

than 6% of their income on energy/fuel is nearly double the number of households who identify 

as being energy insecure because they spend more than 10% of their annual income on energy/fuel.  

These results indicate that determining the energy security status of households following the 

expenditure approach is sensitive to value of the chosen threshold. 

CLUSTER ANALYSIS  

The results from the application of cluster analysis are presented below in Tables 3.13 and 3.14. 

Table 3.13 Cluster Analysis Results: Energy Insecurity Groups 

Energy Insecurity 

Groups 
Number of Households 

1 144 

2 4,832 

3 634 

4 76 

Total N = 5,686 
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Table 3.14 Cluster Analysis Results Summary Statistics 

Energy 

Insecurity Group 
Reduce Unsafe Notice 

No 

Fuel 
HVAC Medical Days 

         

 Min 0 0 0 0 0 0 0 

1 Mean 0.701 0.118 0.285 0.111 1 0.056 0.506 

 Max 1 1 1 1 1 1 1 

         

         

 Min 0 0 0 0 0 0 0 

2 Mean 0 0.023 0.024 0.010 0.031 0.005 0.001 

 Max 1 1 1 1 1 1 1 

         

         

 Min 1 0 0 0 0 0 0 

3 Mean 1 0.226 0.222 0.098 0 0.036 0.005 

 Max 1 1 1 1 0 1 1 

         

         

 Min 0 0 0 0 0 0 0 

4 Mean 0.882 0.974 0.513 0.237 0.934 0.368 0.158 

 Max 1 1 1 1 1 1 1 

         

         

 Min 0 0 0 0 0 0 0 

Total Mean 0.141 0.061 0.059 0.025 0.064 0.014 0.016 

 Max 1 1 1 1 1 1 1 

 

The objective of applying cluster analysis was to understand how the individual households could 

be naturally grouped together based on their responses to the questions included in Table 3.1. The 

clusters shown in Table 3.13 are all exclusive, as they assign each household to only one cluster. 

Table 3.15 below presents the means for each of the variables used from Table 3.1 for each of the 

four different energy insecurity groups identified by the application of cluster analysis.   

Table 3.15 Cluster Analysis Results Average Individual Energy Insecurity Groups 

Variable  Group 1 Group 2 Group 3 Group 4 

Reduce 0.701 0 1 0.882 

Unsafe 0.118 0.023 0.226 0.973 
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Notice 0.285 0.024 0.222 0.513 

No Fuel 0.111 0.010 0.098 0.237 

HVAC 1 0.031 0 0.934 

Medical 0.056 0.005 0.036 0.368 

Days 0.507 0.001 0.005 0.158 

 

Overall, we find all of the households who belong to Group 2 did not respond affirmatively to 

reducing or foregoing expenses for other basic household necessities such as medicine or food in 

order to pay their home energy bill at any time over the past twelve months (Question 1 in Table 

3.1). Conversely, all of the households in Group 3 did respond affirmatively to reducing or 

foregoing expenses for other basic household necessities to pay their home energy bill. Similarly, 

all of the households who belong to Group 1 responded affirmatively to being unable to use their 

main source of heat or air conditioning because their HVAC equipment was broken and they could 

not afford to pay to repair or replace the equipment (Question 5 in Table 3.1). Conversely all of 

the households in Group 3 did not respond in the affirmative to Question 5.   

 Overall, the average number of affirmative responses for each question is highest for 

Energy Insecurity Groups 1 and 4. However, the number of households in these two groups is the 

smallest with 144 households being assigned to Group 1 and only 63 households being assigned 

to Group 4. The average number of affirmative responses to all questions is the lowest for Group 

2. To determine the energy insecurity status of each of the four groups identified by the application 

of cluster analysis, we examine the individual characteristics of the different households identified 

in each of the four groups.  

We consider the following key household level characteristics: median household income 

measured in US Dollars (INCOME); an indicator variable (MOBILE) equal to one if the residence 
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occupied by the household is a mobile home and zero otherwise; an indicator variable 

(DETACHED) equal to one if the residence occupied by the household is a single family detached 

home and zero otherwise; an indicator variable (ATTACHED) equal to one if the residence 

occupied by the household is a single family attached home and zero otherwise; an indicator 

variable (APARTMENT) equal to one if the residence occupied by the household is a unit in an 

apartment building and zero otherwise; an indicator variable (OWNERSHIP) equal to one if the 

primary residence is owned by the household and zero otherwise (i.e., rented); an indicator variable 

(EMPLOYMENT) equal to one if the head of the household is employed either part-time or full 

time and zero otherwise; a continuous variable equal to the number of people living inside the 

home (MEMBERS); a continuous variable equal to the number of children aged 16 and younger 

living inside the home (CHILDREN); an indicator variable (EDUCATION) equal to one if the head 

of the household has a college degree or beyond and zero otherwise; a continuous variable equal 

to the number of bedrooms inside the home (BEDROOMS); and a continuous variable equal to the 

number of complete bathrooms inside the home (BATHROOMS). Summary statistics for each of 

the different energy insecurity groups are listed below in Tables 3.16 through 3.19.  

Table 3.16 Summary Statistics for Group 1 

Variable Mean Std. Dev. Min Max 

INCOME 41,458.33 34,152.45 10,000 140,000 

MOBILE 0.16 0.37 0 1 

DETACHED 0.62 0.49 0 1 

ATTACHED 0.07 0.26 0 1 

APARTMENT 0.15 0.36 0 1 

OWNERSHIP 0.61 0.49 0 1 

EMPLOYED 0.44 0.50 0  

MEMBERSRS 3.06 1.68 1 10 
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CHILDREN 0.92 1.18 0 5 

EDUCATION 2.76 1.08 1 5 

BEDROOMS 2.85 1.01 0 6 

BATHROOMS 1.68 0.62 1 4 

Observations N=144 

 

Table 3.17 Summary Statistics for Group 2  

Variable Mean Std. Dev. Min Max 

INCOME 66,916.39 42,997.92 10,000 140,000 

MOBILE 0.04 0.19 0 1 

DETACHED 0.68 0.47 0 1 

ATTACHED 0.08 0.27 0 1 

APARTMENT 0.20 0.40 0 1 

OWNERSHIP 0.72 0.45 0 1 

EMPLOYED 0.49 0.50 0 1 

MEMBERS 2.52 1.40 1 12 

CHILDREN 0.56 1.01 0 10 

EDUCATION 3.22 1.14 1 5 

BEDROOMS 2.87 1.11 0 10 

BATHROOMS 1.79 0.76 0 6 

Observations N=4,832 

 

Table 3.18 Summary Statistics for Group 3 

Variable Mean Std. Dev. Min Max 

INCOME 36,293.38 28,815.19 10,000 140,000 

MOBILE 0.09 0.28 0 1 

DETACHED 0.50 0.50 0 1 

ATTACHED 0.11 0.31 0 1 

APARTMENT 0.30 0.46 0 1 
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OWNERSHIP 0.48 0.50 0 1 

EMPLOYED 0.41 0.49 0 1 

MEMBERS 2.81 1.49 1 8 

CHILDREN 0.80 1.13 0 6 

EDUCATION 2.60 1.00 1 5 

BEDROOMS 2.57 1.06 0 6 

BATHROOMS 1.49 0.61 0 5 

Observations N=634 

 

Table 3.19 Summary Statistics for Group 4 

Variable Mean Std. Dev. Min Max 

INCOME 30,526.32 23,545.40 10000 130000 

MOBILE 0.24 0.43 0 1 

DETACHED 0.54 0.50 0 1 

ATTACHED 0.09 0.29 0 1 

APARTMENT 0.13 0.34 0 1 

OWNERSHIP 0.61 0.49 0 1 

EMPLOYED 0.37 0.49 0 1 

MEMBERS 3.25 1.79 1 10 

CHILDREN 1.09 1.39 0 6 

EDUCATION 2.33 1.06 1 5 

BEDROOMS 2.83 0.94 1 6 

BATHROOMS 1.53 0.60 1 3 

Observations N=76 

 

Overall, we find the median average income is the lowest for households in Energy Insecurity 

Groups 3 and 4. On average, more households in Group 4 live in mobile homes, but more homes 

on average in Group 4 identify as being homeowners. The average number of bedrooms and 
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bathrooms is consistent across all four groups, indicating that the size of the household in terms of 

the number of rooms, provides little information on the energy insecurity status of the different 

household groups. Furthermore, the average number of children in each group is approximately 

equal to one child, while the average number of individuals living inside the home in each group 

is approximately equal to three individuals. 

Using the classifications of food security established by the USDA, based on the pattern of 

responses by households to the questions included in Table 3.1 and the individual characteristics 

of the households we assume those in Energy Insecurity Group 2 are “High Energy Secure,” those 

in Energy Insecurity Group 3 are “Marginally Energy Secure,” those in Energy Insecurity Group 

1 are “Low Energy Secure,” while those in Energy Insecurity Group 4 are “Very Low Energy 

Secure.” Table 3.20 below lists the number of households included in each of the energy insecurity 

groups considered.  

Table 3.20 Energy Insecurity Groups 

Energy Insecurity 

Groups 
Number of Households Percentage of Households 

High Energy Secure 4,832 85% 

Marginally Energy Secure 634 11% 

Low Energy Secure 144 3% 

Very Low Energy Secure 76 1% 

Total N=5,686  

While the use of cluster analysis allows us to divide the households into four distinct groups, the 

validity of the results is difficult to determine given that very different clusters can be formed from 

the same data depending on how the analysis is executed. For example, if a different similarity 

measure was used in the analysis, then the number and characteristics of the households identified 

in each group could change drastically. 
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PRINCIPAL COMPONENTS ANALYSIS RESULTS 

The results from applying PCA to create an index measure of household energy insecurity are 

presented below in Table 3.21 and Table 3.22.  

Table 3.21 Individual Principal Components One through Four  

Variable Component 1 Component 2 Component 3 Component 4 

Reduce 0.4105 0.3111 -0.1182 -0.3290 

Unsafe 0.3893 0.0477 -0.4590 -0.5519 

Notice 0.3542 0.4779 0.3267 0.0368 

No Fuel 0.3659 0.3265 0.3699 0.3640 

HVAC 0.4048 -0.4759 0.2108 0.0804 

Medical 0.3547 -0.0972 -0.6251 0.6483 

Days 0.3618 -0.5745 0.3109 -0.1627 

Eigenvalue 4.0997 1.0732 0.7564 0.4072 

Proportion 0.5857 0.1533 0.1081 0.0582 

 

Table 3.22 Individual Principal Components Five through Seven  

Variable Component 5 Component 6 Component 7 

Reduce -0.1669 0.7574 -0.1046 

Unsafe 0.3146 0.4792 -0.0481 

Notice -0.5566 0.4100 0.2455 

No Fuel 0.6914 -0.0209 -0.1078 

HVAC -0.2500 0.1073 -0.6962 

Medical -0.1192 -0.0325 0.1961 

Days 0.0930 -0.1246 0.6259 

Eigenvalue 0.3733 0.2436 0.0466 

Proportion 0.0533 0.0348 0.0067 
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Compared to the other principal components produced, principal component number one (labeled 

as Component 1 in Table 3.21) explains the most variation. Therefore, to construct the energy 

insecurity index, we utilize the weights produced from the first principal component. Interpreting 

the weights produced by the first principal component as factor scores �̂�𝑚𝑖, we determine each 

individual household 𝑖’s energy insecure score 𝑠𝑖,𝑝𝑐𝑎 as follows: 

(17) 𝑠𝑖,𝑝𝑐𝑎 = 0.4105 ∙ Reduce + 0.3893 ∙ Unsafe + 0.3542 ∙ Notice + 0.3659 ∙ No Fuel +

0.4048 ∙ HVAC + 0.3547 ∙ Medical + 0.3618 ∙ Days. 

The variables Reduce, Unsafe, Notice, No Fuel, HVAC, Medical, and Days are indicator variables 

that take on a value of one if the individual household 𝑖 responded in the affirmative to the question 

that corresponds with the individual indicator and zero otherwise (see Table 3.1). For example, 

assume an individual household 𝑗 only responded affirmatively to questions 1, 3, and 5. Following 

the application of PCA, their individual energy insecurity score 𝑠𝑖,𝑝𝑐𝑎 would be calculated as 

follows:  

(18) 𝑠𝑖,𝑝𝑐𝑎 = 0.4105(1)  +  0.3893(0)  +  0.3542(1)  +  0.3659(0)  +  0.4048(1)  +

 0.3547(0)  +  0.3618(0).  

Therefore, the energy insecurity score for household 𝑗 is 1.1695. Based on equation (17) the 

maximum energy insecurity score a household is able to receive is equal to 2.6448. The PCA 

energy insecurity scores across all household types range in value from 0 to 2.2865, indicating that 

none of the households in the survey responded affirmatively to all seven questions.  

 Following the first method of partitioning discussed previously, we assign households who 

received an energy insecurity score (𝑠𝑖,𝑝𝑐𝑎) equal to zero an energy insecurity index value equal 

to zero, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0. Conversely, households who received a positive energy insecurity score  
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(𝑠𝑖,𝑝𝑐𝑎 > 0 ) are assigned an energy insecurity index value equal to one or 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.  As 

stated earlier, using this method of partitioning, only two index values for household energy 

insecurity are considered: 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0, which indicates the household is “energy secure,” and 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1 which indicates the household is “energy insecure.” Based on this framework, 

4,442 (78%) of the households included in our sample are considered “Energy Secure,” while 

1,244 (22%) households are considered “Energy Insecure.”  

In addition to the energy insecurity index outlined above, using PCA we created a second 

energy insecurity index to measure the extent of energy insecurity being experienced by 

households with a positive energy insecurity score (𝑠𝑖,𝑝𝑐𝑎 > 0). More specifically, we assign 

households who receive an energy insecurity score 𝑠𝑖,𝑝𝑐𝑎 = 0  an energy insecurity index value 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0. As before, these households are considered to be “Energy Secure.” Households 

who receive positive energy insecurity scores (𝑠𝑖,𝑝𝑐𝑎 > 0) however, are considered to be “energy 

insecure.” Because the factor scores produced from the first principal component are all positive, 

more affirmative responses to the questions in Table 3.1 lead to higher energy insecurity scores 

being produced. The energy insecurity index value they receive 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 is equal to the 

absolute difference between the individual energy insecurity score received 𝑠𝑖,𝑝𝑐𝑎 and 0. 

Therefore, the extent of energy insecurity experienced by households increases as the value of the 

PCA energy insecurity score increases.    

As stated earlier, the energy insecurity scores produced from the application of PCA range 

in value from 0 to 2.2865. Of the 5,686 households included in our sample, 4,442 received an 

energy insecurity score of zero (𝑠𝑖,𝑝𝑐𝑎 = 0) indicating they did not respond affirmatively to any of 

the questions included in Table 3.1. As a result, these households are considered completely 
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“Energy Secure.”  The remaining households received energy insecurity score, 𝑠𝑖,𝑝𝑐𝑎 that ranged 

in value from 0.3542 to 2.22865 indicating progressive levels of energy insecurity. Households 

are divided up based on the energy insecurity score they received. Results presented in Figure 3.2.   

 
Figure 3.2 Energy Insecurity Index Results (PCA)  

 Based on the factor scores produced in the first principal component from the application 

of PCA (see Table 3.20), we can see the majority of households who responded affirmatively to 

any of the questions included in Table 3.1 responded affirmatively to only one question, which 

results in an energy insecurity score that ranges in value from 0.354 to 0.410. Of the households 

included in our sample, 290 households received energy insecurity scores than ranged in value 

from 0.720 to 0.815, which indicates affirmative responses to either two or three questions. Only 

four households received an energy insecurity score greater than 2.25. None of the households 

received an energy insecurity score greater than 2.682, which indicates none of the households 

included in our sample responded in the affirmative to all seven questions.  

DICHOTOMOUS RASCH MODEL RESULTS 

The Dichotomous Rasch model analysis was based on all seven questions that are believed to 

affect the extent and severity of household energy insecurity experienced across the United States. 
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The results from the application of the Dichotomous Rasch Model are outlined below in Tables 

3.23, 3.24, and 3.25. Table 3.23 presents summary statistics on the responses by households to 

each of the seven questions listed in Table 3.1. 

Table 3.23 Summary Statistics Reponses 

Question Variable Mean St. Dev. Minimum Maximum 

1 Reduce 0.141 0.348 0 0 

5 HVAC 0.063 0.244 0 0 

2 Unsafe 0.061 0.239 0 0 

3 Notice 0.059 0.236 0 0 

4 No Fuel 0.025 0.157 0 0 

7 Days 0.016 0.125 0 0 

6 Medical 0.014 0.119 0 0 

Observations N = 5,686 

 

The questions in Table 3.23 are listed in decreasing order of the proportion of households who 

responded affirmatively to them. Approximately 14% of the households surveyed responded 

affirmatively to having reduced or forgone expenditures on other basic household necessities such 

as medicine or food, in order to pay their home energy bill. Only 0.14% of households responded 

affirmatively to having sought medical attention because their home was too hot or too cold. 

Approximately the same percentage of household surveyed responded affirmatively to having kept 

temperatures at an unsafe level (Question 2) and having received a disconnection notice sometime 

over the past twelve months (Question 3).  

Table 3.24 below presents the “raw scores” for households included in our sample. 

Table 3.24 Raw Scores for Questions  

Raw Score Number of Households Percent 

0 4,442 78.12 

1 705 12.40 

2 290 5.10 

3 146 2.57 

4 77 1.35 

5 22 0.39 
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6 4 0.07 

7 0 0 

 

A household’s raw score is equal to the number of questions in Table 3.1 the household responded 

affirmatively to. Analysis of the data revealed 4,442 households did not respond affirmatively to 

any of the questions. As a result, these households received a raw score of zero. No households 

responded affirmatively to all seven questions. As a result, no households in our sample received 

a raw score of seven. Approximately 12.4% of the households surveyed responded affirmatively 

to at least one question, which generates a raw score of one for these households. Only four 

households responded affirmatively to six of the seven question listed in Table 3.1. These 

households received a raw score of six. The results from estimating equation (14) via conditional 

maximum likelihood are presented in Table 3.25. 

Table 3.25 Estimated Severity Level of the Energy Insecurity Questions 

Question Item 
No. of Households 

Responded “Yes” 

Item 

Calibration 
St. Error 

Q1 Reduce 802 3.08 0.08 

Q5 HVAC 363 4.38 0.11 

Q2 Unsafe 347 4.44 0.10 

Q3 Notice 338 4.48 0.10 

Q4 No Fuel 143 5.65 0.13 

Q7 Days 91 6.20 0.15 

Q6 Medical 81 6.34 0.15 

Observations N= 5,686    

 

The questions (i.e., items) are listed in Table 3.25 according to their estimated level of severity. 

The severity estimates of each question are listed in column four, which is labeled as “Item 

Calibration.” An individual item’s calibration represents the point on the energy insecurity scale 

where there is at least a 50% chance that any given household will respond “yes” to the specific 

item (Bickel et al. 2000). Households with higher values on the scale than a particular item’s 
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calibration score have more than a 50% chance of responding affirmatively to the individual item, 

while households with lower values on the energy insecurity scale have less than a 50% chance of 

responding affirmatively to the item in question.  

 Based on the Dichotomous Rasch model results, reducing or forgoing expenditures on 

other household necessities such as food and/or medicine to pay energy bills (Question 1) appears 

to be the least difficult item for households to affirm. Seeking medical attention because the home 

was too hot or too cold (Question 7) appears to be the most difficult item to confirm. These results 

make intuitive sense.  Item clumping seems to be present between some questions. Questions 2, 

and 5 are grouped closely near 4.4 along the latent energy insecurity scale. This result is not 

surprising considering an inability to use one’s main source of heat or air conditioning because 

equipment was broken (Question 5) likely leads to indoor air temperatures feeling unsafe or 

unhealthy.  

 The central function of the Rasch model is to assign each responding household a value on 

the energy insecurity scale. The energy insecurity scale is constructed from the individual item 

calibrations produced (see column 4 in Table 3.25). It ranges in value from the lowest level of 

energy insecurity experienced (the item calibration corresponding to Question 1) to the highest 

level of energy insecurity experienced (the item calibration corresponding to Question 6). The 

household’s scale value is based on the number of questions the household responded affirmatively 

to (i.e., a count of the number of affirmative responses to the questions included in the scale). The 

energy insecurity scale constructed from the item calibrations in Table 3.25 is presented below in 

Figure 3.3. 
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Energy Secure  Item Severity 
Number of 

Households  

    

  0 4,442 

    

    

    

    

    

  3.08 705 

    

  4.38 290 

  4.44 146 

  4.48 77 

    

  5.65 22 

    

  6.20 4 

Energy Insecure  6.34 0 

 

Figure 3.3 Energy Insecurity Scale 

There are no excessively large gaps between less severe questions and more severe 

questions. The gap between most questions is less than one logit. The difference between the 

easiest “least severe” question (Question 1) and the hardest “most severe” question (Question 6) 

is approximately 3.26 logits. The majority of the households (4,442 of the 5,686 households) 

surveyed in the 2015 RECS identify as being “energy secure.” These households received an 

energy insecurity score of zero. 705 households surveyed received an energy insecurity score of 

3.08. The remaining households received an energy insecurity score greater than 3.08, which 

places them at the more severe end of the energy insecurity scale.  

Using the household scores produced from the application of the Dichotomous Rasch 

model it is possible to identify household level characteristics of the most energy insecure 

households. We consider the “most energy insecure” households to be those who receive an energy 
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insecurity score of 5.65 or greater, given these are the households who respond affirmatively to 

more than half of the questions included in the 2015 RECS. 

Table 3.26 Household Characteristics of Energy Insecure Households 

Household Characteristic Mean 
Mean All 

Households 

Received Energy Assistance 19% 0.06 

Median Income ($) 37,692 62,371 

Employed 27% 0.48 

Post-Secondary Education 31% 0.69 

Renter 54% 0.69 

Number of Children 0.81 0.61 

Head of Household Hispanic 38% 0.13 

Head of Household African American 23% 0.10 

Single Family Detached Home 62% 0.66 

Single Family Attached Home 12% 0.08 

Mobile Home 23% 0.05 

Apartment 4% 0.21 

Observations 26 N = 5,686 

 

Several significant difference exist between households who are severely energy insecure and all 

other household types. First and foremost, nearly 20% of the households who are considered to be 

severely energy insecure applied for and received home energy assistance to help restore heating 

and/or cooling in their home. Compared to all other household types, severely energy insecure 

households are five times more likely to reside in mobile homes.  

The median average income of severely energy insecure households is about half the 

average income of all other households. A larger percentage of households who are severely 

energy insecure are headed by individuals who are Hispanic or African American. There is very 

little difference in the number of children who live in severely energy insecure households 

compared to all other household types. Approximately the same percentage of severely energy 

insecure households and all other households live in single family detached homes.   
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To create an energy insecurity index, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 for each household 𝑖, we choose two 

different threshold values for 𝜏. The first threshold value is 𝜏 =  zero. No affirmative responses to 

the questions included in Table 3.1 is an indication that the household has not faced an energy 

service-related hardships over the past month and therefore, is fully energy secure. The energy 

insecurity index value for each household, assuming the threshold value of 𝜏 = 0 is calculated as 

follows: 

(19) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 𝑠𝑖 − 0. 

Here, just as before 𝑠𝑖 is equal to the energy insecurity score received by the household from the 

Rash model. Possible values for 𝑠𝑖 ∈  (0, 3.08, 4.38, 4.44, 4.48, 5.65, 6.20, 6.34).  In this case, the 

energy insecurity index 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 can take on one of the eight different values included in the 

set. A household’s energy insecurity index value is equivalent to the numerical value associated 

with its placement along the energy insecurity scale.   

 The normalized energy insecurity index 𝑑𝑖 under the first case where the threshold value 

of 𝜏 = 0, is calculated as follows:  

(20) 𝑑𝑖 =
𝑠𝑖−0

6.34−0
 if 𝑠𝑖 > 0; 𝑑𝑖 = 0 if 𝑠𝑖 ≤ 0.   

Under the first case, all the values of 𝑠𝑖 ≥ 0. Therefore, the normalized energy insecurity index 

ranges from 0 to 1. Table 3.27 below lists the results. 

Table 3.27 Normalized Energy Insecurity Index (𝜏 = 0)  

Questions Responded 

Affirmatively To  
𝑠𝑖 𝑑𝑖 

No. of 

Households 

0 0 0 4,442 

1 3.08 0.49 705 

2 4.38 0.69 290 

3 4.44 0.70 146 

4 4.48 0.71 77 

5 5.65 0.89 22 

6 6.20 0.98 4 
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7 6.34 1 0 

Observations N = 5,686 

 

Using the formula in equation (16) and letting N=5,686 we can aggregate the index values in Table 

3.27 to determine the proportion of households who are energy insecure, the energy insecurity gap 

(i.e., depth of household energy insecurity being experienced), and the severity of energy 

insecurity experienced.  

The proportion of households who identify as energy insecure is equal to  

(21) 𝑑0 =
∑ (𝑑𝑖)05,686

𝑖=1

5,686
=

1,244

5,686
= 0.2188.  

When the threshold value 𝜏 = 0, the energy insecurity gap is equal to  

(22) 𝑑1 =
∑ (𝑑𝑖)15,686

𝑖=1

5,686
=

725.97

5,686
= 0.1277 

and the severity of energy insecurity is equal to  

(23) 𝑑2 =
∑ (𝑑𝑖)25,686

𝑖=1

5,686
=

605.35

5,686
= 0.1065.  

Overall, we find approximately 22% of the households surveyed in the 2015 RECs identify as 

being energy insecure. The average household gap in energy insecurity is about 12%, which 

indicates we can expect 12% of all households, on average, to fall below the energy security 

threshold. Households who fall below the energy security threshold can expect to be 11% more 

energy insecure than households who are above the energy security threshold.  

 The second threshold value of 𝜏 we choose is based on the threshold value of 𝜏 used to 

create the food insecurity index (FII) (Hamilton et al. 1997; Bickel et al. 2000; Nord 2003; 

Gundersen 2008; Balistreri 2016). To estimate a food insecurity index value for households living 

across the United States, the USDA created a food security scale from responses to 18 
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items/questions included in the Current Population Survey (CPS) (Hamilton et al. 1997; Bickel et 

al. 2000). The severity of each question was estimated using the Rasch model (Hamilton et al. 

1997; Bickel et al. 2000). The range of the severity parameter estimates (i.e., difference between 

the most severe question and least severe question) determines the range of food insecurity on the 

scale. 

 Based on the Rasch model results, the USDA considers households to be “food secure” if 

they respond affirmatively to three or fewer questions (Nord 2003; Balistreri 2016). The threshold 

value of 𝜏 in this case corresponds to severity parameter estimate for the second most severe 

question in the scale (Nord 2003; Balistreri 2016). The FII for each household 𝑖 is calculated as 

the difference between the severity estimate for the number of questions to which the household 

responds affirmatively and the severity parameter estimate of the second most severe survey 

question.  

 Using a similar approach, for the second energy insecurity index we created using the 

Rasch model results, we consider households to be “energy insecure” if and only if they respond 

affirmatively to two or more questions included in section L of the 2015 RECS (see Table 3.1). In 

this case the threshold value of  𝜏 is assumed to be equal to the severity parameter estimate of the 

first question (Q1 Reduce) which is equal to 3.08. The energy insecurity index value for each 

household 𝑖 is now equal to  

(24) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 𝑠𝑖 − 3.08 

for all values of 𝑠𝑖 > 3.08. The energy insecurity index value received can now take on one of 

seven values such that 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖  ∈ ( 0, 1.30, 1.36, 1.40, 2.57, 3.12, 3.26).  

The normalized energy insecurity index 𝑑𝑖 under the second case when the threshold value 

of 𝜏 = 3.08, is calculated as follows: 
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(25) 𝑑𝑖 =
𝑠𝑖−3.08

6.34−3.08
 if 𝑠𝑖 > 3.08; 𝑑𝑖 = 0 if 𝑠𝑖 ≤ 3.08.   

Table 3.28 lists the results.  

Table 3.28 Normalized Energy Insecurity Index (𝜏 = 3.08)    

Questions Responded 

Affirmatively To  
𝑠𝑖 𝑑𝑖 

No. of 

Households 

0 0 0 4,442 

1 3.08 0 705 

2 4.38 0.40 290 

3 4.44 0.42 146 

4 4.48 0.43 77 

5 5.65 0.79 22 

6 6.20 0.96 4 

7 6.34 1 0 

Observations N = 5,686 

 

Again, the normalized energy insecurity index again ranges from 0 to 1. The proportion of 

households who identify as energy insecure is equal to  

(26) 𝑑0 =
∑ (𝑑𝑖)05,686

𝑖=1

5,686
=

539

5,686
= 0.0948.  

When the threshold value 𝜏 = 3.08, the energy insecurity gap is equal to  

(27) 𝑑1 =
∑ (𝑑𝑖)15,686

𝑖=1

5,686
=

231.65

5,686
= 0.0407 

and the severity of energy insecurity is equal to  

(28) 𝑑2 =
∑ (𝑑𝑖)25,686

𝑖=1

5,686
=

103.75

5,686
= 0.0182.  

 Changing the threshold value of 𝜏 to 3.08, that is considering households as energy secure 

if they respond affirmatively to either no questions or only one question, the percentage of 

households who identify as energy insecure decreases by over half. Rather than 22% of households 

identifying as energy insecure, now only 10% of the households identify as energy insecure. Our 

results now indicate only 4% of households will fall below the energy security threshold, and those 
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that do are only 2% more energy insecure than households who on average are above the energy 

security threshold. 

 Because the severity parameter estimates for some questions (e.g., Question 5 [HVAC], 

Question 2 [Unsafe], and Question 3 [Notice]) are difficult to differentiate from one another, 

following the literature on food security (Hamilton et al. 1997; Bickel et al. 2000) we combine 

household responses to combinations of questions with similar severity parameter estimates to 

create four mutually exclusive energy security categories. The severity parameter estimates 

produced from the Dichotomous Rasch model are determined by the percentage of households 

who respond positively to the questions. Therefore, severity estimates for individual questions that 

are statistically indistinguishable from one another, are likely being responded to in the affirmative 

by approximately the same number of households in our sample. 

 Under the method of partitioning described above, households are placed into one of four 

groups. Households who respond affirmatively to none or only one question are considered “High 

Energy Secure” and are assigned an energy insecurity index value = 1 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1). 

Households who respond affirmatively to two, three, or four questions are considered “Marginally 

Energy Secure” and are assigned an energy insecurity index value = 2 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2). 

Households who respond affirmatively to five questions are considered “Low Energy Secure” and 

are assigned an energy insecurity index value = 3 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3). Lastly, households who 

respond affirmatively to six or seven questions are considered “Very Low Energy Secure” are 

assigned an energy insecurity index value = 4 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4).   

 The energy insecurity index values correspond to different areas along the energy 

insecurity scale. Figure 3.4 below provides a graphical representation of this method of partitioning 

households into different groups.  



   

 

153 

 

Energy Secure  Item Severity 
Number of 
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Figure 3.4 Energy Insecurity Scale Results with Four Groups 

Because responses to either none or zero questions indicate the household is “High Energy Secure” 

(i.e., not energy insecure) the threshold value of 𝜏 is as before set equal to 3.08. The energy 

insecurity score the household receive is still equal to the difference between their exact placement 

along the scale and the threshold value of 𝜏 = 3.08. The energy insecurity index value 

(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖) however, is no longer equal to difference between the energy insecurity score 𝑠𝑖 and 

the threshold value of 𝜏 = 3.08.  

 Instead, four different energy insecurity index values 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 are assigned to 

households who have scores 𝑠𝑖 within a certain range. If the energy insecurity score 𝑠𝑖 ≤ 3.08, 

then 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1. If the energy insecurity score is within the range  3.08 < 𝑠𝑖 ≤ 4.48, then 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2. If the energy insecurity score is within the range 4.48 < 𝑠𝑖 ≤ 5.65, then 
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𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3, and if the energy insecurity score is within the range 5.65 < 𝑠𝑖, then 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4. Table 3.29 below provides an outline of these results. 

Table 3.29 Normalized Energy Insecurity Index (𝜏 = 3.08) Four Energy Security Categories 

Identified 

Questions 

Responded 

Affirmatively To  

𝑠𝑖 𝑑𝑖 
No. of 

Households 
𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 Category 

0 0 0 4,442 
1 High Energy Secure 

1 3.08 0 705 

2 4.38 0.40 290 

2 Marginally Energy Secure 3 4.44 0.42 146 

4 4.48 0.43 77 

5 5.65 0.79 22 3 Low Energy Secure 

6 6.20 0.96 4 
4 Very Low Energy Secure 

7 6.34 1 0 

Observations N = 5,686 

 

 When only four energy insecurity index values are considered, because the individual 

energy insecurity scores (𝑠𝑖) of the household’s remain the same, the normalized energy insecurity 

𝑑𝑖 also remains the same. Therefore, the extent, depth, and severity of energy insecurity remains 

the same as before. 10% of the households identify as either Marginally, Low, or Very Low Energy 

Secure. Only 4% of households are expected to fall below the energy security threshold. Those 

households that do are approximately 2% more energy insecure than households who on average 

are above the energy security threshold. 

3.7 DISCUSSION OF INDEX RESULTS 

Because energy insecurity is unobserved, latent trait we examine the index results above in terms 

of their ability to achieve content, construct, and convergent validity. By examining the validity of 

the results, we can evaluate their ability to provide a consistent and accurate representation of the 

experience of being energy insecure. An index that has content, construct, and convergent validity 
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is preferred to an index that does not. Table 3.30 outlines the results from each of the energy 

insecurity index measures applied above. The number and percentage of households who identify 

as being “Energy Insecure,” according to each individual index measure are listed in the third 

column. 

Table 3.30 Energy Insecurity Index Results: Number of Households in Study Sample (N=5,686) 

Identified as Energy Insecure  

Energy Insecurity 

Metric 
Description 

Number of 

Households (%) 

Energy Assistance 
Applied for and Received Home Energy 

Assistance (LIHEAP) 
345 (6%) 

Expenditure Approach 

> 10% of Income 487 (6%) 

> 6% of Income 999 (18%) 

Cluster Analysis 

High Energy Secure 4,832 (85%) 

Marginally Energy Secure 634 (11%) 

Low Energy Secure 144 (3%) 

Very Low Energy Secure 76 (1%) 

Principal Components 

Analysis 

Energy Insecurity Score 

𝑠𝑖,𝑝𝑐𝑎 > 0 
1,244 (22%) 

Dichotomous Rasch 

Model (𝜏 = 0) 
Energy Insecurity Scale Value > 0 1,244 (22%) 

Dichotomous Rasch 

Model (𝜏 = 3.08) 
Energy Insecurity Scale Value > 3.08 539 (9%) 

Dichotomous Rasch 

Model Four Groups 

High Energy Secure 5,147 (91%) 

Marginally Energy Secure 513 (8.53)% 

Low Energy Secure 22 (0.4%) 

Very Low Energy Secure 4 (0.07%) 
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A quick comparison of the results in Table 3.29 reveals that the number of households who 

identify as “Energy Insecure” changes drastically depending on which index metric is used. For 

example, when using the expenditure approach (> 6% of Income) to identify energy insecure 

households, nearly three times as many households identify as being “Energy Insecure” than when 

the receipt of home energy assistance is used to identify energy insecure households. Furthermore, 

the number of households who identify as “Energy Insecure” because they spend more than 6% of 

the income of energy/fuel is nearly double that of the number of households who identify as 

“Energy Insecure” because they spend more than 10% of their income on energy/fuel.  

The cluster analysis results suggest nearly 15% of the households surveyed in the 2015 

RECS identified as being either low, very low, or marginally energy secure, while 85% identify 

as being highly (i.e., completely) “Energy Secure.” Households who identify as low, very low, or 

marginally energy secure are all considered to be energy insecure to some degree. Very low energy 

secure households are considered the most energy insecure. Only 76 households in our sample 

were identified as “Very Low Energy Secure” households. While twice as many households were 

identified as “Low Energy Secure” households, the two together (144 households Low Energy 

Secure households and 76 Very Low Energy Secure households) represent roughly only half the 

number of households who are identified as being “Energy Insecure” when the receipt of home 

energy assistance is used to identify energy insecure households. 

 The results from the application of cluster analysis are somewhat consistent with the 

results from the application of PCA and the Dichotomous Rasch Model. However, the application 

of PCA and the Dichotomous Rasch model suggest more households in our sample (22% of those 

surveyed when the threshold value of 𝜏 is set equal to 0) identify as being “Energy Insecure.” 

When the threshold is changed to 3.08, the number of households who identify as being “Energy 
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Insecure” according to the Rasch model decreases by more than half; an indication that the choice 

of threshold has an effect on which households are considered “Energy Insecure” and which 

households are considered “Energy Secure.” As stated earlier, one of the objectives of this chapter 

is to identify a single, universally accepted metric that can be used to determine if households are 

energy secure or energy insecure. To determine which of the preceding index measures should be 

used we examine the “validity” each index measure.   

The general concept of validity is defined as "the degree to which a test measures what it 

claims, or purports, to be measuring" (Brown, 1996, p. 231). Therefore, an index should be 

considered “valid” if it measures the underlying construct it was designed to measure, which in 

our case is a household’s true level of energy insecurity (Bucher 2014, DeVellis 2003).58 In order 

for the energy insecurity index measures we estimate to be considered valid they must provide a 

consistent and accurate representation of what it means for a household to be energy insecure. That 

is, they must provide insight into whether or not a household is able to maintain consistent physical 

and economic access to a sufficient, safe, and affordable energy supply to meet each household 

member’s most basic daily energy service needs.  

To assess the validity of the different index measures outlined above, we consider how they 

perform in terms of achieving: 1) Content Validity; 2) Construct Validity; and 3) Convergent 

Validity. Content validity is a pre-requisite for both construct and convergent validity 

(Aravamudhan and Krishnaveni 2015). Therefore, content validity should be considered first when 

determining whether or not an index measure for household energy insecurity is “valid.” Content 

validity refers to how well an instrument (i.e., a test or set of survey questions) measures the 

                                                 
58 For example, a math test (instrument) would be considered valid if it accurately measured a student’s mathematical ability. 
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theoretical construct the instrument intends to measure. For example, how well does a math test 

measure a student’s mathematical ability. 59 Content validity is a critical step in the development 

of a new measurement scale, as it can help to establish a mechanism (e.g., specific set of survey 

questions) that links an abstract, latent concept, such a household’s level of energy insecurity, with 

observable traits and measurable indicators (Wynd, Schmidt, and Schaefer 2003). To test the 

content validity of an index measure, typically recognized subject matter experts are assigned to 

evaluate whether or not the items used to construct the specific index provide an accurate 

representation of the underlying, latent construct (Lawshe 1975; Aravamudhan and Krishnaveni 

2015). Items are evaluated by experts based on their relevance and representativeness of the latent 

construct (Lawshe 1975; Beck and Gable, 2001; Aravamudhan and Krishnaveni 2015). It is 

assumed that the higher the rating of relevance and representativeness of the items provided by the 

expert, the higher the content validity of any single item (Aravamudhan and Krishnaveni 2015).  

Using each experts rating of the items, a content validity index and content validity ratio 

for each individual item 𝑗 from the subset of items can be constructed. The content validity index 

for each individual item 𝑗 refers to the percentage of experts who rate the item as both relevant and 

representative. Items are considered relevant if they provide an appropriate depiction of the 

underlying construct. For example, questions related to reading comprehension would not be 

considered relevant for a mechanism designed to measure mathematical ability. Items are 

considered representative if they provide an overall depiction of the underlying construct. For 

example, all items on a math test related to addition would be representative of a student’s ability 

to add numbers.  

                                                 
59 Other examples might include how well an IQ test measures a person’s true intelligence or the Test of Economic Literacy (TEL) 

which is a nationally-normed and standardized test for measuring the economic understanding of U.S. high school students 

(Walstad, Rebeck, and Butters 2013).  
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A content validity index value of 1 is considered evidence of content validity if fewer than 

five experts are examining an item (Polit, Beck, and Owen 2007). A content validity index value 

of .8 should be considered proof of an item’s content validity if five or more experts are evaluating 

the item (Polit, Beck, and Owen 2007). The content validity of an individual item 𝑗 can also be 

judged according to its content validity ratio (CVR) (Lawshe 1975). The CVR for an individual 

item 𝑗 is calculated as follows:  

(29) 𝐶𝑉𝑅𝑗 =
𝑁𝑒−(𝑁

2⁄ )

(𝑁
2⁄ )

 

where 𝑁𝑒 is the number of experts who agree that the individual item is “essential,” and 𝑁 is the 

total number of experts (Lawshe 1975). Content validity ratios range in value from -1 to +1 

(Lawshe 1975). A negative CVR value indicates fewer than half of the experts rated the item as 

“essential,” while a positive CVR values indicates more than half the experts rated an item as 

“essential” (Lawshe 1975). While the CVR and content validity index provide two statistical 

approaches to examine the content validity of questions from the 2015 RECS we used to construct 

the different energy insecurity indices presented in Table 3.30, access to an expert panel was not 

feasible for our study.  

Therefore, instead of using an expert panel, we examine the content validity of the 

individual questions used to construct each index in terms of their ability to provide the most 

accurate representation of the experience of being energy insecure. Recall from Section 3.1, that a 

state of being energy secure is defined as a state of having consistent physical and economic access 

to a sufficient, safe, and affordable energy supply to meet the basic daily energy service needs of 

members of the household. Based on this definition, a state of being energy insecure refers to a 

state of not having consistent physical and economic access to a sufficient, safe, and affordable 
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energy supply to meet basic daily energy service needs. For an energy insecurity index measure to 

have content validity, each of the items used to construct it must be relevant and provide an 

accurate representation of a household’s inability to maintain both physical and economic access 

to a sufficient, safe, and affordable energy supply to meet daily energy service needs.  

The items used to construct the energy insecurity index for the receipt of home energy 

assistance and the expenditure approach only refer to the household’s ability to maintain consistent 

economic access to an affordable energy supply to meet daily household energy service needs. 

Thus, the questions used to construct these two index measures for household energy insecurity 

do not provide insight into the sufficiency or safety of the household’s energy supply. Nor do they 

provide insight into whether or not adequate energy service needs were met. Rather, they focus 

only on whether or not households struggled to afford their home energy bills. Therefore, we infer 

that the content validity of the expenditure approach and receipt of home energy assistance as a 

measure of energy insecurity is inadequate.  

 Cluster analysis, PCA, and the Dichotomous Rasch model are all applied to household 

responses to the set of questions listed in Table 3.1. These questions cover a wide range of 

circumstances that could impact a household’s ability to maintain consistent physical and 

economic access to a sufficient, safe, and affordable energy supply. For example, Question 2 

(Unsafe) asks households to report on whether or not they have kept their home at a temperature 

they felt was unsafe or unhealthy. Households who respond affirmatively to this question are 

unable to consistently maintain access to a safe energy supply.  

 Question 1 (Reduce) and Question 3 (Notice) relate to the affordability of a household’s 

energy supply, Question 4 (No Fuel), Question 5 (HVAC), and Question 7 (Days) relate to the 

sufficiency of the household’s energy supply, and Question 6 (Medical) relates to the safety of the 
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household’s energy supply. Together, responses to these questions cover the entire construct of 

household energy insecurity. That is, a household’s inability to maintain consistent physical and 

economic access to a sufficient, safe, and affordable energy supply to meet basic daily household 

energy service needs. It is important to note that questions from prior iterations of the RECS have 

also been used to construct an energy insecurity index (see Murray and Mills 2012). We consider 

this an indication that the questions contain at least some content validity.  

In addition to content validity, an index is assumed to have construct validity if it accurately 

measures the theoretical, unobservable construct or trait it intends to measure. In our case, 

construct validity can be used to assesses how each individual energy insecurity index produced 

corresponds to the theoretical construct of household energy insecurity. Given energy insecurity 

is an unobservable (i.e., a latent household trait) examining the construct validity of the different 

index measures is challenging - as it is difficult to determine just how accurately each energy 

insecurity index gauges the extent and severity of the experience of being truly energy insecure.  

To test the construct validity of the different index results listed in Table 3.30 we use a 

multitrait-multimethod matrix (MTMM), which was first proposed by Campbell and Fiske (1959). 

An MTMM is a matrix of correlation coefficients that can be used to assess the construct validity 

of different instruments that are designed to measure the same unobserved trait (Campbell and 

Fiske 1959; Bagozzi, Yi, and Phillips 1991). If measurement techniques for multiple unobserved 

traits are being examined, then the diagonal of an MTMM is a measure of the reliability of each 

technique (Campbell and Fiske 1959; Trochim 2006).  

In order for construct validity to be achieved, both convergent and discriminant validity 

must also be achieved (Campbell and Fiske 1959; Trochim 2006). Discriminant validity is the 

extent to which concepts that should not be theoretically related to one another are in fact, unrelated 
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to each other (Campbell and Fiske 1959; Trochim 2006). Convergent validity is a subtype of 

construct validity, that can be used to assess whether or not the individual index measures converge 

to the same results. Indices that are assumed to measure the same construct should converge to the 

same results when applied to a single data set.  

Achieving convergent validity implies construct validity has also been achieved (Bishop 

and Boyle 2019). If the results produced from two different index measures are statistically 

indistinguishable, then this is evidence of convergent validity (Bishop and Boyle 2019). 60We can 

assess both discriminant and convergent validity using the MTMM (Trochim 2006). If two indices 

are presumed to measure the same construct/trait, then they should be related to each other and a 

positive correlation between them is expected. 61 If two indices are not designed to measure the 

same construct/trait, then they should not be related to one another and a negative correlation 

between them is expected. 

All of the indices included in Table 3.30 are designed to measure the underlying 

construct/trait of household energy insecurity. Therefore, a positive correlation among each index 

measures is expected (Campbell and Fiske 1959). Because we are interested in measuring only 

one unobserved trait, a household’s true level of energy insecurity, the MTMM used for our study 

is simply a square, symmetric matrix of correlation coefficients. Table 3.31 lists the correlation 

coefficients for the different index measures produced from the MTMM. 

                                                 
60 It is important to note however, that convergent validity between two indices does not necessarily imply that the indices provide 

a valid measure of household energy insecurity. It is possible for two or more indices to be statistically indistinguishable from 

another, but produced biased estimates of the underlying construct they intend to measure (Bishop and Boyle 2019). Similarly, 

finding a statistically significant difference between the results of two competing indices does not provide conclusive evidence that 

one or both of the indices are invalid (Bishop and Boyle 2019). 
61 For example, one way to examine the construct validity of an aptitude test (i.e., IQ test) would be to see how correlated the 

outcomes on the aptitude test are with outcomes from another, similar test believed to measure aptitude.  
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Table 3.31 Correlation Coefficients: Energy Insecurity Index Measures  

 Exp. >10% Exp. >6% Energy 

Assistance 

Cluster 

Analysis 

PCA Rasch 

𝜏 = 0 

Rasch 

𝜏 = 3.08 

Rasch  

4 Groups 

Exp.  

> 10 % 

1.00 - - - - - -  

Exp.  

> 6% 

0.663 1.00 - - - - -  

Energy 

Assistance 

0.117 0.165 1.00 - - - -  

Cluster 

Analysis 

0.104 0.134 0.131 1.00 - - -  

PCA 0.205 0.223 0.201 0.479 1.00 - -  

Rasch 

𝜏 = 0 

0.198 0.225 0.201 0.504 0.922 1.00 -  

Rasch 

𝜏 = 3.08 

0.180 0.189 0.164 0.339 0.894 0.756 1.00  

Rasch  

4 Groups 

0.178 0.187 0.160 0.339 0.884 0.751 0.998 1.00 

 

As expected, each of the index measures we examine is positively correlated with the other index measures. The index results 

from both of the Rasch models are highly correlated with the index results from PCA. If an index measure has construct validity (i.e., 

provides an accurate representation of what it means to be energy insecure), then it should in practice, behave the way we anticipate it 

to conceptually. That is, the index should be positively related to variables that are positively related to energy insecurity and negatively 

related to variables that are negatively related to energy insecurity. 
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Because energy insecurity refers to a state of not having consistent access adequate energy 

services, we theoretically anticipate an energy insecurity index measure will be negatively related 

to median household income. In addition, we anticipate, based on prior research (see Drehobl and 

Ross 2016) that the energy insecurity index results will be positively correlated with Hispanic and 

African American households and households with more children (Hernandez 2016). Lastly, we 

assume energy insecurity will be negatively related to home ownership, as households who are 

owners typically have higher incomes making them less likely to struggle to afford energy services.  

Table 3.32 below presents a set of correlation coefficients between median household 

income and the different energy insecurity index results from Table 3.30.  

Table 3.32 Correlation Coefficients: Energy Insecurity Indices and Household Characteristics 

 
Median 

Income  

African 

American 
Hispanic Ownership Children 

Exp. Approach (10%) -0.367 0.108 0.023 -0.111 0.032 

Exp. Approach (6%) -0.506 0.150 0.032 -0.164 0.016 

Energy Assistance -0.196 0.075 0.031 -0.091 0.056 

Cluster Analysis -0.180 0.080 0.058 -0.120 0.061 

PCA -0.258 0.136 0.098 -0.136 0.110 

Rasch Model (𝜏 = 0) -0.282 0.148 0.109 -0.160 0.118 

Rasch Model (𝜏 = 3.08) -0.202 0.091 0.078 -0.106 0.075 

Rasch Model 4 Groups -0.200 0.088 0.078 -0.105 0.073 

Observations 5,686 

Overall, we find median household income is negatively related to household energy insecurity. 

The correlation is strongest between households who spend more than 6% of their income on 

energy/fuel. Each of the energy insecurity indices is positively related to households who identify 

as African-American or Hispanic, and the number of children under the age of 16 living in the 

home. The energy insecurity indices are all negative correlated with home ownership. All of these 

relationships are consistent with conceptual expectations. The observed expected relationships are 

stronger when the Rasch model results are used to classify households as “Energy Secure” or 

“Energy Insecure.”
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 Convergent validity can also be tested by examining whether or not the different index measures we produce identify the same 

households as being energy insecure. Table 3.33 below provides information on the number of households in our study sample (N=5,686) 

who identify as being “Energy Insecure” according to each of the different index measures we estimate. Each cell in Table 3.33 can be 

interpreted as the number of households who identify as “Energy Insecure” across the two corresponding measures of energy insecurity. 

For example, using the expenditure approach, assuming a 10% threshold beyond which energy/fuel expenditures cease to be affordable, 

and the receipt of home energy assistance to identify energy insecure households results in the same 74 households being identified as 

energy insecure. 

Table 3.33 Number of Households in Study Sample (N=5,686) Identified as Energy Insecure Using Each of the Different Energy 

Insecurity Metrics 

 Exp. >10% Exp. >6% 
Energy 

Assistance 

Cluster 

Analysis 
PCA 

Rasch 

𝜏 = 0 

Rasch 

𝜏 = 3.08 

Rasch 

4 Groups 

Exp. 

> 10 % 
487 - - - - - -  

Exp. 

> 6% 
487 999 - - - - -  

Energy 

Assistance 
74 146 345 - - - -  

Cluster 

Analysis 
167 307 135 854 - - -  

PCA 227 409 183 854 1,244 - -  

Rasch 

𝜏 = 0 
227 409 183 854 1,244 1,244 -  

Rasch 

𝜏 = 3.08 
132 217 99 485 539 539 539  
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Rasch 

4 Groups 
132 217 99 485 539 539 539 539 

 

The application of PCA and the Dichotomous Rasch model both identify the same 1,244 households in our sample as being energy 

insecure. However, the “weights” applied to the subset of questions listed in Table 3.1 and used to generate the different index results, 

vary drastically from one another. In fact, they are almost the exact opposite of one another. The “weights” produced from the application 

of the Dichotomous Rasch model are interpreted as severity parameter estimates of the individual questions. The more difficult/severe 

the question, the higher the severity parameter estimate associated with the specific question. Severity parameter estimates are added 

together to produce energy insecurity scores for each individual household i. A household’s energy insecurity score determines its energy 

insecurity status. Higher energy insecurity scores are assumed to be associated with higher levels of household energy insecurity. 

The application of PCA also produces a set of “weights” for each of the individual questions/items 𝑗. These weights are 

interpreted as factor scores. Similar to the Dichotomous Rasch model, the factor scores are combined together to produce an energy 

insecurity score for each household 𝑖, which is used to determine a household’ energy insecurity status. However, the “weights” produced 

from the application of PCA do not provide an estimate of the severity of question to which they correspond. Instead, the weights are 

simply correlation coefficients. Therefore, the weights measure how household responses to the individual questions vary with one 

another. Higher/larger weights imply more households responded affirmatively to the same question. 
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  Similarly, the Rasch model results identify the same number of households (539 

households) as being energy insecure when the threshold value of 𝜏 = 3.08 was used and the 

households are divided into four different insecurity categories. This result is a function of the fact 

that the threshold value of 𝜏 = 3.08 does not change between the two index measures. The only 

difference between the two index measures is the number of energy insecure categories identified. 

Similarly, 539 of the 1,244 households identified as energy insecure when the threshold value of 

𝜏 = 0 was used also identify as energy insecure when the threshold value of 𝜏 = 3.08 was used 

and/or the households are divided into four different energy insecurity groups.   

Cluster analysis identifies only 220 households as energy insecure (i.e., low energy secure 

or very low energy secure). Cluster analysis is applied to responses by households to the same 

questions as PCA and the Dichotomous Rasch model. The application of cluster analysis identifies 

854 of the 1,244 households identified as energy insecure from PCA and the Dichotomous Rasch 

model also as energy insecure. Thus, the energy insecurity index produced from cluster analysis 

lacks convergent validity with PCA and the Dichotomous Rasch model results.  

The index measure results produced from the expenditure approach and the receipt of home 

energy assistance do not converge to the same results. Using the expenditure approach assuming 

6% of disposable income as the threshold, we identify 487 households as energy insecure. Only 

15% of these 487 households (74 households) responded affirmatively to having applied for and 

received home energy assistance. Comparing these results to the results of cluster analysis, we find 

307 households who identify as being marginally energy insecure, low energy secure, or very low 

energy secure spent more than 6% of their disposable income on energy/fuel. Only 135 of these 

same households applied for and received home energy assistance. Across all the different index 
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measures, there are large disparities between the number of households who identify as energy 

insecure, suggesting that the index results do not converge to the same results.  

In addition to examining the content, construct, and convergent validity of the different 

index results, we also examine the internal consistency of the different survey questions used to 

construct each index measure. For internal consistency to hold, two or more questions designed to 

measure the same concept should produce similar results (Sullivan 2011). The seven questions 

included in Table 3.1 that are used in the application of PCA, the Dichotomous Rasch model, and 

cluster analysis are the only questions of their kind included in the 2015 RECS. Therefore, we are 

unable to check the internal consistency of these questions.  

There are however three separate questions that ask households whether or not they have 

received home energy assistance over the past twelve months. They include:  

1. Has the household participated in a home energy assistance program that helps pay energy 

bills and/or replace/fix broken HVAC? (yes/no) 

2. Has the household applied for and received energy assistance to help pay home energy bills 

after receiving a disconnection notice? (yes/no) 

3. Has the household applied for and received energy assistance to help restore heating and/or 

cooling in the home? (yes/no) 

For the receipt of home energy assistance to be an internally consistent measure for energy 

insecurity, then the same pattern of responses by households should be consistent across the three 

questions. Results in Tables 3.3 to 3.7 show inconsistencies in the number of households who 

respond affirmatively to all three questions; an indication that the receipt of home energy 

assistance is not a consistent measure for energy insecurity.  
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3.8 CONCLUSIONS 

Accurate identification of energy insecure households can lead to the implementation of more 

effective policies and programs that better address the needs of these households. In this chapter, 

we compare and contrast five different approaches for identifying energy insecure households, in 

hopes of creating a single, uniform index measure of household energy insecurity. The five 

different approaches we consider include: 1) whether or not the household has applied for and 

received home “energy assistance;” 2) whether or not the household has spent more than 10% or 

6% of their disposable income on fuel/energy; 3) cluster analysis; 4) principal components analysis 

(PCA); and 5) a Dichotomous Rasch model.  

We rely on household level data from the 2015 RECS to construct an energy insecurity 

index measure using each of the five approaches outlined above. Using the receipt of home energy 

assistance as a measure of household energy insecurity, only 345 households (6%) of the 

households in our sample were identified as energy insecure. When the expenditure approach is 

used to determine if a household is energy insecure or energy secure assuming 10% as the threshold 

beyond which energy/fuel expenditures cease to be affordable, results in almost 20% of the 

households in our sample being identified as energy insecure.  

However, as mentioned in Section 3.7, using the expenditure approach or the receipt of 

home energy assistance to determine a household’s energy insecurity status only focuses on one 

aspect of household energy insecurity- affordability. Therefore, these two measures fail to provide 

a complete and accurate representation of what it means for a household to be energy insecure 

versus energy secure. In an effort to provide to a more accurate representation of the construct of 

household energy insecurity, we rely on cluster analysis, PCA, and the Dichotomous Rasch model. 

We apply cluster analysis, PCA, and the Dichotomous Rasch model to a subset of questions 
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included from the 2015 RECS (see Table 3.1) that are believed together to measure the underlying 

construct of household energy insecurity. 

Cluster analysis separates households into different energy insecurity groups based on their 

pattern of responses to a set of questions. Households whose responses are most similar to one 

another are placed in the same group. From the application of cluster analysis, we find the majority 

(85%) of the households in our sample identify as being “High Energy Secure.” The remaining 

households in our sample identify as being either “Marginally Energy Secure,” “Low Energy 

Secure,” or “Very Low Energy Secure.” While the application of cluster analysis is convenient 

because it allows us to separate households into four mutually exclusive groups, the accuracy of 

the results is difficult to determine given that very different clusters can be formed from the same 

data depending on the similarity measure specified.  

The fourth and fifth approaches, PCA and the Dichotomous Rasch model produce energy 

insecurity scores for each individual household 𝑖. These energy insecurity scores are used to 

determine if households are energy insecure or energy secure. The underlying assumption of the 

Dichotomous Rasch model is that the probability that a household responds affirmatively to any 

given question depends on the degree and extent of the household’s latent energy insecurity status. 

The scale scores produced from the Dichotomous Rasch model ranged from 0 (no affirmative 

responses) to 6.34 (7 affirmative responses). Conversely, the assumption underlying the 

application of PCA is that responses to questions that are strongly correlated with one another, 

vary together.  

Overall, we find more households identify as being energy insecure when we consider 

household responses to more than one question. For example, when using the receipt of home 

energy assistance as a proxy for energy insecurity, only 6% of the households in our sample 
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identify as being energy insecure. This number nearly quadruples when responses to multiple 

questions are considered and used to determine a household’s energy insecurity status following 

the PCA and Dichotomous Rasch Model approaches. The seven questions included in Table 3.1 

seem to provide a detailed and accurate description of what it means for a household to be energy 

insecure. Together the questions cover aspects of safety, affordability, and sufficiency of an energy 

supply to meet daily energy service needs.  

The index results produced from the Rasch model appear to provide the most consistent 

and accurate representation of the experience of being energy insecure. These results utilize the 

individual severity parameter estimates for all seven questions to generate energy insecurity scores 

for each household in our sample. The energy insecurity scores are used to rank households along 

the energy insecurity scale, such that households ranked higher on the scale are more energy 

insecure. The Rasch model index results intuitively make sense, as households who are energy 

secure are likely not going to respond affirmatively to any of the questions or only a few of the 

questions in Table 3.1.  

These results are positively correlated with the other index measures we consider and 

correlated with covariates of interest as expected theoretically indicating they possess construct 

and convergent validity. Because this is the third iteration of the RECS to include these types of 

questions, we anticipate the questions from the 2015 RECS have more content validity than similar 

questions from prior iterations of the RECS. However, only by having an expert panel rate the 

“relevance” and “representativeness” of the new questions can we reach such a conclusion. We 

suggest future research should explore the idea of having an expert panel rate and review each 

question used to measure energy insecurity. Because of the evidence indicating that the Rasch 

model results provide a valid representation of a household’s ability to maintain access to adequate 
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energy services needed by the household to feel energy secure, we suggest the Rasch model be 

used to measure household energy insecurity in the United States.  

This study had some limitations. First, despite the clear advantage of using multiple 

questions to construct the energy insecurity index, the questions included in the 2015 RECS all 

measure energy insecurity at the household level, and not at the individual level. This limits our 

ability to measure any variation in energy insecurity among individuals living in the same 

household. In addition, although the RECS is conducted once every few years by the EIA, the data 

produced from each iteration can only be treated as a single cross-section. The subset of questions 

used to measure household energy insecurity have also changed between each iteration. As a result, 

comparison of our results to the results of prior iterations is problematic. Nevertheless, this study 

is an important contribution toward obtaining an accurate measure of household energy insecurity 

in the United States. We suggest future research be aimed at examining how questions from these 

different iterations of the RECS can either be combined together or extracted from to create a 

consistent set of questions that can be used from year to year to measure household energy 

insecurity. 
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CHAPTER 4 

ESSAY 3: EXAMINING THE THEORETICAL AND EMPIRICAL RELATIONSHIPS 

BETWEEN HOUSEHOLD ENERGY EFFICIENCY AND ENERGY SECURITY* 
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This chapter has benefited from comments received from the 24th Annual Camp Resources, the 6th 

World Congress of Environmental and Natural Resource Economics (WCERE) and the 2018 
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ABSTRACT 

Interest in energy efficiency investments has increased substantially over the past two decades as 

public policy and decision makers attempt to find low cost solutions to reducing global greenhouse 

gas emissions. Moreover, given their ability to reduce household energy expenses, energy 

efficiency investments have been suggested as a way to improve household energy security in the 

developed world. Such connections however, have largely been ignored in the applied economics 

literature. The aim of this paper is to develop a theoretical model and empirical procedure which 

can be used to examine the relationship between making an in-home energy efficiency 

improvement and a household’s energy security status. To do this, we rely on the theory of 

household production to first capture a household’s demand for, and production of, energy 

services. We then utilize a stochastic production frontier approach to explain why households who 

are inefficient in their production of energy services might choose to invest in an energy efficiency 

improvement or upgrade. We then explain how the return to such an investment could lead to 

higher levels of household energy security. To empirically test our hypothesis, we use responses 

from the 2015 Residential Energy Consumption Survey conducted by the U.S. Energy Information 

Agency. We examine factors that influence subjective feelings of household energy insecurity, 

focusing specifically on in-home energy efficiency improvements made in the past year.  

 

Keywords:  Household Energy Security, Energy Efficiency Improvements, Household 

Production Theory, Stochastic Production Frontier 
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4.1 INTRODUCTION 

Over the past decade investments in demand-side energy management programs, particularly those 

focused on end-use energy efficiency, have skyrocketed as a result of policies aimed at reducing 

energy consumption and mitigating the harmful effects of global climate change. From taking 

advantage of a utility-sponsored in-home energy audit to replacing home appliances with more 

energy efficient models, the opportunities to become a more energy efficient household are more 

prevalent now than ever before. Moreover, given their ability to reduce household energy 

expenses, investments in energy efficiency have also been suggested as one possible strategy for 

improving a household’s energy security status in the developed world (Reames 2016). 

Despite this suggestion, few theoretical or empirical investigations exist that have 

specifically analyzed the relationship between making an in-home energy efficiency improvement 

and a household’s energy security status. The overall objective of this paper is to help fill this gap 

in the literature by addressing the research question: “Do energy efficiency investments have a 

significant, positive effect on a household’s energy security status?” Recall from Chapter 3 (Essay 

2) that we assume to be energy secure a household must have consistent physical and economic 

access to a sufficient, safe, and affordable energy supply that meets each household members’ 

most basic daily energy service needs. 62   In other words, in order to be energy secure, a household 

has consistent access to adequate energy services. 

 Because energy efficiency improvements are designed to reduce the amount of energy 

necessary to provide household energy services, in theory they should make the provision of 

household energy services more affordable and thus help to alleviate the presence of household 

                                                 
62 The definition provided for household energy security is based on the definition of food security as defined by the United States 

Department of Agriculture (USDA). More specifically, the USDA defines household Food Security as having access at all times 

to enough food for an active, healthy life. 
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energy insecurity (i.e., a lack of household energy security). 63 However, because in-home energy 

efficiency improvements lower the overall price of providing household energy services, making 

such investments (e.g., purchasing a more energy efficient home appliance) could lead to an 

increase in the demand for household energy services by members of the household (Gillingham, 

Rapson, and Wagner 2016). This phenomenon is known as the "rebound effect" and has been the 

subject of much debate surrounding the implementation of in-home energy efficiency 

improvements (Gillingham et al. 2013; Gillingham et al. 2016). 

 While this study does not necessarily focus on the rebound effect, it does make two main 

contributions to the literature on energy efficiency and household energy security. First, to the best 

of our knowledge, this study is one of the first to follow-up on the suggestion by Hernandez (2013) 

to theoretically and empirically examine whether or not making in-home energy efficiency 

improvements helps to alleviate the presence of household energy insecurity. While there has been 

some recent work by Fowlie et al. (2018) that examines whether or not investing in household 

energy efficiency leads to actual cost savings, a direct connection to a household’s energy security 

status is not the main motivation of the paper. 64  

 Instead Fowlie et al. (2018)’s work is primarily motivated by the presence of the “energy 

efficiency gap,” a phenomenon used to define the difference between the cost-minimizing level of 

energy efficiency achievable and the level of energy efficiency actually achieved by a household.  

Furthermore, unlike Fowlie et al. 2018, our study does not utilize a field experiment, but rather 

takes a top-down approach to examining the outcome of investing in energy efficiency.   

                                                 
63 For a complete description of what it means to be energy secure see Chapter 3.  
64 More specifically, Fowlie et al. (2018) analyzes the cost-savings from participating in the Weatherization Assistance Program 

(WAP), a federally funded program designed to make energy costs more affordable for low-income households by increasing the 

energy efficiency of their homes. 
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 In addition to the work of Fowlie et al. (2018), there have been numerous other studies that 

have focused specifically on the outcomes of investing in demand-side energy efficiency. 

Examples include work by Levinson (2016) who estimated energy cost-savings from 

implementing building code standards in California; Allcott and Greenstone (2017) who examine 

whether or not imperfect information or behavioral biases impact consumers’ decisions to take 

advantage of and make suggested changes from receiving an in-home energy audit; and Novan 

and Smith (2018) who consider the role of electricity rate structures on incentivizing investments 

in energy efficiency. However, these previous studies do not directly examine the connection 

between a household’s energy security status and making energy efficiency improvements. 

Second, given our definition of household energy security, our study provides a unique 

theoretical approach for examining the relationship between making an in-home energy efficiency 

investment and a household’s energy security status. We begin by considering the household’s 

decision to produce and consume household energy services as a two-stage optimization problem 

following the theory of household production (Becker 1965; Deaton and Muellbauer 1980). The 

solution to the household’s problem yields a certain level of satisfaction (i.e., utility) for the 

household, which we assume can be used to represent the household’s underlying latent energy 

security status (i.e., subjective feelings of energy security/ insecurity).  

To examine how the decision to make an investment in energy efficiency will impact a 

household’s energy security status, we rely on a stochastic production frontier approach. Under 

the stochastic production frontier approach, we assume one reason a household may identify as 

energy insecure is because they are technically inefficient in their production of household energy 

services. One cause of their technical inefficiency in production may be the current low technical 

efficiency ratings of the capital technology inputs they currently employ. By adopting more energy 
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efficient capital technology or making an energy efficiency improvement in the home (e.g., by 

sealing air leaks or adding insulation) a household will be able to reduce technical inefficiency in 

its current production of household energy services. By reducing technical inefficiency, the 

household should therefore be able to produce more energy services and reach a higher level of 

satisfaction. This increase in satisfaction, in turn, results in greater subjective feelings of energy 

security (lower subjective feelings of energy insecurity).  

It is difficult however, for a researcher to directly observe the production and consumption 

of energy services by members of the household. As a result, determining whether or not a 

household is energy secure or energy insecure based on its ability to produce and consume 

household energy services is problematic. Following the literature on food security, we determine 

a household’s energy security status by combining household responses to a set of survey questions 

included in the 2015 Residential Energy Consumption Survey (RECS). The questions we utilize 

are designed specifically to capture a household’s subjective feelings about their energy 

security/insecurity status. 

Household responses to the questions are reflective of a household’s latent, unobserved, 

level of energy security/insecurity. 65 In particular, the extent or severity of energy insecurity 

experienced by an individual household is reflected by the number of energy insecurity questions 

from the 2015 RECS to which a household provided an affirmative response. The energy insecurity 

index measures we use from Chapter 3 (Essay 2) are based on the Dichotomous Rasch model. The 

Dichotomous Rasch model results are used to place households along a latent energy insecurity 

scale. The energy insecurity scale ranges in value from the least severe indicator of energy 

                                                 
65 For a complete explanation of the methods used to separate households into different energy security categories see Chapter 3 

(Essay 2).  
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insecurity (a value of “0” which indicates zero affirmative responses to any questions) to the most 

severe indicator of energy insecurity (the value of the item calibration for the most severe energy 

insecurity question from the 2015 RECS).  

For household’s who identify as being energy insecure, which may result from being 

technically inefficient in their production of energy services, the decision to make an energy 

efficiency investment is modeled using a random utility framework. Under the random utility 

framework, a household will make an energy efficiency investment or upgrade if the utility it 

receives from making the investment or upgrade exceeds the utility it would have received if it did 

not make the investment or upgrade. Using our Rasch model index, a household’s energy 

security/insecurity status can only take on a fixed, categorical set of values. Because of the 

categorical nature of our Rasch model index, we empirically estimate the random utility model 

using an order logit model econometric specification.  

The remainder of this chapter (essay) is organized as follows. Section 4.2 provides some 

additional background information on the role energy efficiency investments or upgrades play in 

reducing household energy insecurity. Section 4.3 presents the theoretical framework we utilize to 

examine the connections between the household’s production and consumption of household 

energy services and a household’s latent energy insecurity status. In Section 4.4 we discuss our 

methodological approach including the data used for our empirical analysis, our econometric 

model estimation procedures, and how we address concerns of potential endogeneity. In Section 

4.5 we present our estimation results and discuss policy implications and study limitations. We 

provide some conclusions in Section 4.6.  
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4.2 ENERGY EFFICIENCY MECHANISMS 

Energy efficiency mechanisms, which have been around since the 1970s, are currently being 

utilized by electric utility companies across the United States to meet emissions reductions targets, 

reduce energy production costs, and to help lower their customers home energy burdens (i.e., 

energy expenses as a share of disposable income) in hopes of achieving higher levels of household 

energy security (Barbose et al. 2013). The latter has become exceedingly important as maintaining 

household energy security has become increasingly difficult for many families living in the United 

States (Hernandez 2016).  

Those struggling the most to achieve energy security include low-income and other 

economically marginalized households, such as those with elderly and differently abled 

individuals living in the home (Wilkinson et al. 2001; Hernández 2013; Drehobl and Ross 2016; 

O’Mera 2016). From an economics point of view, low-income and other economically 

marginalized households may struggle to achieve energy security for three main reasons. First, due 

to credit constraints, many low-income and economically marginalized households are renters or 

temporary residents. Thus, they lack the financial incentives to invest in structural improvements 

(e.g., sealing air leaks, replacing windows) that could, over the long-run, increase the energy 

efficiency of their home and as a result increase their energy security status.  

Second, even if these households are motivated to invest in energy efficiency 

improvements as a result of being energy insecure, many are unable to afford the high upfront 

costs associated with purchasing or financing such investments, due to other constraints on their 

overall budget. In other words, the high upfront costs associated with making an in-home energy 

efficiency investment or upgrade creates a barrier toa doption for these types of households (Kapur 

et al. 2011). Third, compared to the general population, low-income and other economically 
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marginalized households are more likely to inhabit residences that are older and overall less energy 

efficient (Drehobl and Ross 2016). As a result, their homes require more energy to provide energy 

services such as heating and/or cooling (Penney and Kloer 2015). Consuming more energy can 

lead to an increase in one’s home energy burden, resulting in greater feelings of energy insecurity.  

One general reason households who are energy insecure fail to invest in energy efficiency 

upgrades is imperfect and inadequate information (Scott et al. 2008; Allcott and Greenstone 2012). 

For example, households may be unaware of how poorly insulated their home is and as a result, 

may not choose to invest in adding insulation or other types of weatherization. Furthermore, 

compared to other products, energy efficient products typically have higher upfront costs. For 

example, different housing units often have different levels of insulation, which directly contribute 

to how much energy the housing unit consumes to stay warm/cool.  

If an individual is considering renting two different housing units, then without adequate 

knowledge of each housing unit’s level of insulation, the individual may only evaluate the two 

alternatives based on their overall price and otherwise noticeable amenities (e.g., location). Failure 

to account for the efficiency gains from having adequate insulation can lead households who are 

energy insecure to underinvest in energy efficiency. Nevertheless, while barriers are believed to 

exist that prevent households from investing in energy efficiency, a theoretical and empirical 

examination of whether or not making in-home energy efficiency improvements actually helps to 

alleviate the presence of household energy insecurity has yet to be adequately addressed 

(Hernandez 2013).  

4.3 THEORETICAL FOUNDATION 

In the following section of this essay, we present the theoretical model used to examine how 

making energy efficiency improvements and/or upgrades in the home could impact a household’s 
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self-reported energy security status. We begin by modeling the household’s decision to produce 

and consume household energy services as a two-stage optimization problem using the theory of 

household production (Becker 1965; Deaton and Muellbauer 1980). The solution to the 

household’s two-stage optimization problem yields a certain level of satisfaction (i.e., utility) for 

the household, which we assume can be used to represent the household’s underlying, latent energy 

security status.  

 To examine how having access to more “energy efficient” capital technology influences 

the outcome of the household’s two-stage optimization problem, we rely on a stochastic production 

frontier approach. Under the stochastic production frontier approach, one reason households may 

not identify as energy secure is because they are inefficient in their production of household energy 

services due to the low technical efficiency of their current capital inputs.  For example, households 

with air leaks, inadequate insulation, or high energy consuming capital technology equipment, 

often consume more energy/fuel than necessary to produce an adequate level of household energy 

services. Therefore, by adopting more energy efficient capital technology, or making energy 

efficiency improvements in the home, a household should be able to reduce the inefficiency with 

which it currently produces household energy services resulting in higher felt levels of household 

energy security and overall satisfaction.    

HOUSEHOLD CONSUMPTION AND PRODUCTION OF  ENERGY SERVICES 

To develop a theoretical framework that allows us to address the determinants of household energy 

security, we first establish a set of assumptions about the structure of and operations within the 

household. Following the work of Filippini (1999), Boogen, Datta, and Filippini (2014), and more 

recently Burnett and Madariaga (2017) we assume a household’s demand for energy (i.e., the fuel 

resources it utilizes including electricity, natural gas, heating oil, or propane) is derived from its 
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demand for energy services. That is, a household does not necessarily demand energy by itself, 

but rather demands the energy services (e.g., a warm house, lit room, or cooked food) provided by 

having access to energy resource inputs.  

Continuing to follow the work of Filippini (1999) and Boogen et al. (2014) we assume a 

household’s demand for energy service inputs can be specified using the basic framework of 

household production theory.  According to the theory of household production, households act as 

both consumers and producers, who in order to produce goods and services use a set of inputs 

purchased from the market (Becker 1965; Deaton and Muellbauer 1980). The goods and services 

produced enter the household’s utility function directly. That is, outputs which are produced by 

the household are consumed by members of the household and not sold in the market (Becker 

1965). 66   

In our specific case, households combine energy resource inputs (i.e., primary fuel inputs) 

with energy-using capital technology equipment inside the household to produce household energy 

services (Filippini 1999; Thompson 2002; Sanstad 2011; Boogen et al. 2014). More specifically,  

households combine energy resource inputs 𝐸 (e.g., the primary fuel resources used) with capital 

technology equipment inputs  𝐾 to produce a set of household energy services, labeled here 

as 𝐸𝑆𝐸𝑅𝑉.67 The production function for household energy services can  generally be expressed 

according to the following quasi-concave household production function: 

(1) 𝐸𝑆𝐸𝑅𝑉 = 𝐸𝑆𝐸𝑅𝑉[𝐾, 𝐸],  

                                                 
66 Examples of commodities produced by households might include recreation experiences (Deaton and Muellbauer 1980), leisure 

(Varian 1992), and meals for consumption (Hamermesh 2007).   
67 We ignore the idea of time dedicated to the production of energy services in our analysis for simplicity. 
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where, as stated previously, 𝐸 is used to represent the primary energy resource inputs used by the 

household (e.g., electricity, natural gas, propane or heating oil) to operate its specific capital 

technology inputs 𝐾 (e.g. heating and/or air conditioning unit, refrigerator, stove, lamp, washer, 

and/or dryer). 

Access to more “energy efficient” 68 capital technology impacts the production of energy 

services within the household since the total amount of energy input consumed by the household 

to produce household energy services depends on the corresponding efficiency level/rating of the 

current capital technology the household operates. That is, the output of energy services produced 

is dependent upon the capital technology’s corresponding efficiency level/rating, such that higher 

efficiency levels/ratings lead to more efficient production of household energy services. Therefore, 

the capital technology equipment employed by the household can be expressed by the following 

function: 

(2)  𝐾 = 𝐾(𝛾), 

where 𝛾 is used to represent the specific capital technology’s corresponding energy efficiency 

level/rating.  

In (2), an increase in the value of  𝛾 leads to an increase in the amount of output per unit of 

energy resource input consumed (i.e., an increase in efficiency) or, equivalently, a reduced energy 

input requirement per unit of energy service output produced (Sanstad 2011). To accommodate 

changes in the efficiency level/rating of the capital technology available for purchase on the 

market, we assume the value of 𝛾 is continuous and strictly positive, such that it exists within the 

                                                 
68 More energy efficient capital technology requires less energy to perform the same function as non-energy efficient capital 

technology. For example, an energy efficient light bulb (i.e., LED) uses less energy to produce the same amount of light as a 

traditional, compact fluorescent light (CFL) light bulb.  
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interval [0, 𝛾𝑚𝑎𝑥]. Here 𝛾𝑚𝑎𝑥 is used to represent the maximum level of energy efficiency 

obtainable for the stock of capital technology available for purchase on the market by the 

household during the time period under consideration (Sanstad 2011). 69  

For the time being, we treat the household’s primary residence and the stock of capital 

technology it operates, 𝐾, as its fixed factors of production, while the corresponding fuel input 

used/consumed, 𝐸, is treated as a variable input. In this specific case the efficiency level/rating of 

capital technology employed by the household is  assumed to be fixed such that, 𝛾 = �̅� . Later in 

this paper we relax this assumption when we specifically examine how the decision to adopt more 

energy efficient capital technology is influenced by the energy security status of the household. In 

this section, however, we discuss just the household's decision-making processes as it pertains to 

energy services, assuming the household operates as both a producing and consuming unit of 

energy services.  

Following the theory of household production, we assume households obtain utility from 

the consumption of only two commodities, the energy-related services discussed previously, and 

a composite commodity, 𝐴𝑂𝑆 used to represent all other non-energy related goods and/or services 

from which the household derives utility (Becker 1981; Li 2011). The household’s utility function 

can be generically summarized by a strictly concave utility function of the form  

(3) 𝑈 = 𝑈(𝐴𝑂𝑆, 𝐸𝑆𝐸𝑅𝑉(𝐾(�̅�), 𝐸); 𝐻𝐶, 𝐷𝐶), 

where the term 𝐻𝐶 represents a vector of structural and spatial household characteristics such as 

square footage, number of bedrooms, number of bathrooms, local weather, and geographical 

                                                 
69 We allow the interval to be continuous to reflect the continuous changes in the efficiency ratings of household appliances. For 

example, because technology changes from year to year, an appliance purchased by a household five years ago is likely to be less 

efficient, in terms of the amount of energy it consumes, than an appliance purchased six months ago. 
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location (i.e., region) while the term 𝐷𝐶 represents a vector of household socio-demographic 

characteristics such as the number and age of people living in the household that could potentially 

influence a household’s demand for energy services, as well as its preferences for other non-energy 

related services (Li 2011).  

 In the present application of this basic framework, the objective of each household 𝑖 is to 

maximize its utility, as represented by equation (1) subject to the following household budget 

constraint,  

(4) 𝑀 = 𝑃𝑆 ∗ 𝐸𝑆𝐸𝑅𝑉 + 𝐴𝑂𝑆. 

were 𝑀 is used to represent money income and 𝑃𝑆 is used to represent the price of providing energy 

services. All other goods and services (𝐴𝑂𝑆) is assumed to be numeraire and therefore its price is 

normalized to 1 (Filippini 1999; Boogen et al. 2014). The solution to the utility maximization 

problem above can be examined as a two-stage optimization problem (Feleke, Kilmer, and 

Gladwin 2005; Filippini 1999; Deaton and Muellbauer 1980, Muellbaur 1974). 70  

In the first stage, the household acts as a firm whose objective is to minimize the cost of 

producing household energy services (𝐸𝑆𝐸𝑅𝑉). To produce household energy services, it is 

assumed that the household faces two separate prices. The first being the price paid per unit of fuel 

consumed (e.g., price per kWh of electricity), which is also known as the cost to operate their 

capital technology inputs 𝐾. We label this price simply as 𝑃𝐸  and assume it is constant over a 

given time period (Thompson 2002). The second price households pay to produce household 

energy services is the price paid to purchase their capital technology inputs (𝐾) from the market. 

                                                 
70 It is important to note, within our theoretical framework, we assume that the household possesses perfect information on these 

goods, services, and prices, and solves the choice problem under conditions of certainty. 
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We label the purchase price of capital technology inputs 𝐾 as 𝑃𝐾. Therefore, the full price of 

producing household energy services is equal to the following function:   

(5) [𝑃𝐸 + 𝑃𝐾]. 

Following Sanstad (2011), we assume more efficient capital technology equipment is 

initially more expensive to purchase but less expensive to operate. Therefore, the full price of 

producing energy services  initially increases if the household makes the decision to purchase new 

capital technology inputs with corresponding efficiency level 𝛾 > �̅�, but decreases over time as 

the household consumes less fuel to produce energy services as a result of the decision to make an 

energy efficiency upgrade (Sanstad 2011).  

Using the above information, we can write the first stage optimization problem of the 

household who operates capital technology inputs with corresponding efficiency level �̅� as 

follows:  

(6)  𝑀𝑖𝑛 𝐶 =  (𝑃𝐸 ∗ 𝐸) + (𝑃𝐾 ∗ 𝐾(�̅�)), 

subject to the following production function 

(7)  𝐸𝑆𝐸𝑅𝑉 = 𝐸𝑆𝐸𝑅𝑉𝐸[𝐾(�̅�), 𝐸]. 

The Lagrangian for this problem is given by, 

(8) min
 𝐸,𝐾,𝜙

Ψ =  (𝑃𝐸 ∗ 𝐸) + (𝑃𝐾 ∗ 𝐾(�̅�)) + 𝜙(𝐸𝑆𝐸𝑅𝑉 − 𝐸𝑆𝐸𝑅𝑉𝐸[𝐾(�̅�), 𝐸]). 

The first order conditions (F.O.C) from the cost cost-minimization problem above assuming an 

interior solution are as follows: 

(8a.) 𝐸:  𝑃𝐸 − 𝜙
𝜕𝐸𝑆𝐸𝑅𝑉

𝜕𝐸
= 0 

(8b.) 𝐾:  𝑃𝐾 − 𝜙
𝜕𝐸𝑆𝐸𝑅𝑉

𝜕𝐾
= 0 

(8c.) 𝜙:  𝐸𝑆𝐸𝑅𝑉∗ − 𝐸𝑆𝐸𝑅𝑉𝐸[𝐾(�̅�), 𝐸] = 0, 
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which implies the following optimality conditions:  

(8d.) 𝑃𝐸 = 𝜙
𝜕𝐸𝑆𝐸𝑅𝑉

𝜕𝐸
 

(8e.) 𝑃𝐾 =  𝜙
𝜕𝐸𝑆𝐸𝑅𝑉

𝜕𝐾
 

(8f.) 𝐸𝑆𝐸𝑅𝑉∗ = 𝐸𝑆𝐸𝑅𝑉𝐸[𝐾(�̅�), 𝐸]. 

Using the optimality conditions above, we can solve for the following derived conditional input 

demand functions for capital technology inputs 𝐾 and energy resource inputs 𝐸 as follows: 

(9) 𝐸𝑆𝐸𝑅𝑉 = 𝐸𝑆𝐸𝑅𝑉[𝐾, 𝐸],  

(10) 𝐾(�̅�)∗ = 𝐾(𝑃 𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉) 

(11) 𝐸∗ = 𝐸(𝑃 𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉). 

Using these conditional input demand functions as solutions to the household’s first stage 

optimization problem generates the following minimum cost function,  

(12) 𝐶∗ = 𝐶(𝑃𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉), 

which is assumed to be homogenous of degree one in prices, increasing in 𝐸𝑆𝐸𝑅𝑉 and non-

decreasing and concave in prices (Varian 1992). 71 

Because we assume the household is both a producer and consumer of energy services and 

the least cost combination of inputs necessary to produce an adequate level of energy services has 

been identified, what remains is for the household to choose the combination of services (both 

energy-related and non-energy related) that maximize its utility. The choice of services is 

represented below as the household’s second-stage optimization problem. In the second stage of 

the optimization problem the household solves the following utility maximization problem,  

                                                 
71 To recover the derived input demand functions for energy and capital inputs we could also apply Shephard’s Lemma to the cost 

function.  



   

 

189 

 

(13) max 𝑈 = 𝑈(𝐸𝑆𝐸𝑅𝑉(𝐾(�̅�), 𝐸), 𝐴𝑂𝑆; 𝐻𝐶, 𝐷𝐶) 

subject to the household budget constraint  

(14) 𝑀 = 𝐴𝑂𝑆 + 𝐶(𝑃𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉). 

In (14), we have simply replaced the price of producing household energy services with the 

associated minimum cost function. The corresponding Lagrangian function for the household’s 

second stage optimization problem is given by: 

(15) max
𝐸𝑆𝐸𝑅𝑉,
𝐴𝑂𝑆,𝜆

 ℒ = 𝑈(𝐸𝑆𝐸𝑅𝑉(𝐾(�̅�), 𝐸), 𝐴𝑂𝑆; 𝐻𝐶, 𝐷𝐶) + 𝜆(𝑀 − 𝐶(𝑃𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉) − 𝐴𝑂𝑆), 

where, as stated before the price of all other goods and services (𝐴𝑂𝑆) is normalized to unity. 

Assuming an interior solution, the F.O.C.  can be written as follows: 72 

(15a.) 𝐸𝑆𝐸𝑅𝑉:  𝑈𝐸𝑆𝐸𝑅𝑉 − 𝜆
𝜕𝐶(𝑃 𝐸,𝑃𝐾,𝐸𝑆𝐸𝑅𝑉)

𝜕𝐸𝑆𝐸𝑅𝑉
= 0 

(15b.) 𝐴𝑂𝑆: 𝑈𝐴𝑂𝑆 − 𝜆 =  0 

(15c.) 𝜆: 𝑀 − 𝐶(𝑃𝐸 , 𝑃 𝐾, 𝐸𝑆𝐸𝑅𝑉) − 𝐴𝑂𝑆 = 0, 

which imply the following optimality conditions: 

(15d.) 𝑈𝐸𝑆𝐸𝑅𝑉 = 𝜆
𝜕𝐶(𝑃 𝐸,𝑃𝐾,𝐸𝑆𝐸𝑅𝑉)

𝜕𝐸𝑆𝐸𝑅𝑉
 

(15e.) 𝑈𝐴𝑂𝑆 = 𝜆 

(15f.) 𝑀 = 𝐶(𝑃𝐸 , 𝑃 𝐾, 𝐸𝑆𝐸𝑅𝑉) + 𝐴𝑂𝑆. 

Here 𝑈𝐸𝑆𝐸𝑅𝑉 is the marginal utility received from consuming household energy services with 

 𝑈𝐸𝑆𝐸𝑅𝑉 > 0 , 
𝜕𝑈𝐸𝑆𝐸𝑅𝑉 

𝜕𝐸𝑆𝐸𝑅𝑉
< 0; 𝑈𝐴𝑂𝑆 is the marginal utility received from consuming all other services 

with  𝑈𝐴𝑂𝑆 > 0; 
𝜕𝑈𝐴𝑂𝑆

𝜕𝐴𝑂
< 0; and 𝜆 is the marginal utility of income. Additionally, it is assumed that 

                                                 
72 A corner solution makes little sense in this context, because it would indicate households do not produce any energy services or 

produce nothing but energy services and prefer to consume nothing else (Thompson 2002).   
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utility function in (13) and (15) exhibits diminishing marginal rates of substitution of energy 

services for all other services.  

Rearranging optimality conditions (15d. through 15f.) we can obtain the following demand 

functions for household energy services and the composite commodity used to represent all other 

services as follows,  

(16) 𝐸𝑆𝐸𝑅𝑉∗ = 𝐸𝑆𝐸𝑅𝑉(𝑃 𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶) 

(17) 𝐴𝑂𝑆∗ = 𝐴𝑂𝑆(𝑃 𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶) 

The household’s conditional input demand functions for capital technology and energy resource 

can be found substituting equation (16) into equations (9) and (10) as follows,  

(18) 𝐸∗ = 𝐸[𝑃𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉∗(𝑃 𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶)] 

(19) 𝐾(�̅�)∗ = 𝐾[𝑃𝐸 , 𝑃𝐾 , 𝐸𝑆𝐸𝑅𝑉∗(𝑃 𝐸 , 𝑃𝐾, 𝑀, 𝐷𝐶, 𝐻𝐶)], 

or equivalently  

(20) 𝐸∗ = 𝐸[𝑃𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶]  

(21) 𝐾(�̅�)∗ = 𝐾[𝑃𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶]. 

Equations (20) and (21) along with the equation in (16) reflect the equilibrium consumption 

amounts for each household 𝑖 given its current level of fixed capital technology with corresponding 

efficiency rating �̅�. The solution to the households two-state optimization problem, assuming all 

other services 𝐴𝑂�̃� remain constant is illustrated graphically below by Figure 4.1. 

 In Figure 4.1, the solution to the household’s two-stage optimization problem above is 

represented as 𝐴∗, where the highest attainable indifference curve, represented by  𝑈∗ =

𝑈(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂�̃�; 𝐻𝐶, 𝐷𝐶) is tangent with the household’s production possibilities frontier (PPF) 

(i.e., the largest combination of energy services 𝐸𝑆𝐸𝑅𝑉 and all other services 𝐴𝑂𝑆 that can be 
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produced by the household given the current budget and resource constraints it faces. The 

minimum cost function 𝐶∗ = 𝐶(𝑃𝐸 , 𝑃𝐾, 𝐸𝑆𝐸𝑅𝑉)  is imbedded within the household’s PPF in 

Figure 4.1 (Deaton and Muellbaur 1980).  

 
Figure 4.1 Solution to the Household’s Two-Stage Optimization Problem 

 

 The solution to the model above is static in that it assumes an instantaneous adjustment to 

a new equilibrium will occur if the prices faced by the household or the household’s income 

change. If the price of energy/fuel inputs 𝑃𝐸 changes, more specifically if it increases, then we can 

expect two types of responses from the household. First, in the short-run the household might 

choose to lower the rate with which it utilizes its current stock of capital technology with a given 

efficiency level �̅� (Filippini 1999). For example, the household could decide to wash fewer loads 

of laundry and/or lower/raise the temperature of their thermostat. In the long-run, however, since 

changes in 𝑃𝐸 can result in changes in the relative prices of inputs, the household might choose to 

alter the input mix it utilizes all together according to equations (16) and (17) (Filippini 1999). 

According to our model and (Filippini 1999), when faced with higher energy/fuel prices 

(𝑃𝐸) we expect households will replace their existing capital technology with more energy efficient 
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capital technology (i.e., appliances with higher ratings/values of efficiency, 𝛾). In addition to 

higher inputs prices, a household may choose to adopt more energy efficient capital technology 

for other reasons including environmental awareness, an unanticipated broken appliance, and/or 

taking advantage of discounted sale prices.  

In this study, we focus on cases where the household may be technically inefficient in its 

production of household energy services resulting in feelings of energy insecurity. For example, if 

the household’s primary residence is older, it may be more prone to experiencing air leaks, 

resulting in more fuel being consumed than is actually necessary to produce a given level of energy 

services. One remedial measure may be to increase the energy efficiency of its current capital 

technology.  

By adopting more energy more energy efficient capital technology (i.e., an increase in the 

value of 𝛾), a household can increase the amount of energy service outputs produced per unit of 

energy input consumed.  As a result, in the case of technically inefficient production, the level of 

energy services produced will get closer to the optimal level of energy services, which in turn will 

allow the household to reach a higher level of utility.  

INEFFICIENT PRODUCTION OF HOUSEHOLD ENERGY SERVICES 

From an economics perspective, a firm’s production process is considered to be technically 

efficient if there is no additional amount of output feasible that would require the use of fewer 

inputs (i.e. input-oriented efficiency), or if the firm is producing the maximum amount of output 

possible given its fixed set of inputs (i.e., output-oriented efficiency). In the case of the household, 

who is assumed to be a producer of energy services, the production of energy services is considered 

to be technically efficient if the household is able to produce the maximum possible output of 
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energy services achievable given its inputs. In this situation, the household is said to be operating 

along its production possibilities frontier (PPF) for energy services.73  

Conversely, if the actual output of energy services produced by the household falls short 

of the maximum possible output of energy services achievable, then the producer (i.e., the 

household) is said to be operating below its production possibilities frontier for energy services 

and therefore, is experiencing technical inefficiency in production (production inefficiency). To 

account for the inefficiency in producing energy services by the household, we modify the 

production function in (1) using a stochastic production frontier approach, proposed originally but 

independently in the literature by Aigner, Lovell, and Schmidt (1977) and Meeusen and Van den 

Broeck (1977).  

To specify the stochastic production frontier, we first substitute (2) into (1) to obtain, 

(22) 𝐸𝑆𝐸𝑅𝑉∗ = 𝐸𝑆𝐸𝑅𝑉[𝐾(𝛾), 𝐸].  

The stochastic production frontier is then specified by which we can model the production of 

energy services by each household 𝑖 as,  

(23) 𝐸𝑆𝐸𝑅𝑉𝑖 = 𝐸𝑆𝐸𝑅𝑉[ (𝐾(𝛾), 𝐸) ] − 𝜂𝑖, 

where the error term 𝜂𝑖 represents “inefficiency” in the production of household energy services. 

Graphically, production plans that are considered to be technically inefficient in production are 

those located below the   frontier represented by 𝐸𝑆𝐸𝑅𝑉∗. Figure 4.2 below provides an example 

of production inefficiency. 

                                                 
73 The production possibilities frontier (PPF) is used to represents the maximum possible output achievable for a given firm 

given its fixed set of inputs and the production technology it has available. If one is operating along the PPF, then it is assumed 

all available resources are being fully utilized and operated efficiently (Bergstrom and Randall, Chapter 5). In our case 𝐸𝑆𝐸𝑅𝑉∗ 

is used to represent the PPF for energy services. 
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Figure 4.2 Production Inefficiency Household Energy Services 

 

In Figure 4.2, the extent of production inefficiency experienced by each household can be 

measured by the distance between point B, the efficient production point, and point C, the 

inefficient production point. 

A limitation in (23) of using only 𝜂𝑖 to represent production inefficiency is that it ignores 

unforeseen or uncontrollable factors that can and do affect the production of energy services within 

a household.  An example of a random factor might include a severe weather event, such as a 

hurricane, tornado, thunderstorm, or ice/snow storm that prevents access to fuel inputs, hindering 

the production of cooked meals, indoor heating or cooling, and/or indoor lighting by the household. 

To accommodate such random factors/occurrences, we decompose the error term 𝜂𝑖 into two parts 

such that,  

(24)  𝜂𝑖 = 𝑣𝑖 − 𝜇𝑖, 

where the term 𝑣𝑖 is used to capture random factors outside the control of the producer (household) 

that might impact its ability to produce energy services, while 𝜇𝑖 captures the inefficiency or the 
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shortfall from maximal output dictated by the household’s production function. 74 One can think 

of 𝜇𝑖 as factors within the producers (households) control that prevent it from operating along its 

production frontier for household energy services.  

We can now specify the production of energy services by members of the household who 

operate capital technology inputs 𝐾 with corresponding efficiency rating �̅� as the following 

stochastic relationship: 

(25)  𝐸𝑆𝐸𝑅𝑉0 = 𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] − 𝜂𝑖 = 𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] + 𝑣𝑖 − 𝜇𝑖 

where 𝐸𝑆𝐸𝑅𝑉0 represents the actual (current) output of energy services produced by the 

household; 𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] represents the deterministic production frontier for household energy 

services, 𝑣𝑖 represents the white noise random error component which is assumed to independently 

and identically distributed; and 𝜇𝑖 is a one-sided error term representing inefficiency in the 

production of household energy services resulting from a household’s failure to be technically 

efficient in the way it utilizes its inputs.. 75  

To examine how the production of household energy services can be influenced by 

increasing the energy efficiency level of the household’s capital stock, we begin by assuming the 

household operates as technically inefficient in its production of energy services. We assume 

further that the household is a price-taker and is allocating its other inputs (i.e., those not used in 

production of household energy services) efficiently. 76  If the household is found to be inefficient 

                                                 
74 It is important to note, due to randomness, not every household can produce the maximum possible output of energy services achievable at all 

times, even if inputs are same across households (Parmeter and Kumbhakar 2014). The inclusion of the error term 𝑣𝑖 allows us to account for 
situations where operation along the production possibilities frontier for energy services by at least some households is not possible. 
75 Given that 𝑢𝑖 leads directly to a shortfall in output, it only reduces output and as such it is assumed to stems from a one-sided 

distribution  
76 A household is said to be allocating its inputs efficiently if it is deploying or utilizing its resource inputs in the most efficient 

manner, considering its own preferences and the respective costs of the inputs. In this study, we assume households are efficient in 

their allocation of inputs.  
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in its production of household energy services, it is said to be producing energy services at above 

minimum cost.  

Under the stochastic production function framework outlined above, the first-stage cost-

minimization problem of the household now becomes,  

(26) 𝑀𝑖𝑛 𝐶 =  (𝑃𝐸 ∗ 𝐸) + (𝑃𝐾 ∗ 𝐾(�̅�)) 

subject to the following production function 

(27)  𝐸𝑆𝐸𝑅𝑉0 = 𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] − 𝜂𝑖 = 𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] + 𝑣𝑖 − 𝜇𝑖. 

In equation (27), 𝐸𝑆𝐸𝑅𝑉0 is used to represent the energy services produced by the household, 

assuming it is operating as technically inefficient. The result of the first stage optimization problem 

above produces the following cost function,  

(28)  𝐶0 = 𝐶[𝑃𝐸 , 𝑃𝐾, (𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] + 𝑣𝑖 − 𝜇𝑖)]. 

Under the assumption of technical inefficiency in the production of household energy 

services, the second stage optimization problem of the household becomes: 

(29) max 𝑈 = 𝑈[(𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] + 𝑣𝑖 − 𝜇𝑖), 𝐴𝑂𝑆; 𝐻𝐶, 𝐷𝐶], 

subject to the following household budget constraint  

(30)  𝑀 = 𝐴𝑂𝑆 + 𝐶[𝑃𝐸 , 𝑃𝐾, (𝐸𝑆𝐸𝑅𝑉[𝐾(�̅�), 𝐸] + 𝑣𝑖 − 𝜇𝑖)].  

In (30), as before, we have simply replaced the price of producing household energy services with 

the cost function associated with producing household energy services. 

 Under the assumption of technical inefficiency in production, the solution to the 

household’s second stage optimization problem, represented by equations (29) and (30), produces 

the following demand functions for household energy services and the composite commodity used 

to represent all other services as follows,  

(31) 𝐸𝑆𝐸𝑅𝑉0 = 𝐸𝑆𝐸𝑅𝑉(𝑃 𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶) 



   

 

197 

 

(32) 𝐴𝑂𝑆0 = 𝐴𝑂𝑆(𝑃𝐸 , 𝑃𝐾 , 𝑀, 𝐷𝐶, 𝐻𝐶).  

The solution to the above problem is illustrated graphically below in Figure 4.3. 

 
Figure 4.3 Solution to the Household’s Problem Under Technical Inefficiency 

In Figure 4.3 above, the household is assumed to be technically inefficient in its production of 

household energy services.77 As a result, it is not able to operate along its stochastic production 

                                                 
77 At point A* in Figure 4.3, the household is achieving both technical efficiency and allocative efficiency in production. All points 

along the PPF are considered to be technically efficient. However, just because a household (firm) is operating along its production 

possibility frontier for services does not mean the household (firm) is operating as allocativley efficient. Allocative efficiency refers 

to a state where inputs have been allocated in such a way that they represent the “best” combination of inputs to produce a desired 

output. The “best” combination of inputs is the least-cost combination of inputs that can be used to produce a desired output. If the 

household were operating at a point such as K, then the household would be technically efficient in its production of services but 

not allocativley efficient. At point K the household is producing too many energy services and not enough of all other services. A 

similar issue occurs at point J where the household is producing too many of all other services and not enough energy services. At 
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function or frontier and achieve the level of energy services associated with point D*. 78 Instead 

the household is said to be operating below the production frontier; for example, at point E in 

Figure 4.3.  The household is also operating inside of its production possibilities frontier (PPF); 

for example, point “F” in Figure 4.3.  For simplicity, in Figure 4.3 and all other figures used 

subsequently, we allow the composite error term 𝜂𝑖 to represent the total technical “inefficiency” 

in the production of household energy services.79 

 Assuming a household is a price-taker, technical inefficiency t in its production of energy 

services implies  the household is  producing energy services at above minimum cost; that is,  𝐶0 >

𝐶∗. As before, after the cost function is determined (even an inefficient one), what remains is for 

the household to choose the combination of services (both energy-related and non-energy related) 

that maximize its utility. This is represented by the solution to the second stage optimization 

problem of the household where in Figure 4.3, the household is able to achieve utility level 𝑈0at 

point F. 

Because of the technical inefficiency in production, the household is unable to consume 

the optimal amount of energy services. Therefore, in addition to being unable to operate along its 

PPF, the household is unable to reach its optimal, constrained level of satisfaction (i.e., the level 

of utility it would have achieved in a technically efficient situation). As a result,  the utility level 

achieved by the household in the case of technical inefficiency, 𝑈0 is lower in value (in absolute 

                                                 
both point J and K the household is said to be allocativley inefficient in production. Households who are allocativley inefficient 

are not producing services at minimum cost (Kumbhakar, Wang, and Horncastle 2015). 
78 The point D* is used to represent the level of energy services ESERV* in equation (15). It is the amount of energy service outputs 

produced by the household under the case of technical efficiency.  
79 See Figure 4.1 B. in the Chapter 4 Appendix for an explanation of why an increase in the efficiency rating of the capital 

technology does not represent a movement in the PPF for the household.  
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terms) than the utility the household would have been able to be achieve under the case of full 

efficiency represented by 𝑈∗ in Figure 4.3. 

In other words, given its fixed inputs, including the fixed energy efficiency rating of the 

capital technology it operates (�̅�), under the case of technical inefficiency the household is unable 

to achieve its optimal level of utility. Therefore, the household is unable to experience the sense 

of energy security it would like to be able to in an unconstrained situation (e.g., in a rental 

apartment where the landlord has little incentive to update appliances to more energy efficient 

models). As a result, the household feels “energy insecure.” 

DETERMINING THE EXTENT OF TECHNICAL INEFFICIENCY 

To measure the extent of technical inefficiency in production (considering both controllable and 

uncontrollable factors), we follow suggestions from Battese and Coelli (1995) who proposed that 

the technical inefficiency of a specific production unit (e.g., firm or household) at any given point 

in time can be estimated as follows: 

(33) 𝜂𝑖 = ∑ 𝑦𝑘Γ𝑘, 

where Γ𝑘 represents parameters to be estimated and 𝑦𝑘 represents a vector of observable factors 

which are thought to influence the level of technical inefficiency experienced by the firm or 

household.  For our analysis, the observable factors in 𝑦𝑘 include specific information about the 

household and its members, including the number of children living inside the household, the 

household’s income and overall level of education, the geographic location of household, the year 

the household was built, the household demographics, as well as the type and efficiency rating of 

the capital technology operated by the household. 

In the estimated version of equation (33), a statistically insignificant parameter estimate 

(Γ̂𝑘)  implies that the observable factor associated with that parameter estimate does not influence 
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the level of technical inefficiency experienced by the household. Based on the literature, 

households with more children, households which were built more than 50 years ago, and non-

white households are expected to experience higher levels of technical inefficiency (i.e., higher 

level of energy insecurity) (Drehol and Ross 2016). For this study, we are specifically interested 

in how the efficiency rating of the capital technology the household chooses to operate influences 

the level of technical inefficiency it experiences.  

THE EFFECTS OF ENERGY EFFICIENCY 

Energy efficiency improvements, by design, reduce the amount of energy/fuel input required to 

produce household energy services. Therefore, under the framework specified above, one way a 

household could become more efficient in its production of household energy services (i.e., 

produce more energy services given its fixed set of inputs) is by increasing the energy efficiency 

level of the capital technology it operates, assuming other inputs are held constant. For example, 

a household could become more efficient in its production of energy services by purchasing an 

Energy Star® certified appliance, or making improvements such as installing energy efficient 

windows, sealing air leaks, or adding insulation.  

Making such investments is expected to reduce the amount of energy input consumed per 

unit of energy service output produced by the household, resulting in more efficient production of 

household energy services. To examine this impact theoretically, assume a household is technically 

inefficient in its production of household energy services as described earlier. Under the 

assumption of technically inefficient production, the household is said to be operating below its 

technically efficient production function or frontier at point such as E in the top panel of Figure 

4.3, and therefore is only able to achieve a utility level of 𝑈0 in the bottom panel of Figure 4.3.   
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Assume the current capital technology inputs operated by the household have a 

corresponding energy efficiency level/rating of  �̅�. Furthermore, assume we are now operating in 

the long-run. In the long-run, the household’s residence, as well as the stock of capital technology 

inputs it chooses to operate (𝐾) and the corresponding efficiency level of the capital technology 

inputs (𝛾) chosen are free to vary. That is, the household no longer faces fixed capital inputs (𝐾) 

and fixed technical efficiency of K (�̅�).  

For simplicity assume the household can choose from only one alternative 𝐾(𝛾∗) such that 

𝛾∗ > �̅� . Both 𝛾∗and �̅� are still assumed to exist within the interval [0, 𝛾𝑚𝑎𝑥] such that values of 𝛾 

closer to 𝛾𝑚𝑎𝑥 are considered to be more “efficient” than values of 𝛾 farther from 𝛾𝑚𝑎𝑥.80 Because 

𝛾∗ > �̅�, it is inferred that 𝛾∗ is closer to 𝛾𝑚𝑎𝑥 and therefore, the energy efficiency rating/level of 

the alternative choice is higher than the energy efficiency rating/level of the capital technology 

employed currently by the household.  

Recall that an increase in the efficiency rating of a household’s capital technology inputs 

(i.e., an increase in the value of 𝛾 ) leads to an increase in the amount of energy service outputs 

produced per unit of fuel/energy input consumed by the household. Therefore, by operating capital 

technology inputs 𝐾 with a corresponding efficiency level of 𝛾∗, (i.e., 𝐾(𝛾∗)) the household is able 

to produce more energy services while consuming fewer units of fuel/energy than when it operated 

as technically inefficient while using capital technology inputs 𝐾 with a corresponding efficiency 

level of �̅�.  

Therefore, households who adopt more energy efficient capital technology will become 

more technically efficient in their production of household energy services, and as a result operate 

                                                 
80 Here, as before, 𝛾𝑚𝑎𝑥 is used to represent the maximum level of energy efficiency obtainable for the stock of capital technology 

available for purchase by the household. 
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closer to their production frontier for energy services (e.g., at point H in the top panel of Figure 

4.3) and in some cases actually along their technically efficient production frontier for energy 

services. 81 As a result, the household would also be able to produce energy services at costs lower 

as compared to 𝐶0. 

The household’s production function for household energy services under the assumption 

of technical inefficiency, but with more efficient capital technology inputs can be written as 

follows, 

(34) 𝐸𝑆𝐸𝑅𝑉𝐻 = 𝐸𝑆𝐸𝑅𝑉[𝐾(𝛾∗), 𝐸] − 𝜂𝐻.  

Here 𝐸𝑆𝐸𝑅𝑉𝐻 represents the amount of energy services the household is able to produce if it is 

technically inefficient in its production of household energy services but has chosen to adopt more 

energy efficient capital technology inputs, such that 𝐾(𝛾) = 𝐾(𝛾∗).  

The extent of technical inefficiency experienced is labeled as 𝜂𝐻, which is assumed to be 

less than (in absolute value) the extent of technical inefficiency experienced when the household 

chose to operate capital technology inputs with corresponding efficiency level/rating �̅�. We label 

the extent of technical inefficiency experienced by the household, when it operates capital 

technology inputs with corresponding efficiency level/rating �̅� as 𝜂𝑜. It is important to note, that 

while technical inefficiency has decreased as a result of the household’s decision to invest in 

energy efficiency, it has not been completely eliminated altogether.  

Technical inefficiency in production can only be completely eliminated by investing in 

energy efficiency if the only source of technical inefficacy is the efficiency rating of the capital 

                                                 
81 In order for the efficiency improvement from adopting more energy efficient capital technology to result in a case where the 

household is able again operate along its production frontier, capital technology inputs could be the only contributor to technical 

inefficiency.   
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technology inputs the household chose to operate a prior. Under this case, the extent of technical 

inefficiency in production must be exactly equal to the efficiency gains from investing in more 

energy efficient capital technology inputs. For this study, we consider the case where a gain in 

efficiency from the adoption of more energy efficient capital technology inputs decreases the 

extent of technical inefficiency in production, as well as the case where a gain in efficiency from 

the adoption of more energy efficient capital technology inputs eliminates technical inefficiency 

in production. The overall increase in efficiency resulting from the household’s decision to adopt 

energy efficient capital technology inputs (i.e., and energy efficient appliance) is represented 

below in Figure 4.4. 

 
Figure 4.4 Energy Efficiency’s Impact on the Technically Inefficient Production 
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In Figure 4.4, a move from point E to point H represents an increase in the amount of 

energy service outputs a household would be able to produce in the case where it has chosen to 

adopt more energy efficient capital technology inputs (i.e., capital technology inputs with 

corresponding efficiency level [𝛾∗]) but the household is still considered to be technically 

inefficient in its production of household energy services. One can interpret point H as a case 

where the efficiency improvement from purchasing a more energy efficient appliance or making 

an energy efficiency upgrade has a significant negative effect on the level of technical inefficiency 

being experienced by the household, but unfortunately is not enough to completely eliminate it. A 

move from point E to point H in the top panel of Figure 4.4 corresponds to move from point F to 

point I in the lower panel of Figure 4.4 where the household is operating inside of its PPF. 

A move from point H (or point E) point G* in the top panel of Figure 4.4 is used to represent 

the case where the technical inefficiency experienced by the household has been completely 

eliminated by its choice to adopt an energy efficient appliance or make an energy efficiency 

upgrade. Thus, point G* represents an output of energy services that is technically efficient. A 

move from point H (or point E) Point G* in the top panel of Figure 4.4 corresponds to a move 

from point I (or point F) to point A* in the bottom panel of Figure 4.4.  As illustrated in the bottom 

panel of Figure 4.4, households who produce energy services more efficiently as the result of 

adopting more energy efficient capital technology end up on a higher indifference curve (i.e., a 

higher level of utility) than households who do not, assuming all other inputs remain fixed.  

In Figure 4.4, the optimal, but constrained, utility level associated with point G* is 𝑈∗, the 

utility level associated point H is 𝑈𝐻, and the utility associated with point E is 𝑈0. Points F and E 

in Figure 4.4 are used to illustrate the solution to the household’s problem as described under the 

assumption of technical inefficiency in production from choosing to operate capital technology 
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inputs with corresponding efficiency level/rating �̅�. Points H and I are used to illustrate the solution 

to the household’s problem, assuming the extent of technical inefficiency has been reduced as a 

result of the decisions household to make an energy efficiency investment/upgrade.  Points G* and 

A* represent the case where technical efficiency has been eliminated and the household operating 

along its stochastic production frontier and PPF. 

HOUSEHOLD ENERGY SECURITY  

In economics, it is difficult to measure the amount of utility an individual receives from consuming 

goods and services, because as a concept utility is inherently subjective. The term “utility” itself, 

is used to represent the level of satisfaction one receives from consuming goods and/or services. 

In this study, we assume the utility one receives from consuming energy services can be interpreted 

as the feeling of being energy secure, such that higher levels of security imply more utility is being 

received from the household’s production and consumption of energy services.  

In its most basic format, the term “security” is used to refer to an emotional state individuals 

experience when they have or believe they have sufficient resources to fulfill their needs (Bericat 

2014). As stated earlier, a state of being “energy secure” occurs when a household and its members 

feel they have adequate access to sufficient, safe, and affordable energy inputs that meet each 

household members’ most basic daily energy service needs. That is, the household production of 

energy services is meeting the household’s minimum “felt needs” with respect to energy services.  

Within our theoretical framework discussed above, the necessary and sufficient conditions for a 

household to feel energy secure are as follows.   

The first necessary condition is that households are achieving technical efficiency in the 

production of household energy services; that is, households are operating along their production 

function or frontier and PPF for energy services. The second necessary condition is that they are 
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meeting allocative efficiency by achieving the optimal or highest level of utility possible given the 

constraints they face.  The highest level of utility possible is represented by indifference curve 𝑈∗ 

in Figure 4.4. Given the constraints they face, households are able achieve utility level 𝑈∗ at point 

𝐴∗ in Figure 4.4. At point A* the indifference curve 𝑈∗ is tangent with the household’s PPF.  

Because being energy secure is a subjective feeling, a sufficient condition for household to 

be energy secure is that the optimal level of household utility derived from the consumption of 

energy services from an efficiency standpoint (𝑈∗ in Figures 4.4) is greater than or equal to the 

minimum level of utility generated by the consumption of energy services which makes a 

household feel energy secure by meeting their most basic daily energy service needs. Let this 

minimum this level of utility be denoted by 𝑈′ which is generated by a corresponding consumption 

level of energy services, 𝐸𝑆𝐸𝑅𝑉′. If 𝑈∗ ≥ 𝑈′ and the household is operating along its PPF, then 

we consider this a sufficient condition for household energy security. 

An implication of these necessary and sufficient conditions is that the likelihood of a 

household feeling energy secure (insecure) increases (decreases) as the household is able to 

achieve higher levels of utility (as represented by the different indifference curves in Figure 4.4) 

from its production and consumption of energy services. It could be the case that the constrained 

optimal level of energy services 𝐸𝑆𝐸𝑅𝑉∗ is equal to the level of energy services which just meet a 

household’s felt needs 𝐸𝑆𝐸𝑅𝑉′. For simplicity, in this study we assume this is the case. Therefore, 

achieving utility level 𝑈∗results in feelings of being energy secure. 

4.4 METHODOLOGICAL APPROACH  

This section provides an overview of our methodological approach, including the data we use for 

our analysis, estimation procedures we use to test our hypothesis, and how we address endogeneity.  
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DATA 

Data for our analysis comes from the 2015 Residential Energy Consumption Survey (RECS). As 

mentioned in Chapter 3 (Essay 2), the RECS is a national multi-phase survey administered by the 

U.S. Energy Information Administration (EIA) about once every three years. The RECS solicits 

information on energy consumption, expenditures, and use patterns from households across the 

United States. 82 Data for the 2015 RECS, in particular, was collected over three separate phases: 

the household survey phase, the energy use collection phase, and the end-use consumption and 

expenditure estimates phase. It was administered using a combination of in-person computer-

assisted personal interviews, mailed paper surveys, and web-based questionnaires. 

A total of 5,686 responses were collected from the 2015 RECS, indicating a response rate 

of about 44%. 83 In this study, we focus only on single-family detached homes.84 We specifically 

use the 2015 RECS survey because it asks participants to reveal information about the energy use 

patterns within their home. 85 Additionally, the 2015 RECS collects information about the physical 

characteristics of each individual’s home including the age of the primary dwelling, the number of 

bedrooms, the number of bathrooms, the number of square feet, the number of and type of 

appliances used, as well as the type of heating and ventilation equipment used regularly by the 

household.  

                                                 
82 While data collection for the RECS dates back to 1980, each survey administered targets a different set of households. Also, the 

questions asked vary from year to year. Thus, each set of observations should be treated a s single a cross-section. 
83 To create a general, representative sample of all U.S. households, the EIA used a multistage area probability sample design. This 

design begins by dividing the United States into different geographical areas by randomly selecting public micro data areas 

(PUMAs). Each PUMA was then divided into several different census block groups (CBGs), resulting in a total of 800 total CBGs, 

four per each PUMA. In the third and final stage randomization, households are randomly chosen from an overall list of households 

in each of the selected CBGs. In most of the CBGs, the list of households is created from the United States Postal Service Delivery 

Sequence File (DSF). 
84 Single-family detached homes include stand-alone houses. These types of home do not include multi-family residential dwellings 

such as townhomes, apartments, or duplexes. 
85 These energy use patterns include information such as whether or not the household has received an in-home energy audit within 

the past year, made any energy efficiency upgrades, or had been the recipient of funding from an energy assistance program. 
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Lastly, we utilize data from the 2015 RECS because the survey specifically asked 

households a subset of questions related to any challenges they may have faced over the past twelve 

months in paying their energy bills or maintaining heating or cooling inside their home. We 

interpret these questions as indicators a household was unable to produce an adequate level of 

energy services and therefore is unable to achieve energy security (e.g., the household is unable to 

reach U* in Figures 4.1 and 4.4). Household responses to these questions are used to construct the 

Rasch model-based energy insecurity index in Chapter 3 (Essay 2). Descriptive statistics for 2015 

RECS are listed below in Table 4.1
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Table 4.1 Summary Statistics 2015 Residential Energy Consumption Survey (RECS) 

Variable Description Mean St. Error Min Max 

Income Median Household Income ($) 62,370.74 42,640.72 10,000 140,000 

Employed = 1 if Respondent for Household is Employed  0.59 0.49 0 1 

Education = 1 if Respondent for Household has College Degree 0.69 0.46 0 1 

Age Respondent for Household’s Age (Years) 52.30 17.02 18 85 

Gender = 1 if Respondent for Household is Male  0.44 0.50 0 1 

Children Number of Children Aged 16 and Younger 0.61 1.04 0 10 

CDD65 Cooling Degree Days 1,719.21 1,193.56 0 6,607 

HDD65 Heating Degree Days 3,707.85 2,149.27 0 9,843 

House Age = 1 if Dwelling Built Before 1959 (+60 years old) 0.25 0.43 0 1 

Hispanic = 1 if Respondent for Household is Hispanic 0.13 0.33 0 1 

African American = 1 if Respondent for Household is African American 0.10 0.31 0 1 

Audit = 1 if Household Received an in home Energy Audit 0.08 0.27 0 1 

Energy Star Number of Energy Star ® Appliances 2.37 2.23 0 7 

Windows = 1 if Household has Triple/Double Pane Windows 0.61 0.49 0 1 

Insulation = 1 if Household has “Adequate” Insulation 0.83 0.38 0 1 

Reduce = 1 if Reduced or Forgone Expenditures 0.14 0.35 0 1 

Unsafe = 1 if Kept Household at Unsafe Temperature 0.06 0.24 0 1 

Notice = 1 if Household Received a Disconnection Notice 0.06 0.24 0 1 

No Fuel = 1 if Household Couldn’t Afford Elec., Nat. Gas, or Propane 0.03 0.16 0 1 

HVAC = 1 if Household’s HVAC is Broken and Can’t Afford Repair 0.06 0.24 0 1 

Medical = 1 if Household Sought Medical Attention 0.01 0.12 0 1 

Days = 1 if Days without Heat/AC Exceeds 36 days 0.02 0.13 0 1 

Dehumidifier Number of Months Dehumidifier in Use 0.76 2.24 0 12 

Free Audit = 1 if Household Received a Free In-Home Energy Audit 0.02 0.14 0 1 

Appliance Rebate = 1 if Utility Offered an Appliance Rebate 0.04 0.20 0 1 

Ownership = 1 if Household is an Owner 0.69 0.46 0 1 

Bedrooms Number of Bedrooms 2.83 1.11 0 10 

Bathrooms Number of Complete Bathrooms 1.75 0.75 0 6 

Observations 5,686 
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In addition to collecting information on the ability of households to maintain access to 

energy services, the 2015 RECS also asked households to report information on whether or not 

they have participated in an “energy program” over the past 12-months or made any energy 

efficiency upgrades to their home. For example, household respondents were asked to report on 

whether or not any of the appliances in their home (e.g., refrigerators, freezers, dishwashers, water 

heaters etc.) are Energy Star® certified.  

The survey also asks households whether or not they have received an in-home energy 

audit sometime over the last 12-months. Additional questions include whether or not the household 

has made any energy efficiency upgrades over the past 12-months including whether or not they 

have installed triple or double pane windows or felt they had adequate insulation. We use the 

information collected in this section of the survey to distinguish between households who have 

made energy efficiency upgrades and those that have not.  

EMPIRICAL MODEL SPECIFICATION 

We now present the empirical model we used to examine how making energy efficiency 

improvements in the home impacts the presence of household energy insecurity. The general 

formulation is given in terms of the household’s true, latent level of energy insecurity,  

(35) 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ = ∑ 𝛽𝑘𝑋𝑖 + 𝜀𝑖

𝑛=26
𝑖=1 ,  

where 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ is used to represent the true, but unobserved level of energy insecurity for 

each household 𝑖; the 𝛽𝑘’s are parameters to be estimated;  𝑋𝑖 represents a vector of covariates 

believed to influence a household’s energy insecurity status; and  𝜀𝑖 is a random disturbance term. 

 Specific covariates in 𝑋𝑖 are defined as follows: 𝑋1 is a continuous variable equal to median 

household income ($); 𝑋2 is a binary variable equal to 1 if the respondent for the household is 

employed either part-time or full time and 0 otherwise; 𝑋3 is a variable equal to the age of the 
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respondent for the household (years); 𝑋4 is a binary variable equal to 1 if the household has an 

additional degree beyond a high school diploma and 0 otherwise; 𝑋5 is a continuous variable equal 

to the number of children aged 16 and under living in the home; 𝑋6 is a variable equal to one if the 

respondent of the household is male and zero otherwise; 𝑋7 and 𝑋8 are continuous variables 

corresponding to the average number of cooling degree days (CDD) and heating degree days 

(HDD), respectively; 𝑋9 is a binary variable equal to 1if the household’s primary dwelling was 

built before 1959 and 0 otherwise; 𝑋10 is a binary variable equal to 1 if the head of the household 

identifies as Hispanic/Latino and 0 otherwise; 𝑋11 is a binary variable equal to 1 if the household 

identifies as African- American and 0 otherwise; 𝑋12−20 are indicator variables set equal to 1 for 

the U.S. Census region where a household is located and 0 otherwise where Census regions are 

defined respectively as, New England, Middle Atlantic, East North Central, West North Central, 

South Atlantic, East South Central, West South Central, Mountain North, Mountain South, and 

Pacific; 𝑋21 is a continuous variable equal to the number of bedrooms the home of the respondent 

has; 𝑋22 is a continuous variable equal to the number of complete bathrooms the home of the 

respondent has; 𝑋23 is an indicator variable equal to 1 if the household received an in-home energy 

audit sometime during the past 12-months and 0 otherwise; 𝑋24 is a binary variable equal to 1 if 

the household has energy efficient windows (e.g., triple and/or double pane windows) and 0 

otherwise; 𝑋25 is an indicator variable equal to 1 if the household has adequate insulation 86 and 0 

otherwise; and 𝑋26 is continuous variable equal to the number of Energy Star® appliances 

operated by the household. Energy Star® appliances considered include: washers, dryers, 

dishwashers, refrigerators, freezers, light bulbs, and hot water heaters.  

                                                 
86 Households whose responses to the 2015 RECS indicated that their home was well insulated or adequately insulated were 

assumed to have an adequate level of insulation, while those who indicated their household was poorly insulated were considered 

to have inadequate insulation.  
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 We employ two empirical/statistical methods for estimating Equation 35 (explained in 

more detail below), both of which are based on assuming there exists an underlying random utility 

function that explains the overall utility a household receives from consuming energy services 

specified as:  

(36) 𝑈𝑖 = ℎ(𝐸𝑆𝐸𝑅𝑉, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒𝑖,  

where  𝑈𝑖 is the  level of utility received by a household from the production and consumption of 

energy services and a given level of all other services 𝐴𝑂�̃�; ℎ(∙) is a non-differentiable function 

representing the deterministic component of 𝑈𝑖 and 𝑒𝑖 is a random error term representing 

stochastic factors affecting 𝑈𝑖. Furthermore, because 𝑈𝑖  is assumed to be strictly increasing in its 

arguments, an increase in energy services leads to a higher level of utility being achieved by the 

household.  

 Recall from Section 4.3 the three separate utility levels, 𝑈∗, 𝑈𝐻, and 𝑈0 are considered 

achievable by the household, as illustrated in Figure 4.4. These different utility levels represent 

the different levels of satisfaction the household receives by having access to energy services in 

the amounts of 𝐸𝑆𝐸𝑅𝑉∗, 𝐸𝑆𝐸𝑅𝑉𝐻 ,  and 𝐸𝑆𝐸𝑅𝑉0, respectively  That is,   

(37) 𝑈∗ = ℎ(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒∗ 

(38)  𝑈𝐻 = ℎ(𝐸𝑆𝐸𝑅𝑉𝐻 , 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒𝐻  

(39)  𝑈0 = ℎ𝑈(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒0 , 

such that 𝑈∗ >  𝑈𝐻 > 𝑈0  and each level of 𝑈𝑖 represents a different level of subjective energy 

security felt by a household  holding “all other services” constant.  
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The difference in utility a household receives from consuming different levels of energy 

services, holding “all other services” constant, can be modeled as follows for the choice between 

energy services 𝐸𝑆𝐸𝑅𝑉∗and 𝐸𝑆𝐸𝑅𝑉0: 87 

(40) Δ𝑈 = [ℎ(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒∗] − [ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒0 ]  

or equivalently  

(41) ΔU = [ℎ(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) − ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶)] + [𝑒∗ − 𝑒0],  

and as follows for the choice between energy services 𝐸𝑆𝐸𝑅𝑉𝐻  and 𝐸𝑆𝐸𝑅𝑉0 

(42) Δ𝑈 = [ℎ(𝐸𝑆𝐸𝑅𝑉𝐻 , 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒𝐻] − [ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒0 ]  

or equivalently 

(43) ΔU = [ℎ(𝐸𝑆𝐸𝑅𝑉𝐻 , 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) − ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶)] + [𝑒𝐻 − 𝑒0].  

The first part of equation (40) [ℎ(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) − ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶)] and 

equation (42) [ℎ(𝐸𝑆𝐸𝑅𝑉𝐻 , 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) − ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶)] represents the 

deterministic components of Δ𝑈, while  [𝑒∗ − 𝑒0] and [𝑒𝐻 − 𝑒0] represent the random components 

of Δ𝑈 (Hanemann 1984).  

The random utility model presented above is useful for predicting consumer choices.  For 

example, when presented with the choice to make an energy efficiency upgrade, a household will 

make the upgrade if the utility it receives from making the upgrade exceeds the utility it would 

have received if it did not make the upgrade, assuming all other inputs remain fixed. As discussed 

in Section 4.3, under the assumption of technical inefficiency (e.g., the household is operating at 

a point such as “F” in Figure 4.4) when household decides to adopt more energy efficient capital 

                                                 
87 See Figure 4.3 for more clarification. 
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technology inputs, the household can reduce its technical inefficiency in production and produce 

more energy services, assuming all other inputs remain fixed. 

Under this scenario, the household can operate at a point such as I in Figure 4.4 and 

therefore is able to reach a higher level of utility. The difference between the optimal level of 

utility (U* achieved at point A* in Figure 4.4) and the household’s current sub-optimal level of 

utility (𝑈0 achieved at point F in Figure 4.4 where it is assumed the household is operating as 

technically inefficient and operating capital technology inputs with corresponding efficiency 

rating/level �̅�) will decrease if the household chooses to make and energy efficiency upgrade. If 

the household chooses to make an energy efficiency upgrade, then it is able to reach utility level 

𝑈𝐻, which is illustrated by a move from point “F” in Figure 4.4 to point “I” in Figure 4.4. The 

decrease in the difference of utility can be expressed mathematically as follows, 

(44) 𝑈∗ − 𝑈𝐻 = [ℎ(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒∗] − [ℎ(𝐸𝑆𝐸𝑅𝑉𝐻 , 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒𝐻 ] < 

      𝑈∗ − 𝑈0 = [ℎ(𝐸𝑆𝐸𝑅𝑉∗, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒∗] − [ℎ(𝐸𝑆𝐸𝑅𝑉0, 𝐴𝑂𝑆;̃ 𝐻𝐶, 𝐷𝐶) + 𝑒0 ].  

By adopting more energy efficient capital technology the household is able to produce energy 

services that are closer to the amount of energy services along their PPF, thereby decreasing Δ𝑈 

between the optimal utility level and a sub-optimal utility level(s).  

In the 2015 RECS, respondents were asked a subset of questions related to challenges they 

may have faced over the past twelve months maintaining access to household energy services. 

Questions were worded in the negative (e.g., “In the last year, did anyone in your household need 

medical attention because your home was too cold/hot?”) and therefore, affirmative responses 

were interpreted as an “inability” to maintain access to energy services. Households are assumed 

to respond to these questions, according to their latent energy insecurity status, such that the more 
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energy insecure the household, the larger the probability the household will give a positive 

response.  

Thus, related to the utility differences illustrated in Figure 4.4 and equations (41) and (43), 

we expect that as the Δ𝑈 between the optimal level of utility (generated by the optimal level of 

energy services) and the sub-optimal levels of utility (generated by the sub-optimal levels of 

energy services) increases, so too will the probability that a household answers “yes” or responds 

affirmatively to the RECS energy insecurity questions.  The reasoning behind this expectation is 

that as a household moves farther away from the optimum level of utility achievable, it is 

producing fewer household energy services, and therefore is likely feeling more energy insecure 

as they are also likely to be moving farther and farther away from the minimum level of utility and 

energy services necessary to satisfy their most basic daily energy service needs (which would be 

the case, for example, if we assume  U* = U’- see related discussion in Section 4.3).   

We do not observe each household’s true level of energy insecurity. We only observe their 

responses to questions included in the 2015 RECS. Therefore, we construct an energy insecurity 

index, using household responses to the RECS questions and a Dichotomous Rasch model (see 

Chapter 3 for more information). The energy insecurity index value assigned to each household 𝑖 

(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖) depends on the number of “yes” responses by the household to the questions 

included in the RECS. Households who respond “no” to all questions are considered “Energy 

Secure,” and are assigned an index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0. Households who respond affirmatively 

to any questions are assumed to be “Energy Insecure” are assigned an energy insecurity index 

value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 > 0. The farther the energy insecurity index value from zero, the greater the 

extent of energy insecurity being experienced by the household.  
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Following the random utility framework above, using the Rasch model results our 

observation for the first index we construct can be modeled as follows, 

(45) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1 if  𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ > 0  

and 

(46) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0 if  𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 0.  

Here the energy insecurity index can take on one of two values: 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1 if the household 

responds affirmatively to at least one questions of interest from the 2015 RECS, and 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 =

0 if the household responds affirmatively to none of the questions. If the household responds 

affirmatively to none of the questions, it seems we can safely assume the household is feeling 

energy secure at least in the sense that it is able to maintain access to energy services (i.e., meeting 

its most basic daily energy service needs).  

Using the first index, the energy insecurity model in equation (35) can be cast as a binary 

response model of the form:  

(47) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1|𝒙) = 𝐺(𝒙𝜷) ≡ 𝑝(𝒙), 

where 𝒙 is 1 × 𝐾, 𝜷 is 𝐾 × 1,  and the first value of 𝒙 is equal to unity. The model in equation (47) 

is referred to as an index function model because it restricts the way in which the response 

probability depends on 𝒙 (Wooldridge 2010). The 𝑝(𝒙) is a function of 𝒙 only through the index 

𝒙𝜷 (Wooldridge 2010). 

 In most applications, 𝐺(𝒙𝜷) is a cumulative distribution function (cdf) whose specific form 

is derived from the theoretical framework underlying the economic model used for the analysis 

(Wooldridge 2010). In our case, the index model we construct to measure a household’s energy 

insecurity status is derived from an underlying random utility model (see equations 37 through 

44). The first index  𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 is modeled as a binary indicator, set equal to one if the household 
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identifies as energy insecure and zero otherwise. Using only the results of the first index, the energy 

insecurity model in equation (35) can be cast as a qualitative response model of the form, 

(48) Λ𝑖 = 𝑃𝑟𝑜𝑏(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1|𝑋𝑖) = 𝑃𝑟𝑜𝑏(∑ 𝛽𝑗𝑋𝑖 + 𝜀𝑖
𝑗=𝑘
𝑖=1 ) 

where Λ𝑖 is the probability that a household is not energy secure (responds affirmatively to at least 

one question, and is classified as energy insecure according to the index).  

The standard parametric approach used to analyze the data would be a logistic regression. 

The logistic model of household energy insecurity can be specified as:  

(49) Λ𝑖 = 𝑃𝑟𝑜𝑏(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1|𝑋𝑖) =
exp(�̂�0+∑ �̂�𝑘𝑋𝑖

𝑛=22
𝑖=1 )

1+exp (�̂�0+∑ �̂�𝑘𝑋𝑖
𝑛=22
𝑖=1 )

, 

where Λ𝑖 is the conditional probability of the household 𝑖 being not energy secure; the 𝛽𝑘's are the 

parameters to be estimated, and 𝑋𝑖 is the set of covariates described earlier. The marginal effects 

for individual variable considered to have impact on household energy insecurity can be calculated 

as follows:  

(50) 
𝑑Λ(𝑥𝑖𝛽𝑘)

𝑑(𝑥𝑖𝛽𝑘)
=

exp (𝑥𝑖𝛽𝑘)

[exp (𝑥𝑖𝛽𝑘)2 = Λ(𝑥𝑖𝛽𝑘)[1 − Λ(𝑥𝑖𝛽𝑘)]. 88 

Marginal effects for any categorical variables should be interpreted as a change in the probability 

that a household is energy insecure as the categorical variable changes from 0 to 1, holding all 

other variables constant.89 

Following the random utility framework, the probability a household will identify as 

energy insecure (receives an energy insecurity index value not equal to zero) increases as the 

distance between 𝑈∗ and some other sub-optimal utility level (e.g., 𝑈′). Following equations (41) 

                                                 
88 The loglikelihood function for the logistic model is listed in the Chapter 4 Appendix.  
89 The discrete choice modeling procedure described above in the case of a binary dependent variable is similar to 

discrete choice contingent valuation models where survey respondents are asked to give a “Yes or No” response to a 

willingness-to-pay question such as, “Would you support a program to increase the size of a local public park by X 

acres if the cost your household was $Y per year? (Hanemann 1984). 
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and (43) if the change in utility is greater than zero, then the probability the household will identify 

as energy insecure (providing at least one “yes” response to the questions in the 2015 RECS) is 

expected to increase. Following the random utility framework, the probability that a household 

identifies as energy insecure theoretically depends on changes in the amount of energy services 

the household is able to produce and consume, the efficiency rating of the capital technology the 

household chooses to operate, energy/fuel consumption of the household, structural and spatial 

characteristics of the household, and the household’s socio-demographic characteristics.  

Table 4.2 lists all of the variables included in our empirical model specification believed 

to influence the probability that a household identifies as energy insecure. To provide a clear 

connection to our theoretical framework (e.g., equations 1-34 and related discussion), we also 

include a label for each variables theoretical counterpart and the hypothesized sign of their 

respective regression coefficients.  

Table 4.2 Empirical Variables used to Measure a Household Energy Insecurity 

Empirical Variable Label 
Theoretical 

Counterparts 

Expected Sign 

of Estimated 

Coefficient 

Median Household Income ($) Income (𝑋1) 𝐻𝐶 Negative 

= 1 if Respondent for Household is 

Employed 
Employed (𝑋2) 𝐻𝐶 Negative 

Respondent for Household’s Age 

(Years) 
Age (𝑋3) 𝐻𝐶 Positive 

= 1 if Respondent for Household 

has Education Beyond High school 
Education (𝑋4) 𝐻𝐶 Negative 

Number of Children Aged 16 and 

Younger 
Children (𝑋5) 𝐻𝐶 Positive 

= 1 if Respondent for Household is 

Male 
Gender (𝑋6) 𝐻𝐶 Negative 

Cooling Degree Days (No. of Days 

Temperatures are above 65℉) 
CDD65 (𝑋7) 𝐸 Positive 

Heating Degree Days (No. of Days 

Temperatures are below 65℉) 
HDD65(𝑋8) 𝐸 Positive 
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= 1 if Dwelling Built Before 1959 

(+60 years old) 
House Age(𝑋9) 𝐷𝐶 Positive 

= 1 if Respondent for Household is 

Hispanic 
Hispanic (𝑋10) 𝐻𝐶 Positive 

= 1 if Respondent for Household is 

African American 
Af. American (𝑋11) 𝐻𝐶 Positive 

Census Dummies 

Census (𝑋12−20) 

𝐷𝐶 

 

New England Positive 

Middle Atlantic Negative 

East North Central Positive 

West North Central Indeterminate 

South Atlantic Indeterminate 

East South Central Positive 

West South Central Positive 

Mountain North Positive 

Mountain South Negative 

Pacific Negative 

Number of Bedrooms Bedrooms (𝑋21) 𝐷𝐶 Positive 

Number of Complete Bathrooms Bathrooms (𝑋22) 𝐷𝐶 Positive 

= 1 if Household Received an in 

home Energy Audit 
Audit (𝑋23) 𝐾(𝛾) Negative 

Number of Energy Star ® 

Appliances 
Energy Star(𝑋24) 𝐾(𝛾) Negative 

= 1 if Household has Triple/Double 

Pane Windows 
Windows (𝑋25) 𝐾(𝛾) Negative 

= 1 if Household has “Adequate” 

Insulation 
Insulation (𝑋26) 𝐾(𝛾) Negative 
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In addition to the first method of partitioning, we also create three additional energy 

insecurity indices using results from the Dichotomous Rasch model. Rather than dividing 

households into two groups, all of the additional energy insecurity indices we create, allow us to 

examine the extent of energy insecurity being experienced by each individual household. The 

extent of energy insecurity experienced, depends on the difference between the household’s 

placement along an energy insecurity scale and the chosen value of the threshold 𝜏 which varies 

across the different indices.  

The additional index measure we create are similar to index measures used in the subjective 

well-being (SWB) literature. SWB surveys are designed to elicit information on people’s feelings, 

including the sense of satisfaction or “happiness” they feel in their overall life. Thus, in SWB 

models, the dependent variable is a strictly positive variable, which is assumed to measure utility 

(i.e., satisfaction, happiness). Following the SWB approach, we interpret the second energy 

security indices produced from the application of the Dichotomous Rasch model as a self-reported, 

direct measure of the level of dissatisfaction households feel regarding their energy circumstances 

based on their subjective feelings about their level of energy insecurity.   

For the first additional index, the threshold value of 𝜏 is set equal to zero. Households who 

respond affirmatively to zero questions are placed at the bottom of the energy insecurity scale (see 

Figure 3.3).  These households are considered fully energy secure (i.e., not energy insecure) and 

therefore, are assigned an energy insecurity index 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0. Other households who respond 

affirmatively to one or more questions are assigned energy insecurity index values equal to the 

difference between the value of the energy insecurity scale they receive and the threshold value of 

𝜏 = 0. The most severe condition of energy insecurity, in this case is represented by affirmative 
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responses to all seven questions from 2015 RECS, which corresponds to an energy insecurity index 

value, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 6.34.  

 In the second additional index, the threshold value of 𝜏 is set equal to 3.08, the severity 

parameter estimate associated with the first question on the energy insecurity scale (Question 2 

Reduce). Households who respond affirmatively to either zero or only one question are considered 

“Energy Secure.” As a result, these households receive an energy insecurity index value 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0. Other households, who respond affirmatively to two or more questions are 

considered “Energy Insecure.” The extent of energy insecurity, just as before, is determined by the 

difference between the value on the energy insecurity scale where the household has been placed, 

and the threshold value of 𝜏 = 3.08. The most severe condition of energy insecurity, in this case 

is still represented by affirmative responses to all seven questions. The energy insecurity index 

value, however is equal to the difference between 6.34 (the energy insecurity scale value associated 

with responses to seven questions) and the threshold value of 𝜏 = 3.08, such that 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 =

4.26. 

Because the severity parameter estimates for some of the questions used to create the 

energy insecurity scale are similar to one another (e.g., Question 5 [HVAC], Question 2 [Unsafe], 

and Question 3 [Notice]) for the third additional energy insecurity index we create, the energy 

insecurity scale is divided into four separate categories. Each category represents a range along the 

scale. Households who have scores within a certain range are all assigned the energy insecurity 

index value that is associated with that range.  

Based on the severity parameter estimates produced from the Dichotomous Rasch model 

(see Table 3.25) that are used to create the scale, we consider households who respond 

affirmatively to either only one or no questions to be “High Energy Secure.” These households are 



 

222 

 

assigned an energy insecurity index value = 1 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1). Household who respond 

affirmatively to two, three, or four questions are considered “Marginally Energy Secure,” and are 

assigned an energy insecurity index value = 2 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2). Households who respond 

affirmably to five questions are considered to be “Low Energy Secure,” and are assigned an energy 

insecurity index value = 3 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3). Households who respond affirmatively to six or 

seven questions are considered to be “Very Low Energy Secure.” They are assigned an energy 

insecurity index value = 4 (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4).   

Each of the additional index measures produced from the Dichotomous Rasch model 

results, generate a different set of numerical values for each of the levels of energy insecurity able 

to be experienced along the scale by each individual household 𝑖. Based on their responses to the 

questions of interest and the index chosen, each household is assigned a value within a set. The set 

of values changes depending on the threshold value of 𝜏 chosen. For the first additional index 

measure we create, where the value of the threshold 𝜏 = 0, eight separate energy insecurity index 

values are identified: 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 ∈ {0, 3.08, 4.38, 4.44, 4.48, 5.65, 6.20, 6.34}. For the second 

additional index measure we create, where the value of the threshold 𝜏 = 3.08, seven separate 

energy insecurity index values are identified: 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 ∈{0, 1.30, 1.36, 1.40, 2.57, 3.12, 3.2}.  

 Across both methods of partitioning, 0 is the lowest (least severe) level of energy 

insecurity able to be experienced by a household. In the first 6.34 is the highest (most severe) while 

in the second 3.26 is the highest (most severe) level of energy insecurity able to be experienced. It 

is important to note that the fact that 5.65 (2.57) is worse than 4.48 (1.40) in the sets conveys 

important information, but nothing is lost if a different set of numbers are used, as long as the 

ordinal magnitudes between values is consistent with the original set (Wooldridge 2010). For the 

third additional index measure we create, where the value of the threshold 𝜏 = 3.08 and the energy 
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insecurity scale is divided into four groups, four separate energy insecurity index values are 

identified: 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 ∈{1, 2, 3, 4}. Here 1 is the lowest (least severe) level of energy insecurity 

able to be experienced by a household and 4 is the most severe.  

Following the second and third method of partitioning in which responses to none or only 

one question indicates the household is still “Energy Secure” is consistent with the methods used 

in food security literature (see Hamilton et al. 1997, Bickel et al. 2000, and Nord 2003). Again, 

nothing is lost if a different set of numbers is used for the energy insecurity index values, as long 

as the ordinal magnitude between each value is consistent. 90 

Using these additional energy insecurity indices, the energy insecurity model in equation 

(35) can be cast as an ordered response model, more specifically an ordered logit model (Greene 

2012).  For each household 𝑖 we hypothesize that there is a continuously varying true level of 

energy insecurity being experienced that underlies the household’s response pattern to the seven 

questions included in Table 3.1 (i.e., questions from Section L on the 2015 RECS). The true level 

of energy insecurity is labeled in equation (35) as 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ and is assumed to exist over the 

interval −∞ < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ < +∞.  

Although the household’s true level of energy insecurity likely varies continuously in the 

space of individual utility, the experience of being energy insecure in this analysis is provided by 

a discrete outcome on a scale (Greene 2012). Households receive an energy insecurity index value 

(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖) based on the number of questions to which they respond affirmatively and the 

chosen value of the threshold. Logically, then, the translation from the household’s true underlying 

energy insecurity status and its position along the energy insecurity scale, which determines the 

                                                 
90 The food insecurity scale is typically transformed to range in value from 0 to 10. Therefore, the scale values included 

are linear transformations of the original item calibrations produced for the 18 questions from the Rasch model 

(Hamilton et al. 1997; Bickel et al. 2000).  
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energy insecurity index value the household receives, could be viewed as a censoring of the true 

underlying level of energy insecurity experienced by the household (Greene 2012).  

We do not observe a household’s true energy insecurity status. What we do observe how 

their pattern of responses determines their place along the scale and how this placement determines 

the energy insecurity index value they receive. Under the first additional index (setting the 

threshold value 𝜏 = 0) our observations can be recorded and ordered as follows,  

(51a.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0  if  𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 0 

(51b.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.08  if 0 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔3.08 

(51c.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.38 if 𝜔3.08 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.38 

(51d.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.44 if 𝜔4.38 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.44. 

(51e.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.48 if 𝜔4.44 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.48 

(51f.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 5.65 if 𝜔4.48 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔5.65 

(51g.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.20 if 𝜔5.65 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔6.20 

(51h.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.34 if 𝜔6.20 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗, 

where 𝜔𝑖 for 𝑖 = 3.08, 4.38, 4.44, 4.48, 5.65, 6.20 represent the different thresholds along the 

underlying continuum of a household’s true level of energy insecurity. In this case, the thresholds 

represent the cut points between each calibration included on the scale. They are parameters to be 

estimated (Greene 2012).  

 We can derive the conditional probability of each household 𝑖 receiving an energy 

insecurity index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 as follows:  

(52a.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0|𝑋𝑖) = 𝑃(𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 0|𝑋𝑖)   

(52b.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.08|𝑋𝑖) = 𝑃(0 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔3.08|𝑋𝑖)   

(52c.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.38|𝑋𝑖) = 𝑃(𝜔3.08 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.38|𝑋𝑖)   
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(52d.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.44|𝑋𝑖) = 𝑃(𝜔4.38 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.44|𝑋𝑖)   

(52e.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.48|𝑋𝑖) = 𝑃(𝜔4.44 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.48|𝑋𝑖)   

(52f.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 5.65|𝑋𝑖) = 𝑃(𝜔4.48 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔5.65|𝑋𝑖)   

(52g.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.20|𝑋𝑖) = 𝑃(𝜔5.65 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔6.20|𝑋𝑖)   

(52h.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.34|𝑋𝑖) = 𝑃(𝜔6.20 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗|𝑋𝑖)   

Replacing equation (35) for 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ and assuming a logistic model specification, the 

probabilities listed in equations (52a.) through (52h.) can be rewritten as follows 

(53a.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0|𝑋𝑖) = 1 − Λ(∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1  

(53b.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.08|𝑋𝑖) = Λ(𝜔3.08 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(− ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(53c.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.38|𝑋𝑖) = Λ(𝜔4.38 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔3.08 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1  

(53d.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.44|𝑋𝑖) = Λ(𝜔4.44 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔4.38 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1    

(53e.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.48|𝑋𝑖) =  Λ(𝜔4.48 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔4.44 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(53f.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 5.65|𝑋𝑖) =  Λ(𝜔5.65 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔4.48 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(53g.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.20|𝑋𝑖) = Λ(𝜔6.20 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔5.65 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(53h.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.34|𝑋𝑖) = 1 − Λ(𝜔6.20 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 . 

For the probabilities represented in equations (53a.) through (53h) to be positive, it must be the 

case that 0 < 𝜔3.08 < 𝜔4.38 < 𝜔4.44 < 𝜔4.48 < 𝜔5.65 < 𝜔6.20 (Greene 2012). 91 

Using the second energy insecurity index (setting the threshold value 𝜏 = 3.08) households 

responses to the set of questions listed in Table 3.1 still determines their place along the scale, 

which determines the energy insecurity index value they receive. The energy insecurity index 

values are still ordered from least severe (most secure, least insecure) to most severe (least secure, 

                                                 
91 The loglikelihood function for the ordered logit model is listed in the Chapter 4 Appendix. 
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most insecure). Our observations under the second method of partitioning can be recorded and 

ordered as follows,  

(54a.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0  if 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔3.08 

(54b.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.30 if 𝜔3.08 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.38 

(54c.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.36 if 𝜔4.38 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.44. 

(54d.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.40 if 𝜔4.44 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.48 

(54e.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2.57 if 𝜔4.48 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔5.65 

(54f.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.12 if 𝜔5.65 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔6.20 

(54g.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.26 if 𝜔6.20 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗, 

The conditional probability of each household 𝑖 receiving an energy insecurity index value 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 can be derived as follows:  

(55a.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0|𝑋𝑖) = 𝑃(𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔3.08|𝑋𝑖)   

(55b.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.30|𝑋𝑖) = 𝑃(𝜔3.08 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.38|𝑋𝑖)   

(55c.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.36|𝑋𝑖) = 𝑃(𝜔4.38 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.44|𝑋𝑖)   

(55d.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.40|𝑋𝑖) = 𝑃(𝜔4.44 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4.48|𝑋𝑖)   

(55e.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2.57|𝑋𝑖) = 𝑃(𝜔4.48 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔5.65|𝑋𝑖)   

(55f.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.12|𝑋𝑖) = 𝑃(𝜔5.65 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔6.20|𝑋𝑖)   

(55g.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.26|𝑋𝑖) = 𝑃(𝜔6.20 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗|𝑋𝑖)   

Again, replacing equation (35) for 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ and assuming a logistic model specification, the 

probabilities listed in equations (55a.) through (55g.) can be rewritten as follows 

(56a.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0|𝑋𝑖) = 1 − Λ(∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1  

(56b.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.30|𝑋𝑖) = Λ(𝜔4.38 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(− ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(56c.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.36|𝑋𝑖) = Λ(𝜔4.44 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔4.38 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1  
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(56d.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1.40|𝑋𝑖) = Λ(𝜔4.48 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔4.44 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1    

(56e.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2.57|𝑋𝑖) =  Λ(𝜔5.65 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔4.48 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(56f.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.12|𝑋𝑖) =  Λ(𝜔6.20 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔5.65 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(56g.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3.26|𝑋𝑖) = 1 − Λ(𝜔6.20 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 . 

 Because the energy insecurity index values a household can receive, following the third 

additional index can take on one of four values {1,2,3,4}, the energy insecurity index can still be 

considered an ordered response. Individual household observations under this method of 

partitioning can be recorded and ordered as follows,  

(57a.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1  if 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔2 

(57b.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2 if 𝜔2 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔3 

(57c.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3 if 𝜔3 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4. 

(57d.) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4 if 𝜔4 < 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ 

where 𝜔𝑖 for 𝑖 = 1, 2, 3 represent the different thresholds. The conditional distribution of 

𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗, assuming a logistic model specification can be written as follows,  

(58a.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1|𝑋𝑖) = 𝑃(𝐸𝐼𝑆𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔2) 

(58b.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2|𝑋𝑖) = 𝑃(𝜔2 < 𝐸𝐼𝑆𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔3) 

(58c.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3|𝑋𝑖) = 𝑃(𝜔3 < 𝐸𝐼𝑆𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ ≤ 𝜔4) 

(58d.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4|𝑋𝑖) = 𝑃(𝜔4 < 𝐸𝐼𝑆𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗). 

Again, replacing equation (35) for 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸𝑖
∗ the preceding probabilities can be rewritten as 

follows,  

(59a.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1|𝑋𝑖) = 1 − Λ(∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1  

(59b.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 2|𝑋𝑖) = Λ(𝜔3 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(− ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1   

(59c.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 3|𝑋𝑖) = Λ(𝜔4 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 − Λ(𝜔3 − ∑ 𝛽𝑘𝑋𝑖)

𝑛=22
𝑖=1  
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(59d.) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4|𝑋𝑖) = 1 − Λ(𝜔4 − ∑ 𝛽𝑘𝑋𝑖)
𝑛=22
𝑖=1 . 

Under this third method of partitioning, a household’s energy insecurity status is still ordered from 

least severe (most secure, least insecure), which corresponds to an energy insecurity index value 

𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 1 to most severe (least secure, most insecure), which corresponds to an energy 

insecurity index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 4.  

 Of interest to us are the partial effects of changes in the individual regressors on the 

probability of receiving a specific energy insecurity index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 from the list of 

ordered responses. Positive parameter estimates should be interpreted as an increase in the log-

odds of reaching a higher level of energy insecurity (i.e., becoming more energy insecure). 

Negative parameter estimates should be interpreted as a decrease in the log-odds of reaching a 

higher level of energy insecurity (i.e., becoming more energy secure). 

ENDOGENITY ISSUE 

Energy efficiency improvements are designed to decrease the amount of energy necessary to 

provide household energy services. Therefore, the experience of being energy insecure (i.e., not 

being able to provide an adequate level of energy services) may prompt households to make energy 

efficiency upgrades. Conversely, making an energy efficiency upgrade in the home may improve 

a household’s energy security status. Clearly, in our analysis, the determination of causality as 

opposed to simple correlation will be quite difficult given this present simultaneous relationship 

between the two variables.  

To confront this issue, we implement an instrumental variables approach to estimate the 

model in equation (35). To motivate the instrumental variables approach, consider first the simple 

representative equation for a household’s energy insecurity status, represented by the energy 
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insecurity index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 the household receives, with observation subscript 𝑖 suppressed 

for convenience,  

(60) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 𝛿𝐸𝐸 + 𝒙′𝜽1 + 𝒘′𝜽2 + 𝒓′𝜽3 + 𝜖,  

where  the energy insecurity index 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 assigned to the household depends on which of the 

two index approaches described above is used (therefore, 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 can be either binary or 

censored/ordered in nature); 𝐸𝐸 is a vector of three binary variables and one continuous variable 

that together represent whether or not the household has made an energy efficiency upgrade 

sometime over the past twelve months; 𝒙 and 𝒘 are vectors of observable characteristics such that 

𝒙 affects both the energy insecurity status of the household and its decision of whether or not to 

make an energy efficiency upgrade;  𝒘 is believed to only influence whether a household is energy 

insecure or energy insecure; 𝒓 is a vector of unobservable characteristics, that similar to 𝒙 affects 

both the energy insecurity status of the household and its decision to make an energy efficiency 

upgrade; 𝛿 is a scalar parameter; 𝜽1, 𝜽2, and 𝜽3 represent parameters to be estimated; and 𝜖 is the 

random error term.  

 In a single equation framework, one would estimate the following equation:  

(61) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 𝛿𝐸𝐸 + 𝒙′𝜽1 + 𝒘′𝜽2 + 𝜖∗ 

where 𝜖∗ = 𝒓′𝜽3 + 𝜖. Ordinary least-squares (OLS) estimation of equation (61) however, 

produces biased estimates of 𝛿 because 𝐸(𝜖∗|𝐸𝑆, 𝒙, 𝒘) ≠ 0. One remedial measure is to estimate 

the energy insecurity status equation in (60) using an instrumental variables (IV) approach. Before 

we apply the IV approach, we attempt to account for the censored nature of the energy insecurity 

index values and binary nature of three of the four measures that represent the household’s decision 

to make an energy efficiency upgrade/improvement. Thus, we replace the variables 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 

and 𝐸𝐸 with their latent counterparts 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗ and 𝐸𝐸∗,  
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(62) 𝐸𝐸∗ = 𝒙′𝜶1 + 𝒛′𝜶2 + 𝑣1 

(63) 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗ = 𝛿𝐸𝐸∗ + 𝒙′𝜽1 + 𝒘′𝜽2 + 𝑣2 

Here 𝒛 is a vector of observable characteristics, also known as instruments, believed to influence 

the household’s decision to make an energy efficiency upgrade but not its true energy insecurity 

status, which is represented by 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗; 𝜶1 and 𝜶2 are parameters to be estimated; and the 

error terms 𝑣1 and 𝑣2 represent unobserved factors believed to influence a household’s decision to 

make an energy efficiency upgrade and its energy security status respectively.   

 The reduced form equation system constitutes equation (62) and  

(64) 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗ = 𝒙′(𝛿𝜶1 + 𝜽1) + 𝒛′(𝛿𝜶2) + 𝒘′𝜽2 + 𝑣2
∗ 

where 𝑣2
∗ = 𝛿𝑣1 + 𝑣2. On the basis of the reduced form equations (62) and (64), binary measures 

for energy efficiency upgrades (the binary variables in the vector 𝐸𝐸) and the binary and censored 

energy insecurity index value of each household 𝑖 can be characterized by the following 

relationship: 

(65) 𝐸𝐸 = 1(𝐸𝐸∗ > 0) and 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1 (𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗ > 0) or 

(66) 𝐸𝐸 = 1(𝐸𝐸∗ > 0) and 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = max (0, 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗). 

Here 1(∘) denotes an indicator function, taking a value of 1 if event (𝐸𝐸∗ > 0) holds, and 0 

otherwise. In our analysis, the event (𝐸𝐸∗ > 0)corresponds with whether or not the household 

made an energy efficiency upgrade or improvement over the past twelve months.  

 Recall from equation (35) that in our analysis the first endogenous variable identified, 𝐸𝐸, 

is represented by the inclusion of four different variables: (1) 𝑋23 a binary variable equal to one if 

the household received an in-home energy audit; (2) 𝑋24 a binary variable equal to one if the 

household installed triple and/or double pane windows; (3) 𝑋25 a binary variable equal to one if 
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the household has adequate insulation; and (4) 𝑋26 a continuous variable equal to the number of 

Energy Star® certified appliances operated by the household.  

Given we have four possible endogenous variables, in order to have a just identified system 

we need at least four separate instrumental variables. Within the 2015 RECS, we identified the 

following four variables as potential instruments for our analysis: 𝑍1 a binary variable equal to one 

if the household received a free in-home energy audit sometime over the past twelve months; 𝑍2 

an indicator variable equal to one if the head of the household self-reports as an owner of the home 

and 0 otherwise (i.e., reports as a renter or temporary resident); 𝑍3 a binary variable equal to one 

if the household received an energy efficiency appliance rebate from their utility company to 

upgrade their capital stock of appliances; 𝑍4 a continuous variable equal to the number of months 

the household used a dehumidifier. 

In our analysis 𝑍1 is a potential instrument for 𝑋23, 𝑍2 is a potential instrument for 𝑋24, 𝑍3 

is a potential instrument for 𝑋25, and 𝑍4 is a potential instrument for 𝑋26. These variables were 

identified as potential instruments because they are believed to influence a household’s decision 

to make an energy efficiency upgrade, but not whether or not the household identifies as energy 

insecure. For variable 𝑍1 through 𝑍4 to be considered as valid instruments, they must meet the 

following two conditions: (1) be uncorrelated with the error term 𝑣2, or in other words be 

excludable in the sense that they have no direct effect on a household’s energy insecurity status 

(i.e., they are exogenous); and (2) be correlated with the endogenous variables identified 

(𝑋23 through 𝑋26) for which they serve as instrument. 

Because the first condition involves examining the covariance between the identified 

instruments 𝑍𝑖 and the unobserved error term 𝑣2 we cannot test whether or not it holds. By contrast, 

the condition that the instruments 𝑍𝑖 are correlated with the endogenous variables of interest, after 
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controlling for the other exogenous variables of interest can be tested. The easiest way to test 

whether or not condition (2) holds is to estimate the following equation using a simple linear 

regression of the form: 

(67) 𝑋𝑖 = 𝜃0 + 𝜃1𝑋1 + ⋯ + 𝜃18𝑋22 + 𝜋𝑘𝑍𝑖 + 𝜁𝑖 

Here each endogenous variable identified is projected linearly onto all of the exogenous variables 

in the model (i.e., the exogenous variables in 𝒘 and the proposed instrument 𝑍𝑖). The key 

assumption from this linear regression is that 𝜋𝑘 (the coefficient on the candidate instrumental 

variable identified) is non-zero. More specifically, if condition (2) holds we should be able to 

conduct a simple t-test which will lead to the rejection of the null hypothesis 𝐻0: 𝜋𝑘 = 0 against 

the two-sided alternative 𝐻𝐴: 𝜋𝑘 ≠ 0. If this is the case, then we can be fairly confident that 𝑍𝑖  is 

partially correlated with 𝑋𝑖, once the other exogenous variables have been netted out. To test if 

condition (2) holds, we estimate the linear model in equation (67) for each endogenous variable 

identified 𝑋𝑖 for 𝑖 = 23, . . ,26 and the chosen instrument. The results are listed in Table 4.3.  

Table 4.3 Test of Exclusion Restriction Results 

Instrument 𝑋23: Audit 𝑋24:Windows 𝑋25:Insulation 
𝑋26: Energy 

Star® 

𝑍1:Free Audit 
0.9143*** 

(0.0220) 
- - - 

𝑍2: Ownership - 
0.1443*** 

(0.0184) 
- - 

𝑍3: Dehumidifier - - 
0.0031* 

(0.0018) 
- 

𝑍4: App. Rebate - - - 
0.5759*** 

(0.1337) 

Observations 5,686 

Standard errors in parenthesis 

 ∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 

As stated earlier, the other endogenous variable, a household’s energy insecurity status is 

constructed from each household 𝑖’s responses to a set of questions related to challenges they may 
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have faced over the past twelve months in maintaining adequate access to a sufficient, safe, and 

affordable energy supply to meet their basic daily energy service needs. Responses to the questions 

of interest were combined into a scaled measure, which was used to create two index measures for 

household energy insecurity. In the first index measure we created, a household’s energy insecurity 

status was treated a binary variable, set equal one if the scale score produced was positive 

(household identifies as being energy insecure) and zero otherwise (household identifies as being 

energy secure because it did not respond affirmatively to any of the questions).  

In the second case, the energy insecurity index measure created is positive and strictly 

greater than or equal to zero. The index values produced represent an ordered response outcome 

variable. The values assigned to each outcome indicate the extent of “energy insecurity” being 

experienced by each household 𝑖. While the values are arbitrary, the distance between them 

conveys important information about what circumstances contribute to household energy 

insecurity. Using the Dichotomous Rasch model, we created two different ordered response energy 

insecurity indices. In the first index we created, there are only eight possible values for the energy 

insecurity index measure. In the second index, there are seven possible values. In the third, there 

are four. 

Based on both of the methods used to create the household energy security index (i.e., the 

binary index measure and the two ordered response index measures), the model for household 

energy insecurity in equation (35) is assumed to be non-linear. Therefore, in addition to having an 

identification issue in our analysis, an additional problem arises given the structure of our 

endogenous variables and the type of empirical model specifications required to account for the 

binary or ordered and censored nature of the index value chosen to be evaluated. More specifically, 

three of the four endogenous variables we identified are binary in nature. Consequently, the 
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conditional expectation function associated with the first stage regression model outlined above, 

is likely to be non-linear (Angrist and Pischke 2008).  

As a result, applying the usual OLS procedure in the first stage only serves as an 

approximation to the underlying true conditional expectation function of the energy efficiency 

indicator variables of interest. One way to confront this issue would be to estimate a non-linear, 

first stage regression model and then as before take the predicted values from that regression (i.e., 

the reduced form model) and plug them back into the second stage regression. However, this 

results in a forbidden regression because only OLS estimation of the first-stage is guaranteed to 

produce first-stage residuals that are uncorrelated with the fitted values and covariates used in the 

second stage (Angrist and Pischke 2009). An alternative would be to use the non-linear fitted 

values for each 𝑋𝑖 produced in the first stage as instruments for themselves (Agrist and Pischke 

2009). In other words, we could use �̂�𝑖 as an instrument for 𝑋𝑖 and apply the same two-stage 

procedure described before. However, using non-linear first stage estimates as instruments, 

implicitly assumes non-linearity in the first-stage as a source of identification.  

Another alternative suggested, in the case when both the endogenous variable and 

dependent variable are binary in nature (as is the case for the first energy insecurity index we 

created) is to estimate Bivariate Probit model (Angrist and Pischke 2009; Wooldridge 2010). The 

Bivariate Probit model can be specified for two binary response variables as follows,  

(68) 𝐸𝐸∗ = 1[𝒙′𝜶1 + 𝒛′𝜶2 > 𝑣1] 

(69) 𝐸𝐼𝑁𝑆𝐸𝐶𝑈𝑅𝐸∗ = 1[𝛿𝐸𝐸∗ + 𝒙′𝜽1 + 𝒘′𝜽2 > 𝑣2] 

where, as before 𝒙 is a vector of exogenous variables believed to influence both the household’s 

decision to make an energy efficiency investment and whether or not the household identifies as 

energy insecure; 𝒘 is a vector of observable characteristics, believed to influence whether or not 
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a household identifies as energy insecure; and 𝒛 are valid instrumental variables. 92The source of 

endogeneity in the Bivariate Probit set-up presented by equations (68) and (69) is the correlation 

between 𝑣1 and 𝑣2. That is, unmeasured random factors that influence a household’s decision to 

make an energy efficiency upgrade are likely correlated with unmeasured random determinants of 

whether or not the household is energy insecure (Angrist and Pischke 2009).  

Assuming the error terms, 𝑣1 and 𝑣2 have a joint bivariate normal distribution, we estimate 

the system of equations in (68) and (69) using maximum likelihood estimation (MLE).93 MLE 

make no assumptions on the structure of the endogenous variables. Instead MLE allows the 

endogenous variables to be discrete, limited (i.e., categorical), or continuous variables. However, 

it places strong assumptions on the joint distribution of the error terms and is only applicable in 

the case of the first index measure we construct (when 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1 or 0), when the endogenous 

variable is binary, as in the case with 𝑋23, 𝑋24, 𝑋25. When continuous endogenous variables are 

included, the Bivariate Probit is no longer applicable.  

Instead, a control function (CF) approach is suggested. A CF approach can also be used in 

the case when second index measure (i.e., the ordered response energy insecurity index values) is 

used. Similar to the IV (2SLS) estimation procedure, the CF approach uses extra regressors in an 

attempt to break up the correlation between the unobserved effects and the included endogenous 

variables (Wooldridge 2010). However, rather than using the predicted values from the first stage 

regression as the additional regressors in the structural model, the CF approach uses the residuals 

from the first stage regression.  

                                                 
92 The loglikelihood function for the Bivariate Probit model is listed in the Chapter 4 Appendix. 
93 Stata is used to estimate the models presented in this Chapter (Essay).  
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The CF approach for the binary energy insecurity index measure can be outlined as follows. 

Consider the model for a household’s energy insecurity status, represented as before, by the energy 

insecurity index value 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 it receives,  

(70) 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 𝛿𝐸𝐸 + 𝒙′𝜽1 + 𝒘′𝜽2 + 𝑣2.  

As before, 𝐸𝐸 is a vector of endogenous variables that represent whether or not the household has 

made an energy efficiency upgrade; 𝒙 is a vector of variables that influence whether or not a 

household is energy insecure, as well as the household’s decision to make an energy efficiency 

upgrade; 𝒘 is a vector of observable characteristics believed to only influence whether or not a 

household identifies as energy insecure; and 𝑣2 is the error term. Here 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 can take on 

one of two values: 0 if the household identifies as “Energy Secure” and 1 if the household identifies 

as “Energy Insecure.” To implement the CF approach, similar to the instrumental variables 

approach we estimate a reduced form model for 𝐸𝐸 as follows:  

(71) 𝐸𝐸 = 𝒙′𝜶1 + 𝒛′𝜶2 + 𝑣1,   

where 𝒛 is a vector of exogenous variables known as instrumental variables that influence a 

household’s decision to make an energy efficiency upgrade but not whether or not the household 

identifies as energy insecure. The CF approach is supported by the idea that the structural error 

term 𝑣2 and the reduced form error term 𝑣1 can be captured using a linear relationship as follows  

(72) 𝑣2 = 𝜌1𝑣1 + 𝑒1.  

Because neither 𝑣1 or 𝑣2 are assumed to be correlated with the exogenous variables in 𝑧 

then 𝑒1 is also assumed to not be correlated with 𝑧 and therefore, 𝑒1 is not correlated with 𝐸𝐸 

(Wooldridge 2015b). Therefore, we can obtain consistent parameter estimates by plugging 𝑣1 into 

the structural equation for 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖. Because we do not observe 𝑣1we estimate it from the 

results of the first stage regression in (71). It is important to note that the variables included in 𝐸𝐸 
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can be binary or continuous because the reduced form equations for each of the endogenous 

variables are estimated as linear projections. As long the instruments are valid, then regardless of 

the nature of 𝐸𝐸 (i.e., whether the variable under consideration in 𝐸𝐸 is continuous, categorical, 

or binary) the linear reduced form of equation (71) can always be specified (Wooldridge 2015b).  

 Because the Bivariate Probit model is estimated for the case when the energy insecurity 

index is binary and the endogenous variables are binary, we estimate a CF approach for the case 

when the endogenous variable is continuous (as in the case with 𝑋21) and the energy insecurity 

index is binary. To implement the control function approach, we take the following steps. First, 

we estimate the reduced form equation in (71) by OLS and obtain the residuals,  

(73) 𝑣1 = 𝐸𝐸 − 𝒙′�̂�1 − 𝒛′�̂�2.  

The residuals are included as explanatory variables in the structural equation and a logistic model 

specification is assumed (Wooldridge 2010). Bootstrapped standard errors are suggested (Murray 

and Topel 1985; Newey and McFadden 1994).  

The CF can also be applied in the case of the second energy insecurity index we create, 

assuming the same general set-up as described before. Under this case, the first stage reduced form 

equation in (71) is still estimated by OLS for each of the endogenous variables, both for the 

endogenous variables that are binary and the endogenous variables that are continuous. The 

residuals are obtained from each first stage regression and used as regressors in the second stage 

regression (i.e., the structural equation) which are estimated by MLE. Again, bootstrapped 

standard errors are suggested to account for the variation introduced by the inclusion of estimated 

value for the error term in the second stage regression, 𝑣1 (i.e., 𝑣1). Following this suggestion, we 

bootstrap the standard errors.  

 



 

238 

 

4.5 ESTIMATION RESULTS 

The parameter estimates from estimating equation (35) via maximum likelihood estimation, 

controlling for endogeneity are presented below in Tables 4.4 and 4.5. Table 4.4 lists the Bivariate 

Probit Model results. The Bivariate Probit model provides estimates for the effects of energy 

efficient windows, adequate home insulation, having received an in-home energy audit, and other 

explanatory variables on the probability that a household will identify as energy insecure. 

Equations are estimated separately following the Bivariate Probit model estimation techniques 

outlined in Wooldridge (2010). Table 4.5 provides the maximum likelihood parameter estimates 

from using a CF approach to estimate a logistic model which examines the effects of having Energy 

Star ® certified appliances in the household and other explanatory variables on the probability that 

a household will identify as energy insecure. 
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Table 4.4 Bivariate Probit Model Results on Effects of Energy Audits, Insulation, Windows, and other Explanatory Variables on 

Household Energy Insecurity  

 Bivariate Probit (Audit) Bivariate Probit (Insulation) Bivariate Probit (Windows) 

Explanatory 

Variables 
Coefficient 

St. Error 
Coefficient 

St. Error Coefficient St. Error 

Income -0.0001*** 6.87 E-07 -9.85 E-06*** 7.00 E-07 -9.25 E-06*** 7.75 E-07 

Employment 0.026 0.048 0.013 0.049 0.023 0.047 

Education -0.143*** 0.046 -0.135*** 0.046 -0.132*** 0.045 

Age -0.010*** 0.001 -0.009*** 0.002 -0.009*** 0.002 

Gender -0.179*** 0.042 -0.176*** 0.042 -0.173*** 0.041 

Children 0.114*** 0.021 0.107*** 0.022 -0.110*** 0.021 

CDD65 6.41 E-06 4.06 E-05 8.08 E-06 4.07 E-05 -2.97 E-05 4.22 E-05 

HDD65 -3.84 E-05 2.73 E-05 -3.44 E-05 2.77 E-05 -2.48 E-05 2.74 E-05 

House Age   0.072 0.050 -0.013 0.067 0.001 0.056 

Hispanic 0.185*** 0.060 0.173*** 0.061 0.153*** 0.061 

African American 0.402*** 0.063 0.398*** 0.064 0.358*** 0.066 

Bedrooms 0.021 0.027 0.024 0.028 0.023 0.027 

Bathrooms -0.074* 0.039 -0.026 0.047 -0.011 0.044 

Census Dummies Yes  Yes  Yes  

Housing Dummies Yes  Yes  Yes  

Audit 0.0216 0.150     

Insulation   -0.589*** 0.324   

Windows     -0.595*** 0.211 

       

Constant 1.010*** 0.261 1.367*** 0.322 1.145*** 0.260 

Log-likelihood -3,796.22  -4,872.38  -5,822.42  

𝜌(𝑣1𝑣2) -0.023 0.083 0.065 0.186 0.285 0.126 

Observations N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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Table 4.5 CF Logistic Model Results on Effects of Energy Star ® Appliances and other 

Explanatory Variables on Household Energy Insecurity  

 Logit (Control Function) Energy Star ®  

 Change in the Log-Odds Change in the Odds 

Explanatory  

Variables 
Coefficient 

Estimate 
St. Error 

Odds Ratio 

Estimate 
St. Error 

Income -1.49E-05*** 1.76E-06 1.00*** 1.54E-06 

Employment 0.093 0.093 1.10 0.10 

Education -0.166*** 0.074 0.85* 0.07 

Age -0.017*** 0.002 0.98*** 0.00 

Gender -0.310*** 0.074 0.73*** 0.05 

Children 0.211*** 0.033 1.23*** 0.04 

CDD65 1.80E-05 8.79E-05 1.00 0.00 

HDD65 -5.14E-05 5.74E-05 1.00 0.00 

House Age 0.066 0.074 1.07 0.09 

Hispanic 0.177 0.118 1.19 0.14 

African American 0.564*** 0.117 1.76*** 0.19 

Bedrooms 0.058 0.052 1.06 0.06 

Bathrooms -0.045 0.076 0.96 0.07 

Census Dummies Yes Yes Yes Yes 

Housing Dummies Yes Yes Yes Yes 

Energy Star ® -0.320*** 0.114 0.73 0.08 

𝑣1 0.307*** 0.119 1.36 0.16 

Constant 2.011 0.522 7.47 3.10 

     

Log-Likelihood -2,552.07    

Pseudo 𝑅2 0.1457    

Observations 5,686    

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
The Bivariate Probit model results showing the effects of energy efficiency investments on the 

probability that a household will identify as energy insecure (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1) are listed in Table 

4.6 below.  

Table 4.6 Bivariate Probit Model Predicted Probabilities of Energy Audits, Windows, and 

Insulation on Household Energy Insecurity  

Explanatory 

Variables 
𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1) 𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0) 

𝐴𝑢𝑑𝑖𝑡 = 1 0.017 0.064 

𝐴𝑢𝑑𝑖𝑡 = 0 0.201 0.718 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.142 0.472 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.085 0.300 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.175 0.652 
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𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.045 0.128 

The CF logistic model results showing the effects of a household’s number of Energy Star ® 

certified appliances on the expected probability that a household will identify as energy 

insecure (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1)  of, based on are presented in Table 4.7.  

Table 4.7 CF Logistic Model Predicted Probabilities of Energy Star ® Appliances on Energy 

Insecurity 

Explanatory 

Variables 
𝑃(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1) 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.311 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.247 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.192 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.147 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.112 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.084 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.062 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.046 

Because the dependent variable across all model specifications is a latent class variable used to 

measure household energy insecurity, we can interpret the estimated coefficients from the CF 

logistic model and Bivariate Probit model broadly as the likelihood that a household will identify 

as energy insecure (i.e. not energy secure). Consistent with our theoretical expectations, across 

both model specifications we find households with higher incomes are significantly less likely to 

identify as being energy insecure. In addition, consistent with the previous literature we find 

African American or Hispanic households are more likely to identify as energy insecure. Similar 

to Drehobl and Ross (2016), we find households with more children living in the home age 16 or 

younger are more likely to identify as being energy insecure. 

 Across both the CF logistic model and Bivariate Probit model specifications, we find 

males (Gender = 1) are less likely to identify as energy insecure as compared to females (Gender 

= 0). As the age of the respondent increases, the likelihood they will identify as energy insecure 

decreases. More than 20% of the individuals in our sample indicated they were past full retirement 
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age (older than 66 years old). Because individuals who are retired typically live on a fixed income, 

we would expect these households to be more likely to identify as energy insecure. The average 

income for households who are past full retirement age in our sample is approximately 

$55,000/year. In addition, nearly 22% of these households indicated they are still employed, either 

part time or full time. While these households may be receiving retirement benefits (i.e., social 

security, Medicaid), they are also receiving additional income from working. Having additional 

income may prevent these households from experiencing energy-service related hardships that 

prevent them from maintaining consistent adequate access to energy services. 94 

The Bivariate Probit model results indicate that having adequate insulation (Insulation = 

1) and triple or double pane windows (Windows = 1) decreases the likelihood that a household 

will identify as energy insecure. Following the CF logistic model, we find as the number of Energy 

Star ® certified appliances increase in the home, the likelihood that a household identifies as 

energy insecure decreases. However, according to the Bivariate Probit model results, we fail to 

reject our hypothesis that having received an in-home energy audit (Audit = 1) decreases the 

likelihood that a household will identify as energy insecure. Tables 4.8, 4.9, and 4.10 list the 

maximum-likelihood parameter estimates from estimating equation (35) using an Ordered Logit 

model under  the three different methods of partitioning households into different energy insecurity 

groups.95   

                                                 
94 It is also important to note that none of the individuals who responded to the survey live in a retirement home. While they may 

live in a retirement community, they must occupy their own individual residence to be considered eligible to participate in the 

RECS. 
95 The Ordered Logit results under all three methods of partitioning households into different energy insecurity groups, but not 

controlling for endogeneity, are presented in the Appendix of this chapter for the reader.  
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Table 4.8 Ordered Logit Results of Effects of Energy Audits, Insulation, Windows, Energy Star® Appliances, and other Explanatory 

Variables on Household Energy Insecurity with Threshold Value  𝜏 = 0  

 
Ordered Logit 

(Audit) 

Ordered Logit 

(Insulation) 

Ordered Logit 

(Windows) 

Ordered Logit 

(Energy Star®) 

Explanatory 

Variables 
Coefficient St. Error Coefficient St. Error Coefficient St. Error Coefficient St. Error 

Income -1.82E-05*** 1.27E-06 -1.75E-05*** 1.35E-06 -1.61E-05*** 1.38E-06 -1.52E-05*** 1.93E-06 

Employment 0.038 0.096 -0.012 0.101 0.029 0.090 0.083 0.088 

Education -0.220*** 0.086 -0.201*** 0.073 -0.196*** 0.066 -0.152*** 0.076 

Age -0.017*** 0.002 -0.014*** 0.002 -0.013*** 0.003 -0.016*** 0.002 

Gender -0.328*** 0.074 -0.299*** 0.069 -0.312*** 0.070 -0.316*** 0.072 

Children 0.184*** 0.032 0.156*** 0.035 0.184*** 0.034 0.200*** 0.033 

CDD65 3.03E-05 6.55E-05 2.96E-05 6.49E-05 -1.00E-04 9.39E-05 2.64E-05 8.14E-05 

HDD65 -5.47E-05 4.94E-05 -3.42E-05 4.61E-05 -9.47E-06 5.02E-05 -4.10E-05 5.39E-05 

House Age 0.124 0.084 -0.227 0.143 -0.124 0.132 0.064 0.092 

Hispanic 0.280*** 0.117 0.229*** 0.099 0.193** 0.101 0.174 0.114 

Af. American 0.625*** 0.120 0.585*** 0.090 0.493*** 0.116 0.527*** 0.119 

Bedrooms 0.038 0.043 0.043 0.047 0.041 0.038 0.064 0.048 

Bathrooms -0.130*** 0.064 0.069 0.087 0.079 0.102 -0.047 0.086 

Census  

Dummies 
Yes  Yes  Yes  Yes  

Housing  

Dummies 
Yes  Yes  Yes  Yes  

Audit 0.432 0.273 - - - - - - 

Insulation - - -2.543*** 0.870 - - - - 

Windows - - - - -2.087*** 0.687 - - 

Energy Star® - - - - - - -0.316*** 0.146 

𝑣1 -0.122 0.303 1.655* 0.907 1.895*** 0.707 0.301*** 0.148 

�̂�3.08 -1.923 0.431 -3.362 0.677 -2.390 0.495 -2.109 0.463 

�̂�4.38 -0.803 0.435 -2.212 0.670 -1.269 0.485 -0.990 0.464 

�̂�4.44 0.091 0.446 -1.295 0.683 -0.373 0.495 -0.094 0.465 
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�̂�4.48 1.042 0.432 -0.330 0.668 0.578 0.501 0.856 0.497 

�̂�5.65 2.453 0.438 1.088 0.670 1.988 0.556 2.266 0.552 

�̂�6.20 4.334 0.645 2.973 0.983 3.870 0.769 4.148 0.839 

         

Log 

likelihood 
-3,994.02  -3,935.24  -3,989.63  -3,993.87  

Pseudo 𝑅2 0.102  0.115  0.103  0.102  

Observations N = 5,686 N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
 

Table 4.9 Ordered Logit Results of Effects of Energy Audits, Insulation, Windows, Energy Star® Appliances, and other Explanatory 

Variables on Household Energy Insecurity with Threshold Value  𝜏 = 3.08  

 
Ordered Logit 

(Audit) 

Ordered Logit 

(Insulation) 

Ordered Logit 

(Windows) 

Ordered Logit 

(Energy Star®) 

Explanatory 

Variables 
Coefficient St. Error Coefficient St. Error Coefficient St. Error Coefficient St. Error 

Income -2.02E-05*** 2.15E-06 -1.92E-05*** 1.72E-06 -1.77E-05*** 2.24E-06 -1.69E-05*** 2.59E-06 

Employment 0.010 0.107 -0.049 0.124 0.001 0.098 0.057 0.128 

Education -0.208*** 0.089 -0.192* 0.118 -0.187* 0.103 -0.141 0.102 

Age -0.016*** 0.003 -0.013*** 0.003 -0.012*** 0.004 -0.015*** 0.003 

Gender -0.406*** 0.121 -0.374*** 0.104 -0.385*** 0.097 -0.391*** 0.084 

Children 0.134*** 0.046 0.097*** 0.042 0.132*** 0.046 0.149*** 0.048 

CDD65 4.19E-05 8.33E-05 3.18E-05 1.13E-04 -1.09E-04 1.05E-04 3.46E-05 8.68E-05 

HDD65 -1.75E-05 6.58E-05 2.25E-06 6.66E-05 3.16E-05 6.73E-05 -3.91E-06 5.51E-05 

House Age 0.134 0.124 -0.239 0.213 -0.140 0.185 0.073 0.110 

Hispanic 0.222 0.169 0.194 0.137 0.131 0.150 0.118 0.175 

Af. American 0.458*** 0.150 0.429*** 0.155 0.313* 0.161 0.359*** 0.160 

Bedrooms 0.046 0.058 0.056 0.060 0.053 0.054 0.076 0.056 

Bathrooms -0.087 0.079 0.129 0.109 0.146 0.160 -0.004 0.113 
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Census 

Dummies 
Yes  Yes  Yes  Yes  

Housing 

Dummies 
Yes  Yes  Yes  Yes  

Audit 0.424 0.318 - - - - - - 

Insulation - - -2.597*** 1.079 - - - - 

Windows - - - - -2.342*** 1.153 - - 

Energy Star ® - - - - - - -0.327* 0.187 

𝑣1 -0.005 0.380 1.502 1.097 2.133* 1.169 0.300 0.188 

�̂�4.38 -0.849 0.522 -2.268 0.887 -1.356 0.622 -1.025 0.565 

�̂�4.44 0.049 0.537 -1.342 0.888 -0.458 0.626 -0.128 0.567 

�̂�4.48 1.001 0.547 -0.372 0.908 0.494 0.632 0.824 0.587 

�̂�5.65 2.411 0.567 1.048 0.958 1.904 0.644 2.234 0.628 

�̂�6.20 4.293 0.858 2.935 1.003 3.786 0.673 4.116 0.918 

         

Log 

likelihood 
-2,145.17  -2,093.68  -2,142.83  -2,145.68  

Pseudo 𝑅2 0.1035  0.1250  0.1045    

         

Observations N = 5,686 N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 

 

Table 4.10 Ordered Logit Results of Effects of Energy Audits, Insulation, Windows, Energy Star® Appliances, and other Explanatory 

Variables on Household Energy Insecurity with Four Energy Security Groups  

 
Ordered Logit 

(Audit) 

Ordered Logit 

(Insulation) 

Ordered Logit 

(Windows) 

Ordered Logit 

(Energy Star®) 

Explanatory 

Variables 
Coefficient St. Error Coefficient St. Error Coefficient St. Error Coefficient St. Error 

Income -2.01E-05*** 2.20E-06 -1.89E-05*** 1.88E-06 -1.73E-05*** 2.68E-06 -1.63E-05*** 2.85E-06 

Employment 0.013 0.099 -0.046 0.096 0.003 0.116 0.066 0.093 

Education -0.219* 0.120 -0.200*** 0.085 -0.193* 0.102 -0.141 0.131 
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Age -0.016*** 0.003 -0.013*** 0.003 -0.011*** 0.004 -0.015*** 0.003 

Gender -0.408*** 0.097 -0.378*** 0.099 -0.387*** 0.100 -0.392*** 0.115 

Children 0.122*** 0.046 0.087* 0.050 0.121*** 0.046 0.140*** 0.052 

CDD65 4.81E-05 1.04E-04 4.42E-05 1.02E-04 -1.19E-04 1.09E-04 3.89E-05 1.04E-04 

HDD65 -1.05E-05 5.95E-05 1.19E-05 6.95E-05 4.26E-05 6.64E-05 3.54E-06 7.61E-05 

House Age 0.123 0.132 -0.287 0.223 -0.180 0.177 0.054 0.142 

Hispanic 0.239* 0.144 0.195 0.179 0.136 0.147 0.121 0.154 

Af. American 0.415*** 0.114 0.375*** 0.135 0.256* 0.152 0.304 0.204 

Bedrooms 0.041 0.063 0.050 0.061 0.048 0.067 0.075 0.061 

Bathrooms -0.086 0.097 0.151 0.130 0.172 0.148 0.010 0.139 

Census 

Dummies 
Yes  Yes  Yes  Yes  

Housing 

Dummies 
Yes  Yes  Yes  Yes  

Audit 0.430 0.516 - - - - - - 

Insulation - - -2.902*** 1.356 - - - - 

Windows - - - - -2.591*** 0.925 - - 

Energy Star ® - - - - - - -0.372* 0.215 

𝑣1 -0.015 0.499 1.810 1.364 2.389*** 0.912 0.347* 0.210 

�̂�1 -0.811 0.585 -2.388 1.049 -1.384 0.534 -1.022 0.697 

�̂�2 2.441 0.591 0.926 1.112 1.871 0.608 2.231 0.702 

�̂�3 4.323 0.891 2.813 1.266 3.753 0.876 4.113 0.791 

         

Log 

likelihood 
-1,655.04  -1,603.99  -1,652.14  -1,654.98  

Pseudo 𝑅2 0.128  0.155  0.130  0.128  

         

Observations N = 5,686 N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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When the threshold value of 𝜏 = 0 (Table 4.8), the Ordered Logit model results indicate that  

household respondents who have a bachelor’s degree or beyond (Education = 1) display an  

approximately a 0.2 decrease in the log-odds that the household will be in a higher energy 

insecurity category than they are in currently, assuming all else equal. In addition, results indicate 

that if Income increased by $10,000, the log-odds that a household will be in a higher energy 

insecurity category than they are currently in will decrease between 0.152 and 0.182. Additional 

results of the Ordered Logit model when 𝜏 = 0 (Table 4.8) are as follows.  The log-odds of being 

placed in a higher energy insecurity category decrease as the age of the respondent of the household 

increases. For every additional child born, the log-odds of being in a more severe energy insecurity 

category increase between 0.156 and 0.184. Finally, the log-odds of being in a higher energy 

insecurity category are higher for households who identify as Hispanic or African American.  

 We found similar Order Logit results  when the threshold value of 𝜏 = 3.08 (Table 4.9) and 

when four different energy insecurity groups are specified (Table 4.10). When the threshold value 

of 𝜏  = 3.08 and only seven energy insecurity groups are considered, fewer households in our 

sample overall identify as energy insecure (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 > 0). As with the previous model with 𝜏 

= 0, the results with 𝜏  = 3.08 indicate that having a higher income, being older, having a college 

degree or beyond, and being a male decreases the log-odds of a household being in a higher energy 

insecurity category (i.e., a category other than 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0). Also, the results with 𝜏  = 3.08 

still indicate that the log-odds of being in a higher energy insecurity category increases if the 

household identifies as African American. However, identifying as Hispanic does significantly 

affect the log-odds that a household will be in a more severe energy insecurity category.  

 In the Four Group model (see Table 4.10), the change in the log-odds of being in a more 

energy insecure category are consistent with the results when the threshold value of 𝜏 = 0 and  𝜏  
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= 3.08.  In the Four Group model, we found that having one more child increases the log-odds of 

being in a more energy insecure category by 0.10. The results listed in Tables 4.8, 4.9, and 4.10 

can be interpreted as changes in the log-odds of being in a higher energy insecurity group (i.e., 

being more energy insecure). In addition to the above results we also estimate odds-ratios that 

correspond to each set of models and results. The odds-ratios for each of three different methods 

of partitioning are listed in Tables 4.11, 4.12, and 4.13. Predicted probabilities follow these results 

in Tables 4.14, 4.15, and 4.16. 



 

249 

 

Table 4.11 Odds Ratio Ordered Logit Results of Effects of Energy Audits, Insulation, Windows, Energy Star® Appliances, and other 

Explanatory Variables on Household Energy Insecurity with Threshold Value  𝜏 = 0  

 
Ordered Logit 

 (Audit) 

Ordered Logit 

(Insulation) 

Ordered Logit 

 (Windows) 

Ordered Logit 

 (Energy Star®) 

Variables Odds Ratio St. Error Odds Ratio St. Error Odds Ratio St. Error Odds Ratio St. Error 

Income 1.000*** 1.34E-06 1.000*** 1.15E-06 1.000*** 1.56E-06 1.000*** 1.70E-06 

Employment 1.039 0.106 0.988 0.068 1.030 0.067 1.086 0.098 

Education 0.802*** 0.070 0.818*** 0.060 0.822*** 0.055 0.859*** 0.075 

Age 0.983*** 0.003 0.986*** 0.002 0.987*** 0.003 0.984*** 0.002 

Gender 0.720*** 0.052 0.741*** 0.044 0.732*** 0.046 0.729*** 0.042 

Children 1.202*** 0.044 1.169*** 0.048 1.202*** 0.043 1.222*** 0.039 

CDD65 1.000 6.83E-05 1.000 7.13E-05 1.000 8.38E-05 1.000 6.04E-05 

HDD65 1.000 4.73E-05 1.000 4.60E-05 1.000 5.22E-05 1.000 4.39E-05 

House Age 1.132 0.098 0.797 0.105 0.883 0.110 1.066 0.099 

Hispanic 1.323*** 0.130 1.258*** 0.143 1.213 0.137 1.190 0.140 

Af. American 1.869*** 0.226 1.796*** 0.169 1.638*** 0.191 1.694*** 0.182 

Bedrooms 1.039 0.054 1.044 0.040 1.042 0.045 1.066 0.052 

Bathrooms 0.878 0.074 1.071*** 0.089 1.082 0.096 0.954 0.066 

Census  

Dummies 
Yes  Yes  Yes  Yes  

Housing  

Dummies 
Yes  Yes  Yes  Yes  

Audit 1.540 0.442 - - - - - - 

Insulation - - 0.079*** 0.062 - - - - 

Windows - - - - 0.124*** 0.086 - - 

Energy Star ® - - - - - - 0.729*** 0.099 

Observations N = 5,686 N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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Table 4.12 Odds Ratio Ordered Logit Results of Effects of Energy Audits, Insulation, Windows, Energy Star® Appliances, and other 

Explanatory Variables on Household Energy Insecurity with Threshold Value  𝜏 = 3.08  

 
Ordered Logit 

(Audit) 

Ordered Logit 

(Insulation) 

Ordered Logit 

(Windows) 

Ordered Logit 

(Energy Star®) 

Variables Odds Ratio St. Error Odds Ratio St. Error Odds Ratio St. Error Odds Ratio St. Error 

Income 1.000*** 2.25E-06 1.000*** 1.80E-06 1.000*** 2.04E-06 1.000*** 2.40E-06 

Employment 1.010 0.111 0.952 0.102 1.001 0.115 1.059 0.110 

Education 0.812* 0.101 0.825* 0.093 0.830 0.100 0.869 0.096 

Age 0.984*** 0.004 0.987*** 0.003 0.989*** 0.003 0.985*** 0.003 

Gender 0.666*** 0.083 0.688*** 0.071 0.680*** 0.078 0.676*** 0.074 

Children 1.143*** 0.058 1.102*** 0.053 1.141*** 0.052 1.160*** 0.053 

CDD65 1.000 9.19E-05 1.000 7.17E-05 1.000 1.02E-04 1.000 8.60E-05 

HDD65 1.000 5.39E-05 1.000 5.02E-05 1.000 5.80E-05 1.000 5.51E-05 

House Age 1.144 0.138 0.787 0.169 0.869 0.159 1.076 0.151 

Hispanic 1.249 0.202 1.215 0.200 1.140 0.197 1.126 0.199 

Af. American 1.582*** 0.180 1.536*** 0.248 1.368* 0.227 1.432*** 0.237 

Bedrooms 1.047 0.075 1.058 0.064 1.055 0.063 1.080 0.067 

Bathrooms 0.917 0.089 1.138 0.137 1.157 0.151 0.996 0.109 

Census 

Dummies 
Yes  Yes  Yes  Yes  

Housing 

Dummies 
Yes  Yes  Yes  Yes  

Audit 1.528 0.646 - - - - - - 

Insulation - - 0.074*** 0.075 - - - - 

Windows - - - - 0.096*** 0.86 - - 

Energy Star ® - - - - - - 0.721* 0.125 

         

Observations N = 5,686 N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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Table 4.13 Odds Ratio Ordered Logit Results of Effects of Energy Audits, Insulation, Windows, Energy Star® Appliances, and other 

Explanatory Variables on Household Energy Insecurity with Four Energy Security Groups 

 
Ordered Logit 

(Audit) 

Ordered Logit 

(Insulation) 

Ordered Logit 

(Windows) 

Ordered Logit 

(Energy Star®) 

Explanatory 

Variables 
Odds Ratio St. Error Odds Ratio St. Error Odds Ratio St. Error Odds Ratio St. Error 

Income 1.000*** 2.10E-06 1.000*** 2.40E-06 1.000*** 2.00E-06 1.000*** 2.05E-06 

Employment 1.013 0.113 0.955 0.114 1.003 0.107 1.068 0.112 

Education 0.804*** 0.074 0.819 0.103 0.824*** 0.073 0.868 0.110 

Age 0.984*** 0.003 0.988*** 0.004 0.989*** 0.004 0.985*** 0.003 

Gender 0.665*** 0.082 0.686*** 0.072 0.679*** 0.074 0.675*** 0.067 

Children 1.130*** 0.055 1.091*** 0.044 1.129*** 0.046 1.150*** 0.044 

CDD65 1.000 1.05E-04 1.000 6.82E-05 1.000 9.05E-05 1.000 1.11E-04 

HDD65 1.000 6.59E-05 1.000 6.20E-05 1.000 6.13E-05 1.000 6.95E-05 

House Age 1.131 0.128 0.750 0.165 0.835 0.134 1.056 0.129 

Hispanic 1.269* 0.168 1.215 0.162 1.146 0.170 1.129 0.159 

Af. American 1.515*** 0.239 1.455*** 0.209 1.292* 0.211 1.355* 0.217 

Bedrooms 1.042 0.053 1.051 0.081 1.049 0.070 1.077 0.076 

Bathrooms 0.918 0.103 1.164 0.132 1.188 0.158 1.010 0.102 

Census 

Dummies 
Yes  Yes  Yes  Yes  

Housing 

Dummies 
Yes  Yes  Yes  Yes  

Audit 1.538 0.519 - - - - - - 

Insulation - - 0.055*** 0.068 - - - - 

Windows - - - - 0.075 0.076 - - 

Energy Star ® - - - - - - 0.689 0.104 

         

Observations N = 5,686 N = 5,686 N = 5,686 N = 5,686 

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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Based on the results in Table 4.11, for a one-unit increase in Age (i.e., the respondent for 

the household is one year older) the odds of being in a higher energy insecurity category than the 

household is in currently are 0.98 times greater, assuming all else equal. Likewise, the odds of a 

household being in a more sever energy insecurity category than they are in currently are between 

0.72 and 0.74 higher for respondents who are male. The odds of a household being in a higher 

energy insecurity category than they are in currently are 1.2 as the number of children inside the 

household increases by one. The odds of a household being in a higher energy insecurity category 

than the category they are in currently increase between 1.6 and 1.8 for households who identify 

as African American, and between 1.2 and 1.3 for households who identify as Hispanic. The results 

outlined above are consistent with the odds ratio results in Table 4.13 when the threshold value of 

𝜏 =  3.08 and in Table 4.14 when only four energy security groups are identified (Four Group 

model).  

To examine how improvements in energy efficiency affect household energy security, we 

focus on the estimated coefficients of four primary variables across the different ordered logit 

model results: Audit, Energy Star ®, Windows, and Insulation. Consistent with our theoretical 

expectations, our results in Tables 4.8, 4.9, and 4.10 all indicate that households who reported 

having adequate levels of insulation (Insulation = 1) were statistically less likely to identify as 

being more energy insecure, all else equal. Improving home insulation is one of the key ways to 

reduce heat and cooling loss through air leaks in walls, ceilings, and floors. By preventing waste 

heat, insulation helps to reduce home fuel consumption thereby making energy services more 

affordable. 

Households who consume less fuel to produce energy services can produce energy services 

more efficiently (operate closer to their efficient production frontier) assuming all other inputs 
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remain fixed and therefore, are able to achieve a higher level of energy security. Based on the 

ordered logit model results, we conclude having adequate insulation decreases log-odds (see 

Tables 4.8, 4.9, and 4.10) that a household will become more energy insecure. The odd ratio (see 

Tables 4.11, 4.12, and 4.13) of the household shifting to a higher energy insecurity category are 

estimated to be between 0.05 and 0.08.  

A similar result was observed for the windows variable which showed that the log-odds 

that households, who had either double or triple pane windows (Windows = 1) were at a higher 

energy insecurity category than they are in currently decreased between 2.3 and 2.8. Similar to 

having adequate insulation, having triple or double pane windows helps to prevent heat and cooling 

loss. The space between the window panes in triple and double windows is typically filled with 

either argon or krypton gas (Energy Guard 2017). These gases help prevent condensation from 

building up outside of the windows, as well as help to reduce drafts during the cold winter and hot 

summer months (Energy Guard 2017).  

  Every household included in our sample had a least one Energy Star® certified appliance, 

and many had more than one. Estimation results for the continuous variable measuring the number 

of Energy Star® appliances in a household indicated that as the number of Energy STAR ® 

certified appliances increases in the household, the log-odds the household becomes more energy 

insecure (i.e., is at a higher energy insecurity category than they are currently) decreases 

significantly. Energy Star ®certified appliances consume fewer units of energy to produce energy 

service outputs (e.g., clean loads of laundry), leading to greater feelings of energy security. 

Inconsistent with our expectations, we fail to reject the null hypothesis that households who 

received an in home energy audits (Audit=1) would place in a lower energy insecurity category. 
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Table 4.14 Ordered Logit Predicted Probabilities of Energy Audits, Insulation, Windows, Energy Star® Appliances on Household 

Energy Insecurity with Threshold Value of 𝜏 = 0  

 P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 3.08) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4.38) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4.44) 

𝐴𝑢𝑑𝑖𝑡 = 0 0.830 0.107 0.036 0.016 

𝐴𝑢𝑑𝑖𝑡 = 1 0.761 0.146 0.053 0.024 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.370 0.280 0.173 0.101 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.882 0.077 0.024 0.010 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.567 0.234 0.107 0.054 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.913 0.057 0.018 0.008 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.690 0.182 0.071 0.034 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.753 0.150 0.055 0.025 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.807 0.120 0.041 0.019 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.852 0.094 0.031 0.014 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.887 0.073 0.023 0.010 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.915 0.055 0.017 0.007 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.937 0.042 0.013 0.005 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.953 0.031 0.009 0.004 

 P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4.48) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 5.65) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 6.20) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 6.34) 

𝐴𝑢𝑑𝑖𝑡 = 0 0.008 0.002 0.0004 - 

𝐴𝑢𝑑𝑖𝑡 = 1 0.012 0.003 0.0006 - 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.056 0.017 0.003 - 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.005 0.001 0.0002 - 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.028 0.008 0.001 - 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.004 0.001 0.0001 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.017 0.005 0.001 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.012 0.003 0.001 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.009 0.003 0.000 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.007 0.002 0.000 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.005 0.001 0.000 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.004 0.001 0.000 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.003 0.001 0.000 - 
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𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.002 0.001 0.000 - 

 

Table 4.15 Ordered Logit Predicted Probabilities of Energy Audits, Insulation, Windows, Energy Star® Appliances on Household 

Energy Insecurity with Threshold Value of 𝜏 = 3.08  

 P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1.2) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1.36) 

𝐴𝑢𝑑𝑖𝑡 = 0 0.939 0.035 0.015 

𝐴𝑢𝑑𝑖𝑡 = 1 0.910 0.051 0.023 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.650 0.174 0.101 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.961 0.023 0.010 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.780 0.117 0.061 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.974 0.015 0.007 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.873 0.071 0.034 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.905 0.054 0.025 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.930 0.040 0.018 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.948 0.030 0.013 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.962 0.022 0.010 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.972 0.016 0.007 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.980 0.012 0.005 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.985 0.009 0.004 

 P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1.40) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 2.57) P(𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 3.12) 

𝐴𝑢𝑑𝑖𝑡 = 0 0.008 0.002 0.0004 

𝐴𝑢𝑑𝑖𝑡 = 1 0.011 0.003 0.0006 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.056 0.016 0.003 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.005 0.001 0.0002 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.032 0.009 0.002 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.003 0.001 0.0002 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.017 0.005 0.0009 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.012 0.003 0.0006 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.009 0.002 0.0004 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.006 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.005 0.001 0.0002 
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𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.003 0.001 0.0002 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.002 0.001 0.0001 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.002 0.005 0.0001 

 

Table 4.16 Ordered Logit Model Predicted Probabilities of Energy Audits, Insulation, Windows, Energy Star® Appliances on 

Household Energy Insecurity with Four Energy Security Groups 

 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 2 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 3 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4 

𝐴𝑢𝑑𝑖𝑡 = 0 0.939 0.058 0.002 0.0004 

𝐴𝑢𝑑𝑖𝑡 = 1 0.910 0.086 0.003 0.0006 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.753 0.235 0.011 0.002 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.976 0.023 0.001 0.0001 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.592 0.384 0.021 0.004 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.963 0.035 0.001 0.0002 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.861 0.133 0.005 0.0010 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.900 0.096 0.004 0.0007 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.929 0.068 0.003 0.0005 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.950 0.048 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.965 0.034 0.001 0.0002 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.975 0.024 0.001 0.0001 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.983 0.016 0.001 0.0001 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.988 0.011 0.0004 0.0001 

 

Tables 4.14, 4.15, and  4.16  above provide the predicted probability that a household  will  be in each of the different energy 

insecurity categories we construct using the three methods of partitioning, depending upon whether or not a household  has made an 

energy efficiency upgrade  or not.
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Because none of the households in our sample responded affirmatively to all seven questions 

included to create the index, the predicted probabilities for 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 6.34 and 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 =

3.26 are not able to be calculated, as the averages for the other variables considered do not exist 

in the dataset.  

 When the threshold value of 𝜏 is set equal to zero and seven different energy insecurity 

categories are considered, the predicted probability that a household who has adequate insulation 

identifies as energy secure (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0) is 0.882. The predicted probability of being in a 

higher energy insecurity category decreases if households have adequate insulation (Insulation=1). 

While the predicted probability of identifying as be more energy insecure also decreases for 

households who have inadequate insulation (Insulation=0) the predicted probability of being 

energy insecure (i.e., receiving an energy insecurity index value not equal to zero) is higher across 

all categories for households who have inadequate insulation as opposed to adequate insulation.  

 As the number of Energy Star ® certified appliances increases, so too does the probability 

that a household will identify as energy secure. Conversely, having more Energy Star ® certified 

appliances (e.g., having seven Energy Star ® certified appliances instead of only one) decreases 

the predicted probability that a household will be in a more severe energy insecurity category. The 

effects of Energy Star ® certified appliances are consistent across the seven different energy 

insecurity categories. Overall, we find the predicted probability that a household identifies as being 

energy insecure to some extent, which is represented by the index value it receives, decreases 

between 10-20% for each additional Energy Star® certified appliance added.  

 The predicted probability of being Energy Secure is higher for households who have triple 

or double pane windows than households who do not. Consistent with our results for Energy Star® 

certified appliances and having adequate insulation, using only seven energy insecurity index 
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values, we found the predicted probability that a household identifies as energy insecure is 0.97 if 

the household has triple or double pane windows and 0.78 if the household does not. The predicted 

probability of receiving an energy insecurity index value of 1.2 is only 0.015 if the household has 

triple or double pane windows. The predicted probability of receiving an energy insecurity index 

value of 1.2 is close to 0.12 if the household does not have triple or double pane windows. Similar 

results for predicted probabilities are found for households who have adequate insulation and 

operate Energy Star ® certified appliances in the home.  

 When four energy insecurity categories are considered, we find sharp decreases in the 

predicted probability that household will identify as energy insecure if the household is more 

energy efficient. For example, the predicted probability that a household will identify as “High 

Energy Secure” (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1) in the case when only four energy insecurity groups are 

identified increases if the household has more Energy Star® certified appliances. The predicted 

probability that a household identifies as “Marginally Energy Insecure” (𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 2) in the 

case when only four energy insecurity groups are identified) is less if the household has adequate 

insulation. 

4.6 CONCLUSIONS  

In this study, we examined the theoretical and empirical relationships between household energy 

efficiency and energy insecurity. Our theoretical model, which is based on the theory of household 

production, depicts households as both consumers and producers of energy services. Households 

produce energy services such as hot, cooked foods by combining fuel inputs (e.g., electricity) with 

capital technology inputs (e.g., a stove). The capital technology employed by the household is 

assumed to have a corresponding efficiency level rating, such that higher efficiency level ratings 
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are associated with more energy service outputs being produced for a given fuel input being 

consumed. 

 Assuming the household is operating as technically inefficient in its production of 

household energy services, we theoretically model the household’s decision to adopt an energy 

efficient appliance or make an energy efficiency upgrade. We examine the impact of this decision 

as it relates to the household’s overall level of utility, which is assumed to reflect its subjective 

“felt level” of energy security. To measure energy security, we use three different index-measures 

created using results from the application of a Dichotomous Rasch model. The Dichotomous Rasch 

model allows us to assign households to different energy insecurity groups, based on the number 

of questions the household responds affirmatively to related to energy-service related hardships 

they may have faced over the past twelve months. Results from the Dichotomous Rasch model 

indicate that about 22% of the households living in the United States identified as being energy 

insecure to some extent in 2015.  

 Based on our theoretical model, and the results of our index, we empirically explore the 

relationship between making energy efficiency upgrades in the home and household energy 

security. Our main empirical analysis results are based on two approaches: 1) a CF logistic 

regression model and corresponding Bivariate Probit model and 2) an Ordered Logistic model 

specification. In these models, a household’s current stock of energy efficient capital is represented 

by four primary variables: (1) having adequate insulation (2) installation of double- or triple-pane 

windows, (3) the number of Energy Star® rated appliances in the household, and (4) receiving an 

in-home energy audit.  

 Our estimation results indicate that  three of these four variables have a negative and 

statistically significant relationship with a household’s self-reported level of energy insecurity. 
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The implication of these results, consistent with our theoretical model, is that energy efficient 

capital inputs enable household to “produce” more energy services resulting in higher “felt levels” 

of energy security, ceteris paribus. Across all model results, we find households with higher 

incomes are statistically less likely to self-identify as energy insecure.  

 A limitation of our analysis is incorporation of household energy prices. Electricity prices 

vary greatly by state, with states in the Northeast United States paying almost three times what 

those in the Southeast pay. We were not able to explore the impact of prices on energy security 

due to the lack information in the RECS data set on energy prices faced by households. Future 

research should attempt to incorporate energy prices into energy security/insecurity models.  In 

addition, future research could explore the impacts of the different fuel sources used to produce 

energy services and determine how each influences household energy security.  

 Also, it would be interesting to compare energy insecurity with other measures of overall 

insecurity or general poverty reported by the household. For example, future research could 

explore whether or not SNAP beneficiaries are more likely to identify as being energy insecure. 

Future research could also explore the impact of energy efficiency on home energy security 

specifically in low-income populations. Lastly, as in the food security literature, all of our energy 

insecurity indices are categorical in nature. Future research should explore developing more 

continuous measures of household energy security/insecurity.  
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APPENDIX CHAPTER 4 

Table 4. B1 CF Logistic Model Results of Effects of Energy Audits, Insulation, Windows, 

Energy Star® Appliances, and other Explanatory Variables on Household Energy Insecurity  

 Logit 

 Change in the Log-Odds Change in the Odds 

 
Coefficient 

Estimate 
St. Error 

Odds Ratio 

Estimate 
St. Error 

Income -1.77E-05*** 1.26E-06 1.00*** 0.086 

Employment 0.030 0.084 1.030 0.064 

Education -0.229*** 0.080 0.796*** 0.003 

Age -0.017*** 0.003 0.984*** 0.054 

Gender -0.315*** 0.074 0.730*** 0.044 

Children 0.188*** 0.037 1.207*** 0.000 

CDD65 1.92E-05 7.18E-05 1.000 0.000 

HDD65 -5.56E-05 4.86E-05 1.000 0.089 

House Age -0.004 0.089 0.996 0.137 

Hispanic 0.262*** 0.105 1.299*** 0.203 

African American 0.645*** 0.107 1.907*** 0.050 

Bedrooms 0.034 0.048 1.035 0.067 

Bathrooms -0.044 0.070 0.957 0.086 

Census Dummies Yes Yes Yes Yes 

Housing Dummies Yes Yes Yes Yes 

Audit 0.334** 0.128 1.396*** 0.179 

Energy Star ® -0.007 0.018 0.993 0.018 

Windows -0.096 0.077 0.908 0.070 

Insulation -0.815*** 0.086 0.442 0.038 

Constant 9.889*** 4.579   

     

Log-Likelihood -2504.50    

Pseudo 𝑅2 0.1616    

Observations 5,686    

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 

 

Table 4. B2 CF Logistic Model Predicted Probabilities of Energy Audits, Insulation, Windows, 

Energy Star® Appliances on Household Energy Insecurity  

 𝑷𝒓(𝑬𝑰𝑺𝑰𝑵𝑫𝑬𝑿 = 𝟏) St. Error 

𝐴𝑢𝑑𝑖𝑡 = 1 0.168 0.006 

𝐴𝑢𝑑𝑖𝑡 = 0 0.219 0.021 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.180 0.009 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.166 0.007 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.289 0.016 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.152 0.006 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.174 0.009 
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𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.173 0.007 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.172 0.006 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.171 0.006 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.170 0.007 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.169 0.009 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.168 0.011 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.166 0.013 

 

Table 4. B3 Ordered Logit Model Results of Effects of Energy Audits, Insulation, Windows, 

Energy Star® Appliances, and other Explanatory Variables on Household Energy Insecurity 

with  𝜏 = 0 

 Ordered Logit 𝝉 = 𝟎 

 Log-Odds 
Standard 

Error 
Odds Ratio 

Standard 

Error 

Income -1.79E-05 1.25E-06 1.000 1.25E-06 

Employment 0.012 0.080 1.012 0.081 

Education -0.218 0.077 0.804 0.062 

Age -0.016 0.003 0.984 0.002 

Gender -0.318 0.072 0.728 0.053 

Children 0.176 0.034 1.192 0.041 

CDD65 2.68E-05 6.91E-05 1.000 6.91E-05 

HDD65 -4.37E-05 4.69E-05 1.000 4.69E-05 

House Age -0.015 0.086 0.985 0.085 

Hispanic 0.255 0.101 1.290 0.130 

African American 0.609 0.101 1.838 0.186 

Bedrooms 0.042 0.046 1.043 0.048 

Bathrooms -0.033 0.069 0.968 0.067 

Census Dummies Yes  Yes  

Housing Dummies Yes  Yes  

Audit 0.351 0.124 1.420 0.176 

Energy Star ® -0.008 0.018 0.992 0.018 

Windows -0.089 0.075 0.915 0.068 

Insulation -0.888 0.082 0.412 0.034 

Thresholds     

�̂�3.08 -2.441 0.444   

�̂�4.38 -1.292 0.444   

�̂�4.44 -0.374 0.445   

�̂�4.48 0.591 0.450   

�̂�5.65 2.009 0.481   

�̂�6.20 3.894 0.665   

Log-Likelihood -3.932.73    

Pseudo 𝑅2 0.1160    

Observations 5,686    

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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Table 4. B4 Ordered Logit Predicted Probabilities of Energy Audits, Insulation, Windows, Energy Star® Appliances on Household 

Energy Insecurity with 𝜏 = 0 

 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 3.08 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4.38 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4.44 

𝐴𝑢𝑑𝑖𝑡 = 0 0.832 0.108 0.035 0.015 

𝐴𝑢𝑑𝑖𝑡 = 1 0.777 0.140 0.048 0.021 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.820 0.115 0.038 0.017 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.833 0.107 0.035 0.015 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.698 0.181 0.069 0.031 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.849 0.097 0.031 0.014 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.8253 0.112 0.037 0.016 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.8265 0.111 0.036 0.016 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.8277 0.110 0.036 0.016 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.8289 0.110 0.036 0.016 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.8301 0.109 0.036 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.8313 0.108 0.035 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.8325 0.108 0.035 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.8337 0.107 0.035 0.015 

 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4.48 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 5.65 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 6.20 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 6.34 

𝐴𝑢𝑑𝑖𝑡 = 0 0.007 0.002 0.0001 - 

𝐴𝑢𝑑𝑖𝑡 = 1 0.010 0.003 0.001 - 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.008 0.002 0.0004 - 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.007 0.002 0.0004 - 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.015 0.004 0.0007 - 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.006 0.002 0.0003 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.008 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.008 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.008 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.007 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.007 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.007 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.007 0.002 0.0004 - 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.007 0.002 0.0004 - 
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Table 4. B5 Ordered Logit Model Results of Effects of Energy Audits, Insulation, Windows, 

Energy Star® Appliances, and other Explanatory Variables on Household Energy Insecurity 

with 𝜏 = 3.08 

 Ordered Logit 𝝉 = 𝟑. 𝟎𝟖 

 Log-Odds 
Standard 

Error 
Odds Ratio 

Standard 

Error 

Income -1.95E-05 1.91E-06 1.000 1.91E-06 

Employment -0.029 0.110 0.971 0.107 

Education -0.207 0.107 0.813 0.087 

Age -0.015 0.003 0.985 0.003 

Gender -0.392 0.105 0.675 0.071 

Children 0.117 0.046 1.124 0.052 

CDD65 3.50E-05 9.69E-05 1.000 9.69E-05 

HDD65 -6.30E-06 6.48E-05 1.000 6.48E-05 

House Age -0.043 0.122 0.958 0.117 

Hispanic 0.205 0.140 1.228 0.172 

African American 0.441 0.137 1.555 0.214 

Bedrooms 0.055 0.065 1.056 0.068 

Bathrooms 0.037 0.098 1.038 0.102 

Census Dummies Yes  Yes  

Housing Dummies Yes  Yes  

Audit 0.438 0.168 1.550 0.260 

Energy Star ® -0.017 0.026 0.983 0.025 

Windows -0.054 0.105 0.947 0.099 

Insulation -1.098 0.107 0.334 0.036 

Thresholds     

�̂�4.38 -1.429 0.606   

�̂�4.44 -0.502 0.607   

�̂�4.48 0.468 0.610   

�̂�5.65 1.888 0.633   

�̂�6.20 3.774 0.782   

Log-Likelihood -2,091.17    

Pseudo 𝑅2 0.126    

Observations 5,686    

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 
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Table 4. B6 Predicted Probabilities of Energy Audits, Insulation, Windows, Energy Star® 

Appliances on Household Energy Insecurity with Energy Insecurity Index with 𝜏 = 3.08 

 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 0 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1.2 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1.36 

𝐴𝑢𝑑𝑖𝑡 = 0 0.943 0.034 0.014 

𝐴𝑢𝑑𝑖𝑡 = 1 0.915 0.050 0.022 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.939 0.036 0.015 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.942 0.034 0.015 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.866 0.076 0.035 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.951 0.029 0.012 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.939 0.036 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.940 0.035 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.941 0.035 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.942 0.034 0.015 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.943 0.034 0.014 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.944 0.033 0.014 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.945 0.033 0.014 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.946 0.032 0.014 

 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1.40 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 2.57 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 3.12 

𝐴𝑢𝑑𝑖𝑡 = 0 0.007 0.002 0.0003 

𝐴𝑢𝑑𝑖𝑡 = 1 0.010 0.003 0.001 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.007 0.002 0.0004 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.007 0.002 0.0003 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.017 0.005 0.0008 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.001 0.002 0.0002 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.007 0.002 0.0004 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.007 0.002 0.0004 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.007 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.007 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.007 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.007 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.007 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.006 0.002 0.0003 

 

Table 4. B7 Ordered Logit Model Results of Effects of Energy Audits, Insulation, Windows, 

Energy Star® Appliances, and other Explanatory Variables on Household Energy Insecurity 

with Four Energy Insecurity Groups 

 Ordered Logit 

 Log-Odds 
Standard 

Error 
Odds Ratio 

Standard 

Error 

Income -1.94E-05 1.92E-06 1.000 1.92E-06 

Employment -0.020 0.112 0.981 0.109 

Education -0.217 0.108 0.805 0.087 
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Age -0.015 0.004 0.985 0.003 

Gender -0.399 0.105 0.671 0.071 

Children 0.111 0.047 1.117 0.053 

CDD65 4.87E-05 9.84E-05 1.000 9.84E-05 

HDD65 1.56E-06 6.60E-05 1.000 6.60E-05 

House Age -0.052 0.123 0.949 0.117 

Hispanic 0.212 0.141 1.236 0.174 

African American 0.392 0.139 1.480 0.206 

Bedrooms 0.048 0.065 1.049 0.068 

Bathrooms 0.037 0.099 1.038 0.102 

Census Dummies Yes  Yes  

Housing Dummies Yes  Yes  

Audit 0.4477 0.1693 1.565 0.265 

Energy Star ® -0.0164 0.0261 0.984 0.026 

Windows -0.0475 0.1058 0.954 0.101 

Insulation -1.1007 0.1079 0.333 0.036 

Thresholds     

�̂�1 -1.377 0.615   

�̂�2 1.937 0.641   

�̂�3 3.824 0.789   

     

Log-Likelihood -1,601.84    

Observations 5,686    

∗ 𝑝 < 0.10,  ∗∗ 𝑝 < 0.05,  ∗∗∗ 𝑝 < 0.01 

 

Table 4. B8 Ordered Logit Predicted Probabilities of Energy Audits, Insulation, Windows, 

Energy Star® Appliances on Household Energy Insecurity with Four Energy Insecurity Groups 

 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 1 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 2 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 3 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋 = 4 

𝐴𝑢𝑑𝑖𝑡 = 0 0.943 0.054 0.002 0.0003 

𝐴𝑢𝑑𝑖𝑡 = 1 0.914 0.082 0.002 0.0005 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 0 0.940 0.058 0.002 0.0004 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 1 0.942 0.055 0.002 0.0003 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 0 0.866 0.128 0.005 0.001 

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 1 0.951 0.047 0.002 0.0001 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 0 0.939 0.058 0.002 0.0004 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 1 0.940 0.058 0.002 0.0004 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 2 0.941 0.057 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 3 0.942 0.056 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 4 0.943 0.055 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 5 0.944 0.054 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 6 0.945 0.053 0.002 0.0003 

𝐸𝑛𝑒𝑟𝑔𝑦𝑆𝑡𝑎𝑟 = 7 0.945 0.052 0.002 0.0003 
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Figure 4.1 B. The Effect of Adopting Energy Efficient Capital Technology Inputs  

For our analysis, we assume one reason a household is inefficient in its production of energy 

services is because the efficiency rating of the capital technology inputs it employs is too low. 

Following the stochastic production frontier approach, the extent of inefficiency experienced by 

the household (𝜂𝑖) is assumed to be a function of things within the control of the household and 

things outside of the control of the household. The choice of capital technology inputs is within 

the control of the household and therefore can directly contribute to the extent of inefficiency 

experienced (Battese and Coelli 1995). By operating capital technology inputs with lower 

efficiency ratings, relative to the cost-minimizing household (i.e., the household who operates 

capital technology inputs with an efficiency rating = 𝛾∗) the household is inefficient in its 

production of energy services and as a result the household is not able to operate along its PPF.  

 In presentations of this work, questions have been raised about why the decision to adopt 

capital technology inputs with higher efficiency ratings does not shift the households PPF for 

services outward, which is represented graphically in Figure 4.1 B. as a move from point L to point 

A*. Recall that the PPF represents the maximum possible output (i.e., combinations of two goods 

or services) one can achieve when all the resources one has available are fully and efficiently 
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employed. A shift in the PPF would represent the adoption of more or additional capital technology 

inputs which would allow the household to produce more services all together. For example, if the 

household chose to purchase a second washer and dryer, it would be able to produce more loads 

of clean laundry.   

 Conversely, by replacing a less efficient washer with a more efficient model (e.g., an 

Energy Star ® certified model) the household is using the same number of capital inputs but 

producing energy services more efficiently by decreasing the amount of energy necessary to 

produce energy services. This increase in efficiency is represented graphically by a move toward 

the PPF rather than a shift in the PPF, because relative to the cost-minimizing household the 

inefficient household should be able to produce more energy services than it is able to when it is 

inefficient in its production.   

 

Source: https://www.eia.gov/analysis/requests/powerplants/cleanplan/ 

Figure 4.2 B. United States Census Divisions 

 

 



 

269 

 

Log-Likelihood Functions for Models in Chapter 4 (Essay 3) 

Logit Model:  

(B.1) log 𝐿(𝛽) = ∑ [𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 log (
exp(𝑥𝑖𝛽𝑘)

1+exp(𝑥𝑖𝛽𝑘)
) + (1 − 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖) log (1 − (

exp(𝑥𝑖𝛽𝑘)

1+exp(𝑥𝑖𝛽𝑘)
))] 

Bivariate Probit Model:  

(B.2) log 𝐿(𝛽) = ∑ log Φ(𝑡1𝑖, 𝑡2𝑖, 𝜌𝑖
∗) 

Here for 𝑖 = 1, . . , 𝑁, 𝑡1𝑖 = (2𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 − 1)(𝑥𝑖𝛽𝑘 + 𝐸𝐸𝑖𝛿), 𝑡1𝑖 = (2𝐸𝐸𝑖 − 1)(𝑥𝑖𝛽𝑘 + 𝑧𝑖𝛼), 

and 𝜌𝑖
∗ = (2𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 − 1)(2𝐸𝐸𝑖 − 1)𝜌. 

Ordered Logit Model:  

(B.3) log 𝐿(𝜔, 𝛽) = 1[ 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 0] log (𝜔3.08 −
exp(𝑥𝑖𝛽𝑘)

1+exp(𝑥𝑖𝛽𝑘)
) + 1 [𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 =

3.08] log (𝜔4.34 −
exp(𝑥𝑖𝛽𝑘)

1+exp(𝑥𝑖𝛽𝑘)
) + ⋯ + 1[𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖 = 6.34] log (1 − 𝜔6.34 −

exp(𝑥𝑖𝛽𝑘)

1+exp(𝑥𝑖𝛽𝑘)
) 

Note: The thresholds 𝜔 and index values 𝐸𝐼𝑆𝐼𝑁𝐷𝐸𝑋𝑖  change depending on which index is being modeled with the 

ordered logit 
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CHAPTER 5 

GENERAL CONCLUSIONS 

5.1 ARE THE ENERGY CHANGES WE EXAMINE EFFICIENT AND EQUITABLE? 

This dissertation examines how changing the way we produce and consume energy across the 

United States has impacted both consumers and producers of energy resources. We focus on two 

specific changes in the way energy is now produced and consumed. First, we consider how 

changing the energy resource mix used to generate electricity to include a greater share of 

intermittent renewable resources can impact the efficiency with which energy is produced and the 

reliability of energy delivery to end-consumers. Second, we consider how investments in energy 

efficiency can influence how “secure” a household feels about their ability to maintain adequate 

access to household energy services.  

Intermittent renewable resources and home energy efficiency investments are potential 

solutions to ensuring an ample supply of energy remains available for consumption both now and 

in the future, energy remains affordable for both firms and consumers, and the environmental 

impacts associated with energy production and consumption are kept to a minimum (Yacoucci 

2016). However, despite providing solutions to pressing contemporary problems and issues related 

to energy production and consumption, the relationships between intermittent renewable 

resources, home energy efficiency investments, and the economic efficiency and distributional 

equity of energy production and consumption have yet to be adequately addressed in the applied 

economics literature.  
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 Modifying the energy resource mix to include a greater share of intermittent renewable 

resources provides an opportunity for the United States to become self-sustaining in terms of 

supplying its own energy (Flavin and Dunn 1999; Johansson 2013). However, evidence from 

Chapter 2 (Essay 1) indicates that as the capacity of electricity generated by intermittent 

renewables increases, consumers can expect to experience longer power outages. Predicted power 

outages over time are expected to be longer as the percentage of the capacity of electricity 

generated by intermittent renewable resources increases.   

 These power outages may cause losses in economic efficiency to both power generating 

utilities and other firms that rely on reliable power for efficient production of outputs.  In addition, 

our results suggest scaling-up effects may result in relatively large, non-marginal increases in the 

economic costs of predicted outages.  These increased costs including increased power costs faced 

by both firms and consumers have distributional equity implications such as reduction in the 

affordability of energy to lower-income and other economically vulnerable households. 

 In particular, it is important to consider the fact that the effects of power system outages 

are felt well beyond just the lights going out. When a household or a business goes without 

electricity they face both real out-of-pocket costs and opportunity costs. For the household these 

costs may include losses in well-being (welfare) due to an inability to access the inputs necessary 

to produce cooked meals or properly heat and/or cool the home, purchasing more away-from-home 

meals during outages, and alternative lodging costs (e.g., hotel costs). For a business these costs 

may include costs of back-up generators, costs of alternative heating sources in the winter (e.g., 

propane or kerosene heaters), and opportunity costs in the form of lost revenues when production 

operations are shut-down. Furthermore, power system outages can result in serious consequences 

for companies in charge of critical infrastructures such as financial services, water supplies, 
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telecommunication services, hospitals, and other emergency medical centers (Byrd and 

Mattewmen 2014).  From a distributional equity perspective, lower-income, elderly, and other 

vulnerable households may especially suffer from loss of critical infrastructure such as medical 

facilities when the power goes out. 

The potential issues and problems discussed above beg the question: Do the environmental 

benefits (i.e., reduced CO2 emissions) and sufficiency of supply gains from increased production 

from intermittent renewable resources lead to outcomes that are both economically efficient and 

distributionally equitable? Unless the gainers from increased production from intermittent 

renewable resources could compensate the losers (i.e., those affected by and who face costs from 

experiencing power system outages) and still be better off, policies that call for increased 

production from intermittent renewables cannot be considered a Pareto Improvement (or Potential 

Pareto Improvement if compensation is not actually paid). Given that some individuals are being 

made worse off (in terms of facing costs when the power goes out) as a result of policies such as 

Renewable Energy Standards, the equity implications of transitioning our electricity sector to 

depend more on intermittent renewable resources should receive more attention and research.  

In addition to increasing the capacity of electricity generated by intermittent renewables, 

investments in home energy efficiency have also been identified as a potential solution to meet the 

three main energy policy goals of the United States as outlined by Yacoucci (2016). As stated in 

Chapter 4, home energy efficiency investments are designed to increase the efficiency with which 

a household is able to produce and consume household energy services. By using fewer energy/fuel 

inputs to provide energy services, these investments lower home energy costs. In addition, they 

reduce the GHG emissions associated with energy production by lowering overall energy 

consumption (Fowlie et al. 2018). 
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Another major potential benefit of home energy efficiency investments is the positive 

effect such investments can have on the energy security of households. To gauge how energy 

secure/insecure a household feels, in Chapter 3 we compare and contrast five different empirical 

measures of household energy insecurity (i.e., a lack of household energy security). Our validity 

testing results suggest using the Dichotomous Rasch model to analyze household responses to the 

2015 RECS provides an accurate representation of what it means for a household to feel energy 

insecure. We therefore use the Rasch model to propose a unique energy insecurity index that can 

be applied to accurately place households into different energy insecurity categories similar to the 

categories used by the U.S. Department of Agriculture for food insecurity. 

To estimate how investments in home energy efficiency influence a household’s energy 

insecurity status, in Chapter 4 we employ our unique energy insecurity index and empirically 

examine the relationship between a household’s latent level energy insecurity and specific home 

energy efficiency investments or upgrades including having adequate insulation, energy efficient 

windows, receiving an in-home energy audit, and Energy Star ® certified appliances. Overall, our 

results suggest that these investments or upgrades, with the exception of home energy audits, lead 

to decreases in the probability that a household will identify as being energy insecure or be placed 

in a more severe energy insecurity category than they are in currently.  

From an economic efficiency perspective, the theoretical model presented in Chapter 4 

suggests that investments in home energy efficiency can enable households to more efficiency 

“produce” energy services, and as a result become more energy secure leading to increases in 

overall household utility or satisfaction. The empirical results reported in Chapter 4 supports our 

hypothesis that home energy efficiency investments lead to greater self-reported, felt-levels of 

household energy security. Therefore, programs and initiatives that promote such investments 
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should be considered by public policy and decision makers who seek to meet the three objectives 

of the U.S. energy policy agenda discussed in Chapter 1.  

Of the home energy efficiency investments, we examined in Chapter 4, adequate home 

insulation has the largest impact on the probability that a household will fall into the category of 

“Energy Secure” rather than “Energy Insecure.” However, as discussed in Chapter 1, only 2% of 

the budget of the LIHEAP is dedicated to helping households add insulation to their homes through 

weatherization assistance (U.S. Department of Health and Human Services 2018).  The remaining 

funds are spent to provide one-time energy assistance to households who are at risk of having their 

power shut-off. As pointed out by Salvador (2018), receiving energy assistance to help pay for 

energy services is only a temporary solution to the overall problem of household energy insecurity   

Thus, future research should consider whether funds from the LIHEAP are being used and 

distributed in an economically efficient manner. Furthermore, given the LIHEAP program is the 

largest federally funded energy assistance program in the United States (U.S. Department of Health 

and Human Services 2018), our results also suggest more attention and research should also be 

devoted to the distributional equity implications of providing more funding for one-time home 

energy assistance versus providing more funds for weatherization assistance to homes.  

Finally, we conclude with a brief summary of the major, unique contributions of this 

dissertation research. First, in addition to being one of the first studies to examine how intermittent 

renewable resources impact power system reliability, we are the first to utilize a state-contingent 

production function approach to theoretically model power-system outages. The state-contingent 

production framework is unique in that it allows us to incorporate the uncertainty that power 

system operators face when determining which energy resources to bring online to meet demand. 
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Drawing from the engineering literature on power grid management, we provide an avenue for 

economists to explore new ways to model operations within the electric utility industry.  

We also provide empirical evidence that increasing the capacity of intermittent renewable 

resources has a positive, statistically significant relationship with power system outages. Results 

of our forecasting procedure provide evidence that if technology were to remain the same and more 

and more intermittent renewable resources are brought online, then customers across the United 

States can expect to experience longer power system outages. Therefore, as public policy 

initiatives such as RES continue to be proposed calling for increased capacity from renewables, 

our results strongly suggest the need for power companies and those who regulate power 

companies to engage in and support research and development aimed at ensuring our power system 

is reliable.   

Second, while previous studies have introduced alternative measures for household energy 

insecurity, we are the first to provide an in-depth explanation of the cautions and caveats associated 

with each of the different index measures. We also propose a unique, conceptually and empirical 

robust measure of energy insecurity based on a Rasch model. Our hope is that by outlining the 

benefits and drawbacks of each of the different index measures, we can motivate public policy and 

decision makers to create a set of standard procedures for measuring the extent and depth of energy 

insecurity across the United States. Furthermore, by showcasing how each index measure 

identifies energy insecure households differently, we open the door for further research related to 

refining the way we currently measure household energy insecurity.  

Third, we are the first to use the results of an energy insecurity index to examine how 

investments in energy efficiency impact household energy insecurity. While numerous other 

studies have focused on why consumers invest in energy efficiency, our study provides empirical 
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evidence on what happens after customers decide to invest. We also provide a detailed theoretical 

model that justifies why a household might decide to invest in energy efficiency, without assuming 

the household faces different prices, an avenue that has yet to be adequately addressed in the 

literature.  By focusing specifically on the outcomes of household energy insecurity, we provide a 

different dimension to the discussion on why energy efficiency investments should be considered 

by public policy and decision makers who are interested in using energy efficiency to combat 

energy affordability and household energy insecurity.  
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