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ABSTRACT 

 An important strand of the STEM pipeline literature stresses students’ early 

educational years as being crucial in terms of developing positive attitudes and affinity 

toward STEM coursework and careers. Furthermore, by exposing students early on to the 

nature and requirements of STEM coursework, they may be better prepared to follow a 

course trajectory that allows them to take advanced mathematics courses in high school. 

To investigate this notion, I take advantage of a distinct dataset from New Hampshire that 

surveyed high school seniors about their postsecondary aspirations and important events 

from their early educational careers. In this dissertation, I use probit regression 

techniques to explore this dataset and ascertain whether very early student and parent 

conversations about what to do after high school are related to three STEM pipeline 

outcomes: taking advanced math courses in high school, taking a high number of science 

courses in high school, and expressing plans to major in a STEM field of study in college. 

I further examine whether the relationships of the outcomes variables to the timing of 

conversations, along with other factors in the model, differ by gender. Results indicate 

that very early (prior to eighth-grade) conversations are significantly and positively 

associated with taking advanced math courses in high school. Models disaggregated by 



gender provide mixed support for the idea that males and females have educational 

experiences that vary so widely that they require separate models for estimation. 
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CHAPTER 1 

INTRODUCTION 

 Recent decades have borne witness to a growing clamor for an intense 

focus on Science, Technology, Engineering, and Math (STEM) education. With roots 

tracing back to the Space Race and the oft-cited A Nation at Risk, advocates of STEM 

education argue that the United States risks losing its position of global economic 

leadership if it does not produce an appropriate number of individuals capable of filling 

the labor positions that require deep knowledge of STEM content and skills (Bozick & 

Ingles, 2008; Federman, 2007). A recent Executive Report to the President drew attention 

to the notion that in order to remain globally competitive the United States will need to 

produce 1 million STEM professionals–in addition to those being produced at the current 

rate (Olson & Riordan, 2012). These recommendations reflect the tenor of various earlier 

reports such as the influential Rising above the Gathering Storm (2007) compiled by the 

Committee on Prospering in the Global Economy of the 21st-Century (CPGEC) and other 

more recent publications such as the National Science Board’s (NSB) Science and 

Engineering Indicators (2016), which warn of looming U.S. economic challenges and 

identifies the STEM fields and disciplines as part of the path to prevention.  

One could argue that the United States boasts perhaps the strongest higher 

education system in the world, certainly capable of meeting the needs of the emerging 

economy. This simply is not true; in fact, students in the U.S. consistently underperform 

relative to their peers in other countries, particularly those belonging to the Organization 
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for Economic Co-Operation and Development (OECD). Data from the 2003 Trends in 

International Mathematics and Science Study (TIMSS), for example, showed that U.S. 

students were ranked lower in math literacy than peers in 23 other participating OECD 

countries and four non-OECD countries (Gonzales et al., 2004; Kuenzi, 2008). Based on 

2012 Program for International Student Assessment (PISA) data, it appears little progress 

has been made, with neither male nor female 15-year-old students in the U.S. showing 

significant improvement in math literacy from 2003 to 2012 (NSB, 2016). These same 

students also demonstrated math literacy scores that were below the average for all 

developed countries. Similarly discouraging findings emerged with regard to science 

knowledge. According to results from the TIMSS:2012, the U.S. leads all other 

developed countries in producing students performing at or below the 10th percentile. 

Even after taking into account the size of the U.S. population, 17 percent more students 

fall into this category when compared to all other developed countries. The U.S. does not 

make up this ground in the top of the distribution either. On the contrary, as the NSB 

reports, “the United States produces fewer students above the scores that define the 90th, 

95th, and 99th percentiles across all developed countries. The United States has about 

23% fewer students in each of these high-score groups” (p. I-36).  

Given the economic value tied to producing workers with high-level math and 

technical skills (Bozick & Ingels, 2008), it is no surprise the U.S. has increased its efforts 

to produce more STEM graduates.  Of course, the rest of the world is not sitting idly by 

while the United States tries to improve its global economic position. As the National 

Science Board (2016) explains,  
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S&E [science and engineering] degrees, important for an innovative knowledge 

economy, have become relatively more prevalent in some Asian countries than in 

the United States: in China, nearly half of all first university degrees (49%) 

awarded in 2012 were in S&E, compared with 33% in the United States. Globally, 

the number of first university degrees in S&E reached about 6.4 million, 

according to the most recent estimates. Almost half of these degrees were 

conferred in China (23%) and India (23%); another 21% were conferred in the 

European Union […] (12%) and in the United States (9%). (p. O-4).  

What is more, the United States is also not alone in recruiting STEM degree holders. As 

the world’s workers become increasingly more mobile, nations across the globe compete 

to attract them (Bowen, Chingos, & McPherson, 2009; OECD, 2012). 

 Findings such as these have led to the policy imperative aimed at improving the 

educational pipeline1 that leads to the production of individuals with STEM degrees. As 

clear as the need seems to be, though, causes and solutions to the problem vary greatly. 

Research regarding the P-20 pathway toward becoming a STEM professional has 

considered the role of ability and affinity (Bonous-Hamarth, 2000; Hazari, Tai, & Sadler, 

2007; Ware & Lee, 1988); socioeconomic status (Christnensen, Knezek, & Tyler-Wood, 

2014; Madigan, 1997; Tai, Sadler, & Loehr, 2005; Trusty, 2002); students’ classroom 

experiences (Ardies, De Maeyer, & Gijbels, 2015; Baker & Leary, 1995; Cleaves, 2005; 

Maltese & Tai, 2011; Osborne, Simon, & Collins, 2003) and outreach (Blustein et al., 

2013; Dell, Christman, & Garrick, 2011; Maple & Stage, 1991; Zhang & Barnett, 2015). 

                                                
1 Although the Association for the Study of Higher Education (Museus et al., 2011) and Xie and Schauman, 
2003) make a strong case for the use of terms such as STEM circuit in lieu of STEM Pipeline, in this work I 
make use of the latter as it is in keeping the majority of the literature on the topic. In essence, the term 
STEM Pipeline refers to the trajectory of students from elementary school to earning STEM degrees and 
ultimately entering STEM fields.   
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Complicating all of this research is the repeated finding that, despite all we have learned 

about this topic, a students’ experience in the STEM educational pipeline varies 

substantially based on that students’ race and ethnicity and especially gender. Although 

Asian students tend to do well if not better than their peers, including white students, 

African American and Hispanic students demonstrate weaker STEM outcomes and 

remain underrepresented in STEM fields (Adelman, 2006; Bonous-Hammarth, 2000; 

Bozick & Ingels, 2008, Madigan, 1997; Museus, Palmer, Davis, & Maramba, 2011; 

Navarro, Flores & Worthington, 2007).  

It seems, though, that the most consistent, or at least most documented, 

contributing factor to students’ STEM outcomes is gender. Countless studies have 

produced or commented on findings that time and again reveal that females are at a 

distinct disadvantage as they progress through the STEM pipeline (Baker & Leary, 1995; 

Barton, Tan, & Rivet, 2008; Corbett, Hill, & St. Rose, 2008; Cordova-Wentling & 

Camacho, 2006; Dell et al., 2011; Hazari et al., 2007; Hill, Corbett, & St. Rose, 2010; 

Maple & Stage, 1991; Riegle-Crumb & Moore, 2013; Xie & Schauman, 2003). 

Fortunately, these myriad studies have improved our knowledge of the plight of females 

in the STEM pipeline over the past several decades, and in that time, progress has been 

made. For instance, the National Science Foundation (NSF) reported that since the late 

1990s, women have earned nearly 60 percent of all bachelor’s degrees and nearly half of 

science and engineering bachelor’s degrees (NSF, 2015). However, these gains in 

attainment do not directly correlate to the STEM occupational landscape as women 

comprise half of the total college educated workforce in the U.S. while only making up 

29 percent of those employed in science and engineering fields (NSB, 2016). The outlook 
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is even worse for minority women, who account for fewer than 1 in 10 employed 

scientists and engineers (NSF, 2015).   

As researchers have investigated student progression through the STEM pipeline, 

the role of high school course-taking has emerged as an important topic and has been 

considered both as an input and an outcome (Ardies et al., 2015; Bonous-Hammarth, 

2000; Bozick & Ingels, 2008; Clotfelter, Ladd, & Vigdor, 2013, 2015; Loveless, 2008; 

Riley, 1997; Tai, Liu, Maltese, & Fan, 2006). The leading argument for focusing on 

advanced high school coursework, particularly mathematics, relies on findings from 

studies that have shown strong associations with mathematics training–beginning with 

Algebra I– and improved postsecondary academic outcomes such as college attendance 

and graduation, job selectivity, and higher salaries (Achieve Inc., 2008; Bozick & Luaff, 

2007; Byun, Irvin & Bell, 2015; NSB, 2016; Gaertner, Kim, DesJardins, & McClarty, 

2014; Gamoran & Hannigan, 2000; Long, Conger & Iatarola, 2012; Nord et al., 2011; 

Trusty, 2002; Tyson et al., 2007; Ware & Lee, 1988). Based on such positive 

associations, some states and districts have responded by creating policies that force 

some students into Algebra I classes as early as 8th grade. A few scholars have argued 

that these types of policies can lead to negative outcomes for students not adequately 

prepared for these courses (Clotfelter et al., 2015, 2015; Gaertner et al., 2014, Loveless, 

2008, 2013). Still, others contend that providing students with advanced math training 

has become a civil rights and equity issue based on its ability to empower disenfranchised 

students to participate in an economy that requires those skills (Moses & Cobb, 2002; 

The Algebra Project, 2016; U.S. Department of Education, 1997; Wilgoren, J. 2001).  
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 Most of these policy conversations and exchanges in the literature, however, 

concern the time when students are in high school or perhaps the eighth grade, but the 

reality is that students’ STEM-related outcomes may be influenced by factors that occur 

before then (Barton et al., 2008; Dell et al., 2011; Dozier et al., 1997; Maltese & Tai, 

2010, 2011; Tai et al., 2006; Trusty, 2002). Many, for example, consider Algebra I to be 

a gatekeeper course to later study, which is most beneficial if taken in the eighth grade in 

order to maximize course-taking options in high school (Atanda, 1999). To the extent that 

this is true, students would likely benefit by thinking about their eventual plans even 

earlier. Indeed, prior research has shown that early exposure to information about college 

is associated with early student decisions to attend college (Harding, Parker, & 

Toutkoushian, 2017) and that students who decide before middle school to go to college 

are more likely to apply (Harding et al., 2017) and to enroll (Eccles, Vida, & Barber, 

2004). The large national datasets that measure STEM pipeline outcomes only contain 

information about students as far back as the eighth grade, which has limited our ability 

to measure how early adolescent factors influence choice of major and degree attainment. 

However, in this study, I rely on data from New Hampshire that offers a retrospective 

look on this time in students’ lives to consider whether students’ very early (prior to the 

eighth-grade) conversations with parents concerning what to do after high school  is in 

fact associated with later advanced math course taking in high school and/or students’ 

plans to major in a STEM field in college.  

Statement of the Problem 

Despite having the attention of researchers, policymakers, and educators for 

several decades now, the lack of sufficient numbers of STEM graduates–from multiple 
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backgrounds–remains an educational and economic concern for the United States. 

Although many interventions target those students nearest to college matriculation, 

research indicates that the process leading to an eventual STEM career likely begins early 

on in childhood. Anecdotal evidence of this can be found scattered among the literature 

on the topic. By leveraging a unique dataset from New Hampshire, this study takes an 

important step forward in addressing this resulting gap in the literature. Specifically, in 

this study I explore the following research questions: 

1. How does the timing of students’ earliest conversations with parents 

regarding what to do after high school relate to three important STEM 

pipeline outcomes: (a) taking advanced mathematics courses, (b) taking 

more than three years of science, and (c) expressing plans to major in a 

STEM field of study 

2. Do these relationships vary based on gender? 

Prior research has investigated students’ early life and school exposure to 

postsecondary information through small-sample, qualitative means, yielding results that 

suggest early information would lead to more students choosing STEM fields. Large-

scale quantitative research has done little to support these findings, however, given the 

absence of relevant questions and the lack of data that interrogates students’ earliest 

experiences. Even the most current national dataset, the High School Longitudinal Study 

of 2009 (HSLS:09), which the National Center for Education Statistics (NCES) intended 

to be a nationally-representative study of students specifically focusing on issues relevant 

to STEM, fails to capture sufficient information regarding student’s experiences before 

high school. As such, the current study addresses a critical question that existing data 
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sources are ill-equipped to answer and that can have important implications for school 

policy and practices at local, state, and national levels.  
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CHAPTER 2 

THEORY AND LITERATURE 

Theoretical and Conceptual Frameworks 

The selection of a college major is often complicated. It begins first with the 

choice whether to attend college at all. And, hopefully, along the way an individual takes 

high school courses that build knowledge and skills in areas that will prepare them for the 

eventual postsecondary work. The literature regarding these topics considers both choice 

of courses and choice of major from myriad viewpoints and lenses. As such, in this study 

I draw upon multiple theories from a range of fields to generate research questions, 

inform the selection of variables, and motivate the necessary analytical approaches.  

Human Capital Theory (Becker; 1965, 1993; Mincer, 1958) serves as the primary 

theory that grounds this study. This theory considers education and experience as a means 

through which personal non-pecuniary resources can be expanded and refined in order to 

achieve other meaningful outcomes. Accordingly, an individual may pursue additional 

years of schooling or more advanced courses in a particular area to enhance her 

knowledge and abilities so that she might become qualified to perform varying types of 

work. The educational system has been built in such a way as to scaffold the acquisition 

of human capital with material in one year ideally leading into the material for the next. 

In this study the notion of scaffolded human capital formation plays out in a few 

important ways. First, students desiring to major in a STEM field or discipline must do so 
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in a postsecondary institution. Those who wish to attain some form of postsecondary 

education must first complete prerequisite coursework in high school.  

Similarly, work in mathematics–and to a much lesser extent science–is often 

sequential. That is, students must first master basic mathematical principles before 

moving into algebraic expressions and geometry and from there on to trigonometry, pre-

calculus and more advanced work such as differential equations. This principal holds true 

for transitions from high school into postsecondary study. In fact, many programs 

require–or at the very least prefer–students who demonstrate a progressive trajectory of 

mathematical study throughout high school ending with advanced work. This is of 

particular concern in STEM fields. 

Beyond these points, Human Capital Theory also posits that not all types of 

investments garner the same reward. Studying law, for example, leads to greater financial 

returns, on average, than studying English literature. The same can be said of studying 

topics related to engineering relative to the fine arts. Under this premise, students who 

invest in more courses related to STEM fields may be doing so with the hopes of 

receiving a larger monetary payout in the 21st-century economy. Such an idea is bolstered 

by increasingly pointed and frequent rhetoric from news and policy outlets that focus on 

high market demand for STEM professionals predicted in the coming years (Olson & 

Riordan, 2012; NSB, 2016).  

Though Human Capital Theory may explain how individuals may view 

postsecondary education as an avenue for improving one’s situation from a broad 

economic perspective, the theory by itself cannot adequately explain the decisions 

involved throughout the entire process. This is in large part because all individuals cannot 
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be thought of as equally equipped to make decisions about their education and their 

postsecondary futures and careers. Bourdieu (1977, 1986) argues that individuals each 

possess varying levels of cultural capital that shape values and understanding of these 

areas. Thus, a student whose parents both possess college degrees will likely have a more 

developed understanding of not only the possibilities of self-improvement through 

education, but also the relative returns to the variety of disciplines and degrees. These 

advantages do not come only through parental differences. Bourdieu also discusses the 

ways in which exposure to cultural events, such as the theatre and museum visits, also 

adds to an individual’s aggregate cultural capital. Of course, these advantages also arise 

as a function of wealth, with those having more financial capital also benefitting from 

corresponding levels of cultural capital (Orr, 2003).  

Individuals can augment, or even substitute, their cultural capital by leveraging 

their social capital (Coleman, 1988). Social capital describes the relationships and 

connections an individual can leverage to obtain information and guidance. In the college 

choice paradigm this could be thought of as family members who share knowledge or 

experience navigating the process of selecting and enrolling in a postsecondary 

institution. Friends and acquaintances can also serve as valuable sources of social capital. 

As with most forms of capital, though, access remains a point to consider. Not all 

individuals have family members or friends who have knowledge of the college choice 

process, nor do they always have other immediately apparent social connections that can 

fulfill this role. Often a lack of social capital corresponds with paucities in other forms, 

leading to compound disadvantages. For many individuals lacking their own networks of 

social capital, school personnel such as counselors and teachers often must serve the role 
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of informant and guide (Bonous-Hammarth & Allen, 2005; King, 1996; Somers, Cofer, 

& VanderPutten, 2002). Some groups in particular, such as immigrants, often have to rely 

heavily on social capital when other aspects of their status (e.g. poverty or residency 

status) have cut them off from other forms of financial and cultural capital (Stanton-

Salazar & Dornbusch, 1995). 

The forms of capital thus far can be applied broadly to the idea of choosing 

courses in high school or deciding to go to college. Other scholarship, however, has 

considered the process more closely. Most famously, Hossler and Gallager (1987) 

conceptualized the process as including three distinct phases: predisposition, search, and 

choice. The predisposition phase has generally been considered to begin early in middle 

school and refers to a period when individuals develop aspirations for postsecondary 

education. A students’ predisposition toward pursuing a college education is believed to 

be influenced by a number of individuals, from parents and friends to school counselors 

and teachers, and by myriad factors from family income to peer effects in grade school.  

Students’ various reserves of the types of capital discussed above also shape not 

only whether students become predisposed to attend college but also when they become 

predisposed. Though most of the college choice literature has traditionally considered 

middle school to be the time when students first begin forming their ideas and aspirations 

for college, some research suggests this might begin even earlier into childhood (Eccles 

et al., 2004; Harding, et al., 2017). In the current study, the timing of students’ 

predisposition for college is of paramount importance as students who begin thinking 

about college in elementary or middle school may be more likely to follow course paths 

in high school that better prepare them for pursuing STEM majors in college. That is, a 
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college’s engineering program may require students to have taken advanced mathematics 

and science coursework in high school before being admitted to their department. This 

would be a difficult criterion to meet if a student only begins to seriously think about 

college in his or her sophomore or junior year of high school.  

As Hossler and Gallagher (1987) propose, once a student has formed those initial 

ideas about college in the predisposition phase, he or she transitions into the search phase. 

During this time students gather information about college topics ranging from financial 

aid to school selectivity. Armed with whatever information they have managed to 

accumulate, students make a choice about which particular institution they wish to attend. 

Toutkoushian and Paulsen (2016) have further noted that, at this point, students must still 

apply to the institution, or a choice set of institutions, and await notification of 

acceptance. Then, based on what institutions have admitted the student, he or she chooses 

the most preferred one. 

The college choice theory, however, does not adequately address the process of 

selecting a major area of study. As such, to explain the process of major choice selection, 

much of the recent literature on the topic has relied on Social Cognitive Career Theory 

(Lent, Brown, & Hackett, 1994; 2000). In developing Social Cognitive Career Theory 

(SCCT) Lent et al. (1994) extend the earlier work of Bandura (1986) regarding general 

social cognitive theory to explain aspects of career development, including the formation 

of interests, which relates to the current study through its connection to planned 

postsecondary major. In summary, Lent et al. (1994) state that SCCT “emphasizes three 

social cognitive mechanisms that seem particularly relevant to career development: (a) 

self-efficacy beliefs, (b) outcomes expectations, and (c) goal representations” (83). The 
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concept of self-efficacy beliefs refers to an individual’s assessment of his or her overall 

competencies in a particular area. Departing from traditional treatments of self-efficacy 

as a passive and fixed quality, SCCT considers self-efficacy to be mutable, given to 

change through interactions with myriad other intrapersonal and contextual factors (Lent 

et al., 1994). The second component of SCCT, outcomes expectations, refers to an 

individual’s beliefs about the consequences of his or her career decisions. Finally, goals 

most strongly represent an individual’s volition with regards to a career or major choice.  

In a follow-up to their seminal (1994) piece, Lent et al. (2000) updated their 

original development of SCCT by more explicitly acknowledging the role that barriers 

and challenges play in determining career outcomes. Barriers can be obvious restrictions, 

such as citizenship challenges preventing immigrant students enrolling in higher 

education in some areas, as well as less-tangible restrictions such as bias in classrooms. 

Many researchers have pointed to gaps in STEM field representations for females as 

evidence of the barriers women face in persisting to–or even developing interest in–

careers in those areas. Based on theoretical discussions of these barrier differences 

between males and females by scholars such as Jacquelyn Eccles (1987), some 

researchers have argued that analyses in this topical area should consider the pathways of 

males and females separately when estimating models (Kao & Tienda, 1998; Webber & 

González Canché, 2015).  

Despite decades of research, though, gender gaps persist in many spaces along the 

STEM pipeline. A such, this topic remains one of the most widely discussed areas of the 

literature on STEM education. As Blickenstaff (2005) quipped, “A review of every paper 

written on the topic of gender and STEM would be the work of a lifetime” (p. 371). 
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Though the focus of the current study concerns the timing of college-related information 

and students’ decisions about college, the decision to estimate separate models for each 

gender merits some grounding in the literature on STEM outcomes. The feminist school 

of thought, in particular, has much to say on the topic. 

Research conducted from a feminist perspective has argued that girls’ experiences 

in science education often differ greatly from their male peers to the point that everything 

from subject matter and pedagogy to teacher expectations creates environments that 

elevate the success of males and dissuade females from pursuing further study in STEM 

areas (Hazari et al., 2007; Osborne, 2003). As Barton et al. (2008) observe, “We know 

that traditionally girls are positioned with less power in the science classroom. Girls are 

called on less often to answer content questions and are not given as much attention as 

the boys by the teacher” (98). Hazari et al. (2007) use even stronger language to make 

this argument: 

Science is hegemonic and androcentric, two characteristics that proceed from the 

fact that practitioners of science as we know it have traditionally been white, 

male, and Western. It is they who define the rules, methods, instrumentation, 

descriptions of results, and criteria for knowledge production. It is they who 

define what counts as science, both theoretically and in practice. It is they who are 

the gatekeepers for access to, and definers of, a life in science. (p. 604)  

Unfortunately, though these appraisals of science may be accurate, it is difficult to 

provide quantitative support. As such, much of the work exploring this idea tends to be 

qualitative and/or on a small and non-representative scale. Nevertheless, the feminist 

interpretation of the biases women face in the STEM pipeline, from early education on 



 

16 

into a career, has served as a compelling lens for explaining gender gaps that are 

unresolved by numerous other explanatory variables in many models.  

 The process of deciding to attend college and selecting a major area of study to 

explore once there remains decidedly complex. And though the number of theoretical 

lenses discussed above may appear excessive, each plays a part in informing the selection 

of variables, the specification of models, and the overall analytic approach used to 

investigate this complicated process. The subsequent section of this chapter reviews the 

ways in which various authors have drawn upon these theories to explore problems 

similar to those considered by the research questions I pose in the current study.   

Review of the Literature 

College choice literature. Any discussion regarding students’ choice of college 

major is moot without first at least briefly mentioning the process students follow in 

determining whether to even go to college at all. Although an in-depth review of that 

literature is not appropriate for the current study, an overview of some of its larger 

themes is both relevant and instructive as many journal articles and book chapters are 

guided by the same theories and principles that motivate the selection of variables and 

analytic approach found herein. Indeed, though few studies directly link college-choice 

and selection of major, in many respects they go hand-in-hand.  

 As mentioned above, the dominant framework of analysis in the college choice 

literature remains the three-stage model of predisposition, search, and choice developed 

by Hossler and Gallagher (1987). Despite a common adherence to this structure, though, 

researchers have regularly invoked myriad theories and lenses for applying it. Some 

studies have focused on the influence of demographic variables such as gender (Mau & 
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Bikos, 2000) and race and ethnicity (Engberg & Wolniak, 2009; Freeman, 1997; Hamrick 

& Stage, 1998; Hurtado, Inkelas, Briggs, & Rhee, 1997; Perna & Titus, 2005; St. John, 

1991). In general, research has shown that, compared to males, females tend to have 

higher educational aspiration levels and are more likely to enroll in college whereas 

African-Americans, Hispanics, and Native Americans face additional hurdles and remain 

underrepresented in postsecondary education (Perna, 2000; Perna & Titus 2005). Asian 

students, on the other hand, express higher levels of college aspirations than other racial 

and ethnic groups, even whites (Kao & Tienda, 1998), and are more likely to enroll in 

college (Hsin & Xie, 2014), especially at their first choice (Hurtado, Inkelas, Briggs, & 

Rhee, 1997).  

 Others have considered the influence of factors related to college affordability. 

The foundation of these studies often centers on students’ socioeconomic status 

(Cameron & Heckman, 2001; Carter, 1999; Plank & Jordan, 2001) with findings almost 

always indicating the advantages experienced by those students who come from families 

of greater means.  Of course, the issue of affordability is not simply a matter of family 

wealth and income. Students’ perceptions of affordability can also play a role as some 

students believe the costs of college far exceed what they would actually be required to 

pay (George-Jackson & Gast, 2015). In other cases, students may be aware of costs but 

have limited information about or differential access to financial aid (Cameron & 

Heckman, 2001; Flint, 1993; Perna & Steele, 2011; St. John, 1991). 

STEM pipeline literature. Having provided a brief overview of studies related to 

the college choice process, I now turn to the literature more specifically focused on the 

STEM pipeline. In many cases, the two bodies of literature draw upon the same 
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constructs and control factors such as personal and background demographics. Studies on 

the STEM pipeline differ, however, in that many important factors considered by 

researchers are more specifically tied to the four content areas of science, technology, 

engineering, and mathematics. Because STEM pipeline studies have considered so many 

variables which serve as outcomes in some instances and predictors in other, depending 

on the stage of the pipeline, logically summarizing the existing research can be 

problematic. Blickenstaff (2005) echoed this sentiment, explaining, “One of the 

significant challenges when looking at the literature on girls or women in science is 

devising a way to organize the very disparate subtopics into meaningful categories” (p. 

370). And he was only referring to the literature on women and science. In this study, I 

have found it most manageable to present a review of the literature organized by 

particular variables or groups of variables and, when needed, explain which side of the 

equals sign they occupied in a given work. The resulting review begins with a discussion 

of the role of advanced math and science course taking, which serves as the outcome 

variable (taking advanced mathematics courses) in the first part of my analysis and a 

predictor variable in the second.    

Number and type of science and math courses. In stressing a quality education as 

the means to ensure that our nation’s students can compete in the emerging global 

economy, the National Science Board (2016) specifically pointed to the importance of 

taking advanced math and science courses, and for good reason. Researchers spanning 

more than a decade have explored the links between this type of coursework and positive 

career- and postsecondary-related outcomes (Ardies et al., 2015; Bozick & Ingles, 2008; 

Horn & Kojaku, 2001; Madigan, 1997; Nord et al., 2011; Rose & Betts, 2004; Tai et al., 
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2005). Gamoran and Hannigan (2000) performed least squares regressions in their 

analysis of NELS data and concluded that, net of background factors and prior ability, 

taking algebra in eighth, ninth, or tenth grade was associated with significantly higher 

math achievement growth of as much of a third of a standard deviation compared to those 

who had taken no algebra at all. Although results indicated that, regardless of ability 

level, all students benefit from taking algebra, the effects were found to be somewhat 

smaller for those whose eighth-grade math tests were in the bottom 20th percentile.  

 Altonji (1995) presented one of the earliest efforts at using quasi-experimental 

approaches to link course-taking with postsecondary outcomes, and his results, to some 

extent, supported the typical human capital argument. Employing variation across schools 

related to what courses students take as an instrument for the actual curriculum, Altonji 

found that, among students participating in the National Longitudinal Survey of the High 

School Class of 1972 (NLS72), an additional year of high school science, math, and 

foreign language only led to a .017 increase in wage growth rate. Similarly surprising to 

the author, the same curricular increase was also only associated with an additional .339 

years of postsecondary education. Altonji pointed to less-than-desirable controls for 

ability in the NLS:72 data as one possible explanation for the surprisingly low estimates 

to the returns on math, science, and foreign language courses in the study. Rose and Betts 

(2004) later extended Altonji’s (1995) work using a slightly modified version of his 

instrumental variables approach and examining more recent High School and Beyond 

(HSB) data. Although they did establish connections between additional high school 

math coursework and higher career earnings, the effects were concentrated mostly in 

algebra and geometry courses.  
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In another related study, Levine and Zimmerman (1995) employed both ordinary 

least squares (OLS) regression and an instrumental variables to estimate the returns to 

math and science coursework in high school, both in terms of effects on wages and 

educational outcomes. Based on data from the National Longitudinal Survey of Youth 

and HSB, estimated models using both analytic approaches revealed that women who 

took additional math courses in high school and went on to graduate college eventually 

earned increased wages (2.9 and 5.4 percent increases in NLSY and HSB, respectively). 

Among female college graduates in the HSB sample, taking an extra half-year of math in 

high school increased an individual’s probability of majoring in a technical field by three 

percentage points. The increased mathematics coursework also led to a near three 

percentage point decrease in an individual’s probability of majoring in a field 

traditionally dominated by women. Similar findings arose from the models using NLSY 

data; however, the magnitude of the effects were slightly smaller. Levine and 

Zimmerman closed their study by urging caution with interpreting the results as the 

instruments employed in the study were fairly weak, leading to much larger standard 

errors than those seen in the traditional OLS models.  

 Federman (2007) followed this quasi-experimental line of inquiry by investigating 

the influence of high school course taking on students’ decisions to major in a technical 

field. Relying on NELS data, the author first used students’ total math and science 

courses to predict their probability of majoring in a technical field, net of other relevant 

controls.  Findings from these models suggested that all else equal, at the means, an extra 

year of math and science course-taking for a student should lead to a six percentage point 

increase in a male’s probability of selecting a technical major and nearly half that for a 
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female. When Federman used state graduation requirements related to math and science 

courses as an instrument for total number of courses, the coefficients of interest were 

nearly twice as large. Of course, the NELS data related to a time when math requirements 

at the state level tended to be either two or three years. Thus, while it would stand to 

reason that a four-year requirement would have similar effects, Federman’s (2007) study 

could not corroborate such a theory.  

  Joensen and Nielsen (2009) similarly provided positive results for the returns to 

mathematics coursework but in an international context. Taking advantage of data from a 

natural experiment in Denmark, the authors used an instrumental variables approach to 

measure the labor market returns to high school advanced math. The identification 

strategy the authors chose led them to assert a near causal connection between the two, 

pointing out that students taking advanced math in high school could expect a 20 percent 

increase in earnings relative to an average student that had not taken advanced math. It is 

worth noting that this effect pertained to the treatment condition of choosing an advanced 

math and chemistry branch. However, the authors cited prior literature that supported the 

notion that labor market returns are much more closely tied to math education than 

science education.  

 Returning to the U.S. education landscape, Gaernter et al. (2014) continued the 

instrumental variables approach to investigating the returns to studying math, using 

NELS and ELS to compare the returns to taking Algebra 2 during two different 

timespans– 1988 to 2000 and 2002-2006, respectively. In sum, the authors found that 

taking Algebra II in high school has positive effects on college outcomes (i.e., first-year 

retention and graduation) after accounting for potential self-selection bias, but this effect 
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was attenuated between the NELS and ELS time periods. It is worth noting that the 

authors of this study also considered whether taking Algebra II in high school led to 

similarly positive outcomes for those seeking a career immediately after high school and 

determined that this was not the case. As such, the authors suggested there may be 

opportunity costs for career-seeking students who are pushed or required to take Algebra 

II in high school.  

 Most recently, Byun et al. (2015) analyzed ELS (2002-2006) data to analyze the 

effects of advanced math course taking on math achievement and college enrollment. 

Results from models that leveraged propensity score matching revealed that advanced 

mathematics course taking led to an increase of nearly nine points on the 12th grade 

mathematics achievement test. Interactions also revealed that achievement gains were 

greater for lower SES students but lower for Black students. Students who took advanced 

math courses in high school were also two times more likely, on average, to enroll in 

college. Although advanced math takers in the matched samples were slightly more likely 

to experience increased enrollment in the two-year sector (compared to no enrollment), 

the larger benefit was seen for those enrolling in the four-year sector.   

Ability, affinity, and personal taste. Before the development of the term STEM 

truly entered mainstream discussion, researchers had already begun considering ability as 

an important predictor of science and math related outcomes such as college major, 

degree type, or career. These factors played particularly important roles in the literature 

concerning differences in outcomes between males and females (Blickenstaff, 2005). Of 

course, in the earliest iterations of this research, a deficit orientation prevailed (Eccles, 

1987), leading to explorations of whether biological and physiological factors such as 



 

23 

arm length, brain size, and field dependency could explain differences in ability-related 

outcomes (Blickenstaff, 2005). In more recent literature, ability has been considered as 

one of many controlling factors as opposed to a primary predictor of interest (Navarro et 

al, 2007; Nicholls, Wolfe, Besterfield-Sacre, and Shuman, 2010; Nicholls, Wolfe, 

Besterfield-Sacre, Shuman, & Larpkiattaworn, 2007; Tai et al., 2006;).  

This is not to say ability does not matter in predicting STEM outcomes, only that 

its relationship has already been well established. For example, Bonous-Hammarth 

(2000) explored a combination of Cooperative Institutional Research Program (CIRP) 

and Integrated Postsecondary Education Data System (IPEDS) data from the 1980s, 

which revealed that high academic achievement was positively associated with 

persistence in science, math, and engineering undergraduate work, including 

underrepresented minorities (African-American, American-Indian, and Chicano/Latino). 

Nicholls et al. (2007), supported this finding, showing that academic ability was one of 

the most important variables in predicting students’ plans to major in STEM when using 

samples from more recent (2000s) CIRP data. In a later study, Nicholls et al. (2010) 

arrived at similar findings using National Education Longitudinal Study (NELS) data, 

which corroborated earlier work by authors such as Federman (2007), who used NELS 

data to demonstrate the positive connection between academic achievement in middle 

and high school and majoring in technical field in college. Students’ own perception of 

their ability, what Bandura (1986) and Lent et al. (1994, 2000) refer to as self-efficacy, 

has also been shown to be important in this line of research (Navarro et al., 2007; Zhang 

& Barnett, 2015), as students that see their science and mathematics ability as areas of 
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personal strength are often more likely to take advanced math courses in high school 

(Simpkins, Davis-Kean, & Eccles, 2006) and pursue STEM careers (Trusty, 2002). 

The idea of ability has been particularly important with regards to gender. As 

researchers began to empirically affirm casual observations of differences in STEM 

outcomes for males and females, many scholars quickly turned to the idea of natural 

ability differences between the sexes. Early studies considered the role of biology and 

investigated the role of physiological variables such as brain size and chemistry to 

discover what, if any, differences naturally existed between the intellectual capabilities of 

men and women (Blickenstaff, 2005; Ceci et al., 2005; Hill et al., 2010). Limited but 

contested evidence related to field dependency seemed to support the notion that males 

might be more naturally and favorably predisposed to excel in math and the sciences 

(Blickenstaff, 2005); however, findings in this area became uninformative as thinking 

about the issue evolved. Eventually these comparisons ceased to play a prominent role in 

the literature. Nevertheless, studies do still uncover differing influences for some ability-

related variables. Relying on NELS data, Trusty (2002) showed that better early 

performance in math among females led to subsequent increases in the likelihood of 

taking advanced math courses, which in turn led to higher probabilities of majoring in a 

science or math field. Federman (2007) similarly found that whereas higher math scores 

did not predict a higher probability of majoring in a technical field for males, the 

relationship was positive and significant for females. 

A related construct often used in STEM pipeline research accounts for the 

importance of students’ affinity for science and mathematics courses and their belief in 

each field’s value (Christensen et al., 2014; Osborne et al., 2003; Nicholls et al., 2010, 
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Simpkins et al., 2006; Ware & Lee. 1988). A study of 437 sixth grade students (Jones, 

Howe, & Rua, 2000), for example, revealed that whereas males saw future science jobs 

as a means to become famous, earn money, and control other people, females, on the 

other hand, saw science jobs as a way to “help other people” (p. 186). Affinity for and 

perceived value of STEM subjects continue to matter as students age. Using High School 

and Beyond (HS&B) data, Ware and Lee (1988) found that positive attitudes toward 

mathematics in high school are an indirect but important predictor of students’ choice of 

a science major in college. Bell (2001) suggested that differences in personal taste might 

account for the significant differences he found in performance on recall-based science 

questions on which boys outperformed girls on physics-related items and girls outpaced 

boys on those related to human biology. In more recent work involving 1531 students at 

12 different, but unnamed, colleges and universities in the U.S., Tai et al. (2005) reported 

that, on average, students who entered science as a means to a better career earned grades 

in introductory college chemistry that were about ten percent better than their peers. 

Indicators of attitudes have often been problematic in STEM research, however. As 

Osborne et al. (2003) noted, the existing literature commonly uncovers contradictions 

between students’ attitudes toward school in general and science specifically, with many 

students enjoying the latter while objecting to the former. Additionally, student personal 

attitudes for science (and math) likely often lead to issues of self-selection bias in studies 

concerning outcomes such as choice of STEM major (Federman, 2007).  

Classroom experience. Though ability and affinity for STEM coursework has 

been linked to STEM outcomes, the influence of these factors may be mitigated by 

students’ experiences in their STEM classes (Ardies et al., 2015; Osborne et al., 2003). 
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Osborne et al. (2003) note that the STEM literature consistently calls on educators to 

make science teaching engaging for students, especially since the reliance on note-taking, 

lectures, and textbooks begins to increase as early as the eighth grade (Baker & Leary, 

1995). The resulting teaching and learning environments can be detrimental to student 

success. Determining which environments are best can be complicated, however. 

Osborne et al. (2003) reviewed this literature and concluded that chemistry classes that 

depart from lab-oriented practices, such as manipulating chemicals, shift too far from the 

practical and move to the theoretical, making it difficult for many students to perceive the 

relevance of the material to their daily lives. Tai et al. (2005) found that students whose 

high school chemistry classes had overemphasized lab procedures tended to perform 

more poorly in their introductory college chemistry courses. Those individuals whose 

high school chemistry classes featured labs repeated for understanding, however, tended 

to perform better in college. Similarly, results from Maltese & Tai’s (2011) study using 

NELS:88 data revealed that students whose experiences in mathematics classes involved 

a heavy focus on learning facts and rules were less likely to eventually earn a STEM 

degree.  

As with ability and affinity, the influence of classroom experience also remains an 

area of the literature in which researchers strongly consider the interacting effects of 

gender. In large part, this discussion has focused on longstanding issues of equity in the 

classroom rather than on differences in student behaviors or abilities (Oakes 1990; 

Sadker, Sadker, & Klein, 1991). Textbooks, for example, were long shown to be absent 

of positive female role models, and often even included sex-based stereotypes portraying 

females as more dependent and passive than males. Even as publishers began to make 
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improvements by portraying females in a wider variety of scientific roles, they still 

appeared less frequently (Sadker et al., 1991). These biases play out in other seemingly 

small ways in classrooms as well. As Barton et al. (2008) noted, females are also called 

upon less frequently in science classes and are not given as much attention by the teacher 

when compared to their male peers. Classroom activities have similarly been pointed to 

as affecting males and females differently. Baker and Leary (1995) found that, in their 

sample, females reacted negatively to pedagogy that isolated them and forced them to 

work separately. They also expressed aversions to traditional styles of testing. Hazari et 

al. (2007) observed that content can matter as well. Reporting on results from their study 

of women in introductory university physics course performance, they explained females 

benefited from high school physics courses that required a deeper understanding of 

subject matter. Males, on the other hand, had more success when their high school 

physics classes involved more rote exercises such as memorization. Of course, despite the 

relatively recent publication date of the study, the authors relied on data from students 

enrolled in those courses in 1973. Females begin to notice differences in classrooms early 

on as well. Females in Riegle-Crumb and Moore’s (2013) study of students in a high 

school engineering class reported perceptions of their classroom as less inclusive after 

having only been present for a few days at the beginning of the year.  

In many cases, the influential factors discussed above are directly tied to decisions 

made by teachers (Tai et al., 2005). As Kuenzi (2008) stated, “Many observers look to 

the nation’s teaching force as a source of national shortcomings in student math and 

science achievement” (p. 10). Cordova-Wentling & Camacho (2006), for example, 

interviewed 89 senior female engineering students who graduated in 2005 from the 
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University of Illinois to discover the factors that influenced their decision to pursue an 

engineering degree. Two of the five most frequently cited factors pertained to teachers, 

with 73 percent of interviewees mentioning “Excellent math/science/technology 

teachers” and 55 percent crediting “Teachers who encouraged me to pursue my interest in 

math/science/technology.” Based on their comprehensive review of this literature in 

2003, Osborne et al. concluded that “the single most important change that could be made 

to improve the quality of science education would be the recruitment and retention of 

able, bright, enthusiastic teachers of science” (p. 1069). More than a decade after this 

observation, many schools are still inadequately staffed by high-quality math and science 

teachers, a problem that is even more pronounced at high-poverty and high-minority 

schools (NSB, 2016). 

Race, ethnicity, and socioeconomic status. As mentioned in the introduction to 

this study, a key problem in the STEM pipeline relates to the persistent 

underrepresentation in STEM fields of non-Asian minorities, particularly African 

Americans and Hispanics, as well as those from families of lower socioeconomic means 

(Navarro et al., 2007).2 Evidence from existing research suggests this problem likely has 

its roots in students’ K-12 educational experiences (Tyson et al., 2007). For example, as 

Adelman (2006) pointed out, Latino students tend to have less access to high schools that 

offer high level math courses like trigonometry and calculus, and the poorest students in 

the nation are more likely to attend high schools that do not offer math above Algebra 2. 

Using data from the Education Longitudinal Study of 2002 (ELS:2002), Bozick and 

Ingles (2008) similarly showed that Asian and White students, as well as high SES 
                                                
2 Although the overwhelming homogeneity of the sample used in the current study limits the ability to 
engage in a discussion about race and ethnicity, its prominent role in the literature merits at least a brief 
overview here. 
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students, were more likely to take advanced placement classes that included precalculus 

and calculus. What is more, the researchers also found that, on average, students in the 

highest SES quartile outgained those students in the lowest SES quartile and those gains 

came in more advanced subjects.  

 Some scholars argue that these differences in STEM outcomes can be attributed to 

more than simple access to better schools and more advanced coursework. Osborne et al. 

(2003) point to a particularly interesting argument along these lines as it relates to 

students’ attitudes toward science: 

Moreover, as Lemke (2001) cogently argues from a socio-cultural perspective, 

contemporary science is a product of European culture, and a middle-class 

subculture at that. For those who lie outside the orbit of such cultures by virtue of 

their ethnic origin or social status, the nature of what counts as explanation may 

be startlingly different. Changing students’ minds, therefore, requires more than 

their assent to the bare facts, logical structure and epistemology of Western 

science. (p. 1073). 

The authors go on to suggest that the struggle to engage underrepresented students with 

science cannot be construed as “an equivalent process for all demanding only logical 

thought and application […] rather, cultural and class difference may be a significant 

aspect of many pupils’ attitudes toward science” (1073). These arguments lie outside the 

scope of the current study, but they remain important to consider in light of persisting 

disparities in STEM pipeline outcomes for underrepresented minority and ethnic groups.  

 Of course, the literature does contain some reason for hope in this area. In one of 

the earliest studies to use quasi-experimental techniques aimed at uncovering causality, 
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Federman (2007) found that, all else equal, Asians and blacks in the NELS dataset had a 

greater likelihood of taking more math and science courses in high school. She also found 

that Asian males and Hispanic and black females were more likely to major in a technical 

field. Additionally, based on data from 4-year universities in Florida, results from work 

by Tyson et al. (2007) suggested that while Black and Hispanic students did, on average, 

complete lower-level high school courses, Black students who did take high-level courses 

were as likely to obtain a STEM degree as White peers who also obtained a bachelor’s 

degree. Hispanics in the study had even greater probabilities of obtaining a STEM degree 

when compared to Whites.  

Timing of information and exposure. A main focus of this study concerns 

whether the timing of college and career related information are related to student’s 

mathematics course taking in high school and/or to their plans to major in a STEM field. 

Conceptually, this question flows from the idea that the number and intensity (level of 

difficulty) of science and math courses in high school have been positively associated 

with postsecondary outcomes ranging from attendance and persistence (Atanda, 1999; 

Byun et al., 2015; Schneider, Kirst & Hess, 2003; Schneider, Swanson, & Riegle-Crumb, 

1998) to the likelihood of majoring in a STEM field (Trusty, 2007). Accruing a large 

number of math and science courses and following a succession of coursework leading to 

subjects such as calculus and physics likely requires a fair amount of planning on behalf 

of a student (Adelman, 2006). And since the traditional high school student only has four 

years to earn credits in these courses, he or she will likely need to begin this process as 

soon as possible. The sequential nature of mathematics courses heightens this need as one 

cannot typically take trigonometry before building a foundation in basic linear algebra. 
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The timing of this process is so important that students have been shown to benefit from 

starting their high school coursework trajectory as early as middle school algebra 

(Adelman, 2006). Of course, it is perhaps more likely that a student will succeed in this 

pursuit if he or she has at least considered attending college at all from a very early age. 

Otherwise, the student might not find the accumulation of numerous and advanced math 

and science credits worth the extra effort.   

 Given the links between advanced coursework and postsecondary STEM 

outcomes, a brief overview on the role of timing in the overall college choice process is 

merited before exploring the links between timing of information and the STEM pipeline 

outcomes specifically. Traditionally, the more general college choice process has been 

said to begin around the seventh grade and is referred to as the disposition stage 

discussed previously (Hossler & Gallager, 1987). Some researchers have argued, 

however, that predisposition likely begins before that, even as early as elementary school 

for some children (Eccles et al., 2004, Harding et al., 2017). Using data from the early 

1980s, Eccles found that students who in the sixth-grade expressed plans to enroll in 

college were indeed significantly more likely to have been enrolled in college full-time 

when surveyed two years after high school graduation. This relationship held after 

accounting for important predictors of college enrollment such as parental education and 

family socioeconomic status. Though it relied on a small sample size, the longitudinal 

nature of the data lends added support to a logical conclusion that plans made early in 

students’ education can lead to important postsecondary outcomes. Similarly, using a 

substantially larger sample size of students from New Hampshire, Harding et al. (2017) 

found that students who received college-related information before the seventh grade 
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were significantly more likely to decide before middle school whether they would attend 

college. Those who decided this early were also significantly more likely to follow a 

college prep course of study in high school and to aspire to earn graduate degrees at some 

point. Neither of these studies, however, considered whether these early decision and 

information variables were related to plans to major in a particular field or to math and 

science high school course taking.  

 A number of researchers and scholars have discussed this notion of the 

importance of timely information as it relates to choosing a major (Beggs et al., 2008, 

Bonous-Hammarth, 2000) and to STEM majors specifically (Baker & Leary, 1995;  

Blustein et al., 2013; Cleaves, 2005; Maple & Stage, 1991; Maltese & Tai, 2011; Tai et 

al., 2006). Most of these discussions conclude that students simply do not receive 

enough, if any, information about pursuing STEM-related degrees or the preparation 

necessary for doing so. Whereas some authors have suggested a need for improved 

informational resources in high school (Cordova-Wentling & Camacho; Schneider et al., 

2003; Zhang & Barnett, 2015), others have argued that intervention should begin in the 

middle grades and earlier (Baker & Leary, 1995; Barton et al., 2008; Dozier et al., 1997; 

Dell et al., 2011). Maltese and Tai (2010) support this claim based on their qualitative 

research involving interviews of 116 participants that were mostly post-/graduate students 

studying the sciences or individuals who were at the time employed in the scientific 

fields. During interviews, 65 percent of participants indicated that their interests in 

science began before the middle school years. The authors bolstered this notion with a 

subsequent analysis of NELS data that considered the role of various factors that 

influence students’ persistence in eventually earning a STEM degree (Maltese & Tai, 
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2011). Results suggested that enrollment in science courses in high school and students’ 

stated interest in math and science and beliefs in their ability at the time were significant 

predictors of eventual STEM degree completion. The authors conclude that these 

behaviors and attitudes were likely influenced by factors that precede the eighth grade.  

Related work using these datasets has provided evidence that student factors in 

the middle school years exert an influence on students’ choices to pursue STEM degrees 

and careers. Using NELS data to investigate the relationship between students’ early 

(eighth grade) career expectations and postsecondary outcomes, Tai et al. (2006) found 

that among NELS participants earning baccalaureate degrees, those students who in the 

eighth grade expressed plans to be working in a science field at age 30 were significantly 

more likely to have earned a degree in a science field by the end of the survey. 

Specifically, they were almost twice as likely to have earned a life sciences degree and 

3.4 times more likely to earn a degree in engineering or the physical sciences. However, 

as Tai et al. concluded,  

[…] we should not overlook the likelihood that life experiences before eighth 

grade and in elementary school may have an important impact on future career 

plans [… our study suggests] that to attract students into the science and 

engineering, we should pay close attention to children’s early exposure to science 

at the middle and even younger grades (p. 1144).  

 Few studies, however, have considered the influence of pre-eighth-grade factors 

(aside from background demographic variables) on these STEM pipeline outcomes from 

an empirical and quantitative perspective. This is, in large part, due to the limitations of 

education datasets. Those built from local or state-level participants often suffer from 



 

34 

challenges related to small sample sizes or findings that are contested as not being 

generalizable. Nevertheless, in many cases, a study of this type can provide the only 

limited information currently available. In fact, a review of the literature uncovered only 

one such article. In this publication, Simpkins et al. (2006) tested a structural equation 

model that considered whether fifth-grade students’ involvement in after-school math and 

science activities led to later enrollment in a higher number of math and science courses 

when those students were in high school. The model hypothesized that an increase would 

be seen through the after-school activities’ effect on students’ self-concept, interests, and 

importance placed on math and science. The authors concluded their models showed 

statistically significant support for this idea, suggesting that exposure as early as the fifth 

grade led to student choices to take more math and science classes. The data for this 

study, however, represent a very small sample size of only 227 students from the 

Michigan Childhood and Beyond Study and only pertain to those students that were in 

the third grade in 1987. Additionally, the models contained only limited controls for other 

factors such as student gender, grades, and socioeconomic status.   

This need to consider students’ experiences before the eighth great is echoed 

throughout the literature on STEM education and careers (Baker & Leary, 1995; Barton 

et al., 2008; Dozier et al., 1997; Dell et al., 2011; Maltese & Tai, 2010), and it is this idea 

that drives the empirical work of this study.   
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CHAPTER 3 

DATA AND METHODS 

The conceptual framework of this study suggests that students’ very early (before 

eighth grade) exposure to information about college is associated with their likelihood of 

having taken advanced mathematics coursework in high school. These course taking 

patterns, in turn, should be associated with an increased likelihood of planning to major 

in a STEM or STEM related field. As discussed in the prior chapter, however, this 

process occurs under the influence of myriad factors. Any statistical models aimed at 

estimating the relationships between student’s early exposure to information about 

college and the STEM pipeline outcomes of course taking, deciding to go to college, and 

choosing a major would need to account for the effects of the many other theoretically 

and conceptually driven controls.  

The following sections of this chapter outline the general approach taken in this 

study to investigate the relationships between early exposure to information about college 

and advanced math taking in high school and/or planning to major in a STEM field in 

college. I begin with an overview of the data, followed by explanations regarding 

construction of the dependent and independent variables for each of the equations. I 

follow this by describing the estimation of the analytic models deployed in the study, 

including explanations for the selection of appropriate standard errors. The chapter 

concludes with a brief discussion of limitations. 
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Data Sources and Variable Construction 

Data for this study come from the 2007 Measuring Aspirations and Participation: 

New Hampshire High School Senior Survey (NHHSSS) conducted by the New Hampshire 

Partnership for the Advancement of Postsecondary Education Research (NHPAPER). 

NHPAPER conducted the NHHSSS a total of six times, beginning with a 2002 pilot 

study involving 2,408 graduating seniors that attended 21 of the state’s public high 

schools at the time. The number of students responding to the survey increased until the 

2005 survey, which considered survey results from some 8,500 seniors representing 63 

public and 8 private schools in New Hampshire. The final iteration of NHHSSS occurred 

in 2007 and garnered responses from nearly 7,500 seniors from 51 public and 3 private 

schools in the state.  

Related to a similar annual survey in Vermont, the NHHSSS asked seniors a 

range of questions related to their personal and family backgrounds, high school 

experiences, and plans regarding their lives after high school (NHPAPER. 2002). 

Background information was obtained through official records as well as responses based 

on students’ gender, race/ethnicity, family income and living situations. Other 

information collected by the survey measured students’ course-taking behaviors and 

extra-curricular involvement. Participants responded, for example, to questions related to 

their satisfaction with their high school classes and whether they pursued a college 

preparatory path. Perhaps most germane to the purpose of the survey were questions 

related to students’ plans regarding postsecondary education. Respondents provided 

information related to topics such as the timing and sources of their information about 
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college, whether they planned to attend postsecondary education, and the highest degree 

to which they aspired.  

Participants in some cases were asked to address different questions depending on 

whether they planned to attend college immediately after finishing high school. Those 

choosing to enroll in the following spring answered questions more specific to which NH 

institutions they were considering, their anticipated major field of study, and whether 

they planned to enroll out-of-state. Those not planning to immediately enroll in a 

postsecondary institution were asked to respond to questions about their future career 

plans (e.g., which industries they were considering) and whether they planned to pursue 

more education at a later date. A final section of the NHHSSS targeted only those 

students that had participated in the state’s career and technical education (CTE) or 

vocation education offerings.  

In this study I focus on responses from public school students that were high 

school seniors in New Hampshire in the final year of the NHHSSS (the 2006-2007 

schoolyear). Particularly relevant to the current study are these students’ responses to 

questions related to the timing of conversations with their parents regarding what to do 

after high school. These items consider students’ experiences as far back as elementary 

school. Additionally, the survey data contains other relevant demographic information, 

including variables related to social, cultural, and human capital, as well as responses 

regarding students’ postsecondary aspirations.  

Seniors responding to the survey used for this study represented fifty-one public 

high schools (63% of all public NH high schools in 2007) and three private high schools. 

Each institution chose a time between April and June of 2007 to administer the survey. 
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Seniors were encouraged–but not required–to participate. Of the 10,743 eligible seniors 

at participating high schools, 7,472 completed and returned the surveys, yielding a 

response rate of 64%. This does not include the remaining NH high school seniors at non-

participating schools. The final analytic sample in the full model contained 6,101 

students.  

The sampling design of the NHHSSS did not ensure that the participant makeup 

was representative of the state of New Hampshire, nor can the sample be construed as 

nationally representative. However, Table 1 places this study’s sample in the context of 

the entire state of New Hampshire as well as other states in the New England area: 

Vermont, Maine, Rhode Island, and Connecticut.3 Based on data drawn from the 2007 

NHHSSS and the 2007 American Community Survey (ACS) from the United States 

Census Bureau, this table compares values for a number of similar factors observed in 

each dataset. In terms of racial and ethnic composition, the data for this study reflect a 

rather homogenous group of individuals, with around 94 percent of students reporting 

being white only and non-Hispanic. According to ACS (2007) data, this is in keeping 

with the state of New Hampshire as a whole, as well as Vermont and Maine. Rhode 

Island and Connecticut are noticeably more diverse by comparison.  

In terms of educational attainment, Table 1 shows students’ responses reflect a 

degree of similarity with the ACS (2007) data for the area. One of the larger 

discrepancies relates to Rhode Island’s 17 percent of the state population with less than a 

high school degree as compared to students’ reports of only six percent for that same 

category. Both the study sample and the NH state population also have modestly higher 

                                                
3 New York and Massachusetts are excluded based on the influence of the demographic 
makeup from the states’ large metropolitan areas. 
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percentages of those with “Some college or Associate’s” degrees. Overall, however, the 

reported educational attainment of parents in the sample appear to align with what the 

ACS reports for the area.  

These comparisons should be interpreted with caution, however. Though the 

NHHSSS survey asked students to report education levels for both parents, a number of 

students had missing or incomplete data for one or both parents. To simplify comparisons 

for Table 1, I chose to report only on mother’s education. In the analytic models, 

however, I attempt to account for both parents’ education when possible. Thus, 

similarities and differences in educational attainment shown in Table 1 are not based on 

perfectly comparable measures and could be a reflection of differences in attainment by 

gender in each area. 

The ACS collects a number of data points regarding income and earnings. None 

of these matches perfectly with the data collected in the NHHSSS. Nevertheless, to 

provide some context I supplied the ACS numbers for average 12-month earnings for 

full-time employees (Table 1). In this regard, New Hampshire looks more like Rhode 

Island and Connecticut as opposed to Vermont and Maine, which more closely align with 

New Hampshire in terms of racial and ethnic makeup. In fact, the near 21 percent of New 

Hampshire full-time earners in the “75,000 or more” exceeds that of Vermont (12.6 

percent) by more than eight percent and doubles the percentage seen in Maine (10.9 

percent). Students in the NHHSSS did not report their parents’ earnings individually, 

however. Rather, they provided their family household income. Though a large portion of 

students responded that they “Don’t Know” this information, the distribution of those 

reporting is weighted toward the higher end of the options. That is, nearly thirty percent 
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Table 1: Comparison of Dataset Demographics to all of NH and Surrounding States 
 Dataset New 

Hampshire 
Vermont Maine Rhode 

Island 
Connecticut 

Population (estimates) n=6,101 1,315,828 621,254 1,317,743 1,057,832 3,502,309 
       
Female 53.2% 50.8% 50.9% 51.3% 51.7% 51.3% 
 
Race & Hispanic/ 
Latino Origin 

      

Missing 1.3% N/A N/A N/A N/A N/A 
One Race 95.9% 98.8% 98.4% 98.2% 97.9% 98.0% 
   White  92.3% 94.8% 96.1% 95.2% 82.8% 79.6% 
   Black/African 
American 1.1% 1.0% 0.6% 1.1% 5.6% 9.4% 

   American Indian 0.5% 0.2% 0.3% 0.6% 0.3% 0.2% 
   Asian 1.7% 2.0% 1.1% 1.0% 2.8% 3.4% 
   Native 
Hawaiian/Pacific     
      Islander 

0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 

   Other N/A 0.8% 0.2% 0.3% 6.4% 5.4% 
Two or More Races 2.8% 1.2% 1.6% 1.8% 2.1% 2.0% 
Hispanic or Latino (any 
race) 2.7% 2.5% 1.3% 1.1% 11.2% 11.5% 

Hispanic/Latino Missing 1.3% N/A N/A N/A N/A N/A 
White alone, non- 
Hispanic/Latino 93.7% 93.2% 95.2% 94.5% 78.8% 74.0% 

 
Educational 
Attainmentab 

      

Less than HS Graduate 6.1% 9.5% 9.7% 10.6% 17.0% 12.0% 
HS Graduatec  28.2% 31.0% 32.6% 36.3% 29.0% 29.5% 
Some College or 
Associate’s 30.6% 27.0% 24.1% 26.4% 24.2% 23.9% 

Bachelor’s 20.9% 21.0% 20.7% 17.5% 18.0% 19.3% 
Graduate/Professional  11.8% d  11.5% 12.9% 9.2% 11.8% 15.4% 
Missing 2.5% N/A N/A N/A N/A N/A 
 
12 Month Earnings for 
full-time workers  

      

Less than $25,000 N/A 15.6% 20.1% 22.8% 16.5% 13.8% 
$25,000 to $49,999 N/A 41.4% 49.1% 47.1% 30.7% 35.8% 
$50,000 to $74,999 N/A 22.2% 18.3% 19.2% 23.4% 24.6% 
$75,000 or more N/A 20.9% 12.6% 10.9% 18.3% 25.9% 
       
Family Income d       
Less than $25,000 6.0% N/A N/A N/A N/A N/A 
$25,000 to $49,999 13.2% N/A N/A N/A N/A N/A 
$50,000 to $74,999 15.2% N/A N/A N/A N/A N/A 
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Table 1 continued 
 Dataset New 

Hampshire 
Vermont Maine Rhode 

Island 
Connecticut 

Family Income d       
$75,000 or more 29.5% N/A N/A N/A N/A N/A 
Don’t Know 34.3% N/A N/A N/A N/A N/A 
Missing 1.6% N/A N/A N/A N/A N/A 
       
Household Type       
In married-couple 
family 78.3% 65.1% 59.6% 62.5% 58.1% 62.1% 

In other householdse 21.7%f 31.9% 37% 34.6% 38.2% 34.6% 
Notes: State-level data taken from 2007 American Community Survey (ACS) Table S0501 “Selected 
Characteristics of the Native and Foreign-Born Populations: 2007 American Community Survey 1-Year 
Estimates.” a For ease of comparison, statistics from sample are relative to mother only. b Includes 
equivalency in ACS data. c The 11.8% figure from the dataset includes 235 students whose mother they 
reported as having “Some graduate or professional school.” d ACS category is “Earnings in the past 12 
months (in 2007 inflation-adjusted dollars) for full-time, year-round workers; Population 16 years and over 
with earnings,” whereas in the sample, students reported total family income. e Includes 29 students with a 
missing value for living situation. 

 
 

of students in the responded with $75,000 or more for their family’s household earnings.  

Finally, each data source contained information related to household type. 

Whereas the overwhelming majority of students in the NHHSSS (78.4 percent) lived in a 

married couple family, these percentages were much smaller at the various state levels. 

This likely stems from the fact that the NHHSSS sample only collects living situation 

information from young people, who are more likely to still live with their parents than 

the average ACS respondent, who could come from a much larger age group.  

Though not representative of the larger national student population or possibly 

even the state of New Hampshire, the NHHSSS data contain responses to questions 

related to timing and information that are not available in larger nationally representative 

datasets. Access to these responses allows for an investigation into associations that are 

presently assumed to be true based only logic and theory. The methods employed in this 

study–and detailed in subsequent sections–do not allow for causal modeling or true 
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testing of theories or conceptual frameworks; however, these data do allow me to 

establish an important first step in that direction.  

Dependent variables. In this study, I am interested in three outcomes. The first, 

AdvancedMath, is a binary variable representing whether a student reported having 

studied at least two years in the subject area of “Algebra II/Trigonometry/Pre-

Calculus/Calculus/Statistics” and is categorized as either “Yes” or “No.”  The 

requirement for two years rather than one accounts for Burkam and Lee’s (2003) 

characterization of Algebra II as a mid-level rather than advanced math course. In the 

2006-2007 school year, graduation requirements in the state of NH only called for three 

mathematics courses, including an algebra credit that must be earned in a course that 

extends beyond pre-algebra principles (Tracy, 2006). Thus, advanced math course taking 

is likely the result of student choice rather than forced requirements. As shown in Table 

2, approximately half of the students included in this study meet the criteria I established 

as having taken advanced math courses. This does not change when considering 

differences by male and female status.  

 

 
Table 2: Summary Statistics of Dependent Variables in Aggregate and by Gender 

 

 
Aggregate 
(n=6101) 

  
Male  

(n=2853) 

 
Female  

(n=3248) 
 Mean St. Dev  Min Max  Mean St. Dev Mean St. Dev 

Advanced Math 0.49 0.50  0 1  0.50 0.50 0.49 0.50 

Extra Science 0.55 0.50  0 1  0.53^ 0.50 0.57^ 0.49 

STEM Major .20 .40  0 1  0.23^ .42 0.16^ 0.37 

Notes: ^ Denotes significant differences between disaggregated coefficients at a minimum of p<.05.  
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Although a determination of whether students took “advanced science classes” in 

high school is not easily made based on the NHHSSS, I was able to create a second 

dependent variable in this study, Extra Science, as a binary measure that designates 

whether a student reported taking either four or five years of science in high school, 

which exceeds the three years typically required by states or local education agencies. 

Around 55 percent of students in the study fit this description. Females were significantly 

more likely to belong to this category with 57 percent taking more than three years 

compared to the 54 percent of males. The difference was significant at the p<.01 level.  

The third dependent variable in this study, STEM, represents whether students 

expressed plans to major in a field of study that has connections to STEM. This is also a 

binary variable and defined as either “Yes” or “No.” Since the NHHSSS was not 

designed to focus on STEM explicitly, categories students were allowed to choose from 

do not align perfectly with STEM majors. As such, I base inclusion criteria for STEM on 

the 2016 revised list of STEM-designated degree programs identified by U.S. 

Immigration and Customs Enforcement (ICE) as suggested by the U.S. Department of 

Education. As the document states: 

The STEM Designated Degree Program list is a complete list of fields of study 

that DHS considers to be science, technology, engineering, or mathematics 

(STEM) fields of study for purposes of the 24-month STEM optional practical 

training extension described at 8 CFR 214.2(f). Under 8 CFR 

214.2(f)(10)(ii)(C)(2), a STEM field of study is a field of study “included in the 

Department of Education’s Classification of Instructional Programs taxonomy 

within the two-digit series containing engineering, biological sciences, 
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mathematics, and physical sciences, or a related field. In general, related fields 

will include fields involving research, innovation, or development of new 

technologies using engineering, mathematics, computer science or natural 

sciences (including physical, biological, and agricultural sciences).” 

Based on this explanation from federal guidelines and its accompanying list,4 I include 

the following responses from the NHHSSS in the categorization of STEM: agricultural 

and natural resources, architecture and related programs, aviation, biological and life 

studies, computer and information technologies, engineering,  mathematics, physical 

sciences, and psychology. Including a number of these fields (e.g., health professions) 

may mean that students are considered as expressing plans to pursue postsecondary study 

in a STEM field when their intended major does not appear on the ICE list. However, 

excluding these fields could also have the opposite effect. There is also some debate 

among policy makers and researchers whether “health professions” should be classified 

as STEM. I chose the more conservative route of excluding this option in the construction 

of the dependent variable. Regrettably, there is no perfect solution, and this must be 

considered a limitation of the study. It should be mentioned as a final note regarding the 

construction of this variable that I included students who indicated they do not plan to 

enroll in postsecondary education immediately after high school by assigning them to the 

“no” category, given they are not planning to pursue a STEM field of study (or any for 

that matter)5. 

                                                
4 Both the ICE STEM Designated Degree Program List and the 2007 NHHSSS survey are included as 
appendices to this study.  
5 Models were also estimated with a smaller sample that excluded students not planning to attend college. 
Results were substantively similar. As such, I include those not planning to attend college for purposes of 
comparing the same samples across outcomes.  
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 A return to Table 2 shows that 20 percent of students in the survey expressed 

plans to pursue a major in a STEM field as defined in this study. This number fits at the 

lower end of findings based on work using the nationally-representative Beginning 

Postsecondary Study dataset (Chen, 2013), wherein the author reported that “about 28 

percent of bachelor’s degree students and 20 percent of associate’s degree students 

entered a STEM field (i.e., chose a STEM major) at some point within 6 years of entering 

postsecondary education in 2003-2004” (p. iv). However, given the mixture of students 

anticipating both two- and four-year degrees, the twenty percent figure from the 

NHHSSS is perhaps not surprising.  Table 2 also presents differences between males and 

females for this variable. As might be predicted by the literature 16 percent of females 

planned to major in a STEM field compared to 23 percent of males in the sample. This 

difference is statistically significant; however, it does not account for any other of the 

factors that are described below.  

Explanatory variables. The primary predictor variable of interest in this study, 

Parent Conversations, is drawn from students’ response to the question “when did you 

begin to talk with your parent(s) about what to do after high school?”6 Students were 

given options beginning with “sixth grade or earlier” and increasing by one grade level at 

a time until “twelfth grade.” A final option allowed students to answer “I haven’t talked 

with  my  parent(s)  about  my plans.”  In  constructing  a  variable  to  represent   these   I     

 

                                                
6 The NHHSSS also includes a question that asks “When did you first receive information about 
postsecondary education” and includes similar response choices. Although this question more specifically 
addresses postsecondary education and appeals to more generic sources of information, 989 students (16.0 
percent) in the sample have a missing value for this question. Given such a large portion of the sample did 
not select a response for this variable that is associated with clear implications, I opted to focus on the 
timing of parental conversations, which has far fewer instances of missing values (174; 2.8 percent).  
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Table 3: Descriptive Statistics for Independent Variables 
 Aggregate 

(n=6101) 
Males 

(n=2853) 
Females 
(n=3248) 

 
Mean St. Dev. Min Max Mean St. Dev. Mean St. Dev. 

Parent 
Conversations 

        

Seventh Grade or 
Before 

0.20 0.40 0 1 .16 .37 .23 .42 

Eighth or  
Ninth Grade 

0.27 0.45 0 1 0.25 0.44 0.29 0.45 

After Ninth Grade 
or Nevera 

0.50 0.50 0 1 0.55 0.50 0.46 0.50 

Missing Value 0.03 0.17 0 1 0.03 0.18 0.02 0.15 
         
Female 0.53 0.50 0 1     
         
Underrepresented 
Minority 

0.07 0.25 0 1 0.07 0.25 0.06 0.24 

         
GPA 3.21 0.54 0.14 4 3.11 0.57 3.30 0.51 
         
Aspirations         

Less than 4 year 
degreea 

0.18 0.38 0 1 0.23 0.42 0.14 0.34 

Bachelor’s Degree 0.31 0.46 0 1 0.30 0.46 0.31 0.46 
Graduate Degree 0.37 0.48 0 1 0.32 0.47 0.41 0.49 

Undecided 0.09 0.29 0 1 0.09 0.29 0.09 0.29 
Missing Value 0.06 0.23 0 1 0.06 0.25 0.05 0.22 

         
Living Situation         

Two Parents 0.78 0.41 0 1 0.80 0.40 0.76 0.42 
One Parenta 0.17 0.37 0 1 0.15 0.36 0.18 0.38 

Other 0.05 0.21 0 1 0.04 0.19 0.06 0.23 
Missing Value 0.00 0.06 0 1 0.00 0.07 0.00 0.06 

         
Family Income         

Less than $25,000 0.06 0.24 0 1 0.05 0.22 0.07 0.25 
$25,000 - $49,999 0.13 0.34 0 1 0.13 0.34 0.13 0.34 

$50,000 - $74,999a 0.15 0.36 0 1 0.17 0.37 0.14 0.35 
$75,000 - $99,999 0.13 0.34 0 1 0.16 0.36 0.12 0.32 
$100,000 or more 0.16 0.37 0 1 0.19 0.39 0.14 0.34 

“Don’t Know” 0.34 0.47 0 1 0.29 0.45 0.39 0.49 
Missing Value 0.02 0.13 0 1 0.01 0.13 0.02 0.13 

         
Parent Education         
None w/4yr degreea 0.50 0.50 0 1 0.49 0.50 0.52 0.50 

One w/4 yr degree 0.23 0.42 0 1 0.24 0.42 0.23 0.42 
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Table 3 continued 
 Aggregate 

(n=6101) 
Males 

(n=2853) 
Females 
(n=3248) 

 Mean Standard 
Deviation Min Max Mean Standard 

Deviation Mean Standard 
Deviation 

Parent Education         
Both w/4 yr degree 0.25 0.43 0 1 0.26 0.44 0.23 0.42 

Missing values 0.02 0.13 0 1 0.02 0.14 0.01 0.12 
         
Math Instruction          

Excellent 0.26 0.44 0 1 0.30 0.46 0.22 0.42 
Satisfactorya 0.51 0.50 0 1 0.49 0.50 0.52 0.50 

Unsatisfactory 0.17 0.38 0 1 0.14 0.35 0.20 0.40 
Was not taught 0.04 0.20 0 1 0.04 0.20 0.04 0.20 
Missing value 0.02 0.14 0 1 0.02 0.15 0.02 0.12 

         
Science Instruction          

Excellent 0.25 0.43 0 1 0.28 0.45 0.22 0.41 
Satisfactorya 0.52 0.50 0 1 0.51 0.50 0.53 0.50 

Unsatisfactory 0.18 0.38 0 1 0.15 0.36 0.20 0.40 
Was not taught 0.04 0.19 0 1 0.04 0.19 0.04 0.19 
Missing value 0.02 0.14 0 1 0.02 0.15 0.02 0.12 

         
Tech Instruction          

Excellent 0.35 0.48 0 1 0.40 0.49 0.31 0.46 
Satisfactorya 0.50 0.50 0 1 0.47 0.50 0.53 0.50 

Unsatisfactory 0.09 0.29 0 1 0.08 0.27 0.10 0.30 
Was not taught 0.04 0.19 0 1 0.04 0.19 0.04 0.20 
Missing value 0.02 0.15 0 1 0.03 0.16 0.02 0.14 

Notes: a Denotes reference category 
 

arranged them by groups7 in hopes of alleviating concerns that students may have trouble 

remembering exactly when these conversations first happened. As seen in Table 3, the 

first category includes students responding with either “sixth grade or earlier” or “seventh 

grade” and accounts for 20 percent of the sample. For ease of discussion, these students 

are subsequently referred to as early conversers. A second category, mid-level 

                                                
7 Though I construct nearly all variables in the study to be categorical, in the analytic models they are 
entered as factor variables using STATA 13’s i.var function, which treats the categorical variable as a set of 
dummy variables for each value, excluding a default or defined reference category. Descriptive statistics 
reflect this binary categorization. Further rationale for this decision is supplied in the Analytic Models 
section of Chapter 3.  
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conversers, combines 27 percent of the sample and includes those who responded either 

“eighth grade” or “ninth grade.”  Fifty percent of students chose responses after the ninth 

grade, including the option stating they did not speak with their parents about what to do 

after high school. I included those who never spoke to parents in this grouping as they 

only comprised 3.7 percent of the final sample and thus not quite large enough to serve as 

their own group for the purposes of analysis. These students are referred to as late 

conversers. A final category, missing value, includes individuals with missing responses 

for the variable (3 percent of the sample).  

It bears mentioning that this variable is subject to the possibility of self-selection 

bias. That is, although it can be used to account for the timing of students’ earliest 

conversations with parents, it cannot account for whether the student or the parent 

initiated. This may be a key difference if a student’s intrinsic motivation or some other 

factor drove him or her engage in these discussions. In such cases, it might be that these 

internal factors explain the relationship of the conversations and the outcomes rather than 

the timing. Unfortunately, discerning such a link is not possible given the other 

limitations of this study.  

The theoretical frameworks guiding this study point to several other important 

factors that might help to better explain students’ course taking behaviors and plans. 

Chief among these other factors is the student’s gender. This is included in aggregated 

models as a binary variable to denote whether a student is Female. As suggested by prior 

research on the STEM pipeline,  analytic models are also estimated separately based on 

this variable. 
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The dichotomous variable URM denotes whether a student belongs to racial and 

ethnic groups that are underrepresented in STEM education and careers. Students in the 

sample satisfy the criteria for this category if they are nonwhite, non-Asian, or Hispanic. 

Though Asians are often included in minority classifications, for the purposes of this 

study, it is important to recognize that Asian students tend to be over-represented in 

STEM fields. Additionally, the survey considered “Asian” as a separate response from 

“Native Hawaiian or other Pacific Islander.” The latter are classified in this study as 

underrepresented. Such decisions are defensible in the literature; however, these 

definitions may not matter as the sample used in this study is overwhelmingly white and 

the percentage of students classified as URM is extremely small.  

Students’ academic ability level is measured by GPA. Although the survey 

instrument only includes a space for self-reported GPA category, the final dataset 

includes an official continuous measure for each student that was collected from each 

school by the NHPAPER group. In this study I opt for using the official continuous 

version. In keeping with the literature on the topic, I include a control for students’ 

postsecondary aspirations. This construct groups students’ responses into those with 

reported aspirations of an earning less than a bachelor’s degree, a bachelor’s (reference 

group), or any type of graduate degree. Other categories of the aspirations variable denote 

whether a student was undecided or had a missing value for the response.  

 Given that the primary predictor variable in the study considers students’ 

conversations with their parents, I also include as a control a categorical variable based 

on the student’s living situation. Responses were grouped into those for those living in 

homes with “two parents”, “one parent” and those in “other” living situations. Those with 
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missing values are included in a final category. Students’ family income was measured in 

self-reported categories of $25,000 bands. These groupings represent family incomes of 

“Less than $25,000”; “25,000 to $49,999”; “$50,000 to $74,999”; “$75,000 to $99,999” 

(reference group); and “$100,000 or more.” Categories were also created for those who 

responded “Don’t know” and for those with missing values. Additional family controls 

include a parental education variable that measures whether students had one parent, both 

parents, or no parents with at least a four-year degree, as well as a variable that measures 

what students reported their parents expected them to do after graduating high school. 

Non-postsecondary education related responses for the latter variable are grouped 

together in an “Other” category. Both variables include an added category for “Missing 

Value.” 

 A final group of variables contains academic and classroom experience factors. 

Students were asked in the survey to rate the quality of their instruction in math, science, 

and technology. Specifically, they were to respond with “Excellent,” “Satisfactory,” 

“Unsatisfactory,” and “Wasn’t taught” and were asked to apply this scale to the following 

areas: “Understand and apply [mathematics/science/technology] in everyday life.” From 

the three separate questions I created the variables Apply Math, Apply Science, and Apply 

Tech. As with other variables in the study, a “Missing Value” category was added to 

each.  

 Table 3 provides descriptive statistics for each of the independent variables 

detailed above. Overall, only about one in five students in the sample were early 

conversers, while more than a quarter qualified as mid-level, leaving about half the 

sample that were late conversers. The sample was divided almost evenly between males 
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and females, with the average student in the sample having a GPA of around 3.2. As 

mentioned above, less than 10 percent of the sample were those belonging to a group that 

is typically underrepresented in STEM education and careers. Around two-thirds of the 

sample aspired to either a bachelor’s or a graduate degree in college.  

 Regarding family characteristics, almost three-quarters of the sample lived with 

both parents. Around 30 percent of students reported that they “Do not know” their 

family income. Six percent reported coming from families that earned less than $25,000 

per year. The remainder of the students were split fairly evenly among the four categories 

ranging from “25,000 to $49,999” to “More than $100,000” ($50,000 increments).  

Whereas half the sample reported that neither parent had a four-year degree, the other 

half reported having at least one parent with at least a bachelor’s degree. Sixty-five 

percent of students reported that their parents expected them to pursue at least some 

college education after high school, with the majority expectation being “attending a 

four-year institution.”  

In terms of academic variables, on average, students in the sample reported nearly 

identical ratings for classroom instruction in terms of applying math and science to real 

life. In both cases, more than a quarter of students reported that their experiences were 

“Excellent” and slightly around half responded that instruction was “Satisfactory.” While 

this percentage was the same for students reporting “Satisfactory” experiences in terms of 

technology instruction, students were more likely to rate their experiences in these areas 

as “excellent.”  

Table 3 also includes a breakdown of the independent variables by sex. 

Considering the sample’s characteristics along these lines, males were less likely than 
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females to be early conversers (16 percent and 23 percent, respectively) and more likely 

to be categorized as late conversers (55 percent vs. 46 percent, respectively). Females’ 

GPAs were on average nearly two-tenths of a point higher than that of the average male 

in the sample. Females were also more less likely to aspire to earn less than a four-year 

degree and more likely to aspire to earn a graduate degree.  

Overall, males and females tended to come from the same family backgrounds; 

however, there were a few differences. Males were somewhat more likely to live with 

both parents and were similarly more likely to come from the highest earning families. 

Females, however, were much more likely than males to report they did not know their 

family’s income (39 percent vs. 29 percent, respectively). Additionally, 58 percent of 

females reported that their parents expected them to attend a four-year college after high 

school while just under half of males in the sample said the same.  

Finally, Table 3 shows that the academic experiences of males and females appear 

to have differed to at least a modest degree. Females were much less likely than males to 

report that their instruction in math and science was “Excellent” and much more likely to 

report that it was “Unsatisfactory.” The largest of these discrepancies, however, relates to 

instruction in applying technology in students’ daily lives. Females were nine percentage 

points less likely than males to rate this area of instruction as “Excellent.” However, 

whereas with math and science instruction, the differences were made up in terms of 

more females rating instruction as “Unsatisfactory,” with regards to technology, they 

seemed to be more willing to report that instruction was “Satisfactory” if not “Excellent. 
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Analytic Models 

The binary nature of this study’s three outcomes (advanced math course taking, 

taking four or more science courses, and planning to major in STEM) indicates the use of 

the probit regression as the most appropriate method of analysis. Though some important 

econometricians argue that a Linear Probability Model might suffice, the education 

literature tends to favor Probit models for a few reasons. The most important, however, is 

that a probit model fixes the latent outcomes of predicted probability of success between 

the values of zero and one. This prevents the maximum likelihood estimator from leading 

to a predicted probability of success that is either negative or exceeds 100 percent. Other 

researchers debate over the choice of probit over logistic regression. Long and Freese 

(2014), however, suggest that estimated coefficients have negligible differences between 

approaches. Furthermore, the results of probit regressions lend to more intuitive 

interpretations as coefficients of interest indicate changes to predicted probability of 

success rather than changes to logged odds. To further ease interpretation, I have reported 

the results of all statistical models in the study in terms of average marginal effects and 

first differences. I have also included in each model a vector of fixed effects for the 

students’ school.  

In models analyzing the full sample, I clustered standard errors at the school level, 

which attempts to account for possible correlations among students that attended the 

same school. Clustering also provided more conservative estimates of standard errors in 

hopes of reducing the likelihood of a Type 1 error. Due to complications that can arise 

when using very small clusters, two schools that had 25 or fewer students represented in 
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the sample were combined into a new “Small Schools” category. For this same reason, I 

did not cluster standard errors when estimating models disaggregated by gender.  

In order to establish whether a baseline connection exists between the timing of 

students’ conversations with their parents and their advanced math course taking 

behaviors, I first fit a simple model following Equation 1, where C represents the year 

groupings for student/parent conversations and S denotes the school fixed effects.  

(1) 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ = 𝛼 + 𝑪𝜹 + 𝑺𝜽 + 𝜀 

I then estimated a subsequent series of equations, each time adding a new set of 

theoretically relevant variables commonly explored in the literature. These included a 

vector of personal characteristics P; family factors, F; and math instruction satisfaction 

controls, M.  

(2) 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ = 𝛼 + 𝑪𝜹 + 𝑷𝜷 + 𝑺𝜽 + 𝜀 

(3) 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ = 𝛼 + 𝑪𝜹 + 𝑷𝜷 + 𝑭𝝀 + 𝑺𝜽 + 𝜀 

(4) 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ = 𝛼 + 𝑪𝜹 + 𝑷𝜷 + 𝑭𝝀 +𝑴𝜸 + 𝑺𝜽 + 𝜀 

By estimating multiple models in this fashion I was able to explore whether the 

conversation variables C would significantly predict the outcome net of the influence of 

the subsequent introduction other variables that do not represent new contributions to the 

literature. 

In keeping with prior studies, Equations 1 through 4 are estimated based on the 

full analytic sample and then re-estimated for males and females separately for a few 

important reasons. The first is that existing literature has found that gender explains a 

substantial portion of the variance in models related to STEM outcomes, meaning that 

including this variable can easily mask the explanatory power of other important 



 

55 

variables without improving our existing understanding of the issue. Second, as theorized 

by Eccles (1987), the experiences of males and females are so different they require 

separate analyses. 

Following the estimation of models predicting students’ advanced math course 

taking behaviors, I turned my attention to the second outcome variable, Extra Science.  

Equations 5 through 8 illustrate the approach I employed, which followed the same taken 

when predicting Advanced Math: 

(5) 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒 = 𝛼 + 𝑪𝜹 + 𝑺𝜽 + 𝜀 

(6) 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒 = 𝛼 + 𝑪𝜹 + 𝑷𝜷 + 𝑺𝜽 + 𝜀 

(7) 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒 = 𝛼 + 𝑪𝜹 + 𝑷𝜷 + 𝑭𝝀 + 𝑺𝜽 + 𝜀 

(8) 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒 = 𝛼 + 𝑪𝜹 + 𝑷𝜷 + 𝑭𝝀 + 𝑰𝜸 + 𝑺𝜽 + 𝜀 

An important change here is that the vector of I variables measures satisfaction with 

students’ science instruction and replaces the corresponding math related variables from 

the prior set of models.   

 Models 9 through 12 express the process for estimating models based on the final 

dependent variable STEM: 

(9) 𝑆𝑇𝐸𝑀 = 𝛼 + 𝑪𝜹 + 𝑺𝜽 + 𝜀 

(10) 𝑆𝑇𝐸𝑀 = 𝛼 + 𝑪𝜹 + 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ𝜑 + 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝜌 + 	𝑲𝜻 +

𝑺𝜽		 + 𝜀 

(11) 𝑆𝑇𝐸𝑀 = 𝛼 + 𝑪𝜹 + 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ𝜑 + 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝜌 + 	𝑲𝜻 +

𝑷𝜷 + 			𝑺𝜽 + 𝜀 

(12) 𝑆𝑇𝐸𝑀 = 𝛼 + 𝑪𝜹 + 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑	𝑀𝑎𝑡ℎ𝜑 + 𝐸𝑥𝑡𝑟𝑎	𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝜌 + 	𝑲𝜻 +

𝑷𝜷 + 			𝑭𝝀 + 𝑺𝜽 + 𝜀 
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As with Advanced Math and Extra Science, the first model (Equation 9) predicting the 

probability a student expressed plans to major in a STEM field included only the 

conversation variables, C, and the school fixed effects variables S. I then introduced the 

actual (not predicted) Advanced Math  and Extra Science variables (Equation 10) to 

examine whether any relationships between STEM and parent conversations might be 

explained through the connection of the timing of conversations and course taking. I also 

added another vector of variables K that measures students’ satisfaction with classroom 

instruction, adding technology instruction factors to the math instruction variables M and 

science instruction variables I from the prior models above. The vectors of personal 

variables, P, and family variables, F, are the same as used in Equations 1-8.  

 In keeping with the models predicting Advanced Math and Extra Science, I 

estimated models predicting STEM in the aggregate and then separated by male and 

female status. Throughout the estimation process, I relied in each case on the probit 

method described above, clustering standard errors at the school level in aggregate 

models.  

 Finally, when comparing marginal effects between models disaggregated by 

gender, I performed additional significance tests of those parameters based on Equation 

14 (DeMarris, 2004)  

(13) 𝑡 = EFG	EH

(JKEF
LM	JKEH

L)
 

where 𝑏P, 𝑠𝑒𝑏P,  𝑏R, and 𝑠𝑒𝑏R are the parameter coefficients and standard errors for males 

and females, respectively. All tests are conducted at the 95 percent confidence level. 

Missing data. There are a number of ways to handle cases of missing data. In 

instances of data that are missing completely at random (MCAR), list-wise deletion of all 
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individuals with missing data is the simplest approach. Since I do not believe the data for 

this study meet the MCAR criteria, I reserved list-wise deletion for the fewest instances 

possible. These include students I removed from the original sample (n=7,472) that had 

missing values for the dependent variables (529 for AdvMath, 67 for Extra Science, and 

474 additional for STEM). I further excluded 42 students with either missing values for 

GPA or those whose GPA was entered as 0 along with 17 students with missing values 

for female and 9 students that selected more than 3 of the choices for “race” prompted by 

the NHHSSS. While I considered imputing these values, I believed the small number of 

cases allowed for deletion to be the most parsimonious choice without comprising the 

approach of the study. In all other cases, I attempted to retain as many students as 

possible in the sample by creating a designation in each categorical variable to include 

those individuals that had a “Missing value” for that particular factor.  

 Following this approach carries at least one caveat, however. Including “Missing 

Value” as an option in categorical variables creates a situation in which variables can no-

longer be classified as ordinal, interval or ratio, which makes the interpretation of 

regression coefficients much less intuitive. An appealing work-around to this would be to 

transform categorical variables into c dummy variables, where c represents the number of 

possibilities (including “Missing Value”) in each category. When estimating models, one 

of these dummy variables would then be excluded as the reference group. This approach 

has limitations, though, as the variables are linked in such a way that complicates certain 

post-estimation approaches (Long & Freese, 2014). For example, if the dummy variable 

approach were applied to the variable Living Situation, with “One Parent” set as the 

reference group, the resulting coefficient from calculating average marginal effects from 
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a Probit regression would reflect the change in the dependent variable when the value for 

One Parent is changed, all else constant. Of course, this has no practical application when 

considering an observation that reported a “Two Parent” living situation. If a “yes” 

response for “Two Parent” is held constant and then the “One Parent” response is 

changed to “yes,” the observation would in effect be considered as belonging to two 

mutually exclusive categories at the same time.  

To deal with this scenario, Long and Freese (2014) suggest entering all such 

categorical variables into analytic models as factor variables (e.g., i.var in Stata). The 

authors favor this approach as statistical software packages (such as Stata 13, which I 

used in this study) are programmed to take these special cases of variables into account 

when calculating quantities such as first differences and average marginal effects. This is 

the approach I have adopted in the current study.  

Limitations 

 This study faces a few limitations that need to be addressed. The data considered 

herein represent a selection of students from a small and heterogeneous state. They are 

not representative of the state as a whole, nor are inferences drawn from these data to be 

considered nationally-representative. The data also reflect self-reported responses rather 

than official transcript data. The lone exception to this is the variable for GPA, which is 

an official measure supplied to the NHPAPER group by the schools involved in the 

study. Although many researchers have previously defended the use of student self-

reported data,8 not all equally agree on the reliability or validity of these responses. 

Additionally, variables related to students’ very early conversations are based on their 

                                                
8 See, for example, Bahrick, Hall, and Berger (1996) and Kuncel, Credé, and Thomas (2005), for a deeper 
discussion and review of this area of the literature.   
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recollections from many years past. Work by Bahrick, Hall, and Berger (1996), however, 

has provided some support for students’ ability to recall information from several years 

prior, with greater accuracy seen at higher levels of achievement. The primary predictor 

variables also refer only to the timing of conversations students had with parents about 

what to do after high school, and were not specifically about STEM-related topics. 

Finally, a lack of official transcripts forces models to rely on reported hours attempted in 

math course groupings rather than on the actual mathematics courses completed.  

Finally, though the approach in this study is unable to account for potential self-

selection bias for the dependent variables or account for unobservable factors beyond 

those controlled for using the school-level fixed effects, the independent variables of 

interest (time at which student first began speaking with their parents about college) 

capture a temporal element that can perhaps mitigate some of these challenges. 

Despite these limitations, the distinct data used in this study allow me to begin to 

consider factors that existing research in the STEM pipeline has identified as crucial but 

has thus far been unable to explore. Specifically, the STEM pipeline literature has 

repeatedly stressed the importance of students’ early life and school experiences as being 

critical to the development of affinity for math and the sciences and the formation of 

plans to pursue a STEM career. These early life experiences, however, have almost 

exclusively been researched using small sample, qualitative approaches. Given the lack 

of larger, nationally-representative datasets that include variables related to these early 

experiences, the NHHSSS represents the most relevant and appropriate quantitative data 

source that is available for addressing this topic. The limitations discussed above do not 

present strong enough challenges to suggest foregoing the current study all together.  
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CHAPTER 4 

FINDINGS 

I begin the analysis of the relationships between the timing of student and parent 

conversations and the outcomes of interest in this study by means of simple two-way 

comparisons. As shown in Table 4, which displays each dependent variable in the study 

broken down by the categories of Parent Conversation, early conversers were more 

likely than not to have taken advanced math classes in high school. The opposite was true 

for late conversers. Regardless of the timing of parent conversations, students were more 

likely than not to take four or more years of science. However, among late deciders the 

split was nearly even. Early timing appeared to have some connection to planning to 

major in a STEM field, with the percentage of those having such plans decreasing as the 

timing of conversations became later. Approximately one-quarter of early conversers 

reported such plans. This proportion decreased slightly among mid-level conversers. 

When considering late conversers only slightly less than a fifth expressed plans to major 

in a STEM field.  

These comparisons offer some indication that earlier conversations with parents 

regarding what to do after high school are associated with taking advanced math classes 

in high school and perhaps to a lesser degree with taking four or more years of science 

and planning to major in a STEM field in college. However, the findings displayed in 

Table 4 do not account for the numerous other factors that may exert influence on these 

two   outcomes.   To  take a  more  critical  approach to investigating these relationships, I  
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Table 4: Dependent Variables by Timing of Earliest Parent Conversation 

Parent 
Conversations Advanced Math Extra Science STEM Major 

 No Yes No Yes No Yes 

7th grade or 
Before 

39.4% 61.6% 35.8% 64.2% 75.8% 24.2% 

8th or 9th 
Grade 

49.5% 50.5% 43.1% 56.9% 80.0% 20..0% 

After 9th or 
Never 

54.9% 45.1% 48.3% 51.7% 81.5% 18.5% 

Notes: Chi-square tests of independence revealed statistically significant differences by 
timing groups (p<.001) for all dependent variables. 
 

have employed the probit regression techniques discussed earlier and have summarized 

the results in the tables below. To ease interpretation, when reporting models I have 

referred to first differences of the average marginal effects of independent binary factor 

variables and average marginal effects for the lone continuous variable, GPA. Embedded 

in all explanations of the models is the assumption that changes to the predicted 

probability of observing the outcome based on changes to independent variables are such 

when other variables in the model are held at their observed values. It should also be 

assumed that changes reflect what would be expected compared to the reference group 

for each variable.  

Advanced Math Course Taking 

 Table 5 presents the results from the probit regression models predicting whether 

students took advanced math courses. Each model in this table included information from 

the entire sample of 6101 males and females as well as fixed effects for each of the high 

schools in the sample. In Model 1 I included only the primary predictor variables of  
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Table 5: Marginal Effects from Aggregate Probit Models for Advanced Math 
 Model 1 Model 2 Model 3 Model 4 
Parent Conversations     

7th grade or before 0.158*** 0.048** 0.038** 0.035* 
 (0.016) (0.015) (0.014) (0.015) 
     

8th or 9th grade 0.052** 0.005 -0.001 -0.004 
 (0.017) (0.012) (0.013) (0.013) 
     

Female  -0.113*** -0.100*** -0.090*** 
  (0.010) (0.010) (0.010) 
     
GPA  0.338*** 0.319*** 0.307*** 
  (0.015) (0.015) (0.015) 
     
Underrepresented Minority  -0.054* -0.040+ -0.039+ 
  (0.024) (0.023) (0.023) 
Student Aspirations     

Bachelor’s Degree  0.176*** 0.161*** 0.161*** 
  (0.017) (0.017) (0.017) 
     

Graduate Degree  0.268*** 0.248*** 0.243*** 
  (0.022) (0.023) (0.023) 
     

Undecided  0.175*** 0.169*** 0.168*** 
  (0.022) (0.022) (0.022) 

Living Situation     
Live w/both parents   0.017 0.017 

   (0.013) (0.012) 
     

Live w/other   -0.022 -0.024 
   (0.030) (0.029) 

Family Income     
<$25,000   -0.049+ -0.053+ 

   (0.028) (0.028) 
     

$25,000 to $49,999   -0.052* -0.052** 
   (0.020) (0.020) 

     
$75,000 to $99,999   0.004 0.004 

   (0.022) (0.021) 
     

$100,000 or more   0.026 0.024 
   (0.024) (0.024) 
     

Don't know   -0.024 -0.023 
   (0.019) (0.019) 

Parent Education     
One 4yr degree   0.032* 0.034* 

   (0.014) (0.014) 
     

Both 4yr degrees   0.068*** 0.068*** 
   (0.015) (0.015) 
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Table 5 continued 
 Model 1 Model 2 Model 3 Model 4 
Math Instruction     

Excellent    0.060*** 
    (0.013) 
     

Unsatisfactory    -0.052** 
    (0.016) 
     

Not taught    -0.058* 
    (0.029) 
     
N 6101 6101 6101 6101 
Log Likelihood Null -4228.52 -4228.52 -4228.52 -4228.52 
Log Likelihood Model -4029.79 -3272.33 -3243.76 -3219.65 
Pseudo R-Squared 0.05 0.23 0.23 0.24 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level. Reference category for parent conversations is after 9th grade or never. Reference category 
for student aspirations is less than a four-year degree. Reference category for income is $50,000 to 
$75,000. Reference category for living situation is one parent. Reference category for parent education is 
no 4yr degrees. Reference category for math instruction is satisfactory. Models include fixed effects for 
high schools. Models also include categories for missing data for all variables except for Female, GPA, and 
Underrepresented Minority. + p<.10, * p<.05, **p<.01, *** p<.001 
 

interest in an effort to establish whether the timing of parent conversations has even a 

baseline significant relationship to the outcome. These relationships were indeed 

significant, indicating that early conversers were 15.8 percentage points more likely to 

have taken advanced math courses compared to late conversers. Mid-level conversers 

experienced about one third of that advantage (5.2 percentage points).   

 In Model 2 I accounted for personal level characteristics of the students. Once 

controlling for these factors, mid-level conversers ceased to realize any higher 

probabilities of taking advanced math, and early conversers lost nearly two-thirds of their 

prior advantage. Based on this model, students’ GPA and postsecondary aspirations 

exhibited the strongest associations with advanced math course taking. In sum, students 

aspiring to earn bachelor’s degrees and graduate degrees, as well as those whose plans 

were undecided, were significantly more likely to be advanced math takers (.176, .268, 
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and .175, respectively). Females in the sample were 11 percentage points less likely to 

take these courses. And on average, a one point increase in a student’s GPA increased the 

probability of experiencing the outcome by a factor of .338. Finally, Model 2 showed a 

relatively weaker but significant negative relationship between the outcome variable and 

a student’s status as an underrepresented minority. 

 Adding additional controls for students’ family and background characteristics 

(Model 3) attenuates many of the relationships observed with conversation timing and 

personal factors from prior models. Few of these added family characteristics presented 

significant relations themselves, though. For example, there appears to be a small 

disadvantage for lower income levels, but only in the “25,000 to $49,999” category. 

Having two parents with a four-year degree, on the other hand, was associated with a 

small advantage in probability (0.06).  

 In the final model shown on Table 5, I included variables to control for students’ 

satisfaction with their math instruction. These relationships presented themselves as 

expected, with positive experiences with instruction having a positive and significant 

relationship with taking advanced math classes and the opposite being true as well. In 

general, however, including these final controls did not substantively impact other 

predictors in the model. 

 Guided by suggestions in the literature, I next estimated the same models above 

based on the reduced subsamples of 2853 males and 3248 females. Tables 6 through 9 

present the results from the respective probit regressions. For males, the findings 

indicated that only early conversers experienced an increased probability (15 percentage 

points) of taking advanced math classes, relative to late conversers. Both early and mid-  
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Table 6: Marginal Effects from Probit Models (by Gender) for Advanced Math: Conversations and 
fixed effects included 
 Model 1 Model 5 Model 6 
 Aggregate Males Only Females Only 
Parent Conversations    

7th or before 0.158*** 0.151*** 0.180*** 
 (0.016) (0.025) (0.022) 
    

8th or 9th grade 0.052** 0.022 0.088***^ 

 (0.017) (0.022) (0.020) 
    
N 6101 2853 3248 
Log Likelihood Null -4228.52 -1977.40 -2249.92 
Log Likelihood Model -4029.79 -1866.85 -2130.92 
Pseudo R-Squared 0.05 0.06 0.05 
Notes: Results reported as marginal effects for discrete change of dummy variable from 0 to 1. Standard 
errors in parentheses and are clustered at the school level in aggregate model. Reference category for parent 
conversations is after 9th grade or never. Models include fixed effects for high schools. Models also include 
category for missing data. + p<.10, * p<.05, ** p<.01, *** p<.001 ^ Denotes significant difference (p<.05) 
between male and female models. 
 

level conversers in the female-only models have higher predicted probabilities, but only 

the marginal effect for mid-level conversers is significantly different between models 

(Table 6; Models 5 and 6). 

 I repeated the blocked regression approach from the aggregated models when 

examining relationships by gender. Early conversers in these models still realized a slight 

increase in probability of taking advanced math classes in both groups once personal 

characteristics had been accounted for (Table 7; Models 7 and 8). As with the full sample 

models, personal level factors presented strong relationships with the outcome in each 

subsample when added. For females, GPA had a significantly stronger positive 

relationship with the outcome than it did males by a factor of 12 percentage points. 

Postsecondary aspirations, on the other hand, mattered significantly more for males than 

females. Compared to those aspiring to earn less than a four-year degree, males planning  
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Table 7: Marginal Effects from Probit Models (by Gender) for Advanced Math: Conversation 
variables, personal characteristics, and fixed effects included 
 Model 2 Model 7 Model 8 
 Aggregate Males Only Females Only 
Parent Conversations    

7th grade or before 0.048** 0.048* 0.051* 
 (0.015) (0.023) (0.020) 
    

8th or 9th grade 0.005 -0.012 0.020 
 (0.012) (0.020) (0.018) 

    
Female -0.113***   
 (0.010)   
    
GPA 0.338*** 0.282*** 0.401***^ 

 (0.015) (0.015) (0.015) 
    
Underrepresented Minority -0.054* -0.026 -0.073* 
 (0.024) (0.032) (0.031) 
Student Aspirations    

Bach. Deg. 0.176*** 0.217*** 0.131***^ 

 (0.017) (0.025) (0.027) 
    

Grad. Deg. 0.268*** 0.301*** 0.223***^ 

 (0.022) (0.027) (0.028) 
    

Undecided 0.175*** 0.188*** 0.156*** 
 (0.022) (0.034) (0.035) 
    
N 6101 2853 3248 
Log Likelihood Null -4228.52 -1977.40 -2249.92 
Log Likelihood Model -3272.33 -1524.24 -1711.17 
Pseudo R-Squared 0.23 0.23 0.24 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than a four-year degree. Models include fixed effects for 
high schools. Models also include categories for missing data for parent conversations and student 
aspirations. + p<.10, * p<.05, ** p<.01, *** p<.001.  ^ Denotes significant differences (p<.05) between 
coefficients in male and female models. 
 

to earn a graduate degree were 30 percent more likely to take advanced math courses. 

Females only saw a 22 percent increase for similar aspirations. The increased probability 

of taking advanced math for males aspiring to earn a bachelor’s degree was noticeably 

higher than that for females as well (0.22 vs 0.13).   

In Models 9 and 10 (Table 8) I included controls for family and background 

characteristics. Being an early decider in these models was associated with a four percent  
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Table 8: Marginal Effects from Probit Models (by Gender) for Advanced Math: Conversation 
variables, personal and background characteristics, and fixed effects included 
 Model 2 Model 9 Model 10 
 Aggregate Males Only Females Only 
Parent Conversations    

7th or before 0.038** 0.040+ 0.040* 
 (0.014) (0.023) (0.020) 
    

8th or 9th Grade -0.001 -0.016 0.013 
 (0.013) (0.019) (0.018) 

    
Female -0.100***   
 (0.010)   
    
GPA 0.319*** 0.267*** 0.376***^ 

 (0.015) (0.015) (0.016) 
    
Underrepresented Minority -0.040+ -0.016 -0.056+ 
 (0.023) (0.032) (0.031) 
Student Aspirations    

Bach. Deg. 0.161*** 0.205*** 0.115***^ 

 (0.017) (0.025) (0.028) 
    

Grad. Deg. 0.248*** 0.283*** 0.203***^ 

 (0.023) (0.027) (0.029) 
    

Undecided 0.169*** 0.185*** 0.146*** 
 (0.022) (0.034) (0.035) 

Living Situation    
Live w/both parents 0.017 0.038 -0.004 

 (0.013) (0.024) (0.021) 
    

Live w/other -0.022 0.023 -0.049 
 (0.030) (0.047) (0.039) 

Family Income    
<$25,000 -0.049+ -0.032 -0.062+ 

 (0.028) (0.042) (0.037) 
    

$25,000 to $49,999 -0.052* -0.007 -0.091**^ 
 (0.020) (0.030) (0.029) 
    
 

$75,000 to $99,999 0.004 0.020 -0.008 

 (0.022) (0.028) (0.029) 
    

$100,000 or more 0.026 0.008 0.047 
 (0.024) (0.028) (0.030) 

    
Don't know -0.024 -0.018 -0.028 

 (0.019) (0.025) (0.024) 
Parent Education    

One 4yr degree 0.032* 0.030 0.027 
 (0.014) (0.021) (0.019) 
    

Both 4yr degrees 0.068*** 0.080*** 0.057** 
 (0.015) (0.021) (0.020) 
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Table 8 continued 
 Model 2 Model 9 Model 10 

 Aggregate Males Only Females Only 
N 6101 2853 3248 
Log Likelihood Null -4228.52 -1977.40 -2249.92 
Log Likelihood Null -3243.76 -1510.95 -1691.23 
Pseudo R-Squared 0.23 0.24 0.25 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than four-year degree. Reference category for income is 
$50,000 to $75,000. Reference category for living situation is one parent. Reference category for parent 
education is no four-year degrees. Models include fixed effects for high schools. Models also include 
categories for missing data for all variables except for Female, GPA, and Underrepresented Minority. + 
p<.10, * p<.05, ** p<.01, *** p<.001.  ^ Denotes significant differences between coefficients in 
disaggregated models. 
 

advantage for females with regards to the probability of taking advanced math classes. 

However, though significant in its own model, this was not significantly different from 

the average effect for males. GPA remained a significant predictor for both males and 

females; however, the 38 percent increase for females was significantly greater than the  

27 percent for males. All other aspiration levels for males and females were associated 

with higher predicted probability compared to peers aspiring to earn less than a 

bachelor’s degree. Aspirations were again significantly stronger predictors for males than 

for females in disaggregated models. These models also yielded a stronger relationship 

for females regarding family income and advanced math course taking, with apparent 

negative associations at the lower income levels. Finally, both parents having at least a 

bachelor’s degree was positively and significantly associated with the outcome for both 

males and females. Though, the relationships did not vary significantly by gender.  

Turning to Table 9, I have included the final predictor variables for the advanced 

math models that account for students’ satisfaction with their math instruction. Adding 

these final controls reduced the relationship of early conversations to only marginally 

significant levels (p<.10). GPA maintained its strong positive relationship with predicting 
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whether a student took advanced math courses, and again showed a significantly stronger 

relationship for females. Males continued to realize stronger positive relationships 

between the outcome and their aspirations than did females; however, in this final set of 

models only the difference for bachelor’s degree aspirations was significantly larger. 

Relationships and differences related to family income and student aspirations were 

relatively unchanged in this final model. In terms of classroom instruction variables, 

reporting that math instruction was excellent was associated with more than twice as 

strong an increase for males as for females (0.09 vs. 0.04, respectively), a difference that 

Table 9: Marginal Effects from Probit Models (by Gender) for Advanced Math: Full models 
 Model 4 Model 11 Model 12 
 Aggregate Males Only Females Only 
Parent Conversations    

7th Grade or before 0.035* 0.039+ 0.037+ 
 (0.015) (0.023) (0.020) 
    

8th or 9th Grade -0.004 -0.022 0.011 
 (0.013) (0.019) (0.018) 
    

Female -0.090***   
 (0.010)   
    
GPA 0.307*** 0.255*** 0.363***^ 

 (0.015) (0.015) (0.016) 
    
Underrepresented Minority -0.039+ -0.016 -0.054+ 
 (0.023) (0.032) (0.031) 
Student Aspirations    

Bach. Deg. 0.161*** 0.206*** 0.114***^ 

 (0.017) (0.025) (0.028) 
    

Grad. Deg. 0.243*** 0.274*** 0.200*** 
 (0.023) (0.027) (0.029) 
    

Undecided 0.168*** 0.183*** 0.146*** 
 (0.022) (0.034) (0.035) 
Living Situation    

Live w/both parents 0.017 0.041+ -0.005 
 (0.012) (0.023) (0.021) 
    

Live w/other -0.024 0.024 -0.054 
 (0.029) (0.047) (0.038) 

Family Income    
<$25,000 -0.053+ -0.035 -0.064+ 

 (0.028) (0.042) (0.037) 
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Table 9 continued    
 Model 4 Model 11 Model 12 
 Aggregate Males Only Females Only 

Family Income    
$25,000 to $49,999 -0.052** -0.006 -0.093**^ 

 (0.020) (0.030) (0.029) 
    

$75,000 to $99,999 0.004 0.022 -0.011 
 (0.021) (0.028) (0.029) 
    

$100,000 or more 0.024 0.007 0.045 
 (0.024) (0.028) (0.030) 
    

Don't know -0.023 -0.013 -0.032 
 (0.019) (0.025) (0.024) 

Parent Education    
One 4yr degree 0.034* 0.031 0.029 

 (0.014) (0.021) (0.019) 
    

Both 4yr degrees 0.068*** 0.078*** 0.058** 
 (0.015) (0.021) (0.020) 

Math Instruction    
Excellent 0.060*** 0.088*** 0.039* 

 (0.013) (0.019) (0.019) 
    

Unsatisfactory -0.052** -0.031 -0.063** 
 (0.016) (0.024) (0.020) 

    
Not taught -0.058* -0.028 -0.080* 

 (0.029) (0.042) (0.038) 
    
N 6101 2853 3248 
Log Likelihood Null -4228.52 -1977.40 -2249.92 
Log Likelihood Model -3219.65 -1496.12 -1679.78 
Pseudo R-Squared 0.24 0.24 0.25 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than a four-year degree. Reference category for income is 
$50,000 to $75,000. Reference category for living situation is one parent. Reference category for parent 
education is no 4yr degrees. Reference category for math instruction is satisfactory. Models include fixed 
effects for high schools. Models also include categories for missing data for all variables except for Female, 
GPA, and Underrepresented Minority. + p<.10, * p<.05, **p<.01, *** p<.001.  ^ Denotes significant 
differences between coefficients in disaggregated models. 
 

was also statistically significant. For females, having an unsatisfactory experience with 

math instruction was associated with a stronger negative relationship with advanced math 

course taking compared to males. 

 



 

71 

Taking Extra Science Courses 

 The second dependent variable explored in the study measured whether students 

reported having taken four or more years of science courses in high school. In estimating 

the associated models, I followed the same approach as when predicting advanced math 

taking. Table 10 displays the results for four models (Model 13- Model 16) that are fit 

using the full aggregate sample. Model 13 begins by accounting only for the timing of 

students’ conversations regarding what to do after high school.9 Specified in this way, the 

model estimated that early conversers had a 13 percentage point increased probability of 

taking four or more science classes, compared to late conversers. Mid-level conversers 

had slightly more than a third of that relative advantage.  

 Continuing to look at Table 10, adding controls for personal characteristics 

(Model 14) eliminated any statistically significant advantage for mid-level conversers and 

reduced that of early conversers by nearly three quarters. Being female was found to be 

associated with a slight but significant disadvantage relative to males while no 

differences were detected for underrepresented minorities. Students’ GPA, as well as 

their postsecondary aspirations, however, were found to have highly significant and 

positive associations with predicting whether students took four or more science classes. 

For instance, a one point increase in GPA was associated with a 23 percentage point 

increase in the probability of experiencing the outcome, and aspirations of earning a 

graduate degree produced a similar relationship (.246).  

In Model 15 I added factors related to students’ family and background. Even the 

earliest  conversations  remained  only  marginally  significant  after this  (p<0.5) and was  

                                                
9 Models also contain fixed effects for students’ high school. 
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Table 10: Marginal Effects from Aggregate Probit Models for Extra Science 
 Model 13 Model 14 Model 15 Model 16 
Parent Conversations     

7th Grade or before 0.129*** 0.039* 0.031+ 0.024 
 (0.015) (0.016) (0.017) (0.016) 
     

8th or 9th Grade 0.056*** 0.014 0.008 0.003 
 (0.016) (0.016) (0.016) (0.016) 

     
Female  -0.031** -0.017 -0.003 
  (0.012) (0.012) (0.012) 
     
GPA  0.233*** 0.217*** 0.199*** 
  (0.012) (0.013) (0.012) 
     
Underrepresented Minority  -0.019 -0.007 -0.001 
  (0.022) (0.023) (0.022) 
Student Aspirations     

Bach. Deg.  0.144*** 0.131*** 0.127*** 
  (0.021) (0.019) (0.020) 
     

Grad. Deg.  0.246*** 0.228*** 0.213*** 
  (0.020) (0.019) (0.019) 
     

Undecided  0.130*** 0.125*** 0.124*** 
  (0.024) (0.024) (0.025) 

Living Situation     
Live w/both parents   0.013 0.009 

   (0.017) (0.016) 
     

Live w/other   -0.028 -0.035 
   (0.038) (0.039) 

Family Income     
<$25,000   -0.073* -0.077** 

   (0.029) (0.028) 
     

$25,000 to $49,999   -0.042+ -0.042+ 
   (0.022) (0.022) 

     
$75,000 to $99,999   -0.001 0.000 

   (0.017) (0.017) 
     

$100,000 or more   0.010 0.008 
   (0.026) (0.025) 
     

Don't know   -0.035+ -0.035+ 
   (0.019) (0.018) 

Parent Education     
One 4yr degree   0.030+ 0.029+ 

   (0.016) (0.015) 
     

Both 4yr degrees   0.057** 0.056** 
   (0.020) (0.020) 
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Table 10 continued     
 Model 13 Model 14 Model 15 Model 16 

Science Instruction     
Excellent    0.096*** 

    (0.015) 
     

Unsatisfactory    -0.067*** 
    (0.018) 
     

Not taught    -0.143*** 
    (0.030) 

     
N 6101 6101 6101 6101 
Log Likelihood Null -4191.92 -4191.92 -4191.92 -4191.92 
Log Likelihood Model -3959.66 -3519.18 -3496.58 -3443.89 
Pseudo R-Squared 0.05 0.16 0.17 0.18 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level. Reference category for parent conversations is after 9th grade or never. Reference category for 
student aspirations is less than a four-year degree. Reference category for income is $50,000 to $75,000. 
Reference category for living situation is one parent. Reference category for parent education is no 4yr 
degrees. Reference category for science instruction is satisfactory. Models include fixed effects for high 
schools. Models also include categories for missing data for all variables except for Female, GPA, and 
Underrepresented Minority. + p<.10, * p<.05, ** p<.01, *** p<.001 
 

only associated with a 3 percentage point increased probability. The significant negative 

association of being female ceased to exist in this model as well. Though slightly 

diminished in magnitude compared to the prior model, GPA and postsecondary 

aspirations still produced associations with taking four or more science classes that were 

all high in significance and magnitude relative to each factor’s reference group. Of the 

newly included background and family variables, only the lowest level of family income 

(<$25,000) and having both parents with at least a four-year degree were found to be 

significant predictors, both positive as expected.  

 As a final step, in Model 16 I added controls for students experiences with 

classroom instruction in their science classes. At this point, no significant associations 

remained for either early or mid-level conversers. Female and underrepresented minority 

status also failed to present significant associations. GPA and students’ aspirations, 
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however, suffered only slight decreases in magnitude while retaining statistical 

significance. In all, even after adding all controls to the model, planning to earn a 

bachelor’s degree was associated with a 13 percentage point increase in the probability of 

taking four or more science courses as opposed to aspiring to less than a four-year degree. 

Aspirations of earning a graduate degree were associated with more than a 20 percentage 

point increase compared to that same reference group. Students’ experiences with science 

instruction exhibited relationships that were expected, with excellent experiences 

positively connected to the outcome and unsatisfactory experiences negatively so. Each 

were statistically significant. 

 After estimating these models using the full analytic sample, I repeated the same 

procedures for models that considered males and females separately. The conversations-

only models (13, 17, and 18) shown in Table 11 display that, for males, only early 

conversers were significantly more likely to have taken four or more years of science 

compared to late conversers. Being a female early converser had a similarly significant 

relationship but with a smaller positive magnitude (.114 compared to .153).  

Table 11: Marginal Effects from Probit Models (by Gender) for Extra Science: Conversations and 
fixed effects included 
 Model 13 Model 17 Model 18 
 Aggregate Males Only Females Only 
Parent Conversations    

7th or before 0.129*** 0.153*** 0.114*** 
 (0.015) (0.025) (0.021) 
    

8th or 9th grade 0.056*** 0.014 0.089***^ 

 (0.016) (0.022) (0.020) 
    
N 6101 2853 3248 
Log Likelihood Null -4191.92 -1970.88 -2216.3368 
Log Likelihood Model -3959.66 -1850.64 -2077.54 
Pseudo R-Squared 0.05 0.06 0.06 
Notes: Results reported as marginal effects for discrete change of dummy variable from 0 to 1. Standard 
errors in parentheses and are clustered at the school level in aggregate model. Reference category for parent 
conversations is after 9th grade or never. Models include fixed effects for high schools. Models also include 
categories for missing data. + p<.10, * p<.05, ** p<.01, *** p<.001. ^ Denotes significant differences 
between coefficients in disaggregated models. 
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I also found, however, a significant relationship between taking more science classes and 

being a mid-level converser among females. The difference between male and female 

marginal effects for this fact was moderate (.075) and was significantly different. 

Moving on to Table 12, Models 14, 19, and 20 show findings produced from 

introducing personal characteristics into the equations. Doing so appeared to mediate the 

significant relationships between conversation timing and science course taking for 

females. In the male only model (19) only being an early converser was positively and 

significantly associated with the outcome (seven percentage point increase). I also found 

that, at first glance, GPA was more strongly associated with taking more science classes 

for females than for males. The reverse was true for the positive associations with 

students’ postsecondary aspirations. In particular, aspiring to earn a graduate degree for 

males was associated with an increased probability of 28 percentage points, compared to 

only a 22 percentage point increase for females. However, these marginal effects failed to 

meet the criteria needed to determine they were significantly different between models.  

In Table 13, I present findings from models estimated after I added background 

and family characteristic controls. Introducing these variables resulted in only small 

changes to marginal effects of variables from the prior models. For males, however, 

being from the lowest family income group did present a rather large negative association 

with the outcome, suggesting that being in this group was connected to a 14 percentage 

point reduction in the probability of taking four or more science courses. This was a 

significantly different marginal effect than that found for females (-0.027). For both 

males and females, having two parents with at least a four-year degree was associated 

with about a six percentage point increase in the probability of experiencing the outcome.  
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Table 12: Marginal Effects from Probit Models (by Gender) for Extra Science: Conversation 
variables, personal characteristics, and fixed effects included 
 Model 14 Model 19 Model 20 
 Aggregate Males Only Females Only 
Parent Conversations    

7th Grade or before 0.039* 0.072** 0.020 
 (0.016) (0.024) (0.021) 
    

8th or 9th Grade 0.014 -0.014 0.036+ 
 (0.016) (0.020) (0.019) 

    
Female -0.031**   
 (0.012)   
    
GPA 0.233*** 0.215*** 0.249*** 
 (0.012) (0.016) (0.016) 
    
Underrepresented Minority -0.019 -0.034 0.003 
 (0.022) (0.033) (0.032) 
    

Bachelor’s Degree 0.144*** 0.159*** 0.123*** 
 (0.021) (0.026) (0.028) 
    

Graduate Degree 0.246*** 0.279*** 0.217*** 
 (0.020) (0.028) (0.029) 
    

Undecided 0.130*** 0.155*** 0.103** 
 (0.024) (0.035) (0.035) 
    
N 6101 2853 3248 
Log Likelihood Null -4191.92 -1970.88 -2216.34 
Log Likelihood Model -3519.18 -1616.14 -1867.97 
Pseudo R-Squared 0.16 0.18 0.16 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than a four-year degree. Models include fixed effects for 
high schools. Models also include categories for missing data. + p<.10, * p<.05, ** p<.01, *** p<.001.  
  

The final models for predicting whether students took four or more years of 

science classes are shown in Table 14. Some evidence exists that early male conversers 

have an increased probability of taking four or more years of science courses relative to 

males that are late conversers. This held even after adding the final controls for students’ 

experiences with science instruction, which were significant in almost every case for 

males and females. In general, I found that the associations between positive experiences  
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Table 13: Marginal Effects from Probit Models (by Gender) for Extra Science: Conversation 
variables, personal and background characteristics, and fixed effects included 
 Model 15 Model 21 Model 22 
 Aggregate Males Only Females Only 
Parent Conversations    

7th or before 0.031+ 0.063** 0.012 
 (0.017) (0.024) (0.021) 
    

8th or 9th grade 0.008 -0.018 0.028 
 (0.016) (0.020) (0.019) 
    

Female -0.017   
 (0.012)   
    
GPA 0.217*** 0.204*** 0.228*** 
 (0.013) (0.016) (0.017) 
    
Underrepresented Minority -0.007 -0.023 0.016 
 (0.023) (0.033) (0.032) 
Student Aspirations    

Bach. Deg. 0.131*** 0.142*** 0.108*** 
 (0.019) (0.026) (0.028) 
    

Grad. Deg. 0.228*** 0.258*** 0.197*** 
 (0.019) (0.028) (0.029) 
    

Undecided 0.125*** 0.146*** 0.097** 
 (0.024) (0.035) (0.035) 

Living Situation    
Live w/both parents 0.013 0.025 -0.002 

 (0.017) (0.024) (0.022) 
    

Live w/other -0.028 0.023 -0.066+ 
 (0.038) (0.049) (0.039) 

Family Income    
<$25,000 -0.073* -0.143** -0.027^ 

 (0.029) (0.044) (0.038) 
    

$25,000 to $49,999 -0.042+ -0.016 -0.072* 
 (0.022) (0.031) (0.030) 
    

$75,000 to $99,999 -0.001 -0.002 0.002 
 (0.017) (0.029) (0.031) 
    

$100,000 or more 0.010 0.013 0.006 
 (0.026) (0.029) (0.031) 
    

Don't know -0.035+ -0.017 -0.054* 
 (0.019) (0.026) (0.025) 
Parent Education    

One 4yr degree 0.030+ 0.027 0.035+ 
 (0.016) (0.022) (0.020) 
    

Both 4yr degrees 0.057** 0.057** 0.059** 
 (0.020) (0.022) (0.021) 
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Table 13 continued 
 Model 15 Model 21 Model 22 
 Aggregate Males Only Females Only 
N 6101 2853 3248 
Log Likelihood Null -4191.92 -1970.88 -2216.34 
Log Likelihood Model -3496.58 -1600.74 -1852.94 
Pseudo R-Squared 0.17 0.19 0.16 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than four-year degree. Reference category for income is 
$50,000 to $75,000. Reference category for living situation is one parent. Reference category for parent 
education is no four-year degrees. Reference category for parent expectation is attend 2-year/and transfer. 
Models include fixed effects for high schools. Models also include categories for missing data for all 
variables except for Female and Underrepresented Minority. + p<.10, * p<.05, ** p<.01, *** p<.001. ^ 
Denotes significant differences between coefficients in disaggregated models. 
 

and increased probabilities of taking four or more years of science were stronger for 

females, as were negative experiences and decreased probabilities. None of these effects, 

however, differed significantly between the two disaggregated models. In fact, after all 

independent variables were accounted for in the models, only the association with being 

in the lowest income group (<$25,000) presented marginal effects that differed 

significantly across models disaggregated by gender.  

Planning to Major in a STEM Field 

 Turning to the final dependent variable, whether a student expressed a plan to 

major in a STEM field in college, I departed slightly from the blocked method used in 

previous models. As can be seen in Table 15, I first controlled only for the timing of 

student and parent conversations about what to do after high school. The results for this 

model (25) revealed a significant relationship only for early conversers, whose 

conversations were connected to a six percentage point increase in the probability of 

planning to major in STEM in the aggregate sample.  
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Table 14: Marginal Effects from Probit Models (by Gender) for Extra Science: Full models 
 Model 16 Model 23 Model 24 
 Aggregate Males Only Females Only 
Parent Conversations    

7th Grade or before 0.024 0.058* 0.002 
 (0.016) (0.024) (0.021) 
    

8th or 9th Grade 0.003 -0.025 0.025 
 (0.016) (0.020) (0.018) 
    

Female -0.003   
 (0.012)   
    
GPA 0.199*** 0.190*** 0.204*** 
 (0.012) (0.016) (0.017) 
    
Underrepresented Minority -0.001 -0.019 0.025 
 (0.022) (0.033) (0.032) 
Student Aspirations    

Bachelor’s Degree 0.127*** 0.140*** 0.101*** 
 (0.020) (0.026) (0.028) 
    

Grad. Deg. 0.213*** 0.246*** 0.179*** 
 (0.019) (0.028) (0.029) 
    

Undecided 0.124*** 0.143*** 0.095** 
 (0.025) (0.035) (0.035) 

Living Situation    
Live w/both parents 0.009 0.024 -0.008 

 (0.016) (0.024) (0.021) 
    

Live w/other -0.035 0.019 -0.078* 
 (0.039) (0.049) (0.039) 

Family Income    
<$25,000 -0.077** -0.146*** -0.032^ 

 (0.028) (0.044) (0.037) 
 

$25,000 to $49,999 -0.042+ -0.019 -0.071* 

 (0.022) (0.030) (0.030) 
    

$75,000 to $99,999 0.000 -0.003 0.005 
 (0.017) (0.029) (0.031) 
    

$100,000 or more 0.008 0.009 0.005 
 (0.025) (0.029) (0.031) 
    

Don't know -0.035+ -0.021 -0.050* 
 (0.018) (0.026) (0.024) 

Parent Education    
One 4yr degree 0.029+ 0.028 0.034+ 

 (0.015) (0.021) (0.020) 
    

Both 4yr degrees 0.056** 0.055* 0.061** 
 (0.020) (0.022) (0.021) 
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Table 14 continued 
 Model 16 Model 23 Model 24 
 Aggregate Males Only Females Only 
Science Instruction    

Excellent 0.096*** 0.087*** 0.110*** 
 (0.015) (0.020) (0.020) 
    

Unsatisfactory -0.067*** -0.034 -0.093*** 
 (0.018) (0.025) (0.021) 
    

Not taught -0.143*** -0.131** -0.161*** 
 (0.030) (0.047) (0.044) 
    

N 6101 2853 3248 
Log Likelihood Null -4191.92 -1970.88 -2216.34 
Log Likelihood Model -3443.89 -1583.00 -1813.29 
Pseudo R-Squared 0.18 0.20 0.18 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than a four-year degree. Reference category for income is 
$50,000 to $75,000. Reference category for living situation is one parent. Reference category for parent 
education is no 4yr degrees.  Reference category for science instruction is satisfactory. Models include 
fixed effects for high schools. Models also include categories for missing data for all variables except for 
Female, GPA, and Underrepresented Minority. + p<.10, * p<.05, ** p<.01, *** p<.001.  ^ Denotes 
significant differences between coefficients in disaggregated models. 
 

Given the significant relationships between the timing of student and parent 

conversations and the prior two dependent variables explored in the study, I decided to 

include those (along with related classroom satisfaction controls) as the next step in the 

models predicting STEM.  

Including these controls appeared to have eliminated the significance of the 

relationship observed in the prior model for early conversers. Both advanced math and 

taking four or five years of science were significant with magnitudes of .105 and .098, 

respectively. Expressing that instruction was excellent was positively and significantly 

associated with majoring in STEM for math, science, and technology classes, though the 

magnitude was strongest for science. Unsatisfactory experiences only reached statistically 

significant levels for science, however, with those students experiencing a 4.8 percentage 

point decrease in the probability of experiencing the outcome. 
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Table 15: Marginal Effects from Aggregate Probit Models for STEM 
 Model 25 Model 26 Model 27 Model 28 
Parent Conversations     

7th Grade or before 0.058*** 0.014 0.000 0.001 
 (0.014) (0.013) (0.013) (0.013) 
     

8th or 9th Grade 0.014 -0.001 -0.007 -0.007 
 (0.012) (0.012) (0.013) (0.013) 

     
Advanced Math  0.105*** 0.050*** 0.049*** 
  (0.009) (0.012) (0.011) 
     
Extra Science  0.098*** 0.066*** 0.066*** 
  (0.012) (0.012) (0.012) 
Math Instruction     

Excellent  0.036* 0.027+ 0.028+ 
  (0.016) (0.015) (0.015) 
     

Unsatisfactory  -0.008 -0.006 -0.005 
  (0.013) (0.013) (0.013) 
     

Not taught  0.067+ 0.076+ 0.076+ 
  (0.041) (0.043) (0.043) 

Science Instruction     
Excellent  0.048** 0.037* 0.035* 

  (0.017) (0.015) (0.015) 
     

Unsatisfactory  -0.048*** -0.041** -0.042** 
  (0.013) (0.013) (0.013) 
     

Not taught  -0.061* -0.052 -0.053 
  (0.031) (0.035) (0.035) 

Technology Instruction     
Excellent  0.027* 0.015 0.017 

  (0.012) (0.013) (0.013) 
     

     
Unsatisfactory  -0.000 -0.000 0.001 

  (0.020) (0.020) (0.020) 
     

Not taught  -0.022 -0.030 -0.029 
  (0.023) (0.023) (0.023) 
     

Female   -0.087*** -0.087*** 
   (0.010) (0.011) 
     
GPA   0.074*** 0.071*** 
   (0.013) (0.012) 
     
Underrepresented Minority   -0.009 -0.008 
   (0.021) (0.022) 
Student Aspirations     

Bach. Deg.   0.057*** 0.057*** 

   (0.015) 
 

(0.015) 
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Table 15 continued 

 Model 25 Model 26 Model 27 Model 28 
Student Aspirations     

Grad. Deg.   0.129*** 0.127*** 
   (0.013) (0.014) 

     
Undecided   0.023 0.023 

   (0.018) (0.018) 
Living Situation     

Live w/both parents    0.011 
    (0.018) 
     

Live w/other    -0.023 
    (0.026) 

Family Income     
<$25,000    0.030 

    (0.035) 
     

$25,000 to $49,999    -0.002 
    (0.023) 
     

$75,000 to $99,999    0.011 
    (0.019) 
     

$100,000 or more    -0.021 
    (0.016) 

     
Don't know    -0.002 

    (0.015) 
Parent Education     

One 4yr degree    -0.010 
    (0.014) 
     

Both 4yr degrees    0.019 
    (0.016) 

N 6101 6101 6101 6101 
Log Likelihood Null -3017.69 -3017.69 -3017.69 -3017.69 
Log Likelihood Model -2961.86 -2738.61 -2639.60 -2631.49 
Pseudo R-Squared 0.02 0.09 0.13 0.13 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level. Reference category for parent conversations is after 9th grade or never. Reference category for 
student aspirations is less than four-year degree. Reference category for income is $50,000 to $75,000. 
Reference category for living situation is one parent. Reference category for parent education is no four-
year degrees. Reference category for math/science/tech instruction is satisfactory. Models include fixed 
effects for high schools. Models also include categories for missing data for all variables except for Female, 
GPA, and Underrepresented Minority. + p<.10, * p<.05, ** p<.01, *** p<.001. 
 



 

83 

In Model 27 I accounted for students’ personal characteristics as well. As with 

models concerning the other two dependent variables in the study, being female was 

significantly and negatively associated with experiencing the outcome. GPA and student  

aspirations were also found to be positive and significant. A one point increase in GPA, 

for example, was associated with an average increase of just over seven percentage points  

in terms of the probability for majoring in STEM. Aspiring to earn a bachelor’s degree 

was found to have a slightly smaller magnitude (.057); however, planning to earn a 

graduate degree was associated with a 13 percentage point increase in the chances of 

planning to major in STEM. Adding these controls to the model also appeared to mediate 

the relationships between students’ classroom instruction experiences related to math and 

technology. Science instruction factors for excellent and unsatisfactory retained their 

significant relationships. Both were somewhat diminished, though. 

As a final step in attempting to predict students’ plans whether to major in a 

STEM field in college, I added the controls for family and background characteristics 

(Model 28). Doing so had very little impact on the model itself. None of the marginal 

effects for indicators used in Models 25-27 changed by more than three-tenths of a 

percentage point. The fact that nothing seemed to change suggests that adding these 

controls is likely unnecessary. 

Although I altered the order in which I introduced factors into the models 

predicting majoring in a STEM field, I took the same approach of re-estimating each of 

the models disaggregated by gender. As shown in Table 16, in the base model I found 

that for males, only being an early converser was associated with a higher probability of 

majoring in STEM field (5.8 percentage point increase). This association was about 3 



 

84 

percentage points larger for females, and was found to have a higher significance level. 

And whereas no connection was found for males that were mid-level conversers, in the 

female-only model, this timing was associated with a significant 4 percentage point 

increase in the probability of majoring in STEM. However, follow-up tests revealed that 

neither of these differences between models was statistically significant.  

Table 16: Marginal Effects from Probit Models (by Gender) for STEM: Conversations and fixed 
effects included 
 Model 25 Model 29 Model 30 
 Aggregate Males Only Females Only 
Parent Conversations    

7th or before 0.058*** 0.054* 0.083*** 
 (0.014) (0.024) (0.018) 
    

8th or 9th grade 0.014 0.000 0.041** 

 (0.012) (0.020) (0.019) 
    
N 6101 2853 3248 
Log Likelihood Null -3017.69 -1555.05 -1436.84 
Log Likelihood Model -2961.86 -1504.45 --1392.85 
Pseudo R-Squared 0.02 0.03 0.03 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than a four-year degree. Models include fixed effects for 
high schools. Models also include categories for missing data. + p<.10, * p<.05, ** p<.01, *** p<.001.  

  

In Table 17 I display the findings that arose from adding additional controls for 

students’ course taking behaviors and classroom experiences. For males, variables related 

to parent conversations lost all significant relationships with planning to major in STEM. 

Taking advanced math courses, on the other hand, was a strong and significant predictor 

of the outcome, as was taking four or more science classes. Though both course taking 

behaviors held this association, only males’ excellent and unsatisfactory experiences with 

math instruction were significantly related to the outcome and in expected directions. 

Regarding females, being an early converser maintained a significant positive connection 

with a student’s plans to major in STEM in college. Both course taking behaviors were  
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Table 17: Marginal Effects from Probit Models (by Gender) for STEM: Conversations, classroom 
variables, and fixed effects included 
 Model 26 Model 31 Model 32 
 Aggregate Males Only Females Only 
Parent Conversations    

7th Grade or before 0.014 -0.004 0.049**^ 

 (0.013) (0.021) (0.017) 
    

8th or 9th Grade -0.001 -0.017 0.026+ 
 (0.012) (0.018) (0.015) 

    
Advanced Math 0.105*** 0.156*** 0.052***^ 
 (0.009) (0.016) (0.014) 
    
Extra Science 0.098*** 0.116*** 0.086*** 
 (0.012) (0.016) (0.015) 
Math Instruction    

Excellent 0.036* 0.078*** -0.013^ 
 (0.016) (0.024) (0.018) 

Math Instruction    
Unsatisfactory -0.008 -0.048* 0.020^ 

 (0.013) (0.023) (0.020) 
    

Not taught 0.067+ 0.026 0.096+ 
 (0.041) (0.052) (0.050) 

Science Instruction    
Excellent 0.048** 0.019 0.073** 

 (0.017) (0.023) (0.023) 
    

Science Instruction    
Unsatisfactory -0.048*** -0.038 -0.049** 

 (0.013) (0.024) (0.017) 
    

Not taught -0.061* -0.021 -0.081** 
 (0.031) (0.054) (0.031) 

Technology Instruction    
Excellent 0.027* 0.037+ 0.010 

 (0.012) (0.020) (0.017) 
    

Unsatisfactory -0.000 0.000 -0.002 
 (0.020) (0.033) (0.024) 
    

Not taught -0.022 -0.067 0.013 
 (0.023) (0.046) (0.037) 
    

N 6101 2853 3248 
Log Likelihood Null -3017.69 -1555.05 -1436.84 
Log Likelihood Model -2738.61 -1331.68 -1327.46 
Pseudo R-Squared 0.09 0.14 0.08 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for math/science/tech instruction is satisfactory. Models include fixed effects for high 
schools. Models also include categories for missing data. + p<.10, * p<.05, ** p<.01, *** p<.001.   
^ Denotes significant differences between coefficients in disaggregated models. 
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also positively associated with the outcome for females as well but with less magnitude. 

In fact the five percentage point increase in probability associated with females taking 

advanced math in high school was only one third of that seen for males, a difference that 

was statistically significant between the models. The associations between female’s math 

instruction experiences were also significantly lower than males, with none of those 

factors achieving statistically significant levels in female-only models. All science 

instruction variables, on the other hand, resulted in significant associations for females. 

Though none were significant in male models, the differences between disaggregated 

samples were not large enough to be considered significant between the two. 

Introducing controls for students’ personal characteristics presented a number of 

changes that can be seen on Table 18.  First, these controls appear to have mediated 

significant relationships and magnitudes for the timing of parent conversations in models 

for both males and females. Similarly, personal characteristics seemed to noticeably 

attenuate the associations between students’ course taking behaviors and their plans to 

major in STEM. For males, the magnitude for taking advanced math class decreased from 

.156 in the previous model to .097 in Model 33, and the discrete change for taking four or 

five years of science classes fell from .116 to .071. Each remained a significant predictor, 

though. For females, while both course taking behaviors also experienced a drop in 

magnitude, only taking extra science courses remained a significant predictor of a six 

percentage point increase in the probability of majoring in a STEM field. And as with the 

prior model, the difference between the male and female marginal effects for taking 

advanced math courses was statistically significant. In terms of classroom instruction, the 

patterns discussed above remained the same for the most part after accounting for 
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personal characteristics. Math instruction was associated more with majoring in STEM 

for males and the opposite was true for science instruction. Though, only the association  

Table 18: Marginal Effects from Probit Models (by Gender) for STEM: Conversations, classroom 
variables, and fixed effects included 
 Model 27 Model 33 Model 34 
 Aggregate Males Only Females Only 
Parent Conversations    

7th Grade or before 0.000 -0.025 0.021 
 (0.013) (0.020) (0.017) 
    

8th or 9th Grade -0.007 -0.026 0.011 
 (0.013) (0.017) (0.015) 
    
Advanced Math 0.050*** 0.097*** 0.011^ 

 (0.012) (0.017) (0.015) 
    
Extra Science 0.066*** 0.071*** 0.062*** 
 (0.012) (0.017) (0.015) 
Math Instruction    

Excellent 0.027+ 0.072** -0.015^ 

 (0.015) (0.023) (0.018) 
    

Unsatisfactory -0.006 -0.041+ 0.017 
 (0.013) (0.023) (0.019) 
    

Not taught 0.076+ 0.028 0.101* 
 (0.043) (0.051) (0.049) 

Science Instruction    
Excellent 0.037* 0.014 0.058* 

 (0.015) (0.023) (0.022) 
    

Unsatisfactory -0.041** -0.036 -0.040* 
 (0.013) (0.024) (0.017) 

Science Instruction    
Not taught -0.052 0.001 -0.073* 

 (0.035) (0.056) (0.033) 
Technology Instruction    

Excellent 0.015 0.026 0.009 
 (0.013) (0.020) (0.017) 

    
Unsatisfactory -0.000 -0.001 -0.005 

 (0.020) (0.032) (0.024) 
    

Not taught -0.030 -0.079+ 0.001 
 (0.023) (0.044) (0.035) 

    
Female -0.087***   
 (0.010)   
    
GPA 0.074*** 0.102*** 0.046**^ 

 (0.013) (0.017) (0.017) 
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Table 18 continued 
 Model 27 Model 33 Model 34 
 Aggregate Males Only Females Only 
Underrepresented Minority -0.009 -0.004 -0.019 
 (0.021) (0.031) (0.027) 
Student Aspirations    

Bach. Deg. 0.057*** 0.066** 0.040* 
 (0.015) (0.022) (0.018) 
    

Grad. Deg. 0.129*** 0.102*** 0.136*** 
 (0.013) (0.025) (0.020) 
    

Undecided 0.023 -0.012 0.045+ 
 (0.018) (0.028) (0.024) 

    
N 6101 2853 3248 
Log Likelihood Null -3017.69 -1555.05 -1436.84 
Log Likelihood Model -2639.60 -1287.78 -1228.78 
Pseudo R-Squared 0.13 0.17 0.10 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for math/science/tech instruction is satisfactory. Reference category for student 
aspirations is less than a four-year degree. Models include fixed effects for high schools. Models also 
include categories for missing data for all variables except female, GPA, and underrepresented minority.    
+ p<.10, * p<.05, ** p<.01, *** p<.001. ^ Denotes significant differences between coefficients in 
disaggregated models. 
 

with an excellent rating for math instruction was significantly different across models. In 

terms of the personal characteristics themselves, for males, GPA had a significantly 

stronger positive relationship with students’ plans to major in a STEM field. Among 

females, bachelor’s degree aspirers seemed to have less an advantage relative to those 

aspiring to less than four-year degrees than did males and more of an advantage than 

males for those aspiring to graduate degrees. These differences were not significant, 

however. 

Table 19 shows that, as with the aggregated sample, nearly all the relationships 

observed in Models 33 and 34 remained essentially unaltered after adding controls for 

background and family characteristics in Models 35 and 36. In fact, the largest change 

observed was the reduction of the association for female’s GPAs and plans to major in 
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STEM from a factor of .046 (Model 34) to a factor of .037. The lack of significant 

relationships among these controls once again suggests that they are likely superfluous to 

these predictive models.  

Table 19: Marginal Effects from Probit Models (by Gender) for STEM: Full models 
 Model 28 Model 35 Model 36 
 Aggregate Males Only Females Only 
Parent Conversations    

7th or before 0.001 -0.021 0.021 
 (0.013) (0.020) (0.017) 
    

8th or 9th grade -0.007 -0.022 0.009 
 (0.013) (0.018) (0.015) 

    
Advanced Math 0.049*** 0.098*** 0.011^ 

 (0.011) (0.017) (0.015) 
    
Extra Science 0.066*** 0.073*** 0.062*** 
 (0.012) (0.017) (0.015) 
Math Instruction    

Excellent 0.028+ 0.073** -0.015^ 

 (0.015) (0.023) (0.018) 
    

Unsatisfactory -0.005 -0.038 0.017 
 (0.013) (0.023) (0.020) 
    

Not taught 0.076+ 0.030 0.097+ 
 (0.043) (0.051) (0.049) 

Science Instruction    
Excellent 0.035* 0.012 0.058** 

 (0.015) (0.023) (0.022) 
    

Unsatisfactory -0.042** -0.035 -0.042* 
 (0.013) (0.024) (0.017) 
    

Not taught -0.053 -0.003 -0.074* 
 (0.035) (0.055) (0.033) 

Technology Instruction    
Excellent 0.017 0.028 0.010 

 (0.013) (0.020) (0.017) 
    

Unsatisfactory 0.001 -0.003 -0.004 
 (0.020) (0.032) (0.024) 
    

Not taught -0.029 -0.074+ 0.002 
 (0.023) (0.045) (0.035) 

    
Female -0.087***   
 (0.011)   
    
GPA 0.071*** 0.101*** 0.037*^ 

 (0.012) (0.018) (0.017) 
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Table 19 continued 
 Model 28 Model 35 Model 36 
 Aggregate Males Only Females Only 
Underrepresented Minority -0.008 -0.003 -0.015 
 (0.022) (0.031) (0.028) 
Student Aspirations    

Bach. Deg. 0.057*** 0.067** 0.035+ 
 (0.015) (0.022) (0.019) 
    

Grad. Deg. 0.127*** 0.102*** 0.130*** 
 (0.014) (0.025) (0.021) 
    

Undecided 0.023 -0.013 0.043+ 
 (0.018) (0.028) (0.025) 

Living Situation    
Live w/both parents 0.011 0.003 0.025 

 (0.018) (0.022) (0.017) 
    

Live w/other -0.023 0.024 -0.047 
 (0.026) (0.048) (0.028) 

Family Income    
<$25,000 0.030 0.035 0.031 

 (0.035) (0.041) (0.032) 
    

$25,000 to $49,999 -0.002 -0.033 0.034 
 (0.023) (0.027) (0.024) 
    

$75,000 to $99,999 0.011 -0.011 0.046+ 
 (0.019) (0.026) (0.024) 
    

$100,000 or more -0.021 -0.042+ 0.008 
 (0.016) (0.024) (0.022) 
    

Don't know -0.002 -0.002 0.011 
 (0.015) (0.023) (0.019) 

Parent Education    
One 4yr degree -0.010 -0.020 0.003 

 (0.014) (0.019) (0.016) 
    

Both 4yr degrees 0.019 0.025 0.016 
 (0.016) (0.019) (0.017) 
    

N 6101 2853 3235 
Log Likelihood Null -3017.69 -1555.05 -1434.54 
Log Likelihood Model -2631.49 -1281.41 -1278.38 
Pseudo R-Squared 0.13 0.18 0.11 
Notes: Results reported as average marginal effect for GPA and marginal effects for discrete change of 
dummy variable from 0 to 1 for all other variables. Standard errors in parentheses and are clustered at the 
school level in aggregate model. Reference category for parent conversations is after 9th grade or never. 
Reference category for student aspirations is less than four-year degree. Reference category for income is 
$50,000 to $75,000. Reference category for living situation is one parent. Reference category for parent 
education is no four-year degrees. Reference category for math/science/tech instruction is satisfactory. 
Models include fixed effects for high schools. Models also include categories for missing data for all 
variables except for Female, GPA, and Underrepresented Minority. + p<.10, * p<.05, ** p<.01, *** 
p<.001. ^ Denotes significant differences between coefficients in disaggregated models. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

In this study I focused on the possible connections between the timing of students’ 

earliest conversations with their parents about what to do after high school and three 

important STEM Pipeline outcomes: taking advanced math courses in high school, taking 

four or more years of science courses in high school, and planning to major in a STEM 

field in college. Findings from the analytic models investigating these relationships 

yielded mixed results. After controlling for a number of students’ academic, personal, 

and background characteristics, there is some evidence that beginning student-parent 

conversations before the eighth grade is associated with higher probabilities of taking 

advanced math courses in high school. The same cannot be said for taking extra years of 

science classes. Once all other factors had been taken into account, the early significant 

relationships detected between conversation timing and science course taking were 

explained away. Similar findings emerged through the process of determining whether 

earlier conversations about what to do after high school were significantly associated 

with predicting higher probabilities of planning to major in a STEM field. Although basic 

models seemed to indicate such was the case, the significant relationships disappeared 

once all controls had been added. 

 As a second point of focus in this study, I explored whether estimating models 

disaggregated by gender would yield results that support theoretical implications from the 

research that males and females have very different experiences in the STEM pipeline 
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(Eccles, 1987). Findings from the gender-specific models also produced mixed results. 

For all three dependent variables, slight differences emerged between males and females 

connected to associations of the timing of student and parent conversations and the 

outcomes of interest. However, once all controls had been added to the full models, no 

significant relationships remained for either gender. In other cases, some factors emerged 

as significant predictors for one gender but not for another. For example, in models 

predicting whether a student took advanced math courses in high school, reporting that 

math instruction had been “unsatisfactory” was associated with a statistically significant 

six percentage point decrease in the probability of experiencing the outcome for females. 

For males, the relationship could not be said to be different from zero. Although these 

seemed to provide support for the argument of different and gendered pathways, 

additional tests for significance failed to establish that the differences between models 

were non-zero. Complicating matters further, in some cases I did find significant 

differences between the marginal effects observed for males and females. For instance, 

among males, taking advanced math courses in high school was associated with a 10 

percentage point increase in the probability of planning to major in a STEM field in 

college whereas no such advantage was determined to be significant for females in the 

study.  

 Taken together, these stories fail to point to clear implications concerning how the 

timing of student and parent conversations about what to do after high school might be 

connected to the outcomes of interest in this study. Nevertheless, they do establish some 

starting points for conversation. For instance, for all dependent variables, being an early 

converser was associated in the base models with significantly increased probabilities of 
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experiencing the outcome relative to late conversers. Mid-level conversers also saw 

significant increases in probability of taking advanced math or extra science courses in 

high school in those models. Thus, it can be argued that some connection exists between 

talking to students early about life after high school and their behaviors related to a 

number of STEM-relevant outcomes.  

These relationships, however, may likely be expressed through other influential 

factors. For instance, in the full models, being an early converser was significantly 

associated with only one outcome of interest: taking advanced math courses. This result 

seems reasonable in that, of all the outcomes, the sequential nature of mathematics 

courses makes this variable the most reasonably susceptible to the influence of timing. It 

may also be the case that the timing of conversations expresses an influence through 

other important variables accounted for in the models. In prior work with my colleagues 

(Harding et al., 2017), we demonstrated that early information about college was 

significantly associated with students’ postsecondary aspirations. Given that student 

aspirations were included as personal characteristics in this study as well, it may be the 

case that the connections between early conversations with parents and the outcomes of 

interest in this study are explained through the relationship of timing and postsecondary 

aspirations. This argument is supported in part by the findings that students’ aspirations 

remain strong and significant predictors of advanced math and extra science course 

taking, as well as planning to major in a STEM field, in nearly all models in the study, 

aggregate and disaggregate alike. The same is true for GPA. In other words, students that 

begin conversations with their parents early regarding what to do after high school may 

be motivated or encouraged to achieve higher grades and plan to go further in college 
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than those who begin such conversations later, when they may lack sufficient time to 

react and establish strong habits. Such causal inferences, though appealing, are not 

identifiable in this study.   

In this study I also attempted to determine whether the findings might support 

arguments from the literature that males and females have very different experiences in 

the STEM pipeline, so much so that it justifies estimating separate statistical models by 

gender. Though results from the statistical models are conflicting, I believe there exists 

enough reason to, at the very least, follow a similar approach in other studies related to 

the STEM pipeline. With many of the models in this study, estimating based on samples 

disaggregated by gender frequently led to substantively different inferences. For example, 

all else equal, positive math instructional experiences seemed to matter more for males in 

the study whereas negative experiences mattered more for females. For females, all 

science classroom instruction experiences yielded stronger relationships with taking four 

or more years of science than they did for males. However, taking advanced math classes 

in high school was a much stronger predictor of a student planning to major in a STEM 

field for males than for females. And while math instruction experiences were only 

significantly associated with planning to major in a STEM field for males, the opposite 

was the case for experiences with science instruction.  

Of course, as mentioned above, not all of the differences observed between 

gender-disaggregated models held up to the added scrutiny of tests for statistical 

differences. And there is no simple solution for deciding which findings should carry the 

most weight. Using the most conservative restrictions, one could argue that the relatively 

small number of significant differences by gender do not support the notion that the 
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experiences of males and females in the STEM pipeline vary so greatly that separate 

models are required. Though this makes for a somewhat compelling argument, there is 

some substantive evidence that suggests otherwise. For example, models predicting both 

advanced math course taking and plans to major in a STEM field yielded a number of 

differences related to students’ classroom instruction experiences that, despite not being 

significant between samples, do align to prior literature and merit some attention. 

particularly regarding how these experiences tend to be more negative for females 

(Cordova-Wentling & Camacho, 2006; Hazari et al., 2007; Osborne et al., 2003, Riegle-

Crumb & Moore, 2013). Though not the focus of this study, findings related to these 

factors provide some corroborating evidence of a gender-varying relationship between 

classroom-related variables and STEM pipeline outcomes.  

These results presented and discussed herein give rise to a number of implications 

for practice and possibly for policy. First, though modest, the positive and significant 

association between being an early converser and taking advanced math courses in high 

school suggests that students may in fact benefit from discussing postsecondary plans 

even earlier than is traditionally called for by the literature. As these data indicate, these 

types of conversations may be beneficial even as early as when students are in elementary 

school. Beginning conversations at this age allows students sufficient time to make 

decisions about attending college (Harding et al., 2017) and then to make appropriate 

decisions about course work as they grow older and move through middle school and on 

into high school. If students are prepared for introductory algebra in the seventh grade, 

for instance, they should be prepared for later work throughout the sequence of other 

more advanced courses in mathematics (Adelman, 2006).  
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Improvements in this area would be welcomed by a number of groups focused on 

educational equity. Achieve Inc. (2008), for example has suggested that all students 

should take four years of math in high school, culminating in at least Algebra II or its 

equivalent. These classes, along with those that go beyond them in content, the 

organization argues, are vital to ensuring access to postsecondary education and can only 

be reached if students begin taking Algebra I early on. This belief has become so strong 

among certain groups and in even certain cities and states that policymakers have pushed 

forward an agenda that has come to be known as the Algebra for All movement.  

In 1997, for example, Chicago Public Schools implemented a policy that 

eliminated remedial coursework across high school subject areas and required all ninth-

grade students to take Algebra and then Geometry and Algebra II in subsequent years 

(Nomi, 2012).  A year later, California also began attempts to increase early algebra 

taking by penalizing middle schools that enrolled eighth-graders in pre-algebra classes. 

Similarly, by 2008, the California State Board of Education had made the Algebra 

California Standards Test the “sole test of record,” linking eighth-grade students’ 

proficiency requirements under the No Child Left Behind Act to Algebra I competencies 

(Domina, McEachin, Penner, & Penner, 2015). Though the approach was later eschewed 

in California in favor of the Common Core State Standards, these examples of broad-

scale algebra-for-all policies represent the strength of the appeal of practices and 

measures that ensure all students have access to these building-block courses and 

foundational materials as soon as possible. 

The Algebra-for-All movement is not without its critics, however. As Tom 

Loveless of the Brookings Brown Center on Education Policy has suggested, “The push 
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for universal eighth-grade algebra is based on an argument for equity, not on empirical 

evidence” (2007, p. 3).  Findings from the Chicago Public Schools policy mentioned 

above, for example, suggested that the practice had adverse affects on the math test 

scores of previously high-achieving students that the authors attribute to the resulting 

increased variation in student ability observed in Algebra I classes once the subject 

became required for all students (Nomi, 2012). Domina et al. (2015) found that curricular 

intensification resulting from the algebra-for-all policies in California led, on average, to 

negative effects on student test scores for students in large districts. Clotfelter et al. 

(2013, 2015) have found similarly disappointing evidence based on data from two large 

school districts in North Carolina.  

This debate surrounding the algebra-for-all movement complicates the issue of 

drawing implications from the findings of this study. The significant associations found 

herein between early student and parent conversations and advanced math course taking 

in high school imply that parents should begin talking to their children very early 

regarding what to do after high school. The strong relationships of parent-education and 

students’ advanced math course taking also suggest that students whose parents did not 

go to college may even need to have these conversations with teachers or school 

counselors as well (or instead), a notion certainly supported by prior research (Bell, 

Rowan-Kenyon, & Perna, 2010; Bonous-Hammarth & Allen, 2005; Harding et al., 2017). 

One might argue, however, that given the evidence that taking Algebra early on, and 

especially when unprepared, might be detrimental to a number of students, policy makers 

and practitioners should avoid pushing for increased participation altogether.   
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I believe, though, that the results from this study may not be entirely susceptible 

to such criticism. The negative effects associated with Algebra-for-All policies have thus 

far been shown to apply to students in areas where early algebra course taking was 

perhaps prematurely imposed. By subjecting students to mathematical concepts and 

principals before they were ready, cities, districts, and states may have inadvertently 

discouraged some students from following a course trajectory that would allow them to 

enroll in and succeed in advanced math courses in high school. By engaging students in 

conversations about what to do after high school at an early age, however, parents and 

educators might give younger students the information they need to make decisions about 

beginning Algebra I at an early enough stage to enable them to take advanced math 

courses in subsequent years. In this way, participation in middle school Algebra, and 

more complex courses later, might be increased through more-informed self-selection 

rather than through policies of curricular coercion. What is more, implementing such an 

approach would come at very little expense as it would only require the dissemination of 

information to students at an earlier age.   

This study ultimately was focused not just on advanced math course taking but on 

its possible connections to students’ plans to major in a STEM field in college. Though 

the apparent beneficial relationships of early conversations do not seem to extend to such 

plans, any unforced increases to the number of students taking advanced math courses in 

high school may lead to improvements in the pipeline to earning STEM degrees. That is, 

the strong and significant associations detected in this study between advanced math 

course taking and planning to major in a STEM field suggest the possibility that earlier 

student-parent conversations might have some influence to the extent that they affect 
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course taking decisions. As stressed at many points before, however, identifying these 

causal pathways remains beyond the scope of this study.  

Conclusion 

 In this dissertation I set out to investigate whether early student and parent 

conversations concerning what to do after high school were associated with three 

important outcomes in the STEM pipeline: taking advanced math courses in high school, 

taking extra science courses in high school, and expressing plans to major in a STEM 

field of study in college. I also sought evidence related to whether statistical models 

predicting these outcomes varied, as theory suggests, by gender. In general, I find support 

for the notion that, net of other theoretically relevant predictors, beginning student and 

parent conversations prior to the eighth grade is positively associated with whether a 

student took advanced math courses in high school. Relationships between the timing of 

conversations and the other outcomes of interest in this study were found to be 

statistically non-significant when controlling for other factors in the models.  

 Based on the contextual and theoretical frameworks that guide this study, it is 

unsurprising that being an early converser was significantly associated with taking 

advanced math courses in the final aggregate models, even after controlling for all other 

factors. As Adelman (2006) and many other others have noted, early work in 

mathematics prepares students for the more advanced work required in later courses and 

years. Students who begin more challenging work at the earliest points of their academic 

careers, then, should be even more equipped to take the most advanced courses in high 

school. The findings in this study support the notion that students may be aided in this 

process by beginning discussions with parents concerning what to do after high school 
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prior to the eighth grade. Though to some, this may seem too early a time to have such 

discussions with children, foundational algebra courses for students are more frequently 

being offered to students in the middle school years. Thus, preparing them for their 

course trajectories in the seventh grade and before is completely logical.  

This study does have a few limitations that bear mentioning. First, the data from 

the NHHSSS relate to a small and homogenous state. Thus, the findings cannot be 

extrapolated to the larger and more diverse population of the United States. Second, the 

methodological approach taken in the study lacks the criteria necessary to identify causal 

relationships between the predictors and outcomes of interest.     

 Finally, the NHHSSS was not designed with the intention of measuring factors 

and outcomes specifically related to the STEM pipeline. As such, the construction of 

some of the variables employed in this study are subject to a degree of scrutiny. 

Despite these limitations, this dissertation represents an important contribution to 

the literature on the STEM pipeline. It extends the methodological rigor of studies related 

to students’ early educational experiences and their eventual course taking in high school 

(e.g., Simpkins et al., 2006), and expands the analysis to a much larger sample size using 

data that is some two decades more current than prior research. It also takes advantage of 

a distinct dataset from New Hampshire that captures factors of interest, such as the timing 

of students’ and parents’ earliest conversations about what to do after high school, that no 

other large data sets are known to include. This applies even to large nationally-

representative datasets such as NELS, ELS, and even the most recently concluded 

HSLS:09. Though I cannot answer conclusively from this study whether earlier 

information about what to do after high school leads more students to take advanced math 
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courses or extra science courses in high school or to make plans to major in a STEM field 

in college, it does establish a foundation for further investigation along these lines. 

Findings from this study also lend support to the notion that males and females may have 

experiences in the STEM pipeline that vary considerably. When possible, researchers 

should undertake efforts to account for this heterogeneity in some way.  

 Future studies concerning this topic should be designed to follow students 

beginning in elementary school and extending into postsecondary education and beyond. 

To my knowledge, no such study currently exists, nor are national datasets equipped to 

address such questions. This represents an unfortunate gap in the development of our 

knowledge of important areas of the STEM pipeline. What is worse, though this topic is 

one of immediate educational and economic importance, obtaining the type of data 

needed to answer these questions fully would require enough years to follow students 

from their childhood into the labor force. Because of this, it may be that conclusive 

answers to the questions posed in this study will remain undiscovered. On the other hand, 

state education agencies collect and analyze increasingly robust datasets relative to 

students in their own state. A number of studies have linked these data to economic and 

workforce indicators drawn from other governmental organizations. It is possible that a 

retrospective survey similar to the NHHSSS administered in a more diverse state and at 

an even earlier date might prove quite valuable in further investigating the research 

questions in this study. While any results would also not reflect the larger national 

population, repeating the study across multiple states could alleviate some of the related 

concerns. 
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 Future studies should also leverage questions that are crafted to address students’ 

early experiences receiving information and having conversations about STEM-specific 

topics. Though useful, the predictor variable of interest in this study can only be safely 

considered to relate to general conversations about what to do after high school. While 

any number of these conversations could have centered around STEM education and 

careers, this is not something that can be determined. Questions about STEM pipeline 

factors should also ask about the source of information. It may prove instructive to 

analyze whether students with different levels of economic, cultural, and social capitals 

might benefit in varying ways from conversations with individuals other than their 

parents, such as teachers, school counselors, friends, other family members, and mentors. 

 Regardless of whether we learn conclusive answers to the research questions in 

this study in the immediate future, the findings from this study present evidence that at 

least parents may have good reason to begin discussions with their students about what to 

do after high school well before students reach the middle school years. School personnel 

should also be trained and instructed to have these conversations with students in order to 

reinforce what some hear at home and to introduce the information to others with lower 

levels of social and cultural capitals. Such interventions require little investment from 

stakeholders and have the potential to lead to important gains in STEM pipeline 

outcomes, and may even, as some groups such as the Algebra Project suggest, improve 

equity and strengthen the democratic functions of our P-20 education systems.  
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