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ABSTRACT 

 If problem solving is what mathematics is all about, then mathematics teachers 

should be in the business of helping students develop their problem-solving abilities. One way to 

help is to teach mathematics through problem solving. In this approach, problems are a means by 

which students learn new mathematical concepts and synthesize mathematical knowledge. 

During the last few decades, mathematics education researchers have called for studies that focus 

on the role of the teacher in problem-solving instruction. The purpose of the present study was to 

investigate the teaching practices used by those who teach through problem solving. Four high 

school mathematics teachers participated in the study. Although each teacher was unique, five 

common practices emerged: (a) teaching problem-solving strategies, (b) modeling problem 

solving, (c) limiting teacher input, (d) promoting metacognition, and (e) highlighting multiple 

solutions. These practices were consistent with the advice given by mathematics education 

experts. 
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CHAPTER 1 

BACKGROUND AND RATIONALE 

 Mathematicians and mathematics education researchers have long claimed that problem 

solving is the essence of mathematics. Wilson, Fernandez, and Hadaway (1993) expressed a 

widespread belief when they said, “The art of problem solving is the heart of mathematics” (p. 

66). There is consensus among mathematics education researchers that problem solving is 

fundamental not only to doing mathematics but also to teaching and learning mathematics (e.g., 

Lester & Charles, 2003; National Council of Teachers of Mathematics [NCTM], 1980, 1989, 

2000; Schoen, 2003). In its Principles and Standards for School Mathematics, the NCTM (2000) 

stated, “Problem solving is the cornerstone of school mathematics. Without the ability to solve 

problems, the usefulness and power of mathematical ideas, knowledge, and skills are severely 

limited” (p. 182). In Polya’s (1965) view, “one of the principal aims of the high school 

mathematics curriculum is to develop the students’ ability to solve problems” (p. 100). 

According to the NCTM, “The goal of school mathematics should be for all students to become 

increasingly able and willing to engage with and solve problems” (p. 182). 

If one agrees that problem solving is central to teaching mathematics, then it is natural to 

ask how teachers can help students develop as mathematical problem solvers. Can problem 

solving be taught directly, for example, by teaching particular problem-solving strategies? 

Should teachers teach mathematics in order to help students become better problem solvers, or 

should they teach problem solving in order to help students become better mathematicians? Are 
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these goals mutually exclusive? Is there a difference between teaching problem solving and 

teaching through problem solving? 

Definitions of Problems and Problem Solving 

Through the years, mathematicians and mathematics education researchers have offered 

many definitions of problem and problem solving. Some differences among definitions reflect 

different opinions about what constitutes a problem. Others simply reflect different ways of 

expressing compatible ideas about what is important in problem solving. For example, Polya 

(1962) described problem solving as “finding a way out of a difficulty, a way around an obstacle, 

attaining an aim which was not immediately attainable” (p. v). Polya expressed his perspective 

on what constitutes a problem and problem solving as follows: 

Getting food is usually no problem in modern life. If I get hungry at home, I grab 
something in the refrigerator, and I go to a coffeeshop or some other shop if I am 
in town. It is a different matter, however, when the refrigerator is empty or I 
happen to be in town without money; in such a case, getting food becomes a 
problem. In general, a desire may or may not lead to a problem. If the desire 
brings to mind immediately, without any difficulty, some obvious action that is 
likely to attain the desired object, there is no problem. If, however, no such action 
occurs to me, there is a problem. Thus, to have a problem means: to search 
consciously for some action appropriate to attain a clearly conceived, but not 
immediately attainable, aim. To solve a problem means to find such action. … 
Some degree of difficulty belongs to the very notion of a problem: where there is 
no difficulty, there is no problem. (p. 117, emphasis in original) 
 
Elsewhere, Polya (1962) specified this broad conception of problems and problem 

solving in terms of mathematics: “Our knowledge about any subject consists of information and 

know-how. … What is know-how in mathematics? The ability to solve problems—not merely 

routine problems but problems requiring some degree of independence, judgment, originality, 

creativity” (p. vii–viii).  

Schoenfeld (1988) distinguished between mathematical tasks that are problems and those 

that are exercises. He claimed that both are important but that students in many high school 
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mathematics classrooms engage primarily in completing exercises and rarely, if ever, are 

challenged to solve problems. A problem, in this sense, is a task for which the method of solution 

is not immediately obvious, and which is likely to take more than just a minute or two. 

Mayer (1985) described problems and problem solving as follows:  

A problem occurs when you are confronted with a given situation—let’s call that the 
given state—and you want another situation—let’s call that the goal state—but there is 
no obvious way of accomplishing your goal. … Problem solving refers to the process of 
moving from the given state to the goal state of a problem. (pp. 123–124, italics in 
original) 
 

Like Polya’s description above, Mayer’s definition applies to problem solving in general and is 

not unique to mathematics.  

Schoenfeld (1992), in his review of the literature on problem solving, noted the broad 

range of definitions used in discussions of mathematical problem solving. The term problem 

solving “has been used with multiple meanings that range from ‘working rote exercises’ to 

‘doing mathematics as a professional’” (p. 334). 

The NCTM (2000) offered a definition of problem solving similar to those above but 

applied it specifically to mathematics. In the Standards, the NCTM defined problem solving 

using different phrasing at different points, but the following is representative: 

Problem solving means engaging in a task for which the solution method is not 
known in advance. In order to find a solution, students must draw on their 
knowledge, and through this process, they will often develop new mathematical 
understandings. (p. 52) 
 

 The following summary of the descriptions of problem solving proposed by Polya, 

Schoenfeld, the NCTM, and others highlights the ideas most relevant to the present study. I use 

the following definition of mathematical problem solving in this dissertation: Mathematical 

problem solving is a nonsequential process that involves creativity and the application of 

mathematical knowledge—resources, strategies, and so on—to solve a nonroutine task for which 
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a solution method is not immediately known. It is important to note that something could be a 

problem for one person and not for another, and that once a problem is solved it is no longer a 

problem for the person who solved it. Kilpatrick (1985) noted, “To be a problem, it has to be a 

problem for someone” (p. 2, emphasis added) and also, “Researchers in mathematics education 

have long accepted the truth that a problem for you today may not be one for me today or for you 

tomorrow” (p. 3).  

A problem must present a challenge to the solver. Recall Polya’s (1962) comment: 

“Where there is no difficulty, there is no problem” (p. 117). According to Hiebert and Wearne 

(2003), a problem should be difficult, but not too difficult: “Allowing mathematics to be 

problematic does not mean making mathematics unnecessarily difficult, but it does mean 

allowing students to wrestle with what is mathematically challenging” (p. 6). 

 Problems can be open-ended or have a single answer, but every problem has multiple 

solution paths. Problems can either be set in a “real world” context or have virtually no direct 

application to the world outside pure mathematics. A problem may be stated in a single sentence 

or involve an elaborate description. Some problems may be solved quickly, whereas others may 

take hours, days, or even longer. In fact, some problems cannot be solved at all. The following is 

one of hundreds of examples from Polya’s (1962) Mathematical Discovery: “Construct a 

parallelogram, being given one side and two diagonals” (p. 17). Such a problem has a single 

answer in that there is only one such parallelogram, but there are many ways to complete the 

geometric construction. Although there may be applications of this problem to “real world” 

situations, the problem as written is set in a strictly mathematical context. An example to contrast 

with Polya’s parallelogram problem is the following open-ended problem for which there are 

many correct answers: 
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Try to make every number between 0 and 20 using only four 4’s and any mathematical 
operation (such as multiplication, division, addition, subtraction, raising to a power, or 
finding a square root), with all four 4’s being used each time. For example 

! 

5 = 4 + 4 +
4
4

 

How many of the numbers between 0 and 20 can be found? (Boaler, 2008, p. 235) 
 

Teaching Through Problem Solving 

Teaching through problem solving is an instructional approach in which teachers use 

problem solving as a primary means to teach mathematical concepts and help students synthesize 

their mathematical knowledge. In this dissertation, I use the term instructional approach—or 

teaching approach—to denote a set of teaching practices with which a teacher implements his or 

her philosophy of teaching. I use the term teaching practice—or simply practice—to denote a 

specific technique a teacher uses. Teaching through problem solving is based on the premise that 

“students develop, extend, and enrich their understandings by solving problems” (Hiebert & 

Wearne, 2003, p. 5). There are two main goals of teaching through problem solving: (a) for 

students to grow in their mathematical understanding and (b) for students to become better 

problem solvers. Some proponents of teaching through problem solving favor one of these goals 

over the other, but the goals can be achieved simultaneously. 

 In the introduction to Teaching Mathematics Through Problem Solving: Grades 6–12, 

Schoen (2003) described this instructional approach:  

As students attempt to solve rich problem tasks, they come to understand the 
mathematical concepts and methods involved, become more adept at 
mathematical problem solving, and develop mathematical habits of mind that are 
useful ways to think about any mathematical situation. (p. xi) 
 

In this description, both mathematical understanding and increased problem-solving ability are 

desired outcomes. The ability to solve problems is not simply a skill, like factoring polynomials 

or taking a derivative, but incorporates creativity, intuition, and other habits of mind.  
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Whether teaching problem solving directly or teaching mathematics through problem 

solving, the underlying philosophy—that students should be doing the mathematical work 

themselves and gaining expertise in solving problems—is basically the same. The goals, too, are 

similar. In both approaches teachers strive to help strengthen students’ proficiency in solving 

mathematical problems. In contrast to teaching problem solving explicitly, however, the ultimate 

aim of teaching through problem solving is that students will be able not only to solve more and 

harder problems, but also to deepen their mathematical understanding. That is not to say that 

mathematical understanding is not a goal of those who advocate explicit problem-solving 

instruction, but the focus of these two approaches is slightly different. 

The difference between teaching problem solving and teaching through problem solving 

is subtle because these instructional approaches arise out of similar goals. Nevertheless, Stein 

and colleagues (2003) made a distinction between the approaches in their review of research on 

teaching through problem solving. Stein and colleagues noted that although there is copious 

research on problem solving and problem-solving instruction, particularly from the 1980s, “very 

little of this vast research base has explicitly investigated [teaching through problem solving]” (p. 

246). They went on to state specific differences between research from the 1980s and research on 

teaching through problem solving: 

Research on mathematics problem solving has generally been prompted by a 
desire to understand the nature of problem solving as a process and to specify 
some ways to help students acquire proficiency as problem solvers. The 
instructional implications of much of this research directly pertain to the teaching 
of problem solving and teaching about problem solving. Yet the chapters in this 
book propose ideas related to teaching through problem solving. Although this 
perspective is not new in mathematics education literature (see, e.g., Branca, 
1980; Silver, Kilpatrick, & Schlesinger, 1989; Wilson et al., 1993; Wirtz, 1976), 
far less research has been conducted from this perspective. (p. 246, italics in 
original) 
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Roles of Problem Solving in Mathematics Instruction 

To highlight what is unique about teaching through problem solving, I describe various 

roles problem solving can play in the mathematics classroom. Stanic and Kilpatrick (1988) 

summarized historically held views of problem solving in mathematics education by describing 

three perspectives: (a) problem solving as context, (b) problem solving as skill, and (c) problem 

solving as art.  

Problem solving as context refers to a perspective in which problem solving is a means to 

an end. The end—or goal—of problem solving varies depending on a teacher’s objective. First, a 

teacher may use problem solving as a means to persuade students of the usefulness of 

mathematics, for example by highlighting real world problems. Stanic and Kilpatrick (1988) 

called this emphasis “problem solving as justification.” Second, a teacher may want to gain 

student interest; in other words to use “problem solving as motivation.” Third, a teacher may use 

problem solving to provide students with a fun experience; this emphasis is “problem solving as 

recreation.” Fourth, teachers may use problem solving to teach new mathematical content; in 

other words “problem solving as vehicle.” Finally, a teacher’s objective may be for students to 

apply mathematical content they already know; in other words, to use “problem solving as 

practice” (pp. 13–14). 

Problem solving as skill is a theme in which problem solving is seen “as a valuable 

curriculum end deserving special attention, rather than as simply a means to achieve other ends 

or an inevitable outcome of the study of mathematics” (Stanic & Kilpatrick, 1988, p. 15). Stanic 

and Kilpatrick noted that in this view problem solving might be viewed as a high-level skill that 

students practice only after they have mastered lower-level skills such as solving routine 
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exercises. A potential negative result of this view is that solving nonroutine problems is available 

only to certain students. 

Problem solving as art is the perspective Stanic and Kilpatrick (1988) claimed is most in 

line with Polya’s notion of problem solving. In this view, problem solving involves creativity, 

reasoning, and discovery of mathematical truth. Stanic and Kilpatrick warned that “problem 

solving as art gets reduced to problem solving as skill when attempts are made to implement 

Polya’s ideas by focusing on his steps and putting them in textbooks” (p. 17). Furthermore, 

Stanic and Kilpatrick acknowledged that problem solving as art is a difficult theme for teachers 

to put into practice. 

 Schroeder and Lester (1989) made distinctions similar to those Stanic and Kilpatrick 

(1988) made but described the possible roles of problem solving slightly differently. In their 

chapter, “Developing Understanding in Mathematics via Problem Solving,” Schroeder and 

Lester identified three ways to include problem solving in school mathematics instruction: (a) 

teaching about problem solving, (b) teaching for problem solving, and (c) teaching via problem 

solving. They argued that although the three approaches are not mutually exclusive, a focus on 

teaching via problem solving is most in line with the goal of promoting conceptual understanding 

in mathematics. When teaching about problem solving or teaching for problem solving, a teacher 

runs the risk of making problem solving, rather than mathematical understanding, the primary 

goal of instruction. An additional danger of teaching only about problem solving is that students 

may see problem solving as an isolated skill. 

 The similarities between Stanic and Kilpatrick’s (1988) list of perspectives on problem 

solving and Schroeder and Lester’s (1989) list of roles of problem solving are clear. Teaching 

through problem solving aligns with teaching via problem solving in Schroeder and Lester’s 
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language and with teaching new mathematical content within a problem solving as vehicle 

perspective as Stanic and Kilpatrick described. The NCTM (2000) claimed that problem solving 

can and should be: (a) a vehicle—or means—for gaining new mathematical knowledge, (b) an 

opportunity to use mathematical knowledge, and (c) a goal of mathematics instruction. The 

NCTM stated, “Solving problems is not only a goal of learning mathematics but also a major 

means of doing so,” and “good problems give students the chance to solidify and extend what 

they know” (p. 52, emphasis added). 

Is Teaching Through Problem Solving the Same As a Standards-Based Instructional Approach?  

Teaching through problem solving is not synonymous with standards-based instruction. 

Mathematics teachers with a standards-based instructional approach seek to teach in a way that is 

consistent with the recommendations of the NCTM (1989, 2000) Standards. Such teachers focus 

on conceptual understanding and seek to help students build knowledge on what they have 

previously learned in a way that is meaningful to the students. Certainly a philosophy of teaching 

that emphasizes conceptual understanding and meaningful learning is the basis for teaching 

through problem solving, but teaching through problem solving is only one of several approaches 

that teachers who follow the recommendations of the NCTM Standards may employ. The 

Standards cover a wide range of issues including reasoning, communication, connections, and so 

on, only one of which is problem solving. 

 The following is an example to help clarify the distinction. Suppose a class is studying 

the formula for the area of a circle. A teacher with a standards-based approach might lead the 

class through an activity in which students cut a paper circle into narrow sectors and arrange the 

sectors in such a way that the shape resembles a rectangle. Students may then use their 

knowledge of the area of a rectangle to derive the formula for the area of a circle. Using this 
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activity is a way to guide students into meaningful learning rather than simply to have them 

memorize the formula for the area of a circle. This activity does not present students with a 

problem to solve, however, particularly if the teacher leads them through the steps of the activity. 

Therefore, the circle activity is not an example of teaching through problem solving although 

standards-based principles are at work. 

Another term that is commonly used to describe a teaching approach that emphasizes 

problem solving is problem-centered (e.g., Lester, 1994). Also, there are instructional 

approaches that are closely aligned with teaching through problem solving, including an activity-

based approach, but a teacher may effectively use activities without necessarily creating a 

problem-solving environment. For example, if a teacher or a set of instructions on a worksheet 

guides students step-by-step through an activity, the students have not necessarily encountered a 

problem-solving situation. 

Why Teach Mathematics Through Problem Solving? 

 Mathematics educators have long assumed that problem solving and mathematical 

understanding are linked. One of my assumptions in this study was that teaching through 

problem solving is a particularly effective way to help students gain understanding of 

mathematical concepts. Teaching through problem solving has other advantages as well. For 

example, it can: (a) increase students’ interest in and enjoyment of mathematics (Kahan & 

Wyberg, 2003; Lambdin, 2003), (b) help students develop mathematical habits of mind 

(Levasseur & Cuoco, 2003), and (c) demonstrate the usefulness of mathematics for solving a 

wide range of problems (NCTM, 2000). Mathematics educators offering their expertise and 

advice, as well as those who have researched problem-solving instruction, have highlighted these 

advantages. 
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 The most prevalent argument for teaching through problem solving is that it aids 

mathematical understanding. Hiebert and Wearne (2003) claimed, “Students develop, extend, 

and enrich their understandings by solving problems” (p. 5). Elsewhere Hiebert et al. (1996) 

justified “the practice of problematizing the subject by claiming that it is this activity that most 

likely leads to the construction of understanding” (p. 15). Lambdin (2003) noted, “A primary 

tenet of teaching through problem solving is that individuals confronted with honest-to-goodness 

problems are forced into a state of needing to connect what they know with the problem at hand” 

(p. 7). Throughout the Standards, the NCTM (2000) asserted a link between problem solving and 

mathematical understanding: 

Problems and problem solving play an essential role in students’ learning of 
mathematical content and in helping students make connections across 
mathematical content areas. … Accordingly, much of the mathematics that 
students encounter can be introduced by posing interesting problems on which 
students can make legitimate progress. (p. 334) 
 
Not only is problem solving a means by which students can deepen their mathematical 

understanding, but also many students enjoy solving problems. Lambdin (2003) claimed, 

“Learning mathematics through problem solving is engaging and rewarding” (p. 11). When 

students are the ones doing the mathematics, they can see mathematics as meaningful. Many 

students find problem solving to be more enjoyable than rote memorizing or learning only by 

watching and listening to the teacher. That enjoyment, combined with the likelihood that 

students will understand and retain mathematical concepts, points to the value of teaching and 

learning through problem solving. 

 Another advantage of teaching through problem solving is that students develop 

mathematical habits of mind. Levasseur and Cuoco (2003) noted, “Students develop these habits 

of mind as a by-product of learning mathematics through problem solving” (p. 27). Examples of 
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such habits are guessing, challenging a solution by looking back, looking for patterns, analyzing 

a special case, and representing a problem in various ways. 

 Finally, teaching through problem solving allows students to appreciate the usefulness of 

mathematics, whether a problem is set in a “real world” situation or taken from a purely 

mathematical context. According to the NCTM (2000), “Through problem solving, students can 

experience the power and utility of mathematics. Problem solving is central to inquiry and 

application and should be interwoven throughout the mathematics curriculum to provide a 

context for learning and applying mathematical ideas” (p. 256). 

Calls for Research 

 There have been calls for research on problem-solving instruction for 25 years or more. It 

seems every 10 years or so, researchers turn their attention back to problem-solving instruction. 

As an example of the ongoing nature of such calls for research, consider the following statements 

from mathematics education researchers. 

In the mid 1980s, Grouws (1985) and Lester (1985) separately stated the need for 

research in problem-solving instruction. According to Grouws, “Explicit attention must be given 

to instruction in order to make progress toward the long-range goal of improving student 

problem-solving performance” (p. 297). Lester said, “An ultimate goal of research on teaching 

mathematical problem solving is to develop instructional theories that contain the essence of 

what it is that a good teacher does” (p. 55). 

 A decade later, Lester (1994) stated that there was still much more work to be done: 

“Very little of the literature on mathematical problem-solving instruction discusses the specifics 

of the teacher’s role. … In my view, attention to the teacher’s role should be the single most 

important item on any problem-solving research agenda” (p. 672). He went on to say, 
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What actually takes place in problem-centered classrooms? … [Researchers] have 
noticed an absence of adequate descriptions of what actually happens in the 
classroom. In particular, there has been a lack of descriptions of teachers’ 
behaviors, teacher-student and student-student interactions, and the type of 
classroom atmosphere that exists. It is vital that such descriptions be compiled if 
there is to be any hope of developing sound programs for teaching problem 
solving. (p. 672) 
 
In the early 2000s, there were still calls for research in problem-solving instruction. Stein 

and colleagues (2003) argued, “One of the crucial research questions for the next decade [is], 

‘What happens inside classrooms in which problem-solving approaches are used effectively?’” 

(p. 250). Stein and colleagues described research done in the 1990s, but most of the studies they 

cited considered curriculums that supported problem-centered teaching and did not address 

practices used by teachers who implemented such curriculums. Only a few studies they found 

addressed what happened in classrooms where teachers were teaching through problem solving. 

These calls for research in problem-solving instruction motivated the present study. I 

became interested in what happens on a day-to-day basis in the classrooms of teachers who 

believe that problem solving is central to mathematics teaching and learning. Specifically, I 

found the shift from teaching problem solving to teaching through problem solving to be 

intriguing, and I wanted to know what practices teachers use to implement this instructional 

approach. 

Purpose of the Study 

The primary purpose of the present study was to identify the practices used by four high 

school mathematics teachers who taught through problem solving. The following research 

questions refer to a select group of high school mathematics teachers who have a strong 

reputation for effective teaching and have been identified as those who teach through problem 

solving: 
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1. What do these teachers believe about mathematical problem solving? 
2. What do these teachers believe about what makes a good problem, and what kinds 

of mathematical problems do they pose? 
3. What practices do these teachers use when teaching through problem solving, and 

how do they implement those practices? 
a. What problem-solving strategies do teachers introduce? 
b. How do teachers model mathematical problem solving? 
c. What do teachers do to limit the amount of input they give students? For 

example, how do teachers incorporate group work? 
d. How do teachers encourage metacognition? 
e. How do teachers highlight multiple solutions? 

 
I interviewed four high school mathematics teachers to investigate what they believed 

about mathematical problem solving, problem-solving instruction, and what makes a good 

problem. In addition, I conducted classroom observations to investigate practices used by the 

teachers. On two—or, in the case of one teacher, three—separate occasions, I observed 

instruction every day for a week to get a sense of their typical behavior and to see the flow of 

mathematics lessons from one day to the next.  

Various publications of the NCTM in the last 10 years (e.g., Lester, 2003; NCTM, 2000; 

Schoen, 2003) have highlighted the importance of problem solving and have advocated teaching 

through problem solving, but these publications are not research studies. They are compilations 

of advice from experts about how and why to teach through problem solving and anecdotes from 

classroom teachers about successful lessons centered on good problems (e.g., Barrett & 

Compton, 2003; Bellman, 2003). Advice and examples provide general—and helpful—

descriptions of teachers’ practices, but they are not in-depth investigations of teachers who 

successfully teach through problem solving. The present study can contribute to the mathematics 

education literature by providing detailed descriptions of practices used by four teachers. In 

contrast to stories of isolated lessons, the present study includes observations of teachers over 
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several days to provide a more informed picture of their practices for teaching through problem 

solving. 
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CHAPTER 2  

LITERATURE REVIEW 

 This chapter begins with an overview of two frameworks for mathematical problem 

solving. The first is a problem-solving model developed by Polya (1957) that includes four 

phases of problem solving: understanding the problem, devising a plan, carrying out the plan, 

and looking back. The second framework I describe is Schoenfeld’s (1985, 1992) framework for 

mathematical problem solving. He suggested that successful problem solving depends on four 

main elements: resources, strategies, control, and beliefs. This description of frameworks is 

followed by a brief discussion of the importance of metacognition as it relates to problem 

solving. I end the section by explaining that I used Schoenfeld’s framework as the theoretical 

framework for the study. Specifically, I used the framework to connect elements of successful 

problem solving to practices for teaching through problem solving. 

 In the second section of the chapter, I describe the history of research in problem solving 

and problem-solving instruction. I have divided the history into two parts: research from 1960 to 

1985 and research from 1985 to 2010. This description is followed by a summary of seven 

practices for problem-solving instruction that occur as common themes in the mathematics 

education literature. 

 The third section of the chapter contains a description of research on the benefits of a 

problem-based approach to instruction. This description includes studies of problem-based 

curriculum and studies of problem-based instruction. Following this description I note that 

mathematics education experts have offered lots of advice on teaching through problem solving, 

but research is scarce. I briefly describe the Japanese model for teaching through problem 
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solving and conclude the chapter by reiterating calls for research on teaching through problem 

solving. 

Frameworks for Problem Solving 

Polya’s Problem-Solving Model 

Polya (1957) described four phases of problem solving: understanding the problem, 

devising a plan, carrying out the plan, and looking back. Many people have interpreted the use of 

these elements as a sequential process. There are numerous mathematics textbooks that reduce 

problem solving to a four-step procedure (e.g., Bennett, 2007; Larson, Kanold, & Stiff, 1993; 

Smith, Charles, Keedy, Bittinger, & Orfan, 1988), but as Wilson and colleagues (1993) observed, 

one can better interpret Polya’s work by considering problem solving as a dynamic and cyclic 

process in which problem solvers move among the phases as they work through a problem. For 

example, one may find that devising a plan helps in understanding the problem or that looking 

back leads to better ways to solve the problem. Polya (1957) explained this nonsequential 

process:  

Trying to find the solution, we may repeatedly change our point of view, our way of 
looking at the problem. … Our conception of the problem is likely to be rather 
incomplete when we start the work; our outlook is different when we have made some 
progress; it is again different when we have almost obtained the solution. (p. 5) 
 

Even though the phases are nonsequential and a problem solver does not necessarily leave one 

phase before entering another, it is helpful to describe each phase individually.  

Understanding the problem requires identifying the unknown, the data, and the 

conditions of the problem. As Polya (1957) stated, “It is foolish to answer a question that you do 

not understand” (p. 6). He also noted that a problem solver must be motivated to solve the 

problem, and that teachers can motivate students by choosing good and interesting problems that 

are at the right difficulty level. 
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One must have at least a cursory understanding of the problem in order to come up with a 

plan of attack. Devising a plan is often the crux of the solution process. In fact, according to 

Polya (1957), “the main achievement in the solution of a problem is to conceive the idea of a 

plan” (p. 8). The plan may develop slowly or dawn on the problem solver rather suddenly. One 

may devise a plan by comparing the problem to a previously solved problem or by solving a 

simpler—or similar—problem. 

Carrying out the plan is the next phase Polya (1957) described. He compared devising a 

plan to carrying it out: 

To devise a plan, to conceive the idea of the solution is not easy. It takes so much to 
succeed; formerly acquired knowledge, good mental habits, concentration upon the 
purpose, and one more thing: good luck. To carry out the plan is much easier; what we 
need is mainly patience. (p. 12) 
 

Patience is required not only for carrying out the plan, but also for making necessary adjustments 

to the plan or even abandoning the plan altogether and devising a new plan. 

 As good problem solvers work on a problem, they pay attention to their solution process 

both during and after they have solved the problem. Looking back includes checking the answer, 

but it is much more than that. It involves reviewing both the problem and the solution; looking 

for other solution methods; considering extensions, connections, and related problems; and 

reflecting on one’s solution process. Polya (1962) claimed, “The best time to think about 

methods may be when the reader has finished solving a problem” (p. xii). It is particularly 

difficult to motivate students to look back after solving a problem, but according to Polya (1957), 

“a good teacher should understand and impress on his students the view that no problem 

whatever is completely exhausted” (p. 15). 

Polya’s phases provide a helpful framework for looking at problem solving, but they 

constitute only part of his contribution. A distinctive feature of Polya’s conception of problem 
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solving is the notion of heuristic. The bulk of How to Solve It (1957) is a section titled “Short 

Dictionary of Heuristic” in which Polya identified strategies that apply to a wide range of 

problems. He described heuristic as the “study of methods of solution” (p. vii). More recently, 

some mathematics educators have considered heuristic strategies, or simply heuristics, to be 

synonymous with problem-solving strategies, whereas others describe heuristics as being 

contained in a larger set of problem-solving strategies. Schoenfeld (1987b) described heuristic 

strategies this way: 

Heuristic strategies are rules of thumb for making progress on difficult problems. There 
are, for example, heuristic strategies for understanding a problem (focusing on the 
unknown, on the data, drawing a diagram, etc.), for devising a plan (exploiting related 
problems, analogous problems, working backward, etc.), and for carrying out and 
checking a solution. (p. 284) 
 

In this dissertation, I use the terms heuristic and heuristic strategy to refer to items such as those 

Polya suggested in How to Solve It (e.g., add auxiliary lines to a geometric figure, solve a related 

problem, examine a special case, or work backwards), and I use problem-solving strategy to 

denote elements of a larger set of both general and specific strategies for problem solving. For 

example, there are specific strategies that a problem solver can use to perform tasks such as 

simplifying an algebraic expression, and there are general strategies that a problem solver can 

use with any problem. An example of a general strategy is using intuition to make a conjecture. 

Schoenfeld’s Framework for Problem Solving 

Several decades after Polya’s work, Schoenfeld (1985, 1992) developed a framework for 

mathematical problem solving that built on Polya’s framework and added to our understanding 

of what it means to be a good problem solver. He suggested phases of problem solving akin to 

Polya’s: read, analyze, explore, plan, implement, and verify. In Schoenfeld’s description, as in 

Polya’s, a good problem solver moves among the phases in a nonsequential fashion. Schoenfeld 
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(1985) employed a think-aloud protocol to gain insight into problem solvers’ decision making. 

He devised a method for charting the progress of problem solvers as they work on a problem and 

noted that novice problem solvers moved in one direction, from reading the problem statement to 

implementing a strategy, without considering whether the strategy was leading to a solution. On 

the other hand, expert problem solvers analyzed the problem before implementing a strategy and 

then moved back and forth among the different phases of problem solving (see also Schoenfeld, 

1992). 

 For someone to be a successful problem solver, a number of elements must be in place. In 

Schoenfeld’s (1985, 1992) framework, these elements are resources, problem-solving strategies 

(including heuristics), control, and beliefs and affects. A set of resources—or the knowledge 

base—refers to mathematical knowledge at a problem solver’s disposal. Resources include facts, 

concepts, algorithms, and routine procedures. Schoenfeld (1992) made a distinction between 

algorithms and routine procedures, noting that algorithms are guaranteed to work, whereas 

“routine procedures are likely to work, but with no guarantees” (p. 350). For example, the long 

division algorithm for dividing polynomials is guaranteed to work if one follows the steps 

correctly. As an example of a “routine [procedure that is] likely to work, but with no 

guarantees,” Schoenfeld described a common strategy for proving elements of a geometric figure 

are congruent: First show that the elements are corresponding parts of congruent triangles. He 

noted that this strategy is one of several “proof techniques [that are] not algorithmic, but they are 

somewhat routine” (p. 350). 

Mathematical knowledge alone is not enough to make someone a good problem solver; 

problem-solving strategies are necessary in order to help problem solvers use their resources 

effectively and efficiently. For example, suppose a problem requires one to calculate the area of 
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an irregular shape. A problem solver needs resources such as the area formulas for rectangles, 

triangles, or other figures, but the solver also needs strategies in order to make use of these 

resources. One potential strategy is to first divide the irregular shape into familiar shapes whose 

area formulas are known, then add the areas of the individual shapes in order to determine the 

area of the irregular shape. 

 The third component of problem solving Schoenfeld mentioned is control. Control falls 

under the category of metacognition, a broad term that includes knowledge of one’s own 

cognition, monitoring—or control—of cognitive processes, and reflection. Schoenfeld (1985) 

described control as “resource allocation during problem-solving performance” (p. 143). More 

specifically, control involves deciding what resources may be useful, identifying what strategies 

will provide an efficient way to solve a problem, “recovering from inappropriate choices,” and 

monitoring one’s progress while solving a problem (p. 99). 

Kilpatrick (1985) also noted the importance of resources, strategies, and control: 

“Successful problem solving in a given domain depends upon the possession of a large store of 

organized knowledge about that domain, techniques for representing and transforming the 

problem, and metacognitive processes to monitor and guide performance” (p. 11, italics added).  

 Finally, beliefs and affects refer to “an individual’s understandings and feelings that 

shape the ways that the individual conceptualizes and engages in mathematical behavior” 

(Schoenfeld, 1992, p. 358). Confidence in one’s ability to solve a problem, belief that the 

problem is worth solving, and conviction that mathematics itself is a sensible and worthwhile 

endeavor all play a part in successful problem solving. According to Silver (1982), one of the 

“components of a mathematical belief system which may have important implications for how 

one approaches mathematical problems [is] the belief that there is usually more than one way to 
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solve a problem” (p. 21). Schoenfeld discussed typical student beliefs that can be a hindrance to 

the students’ ability to be good problem solvers. For example, “Mathematics problems have one 

and only one right answer,” “Students … will be able to solve any assigned problem in 5 minutes 

or less,” and “Mathematics is a solitary activity” are beliefs that have a negative impact on 

students’ ability to solve problems (Schoenfeld, 1992, p. 359; see also Schoenfeld, 1988). 

The Importance of Metacognition  

 Metacognition warrants special attention because of the significant role it plays in 

problem solving. As Polya implied (1957, 1962, 1965), and as Schoenfeld (1985) stated 

explicitly, metacognitive behavior can be the difference between success and failure for the 

problem solver. Simply stated, metacognition is thinking about thinking. Evidence of problem 

solvers’ metacognitive behavior includes awareness—not simply use—of some or all of the 

following: understanding what the problem is asking, choosing a particular strategy to solve the 

problem, evaluating whether the strategy is leading closer to a solution, and examining whether 

the answer makes sense. 

One could argue that Polya valued metacognition in mathematical problem solving even 

though he never used the term. According to Silver (1982), “If we adopt a metacognitive 

perspective, we can view many of Polya’s (1957) heuristic suggestions as metacognitive 

prompts” (p. 21). In Polya’s (1962) looking back phase, the problem solver  

may ask himself many useful questions: “What was the decisive point? What was the 
main difficulty? What could I have done better? I failed to see this point: which item of 
knowledge, which attitude of mind should I have had to see it?” (p. xii) 
 
Metacognition includes not only knowledge of one’s own cognition, but also regulation 

of one’s behavior in response to that knowledge (Lester, 1985). This concept is known as self-

regulation, which is closely related to control (to use Schoenfeld’s term). Schoenfeld (1987a) 
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summed up the notion of self-regulation: “It’s not only what you know, but how you use it (if at 

all) that matters” (p. 192). 

Metacognitive behavior during problem solving was a hot topic during the 1980s (e.g., 

Campione, Brown, & Connell, 1988; Garofalo & Lester, 1985; Schoenfeld, 1983, 1987a; Silver, 

1982), but research on metacognition is no longer prominent in mathematics education. 

Metacognition does, however, remain a tacit part of the discussion of problem solving. For 

example, the mathematics education literature is replete with terms such as monitoring and 

reflection, and ideas such as self-assessment and knowledge of one’s own cognition. The NCTM 

(2000) claimed that development of students’ metacognitive abilities is an important part of 

classroom instruction: “Students … should be encouraged to monitor and assess themselves. 

Good problem solvers realize what they know and don’t know [and] what they are good at and 

not so good at” (p. 260). 

The following quotation shows the multiple dimensions of metacognition that the NCTM 

(2000) values in mathematics instruction. These dimensions include reflection, metacognitive 

questions, and monitoring.  

Reflective skills (called metacognition) are much more likely to develop in a 
classroom environment that supports them. Teachers play an important role in 
helping to enable the development of these reflective habits of mind by asking 
questions such as “Before we go on, are we sure we understand this?” “What are 
our options?” “Do we have a plan?” “Are we making progress or should we 
reconsider what we are doing?” “Why do we think this is true?” Such questions 
help students get in the habit of checking their understanding as they go along. … 
As teachers maintain an environment in which the development of understanding 
is consistently monitored through reflection, students are more likely to learn to 
take responsibility for reflecting on their work and make the adjustments 
necessary when solving problems. (pp. 54–55, italics in original) 
 

Note the emphasis on the teacher’s role in fostering metacognition. Teachers are 

responsible for creating classroom environments in which they encourage metacognitive 
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behavior and give students opportunities to reflect on their work. Teachers encourage 

metacognition by modeling metacognitive behavior—for example, by thinking aloud—

and by asking metacognitive questions. 

Theoretical Framework 

 Schoenfeld’s (1985, 1992) framework for mathematical problem solving 

summarizes my assumptions about problem solving and served as the theoretical 

framework for the present study. As Schoenfeld’s framework suggests, problem solving 

is multifaceted. One consequence of this multi-faceted nature is that the teacher’s role in 

helping students develop their problem-solving ability is complex. Because successful 

problem solving requires mathematical knowledge, problem-solving strategies, 

metacognitive control, and positive beliefs, it is fitting to investigate actions teachers can 

take to facilitate their students’ development of these aspects of problem solving. These 

actions include practices for teaching through problem solving that I describe briefly in 

this chapter, and more thoroughly in chapter 4 where I discuss how the teachers in this 

study used the practices. In chapter 5, I discuss connections between the elements of 

Schoenfeld’s framework and practices for teaching through problem solving. 

History of Research in Problem Solving and Problem-Solving Instruction 

An emphasis in mathematics education on problem solving has a long history. Stanic and 

Kilpatrick (1988) traced the history of problem solving in mathematics education, giving 

examples of problems from as far back as ancient Egypt and China. They noted that whereas 

“problems have occupied a central place in the school mathematics curriculum since antiquity, 

… problem solving has not” (p. 1). It was not until the second half of the 20th century that 

problem solving came to the forefront of research in mathematics education. In the 1980s in 
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particular, problem solving had the attention of many of those seeking reform in mathematics 

education. The recommendation of the NCTM (1980) that “problem solving must be the focus of 

school mathematics in the 1980s” (p. 1) began a decade of research into various aspects of 

problem solving, from how experts solve problems to effective ways to teach problem solving. 

The importance of problem solving in doing, learning, and teaching mathematics was 

recognized well before the NCTM and others made it a primary focus in the 1980s. Certainly 

humankind has always faced problems, mathematical and otherwise, and has devised ways to 

solve them. To understand a modern view of problem solving in the context of teaching and 

learning mathematics, one must look to the mid 20th century. Most notably, Polya (1957, 1962, 

1965) emphasized problem solving in school mathematics and published several books on the 

topic including the seminal work How to Solve It and two volumes of Mathematical Discovery. 

Many years before research on problem solving became popular, Polya described the nature of 

problems, problem solving, and the teaching of problem solving.  

In the sections that follow, I elaborate on some of the specific areas of research on 

problem-solving instruction. I have divided this review into two main time periods: 1960–1985 

and 1985–2010. Enthusiasm in the mathematics education community for problem solving and 

problem-solving instruction was particularly high in the 1980s. According to Lester (1994), this 

enthusiasm began to decline in the late 1980s. At the very least, the late 1980s saw a change in 

the kinds of questions mathematics education researchers were asking about problem solving. 

For example, in the 1990s many researchers shifted their focus from the role of the teacher to the 

role of curriculum in helping students become better problem solvers. 
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Research in Problem-Solving Instruction: 1960–1985 

Reflecting on research on problem solving instruction from 1960 to 1985, Kilpatrick 

(1985) stated, “Research over the past two and a half decades suggests that ‘slowly and with 

difficulty’ is probably the best answer to the question of how problem solving is learned” (p. 8). 

Presumably mathematics education research in problem-solving instruction has made progress 

since the mid 1980s, but reflecting on the research as of 1985, Kilpatrick noted, “We do not have 

a final vision of what problem solving is and how to teach it, but we are much more keenly 

aware of the complexity of both” (p. 13). 

In his summary of research on teaching mathematical problem solving, Kilpatrick (1985) 

highlighted various definitions of problem and gave examples of how mathematics educators 

have used problems. He described a spectrum of problem types as Polya (1965) had classified 

them, from those requiring mere “mechanical application of a rule that has just been presented or 

discussed” (Kilpatrick, 1985, p. 4) to those requiring “a novel combination of rules or examples 

… and [requiring] a high degree of independence and the use of plausible reasoning” (p. 4). 

Some researchers, primarily psychologists, characterized problems as items Kilpatrick described 

as “straightforward ‘word problems’ … meant to give students an opportunity to apply what they 

might have learned” (p. 4). These researchers searched for ways to increase students’ abilities to 

solve those kinds of problems. Other researchers, primarily mathematics educators, did not focus 

primarily on routine word problems but gave attention to ways of helping students to solve 

“nonroutine mathematical problems of greater complexity and greater mathematical interest than 

the ordinary word problem” (p. 5). 

Stein, Boaler, and Silver (2003) stated, “The 1970s and 1980s were particularly 

productive times, with a consolidation of research on the ways problem-solving activities can 
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support students’ learning” (p. 245). During those decades, problem solving was a prominent 

topic of discussion and research, with much of the focus being on expert problem solvers, 

heuristics training, and metacognition in problem solving (e.g., Charles & Lester, 1984; Garofalo 

& Lester, 1985; Lester, 1985, Schoenfeld, 1980, 1985, 1987a, 1992; Silver, 1982). Mathematics 

education experts remain interested in characteristics of successful problem solving, including 

metacognitive behavior and proficiency with a wide range of heuristic strategies. For example, 

the NCTM (2000) stated, “A significant part of a teacher’s responsibility consists of planning 

problems that will give students the opportunity to learn important content through their 

explorations of the problems and to learn and practice a wide range of heuristic strategies” (p. 

341). 

Heuristics training. Kilpatrick (1985) described researchers’ efforts to use what was 

known about expert problem solving behavior to formulate a plan for instruction. For example, 

expert problem solvers make use of heuristic strategies (Schoenfeld, 1985). Arcavi, Kessel, 

Meira, and Smith, (1998) researched Schoenfeld’s problem-solving course for undergraduates. 

They focused on the first two days of class in which Schoenfeld set the tone for the course. A 

key feature of doing mathematics in the course was the use of heuristics for solving 

mathematical problems. At the beginning of the course, Schoenfeld provided problems and, after 

giving the students ample time to work on solutions, introduced particular heuristics that were 

helpful for solving those problems and that would apply to other problems students would see 

later in the course. Examples of heuristics Schoenfeld highlighted were try specific values (in 

order to find a pattern, for example), solve an easier related problem, and exploit extreme cases. 

Schoenfeld relied heavily on How to Solve It (Polya, 1957) as a source of heuristic strategies and 

good mathematics problems.  
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Several researchers conducted studies in which they investigated the effects of heuristics 

training. Results were mixed. Some researchers found that students who were taught heuristics 

performed better on problem-solving tasks in which those heuristics were useful (e.g., Guernon, 

1989). Charles and Lester (1984) found that children’s problem solving improved after receiving 

instruction that emphasized use of heuristic strategies. In other words, some evidence suggests 

students can learn problem-solving strategies. Other researchers pointed out the limitations of 

heuristics training. For example, Kilpatrick (1985) noted that heuristics training often reduces a 

problem-solving strategy to an algorithm or other procedure that “cannot be used with problems 

to which the algorithm does not apply” (p. 9). That is, knowledge gained from heuristics training 

may not transfer to novel problem situations. Schoenfeld (1987b) summed up the disappointment 

he and others felt when they saw the limitations of heuristics training, particularly the limitations 

of training students to use Polya’s dictionary of heuristic strategies:  

Largely because Polya’s ideas seemed so right, the math-ed literature was chock full of 
studies designed to teach problem solving via heuristics. Unfortunately, the results—
whether in first grade, algebra, calculus, or number theory, to name a few—were all 
depressingly the same. … Despite all the enthusiasm for the approach, there was no clear 
evidence that the students had actually learned more as a result of their heuristic 
instruction, or that they had learned any general problem-solving skills that transferred to 
novel situations. (pp. 287–288, italics in original) 
 

It is important to note that Schoenfeld’s comments were about the limitations of heuristics 

training and not a criticism of Polya’s model. It is also important to note that Schoenfeld had 

some success teaching heuristic strategies in his problem-solving course (e.g., Arcavi et al., 

1998, Schoenfeld, 1985). His comments simply highlight that heuristics training was not as 

widely successful as many mathematics educators had hoped. 

Metacognition training. One reason heuristics training may not have been as effective as 

researchers hoped was that metacognitive considerations were not taken into account (Lester, 
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1985). Some research indicates that students can learn metacognitive skills through instruction 

(Posamentier & Jaye, 2006). For example, Montague (2007) found that students could be taught 

to effectively use metacognitive techniques such as self-questioning and self-monitoring while 

solving problems. Schoenfeld (1987b) explained the value of emphasizing metacognition when 

teaching problem solving: 

There is evidence that when students get coaching in problem solving that includes 
attention to such things—when they are encouraged to think about issues like “What are 
you doing? Why are you doing it? How will it help you solve the problem?”—their 
problem-solving performance can improve dramatically. (p. 290) 
 

Posamentier and Jaye (2006) noted that as students develop metacognitive skills, particularly the 

use of metacognitive questions, they become more successful problem solvers. Examples of 

questions teachers can encourage students to ask themselves include the following: 

“What technique did I use to solve a similar problem in the past?” “How do I find the 
derivative?” “What is the problem asking for?” “What information am I given?” Students 
should also ask themselves general questions designed to self-regulate their performance, 
such as, “Is there anything I don’t understand?” “Am I headed in the right direction?” …  
“Have I made any careless mistakes?” (p. 80) 
 

Research in Problem-Solving Instruction: 1985–2010 

Following the mid 1980s, there was a lull in research in problem solving and problem-

solving instruction. Lester (1994, pp. 667–668) offered a few explanations: 

1. “Other issues have drawn attention away from problem solving”—issues such as 
“beliefs about the nature of mathematics, sociocultural influences on mathematics 
learning, applications of mathematics, and assessment.” 

2. “We think we already know all about problem solving.” 
3. “Constructivism has replaced problem solving as the dominant ‘ideology’ driving 

mathematics education research.” 
4. “Problem solving is even more complex than we once thought.” 
 

Lester went on to say that more problem-solving research is necessary. He pointed in particular 

to the need to investigate the role of the teacher in problem-solving instruction. 
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Beginning in the mid 1990s many mathematics education researchers (e.g., Harwell et al., 

2007; Huntley, Rasmussen, Villarubi, Sangtong, & Fey, 2000; Riordan & Noyce, 2001; 

Schoenfeld, 2002; Thompson & Senk, 2001) have focused their efforts on investigating the 

effectiveness of standards-based mathematics curriculums—that is, curriculums that were written 

in response to the NCTM (1989) Curriculum and Evaluation Standards for School Mathematics 

and, more recently, Principles and Standards for School Mathematics (NCTM, 2000). The focus 

of this research has been on curriculum, much of which is problem-centered, rather than 

specifically on teaching practices. A few investigations of teacher behavior have occurred in the 

context of implementation of problem-based curriculums.  

Now, several years into the 21st century, some mathematics education researchers have 

turned their attention to teaching through problem solving. Teaching through problem solving is 

a relatively new area of interest, so research is scarce; advice, however, is plentiful. The NCTM 

published a two-volume series titled Teaching Mathematics Through Problem Solving (Lester & 

Charles, 2003; Schoen, 2003) that gives descriptions of, and arguments for, teaching through 

problem solving. 

Practices for Problem-Solving Instruction 

There are at least seven practices for problem-solving instruction that mathematics 

education researchers have claimed are important for helping students grow in their problem-

solving ability (see Figure 1). I compiled this summary based on the research of Kilpatrick 

(1985), Lester (1985), Grouws (1985); Polya’s (1957, 1962, 1965) advice; and the more recent 

work of mathematics educators and mathematics education researchers (e.g., Arcavi et al., 1998; 

Hiebert & Wearne, 2003; Kahan & Wyberg, 2003; Marcus & Fey, 2003; NCTM, 2000; 

Posamentier & Jaye, 2006; Schoen, 2003; Stein et al., 2003). The following paragraphs contain a 



 

31 

review of some of the literature I consulted to compile the list in Figure 1. Although much of the 

literature I cite was written over 25 years ago, more recent literature confirms the advice 

researchers have given over several decades.  

1. Give lots of problems. 
2. Give “good” problems. 
3. Teach specific or general problem-solving strategies (including heuristics). 
4. Model problem solving. 
5. Limit teacher input—for instance, by having students work in small groups. 
6. Promote metacognition—for instance, by asking metacognitive questions or 

encouraging students to be reflective. 
7. Highlight multiple solutions. 

 Figure 1: Seven practices for problem-solving instruction. 

Kilpatrick (1985) identified five categories among the many perspectives on how to teach 

problem solving and noted “most programs of problem-solving instruction combine features of 

several categories” (p. 9). The five categories are as follows: 

1. Osmosis: Give students lots of problems to solve. Kilpatrick commented that solving 
lots of problems is necessary, but probably not sufficient, for becoming a better 
problem solver. 

2. Memorization: Teach heuristic strategies as procedures or algorithms to be 
memorized and applied. In Kilpatrick’s view, “such approaches can be effective 
within narrow limits, but they cannot be used with problems to which the algorithm 
does not apply” (p. 9). 

3. Imitation: Model problem solving for students. 
4. Cooperation: Have students work in groups to solve problems. 
5. Reflection: “Get the problem solver to reflect on his or her progress in problem 

solving and to assess the effectiveness of the procedures being used” (p. 10). 
Reflection is one element of metacognitive behavior. 

 
Lester (1985) summarized the research on problem-solving instruction and noted that 

effective instruction includes an emphasis on the development of general and specific problem-

solving strategies, including heuristics. He also claimed that problem-solving instruction should 

include having students solve lots of problems and giving attention to “the ‘guiding forces’ of 

problem solving (i.e., the metacognitive aspects)” (p. 45). 
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Polya (1962) noted how important it is that students have the opportunity to imitate a 

teacher who models problem solving. In addition, Polya advocated giving students lots of 

problems to solve because “imitation and practice” are vital for improving problem-solving 

ability:  

Solving problems is a practical art, like swimming, or skiing, or playing the piano: You 
can learn it only by imitation and practice. … If you wish to learn swimming you have to 
go into the water, and if you wish to become a better problem solver you have to solve 
problems. (p. v) 
 

Teachers can model problem-solving behavior, including elements of metacognition, by thinking 

aloud when demonstrating problem solving. Polya (1957) noted that sometimes teachers should 

act as if they do not know how to solve the problem in order to model authentic problem-solving 

behavior. More recently, Grouws (2003) claimed that it is important that the teacher model 

problem solving: 

A teacher must do some acting as he or she solves a task for the class, as Polya (1957) 
pointed out long ago. … As we all know, solving a mathematics problem involves 
advances and retreats, and moments of frustration and excitement, to name but a few of 
the cognitive and emotional components. A teacher should communicate these 
components to students while demonstrating a solution to a task, teaching students not 
always to expect a smooth march to a mathematical problem’s solution. Accepting that 
difficulties are normal and that they should not be a cause for distress or quitting is a 
lesson that can have positive long-term effects. For this reason alone, teachers need to 
regularly solve problems in front of the class. (pp. 138–139) 
 

In other words, modeling problem solving not only has the positive effect of helping students see 

how mathematics can be used to solve problems but also shows that perseverance and patience 

are part of the process. 

The descriptions Lester, Kilpatrick, and Polya offered summarize the research and 

perspectives on problem-solving instruction as of 1985. These themes continue to be evident in 

more recent literature (e.g., Arcavi et al., 1998; NCTM, 2000; Posamentier & Jaye, 2006; 

Schoen, 2003; Stein et al., 2003) and are frequently cited as being important in problem-centered 
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instruction. Another theme that is implicit in the lists above and that has been made more explicit 

in the last 10 years is the importance of giving students engaging and mathematically rich 

problems (e.g., Hiebert & Wearne, 2003; Kahan & Wyberg, 2003; Marcus & Fey, 2003; NCTM, 

2000; Posamentier & Jaye, 2006). 

Experts, particularly in the last 15 years or so, have recommended that teachers highlight 

multiple solutions (e.g., Grouws, 2003; Hiebert et al., 1996; Hiebert & Wearne, 2003; NCTM, 

2000). Highlighting multiple solutions includes comparing the merits of different solutions. 

Hiebert and colleagues (1996) explained: 

The teacher bears the responsibility for developing a social community of students that 
… shares in searching for solutions. A critical feature of such communities is that the 
focus of examination and discussion be on the methods used to achieve solutions. 
Analyzing the adequacy of methods and searching for better ones are the activities 
around which teachers build the social and intellectual community of the classroom. (p. 
16) 
 

Research on Benefits of a Problem-Based Approach to Instruction 

As I mentioned above, beginning in the mid 1990s, much of the research related to 

problem solving centered on the standards-based curriculums (e.g., Harwell et al., 2007; Huntley, 

et al., 2000; Riordan & Noyce, 2001; Schoenfeld, 2002; Thompson & Senk, 2001). A few 

researchers have investigated teaching practices—that is, the role of the teacher in problem-

solving instruction—but most studies focused on the curriculums themselves. In the following 

sections I discuss studies of both types: first those that focus on curriculums and then those that 

focus on instruction. 

Problem-Based Curriculum 

 Research on the value of standards-based curriculums suggests that a focus on problems 

and problem solving in the mathematics classroom enhances student learning. Standards-based 

curriculums typically emphasize group work, multiple solutions, student reasoning, multiple 
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mathematical representations, complex problems, and real-world applications. In many cases, 

these curriculums are specifically problem-based in that mathematical concepts are presented 

using problems. One such curriculum, the Connected Mathematics Project (Lappan, Fey, 

Fitzgerald, Friel, & Phillips, 1991–1997, 2002, 2006) is explicitly “problem-centered” in that 

each lesson has three parts: “launching the problem,” “exploring the problem,” and 

“summarizing the problem” (Riordan & Noyce, 2001, p. 374).  

Some studies have shown the benefits of using standards-based curriculums (e.g., 

Harwell et al., 2007; Huntley et al., 2000; Riordan & Noyce, 2001; Schoenfeld, 2002; Thompson 

& Senk, 2001). For example, Hartwell et al. (2007) found that after spending 3 years using a 

standards-based curriculum—either Core-Plus Mathematics, the Interactive Mathematics 

Program, or Mathematics: Modeling Our World—high school students met or exceeded the 

national average on standardized achievement tests. These students also scored higher on the 

New Standards Reference Examination in Mathematics, a test focused on mathematical skills, 

concepts, and problem solving. Moreover, students using standards-based curriculums tended to 

have a more positive view of mathematics and its usefulness than did students using traditional 

curriculums. 

 Riordan and Noyce (2001) compared the mathematics achievement of students using a 

standards-based curriculum—Everyday Mathematics in elementary school or the Connected 

Mathematics Project in middle school—to those using traditional curriculums. Results indicated 

“that students using either of the [standards-based] programs are still capable of performing 

procedural arithmetic items … and doing so in a traditional, multiple choice format while also 

demonstrating an ability to solve higher order mathematics problems” (p. 390). Riordan and 

Noyce concluded, “The results of the study reported in this article add to the accumulating body 
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of evidence that standards-based mathematics programs have a positive impact on student 

achievement” (p. 392). 

As notable as these studies are, they focus solely on the use of standards-based 

curriculums and, for the most part, ignore particular teaching practices that accompany use of the 

curriculums. Research that focuses solely on the apparent effects of a particular curriculum 

neglects the most important factor in classroom instruction: the teacher. Boaler (2008) stated,  

The most important factor in school effectiveness, proved by study after study, is not the 
curriculum but the teacher. Good teachers can make mathematics exciting even with a 
dreary textbook. Conversely, bad teachers do not become good just because a book is 
written well. (p. 32) 
 

Problem-Based Instruction 

There is very little research on the details of teaching through problem solving, but there 

are studies that indicate that the broader set of reform or standards-based teaching practices can 

enhance student learning, particularly when implemented in combination with a standards-based 

curriculum. Wood and Sellers (1997) conducted a longitudinal study in which they examined the 

impact of a problem-centered approach to instruction. The researchers investigated the 

mathematical achievement and beliefs of three groups of elementary school students. One group 

received 2 years of problem-centered instruction, a second group received 1 year of problem-

centered instruction and 1 year of traditional instruction, and the third group received 2 years of 

traditional instruction. Problem-centered classes were described as those in which “a typical 

mathematics lesson frequently began with children working in pairs on the problem-centered 

instructional activities. This was followed by class discussion in which the children generally 

gave explanations for their solutions to the activities” (p. 166). Wood and Sellers found that 

students with 2 years of problem-centered instruction scored higher on standardized achievement 

tests and demonstrated better mathematical understanding than students in the other two groups. 
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Furthermore, results of the study indicated that these changes remained even after students 

returned to traditional instruction. In addition, students in the problem-centered classes 

experienced changes in their beliefs about mathematics and about themselves as problem solvers. 

In contrast to the students receiving traditional instruction, which is frequently accompanied by a 

spirit of competition, students in the problem-centered classes “were not motivated by a desire to 

be better than others (ego orientation) but rather by a belief in the importance of finding their 

own ways to solve problems (task orientation)” (p. 171). 

McCaffrey, Hamilton, Stecher, Klein, Bugliari, and Robyn (2001) investigated the 

relationship between reform teaching and student achievement in high school mathematics 

courses. They examined this relationship in two contexts: classrooms in which teachers used a 

traditional mathematics curriculum and classrooms in which teachers used a problem-based 

curriculum. According to McCaffrey et al., reform teaching practices include group work, 

investigations, open-ended questions, emphasis on multiple solution methods, use of real-world 

problems, and long-term projects. They noted that reform teachers focus on problem solving and 

allow students to rely on mathematical reasoning to evaluate solutions rather than looking to the 

textbook or the teacher for answers. Results of this study indicated that reform teaching practices 

in combination with the use of a problem-based curriculum were associated with growth in 

student achievement. 

Schoen, Cebulla, Finn, and Fi (2003) investigated the effects of reform teaching on 

student achievement in high school mathematics. Teachers in the study used Core-Plus 

Mathematics, a standards-based curriculum that emphasizes problem solving.  Researchers found 

that reform teaching practices were associated with growth in student achievement. Student 

achievement, in this case, was measured using the Iowa Test of Educational Development 
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(ITED-Q), a standardized test designed to assess students’ mathematical reasoning, conceptual 

understanding, and problem solving. Classroom observations were a crucial component of the 

study. By observing teachers, researchers ascertained the qualities of reform teaching practices 

that each teacher exhibited. Schoen and colleagues used a list of criteria developed from the 

NCTM (2000) standards and the Core-Plus curriculum to determine teachers’ use of reform 

teaching. These criteria included “open-ended questioning to facilitate student thinking and 

exploration,” evidence that students were encouraged to use mathematical reasoning to assess 

solutions rather than depend solely on the teacher or textbook, ample time for students to engage 

in investigations, group work, use of technology and manipulatives, and questioning of students’ 

“understanding and problem-solving strategies” (Schoen et al., 2003, p. 236). Results of this 

study indicated that “teacher [practices] … that [were] significantly and positively associated 

with growth in student achievement” included collaborating with other teachers, having students 

work in small groups, and attaining “a high observer rating of teaching based on the criteria for 

effective reform teaching” (p. 255). Schoen and colleagues noted that the increase in student 

achievement “was consistent across a wide range of students in schools with varying SES 

[socioeconomic status] levels, sizes and ethnic mixes of school populations, beginning 

achievement levels of the students, lengths of classes, and numbers enrolled in classes” (p. 255). 

As these studies indicate, a standards-based approach to teaching can have a positive 

impact on students’ learning of mathematics. The following section looks more specifically at 

the standards-based approach to mathematics instruction that was the focus of the present study: 

teaching through problem solving. 
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Teaching Through Problem Solving 

There is not much research on the practices of teaching through problem solving 

specifically—that is, what this instructional approach actually looks like in practice. But in their 

review of research on problem-solving instruction, Stein and colleagues (2003) noted a few 

studies that indicated that teaching through problem solving led to deeper mathematical 

understanding among students than traditional teaching approaches did. For example, “Boaler 

(1997) found that students who had learned through open-ended projects developed more 

flexible and adaptable forms of knowledge and understanding than did those students who had 

learned through more traditional methods of teaching” (p. 251). Stein and colleagues cited a 

1993 study by Hiebert and Wearne in which students in a traditional classroom were compared 

with those in a setting in which the teacher emphasized problem solving. Hiebert and Wearne 

“found that students who learned the most were those who spent more time on each problem, 

with the additional time being used by students to describe the strategies they used and explain 

why those strategies worked” (Stein et al., 2003, pp. 252–253). 

There are many advocates for teaching mathematics through problem solving. Schoen 

(2003) claimed that problem solving should be a “means for acquiring new mathematical 

knowledge,” rather than something students wait to do until after learning a concept or skill (p. 

x). According to the NCTM (2000), 

Problem solving … can serve as a vehicle for learning new mathematical ideas and skills 
(Schroeder and Lester, 1989). … Good problems can inspire the exploration of important 
mathematical ideas, nurture persistence, and reinforce the need to understand and use 
various strategies, mathematical properties, and relationships. (p. 182) 
 

Hiebert et al. (1996) argued that “reform in curriculum and instruction should be based on 

allowing students to problematize the subject. Rather than mastering skills and applying them, 

students should be engaged in resolving problems” (p. 12). Kahan and Wyberg (2003) noted 
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three benefits of teaching through problem solving: “(a) it helps students understand that 

mathematics develops through a sense-making process, (b) it deepens students’ understanding of 

the underlying mathematical ideas and methods, and (c) it engages students’ interest” (p. 20). 

Despite the enthusiasm for this approach to instruction, as I mentioned previously, 

research is scarce on what it looks like to teach through problem solving on a day-to-day basis. 

Most of what mathematics education researchers have to say about specific practices associated 

with teaching through problem solving is in the way of advice. For example, Grouws (2003) 

explained his vision of the teacher’s role in teaching through problem solving: 

Successfully implementing such an approach [i.e., teaching through problem solving] 
involves many teacher decisions and actions, which include, to name a few, choosing 
appropriate tasks, conveying tasks to students in ways that stimulate interest, maintaining 
students’ engagement in tasks, and leading discussions in which the important 
mathematical ideas embedded in the tasks are brought to the surface. (p. 130) 
 

Such advice is well founded because suggestions researchers have given logically follow from 

what the research says about the benefits of problem-based curriculums and instruction. But as 

Boaler (2008) suggested, simply putting a problem-based curriculum in the hands of a teacher 

does not guarantee that teaching through problem solving will occur.  

There is no single model for teaching problem solving most effectively; rather, there are 

many ways to have success in problem-solving instruction. Alan Schoenfeld, who is widely 

considered to be a successful teacher of problem solving, provides one example of how to teach 

problem solving. Arcavi and colleagues (1998) and Santos-Trigo (1998) studied Schoenfeld’s 

problem-solving course for undergraduate students and observed that he employed many of the 

practices listed above, particularly teaching specific problem-solving strategies. These 

researchers were clear—as was Schoenfeld—that his is just one way to teach problem solving. 
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 Posamentier and Jaye (2006) compiled expert advice drawn from mathematics education 

researchers. They examined and distilled research in order to give teachers practical ideas for the 

classroom. In particular, they summarized research on problem solving and problem-solving 

instruction and recommended several specific teaching practices. They reiterated the advice I 

have already discussed about problem-solving instruction—for example, the practices in Figure 

1—but also advocated teaching through problem solving specifically. They recommended that 

teachers “structure teaching of mathematical concepts and skills around problems to be solved, 

using a problem-centered or problem-based approach to learning” (p. 141). That is, “instead of 

starting a unit by using the textbook and telling students about a mathematical topic and 

explaining and demonstrating various concepts, problems, and solution methods, start by giving 

students a meaningful problem to solve” (p. 142). This instructional approach is commonly used 

in Japanese mathematics classrooms, as I describe in the next section. 

The Japanese Model 

Takahashi (2008) described how many Japanese teachers taught mathematics through 

problem solving. He made a distinction between the tendency of many American teachers to first 

show students how to solve a particular kind of problem and then give them the opportunity to 

solve similar problems, and the practice of Japanese teachers to begin the lesson by giving the 

students a problem without first showing them how to do it. The Japanese perspective, as 

Takahashi described it, is that mathematical problems are a means of learning, not just of 

demonstrating what has already been learned.  

Allevato and Onuchic (2008) proposed a teaching approach similar to the Japanese model 

called “Mathematics Teaching-Learning-Evaluation through Problem Solving.” A key element 

of this approach is that when students initially see the problem, “the mathematical content 
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necessary, or most appropriate, to solve the problem has not yet been presented in class” (p. 6). 

Rather, “a problem is the point of departure for learning, and the construction of knowledge 

occurs in the process of solving it” (p. 5). It is only at the end of the lesson, after several students 

have presented solutions, that the teacher summarizes new mathematical concepts and presents 

them explicitly. 

Smith (2004) analyzed video data from the Third International Mathematics and Science 

Study and examined practices teachers from the United States and Japan used. Specifically, she 

compared the behavior of teachers from both countries who used a problem-based approach to 

teach mathematics. She found that even when the problems the teachers assigned were basically 

the same in both countries, more teachers from Japan than from the U.S. helped students see 

mathematical connections and develop conceptual understanding.  

In the following description, “Mrs. Jones” represents a sampling of typical behavior U.S. 

teachers exhibited, and “Mrs. Hamada” represents a sampling of typical behavior Japanese 

teachers exhibited. Mrs. Jones and Mrs. Hamada began their lessons the same way, giving their 

students a problem and allowing ample time to solve it. The problem Mrs. Hamada gave is in 

Figure 2—Mrs. Smith’s problem was comparable but was set in a different context. For each of 

these teachers, one of their goals was to have the class come up with several solution methods so 

that they could discuss the various solutions, compare them, and make mathematical 

connections. When students in Mrs. Jones’s class got stuck, she gave a suggestion for a solution 

method. When she then asked students to devise other methods, they were unwilling. On the 

other hand, when Mrs. Hamada’s student needed help, she directed their attention to the problem 

statement and encouraged them to think about how they could model the situation. Her actions 

prompted the students to come up with various ways to solve the problem. As a result, 
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in the Japanese lesson, the solution methods presented were analyzed and compared. Mrs. 
Hamada and Mrs. Jones valued students’ solution methods. Unfortunately, Mrs. Jones’s 
students presented only one solution method, allowing little room for developing 
mathematical connections across solution methods. Because Mrs. Hamada’s students 
presented more than one solution method, she was able to have them highlight 
mathematical relationships. (Smith, 2004, p. 105) 
 

The Japanese model highlights a defining characteristic of teaching through problem solving: the 

use of problems as a means of learning mathematical content. 

Ken and his brother enjoy chewing gum. One day, the boys go to the candy store and 
buy several packages of gum. Ken bought 18 ten-piece packages of gum, and his brother 
bought 24 five-piece packages of gum. Every day, each of the boys finishes one whole 
pack of gum. One day, they looked at how much gum each boy had. Ken noticed that his 
brother had more pieces of gum than he had. How many days has it been since the boys 
bought gum?  

Figure 2: Gumball task (Smith, 2004, p. 100). 

Calls for Research 

Recall the argument of Stein and colleagues (2003) who said, “One of the crucial 

research questions for the next decade [is], ‘What happens inside classrooms in which problem-

solving approaches are used effectively?’” (p. 250). In addition, according to Grouws (2003), 

The teacher’s role in fostering students’ mathematical learning is central and deserves 
greater attention than it has received in recent years. Does effective mathematics teaching 
involve more than forming small groups and assigning good problems for students to 
solve? Of course it does. (p. 129) 
 

I sought to address these questions in this dissertation study. I was interested in what actually 

happens on a day-to-day basis in the classrooms of teachers who believe that problem solving is 

central to mathematics teaching and learning. Specifically, I wanted to know what practices 

teachers used to teach through problem solving. 
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CHAPTER 3  

METHOD 
Kilpatrick (1978) noted that researchers should formulate research questions before 

considering specific research methods. When it comes to investigating teaching practices, I 

believe that because teaching is complex and nuanced, more meaning can be found in a close 

examination of a few teachers than in a broad look at a large sample of teachers. For that reason, 

I chose a qualitative method to address the research questions in the present study. Berg (2007) 

described this kind of research: “Qualitative research properly seeks answers to questions by 

examining various social settings and the individuals who inhabit these settings. … Qualitative 

procedures provide a means of accessing unquantifiable facts about the actual people researchers 

observe and talk to” (p. 8). Qualitative research methods are useful for addressing different kinds 

of questions than those that quantitative methods can address. Certainly any data that can be 

counted or measured are best gathered and analyzed using quantitative methods, but most human 

behavior is complex and cannot be reduced to quantifiable data. 

 Lester (1985) advocated qualitative methods for conducting research in problem-solving 

instruction. He stated, “Adopting a holistic view of problem solving and problem-solving 

instruction necessitates the use of naturalistic [inquiry] rather than traditional scientific research 

paradigms” (p. 52). By naturalistic inquiry he was referring to qualitative research done in a 

natural setting such as a classroom.  

 Of the many qualitative research methods, I determined that a descriptive case study 

(Berg, 2007) was most appropriate for addressing the research questions in the present study. 

Berg defined case study as “a method involving systematically gathering enough information 

about a particular person, social setting, event, or group to permit the researcher to effectively 
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understand how the subject operates or functions” (p. 283). The present descriptive case study 

involved spending time in teachers’ classrooms and talking with each of them to get a sense of 

their beliefs about mathematical problem solving and the specific teaching practices they 

employed. Of the subjects Berg listed, a group best describes the focus of the present study. That 

is, I was interested in describing teaching practices of a group of teachers who taught through 

problem solving rather than conducting four individual case studies or creating a profile of each 

teacher. 

Some have criticized case study research for not producing findings that are 

generalizable, but Berg (2007) argued,  

When case studies are properly undertaken, they should not only fit the specific 
individual, group, or event studied but also generally provide understanding about similar 
individuals, groups, and events. … The logic behind this has to do with the fact that few 
human behaviors are unique, idiosyncratic, and spontaneous. (pp. 295–296) 
 

Specifically, the present study was an intrinsic case study in which “the role of the researcher is 

not to … test abstract theory or to develop new or grounded theoretical explanations; instead, the 

intention is to better understand intrinsic aspects of the particular [participant or group]” (p. 291).  

In the present study, I was not trying to develop or test a teaching theory or theory of 

problem solving. Rather, I began with the assumption that teaching through problem solving is a 

valid, and in many cases superior, approach to teaching mathematics. I based this assumption on 

advice given frequently over many decades by experts in mathematics education (e.g., Grouws, 

1985; Hiebert & Wearne, 2003; Lester, 1994; Lester & Charles, 2003; Polya, 1957; Schoenfeld, 

1985, 1988; Schoen, 2003) and authorities such as the NCTM (1980, 1989, 2000), as chapter 2 

indicated. I also worked under the assumption, based on the reputation and past performance of 

the teachers in the present study, that these teachers had had success in teaching through problem 

solving. I sought to describe teaching through problem solving by giving examples of how four 
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teachers put this instructional approach into practice. My goal was to investigate practices for 

teaching through problem solving in order to better understand the approach and to promote it as 

well. 

 In any research study, specific methods are chosen with which to gather the data. In order 

to address the research questions in the present study, I determined that interviews with teachers 

and classroom observations were most appropriate. Researchers have called specifically for 

classroom observations as a method for addressing such questions. Grouws (1985) claimed, 

“What is needed are observational studies of problem-solving instruction” (p. 298). Lester (1985) 

suggested that in order to develop a theory of problem-solving instruction, data should be 

“gathered from extensive observations of ‘real’ teachers teaching ‘real’ students ‘real’ 

mathematics in ‘real’ classrooms” (p. 56). 

Participants 

 In the spring of 2010, four high school mathematics teachers who considered problem 

solving to be a priority in their mathematics teaching participated in the study. In considering the 

selection of participants, I took into account several qualities: (a) experience in teaching through 

problem solving, (b) a commitment to that kind of teaching, and (c) a reputation for being 

effective in teaching through problem solving. I relied on word of mouth to locate possible 

participants and made the decision to include these particular teachers using purposeful selection 

(Maxwell, 2005). That is, the teachers were “selected deliberately in order to provide information 

that [could not] be gotten as well from other choices” (p. 88). Three of the teachers—Miss 

Atkinson,1 Mr. Dalton, and Mr. Fulbright—taught at Northridge High School, and the other 

teacher, Mr. Bailey, taught at Tanner Academy.  

                                                
1 All names of teachers and schools are pseudonyms. 
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Northridge High School was a public boarding school for Grades 11 and 12 in a midsize 

city in the southeastern United States. The school curriculum focused on science and 

mathematics, though students took the typical range of high school courses. Northridge had 

approximately 650 students, all of whom were boarders. The school was open only to in-state 

residents, and students came from across the state in proportion to population distribution (i.e., 

Congressional districts). Students had to complete an application process in order to attend, so 

Northridge could be somewhat selective in admitting students. Applicants were evaluated based 

on academic performance, extracurricular or leadership activities, and recommendations from a 

teacher and guidance counselor. Furthermore, applicants were required to show an interest in 

mathematics and science. Students were not required to be mathematically gifted to attend the 

school, and there was a range of mathematical ability in the student population.  

Northridge operated on a schedule that divided the school year into three 10-week 

trimesters rather than the typical two 15-week semesters. Most mathematics courses met for the 

entire year, but there were several that met for only 1 trimester. Classes met 4 days a week, and 

one of these classes was a lab. Labs were 90 minutes, and the remaining 3 class periods each 

week were 50 minutes. The purpose of the lab was to allow time for investigations and activities. 

 Miss Atkinson, Mr. Fulbright, and Mr. Dalton taught at Northridge High School. These 

teachers had each participated in an annual conference held at Northridge that drew mathematics 

teachers from across the country. The purpose of the conference was to give teachers ideas about 

how to implement an instructional approach that emphasized active student learning and problem 

solving. 

Miss Atkinson was in her second year of teaching at Northridge in 2009–2010 and had 9 

years of experience teaching high school mathematics. She had a Ph.D. in Mathematics 
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Education and was a member of NCTM. She had been a frequent presenter at conferences for the 

state chapters of both NCTM and the Association of Mathematics Teacher Educators. During the 

2009–2010 school year, she taught Precalculus and Algebra 3. In addition to being a presenter at 

Northridge’s annual conference, Miss Atkinson served as the conference organizer in 2009 and 

2010. 

 Mr. Fulbright had 12 years of teaching experience and had taught at Northridge for 7 of 

those years. During the 2009–2010 school year, he taught Advanced Placement (AP) Calculus 

AB and AP Statistics. He had been a leader in the College Board’s AP Statistics program and 

had written resource materials for AP Statistics teachers. Mr. Fulbright had a Ph.D. in Statistics 

and was a member of NCTM and the American Statistical Association (ASA). He had been a 

frequent presenter at various conferences for high school mathematics teachers, including 

Northridge’s annual conference. 

 Mr. Dalton had taught at Northridge for 29 years and had a total of 35 years of teaching 

experience. In 2009–2010, he taught AP Statistics, Mathematical Modeling, Graph Theory, 

Modeling with Matrices, Combinatorics, and Modeling with Differential Equations. Northridge’s 

trimester system allowed him to offer so many different classes during a single school year. Mr. 

Dalton had a Ph.D. in Mathematics Education and was a member of NCTM, ASA, and the 

Mathematical Association of America (MAA). He was a contributing author of several high 

school mathematics textbooks and had participated in the development of various NCTM 

standards projects. Mr. Dalton also had been a frequent presenter at regional and national 

meetings of the MAA, various AP meetings and workshops, and other conferences focused on 

mathematics education, including the annual conference at Northridge. 
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Tanner Academy, where Mr. Bailey taught, was a private college preparatory school in a 

midsize city in the southeastern United States. It was a boarding school, and approximately 30% 

of the high school students (Grades 9–12) were boarders. There were approximately 1100 

students in Grades 6–12, with about 700 students in Grades 9–12. The daily schedule at Tanner 

Academy was such that classes met 4 days a week for two 55-minute periods and two 60-minute 

periods. This schedule allowed time during the week for students to be involved in activities and 

to attend assemblies and colloquia. 

Mr. Bailey had taught at Tanner Academy for 37 years. He was an active member of 

NCTM and had been a frequent presenter at its annual national conference. He had a Ph.D. in 

Mathematics, was a long time member of the MAA, and had co-authored a number of high 

school mathematics textbooks. For many years, Mr. Bailey had a national leadership role in the 

College Board’s AP Calculus program. In 2009–2010, he taught Finite Math and AP Calculus 

BC. 

Each of these teachers had come in different ways to be convinced of the importance of 

teaching through problem solving. A change in perspective on mathematics teaching and 

learning is usually necessary for teachers who come to value problem-solving instruction 

because many of them, including some in this study, begin their careers by teaching in a way that 

they were taught (see Cohen, 1990). In the case of mathematics, teaching the way one was taught 

often includes a focus primarily on skill development and procedural knowledge. 

 A number of events led Miss Atkinson to a philosophy of teaching that emphasized 

problem solving. First, after gaining some experience teaching high school mathematics, she 

began a graduate program in mathematics education. Her experience in graduate school played a 

significant role in opening her eyes to the difference between how she had been teaching, which 
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was very procedurally, and better ways to help students understand mathematical concepts. 

Second, she had the opportunity to observe various teachers and compare their teaching styles. In 

doing so, she was impressed by what certain teachers were doing to challenge their students with 

good problems, and she saw the students responding positively. In our first interview, she said 

her response to observing these teachers was, “This is it. This is what we need to be doing in our 

classrooms. This is where we need to be.” A third factor in Miss Atkinson’s development as a 

teacher who taught through problem solving was her positive interaction with colleagues at 

Northridge who encouraged one another to use problem solving in their classrooms and shared 

ideas about how to do so. 

 Mr. Fulbright began his teaching career using a lecture-based approach in the classroom, 

but he said his use of lecturing had more to do with what was expected of him at the school 

where he taught than with his own thoughts about ideal teaching practices. He indicated that 

when he was a mathematics student, he had been exposed to a problem-based approach, so when 

he became a teacher, he “unintentionally infused a little more problem solving than they intended 

me to” into his mathematics lessons. As Mr. Fulbright continued teaching in other schools, 

including Northridge, he found colleagues who were interested in a problem-based approach. 

This common interest led him to talk explicitly with fellow teachers about incorporating problem 

solving into his instruction. 

 Mr. Dalton noted that most teachers start out as lecturers, he being among them. But he 

recalled that his journey away from the lecture mode and toward a problem-solving approach 

began as he came to the point of “recognizing how much of what you were telling [students] they 

could actually figure out on their own.” 
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Mr. Bailey, in presentations, articles, essays, and his own teaching, had advocated a 

problem-solving approach to teaching mathematics since the mid 1980s. He described how he 

came to be convinced of the importance of problem solving in his classroom: 

I was persuaded by a variety of “reform” documents around 1990, but the two I found 
most compelling were Everybody Counts from the National Academy of the Sciences 
[1989] and [Every Minute Counts] by David Johnson [1990] (NCTM). I had also come to 
the conclusion that I was doing all the important mathematics in my classroom, while my 
students were doing all the routine mathematics at home, where I could not even see them 
doing it. This did not seem like the ideal model. 
 
As their credentials attest, these teachers were not typical. Furthermore, they taught in 

very specialized settings and had advantages over many public school teachers in terms of 

student behavior, resources, and so forth. Negative student behavior was generally not a problem 

at Northridge and Tanner, so the teachers could focus on instruction without spending time or 

energy on classroom management. These characteristics provided good access to the beliefs and 

practices of teachers who taught through problem solving. 

Given the advantages of these teaching environments, one could argue that the teachers’ 

circumstances were too exceptional to be of use when discussing teaching practices. After all, it 

is no surprise that these teachers had the freedom to teach in a nontraditional way. And with such 

a privileged student population, it is no wonder that they had success in teaching through 

problem solving. I would argue, however, that there is value in examining these teachers’ 

practices even though their situations were atypical. Although it is true that having cooperative 

and capable students allows teachers to more easily implement a particular teaching approach, 

that advantage does not diminish the value of the teaching approach itself or the teacher’s ability. 

Consider the analogy of a music performance. It is quite possible that a Stradivarius violin 

enhances the performance of a concert violinist, but it is primarily the violinist—not the violin—

that creates the beautiful music. We give credit to the performer rather than to the instrument 
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with which the performer displays his or her talent. Similarly, no matter who the students are, if 

their teacher is exhibiting good teaching, it is worth taking notice and studying that teacher’s 

practices. 

One might also argue that if these teachers are exceptional, then their practices are 

unattainable for the average teacher, and therefore it is unproductive to study them. I would 

argue, however, that just as researchers have found value in studying expert problem solvers to 

gain insight into the nature of problem solving (e.g., Schoenfeld, 1985), so it is important to 

study experts in the area of teaching through problem solving to gain insight into what this 

approach actually looks like in practice. 

Procedure 

Classroom Observations 

 From January to April, 2010, I conducted a series of classroom observations at 

Northridge High School and Tanner Academy. Each class was audiorecorded, and I also took 

fieldnotes to record my thoughts and ideas during each observation and to note important 

inaudible data such as items written on the board and teacher movement around the classroom. 

My goal was to identify practices that the four teachers used to teach mathematics through 

problem solving. I visited the three teachers at Northridge on two separate occasions, spending 1 

week in January and 1 week in March. I visited Mr. Bailey at Tanner Academy for 1 week in 

January and 2 weeks—separated by a week—in April.  

It was advantageous to visit each teacher more than once—that is, for more than just 1 

week—and to have several weeks between visits. This advantage was particularly evident in the 

case of Mr. Dalton. I was able to observe the introduction and first week of his Modeling with 

Differential Equations course because the week in March that I visited Northridge was the 
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beginning of the third trimester and therefore the beginning of the course. If I had visited only in 

January, I would have missed the opportunity to observe how he began his course. 

It was also important that I observed the teachers for a number of consecutive days. This 

schedule allowed me to get a sense of the flow of things from one lesson to the next, to have a 

better vision of the patterns that emerged, and to have an opportunity to observe typical behavior. 

An alternate strategy of conducting observations during nonconsecutive lessons scattered over 

the semester, even if the number of lessons observed had been the same or greater, may have 

resulted in a misrepresentation of what normally occurred in the classroom. An individual lesson 

may have been atypical for a number of reasons: for example, if it included the administering of 

a quiz, reviewing for a test, or spending an uncharacteristic amount of class time going over 

homework. Each teacher indicated that the classes I observed were fairly typical. Scheduling 

restrictions also factored into my decision about when to visit the teachers. Northridge High 

School was several hours from my home by car, so when I traveled there, it made sense to stay 

for a week. There were only 2 weeks—one in January and one in March—when I could make the 

trip. In order to be consistent, I adopted a similar schedule for visiting Mr. Bailey at Tanner 

Academy, but the close proximity of Tanner to my home allowed me to visit Mr. Bailey during 3 

different weeks rather than 2.  

 The choice of what specific classes to observe was based on two factors: (a) convenience 

sampling (Berg, 2007) because of scheduling restrictions and (b) the teachers’ indications about 

which classes they thought I would find helpful for my research. During my January visit, 

Northridge High School was in its 2nd trimester. I observed Miss Atkinson’s Algebra 3 and 

Precalculus classes, Mr. Fulbright’s AP Calculus class, and Mr. Dalton’s Combinatorics and 

Modeling with Matrices classes. In March, I was at Northridge during the first week of the 3rd 
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trimester. I observed the same courses as I had in January with the exception of Mr. Dalton’s: 

Instead of the matrices course—which was offered in the 2nd trimester—I observed his 

Modeling with Differential Equations course—which was a 3rd trimester course—and his AP 

Statistics course, which was a year-long course. At Tanner Academy, I observed Mr. Bailey’s 

Finite Math and AP Calculus courses in both January and April. One advantage of observing the 

same teacher in two different courses was that I could see if there were teaching practices that 

were specific to a particular course, or if a teacher was consistent across different courses in the 

practices he or she implemented. 

 I looked for several things as I conducted the classroom observations. In view of the 

literature on problem solving and recommended practices for teaching through problem solving, 

I hoped to find some or all of the following. With each main category I had in mind the 

accompanying questions to guide my data collection: 

1. Teaching general or specific problem-solving strategies 
a. Does the teacher talk explicitly about problem solving? 
b. Does the teacher mention or demonstrate general problem-solving strategies? 
c. Does the teacher mention or demonstrate specific problem-solving strategies? 

2. Modeling problem solving 
a. Does the teacher demonstrate problem solving or particular problem-solving 

skills? 
b. Does the teacher ever highlight, either implicitly or explicitly, Polya’s four 

phases of problem solving? 
3. Limiting teacher input 

a. Do students work together to solve problems? 
b. Do students explain or demonstrate their solutions to classmates? 
c. What assistance or guidance does the teacher provide to students as they work 

on problems? 
d. How does the teacher respond when students pursue unproductive solution 

paths or dead ends? How far does the teacher let students go before 
intervening? 

4. Promoting metacognition 
a. How does the teacher promote metacognition in the classroom? 
b. Does the teacher ask questions or make comments that encourage students to 

be reflective about problem solving? If so, how? 
c. Does the teacher model metacognitive behavior in regard to problem solving? 
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5. Highlighting multiple solutions 
a. Does the teacher encourage students to find various ways to solve a particular 

problem? 
b. Do students share their solutions with one another? 
c. Does the teacher discuss connections between different solutions? 
d. Is there discussion of advantages and disadvantages of particular problem-

solving strategies? 
e. Does the teacher encourage students to develop more efficient problem-

solving strategies? 
 

I recorded in my fieldnotes those instances in which a teacher used one of the above 

practices. I was also attentive to behavior that gave a more complete picture of how the class 

period was spent—for example, questions the teachers asked, tasks the teachers assigned, the 

teacher’s movement around the classroom, or instances of students going to the board—or that 

indicated teaching practices that I had not anticipated. Essentially I was watching and listening 

for anything that seemed to be related to problem solving.  

 During each observation, I also wrote down any questions I wanted to ask the teacher at 

the conclusion of the class period. These questions had to do with the teacher’s reasoning behind 

a particular decision, whether or not a particular comment or event was typical, or other issues 

that came to mind as a result of something that happened during class. When I had questions 

about a lesson, the teacher and I had a brief conversation after class. 

 The specific mathematical content of the lesson was not the focus of my attention during 

the observations. I certainly took note of the mathematics and followed along with the examples 

and problems posed during class. These notes gave me a context in which to describe a particular 

practice the teacher used. For example, one practice for teaching through problem solving is to 

emphasize that a problem can be solved in more than one way. To give a full description of such 

an instance, it was important that I write down the particular problem and the solutions that 

teachers and students discussed.  
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The kinds of problems posed in class as well as in homework assignments were essential 

to learning about these teachers’ approaches. Rather than describe the problems in the context of 

this discussion of classroom observations, I describe the types of problems later in this chapter. 

 Having audiorecorded each lesson in its entirety, I transcribed relevant portions of each 

recording and noted the length of time spent on each part of the lesson. The format for this 

documentation, created in the process of transcribing the data, was a three-column table. The 

first column was the time stamp; the second column the description of each activity or a 

quotation, including the time it occurred; and the third column, my notes and coding. See Figure 

3 for an example of a portion of one of these tables. At the top is the name of the teacher, the 

date of the observation (YYMMDD), and the class observed. 
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0:00-1:51 
 
1:51-17:33 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17:33-24:50 
 

Miss Atkinson 100104 
Algebra 3 
 
Intro/review (first day back after Christmas break). 
 
Example (review):  
Solve the system: 
2x – y – z = 7 
3x + 5y + z = -10 
4x – 3y + 2z = 4 
 
Students working in groups, teacher circulating. 
 
4:49 “Are you guys checking behind each other and 
trying to avoid those dreaded careless mistakes?” 
 
8:52 “Is it right? How can you find out if it’s right?”* 
 
10:57 “You’re eliminating your x’s. That’s 
interesting. That’s ok. It doesn’t matter. …Well, the 
z’s are probably the easiest to eliminate, but that 
doesn’t mean that that’s the only way to do it.”** 
 
15:15 “You’re gonna have to convince yourself 
whether it’s right or wrong.”* 
 
15:32 “Find the whole solution. Check your 
answers.”* 
 
16:56 “Well, right now you only know one variable. 
You only know about one variable. So how, what can 
you use to help you find out [the rest]?” 
 
Teacher leading class discussion about solving 
systems of equations (3 variables). 
 

 
 
 
 
 
 
 
 
 
 
 
Group work. 
 
Metacognition: 
monitoring. 
 
*Looking back. 
Also, sharing 
authority for 
correct answers. 
 
**Multiple 
solution paths. 
 
 
 
 
 
 
Metacognition: 
monitoring. How 
can you get from 
where you are to 
where you are 
going? 

Figure 3: Partial transcript of a class observation, with notes. 

Rather than transcribing entire lessons, I transcribed parts of each lesson that I considered 

relevant to the study. These relevant passages were quotations from the teacher or exchanges 
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between the teacher and one or more students. Some of these exchanges involved the whole 

class, and others involved the teacher and an individual student or a small group of students. 

Interviews 

The data for the study included three interviews with each teacher. The first two were 

face-to-face interviews conducted during each of my visits. The third was an email interview I 

conducted in May. Each face-to-face interview lasted approximately 30–40 minutes and was 

held in the teacher’s office or classroom. Each interview was audiorecorded and later 

transcribed. In addition, informal conversations followed some of the lessons, as described 

above. These were also audiorecorded and later transcribed. 

The interviews were semi-structured, or semi-standardized (Berg, 2007). As such, 

although I generally kept to my questions as written, there were times when I asked a follow-up 

question based on a teacher’s response. At other times, I omitted a question when I judged that 

the teacher had addressed the content of that question in a previous response. Interview questions 

appear in the Appendix.  

 The interviews were an important part of the study because there are many different 

views of what problem solving is and what makes a good problem. Some believe, for example, 

that problem solving and doing word problems are the same thing. Some see problem solving as 

a step-by-step process; for example, some teachers use Polya’s four phases as a formula for 

solving problems. Some think that in order for something to be a problem, the way to solve it 

cannot be immediately evident. It was necessary to know how each teacher viewed problem 

solving as well as what they considered to be good ways to help students become better problem 

solvers.  
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The interviews allowed the teachers to express their views about problem solving and 

what they believed was important in teaching through problem solving. The interviews also 

provided access to the teachers’ perspectives on what they saw as significant in their own 

teaching. It is one thing to observe a teacher’s actions and bring one’s own interpretation to what 

is occurring, and another to hear a teacher’s explanation or interpretation of his or her actions. 

Beyond providing information, the interviews gave the teachers the opportunity to reflect on 

their own beliefs and practices. In some cases, they expressed having never thought before about 

an issue I raised in an interview question.  

Documents  

During each visit, I saw examples of problems the teachers assigned, both in class and for 

homework. In-class assignments included everything from problems that could be solved in just 

a minute or two to activities that took the whole class period to complete. The teachers also 

assigned out-of-class work, both daily homework assignments and long-term projects. I asked 

the teachers to provide me with problems, activities, and projects—other than those I had seen 

during my visits—that they thought were representative or covered a spectrum of mathematical 

topics. Some of these problems are discussed in chapter 4. As I examined the assignments, I 

looked for characteristics that would give me insight into the teachers’ views about what makes a 

worthwhile problem. I had asked the teachers to discuss this matter in the first interview, but 

used the assignments to provide actual examples. 

Coding 

After transcribing relevant portions of the audiorecordings of the classes I observed, I 

coded the transcripts. I noted instances in which the teacher engaged in a teaching practice 
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related to problem solving. I wrote these codes in the last column of the transcript (see Figure 3 

above for an example). 

Codes that appeared most frequently were the following: 

1. teach problem-solving strategies 
2. model problem solving 
3. group work 
4. share authority for correct answers 
5. metacognition 
6. multiple solutions 
7. Polya’s phases 
 

I color-coded each instance so that I could more easily refer back to particular teaching practices. 

Sometimes codes were more specific than those listed above—for example, “teach specific 

problem-solving strategy” or “metacognition: monitoring”—because they were particular 

examples of each practice. 

 I constructed an initial list of codes based on what I found in the literature on problem-

solving instruction. That initial list consisted of the following: 

1.  teaching general problem-solving strategies 
2.  teaching specific problem-solving strategies 
3.  modeling problem solving 
4. group work 
5.  metacognition 
6.  multiple solutions 

 
To that list I added the following:  

7.  Polya’s phases 
8. students share solutions 
 

Since Polya had been such an influential figure in the history of problem solving in the 20th 

century, I wondered if I would find instances of teachers referring—either explicitly or 

implicitly—to his four phases of problem solving. Students sharing solutions is not a practice I 

found to be widely emphasized in the literature on problem-solving instruction, but it is a key 
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component in the Japanese model of teaching through problem solving, so I wondered if teachers 

in this study would incorporate the practice into their instruction. I later included students 

sharing solutions in the broader practice of highlighting multiple solutions. 

Finally, I added the following codes based on what I saw during my observations: 

9. salvaging good ideas from incorrect solutions 
10. non-mathematical problem solving (for example, What to do when technology does 

not cooperate.) 
11. mathematical authority (that is, sharing authority for correct answers) 
12. warning of common errors 
 

These were practices that I had not anticipated when I began my observations, but in the process 

of conducting the observations, I noticed the practices. Some of these practices—for example, 

salvaging good ideas and non-mathematical problem solving—did not occur frequently enough 

to be part of my data analysis. Other practices were incorporated into broader categories. For 

example, I considered sharing authority for correct answers to be a specific instance of limiting 

teacher input, and warning of common errors is a practice that I discuss as a contrast to limiting 

teacher input.  

 Certain teaching practices—for example, group work—were easily identifiable. Instances 

of group work included the following: (a) students working together on a problem during class 

and (b) students sharing their solutions with one another—for example, sharing solutions to 

homework problems. The mere fact that students sat in groups, as they did at Northridge, did not 

constitute group work unless students actually worked together. 

Other teaching practices were not as clear as group work. For example, it was sometimes 

difficult to discern whether a strategy a teacher highlighted was a problem-solving strategy or 

something else, like a test-taking strategy or a strategy for using technology. I made the decision 

to code an instance as a problem-solving strategy by considering whether the strategy was likely 
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to help students solve a mathematical problem. An example of a strategy that I decided was not a 

problem-solving strategy was a piece of advice about how to phrase a written response in order 

to gain maximum points on the AP exam. I considered this to be a test-taking strategy rather than 

a problem-solving strategy. 

 Modeling problem solving was also sometimes difficult to code because I made a 

distinction between a teacher showing students how to solve a problem and actually modeling 

the problem-solving process. If a teacher simply engaged in “show and tell,” I did not code that 

as modeling problem solving. If, however, a teacher demonstrated his or her thought process or 

highlighted particular problem-solving strategies while solving a problem in front of the class, I 

coded that as an instance of modeling problem solving. 

Instances of promoting metacognition were particularly difficult to code. I had a broad 

understanding of what I considered to be metacognitive behavior, because the literature on 

metacognition indicates a wide range of what researchers consider to be metacognition. It was 

sometimes difficult to distinguish between a teacher encouraging students to think and the 

teacher encouraging them to think about their thinking—that is, to be metacognitive. If a teacher 

simply asked students to think about a particular problem or mathematics concept, I did not code 

that as metacognition, but if a teacher called attention to how the students were thinking, I 

considered that to be an instance of promoting metacognition. I paid particular attention to 

metacognitive questions, so any question teachers asked that drew attention to thought processes, 

knowledge, or decision making—either theirs or the students—I coded as metacognition. 

Furthermore, any time a teacher encouraged students to monitor their problem solving—

including checking their work—or reflect on the problem or solution, I coded it as 
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metacognition. If a teacher modeled metacognition while modeling problem solving, I coded the 

instance as both modeling problem solving and metacognition. 

Coding multiple solutions was sometimes difficult because I wanted to make a distinction 

between a solution and an answer, but this distinction was not always clear-cut. I considered a 

solution to be an approach to solving a problem—that is, a solution path—and an answer to be 

simply the final result. It was possible for a problem to have more than one correct answer, but 

having more than one correct answer did not mean that the teacher necessarily highlighted 

multiple ways to solve the problem. For example, there may be multiple answers to problem 

requiring an equation for a trigonometric function. But if those answers do not correspond to 

distinct methods of solving the problem, then they do not qualify as multiple solutions. 

I coded each teacher’s interviews using a similar method, noting instances in which the 

teacher referred to any of the items listed above. In addition, I noted instances in which teachers 

expressed their beliefs about problem solving and what makes a good problem—this process was 

more like note taking than coding. 
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CHAPTER 4  

RESULTS 
 The present study addressed the following research questions about a select group of high 

school mathematics teachers who had a strong reputation for effective teaching and had been 

identified as teaching through problem solving: 

1. What do these teachers believe about mathematical problem solving? 
2. What do these teachers believe about what makes a good problem, and what kinds of 

mathematical problems do they pose? 
3. What practices do these teachers use when teaching through problem solving, and 

how do they implement those practices? 
a. What problem-solving strategies do teachers introduce? 
b. How do teachers model mathematical problem solving? 
c. What do teachers do to limit the amount of input they give students? For 

example, how do teachers incorporate group work? 
d. How do teachers encourage metacognition? 
e. How do teachers highlight multiple solutions? 

 
The data for the study included classroom observations with four teachers—Miss Atkinson, Mr. 

Fulbright, Mr. Dalton, and Mr. Bailey. Each teacher had his or her own style of teaching through 

problem solving. There were also practices common to all the teachers, as I discuss in this 

chapter. 

This chapter is divided into two main sections: teacher beliefs and teacher practices. In 

the first section, I address the first and second research questions: What do the teachers believe 

about problem solving, and what do they believe about what makes a good problem? The bases 

of these descriptions are interviews with the teachers and examples of problems they assigned.  

The second section of the chapter addresses the third research question and consists of 

descriptions of teaching practices the teachers either demonstrated in the classes I observed or 

described in interviews. There are five practices that correspond to the five parts of the third 

research question. The practices are as follows: (a) teaching problem-solving strategies, (b) 
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modeling problem solving, (c) limiting teacher input, (d) promoting metacognition, and (e) 

highlighting multiple solutions. In the final part of the section on teaching practices, I give 

evidence that the teachers valued Polya’s phases of problem solving—particularly understanding 

the problem and looking back—even though none of the teachers mentioned Polya by name. The 

chapter ends with a discussion of teacher collaboration. The three teachers at Northridge were 

part of a mathematics department for which collaboration was important. Collaborating with 

colleagues is not a teaching practice but was one way the teachers were supported in their efforts 

to teach through problem solving. 

Teacher Beliefs  

This section contains descriptions of the four teachers’ beliefs about problem solving and 

what makes a good problem. In interviews, I asked the teachers what they thought about 

mathematical problem solving and whether they viewed problem solving as a way for students to 

learn new material or as an opportunity to apply mathematical content they had already learned. 

In order to understand what the teachers believed makes a good problem, I asked them directly in 

our first interview: “What makes a good problem? What do you look for in a good problem?” I 

also collected examples of problems they assigned. 

Teacher Beliefs about Problem Solving 

In the first interview, I asked the teachers to talk about what came to mind when they 

heard the term mathematical problem solving. Each teacher began with a concise response and 

then elaborated. As they spoke, it became apparent that they had pondered this question before, 

and that they recognized the multi-faceted nature of problem solving. Each of the four teachers 

expressed the belief that problem solving is an essential part of learning and doing mathematics. 

They indicated that simply watching a teacher do the work of problem solving is not likely to 
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help students develop as problem solvers and mathematical thinkers—students need experience 

in solving mathematical problems for themselves.  

 In Miss Atkinson’s view, problem solving is at the core of mathematics. In her first 

interview, she said, “I think mathematics should be all about problem solving.”2 She noted that 

mathematics is a means to an end, the end being to solve meaningful problems: “I think the 

whole reason we have mathematics as a society is as a tool for solving problems.” She said she 

tried to help her students see that part of the value of mathematics is its usefulness for solving 

problems: 

[I am] trying to develop along the way this idea that we have developed math out of this 
need to solve our problems, to keep track of stuff, and to explain phenomena in the real 
world. … That’s what we do as a society. We create things that we need to solve 
problems. 
 

She pursued this goal by assigning problems involving real-world phenomena such as energy 

consumption and the motion of a swing. 

 In her first interview, Miss Atkinson said she was familiar with Schoenfeld’s framework 

for mathematical problem solving—resources, strategies, control, and beliefs—and believed the 

framework to be a good summary of what is important in problem solving: 

Problem solving is a lot of different things. Everything from the critical thinking to, you 
know, having your mathematical resources and tools, to just general heuristic strategies 
like “Is working backward appropriate here?” “[What about] breaking the problem down 
into a lot of different component parts and then putting it all together at the end?” … And 
then having some sort of metacognition going on. … You know, having some control 
over what you’re doing. I think all of those aspects are what should go into problem 
solving—that and just believing in yourself and in your ability to do it and having some 
persistence and perseverance. 
 

                                                
2 Unless otherwise noted, all quotations are from teacher interviews. 
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Miss Atkinson mentioned ways to help students believe in themselves and develop perseverance, 

including encouraging students to share their ideas and having confidence in her students’ 

abilities to solve problems. 

Making mistakes is part of problem solving, and Miss Atkinson believed it was important 

to create a safe, supportive environment when teaching through problem solving:  

Another big part of problem solving is obviously making your environment really safe 
for your kids to try things, and to take intellectual risks, and to make some mistakes and 
that be ok. … I’m trying to make it ok for them to mess up. … It’s ok to try something; 
it’s ok if it doesn’t work out because then you can try something else. 
 

She pointed to group work as a key element in creating a safe atmosphere: “I do feel like my 

classroom is a pretty comfortable place to be. Maybe not for every single student, because some 

of ‘em are so shy. But the small group atmosphere does alleviate some of that.” 

 In her second interview, I asked Miss Atkinson whether she viewed problem solving as a 

vehicle for learning new material or as an opportunity for students to use content they already 

knew. She quickly responded, “Both,” and gave an example of each. Some of the investigations 

she assigned were meant to help students discover mathematical concepts, and others were 

intended to help students synthesize concepts they already knew. 

 To give an example of using problem solving to introduce new material, Miss Atkinson 

described an investigation in which students “didn’t know anything going in, and they figured a 

lot of stuff out just by doing it.” It was an investigation in which students graphed a series of 

composite functions and looked for patterns in order to discover how to use “the idea of 

compositions of functions as a graphing tool.” She gave the example of graphing f(x) = 

! 

4 " x 2  

by starting with the graph of f(x) = 4 – x2. She noted, “The kids have never done this before. 

They’d never even thought about this before, but it’s a really powerful and somewhat 

sophisticated graphing technique … that was totally new content for my students.”  
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Using problem solving as a means to synthesize existing knowledge is similar to using 

problem solving as practice (Stanic & Kilpatrick, 1988), but synthesis requires a higher level of 

thinking than practice does. Miss Atkinson described a precalculus activity in which students 

synthesized their knowledge about parametric equations and sinusoidal functions. In the activity, 

students measured the horizontal and vertical movement of a swing over time. They graphed 

these data points and developed a model for the periodic motion of the swing using parametric 

equations. Miss Atkinson concluded,  

So for that investigation they’re actually applying their sinusoidal concepts along with 
their parametric concepts. It’s a nice synthesis, if you’re a fan of Bloom [Bloom’s 
Taxonomy (Bloom, 1956)], which I am. … I would consider that to be an investigation 
with existing content. 
 

 Mr. Fulbright shared some of the beliefs Miss Atkinson expressed, but discussed other 

views as well. He believed problem solving involved confronting situations in which neither the 

solution nor the method for finding the solution was obvious. He contrasted problem solving 

with “going from question to answer with a predetermined, dictated approach,” and noted in his 

first interview, “When I think of problem solving, I think of the students having to figure out 

what approach, on their own, is appropriate.” Problems that were conducive to students figuring 

out an appropriate approach were “open-ended problems with very few directions.” Such 

problems could be solved in various ways, and some even had more than one correct answer. 

Mr. Fulbright also said it was important to “give [students] the material they need to 

confront apparent contradictions … and then they have to resolve things in their own mind.” In 

other words, it was important to him to help students acquire the proper resources so that they 

could solve problems on their own. He contrasted his approach with simply telling students what 

to do or just teaching skills: 
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[Students are] not learning anything useful unless it changes the way they think about 
things somehow. If you can’t change the way people think about things, they never have 
to really think. If all they’re doing is just mimicking skills, then 2 years after the course is 
over, they’ve really gained next to nothing. 
 

 When I asked Mr. Fulbright in his second interview whether he saw problem solving as 

an opportunity for students to learn new material or as something that came after mathematical 

content had been learned, he replied, “I think it can serve both purposes.” He added, “But I think 

the way you design it is different depending on what your purpose is.” The main difference was 

the amount of guidance he gave students, particularly in written instructions. He gave students 

more guidance when his goal was for them to learn new material. 

 If Mr. Fulbright used a problem to introduce new mathematical content, he worded a 

problem very carefully so that students would discover what he wanted them to discover. He 

explained, 

If your purpose is to have them learn something new that you haven’t taught them before, 
it needs to be … quite a bit more guided because you want them to achieve a particular 
goal. You don’t want ‘em to just go off in some weird direction. 
 

He gave an example of a homework assignment in which students worked through a series of 

differentiation and integration problems that led them to discover that “integration by 

substitution is essentially reversing the Chain Rule when you differentiate. … I hadn’t taught 

them the technique. I was hoping they would kind of figure it out on their own.” Mr. Fulbright 

noted that there were times when he adjusted a problem statement in order to give students more 

guidance, but he was careful not to diminish the problem-solving nature of the experience for 

students. He gave the example of adding two sentences to a problem in order to guide students 

where he wanted them to go: 

And just adding in those two sentences, it gave [the students] enough guidance. I think it 
was still a problem-solving kind of a problem because there was nothing in the problem 
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that said what the differential equation should be. … They still had to figure some things 
out on their own, but those two sentences were just what was needed to push them along. 
 

 Mr. Fulbright also assigned problems so that students could apply mathematical concepts 

or synthesize their knowledge. In this case, he gave very few instructions and very little 

guidance. In describing what he believed were characteristics of a good problem, he referred to 

using problems that required students to apply what they knew: 

What I think makes a good problem for problem solving is the students need to be at a 
point where … they’ve learned new tools, and now you want to help them figure out on 
their own how to apply those tools in a new context, new situations, and so on. When we 
do investigations, that’s usually what we’re doing: We give them very open-ended word 
problems, with hardly any guidance and hardly any suggestions as to how they might go 
about solving it. But they’ve got enough tools at that point. 
 

Unlike his desire that students not “go off in some weird direction” when he used a problem to 

introduce a new concept, with application problems, Mr. Fulbright was “thrilled if they [went] 

off in a strange direction.” The Subway Problem (see Figure 5) is an example of an application 

problem that I discuss in the next section. 

 Mr. Dalton’s comments revealed some beliefs that were similar to Miss Atkinson’s and 

Mr. Fulbright’s, but he had additional views as well. He described teaching through problem 

solving as “having students work through problems that they haven’t been taught how to solve.” 

He listed some of his goals in teaching through problem solving: (a) to have students think rather 

than him telling them what to do, (b) to help students see what mathematics is and what 

mathematicians do, and (c) to get students interested in mathematics. 

 First, it was important to Mr. Dalton that students engage in problem solving, and he 

stated that he was “trying to get them to think through things.” He talked about the resistance of 

some students to engage in mathematical thinking, saying many of them had never been 

challenged to wrestle with difficult mathematical concepts until they went to Northridge High 
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School. Second, Mr. Dalton used problem solving to give his students a glimpse into what 

mathematics is all about and what mathematicians do: 

What you’re trying to do is to get them engaged in mathematical thinking and to 
recognize that that’s what mathematics is. It’s not repeating stuff that you’ve been taught. 
It’s figuring out stuff that you haven’t been taught using the stuff you’ve been taught. 
That’s more of what mathematicians do. 
 

One way he attempted to get students engaged was to have them work on problems that had no 

known solution. He emphasized, “You don’t have to do the whole thing, but the way 

mathematics proceeds is with partial results.” In other words, making progress on a problem or 

only solving part of it—for example, solving it for a few cases—is crucial in the development of 

mathematics, and he wanted students to appreciate that. Third, Mr. Dalton believed problem 

solving was a good way to get students interested in mathematics. He wanted to guide students 

into further mathematical studies at the collegiate level and “to get as many of them going into 

mathematically oriented careers as we can.” 

 In his second interview, Mr. Dalton said he believed problem solving could be both a 

vehicle for learning new content and an opportunity for students to apply and synthesize content 

they already knew. Sometimes he used a problem to motivate the study of new material: 

There are times when we’ll look at a problem and reach a point where we just don’t 
know, we don’t have anything to do, and there’s a technique that we need to learn to get 
us past that hump. So there are times when you’ll use a problem like that to sort of point 
out that you don’t have anything that’ll work here. And so that’s the need for the new 
topic. 
 

He said using problems to introduce new content was not as customary for him as assigning 

problems after students learned the mathematics necessary to solve them. The latter use of 

problems helped students synthesize their knowledge by “pulling ideas together.” The Tractrix 

Problem (see Figure 7) fulfilled both purposes: It required students to synthesize content they 
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already knew and also provided an opportunity for Mr. Dalton to introduce new techniques of 

differentiation. 

 The fourth teacher in the study, Mr. Bailey, shared some of the beliefs described above, 

but also had his own way of thinking about problem solving and teaching through problem 

solving. When I asked him in his first interview what came to mind when he heard the term 

mathematical problem solving, he responded by describing problem solving as both a means and 

a goal of learning mathematics. He contrasted his current beliefs with the views he held early in 

his teaching career: 

For many years, when I was a lecturing kind of guy, I thought that my main thing was to 
show them how mathematics works, and then turn them loose on solving the problems. 
But then I came to realize that really, solving the problems is what it’s all about, and that 
in the process they can find out how mathematics works, and maybe have a little more of 
a hunger for what else they can learn about this to make it easier to solve the problems. 
So I’ve just come around to the modern realization, I guess, that that’s what people need 
to be able to do: to solve problems. 
 

In other words, on the one hand, mathematics is a means to an end, the end being the ability to 

solve problems. On the other hand, in the process of solving problems, students learn 

mathematics. He explained that one of the disadvantages of his previous way of teaching was 

that although he prepared students for the test, all they could do was perform well on the test. 

They were not able to engage in creative problem solving, because creativity had never been 

required of them. 

 Mr. Bailey’s primary means of presenting new material was by having students work on 

problems, especially the Problem of the Day (POTD). He said, “It’s about the same thing every 

day: We use the problem as an entry,” and gave an example of a calculus POTD (see Figure 9) 

that led into a discussion of partial fraction decomposition:  

I find that there’s a particular entry that I wanna make into what it is I wanna teach ‘em 
that day. And I know that I wanna have a Problem of the Day that exposes that so that 
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they all see that entry, and they all get their toe in the door. … So like today [in calculus 
class], I mean, I know that I wanna teach them partial fractions, and I want them to come 
up with an idea that it comes from somewhere. So let’s have ‘em make the jump from a 
fraction with real numbers to a rational function and see that, “Oh yeah, this makes 
sense.” 
 

Mr. Bailey also noted,  

[The students] didn’t know partial fractions when they started that Problem of the Day. 
But then, what I’m trying to do is give them the idea that they can actually discover this 
without being told it in advance if you show them the door the right way. 
 

 Mr. Bailey said he believed it was important for students to do the mathematics rather 

than just watching him do it. He noted that despite the unpredictability of what students might 

do, he preferred turning the responsibility over to them rather than doing all the mathematical 

problem solving himself: 

With [a problem-solving approach] it takes a little faith, because I’m turning a lot of it 
over to [the students] basically. Sometimes it’s a little harder on some days to reel it all 
back in ‘cause it gets a little crazy depending on which roads they go down. But it’s still 
better than the old days, I think. … And it’s very refreshing to have them doing the math 
in my classroom rather than just me. It makes more sense to have them doing it. 
 

Teacher Beliefs About What Makes a Good Problem 

 It seems obvious that teaching through problem solving requires choosing the right 

problems. Choosing the right problems includes judging not only which problems are suitable, 

but also how many problems to assign in order to give students sufficient experience with 

problem solving without overloading them with an impossible amount of work. The teachers in 

this study were all very thoughtful in their choice of problems. There was a range of difficulty as 

well as variation in the time required to solve the problems. There were problems students solved 

quickly during class, and others that were in-depth projects that required several days to 

complete. 
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 Giving students lots of problems to solve did not seem to be as high a priority for the 

teachers in this study as giving students worthwhile tasks to do. That is not to say the teachers 

did not give students ample opportunities to solve a wide range of problems. Both Mr. Dalton 

and Mr. Fulbright spoke about the importance of practice in becoming a good problem solver. In 

his first interview, I asked Mr. Dalton to summarize what he did to emphasize problem solving 

and he replied, “Well, using lots of problems in class.” Mr. Fulbright said it was important to let 

students practice problem solving for themselves rather than just watching him solve lots of 

problems: 

Watching somebody do it is not the same as doing it yourself. [My students] all think 
that’s all it takes: watching me do problems at the board. … Mr. Dalton likes to say, “If 
all it took was watching to get good, I’d be a great tennis player.” But you have to 
practice tennis. You gotta do it yourself, but the students don’t like that. “I understood it 
in class. I understood when you did it.” “But you didn’t try it yourself, did you? You 
didn’t sit down and practice, practice, practice.” 
 
Practice is essential to a student becoming proficient with mathematical skills and 

procedures. Practicing procedures is not the same as problem solving, but as Miss Atkinson 

noted, “We need all kinds of thinking; we need procedural thinking ‘cause that makes the grunt 

work later on easier.” If the “grunt work” is easier, students’ cognitive energy is freed up to 

engage in problem solving. Mr. Bailey had his students complete practice exercises for 

homework in order to improve their procedural skills. He described one homework assignment 

as “line calisthenics,” meaning a set of exercises involving linear equations. Mr. Bailey 

encouraged his students to make the most of opportunities to practice, and said to them, “That’s 

how the game is played, and the way you learn how to play the game is by practicing, just like 

any other game, and that’s what the homework was all about.” 

Choosing good problems is central to teaching mathematics through problem solving. 

Good problems are those that are interesting, challenging, and mathematically rich (Grouws, 
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2003; Marcus & Fey, 2003; NCTM, 2000; Schoen, 2003). They need not be “real-world” 

applications (Hiebert et al., 1996; Kahan & Wyberg, 2003), but problems that are relevant to 

students’ lives can be particularly engaging. Assigning good problems was a priority for each of 

the teachers in this study, and the quality of the problems was clearly more important to the 

teachers than the quantity of problems.  

 When Miss Atkinson described problem solving in her first interview, she highlighted the 

importance of assigning problems that are meaningful and require students to synthesize their 

mathematical knowledge: 

For me, problem solving is taking, as much as possible, meaningful problems that could 
have some impact on society … and [having] students find ways to use math to model 
those problems. … I like this idea of synthesis and putting together a lot of different 
mathematical skills. 
 

An example of a task Miss Atkinson assigned that was meaningful as well as “interesting” and 

“eye-opening” was the Energy Lab: an investigation and series of questions involving energy 

savings. She summarized the main problem: 

“What if, for every baby born, we replace one incandescent light bulb with a CFL 
[compact fluorescent light bulb]? How much energy can we save in [10 years]?” So it 
ends up being an exponential problem, which is exactly the kind of stuff that we’ve been 
working on. … It’s interesting, and it’s eye-opening. 
 

 Miss Atkinson noted that good problems are challenging and require students to think 

differently about mathematical concepts and what it means to do mathematics. Thinking 

differently is particularly important for students who are new to a problem-based approach to 

learning mathematics. Miss Atkinson described how she began her algebra course at the 

beginning of the year: 

On the first day, I give them a problem with data to model. The data [are] far from linear, 
so their preconceived ideas about linear regression (which none of them truly understand) 
fail, and I tell them that they can only use calculators to do arithmetic. They have to re-
express the data to make [them] linear, find some way to model the data linearly. … The 



 

75 

activity forces them to think differently about data, think through and synthesize a variety 
of the concepts they know, defend their decisions, work collaboratively, and realize that 
there isn’t always just one right answer in math. 
 

Miss Atkinson sought to maintain this level of challenge throughout the year: “I just don’t let up 

on assigning challenging problems.” 

 As part of an algebra activity that I observed, Miss Atkinson assigned the problem in 

Figure 4, and the students worked in groups to solve it. It is an example of a problem that is 

interesting, challenging, and mathematically rich. It is unlike typical quadratic “application 

problems” that give a height equation, the initial height, and the initial velocity and ask students 

to fill in information such as maximum height of an object and the amount of time the object is 

in the air. That information is required by Miss Atkinson’s problem, but students had to first use 

the given information to write the height equation. The initial height is given—the rock left the 

slingshot at a height of 4 feet—but the initial velocity is not. In fact, figuring out the initial 

velocity of the rock is Part (d) of the problem. Students were also required to interpret the data in 

the problem statement rather than simply substituting the data into a known formula. Additional 

requirements of this problem are reflection and interpretation. In Part (e), Miss Atkinson asked 

students to look back on the solution and compare it to their expectations about the coefficient on 

x2. And finally, after reflecting on the solution, students were to interpret any discrepancy 

between their solution and their expectations. In summary, this problem required students to 

apply their knowledge of quadratic equations to a new situation. The problem was interesting 

and challenging. It required students to think mathematically and to interpret and reflect on the 

solution. 
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More Linear Systems Applications 
 
Some (not-so-bright) physics students shot a rock straight up using a slingshot and 
planned to gather some data about its flight. The rock left the slingshot at a height of 4 
feet. One student with a stopwatch determined that the rock passed the window where 
he was standing in the physics building 1 second after the shot, and the window was 
58 feet high. The student who launched the rock was supposed to measure it when it 
landed, but it wedged in a tree branch on the way down after 5 seconds. So, the 
student measured the height of the branch to be 34 feet. 

a) Use the data above (you should have three data points) to write a quadratic 
function that models this scenario. 

b) Use your function to determine when the rock reached its maximum height. 
What was the maximum height? 

c) When would the rock have landed if it hadn’t gotten stuck? 
d) According to your function and similar past examples, what was the initial 

velocity of the rock when it left the slingshot? 
e) Was the coefficient on x2 what you expected? If not, what do you think could 

account for the difference? 
 Figure 4. Example of an algebra problem. 

 When I asked Mr. Fulbright in his first interview to describe what makes a good problem, 

he responded that it is an open-ended task without an obvious solution. In addition, there are 

multiple ways of solving good problems. He described good problems as 

open-ended problems with very few directions so that students not only have to solve the 
problem but they have to figure out what approach is required to solve the problem. … 
They might get different solutions, assuming a problem permits different solutions. Even 
if it permits only a single answer though, there still might be different approaches to get 
to it. 
 

 The wording of a problem was very important, according to Mr. Fulbright, particularly if 

the purpose of the problem was to help students discover some mathematical concept: 

You do have to give them enough guidance that they’ll discover what you want ‘em to 
discover, and not just go off in left field. But then you just have to come up with a very 
carefully worded … problem so that when they think about it, they will discover on their 
own what you want ‘em to. But the wording is everything—coming up with just the right 
question. 
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According to Mr. Fulbright, good problems are interesting, relevant, and authentic. He 

said he assigned problems arising from current events and used original documents and raw data 

whenever possible. He noted,  

Students are more engaged by material that they feel is not predigested. … A radio story 
that I just heard on the news that morning and I share with them is something that they’re 
getting the same version of it that I heard. They’re not getting a version that I distilled for 
them. And if there are questions to be asked, questions to be solved, and so on, I think 
they have much more of a problem-solving bent to them when the raw data that they see 
[are] not predigested. 
 

Mr. Fulbright also kept his students engaged and interested by letting them choose problems or 

investigations that appealed to them. 

 As an example of a problem that was engaging for students and also had a connection to 

something outside pure mathematics, Mr. Fulbright described a “variation on the ‘Three Body 

Problem’” from physics. He explained, 

It was hard to come up with something that was simultaneously engaging and doable. … 
And something clicked in my mind and I thought, “Earth, moon, spaceship—three body 
system—this is perfect.” And so I designed this investigation where the students’ goal 
was to write the differential equations describing the motion, the gravitational influences 
on the spacecraft, and then when they finished all that, come up with a trajectory that’ll 
do the slingshot [of the spacecraft] around the moon. 
 

Three of Mr. Fulbright’s students were “super excited” to work on the problem, not just because 

they found it interesting, but also because it was an original problem: “It would be the first time 

any student in the country had worked on this problem.” Mr. Fulbright added, 

This goes back to that “original documents,” “predigested information” [discussion]: 
Whenever students work on something that’s kind of predigested, [and] they know that 
somewhere out there there’s an answer and people have done this before, it’s less 
interesting. When they know—or think—that they’re doing something for the very first 
time, it’s much more exciting. 
 

He went on to say that the students who worked on this problem did some of the best work he 

had ever seen students do. 
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 Figure 5 contains an example of a problem Mr. Fulbright assigned as a long-term project 

that students worked on in groups to solve. The problem was open-ended—not only were there 

various solution methods, but there also were various mathematical models that would 

adequately answer the question. The problem statement was brief and gave no guidance about 

how to begin the problem. Students had to use their mathematical resources to solve a problem 

that was truly problematic. 

The question: A city is planning on building a new subway line. How far apart should 
subway stations be placed if the goal is to minimize the total time that a typical 
commuter takes getting from her home to the place where she works?  
 
Note: If you are not familiar with what subway systems look like, you can refer to a 
subway map of New York City on the Internet or ask me for a paper one. If you do refer 
to the map, do not suppose that the separations of stations on existing subway lines are 
necessarily optimal. The map is only to help you get a better understanding of the 
problem.  

Figure 5: Subway Problem. 

 I observed Mr. Fulbright’s calculus class working on an investigation involving 

differential equations, and Part 1 of the investigation is shown in Figure 6. The problem 

emphasized interpretation and conjecture: What does the variable k represent? What might 

influence the value of k? The problem also included an opportunity for students to investigate the 

differential equation using a graphing program. Finally, the problem invited students to reflect on 

what they discovered: “Is this what you expected?”
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Calculus Lab 
Differential equations involving contact frequency 
 
Part 1: Modeling the spread of a disease using differential equations. 
If there are 650 people in all, and if P people have the cold at present, then the number 
of susceptible people must be 650 – P. Thus, the differential equation modeling the 
spread of the disease is: 
 

! 

dP
dt

= kP(650 " P) 

 
Think about the meaning of k. What might make k larger? What might make it smaller? 
 
Let us suppose that k = 0.0013, when t is measured in days. Use [a graphing program] to 
plot the slope field for this differential equation, and also the particular solution 
corresponding to the situation in which one person comes to school with the cold at t = 
0. 
 
Replace the number 0.0013 with a parameter k, and then animate on k. What happens to 
the slope field and the solution for larger or smaller values of k? Is this what you 
expected? 
 
Why does k need to be so small? 

Figure 6: Calculus investigation. 

 Mr. Dalton described problem solving in his classroom as “having students work through 

problems that they haven’t been taught how to solve.” This comment gave evidence of what he 

thought about good problems: Their solutions are not obvious, but the students have the 

resources to solve them. He said that students “should expect to see, on a regular basis, problems 

that do not fit any mold that they have seen, but which they know how to solve if they just think 

about it.” 

 Good problems, said Mr. Dalton, require students to synthesize mathematical concepts—

not just concepts from the previous lesson, but things they learned months or even years 

previously: 
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So a problem that you’re working on may use the technique you learned yesterday in 
combination with something that you learned 4 weeks ago, and finally using a technique 
that you learned a year ago in calculus [class], so that, even though you learn them over 
time, you want them to be interchangeable within your mind. 
 

He also said good problems have more than one step and may require students to use part of the 

answer to address the next part of the problem. The Tractrix Problem, shown in Figure 7, is an 

example of a differential equations problem that required students to bring together several 

mathematical concepts. Mr. Dalton led the class through a solution of this problem and 

highlighted various mathematical concepts and procedures they would have to synthesize in 

order to solve it: the Pythagorean Theorem, integration by substitution, trigonometry, and some 

complicated algebraic manipulation. 

(Mr. Dalton verbally described the problem while drawing an accompanying diagram; 
the problem was not presented as a written statement.) 
 
A motorboat begins at the origin and moves with constant velocity v vertically along the 
y-axis, pulling a water skier using a rope of length r. When the boat is at the origin, the 
skier is on the x-axis so that the skier’s initial position is (r, 0). At time t the water skier 
is at (x, y). What is the equation of the path that the water skier follows? 

 Figure 7: Tractrix Problem. 

 In Mr. Dalton’s view, good problems may or may not be set in “real-world” contexts. The 

projects he assigned in his matrices course typically related to applications outside pure 

mathematics, but many of the combinatorics problems, he said, did not: “There aren’t that many 

combinatorially rich application problems. … The combinatorics [problems] are more sort of 

‘mathy for math’s sake’ problems.” 

 Many of the problems Mr. Dalton assigned were open-ended. For example, he had his 

statistics students design an experiment to test the jumping distance of two sizes of origami 

frogs. He gave minimal guidance, so the students had to come up with ideas on their own, 

including how large a sample to take and how to measure the jumping distance. Mr. Dalton 
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explained that he started his mathematics courses every year with simple, open-ended problems. 

Later in each course, the problems got more difficult and become even more open-ended: “As 

the year progresses, the problems get more complicated and have less scaffolding.”  

 Mr. Bailey began each class period with the POTD that was usually a preview of new 

material in the upcoming lesson. That is, the problem contained the content to be learned and Mr. 

Bailey used the problem as a starting point to launch the lesson. He explained that he used 

problems as a means to help students make discoveries. I asked him how his teaching had 

changed since he began focusing on problem solving, and he replied, 

I stopped doing the important math (the instructive problems, the significant discoveries) 
and became focused on how I could get the students to do it instead. I used to ask myself, 
“How can I make this clearer to my students?” Now I ask myself, “What sort of question 
can I pose so that they can discover the path to the answer without thinking it came from 
me?” 
 

It is important, he said, to “[choose] the right questions to elicit those little mathematical 

epiphanies.” 

 Some of the POTDs had the potential to be routine in that students could use procedures 

or algorithms to solve them. But often a procedure was unknown to the students, so the problem 

truly was a problem for them. The POTDs varied in terms of open-endedness, level of difficulty, 

and length of time required to solve them. Some had many correct responses, and some had only 

one answer. Some were difficult and required most or all of the class period to solve, and others 

took only a few minutes. Figure 8 gives an example of a very open-ended problem. There are 

many correct answers for the graph as well as the real-world scenario. 

Sketch a scatterplot that shows two clusters of points, each with a clear positive 
association, such that the graph of the two clusters together shows a clear 
negative association. Can you think of a real-world scenario that this graph could 
describe? 

 Figure 8: Problem of the Day for a finite mathematics course. 
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 One of Mr. Bailey’s calculus classes began with the problem in Figure 9, which is an 

example of a problem that was not routine for the students even though there was a procedure for 

solving it. The problem provided an entry point for a lesson on antidifferentiation through partial 

fraction decomposition. Mr. Bailey did not simply give his students the tool and show them how 

to use it. Rather, he allowed them to discover the process of partial fraction decomposition while 

solving the Problem of the Day. 

Advice: pay attention to the hint.  
 

Find 

! 

dx
x 2 + x"  without a calculator. 

Hint: 

! 

1
12

=
1
3
"
1
4

 

Figure 9: Problem of the Day for a calculus course. 

 In his second interview, Mr. Bailey described an evolution in how he gave tests. Early in 

his career, before he began focusing on problem solving, his tests contained primarily 

computation questions: “You can make up 20 different kinds of questions about logs 

[logarithms], and each one with a little new twist to it.” He came to realize the limitations of this 

kind of test: “I found that when all is said and done, you’ve just done 20 questions on logs.” So 

he broadened his focus to include a wider range of problems than those requiring just 

computation: “Now I’m much more conscious about having variety [of problems] in there, as 

much application kind of stuff as I can, so that it looks more interesting and applicable and 

worthwhile.” 

 Miss Atkinson and Mr. Fulbright both mentioned a feature of a good problem that I had 

not considered: students’ affective responses to the problem. For example, Mr. Fulbright took 

students’ emotional responses into account when choosing problems. He gave an example of a 

problem in which students were to take data from children’s growth charts, investigate the 
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change in average height and weight of boys and girls over time, and create graphs of these 

changes. The goal of the problem was to see what the graph of a derivative reveals about a set of 

data. Mr. Fulbright was sensitive to the fact that discussions of height and weight could be 

uncomfortable for some students: “If I had any students that I thought would be sensitive about 

their weight, for example, or their height, I probably wouldn’t have done this.” 

Miss Atkinson assigned a problem involving energy savings—the Energy Lab Problem—

in place of the Garbage Disposal Problem that she used the year before. She explained why she 

made the change: 

The energy problems are replacing this Garbage Disposal Problem that we did last year 
where, you know, as the population increases, … trash disposal is getting exponentially 
out of control. … And so that seems like the disheartening lab, whereas the Energy Lab 
[Problem] is more positive and, “This is what I can do, I can save this way.” … The math 
is the same. The Energy [Lab] Problem is very empowering versus the Garbage Disposal 
Problem is kind of just disheartening when you think about landfills and already the bad 
situation we’re in is getting exponentially worse. 
 

Both problems addressed environmental concerns and involved the same mathematics: 

exponential growth. But Miss Atkinson chose the problem that would be empowering and foster 

a more positive outlook on the part of her students. 

Practices for Teaching Through Problem Solving 

The last few decades of research on problem-solving instruction have yielded a handful 

of teaching practices that experts say can help students develop their problem-solving ability. 

The quantity and especially the quality of the problems are important, and in the previous section 

I indicated the kinds of problems the teachers in this study used. This section contains 

descriptions of practices the teachers used and how they used them. The practices are: (a) 

teaching problem-solving strategies, (b) modeling problem solving, (c) limiting teacher input, (d) 

promoting metacognition, and (e) highlighting multiple solutions. 
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Teaching Problem-Solving Strategies 

 There was a time when many mathematics educators relied on teaching problem-solving 

strategies—heuristics in particular—as a primary means of helping students become better 

problem solvers (Kilpatrick, 1985). Unfortunately heuristics training generally failed to produce 

the positive results researchers hoped for. Recall Schoenfeld’s (1987b) comments:  

Despite all the enthusiasm for the approach, there was no clear evidence that the students 
had actually learned more as a result of their heuristic instruction, or that they had learned 
any general problem-solving skills that transferred to novel situations. (p. 288) 
 

Teaching problem-solving strategies, though not the only way to help students develop as 

problem solvers, can be one of the practices teachers use to teach through problem solving. 

These strategies need not be taught in isolation. Rather, teachers can teach problem-solving 

strategies while modeling problem-solving behavior by highlighting particular strategies as they 

occur in the course of solving problems. Two of the teachers I observed—Mr. Dalton and Mr. 

Bailey—used this practice. 

 Mr. Dalton taught both general and specific problem-solving strategies as he modeled 

problem solving. He was often explicit in his suggestions about how to think about problems, but 

he did not teach problem-solving strategies in isolation. He highlighted general problem-solving 

strategies along the lines of Polya’s (1957) heuristics. Some examples of these strategies were (a) 

assume there is a solution, (b) consider domain restrictions, (c) use unsuccessful attempts to lead 

to successful ones, and (d) try a specific case. Mr. Dalton talked about the third and fourth 

strategies in several of the classes I observed as well as in interviews, so they warrant special 

attention. 

 Every problem solver runs into roadblocks. According to Mr. Dalton, that is no reason to 

give up, in part because a roadblock can indicate something useful for solving the problem. 



 

85 

Polya (1962) made a similar observation, noting that even a failed attempt at solving a problem 

is not a waste: “Even such a misconceived trial need not be quite useless; it may lead us to a 

more adequate appraisal of the proposed problem” (p. 63). During the first week of the 

differential equations course, Mr. Dalton gave students the following advice: 

Don’t spend overly long thinking through “Is this gonna be exactly the right thing?” 
Make sort of the most obvious choice. Don’t be surprised if it doesn’t work, but think 
about why it didn’t work. We’ll see that multiple times during the year, where we’ll try 
something, [and] it didn’t work. The way in which it doesn’t work tells you exactly what 
you should have done. So making that first mistake early, and looking thoughtfully at it, 
reflectively on it, is always a really good strategy when you’re trying to solve a problem. 
 

Note the value Mr. Dalton placed on perseverance and reflection, two elements of successful 

problem solving. He also encouraged his students to resist the temptation to completely abandon 

an unsuccessful solution attempt. Rather, he suggested making revisions, “modifying [the] 

answer rather than coming up with a complete answer from scratch.” 

 One of the problem-solving strategies Polya (1957) suggested was specialization: 

“passing from the consideration of a given set of objects to that of a smaller set, or of just one 

object, contained in the given set” (p. 190). For example, if it is too difficult to solve a problem 

for every case, one might try a specific case. Mr. Dalton recommended this strategy to his 

students. In his first interview, I asked him how he responded to students who were struggling to 

solve a problem during class. He replied, “If you see that they’re either heading off in the wrong 

direction or struggling with one of [the problems], not seeming to get anywhere, then you sort of 

ask them questions about ‘What about this simple case?’” He gave one assignment for the 

purpose of encouraging students to try specific cases: 

One of the first problems in graph theory … was still an open question. But what I 
wanted to do, again, was sort of think about, “Can you get any piece of it?” Ok, that in 
this special case, can I show that it’s true? … You don’t have to do the whole thing, but 
the way mathematics proceeds is with partial results. I can do these special cases, but I 
can’t do the thing in general. 
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By encouraging his students to try specific cases, Mr. Dalton helped them solve problems, but 

more broadly speaking, he helped them to think like mathematicians. 

 Mr. Dalton used the first several class periods of the differential equations course to 

introduce specific strategies the students would need to solve problems they would encounter in 

the course. He made his purpose explicit, saying to the students,  

These initial problems are trying to lay the groundwork for the kinds of things we’ll be 
doing as we go through the course, and also trying to make some suggestions for how to 
approach some of the problems that we’ll be doing. 
 

He used these initial problems to illustrate general problem-solving strategies—such as using 

roadblocks to actually make progress on solving a problem—but also to introduce specific 

techniques for solving various kinds of differential equations. Examples include the following: 

(1) techniques of integration such as u substitution, (2) uses of calculus or algebra to make a 

problem or equation clearer, and (3) decisions about what “chunks” to keep together when 

solving an equation. Mr. Dalton highlighted the third item as a particularly important technique. 

 By chunks, Mr. Dalton meant pieces of an equation that should be held together rather 

than multiplied out or separated. For example, the equation (x – 2)2 = 25 can be solved most 

efficiently if one keeps x – 2 as a chunk, solves for x – 2 by taking the square root of both sides 

of the equation, and then solves for x. It is inefficient to break up the chunk by multiplying out (x 

– 2)2 and proceeding from there. Mr. Dalton introduced the idea of chunks during the first week 

of the differential equations course: 

This is another thing that we’ll see a lot in the course—and this may be the first time 
you’ve seen it, which is good—but we’ll see [instances in which it is useful to ask], 
“What’s the chunk that we want to keep together?” Let’s think of that as the most 
important thing, and let’s organize our calculus so that we keep these pieces together. 
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In fact, Mr. Dalton told his students that he chose a problem (see Figure 10) specifically to 

introduce the idea of chunks: 

The primary reason that I picked this problem as the first problem is thinking about this 
expression right here [x – 2l] as being … the important variable of the problem. I wanna 
keep that expression together if I can. 
 
Taking a Whipper (Mr. Dalton verbally described the problem while drawing an 
accompanying diagram; the problem was not presented as a written statement) 
 
A rock-climbing rope is attached at the bottom of a wall (“belay”) and at a few points on 
the wall (“protections”). If the climber falls, he/she will fall twice the length of the rope 
from the last protection. The rope stretches a bit to cushion the fall (i.e., reduce the force 
on the climber). Suppose climber has used a length of rope L (total height climbed). The 
distance from the last protection is l. Let x be the distance fallen (x = 2l is when climber 
has reached the bottom of the rope). Let DF be the final (total) distance fallen, including 
after the rope stretches. 
a) What is the velocity at x = 2l? (How fast is climber going when he/she hits the end of 
the rope?) 
b) What is the force on the climber (faller) at x = DF? 

Figure 10: Problem to illustrate the idea of chunks. 

Mr. Bailey gave general advice about problem solving and also taught specific problem-

solving strategies. Like Mr. Dalton, Mr. Bailey did not teach these strategies in isolation. Rather, 

as opportunities arose in the course of solving a problem, Mr. Bailey pointed out ways in which 

students could think about problem solving. An example of general problem-solving advice Mr. 

Bailey gave was to use instinct when solving a problem. The calculus class worked on problems 

about convergent and divergent series, and before beginning a problem, Mr. Bailey asked, “First 

of all, let’s see how we’re doing on our instincts here. Does this [series] smell convergent or 

divergent to you?”  

A second example of general advice Mr. Bailey gave that did not necessarily constitute a 

problem-solving strategy per se was to look ahead and try to see if there might be a way to solve 

a problem that would be easier than another. The ways in which one applies this advice to 

particular problems can be considered specific problem-solving strategies. For example, the 
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general advice to anticipate where a solution path will lead could be applied to: (a) making a 

problem easier by keeping one side of an equation as simple as possible, and (b) deciding how to 

assign parts of a function when integrating by parts. 

In one of the calculus classes I observed, Mr. Bailey solved the following problem using 

integration by parts: 

! 

(e"x cos x)dx#  

He explained to the students his thought process for designating part of the function as u and the 

other part as dv: He first considered whether one part of the function would be easier to 

differentiate than another, or alternatively, if one part would be easier to antidifferentiate than 

another. He began, 

It doesn’t quite matter which [part of the function] I make u and which one I make dv 
because this is a situation where neither one is going to get really good when we 
differentiate it, and neither one will get really bad when we antidifferentiate it. So I’m 
going to arbitrarily choose [

! 

e"x] as u and [cosx dx] dv. 
 

In this example, there was no advantage as to which part of the function should be u and which 

should be dv, but Mr. Bailey made the point that it was important to look ahead to see if there 

was one way to solve a problem that would be easier than another, and looking ahead required 

anticipating where a particular solution path would lead. 

 One of Polya’s (1957) heuristic strategies is to exploit symmetry: “If a problem is 

symmetric in some ways we may derive some profit from noticing its interchangeable parts and 

it often pays to treat those parts which play the same role in the same fashion” (p. 199). There are 

problems that have symmetric qualities, but there are also mathematical objects whose symmetry 

can lead to a strategy for solving problems involving them. For example, Mr. Bailey noted that 

the symmetry of polar curves could be used to integrate them more efficiently, and he said to his 

calculus students, 
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This is often a very good idea with polar curves. Polar curves all have these symmetries, 
and it’s not a bad idea to play the symmetry card. So in other words I really only have to 
go from 0 to π and then times 2. So if I take twice the integral from 0 to π, I’ll get the 
same area as I would get if I went from 0 to 2π. 
 

Modeling Problem Solving 

 In the previous section, I noted that Mr. Dalton and Mr. Bailey taught problem-solving 

strategies by modeling the use of strategies while solving problems. In this section, I discuss 

aspects of modeling problem solving other than demonstrating problem-solving strategies. 

Polya (1957, 1962) and Grouws (2003) have discussed the importance of modeling 

problem-solving behavior for students. Kilpatrick (1985) listed “imitation” as one aspect of 

problem-solving instruction. That is, students benefit from imitating the teacher or another 

experienced problem solver. Polya (1962) listed “imitation and practice” as means of improving 

problem-solving ability. Modeling problem solving includes the following: (a) demonstrating 

mathematical concepts and skills, (b) thinking aloud in order to give students insights into the 

metacognitive aspects of problem solving, and (c) demonstrating perseverance and a positive 

attitude when faced with difficulties or roadblocks. 

Demonstrating mathematical concepts and skills. Mr. Dalton modeled problem solving in 

many of the classes I observed, particularly in the differential equations course. He also spoke 

extensively in interviews about the importance of modeling problem solving. Perhaps the most 

obvious way a teacher models problem solving is to demonstrate how to use relevant 

mathematical concepts and skills to tackle a problem. Mr. Dalton demonstrated various problem-

solving techniques, some of which were specific to problems involving extensive algebraic 

manipulation. For example, he said, “If I don’t want to deal with these squares, then let me solve 

for x2 rather than x.” As I described in the last section, a powerful technique Mr. Dalton 

demonstrated in class was to keep a particular piece—or chunk—of an equation together as a 
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variable or unknown. In a differential equations problem about force and distance involving a 

climber and a climbing rope (see Figure 10), Mr. Dalton highlighted the expression x – 2l as the 

useful chunk. 

This is called a chunk, a piece of an equation: That’s the piece we want. I’m interested in 
that expression x – 2l. I wanna know its value when x is equal to DF. So I would like to 
keep this expression together rather than multiply it all out because the force I’m 
interested in is in terms of that x – 2l. So I would prefer this form of the expression rather 

than that form of the expression [i.e., 
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+C1] because it keeps my chunk together. It’s written in terms of x 

– 2l. So I’m thinking of x – 2l as really being my variable—that whole thing is what I’m 
after: how far [the rope] stretched. 
 
Modeling metacognition. Metacognition includes being aware of one’s own cognition 

and knowledge—including what one knows and does not know, what is easy and what is 

difficult, and what mistakes one tends to make while solving problems—as well as monitoring 

the problem-solving process and how one is thinking about the process and the problem itself. 

Because metacognition is such a crucial part of problem solving, it makes sense that teachers 

would demonstrate metacognitive behavior when they model problem solving. Miss Atkinson 

noted, “One thing I try to do is make my thought processes clear so that I’m modeling how I 

think about the problem.”  

When I asked Mr. Dalton in his first interview to summarize the main things he did to 

emphasize problem solving, the first thing he mentioned was modeling problem solving—in 

particular, giving students insights into his thinking process. He explained, 

I [try] to illustrate my own problem-solving techniques in problems I do in class, to sort 
of think about, “Ok, so how do we think about this? How do we approach this problem? 
… What do we see? What do we think about? … What’s going to work? What isn’t?” [I 
try] to mimic my own looking at the problem: Why did I decide to do it this way? What 
was it about the problem I saw that made me take this approach? 
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One of the features of Mr. Dalton’s teaching approach was that he shared his solutions to the 

homework problems. For every assignment, he wrote up his solutions so the students could see 

examples of how to solve the problems. He explained to his students that he tried to be explicit 

about how he solved the problems so they could get some insight into how he thought about the 

problems. On a day when he distributed his written solutions to his combinatorics class, he told 

the students, 

I’ve tried to write up my solutions so that the way I was thinking about the problem is 
hopefully understandable. … I’ve tried to sort of lay it out for you so that you can see 
some sense about how I was thinking about the problem, how I was looking at the 
problem. 
 

The quotations above show that Mr. Dalton valued metacognition and metacognitive questions, 

and he saw the importance of not only solutions, but also ways of thinking about a problem in 

order to arrive at a solution. 

Talking through his thought process in class was a regular feature of Mr. Dalton’s 

modeling of problem solving. He frequently made comments to demonstrate his awareness of his 

own cognition and knowledge. For example, while solving problems in front of the differential 

equations class, he asked such questions as, “What is it I know about this situation?” and, “Do 

we know how to do that?”  

Part of being aware of one’s own knowledge is knowing what concepts or skills are easy 

or difficult and knowing personal preferences. At one point in the differential equations course, a 

difficult integration problem arose. Mr. Dalton was leading the class in solving the problem and 

asked, “Do I know how to integrate 

! 

u
r2 " u

? (pause) No. Why not? What makes it hard? What’s 

the problem?” A student responded, “Square root,” to which Mr. Dalton replied, “Yeah, the 
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square root.” By asking such questions as “What do I know?” Mr. Dalton was modeling 

metacognition. 

Another part of awareness of one’s own knowledge is recognition of one’s common 

mistakes. Mr. Dalton was very transparent about errors he tended to make, one of which was 

losing negative signs along the way while solving a problem. While working through a problem 

on the board, he explained: 

Why do I write things in the way that I do? Because I know where my mistakes come 
from. They come from forgetting negative signs, so I’m gonna write it in this form 
because I don’t want to start with a negative, because three lines down that negative will 
be missing. I know that. So think about where your mistakes come from, and try to 
arrange things so that you avoid them if possible. 
 

 A second aspect of metacognition is monitoring, which involves overseeing the entire 

solution process. Monitoring includes choosing the most appropriate strategy, determining 

whether subgoals have been met, assessing whether a chosen strategy is leading toward a final 

solution, and making sure one answers the question being asked. Mr. Dalton demonstrated each 

of these aspects of monitoring at one time or another during my observations. For example, he 

explained his choice of a strategy for solving for C in a differential equations problem:  

We need to find the value of C ‘cause we have an initial value. But I wouldn’t do it here. 
In every problem there’s sort of a place in the process where it’s more easily found than 
others. And I wouldn’t do it here while we’re dealing with all these natural logs. I would 
simplify first. 
 

In his second interview, Mr. Dalton talked about helping students think through their choice of 

strategies: “I try to give [students] some ways of thinking about a problem: ‘How would I think 

through this?’ in terms of ‘Well, I only know a couple of things. Could I use them?’” 

 Mr. Bailey also demonstrated the monitoring aspect of metacognition while modeling 

problem solving. During one calculus class, he solved an integration problem in front of the 

class, thinking aloud: 
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First of all, I would look at this and say, “Well, let’s see, is this a u substitution that I’m 
overlooking?” Well, the only u substitution that would really help me is if this 
denominator is u and the numerator happens to be du or a factor thereof. Well, [since the 
denominator is] x2 – 3x + 2, what I’d be looking for [in the numerator] is either 2x – 3 or 
some multiple of 2x – 3 that I might be able to fix up by a constant, and that’s not what I 
have there at all. So I’m gonna want to do this by partial fraction decomposition. But I 
can’t do anything with partial fractions yet because the degree of this numerator is bigger 
than the degree of the denominator. That means partial fractions won’t work here. So 
what I have to do is actually divide x2 – 3x + 2 into the numerator. Fortunately, you can 
always divide any two polynomials. 
 

He then proceeded to divide the polynomials and finish the problem. 

Demonstrating perseverance. Solving problems requires perseverance and patience, so a 

teacher who models problem solving is likely to demonstrate those qualities. Hitting roadblocks 

is part of the process, and those roadblocks need not be a reason for giving up. Mr. Fulbright sent 

this message as he led his calculus class through an integration problem. Students offered several 

suggestions, many of which led to dead ends, but their perseverance paid off when eventually 

one suggestion led to a solution. Mr. Fulbright facilitated the problem-solving process by 

demonstrating patience in the midst of unsuccessful attempts to solve the problem. 

Mr. Dalton encouraged his students to persevere despite roadblocks they encountered 

while solving problems. In fact, he frequently talked to students about how roadblocks can 

actually lead to a solution if they are seen in the right light. 

Again, one really important idea is to go ahead and make a decision and try a technique. 
If it doesn’t work, then that’s not a bad thing because almost always the way in which it 
doesn’t work is really, really useful information and typically tells you what you need to 
do to make it right. So it’s ok to make a substitution that doesn’t work, as long as you 
don’t just throw that substitution away, as long as you think about “What was the 
problem?” 
 
Mr. Dalton demonstrated the need for perseverance when encountering something he or 

the students did not know. For example, a differential equations problem required the integral of 

a secant function. Instead of simply telling the students how to integrate the function, he modeled 
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the process of self-questioning and working through the difficulty of what to do when you do not 

know what to do: “[The integral of] 

! 

sec"  is one of those things that you either know or you 

don’t. If you don’t know it, how can we figure it out? … So how do we integrate 

! 

sec"  if we 

don’t already know?” 

There were times when Mr. Dalton hit a roadblock while solving a homework problem, 

and he was honest about the fact that he could not fully solve the problem. In this way he 

modeled a humble attitude and showed students that errors and roadblocks are just part of the 

process of problem solving. In his first interview, Mr. Dalton explained, 

When I give a problem set, I’ll work the problems myself, and so when they give me 
their solutions I’ll give them my solutions. The first thing we’ll do is look at my solutions 
and see which ones I missed. And I don’t ever miss them intentionally, but you know, I 
can add 2 and 3 and get 6 just as quickly as anyone else. So sometimes I miss them 
because I’ve done some silly arithmetic error. Sometimes I miss them because I’ve just 
thought about it incorrectly. And sometimes I miss them just ‘cause I couldn’t figure out 
an approach. … There are times when my solution is, “Ok, I can’t do this. But here’s 
what I thought about. So I thought about doing it this way and I ran into this roadblock. I 
thought about doing it this way, and I ran into this roadblock.” 
 

Mr. Dalton noted that one advantage of being willing to share incorrect solutions with students is 

that they become more willing to share their solutions even if they are not completely correct. 

Limiting Teacher Input 

 In order for students to develop as problem solvers, they must take on the responsibility 

of solving problems rather than waiting to be shown what to do every step of the way. Teachers 

who teach through problem solving allow students to bear this responsibility by limiting the 

amount of direct instruction they give students. That is not to say students are left entirely on 

their own, but the teacher encourages them to look to one another, and to their own reasoning 

abilities, before looking to the teacher for answers. When I began the study, I focused on group 

work as a practice but later determined that having students work in groups was encompassed in 



 

95 

a broader practice of limiting teacher input. Limiting teacher input includes the following: (a) 

having students work in groups, (b) refraining from telling students too much, (c) allowing 

students to struggle, and (d) sharing authority for correct answers. 

Having students work in groups. Having students work in groups is a common practice 

among teachers who focus on problem solving. Working in groups allows students to share 

ideas, explain their thinking, and help each other solve problems. Group work was essential in 

the classrooms of all four teachers in this study. In fact, it was a department-wide practice at 

Northridge High School where the desks in every mathematics classroom were arranged in 

groups of four called pods. Students in all the classes I observed at Northridge and at Tanner 

Academy regularly solved problems together, either in small groups of two to four, or as a class 

in large group discussion. Students also worked together outside of class on long-term projects 

and other assignments. 

 Each day, Miss Atkinson’s students began consulting their group mates as soon as class 

began. They checked their homework and shared solutions with one another, particularly if there 

was disagreement about the answers. After a few minutes, each group presented one homework 

problem on the board. Miss Atkinson emphasized the importance of working together on this 

task, saying to students, “Make sure you have group-wide agreement and then go put all your 

work on the board.” She assigned students to their groups and typically reassigned the groups 

after each test. Therefore, students had enough time to grow accustomed to working within a 

particular group, but also had the opportunity to work with several of their classmates over the 

course of the year. 

 Students frequently worked together to solve problems in Miss Atkinson’s class. She 

assigned the problems and walked around the room supervising the groups. She gave help as 
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needed but always encouraged students to figure out the solution on their own, check their own 

answers, or look to one another for help rather than to her. She often made comments such as, 

“Y’all work together as a group to figure it out,” or “I’m gonna give you these problems, and I’m 

just gonna let you go.” Miss Atkinson noted that one advantage of group work is that it takes 

some of the pressure off students—it “eases their stress.” Minimizing stress was particularly 

important at the beginning of the school year, she said, as students were getting used to a 

problem-based approach to learning mathematics.  

 Mr. Fulbright encouraged his students to work together on problems and investigations 

during class. He said working in groups was “reassuring” for students, particularly at the 

beginning of the school year when they were unsure what was expected of them. He stated that at 

the beginning of the year, 

the students work together in groups on numerous problems, which I think they find 
reassuring—so if they don’t know how to solve a problem at first, but neither does 
anyone else in their group, they realize that it isn’t “just them,” that I must be really and 
truly asking them to do something that I haven’t taught them how to do. 
 

When students asked questions during class as they worked on a problem or investigation, Mr. 

Fulbright frequently responded by having them talk with their group mates and compare answers 

with one another. 

Mr. Dalton said “encouraging [students] to think together and work together” was an 

important part of his teaching approach. One advantage, he explained, was that “kids like the 

group work, and that’s one of the things that comes through on the [course] evaluation.” Another 

advantage was that students “feel like they learn a lot by arguing with each other and trying to 

work through some common solution.” 

Mr. Dalton’s students worked together both inside and outside of class. During class they 

sat in groups of their choosing, although Mr. Dalton said that if a particular arrangement was not 
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working well, he sometimes encouraged the students to sit with a different group. They 

frequently solved problems in these groups as Mr. Dalton circulated around the classroom. 

During one of the classes I observed, he gave explicit instructions on how to best work as a 

group. In doing so, he expressed a belief about group work: Students learn more by working 

together than by working alone. 

It is not to your advantage to say, “Ok, I’ll do Problem 1, you do Problem 2, you do 
Problem 3.” I mean, that certainly cuts down on the amount of work you have to do, but 
the purpose of doing the work isn’t to do the work. The purpose of doing the work is to 
learn the things I want you to learn by doing the work. So the more you divide up, the 
less you actually learn in taking the course. So the best way to do this is to go through 
[the problems] and talk them out together one at a time. You’re not going to have time, 
probably, to finish them all [during class], so you’ll have to finish it up for homework. So 
you need to look at each one and have a few minutes of brainstorming in your group to 
make sure you all know what you’re supposed to do—How do you approach this 
problem? How do you work it?—before you leave. 
 
One of the features of Mr. Dalton’s classes was that he assigned projects that students 

worked on in groups outside of class. He gave students a choice among several projects, and 

usually the choices students made determined the groups. For example, in the matrices course, 

students chose from projects that involved such topics as population growth, cryptology, and 

music. Students signed up for the project they wanted to work on, and all the students choosing a 

particular project worked together on it. Mr. Dalton noted that students often chose a project 

based on the others in the group rather than their interest in the particular topic. He also said he 

sometimes encouraged individual students to choose a different topic if he thought they were not 

giving themselves enough of a challenge with the project they chose initially. 

 In his second interview, Mr. Dalton expressed the difficulties he had in finding a balance 

between individual and group work, particularly when it came to assessment. When students 

worked in groups, he said, “that makes it more speculative as to how to grade those 

[assignments].” He added, “[With] some groups, it’s easy because everyone really is contributing 
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and doing their share. And [with] other groups, it’s not, because there’s somebody who does 

most of the work, and other people get the grade for it.” He summarized by saying, “As long as 

they are in good faith, contributing and listening to try to understand what each is doing, I think 

that’s really all that you can expect them to do.” 

The students in Mr. Bailey’s class worked in pairs every day. He randomly assigned 

partners at the beginning of each class period so that over the course of the year, students were 

able to work with most, if not all, of their classmates. As students worked on problems during 

class, Mr. Bailey often redirected their questions, saying, “Talk to your partner,” or, “Compare 

with your partner.” Certain quizzes were “partner quizzes,” and even a portion of the final exam 

was collaborative. 

According to Mr. Bailey, group work was important because students learn a lot from 

each other. In reflecting on the beginning of his teaching career, when he was primarily a 

“lecturing kind of guy,” he said that student learning depended on how well students could listen 

to him, follow the lecture, and take notes quickly and accurately. In contrast, he described his 

practices after he began focusing on problem solving: “I run a ‘looser’ classroom, as [student 

learning] no longer depends on them listening attentively to me; it depends on them collaborating 

with each other.” During some of the classes I observed, Mr. Bailey explicitly told students that 

he was going to “try to give [them] very little guidance” so that students would have to work 

together to solve the problem. 

 Mr. Bailey encouraged students to work together on homework problems. He noted, 

“When [collaboration] works well in class, it carries on outside of class. If they come across a 

homework problem that they can’t do, I encourage them to collaborate to find out how to do the 
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problem.” He observed that one result of group work was that students improved their ability to 

clearly communicate solutions: 

I have been delighted at the way the students work together to refine the clarity of their 
solutions. … Getting students to understand the importance of communicating their 
methods clearly has always been a challenge, and now it is happening naturally—a happy 
corollary of our collaborative problem-solving approach throughout the year! 
 
Another advantage of group work, Mr. Bailey said, was to prepare students for life after 

high school: “[Successful collaboration is] ultimately what I’m trying to get to happen, so that 

they’re comfortable collaborating [while] doing problem solving. Because I know that is going to 

be a good transferable skill for later: college, then jobs and whatnot.” 

Refraining from telling students too much. All four teachers in the study indicated that it 

was important to refrain from telling students too much. Rarely did teachers directly answer a 

mathematics question from a student. Typically, the teachers either redirected the question to one 

of the student’s group members or responded to the student by asking a question in return. 

Miss Atkinson said, “I try to limit how many hints I give and really push them to be more 

independent. … I’m trying to tell them less.” She tried to limit not only her verbal instructions, 

but written ones as well. For example, in speaking about something that had changed about her 

teaching in the last few years, she said, “One thing that I’m trying to do less of is give copious 

instructions for how to go through an investigation. [I’m trying to] make it a little more vague 

and a little more student decision guided.” 

In Mr. Fulbright’s view, it was important that students gain independence in their 

development as problem solvers. This process is gradual, and Mr. Fulbright said he gave students 

fewer explicit instructions as the year went on in an attempt to “wean” them from his help. He 

explained why it is essential that students do the work of problem solving rather than being told 
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what to do: “In developing a strategy for solving the problem themselves, they’re learning way 

more than they would if I told them such a strategy.”  

In our interviews, Mr. Fulbright talked a lot about not giving students too much guidance 

when they were solving problems that required them to apply mathematical knowledge in new 

situations: “The real thinking is going on when they have to figure out things on their own. And 

that requires not telling them too much.” In his first interview, he described the evolution of the 

investigations he and his colleagues had developed, noting that over the years the instructions 

had gotten longer and longer and eventually turned into steps to follow, thereby ridding the 

activities of their investigative nature: 

As [students] struggled year after year, we kept taking hints that we used to tell them, and 
we wrote them into the investigations. So what had started out as just a spare, open-ended 
question gradually evolved into a recipe—you know, first do this, now try this, now do 
this. No wonder they didn’t do anything investigative! We told them exactly what to do, 
and they did it. 
 

Noticing this trend, Mr. Fulbright and his colleagues rewrote the investigations to restore the 

original intent: “I stripped everything away; I stripped it down. Sometimes the questions had 

been two pages long. I cut [them] down to two sentences. … And that was a vast improvement, it 

really was.” 

Mr. Dalton also talked about the importance of students becoming independent problem 

solvers. He noted that when students were working on problems during class, “what you try to do 

is walk around and see whether they’re making progress. If they’re making progress you sort of 

leave them alone, or ask a question or two, so they don’t feel like you’re ignoring them.” 

Something that was important to Mr. Dalton was “keeping things [open-ended] and giving them 

less help rather than more” so that they would solve problems on their own. Not all of his 
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students responded positively to this approach. Rather, he said, “there are some kids who just 

resent mightily the fact that I won’t tell them how to do this.” 

On several occasions, Mr. Bailey’s class worked together to solve problems with limited 

input from him. He encouraged them to listen carefully to one another and allow everyone a 

chance to offer ideas. In one of the calculus classes I observed, students filled in missing steps of 

a general logistic differential equation. One student was at the board as the “scribe,” and others 

offered suggestions. Mr. Bailey allowed students to share ideas, both good and bad, without 

interrupting. At times, he gave warnings and asked questions, but he did not take over. At one 

point, the students made an error, but he did not intervene, and eventually the students found the 

error. This experience allowed them to really engage in problem solving, a process that includes 

getting stuck and overcoming obstacles. 

Allowing students to struggle. All four teachers expressed the importance of allowing 

students to struggle when they solved problems. The teachers wanted their students to engage in 

mathematical thinking rather than following a set of instructions. Each teacher sought a balance 

between letting students experience the struggle of problem solving—for example hitting 

roadblocks or making errors—and helping them avoid excessive frustration that may have 

resulted in giving up on a problem. 

Miss Atkinson said that allowing students to struggle was one of the main things she did 

to teach in a way that emphasized problem solving. She said, “I’m trying to really get better at 

letting them mess up and see that their method isn’t getting them anywhere. Yet it is getting ‘em 

somewhere at the same time.” In an algebra class I observed, the students were working together 

to solve problems involving quadratics. They could not solve one of the problems because they 

were using a form of the quadratic function that was not helping them reach a solution. I include 
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a transcript of the incident at the end of this section. Recalling the situation, Miss Atkinson 

explained her decision to let them struggle: “So they had the right idea, and I wanted them to go 

through that and hit a roadblock and say, ‘But wait just a minute. This isn’t the only form of a 

quadratic equation.’” In her first interview, I asked her how she decided how much help to give 

students, or when to intervene if it seemed they were heading down an unproductive path in 

solving a problem. She replied that she tried to gauge students’ level of frustration:  

If I sense intense frustration and … they’re just stuck, I’ll try to start giving them clues. 
And how many clues? For some groups a tiny little clue and they’re off. For some, I just 
kinda have to stand with them for a little while. 
 
According to Mr. Fulbright, letting students struggle was essential to their discovery of 

mathematical concepts and their development as problem solvers. He noted that although “it 

takes a lot longer for students to discover something on their own than it does if you just tell ‘em 

the answer,” the extra time is worth it. He said, “If a person agrees that there’s still value to be 

had in having [students] struggle and figure things out [by] problem solving … you’ve gotta 

allow class time for that. … But it’s time well spent.” Recall that Mr. Fulbright gave students lots 

of guidance when he had a particular goal in mind for them. It may seem contradictory that a 

teacher could give guidance and also allow students to struggle. One might reconcile this 

seeming contradiction by noting that the guidance Mr. Fulbright talked about did not necessarily 

remove the struggle for students of having to think through hard problems. Rather, the guidance 

helped students think about the hard questions he wanted them to think about. There were times 

when practical considerations such as time constraints prevented Mr. Fulbright from letting 

students struggle as much as he might have wanted them to. I discuss this tension below. 

Mr. Fulbright distinguished between two reasons the students might struggle in solving a 

problem or completing an investigative task. On the one hand, they might struggle to understand 
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what he expected of them, particularly regarding how he would grade the assignment. On the 

other hand, the students might struggle with the mathematics of the task itself. Mr. Fulbright said 

he tried to minimize the first type of difficulty by completing the first investigation of the year 

together as a whole class. The second type of difficulty, however, was exactly what he wanted 

students to confront. Speaking of an instance of this good kind of struggling, Mr. Fulbright said, 

“They struggled a little bit with the question, but only in exactly the ways that they were 

supposed to be struggling. They struggled because [the questions] were hard questions.” 

Mr. Fulbright reiterated the importance of allowing enough time for students to engage in 

problem solving because struggling takes time. He described an open-ended investigation that 

students worked on for 5 class days: 

If they’ve got that much time, and if they struggle on Day 1, let ‘em struggle. I mean, 
that’s good. It’s good for them to be puzzling through, and they don’t feel a lot of time 
pressure on that first day, so it’s not stressful. … I’ve told them before on the first day, I 
said, “Look, you’re struggling. It’s a hard problem—of course you’re gonna struggle. 
Don’t worry about it.” 
 

 I asked Mr. Fulbright in our first interview how he made decisions about intervening 

when students were heading down unproductive paths while they were working on problems. He 

said it depended on time constraints. If they were engaged in a long investigation, he allowed 

them to struggle and did not redirect them. But on other occasions, he was under time pressure to 

finish a particular problem so the class could move on to other topics. He gave the example of 

when there were only 15 minutes left in class, and he deemed it “important to reach a resolution” 

to the problem: 

I hate to leave questions hanging. … So you want to resolve it, and so if they’re 
struggling and I realize, ok they’re not gonna get there, then I start giving more and more 
obvious hints until eventually we get there. The worst possible ending is you stand in 
front of them at the board and solve the problem for them, but sometimes that happens 
too. 
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This example shows the tension Mr. Fulbright sometimes felt as he sought to reconcile the value 

of letting students struggle and the practical constraints—such as time limitations—that are part 

of the reality of teaching mathematics. 

In several of the classes I observed, when Mr. Dalton assigned a problem in class, he 

circulated among the groups of students to check on their progress, but he did not intervene too 

quickly. Rather, he spent the first several minutes simply observing the groups without saying 

anything. After allowing them to struggle on their own for a while, he offered help as needed. He 

noted that if a group was making good progress toward a solution he would leave them alone, but 

in other cases he would handle things differently: 

If you see that they’re either heading off in the wrong direction or struggling with one of 
[the problems], not seeming to get anywhere, then you sort of ask them questions about 
“What about this simple case?” or “What about that simple case? Could you do that?” So 
a couple times you’ll stop and work through a problem with them to try to get them 
restarted again. 
 
Mr. Bailey also gave students time to struggle with problems, and he avoided intervening 

when they took wrong solution paths or made errors. One reason for this hands-off style was his 

commitment to having students work together: He was more interested in them helping each 

other solve problems than he was in telling them correct answers. In his second interview, he told 

the story of a student who was working on the POTD and pursued an incorrect solution path that 

eventually led her to the correct answer. In fact, even though her route was circuitous and 

included errors along the way, in the end she made an important discovery. Mr. Bailey recalled, 

And so here’s this girl [who] has the right answer, and yet she had continued down this 
wrong path. So I stared at it, and I realized what she had done was [that] she had invented 
integration by parts. … This was not one of my top students or anything like that. She 
had just flat stumbled into it. … I would not have ever dreamed, before that accident 
occurred, that a student could stumble upon integration by parts. 
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This story provides a clear example of the value of letting students struggle and not intervening 

too soon. Not only can they have a rich experience of solving a problem on their own, but they 

may also discover mathematical concepts in a manner much more meaningful than if the teacher 

simply told them the answer. 

There were times when Mr. Bailey intervened to prevent students from going too far 

down the road toward an incorrect solution. When I asked him in his first interview how he 

decided whether to intervene, he indicated that time constraints often influenced his decision. He 

acknowledged that a downside of intervening was that students were kept from a full experience 

of problem solving, which often included having to overcome hurdles:  

I’ll see them go down a wrong road, and I’ll say, “Oh yeah. Now if I could just seal that 
road off.” So that will either require maybe a little hint or maybe change the nature of the 
problem so that wrong road isn’t as tempting. So to a certain extent I suppose I’m saving 
them from part of the reality of problem solving because you’re gonna go down wrong 
paths. But on the other hand, we do want to streamline it a little bit so that we can get to 
covering some stuff. 
 

Another practice Mr. Bailey sometimes used to keep students on an efficient solution path was to 

warn them of common errors such as forgetting to apply the Chain Rule when differentiating a 

function. 

Sharing authority for right answers. The teachers in this study not only refrained from 

giving students too many instructions, but also encouraged students to rely on their own 

mathematical reasoning rather than looking solely to the teacher for the right answers. Miss 

Atkinson explained that she wanted her students to be independent thinkers and to realize that 

they were capable of solving problems on their own: 

A lot of times if a student says, “Is this right?” I’ll be like, “I don’t know. How can you 
figure it out?” … I want ‘em to think that, “Well, maybe I could figure out if it’s right or 
not. Maybe I don’t need to ask her.” 
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I observed that Miss Atkinson frequently responded to students’ questions by asking them 

questions in return, thereby putting the responsibility back on them to solve the problem and to 

verify their answers. At one point, a student asked her about using a particular strategy, and she 

replied, “Well, why don’t you try it and see instead of asking me the question?” Later she 

explained to the student, “What I’m trying to get you to do is try something and not ask me if 

you can do it.”  

 Mr. Dalton let his students know that he did not have all the right answers. He saw 

himself as a fellow problem solver with his students rather than the source of all correct 

solutions: “Oftentimes I don’t know how to do [a problem] myself, and I’m interested in figuring 

it out, so maybe one of [the students] will figure it out and teach me.” I observed Mr. Dalton’s 

combinatorics class on a day when he distributed his written solutions to some homework 

problems. He said to the class, 

These are just my solutions. I don’t have an answer book that I’m just copying out of. 
This is just the way I was thinking about doing the problem. It doesn’t mean it’s correct. I 
mean, I may have counted incorrectly. 
 

These statements reveal Mr. Dalton’s willingness to learn from his students and his recognition 

that students were able to solve problems on their own. 

 Mr. Bailey consistently responded to students’ desire for affirmation by reminding them 

that they were fully capable of making progress on a problem on their own. Several times every 

class period, while students worked on problems during class, I heard Mr. Bailey say, “Talk to 

your partner,” indicating that he wanted students to look to each other before looking to him for 

answers. He also relied on students to go to the board to show how they solved the problems. He 

explained, “I like having them show ultimately how the problem was done rather than me. 
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Again, there the object is to get them to understand that I’m not the only one around here who 

can do that problem.” 

The following is an example to illustrate all four aspects of limiting teacher input: (a) 

having students work in groups, (b) refraining from telling students too much, (c) allowing 

students to struggle, and (d) sharing authority for correct answers. Miss Atkinson’s algebra 

students worked in groups on the following problem: “Suppose there is a parabola that contains 

(1, 2), (-2, 23), (3, 8). Find its equation.” 

Student 1 (S1): Ok, I have a question. 
Miss Atkinson (A): I may or may not have an answer. 
S1: Is [this problem] pertaining to what we’ve been doing most recently at all? Like is 

there a connection between that and this? 
A: I don’t know. 
S1: Well, that’s not helpful. 
A: I know. 
S1: Would it be useful to convert these lines to standard form or vertex form? 
Student 2 (S2): Well, they’re not lines; they’re points. 
S1: Not lines, but the points—like put them in equations, separate equations. Would that 

help? 
A: Well, why don’t you try it and see, instead of asking me the question? 
Student 3 (S3): Miss Atkinson, you’re being vague on purpose. 
A: Yes, I am. I surely am. Which form [of quadratic equation] do you want to pick, [S1]? 
S1: Probably vertex [form]. 
A: Why? 
S1: Because we’re doing a parabola, and the vertex is always pretty important. Well, so is 

standard [form], but you can’t really get much out of standard [form]. 
A: What can you always do with standard [form]? 
S1: Convert to slope-intercept? 
S3: What? 
S1: Wait, no. 
A: Slope-intercept? All right, let’s stay on the train tracks here. What are you thinking 
there, [S3]? 
S3: Can’t you put each of these [points] in this formula [standard form] and then solve it 

as a system of equations? 
A: I don’t know. 
S3: That means yes. 
S1: Try it. 
A: What I’m trying to get you to do is try something and not ask me if you can do it. 
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Miss Atkinson purposefully refrained from telling the students too much, both in the problem 

statement itself and in her verbal comments. When a student asked a question, Miss Atkinson 

responded either by “being vague on purpose” or by asking the student a question in return. In 

addition, she encouraged the students to rely on one another and on their own mathematical 

reasoning to solve the problem, rather than looking to her for the correct answer. Note that even 

though she allowed the students to struggle and did not tell them how to solve the problem, she 

also helped them “stay on the train tracks.” 

Promoting Metacognition 

 As I discussed previously, when teachers in this study modeled problem solving, they 

often modeled metacognitive behavior. In this way, the teachers promoted metacognition. There 

were other ways the teachers encouraged students to be metacognitive, for example by asking 

metacognitive questions or drawing attention to the students’ own thinking.  

In her first interview, Miss Atkinson gave an articulate description of problem solving 

that included aspects of metacognition: 

Problem solving is a lot of different things. … [It includes] having some sort of 
metacognition going on. Are you thinking about what you’re doing? Is what you’re doing 
getting you anywhere? Are the answers that you’re coming up with … making any sense? 
If you expect the parabola to be doing this (motions with hands), and it’s doing this 
(reverses motion), what went wrong? Don’t keep going. Stop! Have some control over 
what you’re doing. 
 

Miss Atkinson’s questions and comments addressed two aspects of metacognition: monitoring 

(“Is what you’re doing getting you anywhere?” “What went wrong? Don’t keep going. Stop!”) 

and reflection (“Are the answers that you’re coming up with … making any sense?”) At various 

times, the teachers in this study asked metacognitive questions to encourage students to do the 

following: (a) be aware of their own cognition, (b) monitor the problem-solving process, and (c) 

reflect on the problem and solution. 
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Being aware of one’s own cognition. Metacognitive problem solvers are aware of how 

they are thinking. On one occasion, Miss Atkinson asked her students to think about how they 

were visualizing the graph of the function f(x) = 10x and its inverse: “How do you picture in your 

head what the inverse is gonna look like?” … “How did you know it was gonna look something 

like that?” Miss Atkinson told her students she wanted them not only to know how they were 

thinking, but also to express how they were thinking about problems as they solved them: 

I want everybody to have all of this work done completely because when we get to class 
on Monday I want us to be able to finish up these problems and have really good 
discussion about why these curves look the way they do, ok? And talk about how we 
thought about these problems when we were solving them. 
 
Mr. Dalton emphasized that solutions to problems included not only a final answer, but 

also an explanation of the thought process that led to the answer. He told his students, “What I 

want to see in your solutions is the way you’re thinking about the solutions.” Miss Atkinson 

expressed a similar opinion: “I wanted them to share their work, share how they were thinking 

about all of their steps.” In one of Mr. Fulbright’s calculus classes, a student presented her 

solution at the board. Her answer was incorrect, but Mr. Fulbright asked the rest of the class to 

consider how she might have been thinking about the problem: “What was [she] thinking? … 

There’s something sensible that she’s doing.” 

 The primary means by which the teachers encouraged their students to be aware of their 

own cognition was helping students think about what they knew and what they did not know. 

Miss Atkinson expressed the challenge of getting students to think about their knowledge, 

describing it as a battle: “For me I guess it’s this constant battle of, ‘Ok, what else do you know? 

What other resources do you have?’—just asking ‘em to articulate the things that they know.” I 

observed her asking questions during class to get students to think about the knowledge they had 

that would help them solve a problem involving a quadratic equation: “What else do you know 
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about quadratic equations? … Reach back in your toolbox to stuff you know about quadratic 

equations, functions. What else do you know? Write down a list of everything you know.” Miss 

Atkinson helped students tune in to their own knowledge by encouraging them to be aware of 

their common mistakes: “What errors are you prone to making? … When you’re going back and 

checking your work, be aware of the kinds of errors that you are making, and think about those.” 

 Mr. Dalton wanted to help students think about what they knew and what they did not 

know. He made the interesting comment in a differential equations class that in some ways 

solving a problem is easier the less you know, because then you have fewer problem-solving 

strategies to try: 

So how do we integrate 

! 

sec"  if we don’t already know? … The good news is I don’t 
know very much about secant. Now why is that good news? I don’t have very many 
choices, right? The more I know about something, the more things I have to sift through 
to make the right choice. 
 

On another occasion, he told students, “In a lot of these [differential equations problems] just 

stop and think about them, ‘What do I know?’ and you’re almost always better off not to know a 

whole lot, ‘cause it doesn’t give you that many choices.” When Mr. Dalton led a discussion of a 

problem, he regularly asked questions to get students thinking about what they knew:  

So what do we know? … How do we know that? … What else do we know? … So how 
do we do this? What techniques did we learn when we learned how to integrate? … Is 
that one we recognize? Do we know how to do that? 
 
Monitoring the problem-solving process. The aspect of metacognition that Schoenfeld 

(1985) highlighted as critical to successful problem solving is control or monitoring. All four 

teachers in this study encouraged their students to develop the ability to monitor while solving 

problems. This encouragement sometimes came in the form of direct comments such as, “Be 

aware of the kinds of errors that you are making” (Miss Atkinson), but most frequently occurred 
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through asking questions and encouraging students to ask questions of themselves while solving 

problems. 

 Miss Atkinson deliberately asked her students metacognitive questions. She explained 

her intentions in her first interview: 

I try to say throughout the whole process, “You need to be asking yourself questions like, 
‘Well, let’s look at the original scatterplot. What would be potential functions?’ You 
know what the toolkit functions look like. … And then you’ve linearized the data, you’ve 
got this linear function. How do you know if it fits? You should be asking yourself this 
question like ‘Now how can I be sure that this line fits this data well?’” … So I really try 
to enforce this idea that “What questions are you asking yourself?” Sometimes I’m better 
about doing it than others. But that’s one thing that I’m trying, to build metacognitive 
skills that way. 
 

I observed Miss Atkinson asking metacognitive questions on a regular basis to encourage 

students to monitor their problem-solving process: 

Did I do that correctly? … What are you going to need to find? … What can you use to 
do that? … Is this going to be helpful to you? … Do you have any other way to think 
about quadratics? … What else could you do? … How do you check and see if it’s right? 
 

As she posed such questions, she told students, “These are questions I want you to start asking 

yourself.”  

 Miss Atkinson gave students advice about monitoring their studying and problem solving 

even outside the mathematics classroom: 

This is important for all of you for all time: I want you to think about the things that 
you’re doing—in mathematics and in all of your classes. Be thoughtful about how you’re 
studying. Be asking yourself good questions while you’re solving your problems. Make 
sure that your answers that you’re coming up with make sense. 
 

 Monitoring includes anticipating what a problem will require, what a solution might look 

like, or where a solution path might lead. What strategy might be useful? Will that solution path 

be easy or difficult? How might the information in the problem help determine the best plan of 

action? In an algebra class, Miss Atkinson encouraged her students to anticipate such things: 
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Some of you are just going about your usual process and you’re coming up with the 
correct answer. But I want you to start thinking about these on the way in. … Before you 
start furiously scribbling stuff down, think about the gifts that you are given [i.e., 
information in the problem that is helpful]. 
 

In a precalculus class, she encouraged students by saying, “Think about some strategies you 

might employ to get a graph of this. Think about how this is different from the functions we’ve 

done before. Think about characteristics this type of graph might have. Think, think, think.” Mr. 

Dalton and Mr. Bailey both encouraged students to monitor their expectations by anticipating 

possible solutions or making conjectures upon encountering a problem. Mr. Bailey encouraged 

his students to use their intuition to predict an answer before beginning a problem. Before 

beginning a matrices problem, Mr. Dalton asked, “What do you think’s gonna happen? Any 

predictions?”  

Another aspect of monitoring is checking for mistakes along the way when solving a 

problem. Miss Atkinson encouraged students to check both individually and in groups: “Are you 

guys checking behind each other and trying to avoid those dreaded careless mistakes?” She also 

helped students see that knowing what kind of mistakes they tended to make was a step toward 

avoiding those mistakes: “Think about [the errors you are prone to making] so you can train 

yourself not to make those errors.” Mr. Dalton explained to his students that many problems 

have natural points at which to stop and check how things are going: 

We don’t want to get too far down the road having made a mistake up here. The further 
we are away from the mistake when we find it, the harder it is to … actually find it. … 
And this is something we’ll do a lot: As we go through a problem, there are natural places 
to stop and ask, “Does what we have make sense?” Usually when the answer is no, it’s 
because there’s a sign error. We’ve left some negative sign out at one step in the process. 
That’s something we should all do as we go along. 
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At one point, as Mr. Bailey led his finite math class through a problem involving probabilities, 

he explained that it was a good idea to check along the way that the sum of the probabilities was 

1:  

If I’ve done anything wrong, chances are good I’ll have a last chance to catch myself 
once I look at these two numbers. And if those two numbers don’t add up to 1, I need to 
back off and do something else because I’ve done something wrong. 
 

 Checking for mistakes in the process of solving a problem is part of monitoring whether 

one is getting closer to a solution. Another part of monitoring is asking oneself, “Are the 

decisions I am making actually helpful?” Mr. Dalton noted that when integrating by substitution, 

the goal of the u substitution is to create an integral that is easier to solve than the original one, 

so students should make sure that the substitution benefits them before proceeding. Mr. Bailey’s 

students frequently solved problems as a class. Although Mr. Bailey generally remained hands 

off, he sometimes interjected bits of advice about monitoring, such as “Remember where we’re 

headed,” “Remember the object is to find the antiderivative,” or “Make sure that you all agree 

with everything up until now.” 

Reflecting on the problem-solving process. Reflecting on the problem-solving process, 

both in the midst of solving a problem and after one has found a solution, is an example of 

metacognitive behavior. It is closely related to Polya’s (1957) notion of looking back and 

includes reflecting on decisions and examining the solution to a problem. Miss Atkinson wanted 

her students to be reflective problem solvers and noted that becoming reflective does not happen 

automatically: 

I think the one thing that I ask them to work on more and more as the year progresses … 
is becoming more reflective in their problem solving. They may not like it at first, but I 
think it does make a difference over time. They write reflections, and I ask them a lot of 
“reflective” questions as I walk around. For example, “Why did you decide to use that 
approach?” “Do you think there are things you [could] have done to have solved the 
problem more quickly or efficiently?” 
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I observed her asking such questions in an algebra class: “Why did you decide to use that 

method?” “So what’s your independent variable? What’s your dependent variable? Why did you 

choose it to be that way?” Mr. Fulbright also encouraged his students to reflect on their 

decisions. For example, he asked them to explain their choice of u for a u substitution in an 

antidifferentiation problem. Mr. Dalton encouraged his students to not only check for mistakes in 

the midst of solving a problem, but to reflect on those mistakes as a means of moving closer to a 

solution: “Making that first mistake early, and looking thoughtfully at it, reflectively on it, is 

always a really good strategy when you’re trying to solve a problem.” 

 Polya (1957) recognized the difficulty of having students reflect on their work once they 

reached a solution. When students perceive they have finished a problem, he said, they are ready 

to move on. Despite this difficulty, all four teachers in this study strove to help their students 

look back on a problem and their solution, at least to check their work. Miss Atkinson spoke in 

her first interview about the importance of looking back: 

Interpretation is a big part of problem solving to me. Interpreting the results and 
evaluating the results: Do they make sense in your understanding of the problem? If not, 
why not? Did you make a mistake? Or is this just somehow unexpected, and I need to 
figure out a different way to think about the problem to account for what I wasn’t 
expecting? 
 

During class, Miss Atkinson asked her students to reflect on solutions and confirm that they 

made sense. She asked her precalculus students to examine the subjective aspects of a solution: 

“For Number 3, wasn’t that [transformation] interesting? … Which way did you like the graph 

better? Did you like the first way better?” Mr. Bailey asked a similar question after his students 

solved a finite math question: “Are you surprised [by this solution]?” 
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Highlighting Multiple Solutions 

The teachers in the study demonstrated and described another aspect of teaching through 

problem solving in addition to the teaching practices I have described thus far: highlighting 

multiple solutions. In their descriptions of problems and problem solving, the teachers indicated 

that there is more than one way to solve any given problem. Highlighting multiple solutions 

occurs when teachers do any of the following: (a) emphasize that there is more than one solution 

path for solving a particular problem, (b) ask students to solve a problem in more than one way, 

(c) have students share their solutions, and (d) compare the merits of different solutions. 

Miss Atkinson frequently noted that there are multiple ways of solving a particular 

problem. Each day, as students worked on a problem during class, she circulated around the 

room to observe their work and check their progress. There were times when a student solved a 

problem differently from how she had, but her first response was not to correct or redirect the 

student. Rather, she wanted to know how the student was thinking about the problem. For 

example, on one occasion she simply said to a student, “I did mine differently. Tell me [what you 

did].” There were times when Miss Atkinson saw students using an inefficient strategy, but 

rather than telling them to change course, she encouraged them to continue down the solution 

path that made sense to them. For example, a student was working on a problem involving a 

system of linear equations, and Miss Atkinson said, “You’re eliminating your x’s. That’s 

interesting. That’s ok. It doesn’t matter. … Well, the z’s are probably the easiest to eliminate, but 

that doesn’t mean that that’s the only way to do it.” 

On one occasion, Miss Atkinson’s led a discussion in her precalculus class about the 

following problem: 

Solve for x: 

! 

x = 52log5 6. 
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A student in the class suggested using properties of logarithms: 

! 

loga x
n = n loga x  and 

! 

aloga x = x , 
so 

! 

x = 52log5 6 = 5log5 6
2

= 62. 
 

Miss Atkinson added to the discussion a solution that a student in a previous class had used, in 

which the student changed the original equation into logarithmic form: 

! 

2log5 6 = log5 x
log5 6

2 = log5 x
x = 62

 

This incident indicated that Miss Atkinson wanted her students to think about multiple ways of 

solving a problem. 

According to Mr. Fulbright, “Solutions can look different and both be correct.” Recall 

that his explanation of what makes a good problem included comments about multiple solution 

paths. He said that when students solve problems, “they might get different approaches. They 

might get different solutions, assuming a problem permits different solutions. Even if it permits 

only a single answer, though, there still might be different approaches to get to it.” After students 

solved a problem in his calculus class, Mr. Fulbright responded, “That’s only one way to do it. 

You could have done this a number of ways.”  

In his second interview, Mr. Fulbright recalled an incident in which the textbook 

suggested a particular solution path, but a student came up with a different—and, according to 

Mr. Fulbright, a better—way of solving the problem. In his description, solution refers to the 

answer or result. It was the way the student approached the problem—that is, the solution path—

that was unique.  

We have a problem in our textbook. … “When should you sell a baseball card in order to 
maximize the amount of money that you get for it?” Well the two competing forces are, 
on the one hand, the value’s always increasing. They [the textbook authors] actually give 
you a model for how the value of the baseball card increases over time, so just assume 
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that model is true. But on the other hand, inflation makes every dollar worth less, 
inherently, every single year. So there’s some point where the buying power is actually 
maximized. … The way it’s worded in the textbook is they lead the students through it by 
suggesting that they always consider the present value of the future sale. But that’s a 
difficult concept to them. I finally had a student who solved it a different way, … which 
was … just pretend that by the time you retire, … you will have sold the baseball card 
and you will have taken that money that you got for the sale, popped it in the bank, and it 
accrued interest from then on until you retire, and that’s the money you’re gonna use to 
go on your big retirement vacation or whatever. Then you don’t have to worry about 
looking back in time, but you’ve still got the exact same problem, exact same solution. 
The only difference is that instead of looking at the present value of the future sale, 
you’re looking at the future value of the future sale. 
 

 Mr. Dalton repeatedly emphasized that there was always more than one way to solve a 

problem. This emphasis was particularly evident when he talked about his solutions to 

homework problems. Upon distributing his homework solutions to his combinatorics class, he 

said, “You certainly do not need to do it the same way I did it, particularly if I did it incorrectly. 

… Just because you did it a different way doesn’t mean anything at all [in terms of its merit].” 

 On occasion, Miss Atkinson asked students to solve a problem in more than one way, or 

at least to consider a problem from multiple perspectives. In an algebra class, the students 

worked on a problem that asked if they could write a quadratic equation that would include three 

given sets of ordered pairs. One group of students initially solved the problem algebraically, and 

Miss Atkinson challenged them to think about it differently: “Tell me another reason, other than 

the algebraic one: Why do those three [points] not [determine] a quadratic function? I want you 

to look at it a second way.” 

 
The daily routine in Miss Atkinson’s classes was for the students to share their homework 

solutions with one another in their small groups. Sometimes groups of students worked together 

on a problem and then shared their solution with the rest of the class. Miss Atkinson noted that at 

the beginning of the year, the students had not been accustomed to seeing more than one way to 
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do a problem. After the first mathematics activity of the year, groups shared their solutions, and 

Miss Atkinson recalled, “The biggest eye-opener at the end of the activity [was] when the groups 

[shared] their models. They [were] all different, and there [was] no one correct answer.” 

 Miss Atkinson also had individual students share their solutions with the whole class, and 

she wanted them to include explanations of how they were thinking about the problems: “I 

wanted them to share their work, share how they were thinking about all of their steps.” On one 

occasion, two algebra students had different solutions to a problem that asked whether three 

given points were collinear. The first student demonstrated his method, which was to use two 

points to write an equation of the line containing them and then determine whether or not the 

third point satisfied the equation. After this student presented his solution, Miss Atkinson called 

on another student who had done the problem differently: “You had a delightfully different 

approach to figuring out how those three points were collinear. Tell us how you did it.” This 

student’s solution was to calculate the slope between one pair of points and see if it was the same 

as the slope between a different pair of points. 

 On occasion, Mr. Fulbright’s students shared their solutions with the whole class by 

going to the board and presenting their ideas. He saw several benefits of this practice: Students 

enjoy presenting solutions, the class is more engaged when listening to a fellow student as 

opposed to listening to the teacher all the time, students gain confidence in their mathematical 

ability, and they are able to help their classmates learn. In a calculus lesson, the class was 

discussing solutions to the following integral:  

! 

(sin x)(cos x)dx" . 
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One solution was 

! 

1
2
sin2 x + C , but some students had different answers. One student shared her 

solution at the board: 

! 

"
1
2
cos2 x + C . This presentation was followed by a second volunteer who 

said, “I got the same answer. … Can I tell you how I did it?” Mr. Fulbright replied, “Yeah, tell us 

how you got it. Please do. Show us on the board. This sounds very interesting to me. … This is 

much cooler than I was expecting.” The class went on to discover that the integration problem 

had several solutions that were all correct because they differed only by a constant. 

 After Mr. Dalton’s students worked on a problem in their small groups during class, if a 

group had a unique way of solving the problem, he said he sometimes asked the group to share 

their solution: “And particularly interesting things I’ll have students come up and present or if 

they have a nice idea, something that I think could lead somewhere, to say, ‘Tell us what you’ve 

done.’” 

Mr. Dalton wanted his students to see that some solution methods were better than others. 

He admitted that he did not always solve a problem in the most elegant or most efficient way. In 

fact, he was glad when students came up with a better solution than he did:  

It’s … important for [students] to think that their answer can be better than mine, that 
their approach was, you know, nicer. I did it by brute force, and they thought of a nice 
way to do it, and that’s always kinda nice. 
 

In Mr. Dalton’s comments to his combinatorics class about his written solutions to the 

homework problems, he emphasized not only that there are multiple ways to solve a problem, 

but also that some solutions are better than others: 

This is just the way I was thinking about doing the problem. … If you thought of it a 
different way, that’s fine, particularly if you thought of it a better way. In some of these I 
just looked at all the cases, which isn’t a particularly elegant way of doing it, but it’s the 
only way I could think to do it. And so again, [if there’s] a nicer way, I’m hoping it’s in 
your paper so I’ll see a better way of doing it than the way I did it. So you don’t need to 
recapitulate my answer in order for it to be correct. 
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In his first interview, Mr. Dalton explained that he graded students not only on the correctness of 

a solution, but on its elegance and sophistication as well. He was not specific about how he 

weighted correctness and elegance, but he noted that he gave only partial credit if the solution 

was especially messy or inefficient. Ultimately, he was more interested in the thinking that went 

into a solution than the final result. He talked about comparing two correct solutions: 

Here are these two correct solutions, and one of them is better than another. [Students 
are] fine with partial credit for wrong stuff. But there’s also partial credit for right stuff. 
It’s correct, but it’s not a particularly elegant solution. It’s not a nice solution. … In fact, 
there may be some [students who used an] approach that didn’t quite work out that shows 
a lot more understanding than the one you’d use that got the correct answer. And again, 
it’s this idea of trying to build up their mathematical sophistication, sort of thinking about 
solutions and how things work. 
 

 Mr. Bailey highlighted multiple solutions as well, either by presenting them himself or by 

asking students to share their solutions. He encouraged students to explain different ways of 

solving a problem, for example, by saying, “I’m interested in seeing how different people solve 

this” or asking, “Did anybody do this a different way? There are other ways to do this.” Each 

class period, after students worked on the POTD, Mr. Bailey randomly selected a student to go to 

the board and either present a solution or, if the student had not solved the problem, to serve as a 

“scribe” as others in the class explained their solutions. At times, he had more than one student 

present: “If I know that somebody has done something a different way, then yes, we always try 

to have the alternate way up there [on the board].”  

Polya’s Phases 

 None of the teachers in this study explicitly referred to Polya or the phases of problem 

solving. But implicit references to the phases—particularly understanding the problem and 

looking back—were evident in the teachers’ comments both in interviews and in their 

classrooms. 
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 Understanding the problem. Mr. Bailey urged his students to understand the problem 

before diving in: “You have to be able to interpret the question.” Miss Atkinson also encouraged 

students to understand or interpret the problem statement, and asked questions such as “What is 

this asking?” and “How can we think about this to answer the question?” On one occasion, Miss 

Atkinson’s precalculus students had difficulty interpreting the wording of a problem about a 

diving board. In a discussion about different ways to interpret the problem, Miss Atkinson 

encouraged them to “make sense of the problem” by thinking about the actual situation with the 

diving board: What seemed most plausible or realistic? 

 Looking back. Reflecting on a problem, either in the midst of solving it or after one has 

found a solution, is a critical element in Polya’s phases of problem solving. Earlier in this 

chapter, I discussed looking back as it related to metacognition, but I add a bit more here. A 

common part of looking back is checking one’s solution, and the teachers in this study 

encouraged students to think about how they could check their work, as well as to actually check 

it. For example, Miss Atkinson asked her algebra students, “How can you find out if it’s right?” 

and Mr. Fulbright asked his calculus class, “How could you check that without your calculator 

and without checking the back of the book?”  

Looking back also includes thinking about a problem after one has solved it. Miss 

Atkinson wanted her students to not shut down as soon as they solved a problem: “I don’t wanna 

necessarily always have ‘em thinking that they’re shooting for this right answer and once they 

get it they’re done.” On one occasion, she asked her students to examine a problem they had just 

solved and compare it with a problem they had solved previously: “What’s happening this time 

around? … Did anybody notice that this is very similar to the other system [of equations] we just 

did? … This time what happens, though?” Mr. Dalton also asked his students to think about a 



 

122 

problem after they had solved it: “Let’s go back to this [problem] and think about it a little bit 

differently.” Mr. Bailey encouraged his students to look back on a problem and think about their 

response: “Are you surprised [by this solution]?” 

Summary 

Figure 11 contains a chart showing the frequency with which the four teachers engaged in 

the teaching practices I have described. For each teacher, the course name and date (MMDD) of 

the occurrence are listed, followed by the frequency if I observed instances of the practice more 

than once in a particular class period. The information in the chart summarizes the results of my 

coding of the transcripts of relevant portions of the audiorecordings from classroom 

observations. The items listed in the chart reflect the main practices I was looking for as I 

conducted my observations. Since I originally considered group work to be a practice in itself—

rather than part of the broader practice of limiting teacher input—group work appears in the 

chart and limiting teacher input does not. Multiple instances of modeling problem solving 

indicate that the teacher modeled problem solving for more than one problem during the class 

period listed. Group work is listed only once for each class period in which it occurred.
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 Miss Atkinson Mr. Fulbright Mr. Dalton Mr. Bailey 
teach 
problem-
solving 
strategies 

 Calculus: 
0106, 0107, 
0309 

Matrices: 0105 
Differential Equations: 
0308 (×3), 0309 (×5), 
0310 (×3), 0312 

Calculus: 0125, 
0127 (×2), 0412, 
0414, 0415, 0426 
Finite Math: 0428 

model 
problem 
solving 

 Calculus: 
0311 (×2) 

Matrices: 0105 
Combinatorics: 0105 
Differential Equations: 
0308, 0309 (×2), 0310, 
0312 

Calculus: 0125 (×2), 
0414, 0415 

group work Algebra 3: 
every class 
period 
Precalculus: 
every class 
period 

Calculus: 
0104, 0105, 
0106, 0107, 
0310 

Matrices: 0104, 0105 
Combinatorics: 0104, 
0105 
Differential Equations: 
0308, 0309, 0312 
Statistics: 0308, 0309 

Calculus: every class 
period 
Finite Math: every 
class period 

promote 
metacognition 

Algebra 3: 
0104 (×6), 
0106 (×5), 
0107 (×2), 
0108 (×5), 
0312 (×2) 
Precalculus: 
0104, 0107, 
0108 (×2), 
0311 (×3) 

Calculus: 
0311 (×4) 

Matrices: 0105, 0106 
Combinatorics: 0104, 
0105 
Differential Equations: 
0308 (×5), 0309 (×13), 
0310 (×5), 0312 
Statistics: 0311 

Calculus: 0125 (×2), 
0127 (×2), 0128 
(×2), 0412, 0414 
Finite Math: 0412, 
0414 (×3), 0416, 
0426 

highlight 
multiple 
solutions 

Algebra 3: 
0104, 0107, 
0108 
Precalculus: 
0107 (×2), 
0309, 0311 
(×2) 

Calculus: 
0107, 0309, 
0311 (×2) 

Combinatorics: 0105, 
0106 (×3) 
Differential Equations: 
0310 (×2) 
Statistics: 0309 (×2) 

Calculus: 0125, 
0412, 0414, 0426 
Finite Math: 0125, 
0412, 0428 (×2) 

implicit 
reference to 
one or more 
of Polya’s 
phases 

Algebra 3: 
0104 (×5), 
0106, 0107, 
0108, 0312 
Precalculus: 
0104, 0309 
(×2), 0311 (×2) 

Calculus: 
0311 (×2) 

Matrices: 0104, 0106 
Combinatorics: 0105 
Differential Equations: 
0308, 0309 (×2) 

Calculus: 0127 (×2), 
0128 
Finite Math: 0125, 
0127, 0412, 0414 
(×3), 0426 (×3), 
0428 

Figure 11: Instances of teaching practices for each teacher. 
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 The chart in Figure 11 shows similarities and differences among the teachers in the study. 

Although each teacher had his or her own style of teaching through problem solving, the teachers 

had many practices in common. The practice that was most consistently displayed by all four 

teachers was having students work in groups. As I have mentioned, this practice is contained in 

the broader practice of limiting teacher input. Other elements of limiting teacher input—

refraining from telling students too much, allowing students to struggle, and sharing authority for 

correct answers—were also common to all four teachers even though this fact is not apparent in 

Figure 11. Note that except for teaching problem-solving strategies and modeling problem 

solving, every practice was implemented by every teacher on at least one occasion. 

 Teachers differed in which practices were most prevalent in their teaching, as Figure 11 

indicates. For example, Miss Atkinson frequently promoted metacognition. This is consistent 

with her comments during interviews in which she said she consciously tried to foster 

metacognitive behavior in her students. Note also the frequency with which Mr. Dalton taught 

problem-solving strategies and modeled problem solving, particularly in his differential 

equations course. Recall that the only week I observed the differential equations course was in 

March and that classes at Northridge met only 4 days per week. So as the chart indicates, Mr. 

Dalton engaged in teaching problem-solving strategies and modeling problem solving every day 

that I observed him teaching differential equations. 

 The chart in Figure 11 does not indicate qualitative aspects of each teaching practice. For 

example, the mere fact that Mr. Dalton acted in a way that promoted metacognition 13 times in 

one class period does not necessarily mean that his actions were more effective than a single 

instance of promoting metacognition by another teacher. In addition, the chart does not indicate 

the manner in which teachers implemented the practices. For example, Miss Atkinson’s way of 
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promoting metacognition was by asking metacognitive questions whereas Mr. Dalton’s and Mr. 

Bailey’s way of doing so was primarily by modeling metacognition. Despite the limitations of 

what it can show, the chart is a helpful tool for summarizing the prevalence of the set of practices 

among the group of teachers in this study. 

Collaboration with Colleagues 

 Three of the teachers in this study—Miss Atkinson, Mr. Fulbright, and Mr. Dalton—

taught at Northridge High School. Their mathematics department relied heavily on collaboration, 

and all three of the teachers spoke about the advantages of collaborating with their colleagues. 

One advantage they mentioned was sharing ideas for problems or activities to use in the 

classroom. All the mathematics teachers at Northridge contributed to the writing and refining of 

problems and investigations, and all the problems were posted to a shared computer drive to 

which all teachers had access. As Mr. Fulbright said, “If something works, we spread it around.” 

Collaborating with colleagues is not a teaching practice, but according to the teachers at 

Northridge, collaboration was a significant factor in their being equipped and encouraged to 

teach through problem solving.  

 Miss Atkinson mentioned several benefits of collaboration: (a) sharing ideas and 

generating new ones, (b) refining problems, for example by removing confusing wording, (c) 

being challenged and deepening one’s own mathematical knowledge, (d) gaining courage to try 

new things, and (e) decreasing the stress of teaching. She explained, 

If you can collaborate, (a) it cuts down on your stress because you’re sharing the load, 
and (b) you really get a lot more ideas, partly because you get … multiple perspectives, 
… but also through the collaborative process and through sharing and generating even 
more ideas on top of that. Sit down and brainstorm, “Well what if we did this?” and then 
all of a sudden, boom, something completely different happens and it can be really 
powerful and helpful. … Because you have so many people looking at things differently, 
you can head off a lot of potential problems that you might see in the classroom, like I 
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know that problem [I mentioned earlier] would have confused a lot of my students, 
worded the way it was. 
 

Miss Atkinson went on to say how much she enjoyed collaborating with her colleagues and how 

much she had benefited from working with them: 

I love being able to collaborate with people. I don’t think I could ever go back to living 
trapped in my classroom for 6 periods a day and never having the interaction with my 
colleagues. And I feel challenged by them. I feel like I’m always deepening my own 
knowledge. … Now, because I know I’ve got support around me, I just attack [difficult 
problems] head on and then somehow have the courage to go in and try something 
different with my students even if I haven’t completely figured it out yet. 
 

 Mr. Dalton also mentioned the value of working together with colleagues. He noted, 

“Collaboration is really important for several reasons.” First, he mentioned the pragmatic reason 

that if there are multiple sections of the same course, it is important that teachers coordinate to 

make sure they are actually teaching the same content and staying on the same schedule. Second, 

collaboration “helps you become a better teacher, to think about ways of approaching this subject 

or an interesting problem to do.” A third reason for collaborating is to learn by sitting in on each 

other’s classes. He mentioned a teacher who was teaching a multivariable calculus course for the 

first time and sat in on another teacher’s section of the course to see how she did things. Finally, 

Mr. Dalton said that when teachers collaborate, they share advice about what works and what 

does not: 

You just learn a lot, talking with your colleagues about what they’ve done. “I tried this; 
don’t try it.” “Don’t do it that way; maybe if you did it this way it’ll work.” Just talking 
over what happened last week and what you’re planning to do next week is, I think, really 
important. 
 

 Miss Atkinson pointed to a particular incident in which teachers met for the sole purpose 

of talking about how to help students develop as problem solvers. She recalled, 

Several of the teachers during a … department meeting … said, “I’m trying to figure out 
how to encourage better problem solving among my students and I don’t know how to 
get them to be better at it.” And so we … got together and we worked on a problem 
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together. Mr. Dalton went out and found some problem that almost made my head 
explode, but we all worked on it together as a group until we found a solution, and we 
were all sharing our thoughts and ideas, but at the same time we were monitoring what 
we were doing, and trying to figure out how we could model that in our classrooms, how 
we could encourage that sort of behavior in our classrooms. … And so, “What are the 
types of things that we’re doing? What can we say to … our students to try to encourage 
better collaboration and better problem solving in our classes?” 
 

Note the focus on the metacognitive aspects of problem solving and the desire of these teachers 

to model problem solving, particularly metacognition, in the classroom. Collaboration with 

colleagues is not a requirement for teaching through problem solving, but as the Northridge 

teachers’ experience shows, it can certainly help support and facilitate this approach to teaching. 

Summary 

 This chapter contains a description of teachers’ beliefs about problem solving and what 

makes a good problem. For each teacher, problem solving played a central role in his or her 

teaching. Good problems, they believed, engaged students and challenged them to think 

mathematically. Assigning meaningful problems was more important to the teachers than 

assigning large numbers of problems, although each teacher recognized that practice is important 

for becoming a good problem solver. The bulk of the chapter consists of descriptions of the 

practices the teachers used to teach through problem solving. These practices are consistent with 

the advice of mathematics education experts in the past several decades. To help students 

develop as problem solvers, experts have said, some or all of these practices should be part of a 

teacher’s repertoire: (a) teaching problem-solving strategies, (b) modeling problem solving, (c) 

limiting teacher input, (d) promoting metacognition, and (e) highlighting multiple solutions. The 

chapter concludes with a description of the collaboration among the teachers at Northridge High 

School. Collaborating with colleagues is not a teaching practice, but when teachers work 
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together they are able to support one another in the task of teaching through problem solving by 

sharing ideas and advice. 
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CHAPTER 5  

CONCLUSION 
If problem solving is what mathematics is all about, then mathematics teachers should be 

in the business of helping students develop their problem-solving abilities. One way to help is to 

teach mathematics through problem solving. In this approach, problems are a means by which 

students learn new mathematical concepts and synthesize mathematical knowledge. This chapter 

contains a summary of the purpose and results of the present study. The summary is followed by 

a discussion of some connections between Schoenfeld’s (1985, 1992) framework for 

mathematical problem solving and practices for teaching through problem solving. That 

discussion is followed by a description of limitations of the study and possible next steps for 

research in teaching through problem solving. The chapter concludes with implications of the 

study for mathematics educators.  

Summary of the Purpose and Results of the Present Study 

 In this study, I examined the beliefs and practices of four high school mathematics 

teachers who taught through problem solving. They were similar in their basic philosophy of 

teaching but unique in the ways they carried out the task of helping students develop as problem 

solvers. There were commonalities in their practices—for example, every teacher promoted 

metacognition in some way—and there were differences as well—for example, not all the 

teachers regularly modeled problem solving. 

 The goal of the study was not to develop a prototype of a teacher who teaches through 

problem solving. Nor was the goal to prescribe particular practices for all mathematics teachers 

to use. Rather, the study shows that there are many ways of helping students grow in their 

problem-solving ability. The primary goal of the study was to describe practices for teaching 
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through problem solving so as to yield a better understanding of what successful teachers do. 

Mathematics education researchers have offered advice about problem-solving instruction for 

many years, and I wanted to see how that advice was being put into practice. Knowing what 

teaching through problem solving looks like can help teachers who desire to implement practices 

that support this instructional approach. 

 Teaching through problem solving begins with choosing good problems. Researchers 

have suggested that good problems are “accessible and engaging to the students, building on 

what they know and can do” (Schoen, 2003, p. xi). Furthermore, a good problem is “clearly 

stated, … involves an important real-world context or mathematical context that has the potential 

to attract and maintain students’ interest, [and] can be solved with a range of methods” (Grouws, 

2003, p. 134). As a group, the four teachers in the study chose problems consistent with the 

advice of mathematics education researchers. The teachers in this study believed problems 

should be challenging yet manageable and should engage the students’ interests. For example, 

one teacher explained that he tried to find problems that were “simultaneously engaging and 

doable.” Some of the teachers in this study expressed the importance of wording problems 

carefully to help students “discover what you want them to discover.” All four teachers assigned 

some “real-world” problems and other problems that did not have direct application beyond pure 

mathematics. Examples of applications include problems about energy use, distances between 

subway stops, and population growth. One teacher described good problems by saying, “Even if 

[a problem] permits only a single answer, … there still might be different approaches to get to 

it.” 

Good problems also “foster students’ understanding of important mathematical ideas and 

techniques” (Marcus & Fey, 2003, p. 55) and “integrate multiple topics” (NCTM, 2000, p. 52). A 
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teacher can use problems to introduce mathematical topics or to help students synthesize their 

mathematical knowledge. All of the teachers in this study viewed problem solving as a way to 

accomplish both of these goals. One teacher began each class with the Problem of the Day that 

he used as an “entry point” for the lesson. For the most part, he used these problems to introduce 

new mathematical content. Some problems were extensions of the Problem of the Day and 

required students to use a concept or practice a skill they had learned previously. Another teacher 

assigned problems as a way of “pulling ideas together.” A third teacher distinguished between 

problems that led students to discover a new concept and problems that required students to 

apply mathematical content they had already learned to a novel situation. This distinction 

determined how he worded problems. If his purpose was for students to learn a new concept, 

then he tried to word the problem in such a way as to provide clear guidance to that end. On the 

other hand, if his purpose was for students to explore freely and to apply or synthesize previous 

knowledge in a new context, he worded the problem to give no direction at all regarding what 

strategy to use. 

 The group of four teachers implemented teaching practices—in addition to assigning 

good problems—that were in line with the advice found in the mathematics education literature 

regarding teaching through problem solving. Some practices were more prevalent than others, 

but as Figure 11 (see p. 123) shows, the teachers as a group regularly engaged in the following: 

(a) teaching problem-solving strategies, (b) modeling problem solving, (c) limiting teacher 

input—for example, having students work in groups, (d) promoting metacognition, and (e) 

highlighting multiple solutions. In addition, the group of teachers made implicit references to 

some of Polya’s phases of problem solving—specifically understanding the problem and looking 

back. The following paragraphs describe what the mathematics education literature has to say 
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about each of these practices and include examples from the data from the present study—both 

classroom observations and teacher interviews—to illustrate how the teachers implemented the 

practices. 

One practice for teaching through problem solving is teaching problem-solving 

strategies, a practice that two of the teachers in this study regularly used. According to the 

NCTM (2000), “students must become aware of [problem-solving] strategies as the need for 

them arises, and as they are modeled during classroom activities, the teacher should encourage 

students to take note of them” (p. 54, emphasis added). In line with this advice, the teachers in 

the present study who taught problem-solving strategies did so in the context of solving 

problems, rather than teaching strategies in isolation. For example, one teacher used a problem 

about a climbing rope (see Figure 10) to teach general problem-solving strategies like using 

unsuccessful attempts to lead to successful ones, and specific problem-solving strategies like 

keeping “chunks” together when solving an equation. Often the teachers’ presentation of 

problem-solving strategies occurred while they modeled problem solving, which is the second 

teaching practice I describe. 

Mathematics education experts ever since Polya (1957, 1962, 1965) have advised 

teachers to model problem solving (e.g., Grouws, 2003; Levasseur & Cuoco, 2003). Polya (1957) 

described how modeling might work and potential benefits for students who observe their 

teacher modeling problem solving: 

When the teacher solves a problem before the class, he should dramatize his ideas a little 
and he should put to himself the same questions which he uses when helping the students. 
Thanks to such guidance, the student will eventually discover the right use of these 
questions and suggestions, and doing so he will acquire something that is more important 
than the knowledge of any particular mathematical fact. (p. 5) 
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Two of the teachers in this study modeled problem solving on a regular basis and one did so on 

one of the days I observed. That is not to say the other teacher did not model problem solving, 

but I did not observe her doing so. One teacher modeled problem solving both in his verbal 

discussions of problems during class and in his written solutions to homework assignments. The 

most common way of modeling problem solving the teachers used was thinking aloud. When 

solving problems in front of the class, both teachers verbalized their thought processes, so for 

them, modeling metacognition was part of modeling problem solving. For example, one teacher 

explained his thought processes while solving a problem that required integration by parts. He 

described how he made his decisions about which part of the function to designate as u and 

which to designate as dv. 

The mathematics education literature indicates that limiting teacher input is a key part of 

teaching through problem solving (e.g., Hiebert & Wearne, 2003; NCTM, 2000), and the group 

of teachers in the present study confirmed that in their teaching practices. Their practices 

included having students work in groups, which researchers have long claimed is a key element 

in problem-solving instruction (Kilpatrick, 1985; Posamentier & Jaye, 2006; Schoenfeld, 1985). 

The teachers also were careful to refrain from telling students too much—in both written and 

verbal instructions—and allowed students to struggle, which are important practices for teaching 

through problem solving (Hiebert & Wearne, 2003; NCTM, 2000). Hiebert and Wearne claimed, 

“The key to allowing mathematics to be problematic for students is for the teacher to refrain 

from stepping in and doing too much of the mathematical work too quickly” (p. 7). The teachers 

in this study also encouraged their students to rely on each other and on their own mathematical 

reasoning, rather than on the teacher, to confirm correct answers, which is a practice advocated 
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by some mathematics education experts (e.g., Schoenfeld, 1994). The teachers frequently 

responded to students’ questions by asking questions in return. 

 The teachers in the present study promoted metacognition in two ways: (a) by modeling 

metacognition, and (b) by asking metacognitive questions. Grouws (1985) described teachers 

who model problem solving and noted that modeling includes thinking aloud—that is, modeling 

metacognition: 

Some teachers regularly and proficiently model the problem-solving process and 
… this is a positive influence on students. Such teachers pause at times to think, 
think aloud while considering subsequent steps, … check the reasonableness of 
answers, and so on. (p. 302) 
 

In the classrooms I observed, modeling metacognition occurred as teachers modeled problem 

solving, as I described above. The mathematics education literature is full of examples of 

metacognitive questions, including the following: “Are we making progress or should we 

reconsider what we are doing?” (NCTM, 2000, p. 55), “How did you decide on a solution 

method to try?” (Grouws, 2003, p. 137), “Have I made any careless mistakes?” (Posamentier & 

Jaye, 2006, p. 80), “Is the answer reasonable?” (Grouws, 2003, p. 139), and “What could I have 

done better?” (Polya, 1962, p. xii). Asking metacognitive questions was a common practice with 

the group of teachers in the study. Examples of metacognitive questions the teachers asked were 

very similar to those above and included the following: “Are the decisions I am making actually 

helpful?” “Is what you’re doing getting you anywhere?” “Why did you decide to use that 

approach?” “Did I do that correctly?” “Are the answers that you’re coming up with … making 

any sense?” and “Do you think there are things you [could] have done to have solved the 

problem more quickly or efficiently?” These examples show that the data in this study regarding 

promoting metacognition by asking metacognitive questions support what mathematics 

education experts have recommended in the literature.  
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 Some mathematics education experts have recommended that teachers highlight multiple 

solutions for any given problem (e.g., Grouws, 2003; Hiebert et al., 1996; Hiebert & Wearne, 

2003; NCTM, 2000). For example, the NCTM (2000) has advocated encouraging students to 

“propose, critique, and value alternative approaches to solving problems” (p. 261). As a group, 

the teachers in the present study encouraged students to at least recognize and appreciate that a 

problem could be solved using a variety of approaches. Asking students to solve a problem in 

more than one way was not a common practice among the teachers in this study, but I did 

observe one teacher challenge a group of students to think about a problem geometrically after 

they had solved it algebraically. Only one of the teachers regularly had students share their 

solutions, although all of the teachers had students share solutions on occasion. All of the 

teachers noted that some solutions are better than others—for example, some solutions are more 

efficient, more elegant, or give more insight into the problem than others. 

 None of the teachers in the study mentioned Polya by name, or phases of problem 

solving, but the teachers encouraged students to understand the problem and to look back on a 

problem. The teachers encouraged their students to look back by reflecting on the problem while 

solving it—for example, by pausing to see if the chosen method was getting them closer to a 

solution—and by reflecting on solution after solving the problem—for example, by checking for 

errors. 

 There are practices for teaching through problem solving that mathematics education 

researchers have recommended, but that the teachers in the present study did not regularly 

implement. One such practice that many Japanese teachers implement is making connections 

between solutions—that is, examining various ways of approaching a problem and comparing 

the mathematical ideas in those approaches (Smith, 2004; Takahashi, 2008). The teachers in this 
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study highlighted multiple solutions—for example by having students share different ways of 

solving a problem—and compared solutions based on elegance or efficiency, but did not 

regularly make connections between solution methods. 

Some mathematics education researchers (e.g., Silver, Kilpatrick, & Schlesinger, 1990; 

Silver, Mamona-Downs, Leung, & Kenney, 1996) have suggested that one way to help students 

develop as problem solvers is to have the students pose problems. Silver et al. (1990) stated,  

Students need practice in formulating mathematical problems for themselves. … Problem 
posing is almost always overlooked in discussions of the importance of problem solving 
in the curriculum. … Nonetheless, it ought to be given the same emphasis in instruction 
that problem solving is beginning to receive. (p. 10–11) 
  

Having students pose problems was not a regular practice among the teachers in the present 

study. On one occasion a teacher presented a scenario about population growth and asked his 

students, “What would be a good question to ask? Let’s ask an interesting question.” But as a 

group, the four teachers did not incorporate problem posing as a teaching practice on a regular 

basis. 

 As I observed and interviewed the teachers, I discovered some aspects of teaching 

through problem solving that I did not expect. One such discovery was that some of the teachers 

took affective considerations into account when choosing problems. That it, they considered how 

students would respond emotionally to particular problems. One teacher, when given the choice 

between two problems that incorporated the same mathematical concepts and addressed similar 

environmental issues, opted for the problem that would be more heartening and empowering for 

her students. Another teacher considered the emotional responses of the students in his class 

before assigning a problem involving potentially uncomfortable data about height and weight. 

 Another surprising aspect of teaching through problem solving was the importance of 

collaboration. A common theme among the three teachers in the study who taught at the same 
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high school was the importance of collaborating with colleagues. All the mathematics teachers at 

the school contributed problems and activities to a shared pool for everyone in the department to 

use. The three teachers in the study talked about the benefits of working together with colleagues 

to write and refine problems, plan lessons, and even solve problems together as a way of sharing 

ideas about how to help students become better problem solvers. Collaboration is not a teaching 

practice, but working with fellow teachers played a key role in the three teachers’ ability to teach 

through problem solving because of the support they could give one another. 

 The teacher at the other school noted that he did not often collaborate with his colleagues 

in a way that supported his instructional approach. Compared to the mathematics department 

where the other three teachers taught, the single teacher’s mathematics department was not as 

unified in their philosophy of teaching mathematics. Where the three teachers taught, there was a 

department-wide understanding—even a policy—that mathematics should be taught using 

problems, activities, and investigations. That was not the case at the single teacher’s school. 

Another reason he did not experience the same level of collaboration as the three teachers at the 

other school was the physical distance between teachers at his school. Whereas the three teachers 

who taught at the same school were housed in the same building, the mathematics classrooms at 

the single teacher’s school were spread across the campus so that each teacher was fairly isolated 

geographically. This isolation, along with the lack of motivation that might have existed had 

there been philosophical agreement, resulted in little if any collaboration to support the teacher’s 

implementation of teaching through problem solving. 

Connecting Schoenfeld’s Framework to Practices for Teaching Through Problem Solving 

 In Schoenfeld’s (1985, 1992) framework, successful problem solving depends on the 

problem solver’s resources, strategies, control, and beliefs. Two of the assumptions in this study 
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were that successful problem solving depends on those four factors and that teachers who teach 

through problem solving seek to help their students develop as problem solvers. If teachers are to 

help students develop as problem solvers, they must consider how to encourage students in 

matters of resources, strategies, control, and beliefs. I examined the practices teachers in this 

study used to teach through problem solving, and I connected those practices with the elements 

in Schoenfeld’s framework. There is not a one-to-one correspondence between the teaching 

practices and the elements of the framework. Rather, each practice addresses more than one 

element, and each element corresponds to more than one practice. 

Resources 

 The first element of Schoenfeld’s (1985, 1992) framework is mathematical resources. 

Teaching through problem solving depends on teachers assigning good problems. When students 

have the opportunity to work on meaningful and challenging problems, their problem-solving 

ability and mathematical knowledge are likely to grow in breadth as well as depth. The teachers 

in this study assigned problems that covered a wide range of mathematical content. More 

importantly, teaching through problem solving, with its goal of using problems as a means for 

learning mathematical content and synthesizing mathematical knowledge, is a powerful way to 

help students deepen—not just broaden—their knowledge and understanding of mathematics.  

 Teaching problem-solving strategies can also be a way to strengthen students’ resources 

by encouraging them to examine their knowledge and put it to use. For example, when one 

teacher suggested that students exploit the symmetry of a polar curve in order to integrate it more 

efficiently, he called the students’ attention to knowledge they already had and showed how to 

use it to solve a problem. 
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 Modeling problem solving can be a powerful teaching practice that helps students grow 

as problem solvers. Teachers highlight relevant resources when they demonstrate mathematical 

concepts and skills. For example, when one teacher wrote up his solutions after every homework 

assignment, his students could see what resources were required for a particular problem. 

 Promoting metacognition can have a positive effect on students’ resources. Teachers 

promote metacognition when they encourage their students to be aware of their own knowledge. 

Asking metacognitive questions challenges students to think about what they know and how they 

know it. By being reflective and examining what they know and how they are thinking, students 

can strengthen the parts of their knowledge base they are focusing on. For example, a teacher’s 

question, “How do you picture in your head what the inverse is gonna look like?” may help 

students solidify their understanding of inverse functions. 

Highlighting multiple solutions is a way that a teacher can encourage students to use the 

full range of their available resources—as well as strategies—to solve a problem. And when 

students are exposed to various ways to solve a problem, they may see a variety of mathematical 

concepts at work. 

Strategies 

There are several ways teachers can help their students increase their knowledge of, and 

proficiency with, problem-solving strategies. For example, teachers can assign problems that 

highlight particular problem-solving strategies, as was the case for one teacher, who deliberately 

chose problems at the beginning of his differential equations course to highlight both general and 

specific problem-solving strategies that the students would need throughout the course.  

It seems obvious that teaching problem-solving strategies is likely to result in the growth 

of students’ repertoires of strategies. This growth occurs when teachers present problem-solving 
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strategies in the context of solving a problem as opposed to teaching heuristic strategies in 

isolation. 

 When teachers are modeling problem solving they are inevitably demonstrating strategy 

use. For example, in the process of solving a differential equations problem in front of his class, 

one teacher demonstrated the strategy of keeping a certain “chunk”—that is, a mathematical 

expression—together in order to make the algebra in the problem more manageable. 

 Limiting teacher input, particularly refraining from giving students too many instructions 

about how to solve a problem, encourages students to develop their own problem-solving 

strategies. A good example of a problem with very few instructions is the Subway Problem (see 

Figure 5), which gave no guidance, so students had to figure out a strategy on their own.  

 Promoting metacognition involves encouraging students to monitor their use of problem-

solving strategies. Teachers may encourage monitoring by asking questions like, “Why did you 

choose that strategy?” or “Will that strategy lead you closer to a solution?” On one occasion a 

teacher said to her students, “Think about some strategies you might employ to get a graph of 

this. Think about how this is different from the functions we’ve done before. Think about 

characteristics this type of graph might have.” By making these comments, she emphasized the 

importance of monitoring strategy use. 

Control 

Monitoring, or control, has to do with the metacognitive behavior that is necessary for 

successful problem solving. Teachers can encourage students to be good monitors while problem 

solving by asking metacognitive questions such as, “Is what you’re doing getting you 

anywhere?” They can also encourage students to be thoughtful and reflective both during the 

process of solving a problem and after they have found a solution. 
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Modeling problem solving often involves modeling metacognition. Modeling 

metacognition requires that teachers verbalize their thought processes while solving a problem in 

front of the class, as two of the teachers in this study did. Modeling metacognition also includes 

explaining thought processes in written form, as the teacher did who wrote out his solutions to 

homework problems. 

 The most obvious teaching practice associated with control is promoting metacognition. 

By drawing attention to students’ thinking, as well as to their own, teachers communicate that 

metacognition is important. The teachers in this study asked students many questions to help 

students develop metacognitive behavior—questions such as, “What do you know?” “Why did 

you choose that strategy?” and “Are you checking your work?” 

Beliefs 

Much of what teachers do and say affects students’ beliefs about mathematics, problem 

solving, and themselves as problem solvers. When teachers assign meaningful and engaging 

problems, for example, students may come to see mathematics as a worthwhile endeavor. 

Students may develop a belief—or confirm their view—that mathematics is relevant and 

interesting. Furthermore, they may develop positive beliefs about themselves as problem solvers 

when they have success in solving meaningful problems. When they are engaged in a meaningful 

task, their work has purpose.  

 Teaching problem-solving strategies can have an impact on students’ beliefs about 

mathematics and about themselves as problem solvers. That there are common strategies for 

solving a range of problems illustrates that mathematics is sensible and connected rather than a 

disjoint set of ideas and problems. Gaining proficiency in problem-solving strategies can also 

help students grow more confident in their ability to solve problems. 
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 One component of modeling problem solving is demonstrating perseverance and 

patience. By demonstrating perseverance and patience, teachers model their beliefs about 

problem solving and can positively influence students’ beliefs. One of these beliefs is that 

mathematics is worth doing even if it involves a struggle. Two of the teachers in this study led 

class discussions of problems in which they hit one or more roadblocks or errors. They 

persevered and eventually reached a solution. Another belief teachers can model is that many 

worthwhile problems cannot be solved in just a few minutes. Schoenfeld (1988) identified the 

belief that “students who understand the subject matter can solve assigned mathematics problems 

in 5 minutes or less” (p. 7) as being detrimental to problem solving. Teachers’ efforts to model 

the patience required to solve problems can help to change this belief. 

 Limiting teacher input can positively influence students’ beliefs about mathematics and 

problem solving. First, working in groups lets students see that mathematics is not just an 

individual endeavor. Frequently, a group makes more progress in solving a problem than a single 

problem solver could make. Doing mathematics can also be more enjoyable when working as a 

group. All of the teachers in this study indicated that students seem to enjoy working in groups. 

Second, when teachers allow students to struggle, perhaps by not giving them much guidance, 

they encourage students to believe that perseverance is worth the effort. Solving problems is a 

worthwhile pursuit even though it is often fraught with roadblocks and difficulties. Third, 

teachers can help students believe that they are capable of solving problems. One of the beliefs 

Schoenfeld (1988) listed as having the potential to negatively affect students’ abilities to solve 

problems is, “Only geniuses are capable of discovering, creating, or really understanding 

mathematics. Corollary: Mathematics is studied passively, with students accepting what is 

passed down ‘from above’ without the expectation that they can make sense of it for themselves” 
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(p. 7). Teachers can help students change this belief by encouraging them to rely on their own 

mathematical reasoning rather than looking solely to the teacher for the correct answers. When a 

teacher turns the work of problem solving over to the students, they gain confidence in their own 

mathematical reasoning and come to believe mathematics is a sensible discipline rather than an 

arbitrary set of rules set forth by an outside authority. 

Finally, by highlighting multiple solutions, teachers can help students gain courage to try 

a unique way of tackling a problem, knowing that their task is not to search for the one right way 

to solve a problem. Knowing that there is more than one way to solve a problem can also give 

students confidence in their ability as problem solvers, realizing that just because they did a 

problem differently from someone else does not mean they did it incorrectly. 

Limitations of the Study and Next Steps 

 This study was a descriptive case study. As is true with all case studies, the goal was not 

to make generalizations about large populations. Not everyone who teaches mathematics through 

problem solving implements this instructional approach the way the four teachers in this study 

did. I used a small sample of teachers, so not every practice for teaching through problem solving 

was represented in their instruction. Furthermore, I observed each teacher for only 2 or 3 weeks, 

so there may have been practices they employed that I did not observe. More observations over a 

longer period of time might have revealed a more complete picture of teaching through problem 

solving. This limitation suggests a possible next step for research in problem-solving instruction: 

to conduct a longer-term study of teachers who teach through problem solving. 

Another limitation of the study is the uniqueness of the teachers and the settings in which 

they taught. These were four exceptional teachers who taught in schools where they had the 

freedom to focus on problem solving. Their students were, for the most, well behaved and 
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cooperative. Many teachers do not have these advantages. Further research, then, might include 

interviewing and observing teachers in a wider variety of settings so that a researcher could 

create a more thorough description of practices for teaching through problem solving. For 

example, I would like to know about teachers who teach through problem solving in a typical 

public school. Do they find it difficult to teach through problem solving and also meet the 

demands that accompany state standards and standardized testing? 

I did not assess the impact of teaching through problem solving. Because I began with the 

assumption that teaching through problem solving is a valuable instructional approach, I did not 

consider the effects on students of teaching through problem solving. I was not testing the 

effectiveness of teaching through problem solving, so I did not seek to determine whether the 

approach actually helped students develop their problem-solving ability. I certainly observed 

positive outcomes as I watched students working together on problems, but I have no 

quantifiable data to show that teaching through problem solving is a superior instructional 

approach. Further research in problem-solving instruction might include examination of 

outcomes of teaching through problem solving. One way to assess the impact on students of 

teaching through problem solving is to examine the problem-solving ability, as well as attitudes 

and beliefs, of students before and after they complete a course that was taught using this 

instructional approach. One of the schools in the present study had students in Grades 11 and 12 

only. Most students entering as 11th graders had little or no experience in classes that focused on 

problems and investigative tasks. I would like to follow a group of students through their 2 years 

at the school to see the change in their ability to solve problems they had not been taught how to 

solve. In addition, I would like to see how their attitudes about problems and problem solving 

changed over the course of the 2 years. 
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Implications 

 The NCTM (1980, 1989, 2000) has strongly recommended that mathematics teachers 

emphasize problem solving in their classrooms. If teachers are to follow this recommendation, 

they must find ways to use problems and problem solving as a means to help students gain 

deeper mathematical understanding, which in turn can help students become better problem 

solvers. One way to emphasize problem solving is to teach mathematics through problem 

solving, but in order to do so, teachers must know what this instructional approach looks like in 

practice.  

 This study shows that teaching through problem solving is possible. Real teachers in real 

classrooms with real students have implemented many of the teaching practices that mathematics 

education researchers have suggested. The four teachers in the study were unique—they each 

had a reputation for being successful—but their practices are not unattainable. Just as 

investigating expert problem solvers can give educators and researchers insights into what 

successful problem solving looks like, so investigating good teachers can give educators and 

researchers insights into what successful teaching through problem solving looks like. This study 

has provided such insights. Therefore the study can contribute to the body of mathematics 

education literature, which lacks research on teaching through problem solving. 

The description of practices for teaching through problem solving that I describe in this 

dissertation can be helpful for any teacher interested in implementing such an instructional 

approach. Teaching through problem solving looked different for each of the teachers in the 

study, which means that a teacher interested in this instructional approach need not seek to copy 

a particular teacher in order to focus on problem solving in his or her instruction. Rather, a 



 

146 

teacher may consider the wide range of practices examined in this study as providing an 

overview of the possibilities he or she might incorporate into his or her teaching.  

If, for example, teachers would like to change the way they select problems to assign, 

they might consider some of the criteria teachers in this study used. They might consider ways to 

use problems as a means to empower students to address real-world scenarios such as energy 

use. They might choose to follow the advice of one teacher to be very careful about the wording 

of a problem, keeping in mind the problem’s purpose. Teachers might find it suitable to use 

problems to highlight particular problem-solving strategies, or to use a problem as an entry point 

for a lesson. 

 Teachers interested in teaching through problem solving might challenge themselves to 

try one or more of the practices the teachers in this study used. Implementing these practices may 

require small steps such as thinking aloud while solving a problem in front of the class or 

refraining from intervening when students hit a roadblock while solving a problem. A teacher 

may try to ask some metacognitive questions or ask students to look back on a problem after they 

have solved it. Teaching through problem solving is difficult, but implementing one or two 

practices can be quite manageable for a teacher who sees the value in it. 

 There may be teachers who are resistant to a problem-solving approach to instruction but 

whose administration or school board require them to use a problem-based curriculum. In this 

case, the present study may be helpful as a description of teachers who have successfully taught 

through problem solving. Having an idea about what teaching through problem solving looks 

like may give teachers courage to try new things. 

 For teachers who have never heard of teaching through problem solving, the present 

study may pique their interest. It may never have occurred to some teachers that there is a way to 
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teach mathematics other than the way they were taught. Ideally, the teachers in this study will 

inspire other teachers to broaden their horizons by trying new ideas. At the very least, this study 

may cause teachers to think differently about mathematics education and the possibilities for 

what can happen in the classroom. Thinking differently may lead to teaching differently. 
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APPENDIX: Interview Questions 

First interview 

1. What comes to mind when you hear the term mathematical problem solving?  

2. How do you incorporate problem solving [or problem-based teaching] into your math 

classes? 

3. Tell me about when and how you came to see problem solving as a necessary focus in 

your classroom. 

4. If you have not always taught with this focus, how did your teaching change when you 

started focusing on problem solving?  

5. Tell me about a lesson recently that went particularly well with regard to problem 

solving. 

6. Could you give me an example of a good math problem you’ve used in class recently? 

What made it a good problem? What do you look for in a good problem? 

7. Is there a problem you have used in the past that you know longer use? If so, why do you 

no longer use it? 

8. How do you want your students to view problem solving?  

9. What are the main things you do on a regular basis to emphasize problem solving? 

10. How long do you let students go down an unproductive solution path before stepping in 

to give guidance? 

Second interview 

1. Are problems/investigations/projects that you assign used as a means to help students 

learn new material, or do problems/etc. always come after students have learned the 

content required to solve/complete them? 
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2. I asked last time if there were problems that you’ve used in the past that you no longer 

use. Are there any teaching strategies or techniques you used in the past that you no 

longer use? 

3. In regard to teaching through problem solving, are there ideas you’ve considered 

incorporating in class that you’d like to try in the future? 

4. Do you ever have students share their solutions with others in the class? If so, in small 

groups? Whole class discussion? 

5. Do you ever ask students to solve a problem in more than one way? 

6. Could you talk about the importance of collaborating with colleagues? Do you ever 

discuss teaching strategies or philosophy with colleagues? 

Third (email) interview 

1. For students who come into your class having experienced only traditional (e.g., lecture-

based) mathematics teaching and learning, are there things you do at the beginning of 

your course to help them acclimate to a problem-based approach? 

2. Do you think your teaching changes as the course progresses, either in terms of helping 

students acclimate (as in question #1) or otherwise? If so, how? Does the nature of the 

activities/problems/investigations change over the course of the trimester/year? 

 

 


