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ABSTRACT 

Problem: Studies of influenza in the college health population are primarily focused on 

outbreaks such as H1N1 in 2009.  Our goal is to better understand the diagnosis, treatment, 

and impact of influenza in college students during a traditional influenza season. Methods: A 

quasi-experimental study at the University of Georgia Health Center from December 2016 to 

February 2017. Patients with a cough and at least one influenza-like symptom received a rapid 

PCR test for the diagnosis of influenza and were sent a follow up survey. A systematic review 

was conducted on the clinical decision rules (CDR) for the diagnosis of influenza which were 

validated in our population and a novel CDR was developed. The impact of PCR-guided care 

and PCR-confirmed diagnosis on treatment and behavior were also assessed. Results: A total 

of 265 patients were recruited during enrollment and 771 patients met our inclusion but did not 

receive the rapid PCR test were assigned as usual care. The systematic review yielded 16 

studies that had five heuristics, 12 multivariate models, four influenza-like-illness case 

definitions, four classification and regression trees, and one-point score. Twelve CDRs were 

externally validated in our population. A CDR including myalgia, chills, fever, and the absence of 

tonsillar exudate as predictors of influenza performed well. (AUROCC: 0.77). A fast and frugal 

tree yielded a CDR with myalgia, chills, fever, and acute onset of less than or equal to 48 hours 

(AUROCC: 0.69). Guideline supported care did not significantly increase for patients who 



received PCR-guided care (aOR: 1.24, 95%CI: 0.83, 1.88). PCR-guided care significantly 

decreased the likelihood of an antibiotic prescription (aOR: 0.61, 95%CI: 0.40, 0.94), increased 

the likelihood of an antiviral prescription (aOR: 1.57, 95%ci: 1.09, 2.28), and decreased the 

likelihood of return visit within 2 weeks (aOR: 0.19, 95%CI: 0.04, 0.81). Students with influenza 

were also more likely to report any absence from work or school (aOR: 3.86; 95% CI: 

1.84,8.09). Conclusion: Influenza remains a burden in the college health population. The use 

of a rapid PCR test for diagnosis in outpatient care needs further assessment but shows a 

positive trend towards in promoting guideline consistent care. 
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CHAPTER 1 

INTRODUCTION 

Statement of the Problem 

Influenza is a highly infectious disease with a significant epidemiological burden for 

centuries. Influenza was originally attributed to the “influence of the stars” in the 15th century.1 

The influenza viruses are a group of negative-sense, single stranded ribonucleic acid viruses 

that belong to the Orthomyxoviridae family. There are three types of influenza: A, B, and C. 

Influenza A is the most common circulating type of influenza during outbreaks.1 Influenza A is 

also the most prone to antigenic shifts and to lead to a pandemic.2,3 So far, in the 2015-16 

influenza season, 91.8% of influenza viruses reported by public health laboratories were 

influenza A.4  

Influenza spreads primarily through droplets made when people with flu cough, sneeze, 

or talk. The typical symptoms of influenza include: fever, cough, sore throat, runny or stuffy 

nose, muscle or body aches, headaches, fatigue, vomiting, and diarrhea.5 Most persons will 

present with a subset of these symptoms, as not all symptoms are found in every person. 

Persons with influenza are infectious beginning a day before symptoms present and for up to 7 

days after. Most persons who are infected with influenza will become symptomatic after an 

average of 2 days (range 1-4 days), and typically recover without complications.6 About one in 

every three people with influenza will be asymptomatic.7 There are four groups that are at high 

risk for complications: persons 65 years of age and older, pregnant women, young children, and 

persons with chronic medical conditions.8 Complications of influenza that can affect any person 

include bacterial pneumonia, ear or sinus infections, and dehydration.8  
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Diagnosis of influenza is difficult based on symptoms alone due to its overlap with many 

other respiratory illnesses. Therefore, many diagnostic tests have been developed. Currently, 

six major types of influenza tests exist: rapid influenza diagnostic tests, rapid molecular assays, 

immunofluorescence through direct or indirect fluorescent antibody staining, reverse 

transcription polymerase chain reaction (RT-PCR), rapid cell culture, and viral tissue culture.9 

Rapid influenza diagnostic tests are often used at the point of care since they can be completed 

in less than 15 minutes and are fairly simple to use.9 This test relies on antigen detection from a 

nasopharyngeal, nasal, or throat swab or aspirate and wash. Rapid influenza diagnostic tests 

report a range of sensitivity values (10-80%); a recent meta-analysis found that the pooled 

sensitivity was 62.3% and the pooled specificity was 98.2%.9 RT-PCR, rapid cell culture, and 

viral tissue culture (serology) take a significant amount of time but are less likely to misclassify a 

patient’s influenza diagnosis. RT-PCR is a highly accurate testing method that takes 

approximately one to two days to complete.10 RT-PCR is superior to cell culture at detecting 

influenza and is becoming the gold standard; however, the it’s high cost and delay in setting 

results limits its use by clinicians.9-11 Cell culture has the ability to detect other viruses within 

three to fourteen days.10 Serology is an important research method that is also highly sensitive 

and specific, but the two to four week result timeline reduces its usefulness in clinical care.10 

Many options exist for the detection of influenza, but rapid influenza diagnostic tests continue to 

be widely available and used despite their failure to identify nearly four in ten patients with 

influenza. 

Recently, Roche Diagnostics introduced the Cobas Liat system.12 The Cobas Liat 

system performs RT-PCR in twenty minutes or less for the detection of influenza A and B as 

well as beta-hemolytic Streptococcus group A.12 This test is 99.2% sensitive (95% CI: 95.1-

99.9%) and 100% specific for influenza A virus (95%CI: not reported), and 100% sensitive 
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(95%CI: 83.1-100%) and 100% specific for influenza B viruses (95%CI: not reported) when 

compared to a reference laboratory influenza A and B real-time PCR assay.12 The Cobas Liat 

influenza A/B test and machine will be used for all aims of this dissertation; Roche Diagnostics 

USA provided the funding and equipment for testing of participants. 

Influenza has a significant annual burden in the United States. In the United States, 

influenza activity will typically peak between December and February. For the 2015-2016 

influenza season, the epidemic peaked in March of 2016 with an estimated 25 million persons 

having had influenza by the end of influenza season.13 There were 11 million influenza-related 

outpatient medical visits, 310,000 influenza related hospitalizations, and 12,000 pneumonia and 

influenza related deaths.13 Despite this large morbidity and mortality burden, influenza 

vaccination coverage remains below 33% for adults 18-49 years of age.13 Influenza vaccination 

can prevent illness, influenza-associated medical visits, influenza-associated hospitalizations 

and even deaths. A new influenza vaccination is released yearly based on research estimates 

of which viruses will be in circulation.13 While the effect of influenza vaccination is highly 

dependent on vaccine efficacy, low coverage continues to be an issue.13 University students 

have low vaccination rates (approximately 12-30%) due to a lack of understanding of both 

influenza burden and the benefits and harms of the vaccine.14,15 This could contribute to the lack 

of vaccine coverage among adults 18-49 years of age, which includes university students.13,14  

Further research to understand the diagnosis and prognosis of influenza in adults, 

particularly young adults, is important to prepare for future pandemics. University and college 

students live in more crowded living conditions, have a poor understanding of how influenza 

virus is spread, and a low vaccination rate.14,15 University students at the University of Georgia 

benefit from a comprehensive care team at the University Health Center. Given the detailed 

electronic health record maintained at UHC and its high usage by UGA students, we can 

describe the course of an episode of influenza from onset of symptoms to diagnosis to recovery. 

We will follow a small cohort of UGA students (n=300) from enrollment at an appointment for 
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influenza like illness (ILI) to five days’ post appointment with a follow up survey. With this cohort, 

we will be able to assess current clinical decision rules for diagnosis, describe the impact of a 

new, highly accurate rapid point of care PCR test and its effects on patient treatment, and better 

understand the effect of influenza diagnosis on the behaviors of university students post 

diagnosis.  

Aims of this Dissertation 

Our primary goal for these three aims is to better understand the diagnosis, treatment, 

natural history, and impact of influenza in college students. Our three aims are: 

1. Identify and validate current clinical decision rules for the diagnosis of influenza and 

develop a novel clinical decision rule for the college health population.  

2. Assess the impact of a new, highly accurate influenza diagnostic test on the guideline 

consistency of clinician’s treatment decisions.  

3. Assess the impact of a confirmed influenza diagnosis on university student’s behavior 

with regards to participation in university life and social distancing. 

To accomplish these three aims, we will recruit 300 patients at the University Health Center 

to receive rapid point of care PCR test. Participants will be current University of Georgia 

students that present with cough and one other symptom or at least two of the following 

symptoms: headache, fever, chills, sweats, fatigue, myalgia or arthralgia. Patients must present 

to UHC within seven days of symptom onset, and without previous evaluation by a clinician.  

We chose university students at UHC for several reasons. First, as young adults, university 

students’ behavior when infected with influenza has not been recently assessed.16 Second, 

UHC has an excellent electronic health record (EHR). The EHR at UHC uses checkboxes, 

Booleans, and plus/minus controls to record symptoms, medical history, and laboratory results. 

This sophisticated system has the capability to require clinicians to answer specific fields. We 

have worked previously with UHC on a project for group A beta-hemolytic Streptococcus with 

success. We chose cough or suspected influenza symptoms to capture patients who present 
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with milder forms of influenza. Seven days is our symptomatic cut off because the most severe 

symptoms of influenza typically pass within a week.  

Objectives of Aims 

Each aim has its own set of objectives and methods, which are described in detail in 

chapter 3. Below is a brief description of each aim, presented as Table 1.1. 

Table 1.1 Brief Description of the Objective, Data Source, and Methods for Each Aim 

Aim Objectives Data Sources Methods 

1 -To identify published clinical 
decision rules for diagnosis of 
influenza through a systematic 
review and validate them using 
prospective data from UHC 
-To develop a new diagnostic 
clinical decision rule for the 
college health population using 
the UHC data 

-Medline, Google 
Scholar, EMBASE, 
DARE, Cochrane 
Library, and CDR 
database from Dr. Tom 
Fahey (Dublin) 
- Symptom, history, and 
laboratory data from 
UHC 

-Systematic review 
-ROC curve, 
Hosmer-Lemeshow 
plot, calibration 
statistics 
-Logistic Regression 
to build new model 
from UHC 

2 -To identify whether the rapid 
point of care PCR significantly 
increases the number of patients 
who receive guideline consistent 
treatment 
-To assess the impact of the 
rapid point of care PCR test on 
return visits to the UHC.  

-Symptom, patient 
history, and laboratory 
data from UHC electronic 
health record 

-Logistic regression 

3 -To assess the behavior of 
college students who have 
participated in the rapid point of 
care PCR test in the following 
composite variables: emotional 
impact and social distancing 

-UHC EHR laboratory 
data 
-Qualtrics survey 
administered via 
UGAMail 5 days’ post 
appointment 

-Logistic Regression 

Aim 1 is focused on clinical decision rules. We first conducted a systematic review of the 

literature to identify clinical decision rules (CDRs) for the diagnosis of influenza. We then 

validated all identified rules using the prospectively gathered data on patients with ILI from UHC. 

We hypothesized that most CDRs will be found to be valid in our patient population, defined as 

having an area under the curve greater than 0.70 and calibration slope close to 1. Following 

validation of each previously developed CDR, we then created our own CDR for influenza in a 
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university student population. We hypothesized that cough, fever, myalgia and headache will be 

clinically and statistically significant predictors of influenza in university students.  

Aim 2 focused on the treatment of patients in the presence of the rapid point of care 

PCR test. We hypothesized that patients who received care guided by the rapid point of care 

PCR test will be more likely to receive guideline consistent treatment, because of greater 

clinician certainty and confidence in the diagnosis. We defined guideline consistent and 

guideline inconsistent treatment in Table 2.1 of chapter 3. Oseltamivir (Tamiflu) is guideline 

consistent when administered within 48 hours of symptom onset in patients with influenza 

confirmed by clinician diagnosis or PCR test (when used). Antibiotics are guideline consistent in 

patients with a high risk of pneumonia or with clinician diagnosed pneumonia, acute 

rhinosinusitis, streptococcal pharyngitis, acute otitis media, or other predominantly bacterial 

infection. Patients who do not have influenza and are at low risk for pneumonia or bacterial 

infection (for example, with a clinical diagnosis of acute bronchitis, viral pharyngitis, or viral 

upper respiratory infection) should not receive an antibiotic. In addition, patients diagnosed with 

influenza should not receive an antibiotic, with or without oseltamivir. We also assessed the 

number of return visits within seven days of the initial appointment. We hypothesized that 

patients who receive care guided by the rapid point of care PCR test will be significantly less 

likely to schedule a follow up appointment than those who received usual care, due to greater 

certainty in and comfort with the diagnosis.  

Aim 3 addresses the behavior of university students after influenza diagnosis. We 

hypothesized that patients who are influenza positive, as confirmed by the rapid point of care 

PCR, are more likely to be socially distant. Patients who are socially distant will indicate a 

lowered use of public transportation and dining facilities, less interaction with friends and a 

decreased attendance to class or work. We also hypothesized that patients who are influenza 

positive, as confirmed by the rapid point of care PCR, will report more emotional impact. These 
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patients could possibly report higher levels of stress, increased reliance of family for health-

related decision making, and reliance on a social network in relation to their health.  

Dissertation Outline 

Chapter 1 of this dissertation has provided a brief introduction to influenza and university 

student behavior. Chapter 2 describes the literature surrounding influenza, university student 

behavior, PCR testing, and CDRs thoroughly. Chapter 3 describes the methods used in each 

aim of this dissertation. Chapter 4 is a be brief introduction to the results. Chapters 5, 6, and 7 

are manuscripts prepared for publication representing each of the three aims. Chapter 8 is a 

summarization of the findings of each aim and conclusions. 
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CHAPTER 2 

LITERATURE REVIEW 

Influenza Overview 

Influenza is an airborne respiratory disease with potentially devastating effects, as seen 

in the 1918 “Spanish” influenza pandemic.17 An estimated 21 million deaths are attributed to this 

pandemic.17 The devastating aftermath of the 1918 influenza pandemic became the driving 

force for understanding the virus. In the 1930s, the influenza virus was first isolated from nasal 

secretions of infected patients.18 By the 1940s, the first influenza vaccination had been created 

using an inactivated monovalent influenza A virus.19 Vaccine development has continued 

throughout the decades. The first worldwide surveillance system for circulating influenza strains 

was developed by the World Health Organization (WHO) in 1952.1  

While continued monitoring of influenza and development of vaccines occurred in the 

1960s and 1970s, it was not until February 1980 that the naming convention for influenza 

viruses was accepted by the WHO.20 Every influenza virus, regardless of type, receives a strain 

designation. That strain designation is comprised of information on the antigenic type of the 

virus the host of origin, geographical origin, strain number, and year of isolation.20 Antigenic 

description of influenza A viruses was added based on the subtypes of hemagglutinin or “H” 

(15) and neuraminidase or “N” receptors (9).20 We now refer to influenza viruses by their 

antigenic type, for example H3N2. Similar antigenic subtyping does not exist for influenza B or 

influenza C.
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Epidemiology of Influenza in the United States 

The influenza viruses were first isolated in the 1930s. Influenza has been responsible for 

four pandemics in the last 125 years (1918, 1957, 1968, 2009). Understanding the molecular 

epidemiology behind the influenza pathogens of this pandemic is essential to furthering 

understanding of pandemic influenza. Influenza viruses have persisted for centuries due to the 

antigenic variation and antigenic shift.21 Antigenic variation is the accumulation of point 

mutations in the hemagglutinin and neuraminidase genes.21 A viral RNA polymerase transcribes 

the influenza genome imperfectly causing some point mutations.21 There is positive Darwinian 

selection for hemagglutinin antigenic sites that permit replication if conditions favor survival.21 

Continued antigenic variation means an individual is susceptible to infection of a new strain 

despite previous infections. Antigenic shift occurs when an influenza A virus with a new 

hemagglutinin occurs in humans. This shift can result from a virus being transmitted without re-

assortment from an animal to a human. Antigenic shift can also occur when genetic re-

assortment between animal and human influenza A viruses yields a new virus. Due to the 

potential for antigenic shift, influenza A virus is the primary concern for future epidemics.3  

It is well accepted that influenza is spread through direct person to person transmission 

when an infected person expels viral particles through sneezing, coughing and talking.21 

Influenza is seasonal; most outbreaks occur within the first quarter of the year (January-March) 

22. Most outbreaks are dominated by influenza A virus H3N2 in the beginning with influenza B

incidence rising later towards the end in the outbreak.23 Influenza infection is generally self-

limited and a majority of symptoms resolve within 1 to 7 days, with the exception of cough which 

may last several weeks. 10,121  

During a typical influenza outbreak, four groups are identified as high risk for serious 

complications: persons >65 years of age, young children, pregnant women, and persons with 
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chronic diseases.8 Children less than 5 years of age and adults that were 65 years or older 

accounted for approximately 66% of the estimated excess deaths due to pneumonia and 

influenza in the 2015-16 influenza season.13 In the 2009-10 H1N1 pandemic season, 12% of 

pregnancy related deaths were attributed to influenza.24 While these groups are at the highest 

risk for mortality during seasonal influenza outbreaks, this pattern does not hold true during a 

pandemic. A study comparing mortality by age group during the 1918, 1957, and 1968 influenza 

A pandemics revealed that risk of mortality from influenza increases significantly during a 

pandemic for younger adults.21,25 Following the pandemic, the number of deaths in younger 

adults decreases rapidly, suggesting an acquisition of protection against fatal influenza in 

younger persons.25  

In the United States, weekly surveillance of influenza infections is performed by the 

Centers for Disease Control and Prevention (CDC). Since the WHO established influenza 

surveillance as a priority in 1952, the CDC has monitored influenza through five types of 

surveillance systems: viral surveillance, outpatient illness surveillance, mortality surveillance, 

hospitalization surveillance, and summaries of the geographic spread of influenza throughout 

the United States.26 A brief description of each surveillance system is included below as Table 

1.2. This information is compiled into FluView, CDC’s interactive web based program for 

influenza surveillance statistics.26 Surveillance allows the CDC to track influenza related illness, 

the time and states where influenza is occurring, which influenza viruses are circulating, the 

impact of influenza on hospitalizations and deaths, and finally to identify any changes in 

influenza viruses.26 This information is important to public health response to influenza and 

assists in development of future vaccinations.  
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Table 1.2 Description of 5 Surveillance Systems that Contribute to FluView 

System Name System Description Setting Number of Sites 

Viral surveillance -public health 
laboratories test for 
surveillance of which 
viruses are circulating 
-clinical laboratories 
test for diagnosis of 
virus in patient 

Public health and 
clinical laboratories 

400 throughout the 
50 states, Puerto 
Rico and DC 

Pneumonia and 
Influenza Mortality 

Deaths related to 
pneumonia and 
influenza identified by 
ICD-10 cause of 
death codes 

National Center for 
Health Statistics 
(NCHS) mortality 
surveillance data 

Not reported 

Influenza-associated 
Pediatric Deaths 

Laboratory confirmed 
influenza associated 
deaths of persons 
>18 years of age 

Hospitals, doctor’s 
offices, medical 
examiners, 
laboratories in the 
United States 

Not reported 

Influenza-associated 
Hospitalizations 

population-based 
surveillance for 
laboratory-confirmed 
influenza-related 
hospitalizations in 
children and adults 

Hospitals in 10 
Emerging Infections 
Program states (CA, 
CO, CT, GA MD, 
MN, NM, NY, OR, 
TN) 

70 counties 
throughout 10 EIP 
states 

Outpatient Illness 
Surveillance 

Providers report ILI to 
ILINet system  

Outpatient providers 
throughout all 50 
states, Puerto Rico, 
D.C., and the U.S. 
Virgin Islands 

2,800 participating 
providers reporting 
+36 million visits 

Influenza Treatment Options 

Most patients receive only supportive care for influenza. Current pharmaceutical options 

for influenza are limited, in part due to virus evolution, medication cost and adverse effect, the 

rapidity with which the infection causes symptoms, and the difficulty surrounding rapid diagnosis 

of influenza. Influenza medications include M2 protein inhibitors (amantadine or rimantadine), 

neuraminidase inhibitors (oseltamivir or zanamivir), hemagglutinin inhibitors, and medications 

that target the RNA viral transcription (umifenovir) and replication (ribavirin).3 In the US, the only 

medications recommended for influenza are the neuraminidase inhibitors oseltamivir (Tamiflu) 

and zanamivir.27 Recent reviews of published and unpublished data show that the use of these 

medications does not significantly reduce hospitalizations or complications, that they have 
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significant adverse effects, only modestly reduce the duration of illness, and are expensive.28-30 

Therefore, supportive treatment continues to be the primary means for assisting patients.  

Influenza Vaccination 

Influenza vaccinations are the primary public health strategy for reducing influenza 

impact.19 Influenza vaccines are developed through two processes: an inactivated vaccine or a 

live attenuated vaccine. The first inactivated influenza vaccine was developed in the 1930s and 

the first bivalent vaccine followed shortly after.19 A bivalent vaccine contains one influenza A 

and one influenza B virus strain. Today, inactivated vaccines are produced in embryonated 

hens’ eggs. This method has it’s challenges, as there is a limited availability of embryonated 

hens’ eggs.19 Live attenuated vaccines were first licensed in the late 1970s.19 Live attenuated 

virus vaccines induce a immune system response that mimics the immune response to natural 

infection but without causing clinical disease.19 Live attenuated virus vaccines should not be 

used in persons with confirmed severe allergic reactions, asthma, long-term aspirin use, or have 

altered immunocompetence.19 Persons with altered immunocompetence should refer to the 

recommendation made by the Infectious Disease Society of America for detailed guidance on 

selection and timing of vaccines.31 

In the United States, the Advisory Committee on Immunization Practices (ACIP) sets the 

recommendations for vaccinations. The ACIP recommends annual influenza vaccination in all 

persons 6 months of age and older. Either vaccine type, inactivated or live attenuated virus, 

may be used in persons aged 2 to 49 years without certain conditions. These conditions include 

severe allergic reaction, asthma, long-term asthma use or any indications of a depressed 

immune system.19 Until 2012, a trivalent vaccine was widely used for influenza protection. The 

trivalent vaccine contains antigens for influenza A H3N2 and H1N1 and one influenza B virus.19 

The use of this trivalent vaccine often resulted in a mismatch between the circulating influenza B 

virus and the influenza B virus in the trivalent vaccine.19 To combat this mismatch, a 

quadrivalent vaccine was developed and introduced into the United States in February of 2012. 
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The quadrivalent vaccine contains the viruses from the trivalent vaccine with an addition of 

another influenza B strain. The quadrivalent vaccine is more effective at producing an 

immunogenic response and is considered safe.19 In a multicenter trial conducted during the 

2011-2012 influenza season, the quadrivalent vaccine outperformed the trivalent vaccine when 

measuring geometric mean titers of antibody response were 3.08 (95%CI: 2.44, 3.90) and 3.27 

(95%CI: 2.55,4.03) for the unmatched influenza B strains in adults.32 Additionally, the 

quadrivalent vaccine was non-inferior to the trivalent vaccine when measuring geometric mean 

titers of antibody response were approximately 1 and included 1 in the 95% confidence interval 

to the four matched influenza strains.32 Finally, the solicited reactions, unsolicited adverse 

events and serious adverse events are similar between the quadrivalent and trivalent vaccine; 

no serious adverse events or deaths were reported as related to treatment.32 The quadrivalent 

vaccine has apparently accomplished its initial goal of reducing influenza B infections; with a 

16% reduction of influenza B infections in the United States from 2000-2013.33 Public health 

officials should continue to educate the US population and promote vaccine coverage for all 

persons, especially focused on high risk groups to reduce influenza morbidity and mortality.34  

Vaccination rates in adults aged 18-49 remains low throughout the United States.13 

There are many reasons for the lack of vaccination by adults aged 18-49, the foremost being a 

failure to understand the risk of influenza infection.35 To increase influenza vaccination 

acceptance in otherwise healthy adults, trust must be increased in the following areas: an 

increase in the perceived effectiveness of the vaccine, and improved knowledge regarding the 

low likelihood of vaccine side effects.36 A lack of knowledge surrounding vaccination is a major 

hurdle to increasing vaccine coverage in young adults.35 Vaccination rates are low among 

university students, even shortly after the H1N1 pandemic, demonstrating that education and 

public health messaging is still needed to increasing vaccine coverage.37-39 Also, officials may 

consider placing a greater emphasis on non-pharmaceutical prevention measures such as self-

isolation.  
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Influenza at Colleges and Universities 

Influenza outbreaks at universities and colleges have a significant impact on the health 

of young adult students. Previous outbreaks have led to increased use of clinical care, loss of 

class and work time, and an increase in health costs, among many other significant 

consequences.16,38 In June of 2009, the WHO declared the H1N1 outbreak the first pandemic of 

the 21st century. Worldwide, an estimated 284,500 people died because of H1N1 infection or its 

complications.40 Many colleges and universities faced a large burden of disease throughout the 

duration of the H1N1 outbreak.39,41-44 The rapid surge of patients to college health services was 

overwhelming when comparing the peak of influenza in 2009 to the same week in 2008.41 Many 

patients presented to health services out of fear of a H1N1 infection despite their absence of 

fever or other influenza like symptoms.41 A lack of adequate education of the community 

regarding H1N1 and media attention contributed to the doubling of clinical care visits, from 352 

to 782.41 Influenza like illnesses also impact academic and work performance.16 Students with 

influenza miss school days, miss work days, and report worse performance on tests or class 

assignments.16 For the university student, who is often balancing a job alongside a full course 

load, the impact of an acute illness like influenza can continue for weeks’ post illness. While 

these consequences are disruptive for the life of a university student, many fail to perceive the 

risk of influenza infection.35  

Gaps in Education of University Students 

The H1N1 outbreak was a rich source for research around disease outbreak 

preparedness efforts for universities. In a pandemic, universities must prepare for a quick influx 

of patients as an influenza outbreak progresses; a possible solution is the establishment of 

temporary clinics for triaging patients.41 Another possible solution is the creation of a telephone 

based clinical decision rule to triage patients during an outbreak. Education of the campus 

community is essential to the management of future outbreaks. Non-pharmaceutical 

interventions such as handwashing, home isolation, and social distancing have varied levels of 
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success in university students.42,43,45 Education regarding influenza risk for university students 

consistently leads to increased hand washing during outbreaks.42,45,46 Female students and 

students who perceived their illness severity to be great are more likely to wash their hands 

frequently.42 However, students and staff at universities do not isolate themselves when 

infected; infected students still attend class and social activities.41,47 Social activities include club 

and organization meetings as well as parties. In a study of a large public university during the 

H1N! pandemic of 2009 students, faculty and staff were asked to complete a survey regarding 

non-pharmaceutical interventions.45 Students who reported being “somewhat concerned” or 

“very concerned” that they would contract H1N1 reported attending social activities significantly 

less.45 Even during pandemic situations, students do not understand their increased risk for 

infection.46 Since students are unlikely to practice social distancing behaviors, and given the 

social stigma to mask use, it isn’t surprising that they also report low usage of face masks.46,48,49 

Social contact networks are a contributor the propagation of influenza in communities.50 

A study of social distancing designs for pandemic influenza targeted elementary, middle, and 

high school contact networks in order to reduce the influenza attack rate by 90%.51 The social 

contact networks of children, teenagers, and college students are similar in that they are highly 

assortative and interact primarily with people in their age group.50, Guh, 2011 #33 Therefore, the 

implementation of targeted social distancing methods proposed by Glass are useful for colleges 

as well. In 2005, a simulated model of influenza in Southeast Asia determined that social 

distancing was necessary for pandemic control when combined with geographically targeted 

prophylaxis.52 Social distancing can include self-isolation, the closing of schools and 

workplaces, the cancelling of major events on campus, and many other measures. Educating 

university students regarding infection risk and preventative measures is still needed. 

Adapting education measures to university students is challenging. University officials 

must balance their message to not increase unnecessary fear or promote complacency to 

influenza risk.53 Many options are available to universities in disseminating information about 
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influenza. Some of these options include: posters, announcements in lectures, university 

websites, simple message services, and e-mails.53 The use of computer technology is 

potentially the most efficient way to reach students, faculty and staff during an outbreak.53 

Students report that classroom announcements and campus posters are the next preferred 

methods of communication of risk.53  

Gaps in the Literature 

While influenza research has been conducted for years, the research into university 

students has been centered around major pandemics.15,16,41,42,47 This limits our understanding, 

as it is reactionary to the pandemic and does not continue once the threat has diminished. Since 

the influenza virus is undergoing constant antigenic evolution, it’s impact in the university 

student population needs to be assessed in a non-pandemic setting. The most recent study of 

non-pandemic influenza in university students regarding their illness related behaviors was 

published in 2002.16 Use of mobile and other technology has increased dramatically in the last 

15 years, emphasizing a need for a new assessment of student behavior post influenza 

infection. It is important to assess whether the same hurdles to reducing influenza transmission 

in university students, such as crowded living and a lack of social distancing, still exist.38,45,54 

In addition, validation of current clinical decision rules for influenza is key to the 

continued implementation of these tools.55 By conducting a systematic review and validating 

current rules in a university population, we can strengthen the argument for the use of these 

clinical decision rules as a part of evidence-based practice. Currently, no clinical decision rule 

exists exclusively for university students. Given the atypical crowded living conditions and social 

behaviors of university students, it is important to develop a clinical decision rule that can be 

applied to the otherwise healthy university student.  

Finally, the use a new highly accurate and rapid point of care PCR test has not been 

studied. The over-prescription of antibiotics and antivirals continues to remain a top public 

health concern. The misuse of antibiotics remains common for respiratory viral infections 56, and 
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anti-influenza drugs such as oseltamivir are often misused as well.57 Therefore, the 

implementation of a rapid test with increased accuracy should be studied as a possible means 

to reduce over-prescription by improving patient and physician confidence in the accuracy of the 

diagnosis of influenza. 

We will address these gaps in the literature through the three aims of this dissertation. 

First, we will conduct a systematic review of current clinical decision rules for influenza and 

validate them using original data collected from the University of Georgia’s Health Center 

(UHC). We will then develop our own clinical decision rule for university students using the 

same data. From there, we will assess whether the implementation of the rapid point of care 

PCR test significantly decreases guideline inconsistent prescribing for patients with and without 

influenza-like illness. We will also assess the impact of the PCR test on return visits of patients 

at the UHC. Finally, we will assess the effect of an influenza diagnosis on emotional impact and 

social distancing of university students. It is possible that the attitude of university students has 

changed to include vaccination and non-pharmaceutical interventions as a priority.  
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CHAPTER 3 

METHODS 

AIM 1: Validation of Existing Influenza Prediction Rules and Development of an Influenza 
Prediction Rule Using University Student Health Data 

1.1 Background 

1.1.1 History and Utility of Clinical Decision Rules 

While caring for patients, clinicians must make a diagnosis, choose a treatment and 

advise patients regarding prognosis. All three of those tasks require a judgment regarding the 

likelihood of a disease (or multiple diseases); the likelihood that a treatment will be effective; 

and the likelihood that a patient will experience an outcome such as recovery or death. 

Clinicians are increasingly relying on evidence-based practices including clinical decision (also 

known as clinical prediction) rules (CDRs). 

Prediction models can be applied in medicine and public health to aid in diagnosis or 

screening processes.58 These models are particularly useful in resource limited settings, and to 

minimize harms. For example, a prediction model applied to screening can identify high risk 

groups and exclude patients with minimal risk, who are less likely to experience a net benefit. 

When applied to clinical decisions, prediction models are typically diagnostic tools to help 

decrease the financial or physical burden on the patient 58 by avoiding unnecessary tests. Many 

medical outcomes are binary; you either have the outcome or do not. Examples of outcomes 

can range from simple presence versus absence of disease to time dependent outcomes such 

as 10-year mortality.58  
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Another important benefit of prediction models in medicine is the ability of the models to 

work in conjunction with clinician experience. While increasing years of clinical experience may 

be beneficial for patients, our understanding of disease changes as research continues. When a 

clinician fails to stay current, this can increase misdiagnosis or over diagnosis.59 Therefore, a 

prediction model, called a clinical decision rule (CDR) in medicine, combines individual factors 

from a patient’s history, physical exam, and in some cases laboratory tests to predict the 

diagnosis, treatment response, or prognosis for a patient. CDRs apply statistical methods to 

improve the processes of diagnosis, treatment selection and prognosis. For example, a CDR 

would be most useful as mentioned previously in a situation where the cost to the patient is 

high, where the test or treatment is risky, or where prognosis is uncertain.59 CDRs help to inform 

and augment clinical judgement to improve the quality of care.  

1.1.2 Clinical Decision Rules: Development, Validation, and Impact Analysis 

The creation of a useful CDR involves three phases. These three phases are 

development, validation, and impact analysis, and each is discussed below.  

1.1.2.1 Development 

CDRs are typically developed following these steps: identification of potential clinical 

predictors, assessment of the presence or absence of these predictors and the outcome of 

interest (diagnosis, treatment success, or mortality) in a patient population, and finally statistical 

analysis.59 To identify potential clinical predictors, researchers rely on an extensive literature 

review and existing knowledge of disease etiology. These clinical predictors as previously 

described can include symptoms, signs, medical history and laboratory tests. Once these 

potential clinical predictors have been identified, a susceptible patient population is identified. 

Each patient is then assessed for the presence or absence of each clinical predictor and the 

clinical outcome. This patient population can also be referred to as the development, derivation, 
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or training population, as this is the population on which we will train our prediction model to 

predict the clinical outcome. To address inaccuracy in the measurement of predictors or 

outcomes, researchers should strive to use prospective primary data collection and perform 

extensive training of assessors. Additionally, developing the model in a diverse population will 

increase the generalizability of the model to other populations and clinical practice. The training 

population should resemble the clinical population that we want to apply the model to in terms of 

spectrum of disease and diversity. Once data collection is complete, researchers will typically 

use logistic regression (or a variant) to build the most parsimonious model. From the final fitted 

logistic regression model, we will assign a point value of 1 to each included parameter. 

Researchers collect data through primary and secondary methods. Primary data 

collection involves a researcher and their team prospectively collecting original information from 

a patient population. This method is advantageous because the researcher ensures that the 

data necessary for the objective of the study will be complete and accurate. Complete and 

accurate data is essential for trustworthy results. However, primary data collection is expensive, 

takes time to plan and execute, and involves dedication from a research team. Researchers 

must consider the planning, ethical decisions and institutional review boards, and execution of 

the project over a significant period. Secondary data comes from a source that has already 

collected the information for other purposes, such as medical records. These previously 

collected data sources are cheaper and do not involve as great an investment of time, money, 

and planning. A significant disadvantage of secondary data is that the researcher has no control 

over what data is obtained, it’s quality, or the completeness. The decrease in quality can 

interfere with the model reliability, accuracy, and generalizability to answer the study’s objective. 

1.1.2.2 Validation 

Once a CDR has been developed, the CDR must then be validated in an external 

population. External populations are patient populations that do not include patients from the 

training population that developed the original model. Validation is an important step in the 
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process to a successful CDR. There are many potential problems with a CDR that must be 

accounted for. Some of these problems include: overfitting, optimism, inaccuracy of 

measurement of predictors or outcomes, differences between training and validation 

populations, and the complexity of the CDR.55,59 Overfitting occurs when a prediction model is 

fitted with too many degrees of freedom in the model development process.55 Overfitting leads 

to a model that is will only perform well in the training population and does not generalize well to 

other populations. The development and validation populations should be diverse, provide an 

adequate spectrum of disease, and be representative of the target population for the CDR. 

Minimization of selection bias, interviewer bias, and loss to follow up is key to the successful 

validation of a CDR in a new population.59 Once the CDR has been developed, it is important to 

assess whether the CDR is too complex or lacks face validity. CDRs that involve too many 

terms or are difficult to remember will not be successful in practice. Additionally, CDRs that do 

not make sense to clinicians and their existing knowledge will be ignored. It is important to 

develop a CDR that is simple and intuitive, fitting the known signs and symptoms of diagnosis.  

The validity of a CDR is assessed via classification accuracy, discrimination, and 

calibration. Classification accuracy is the number of correct predictions made by the CDR 

divided by the total. We will use the CDR to classify patients into risk groups, and then compare 

to the risk groups to the final diagnosis. We will also calculate test and treatment thresholds. 

The test threshold occurs when a clinician has enough equipoise to decide whether to rule out a 

disease or order additional tests.60 The treatment threshold occurs when a clinician has enough 

equipoise to decide to rule in disease for treatment or order additional tests60. The data below 

the test threshold should correspond to the low risk group for a typical CDR; values above 

treatment threshold corresponds to the high-risk group. The test threshold and treatment 

threshold equations are shown below as Equation 2.60,61 The parameters are: p which is the 

probability of not ruling out, x is disease probability, a and b are model coefficients.60,61 
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ln[
𝑝

1 + 𝑝
] = 𝑎 + 𝑏𝑥 

Equation 2. Logistic Function to Calculate Test or Treatment Threshold 61 

Discrimination statistics tell us how well a model can discriminate those with the 

outcome from those without the outcome. We can assess the discrimination of a model through 

statistical measures such as diagnostic odds ratio and the calculation of area under a receiver 

operating characteristic curve (AUROCC).55 

Calibration is another important aspect of model validation. Calibration quantifies the 

agreement between the predicted outcome and the observed outcome. To assess model 

calibration, calibration plots are produced with the outcome on the y axis and the prediction on 

the x axis. A calibration plot with perfect predictions will have a line along the 45 degrees with a 

slope of 1.0. With a binary outcome, the y axis will only contain values of 0 or 1. Smoothing 

techniques are used to estimate the relationship between observed and predicted probabilities. 

A common calibration plot is the Hosmer-Lemeshow plot, which groups outcome values into 

deciles. A well calibrated model will have a Hosmer-Lemeshow plot with an even distribution of 

outcome points across all deciles. There are many other goodness of fit tests available with their 

own strengths and weaknesses such as the Goeman-Le Cessie test or subgroup calibration.55 

We will focus on the Hosmer-Lemeshow test since we are using a binary outcome. The 

Hosmer-Lemeshow goodness of fit test uses a chi-square statistic to assess the ability of our 

model to fit the new data.  

1.1.2.3 Impact Analysis 

A CDR will only be successful at improving patient care if it is relatively easy to 

implement in a clinician’s practice. The use of a CDR must have benefits that outweigh the 

costs of labor and time for the clinician. These benefits include improved patient outcomes or 

reduced costs to maintain current quality of clinical care. Barriers for use of a CDR center 

around the clinician and their practice setting. The difficulty increases with the number of clinical 
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predictors needed (due to the time needed to gather these data), variation in the number of 

points assigned to each predictor and calculations, and the time it takes to perform the 

calculation.59 While a CDR may minimize the number of clinical predictors and keep the 

calculation simple, a clinician’s fear of litigation or unwillingness to allow a CDR to overrule their 

clinical judgement may also decrease the use of the CDR. The cost of misdiagnosing or 

mistreating a patient varies amongst disease conditions; if the outcome involves a high burden 

to the patient, the clinician may be more inclined to order expensive and invasive testing to 

increase diagnostic certainty.59  

To quantify the impact of a CDR, a large randomized study should be conducted to 

assess relevant outcomes such as morbidity, mortality, and cost.59 We would ideally assess the 

impact of a CDR by randomizing patients, clinicians or groups of clinicians to usual care or 

usual care aided by the CDR. Then, we would assess the differences between groups in 

outcomes such as diagnostic accuracy, hospitalization rates, mortality, and cost. Successful 

implementation of a CDR occurs when a clinician uses the CDR in all or most relevant 

patients.59  

CDRs are potentially most useful when they can be implemented in a wide range of 

settings with confidence that they will benefit patients and be used by clinicians.59 CDRs are 

most trustworthy and clinically relevant when they have been validated in either a single, large 

diverse population or when they have been validated in multiple smaller populations. CDRs that 

are only validated in one small homogenous population will only be useful in similar populations. 

1.1.3 Clinical Decision Rules in Current Practice 

CDRs have been developed and validated for a wide range of conditions. In primary 

care, a commonly used CDR is the Centor score for diagnosis of group A beta-hemolytic 

Streptococcus (GAS). Criteria for this score were developed in 1981 in an adult patient 

population presenting to the emergency room to aid physicians in diagnosis of acute 

pharyngitis.62 Consecutive patients (n=234) with complete clinical data and culture results were 
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collected over a 2-month period. This information was then used to build a logistic regression 

model with positive throat culture for GAS as the dependent variable. Four symptoms and signs 

were identified as independent predictors of a positive GAS culture: tonsillar exudate, swollen 

anterior cervical lymph nodes, absence of cough, and a history of fever. Each sign or symptom 

adds a point to the Centor score. Patients with all 4 variables had a 55.7% probability of a 

positive GAS culture in the derivation population, decreasing in probability as the total score 

decreases.62 The Centor score has now been externally validated in many studies of both adults 

and children.63-65 A review of guidelines for the management of pharyngitis in 2004 assessed the 

impact of modified Centor criteria (which add age as a variable) on the sensitivity and specificity 

for identifying GAS, total antibiotics prescribed, and the number of unnecessary antibiotic 

prescriptions.65 Patients with a score of 2 or 3 received a throat culture, while patients with a 

score of 4 or more were treated empirically with an antibiotic, and those with a score of -1, 0 or 

1 were neither tested nor treated.65 This strategy was assessed alongside 5 other strategies 

based on practice guidelines.65 The modified Centor criteria and culture combination strategy 

proved to be the best compromise in identifying GAS in a sample of 787 cultured confirmed 

GAS positive and negative (n=228 and n=559 respectively) children and adults (sensitivity 

100%, specificity 93.2%). This strategy kept the number of unnecessary antibiotic prescriptions 

and the level of diagnostic testing low in children and adults.65 This review and other studies 

have helped strengthen the acceptance and generalizability of the Centor score, and as a result 

it is widely used by clinicians today. 

Objective 

To use a systematic review to identify published clinical decision rules for influenza, and to 

validate them with data from the University of Georgia’s Health Center (UHC). We will also 

develop a new clinical decision rule for the college health population using the UHC data.  
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Methods: Systematic Review and Validation 

1.1.4 Data Sources 

We will use PubMed, Embase, the Cochrane Library, the Database of Abstract of 

Reviews of Effectiveness, Google Scholar and the CDR registry developed by Dr. Tom Fahey in 

Dublin to identify all clinical decision rules in primary care for the diagnosis of influenza. Our 

search strategy is outlined in the next section.  

To validate these CDRs, we will use data from patients who have received the Roche 

Cobas Liat Polymerase Chain Reaction (PCR) test as a part of their care. This is a novel and 

highly accurate rapid PCR test for the diagnosis of influenza A and B. Compared to reference 

laboratory PCR, it is 99% sensitive and specific for the diagnosis. We will perform this test at the 

University Health Center (UHC) and the University of Georgia. UHC is available to all fees 

paying students enrolled at the Athens, Georgia campus. The UHC setting is described in detail 

in section 1.3.2.1 below, and the patient population in 1.3.2.2. Students presenting with cough 

or at least two other suspected influenza symptoms within the last week will be included. Signs 

or symptoms of suspected influenza include: headache, cough, fever, chills, sweats, fatigue, 

myalgia or arthralgia.66 The most severe symptoms of influenza typically resolve within 2 to 3 

days, therefore for recruitment the duration of symptoms will be limited to one week. During 

seasonal influenza epidemics, cough and fever are strong indicators of influenza.67 At UHC, an 

electronic health record is maintained for each patient, and includes structured data (e.g. 

checkboxes and plus/minus indicators) to record individual signs and symptoms. Given the 

ability to require aspects of each note generated for a patient visit, the risk of incomplete or 

missing data is low. In addition, key signs and symptoms for patients with acute respiratory tract 

infection (ARTI) are required to be completed by clinicians. The data collection strategy and 

further details are included later in section 1.4.2.  
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1.1.5 Search Strategy 

The scope of our review will include CDRs in adults seeking outpatient care for clinically 

suspected influenza. We will conduct a systematic review following the PRISMA guidelines.68 A 

flow diagram is presented below as Figure 1 to illustrate the PRISMA search process.68 Each 

step of the search strategy and analysis will be performed by two researchers. Any 

disagreements will be resolved by a discussion between the two investigators. If an agreement 

cannot be reached, a third investigator will be contacted to make the final decision.  

Figure 1.1 PRISMA Flow Diagram for a Systematic Review 68 
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We will perform a literature search to identify prediction rules in Medline, EMBASE, 

Google Scholar, Database of Abstract of Reviews of Effectiveness (DARE), the Cochrane 

Library and the CDR registry (REF for Fahey). Many researchers have assessed best practices 

for search strategies in each of the previous databases.68-73 Each of these articles was taken 

into consideration when developing the search strategy for each database. Additionally, we 

reviewed the search strategies of a recent systematic review that used PubMed, Clinical 

Queries, and Google Scholar.5 The search strategy for each database is included in Table 5.1 in 

chapter 5. Our search strategies were developed to be as sensitive as possible to identify the all 

relevant articles. Currently, the CDR registry is not available to the public. We will communicate 

directly with the primary investigator, Dr. Tom Fahey, for our search until the registry is 

released. Each abstract from the search results will be reviewed to ensure that the inclusion and 

exclusion criteria are met. 

In addition to the strategies for the six databases included in our search, we will contact 

experts in influenza as part of our search strategy. Also, we will review any studies included in a 

previous systematic review or meta-analysis for clinical diagnosis of influenza. Finally, we will 

also review the references lists of all included studies to identify additional studies. This will aid 

us in expanding our results to include all relevant articles, regardless of presence or absence of 

MeSH terms.  

1.1.6 Inclusion and Exclusion Criteria 

For a study to be included in the systematic review, it must report the accuracy of a 

combination of signs, symptoms and/or point of care tests (e.g. a CDR) for the diagnosis of 

influenza in humans. Studies will be excluded if they are conducted in a specialized population, 

conducted exclusively in children, conducted in immunocompromised persons, or were not 

published within the last 25 years. We exclude specialized populations (i.e. persons with chronic 

diseases such as HIV) and populations with children because our population is a young adult 

population of overall good health. Additionally, we exclude studies conducted in 
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immunocompromised individuals as we assume our patients are not immunocompromised 

young adults seeking care at UHC. Finally, we exclude studies that were published or did data 

collection greater than 30 years ago to keep information relevant to the current understanding 

and diagnosis of influenza. We will include all studies from any country. Articles will be excluded 

if they are case control design as temporality cannot be established in these studies. Articles for 

influenza outbreaks that are not seasonal, such as the swine flu (H3N1) outbreak of 2009, will 

also be excluded as these outbreaks are atypical to what is expected for the coming influenza 

season of 2016-17. 

1.1.7 Data abstraction 

Based on a review of the abstract, any study appearing to report the accuracy of a 

combination of signs or symptoms or a CDR for the diagnosis of influenza will be reviewed in 

full. We define a CDR as a point score or equation based on symptom history and physical 

examinations. All articles included in previous systematic reviews of influenza diagnosis will also 

be reviewed in full. The full text of each article will be pulled from PubMed using the PMID 

number. Articles will be screened for the following information: clinical decision rule, type of care 

setting, age of patients, study design, influenza prevalence, country, years of data collection, 

and type of test used to confirm influenza diagnosis. A final list of included studies will be 

developed, and study description data abstracted in parallel by two investigators.  

1.2 Quality Assessment of Included Studies Using a Modified QUADAS-2 

1.2.1 Quality Assessment using a modified QUADAS-2 

In order to assess study quality of each of our CDRs for diagnostic accuracy, we will be 

using the Quality Assessment tool for Diagnostic Accuracy of Studies (QUADAS-2).74 QUADAS-

2 is the second iteration of the original QUADAS with the update beginning in January of 2010. 

QUADAS-2 is divided into four phases: 1) state the review question, 2) develop review specific 

guidance, 3) review the published flow diagram for the primary study or construct a flow diagram 
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if none is reported, 4) judgement of bias and applicability. All sections are judged as “low”, “high” 

or “unclear” risk of bias.74 

Risk of bias and applicability share three subsections: patient selection, the reference 

standard, and patient flow.74 To avoid spectrum bias, we will ensure that a consecutive, random, 

or convenience sample of patients is enrolled without applying unreasonable exclusion criteria 

in a prospective or retrospective cohort study. We will ensure that all patients are assessed 

prospectively and the CDR applied prior to knowledge of the laboratory test. Case control 

designs enroll patients with known disease and healthy controls; these studies tend to 

overestimate the accuracy of the test and will be excluded from our analyses. To assess the 

reference standard, we will examine each study to determine if the conduct or interpretation of 

the reference standard could have introduced bias. An acceptable reference standard for the 

CDR will be viral cultures or RT-PCR for influenza diagnosis. For each of these three 

subsections, applicability is assessed by comparison of the study to the overall review question 

74. We will assess the risk of bias using Appendix A adapted QUADAS criteria.

For each of the thirteen questions in our form the response is dichotomous. CDRs are 

either at low risk, high risk, or unclear risk for bias. We will describe what qualifies as low risk of 

bias for each question; failure to meet the described qualification would indicate a high risk of 

bias for that parameter. Starting with question one, a CDR will be at low risk of bias if a 

consecutive, convenience, or random sample of patients presenting with cough, influenza like 

illness symptoms, or suspected influenza was used. A study will be considered at low risk for 

bias if the selection criteria are clearly described. The study will be classified as low risk of bias 

if viral culture or RT-PCR was used to classify patients as having influenza or not. Clinical 

assessment should be obtained at the same time as the reference standard test to keep the risk 

of bias low. Additionally, all patients should receive the same reference standard test to 

minimize bias. This reference standard test should be administered regardless of the CDR 

result. The CDR should be described in sufficient detail that it can be replicated; this reduces 
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any bias introduced by interrater reliability. The reference standard test should also be clearly 

described to ensure replication. The CDR should be used by clinicians prior to the results of the 

reference standard test; the reference standard test should also be interpreted without 

knowledge of the results of the CDR to keep the risk of bias introduced by analysts’ low. The 

CDR should only be implemented by personnel who would typically have access to the 

necessary patient data. Finally, any uninterpretable results or withdrawals from the study should 

be clearly explained to minimize risk of bias. Failing to meet any of the thirteen previously 

mentioned criteria will result in that criterion being considered at high risk for bias. Studies with 

nine or more criteria classified as high risk of bias will be considered unfit for validation. 

A final assessment of the risk of bias for an included study assesses the flow and timing 

74. We will assess whether all patients were included in analysis and received an acceptable

reference standard. Studies that are judged as “high” or “unclear” in most the subsections will 

be judged as at high risk of bias and excluded from analyses.  

1.3 Validation of each Clinical Decision Rule in a College Health Population 

We will perform all calculations using R. We will externally validate each clinical 

prediction rule identified through the literature search using data obtained from UHC at the 

University of Georgia. Data collection is fully described in the following sections.  

1.3.1 Sample Size 

A review of previous UHC data regarding influenza-like-illness demonstrated that 

approximately 600-1200 patients are seen each year. If we assume at least 2/3rds of those 

patients would be willing to participate, we anticipate a total eligible population of between 400 

and 800 patients. Roche has provided 300 Cobas Liat PCR swab kits and reagents for the in-

house UHC laboratory, so our final sample size will be 300 that receive PCR and at least 300 

patients who will receive usual care. This calculation is described in section 2.3.3.1.  
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1.3.2 Data Collection 

1.3.2.1 Setting 

The University Health Center (UHC) at the University of Georgia (UGA) provides primary 

care, urgent care, and selected specialty services to the 35,000+ students enrolled at the 

university. The UHC has four primary care clinics, with 20 primary care clinicians available to 

students during traditional business hours; an urgent care clinic is available Sunday afternoons. 

UHC is unique in that it is one of just two college health facilities in the nation that has been 

accredit by the Joint Commission for Ambulatory Care and Primary Care Medical Home. In 

addition to primary and urgent care, UHC provides dental, counseling and psychiatric services, 

vision clinic services, a travel clinic, massages, physical therapy, and pharmacy services. 

Students can make same day appointments, so this health care facility serves as an ideal and 

convenient location for a study of acute respiratory illnesses such as influenza in a college 

health population of young adults. 

1.3.2.2 Population 

The University of Georgia student population demographics from 2014 are included in 

Table 1.3 in Appendix A. The UGA student population is racially comparable to the entire 

population of university students enrolled in the United States that identify as White or Asian. 

However, the percentage of African-American students (8.11% vs 16.0%) and Hispanic/Latino 

students (4.9% vs 18.0%) is significantly lower than in the overall US university student 

population.75 

University students are an interesting subset of the population that often does not 

receive much research focus. This age group is typically 18 to 24 years of age, with 

approximately 79% of the US enrolled students falling in this range.75 The first healthcare visit 

not accompanied by a parent or guardian often occurs at the UHC. Additionally, all UGA 

students must live on campus for their first year, other than students coming from one of the 5 
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counties surrounding UGA. These students live in dormitories and will go on to other crowded 

housing options for their remaining enrollment, presenting an ideal environment for pathogen 

circulation. Finally, university students interact with the age groups at highest risk for influenza 

complication: the very young and the very old. These interactions occur through family events 

with extended family such as nieces, nephews, grandparents, and great grandparents, often 

during the winter holiday break when influenza virus is beginning to circulate. Many university 

students also volunteer in the local community at nursing homes and hospitals. Therefore, the 

role of students as carriers to these vulnerable populations cannot be ignored. Rapid, accurate 

diagnosis and notification of a student has the potential to minimize the spread of seasonal 

influenza, particularly in a pandemic situation, and especially if accurate diagnosis affects their 

behavior around contact with others and being in crowds or public places.  

1.3.2.3 Recruitment of Participants 

1.3.2.3.1 Inclusion and Exclusion Criteria 

Patients will be selected for the study if they report signs or symptoms of suspected 

influenza to their medical assistant. As described previously, students presenting with cough or 

at least two of the following suspected influenza symptoms within the last week at the time of 

the appointment will be included: headache, fever, chills, fatigue, myalgia, sore throat, or 

arthralgia. Patients will be excluded if they are less than 18 years of age, if English is not their 

preferred method of communication for the appointment, if they do not provide consent, or if 

they withdraw consent at any point in the study. 

1.3.2.3.2 Data Collection: UHC Electronic Health Record 

The UHC uses an electronic health record (EHR) that is customizable. The same EHR is 

used throughout the UHC and includes data for every clinic visit. We will work with Dr. Garth 

Russo, clinician and manager of the EHR at UHC, to access data recorded in the EHR. For the 

purposes of our study, the respiratory template will be modified to require answers to fields 
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pertaining to our question. These fields will be determined by our literature review of the signs 

and symptoms for influenza, signs and symptoms from previous clinical decision rules, and 

fields necessary to accommodate symptom severity and informed consent. Figure 1.2 below 

shows how the EHR populates for licensed practical nurses, registered nurses, and clinicians. 

The data from the EHR is stored on HIPAA secure servers and will be de-identified before being 

transported off site. Each patient will be assigned a random digit ID number, created and known 

only by Dr. Russo, to maintain confidentiality of the patient’s medical record. 

 

Figure 1.2 Example of Eligibility Criteria in Electronic Health Record from University Health 
Center   
 

1.3.2.4 Description and Schedule of Clinic Recruitment 

UHC has four primary care clinics with 3-5 clinicians in each clinic in a multistory 

building. It’s not practical to randomize our patients given this setup, so we will be conducting a 

quasi-experimental study. Data collection will begin in Blue Clinic for the first week of 

enrollment, December 5-9, 2016. The study will resume on January 3, 2017 in the Blue and 

Green Clinics. We will recruit patients in the Blue and Green Clinics until we reach 130 patients 

recruited OR the peak of flu season. Once either is reached, we will then recruit exclusively in 

the Gold Clinic until all PCR kits have been used (approximately 300). Patients that meet 

inclusion criteria will be asked to participate in the study. For the first half of the study, the Gold 

Clinic patients will serve as our controls, receiving the standard of care. This standard of care 
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may or may not involve use of a rapid serologic point of care test (FluView, CDC), which is less 

accurate than the PCR test used in the intervention arm. For the second half of the study, the 

Blue and Green Clinics will serve as the controls, receiving usual care. This will help control for 

differences between providers and the care received at each clinic, by allowing each clinic to 

serve as a test site and control site throughout the study duration. The recruitment of usual care 

patients is described in 1.3.2.6.  

The UHC has a full medical laboratory that performs most diagnostic testing for patients. 

The exception is patients on United HealthCare insurance, whose tests are sent off site to 

Quest Diagnostics. For patients in the “PCR group”, UHC laboratory staff will perform the PCR 

test, log results in the EHR and notify the clinician of the results in less than 30 minutes, and as 

soon as 15 minutes as previously described. UHC laboratory and clinic staff will be trained over 

a two-month period in September and October in the rapid point of care PCR test. The 

Diagnostic Services Manager in the UGAHC laboratory, Houston Taylor MT (ASCP), has 

conducted training of laboratory staff, and medical assistants have been trained in the proper 

technique for obtaining a nasopharyngeal specimen. Recruitment will begin December 5 and 

end by April 30. The study will be terminated early if 300 patients have received nasopharyngeal 

swabs.  

1.3.2.5 Recruitment Procedures 

Patients complete an intake questionnaire when scheduling their appointment online or 

upon their arrival for check in at the clinics in UHC. This questionnaire gathers chief complaint 

information, symptom history, and a brief updated medical history. Figure 1.3 below illustrates 

the patient experience through the study. 
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Figure 1.3 Methods of Patient Recruitment, Specimen Retrieval, and Clinician Care. 

First, the clinic assistant will identify the patient as having a chief complaint of “cough”, 

“cough and fever”, “flu” or “suspected influenza”. Specifically, students presenting with cough or 

at least two of the following suspected influenza symptoms within the last week at the time of 

the appointment will be included: headache, fever, chills, fatigue, myalgia, sore throat, or 

arthralgia. if they would like to participate in the study. The study will begin in December of 2016 

and continue until all PCR swabs are used or April 2016 is reached. If so, the clinic assistant will 

notify a study investigator (Ariella Dale, Brian McKay, or Mark Ebell) that the patient is 

interested. The study investigator will meet with the patient to obtain their informed consent. 

During the informed consent process, three forms will be used and are included in Appendix B. 

The first form, our patient recruitment script, will be read to each patient. After reading the script, 

the investigator will ask the patient the six questions listed at the bottom of the form. If the 

patient says yes to all six questions, the investigator will continue to the informed consent 

document. 
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The informed consent document is 3 pages, containing information as required by the 

Institutional Review Board at the University of Georgia. This document includes the researcher’s 

statement, purpose of the study, principal investigator and contact information, study 

procedures, risks and discomforts, benefits, incentives for participation, privacy and 

confidentiality, voluntary participation statement, instructions for injury incurred during research, 

and a description of how to contact investigators with questions. Patients who wish to consent 

will sign the document witnessed by the investigator. They will also list their UGA email address 

to receive the follow up survey in Aim 3 as well as their “81 number”. The “81 number” is a 

student identification number that will be used to link the surveys from Aim 3 to the EHR. 

The final document included in the patient packet is a receipt for compensation for 

participation. This will be filled out by the patient and witnessed by the investigator. Upon 

completion of all forms, the patient will receive the $15 Amazon gift card.  

Once informed consent is received, the investigator will notify the clinic assistant to 

collect a nasopharyngeal swab. This swab will then be sent to the UHC medical laboratory for 

Cobas Liat polymerase chain reaction (PCR) testing. Patients who receive a swab will receive 

their compensation from the investigator. The clinician will then be notified that the patient is 

ready for their office visit and meet with the patient. Simultaneously, the UHC medical laboratory 

will input the results of the PCR test into the EHR of the patient within approximately 35 minutes 

of collection (20 minutes for the test, 15 minutes for transport, preparation, and entering of 

results). Clinicians will then review the results of the test in the patient’s EHR prior to making 

any care decisions. The clinician will then meet with the patient and assign treatment, which will 

be recorded in the EHR.  

1.3.2.6 Patients Receiving Usual Care 

Patients will be classified to the usual care group if they had an appointment in the Blue, 

Green, or Gold clinics from December-April of 2017 when PCR testing is not being conducted. 

Patients will be selected for the usual care group up until the final day of PCR testing, if that 
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comes before April 2017. Our usual care patient group will begin with patients who have a chief 

complaint of “cough”, “cough and fever”, “flu” or “suspected influenza” during the study 

timeframe. Specifically, the patient must have a cough or at least two suspected influenza 

symptoms. This must be the patients’ first medical visit since symptom onset. If a patient 

receives a rapid influenza test, this laboratory result will be included to classify the patients. 

Patients who are positive and receive an influenza diagnosis will be classified as having 

influenza. Patients who are negative for the rapid influenza test and/or do not have a final 

diagnosis of influenza will be classified as not having influenza. Patients that are influenza 

negative but receive a final diagnosis of influenza will be considered influenza positive. We will 

include a minimum of 300 patients in the usual care group; up to 600 patients will be included if 

possible. These patients will be pulled from the UHC EHR database by the Medical Information 

Officer, Dr. Garth Russo.  

1.3.2.7 Dataset Development and Management 

Sign, symptoms, demographics, laboratory results, final diagnosis, and prescription(s) 

for each patient will be retrieved from the EHR and de-identified by Dr. Garth Russo. The data 

will only include information from the single influenza related visit and will be exported in a .csv 

format to Ariella Perry Dale. Ms. Dale will maintain the dataset as it expands with increasing 

participants, linking informed consent with EHR information. A codebook will be developed and 

maintained on the “UGA Flu Study” Google Drive account (ugaflustudy@gmail.com).  

1.3.3 Validation of a Clinical Decision Rule Developed Using Logistic Regression or CART 

1.3.3.1 Data Cleaning  

 We will validate each CDR by first building a model that represents each rule in R. We 

will then calculate the prevalence of influenza in the UHC patient population 76. Next, we will 

confirm that the variables we have collected are in the same format as the variables in each 

CDR. For example, if cough is simply “present” or “absent” in the CDR, we will ensure that our 

mailto:ugaflustudy@gmail.com)
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variable is also dichotomous from the UHC data. After building a representative model for each 

CDR, we will then move to assessing its discrimination, calibration, and classification accuracy. 

1.3.3.2 Discrimination 

An ROC curve is a plot of the true positive rate (sensitivity, on the y axis) against the 

false positive rate (1 – specificity, on the x axis) for a range of possible cutoffs to define an 

abnormal test. We will apply each CDR to our data and calculate the sensitivities and 

specificities to build an ROC curve. For example, if a CDR provides a point score from 0 to 6, 

we will calculate and plot the sensitivity and specificity for cutoffs of >0, > 1, >2, >3, >4, and >5 

to define an abnormal result. The area under the curve (AUC), also called the c-statistic, is 

proportional to the ability of a CDR to discriminate influenza positive patients from influenza 

negative patients. The c statistic is a forced choice comparison. An example of forced choice 

comparison is randomly selecting a person who is outcome positive and a person who is 

outcome negative. The c statistic is the probability that our test will correctly classify a patient 

with the outcome as having the outcome and a patient who does not have the outcome as not 

having the outcome. The c statistic ranges from 0.5 for a test that does not discriminate at all 

between patients with and without the disease, to 1.0 for a test that always classifies them 

correctly (perfect discrimination). (A c statistic of 0 means that the test misclassifies all patients 

with disease as healthy, and all healthy patients as diseased.) We will use the AUC to measure 

the discrimination of the CDR. Figure 1.4 presents an example ROC curve from SAS. Figure 1.4 

was obtained from previous research regarding group A beta-hemolytic streptococcus (GAS) in 

the UHC population of adults. As denoted in the figure, the AUROCC=0.6614, which we would 

interpret as the model being fair at discriminating patients to their outcome (GAS) appropriately. 

We interpret this model as poor because it is slightly better than AUROCC=0.5, which is a 

worthless test.77 There are guidelines for interpreting AUROCC; 1 is perfect, 0.99-0.9 is 

excellent, 0.89 to 0.8 is good, 0.79 to 0.70 is fair, 0.51 to 0.69 is poor, and 0.5 is worthless.77 We 
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will report the AUROCC and the 95% confidence intervals for each CDR. We will use the pROC 

package in R to complete this part of the analysis.78  

 

Figure 1.4 ROC Curve Example from SAS 9.4 

1.3.3.3 Calibration 

Next, we will create calibration plots for each CDR. Since our outcome is binary (patients 

either have influenza confirmed by PCR or they do not), we will use the Hosmer-Lemeshow test 

to produce calibration graphs. The Hosmer-Lemeshow test is related to goodness-of-fit 

statistics.55 The Hosmer-Lemeshow test measures the difference between predicted and 

observed outcomes. This will produce a Pearson Chi-Square statistic (χ2) along with a 

calibration graph (Figure 1.5) and table. We will assess the Pearson Chi-Square statistic and 

determine if the clinical prediction rule is a reasonable fit. A χ2 with a p value <0.05 will be 

considered poorly calibrated.55 We will also assess the calibration slope for each CDR. The 

calibration slope, when used for external validation, reflects the combined effect of overfitting 

and the true differences in effects of predictors. Ideally a calibration slope will be 1. A calibration 
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slope value <1 can indicate overfitting or the need for shrinkage of the regression coefficients.58 

A calibration slope value >1 indicates under fitting of the model.79  

There are limitations to using the Hosmer-Lemeshow test for calibration. First, the test 

can have poor power in smaller samples.55 Specifically, a Hosmer-Lemeshow test is not useful 

in validation as the results are often not statistically significant.55 Neither of these points will be 

of concern in our analysis, as we will have a moderate sized sample (n=300) and are using the 

Hosmer-Lemeshow test for the purposes of external validation. An example of a calibration 

graph produced by the Hosmer Lemeshow test is included as Figure 1.5. Figure 1.5 is a 

calibration graph produced by the Hosmer-Lemeshow test in STATA for previous research 

about GAS in the UHC population. Based on Figure 1.5 and its accompanying statistics 

(χ2=1.17, p=0.8830), the model is well calibrated for the data. We will identify each CDR that 

meets Hosmer-Lemeshow test statistics for significance and report the results of each test.  

Figure 1.5 Example Calibration Graph of a Hosmer-Lemeshow Test 

1.3.3.4 Classification Accuracy 

We will then apply each model to our UHC data set to calculate individual patient scores. 

We will stratify the scores into the risk groups specified by the CDR; often this will be low vs 

high, or low vs intermediate vs high risk groups.76 The stratum specific positive and negative 
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likelihood ratios, predictive values, and post-test probabilities for the risk groups will be 

calculated. The discrimination, calibration and classification accuracy measures can be applied 

to a CDR created through logistic regression or classification and regression trees.76  

1.3.3.5 Selection of Best Clinical Decision Rule 

The selection of the best clinical decision rule will be based on the discrimination, 

calibration, and classification accuracy. Additionally, the rule must be feasible and easy to 

implement in outpatient care. We will judge the number of parameters included in the CDR by 

its ease to remember and ease of assessment in a patient. An ideal CDR will be easy for a 

clinician to recall, not involve parameters that are subjective, and performs well when validated. 

1.4 Analysis: Determining Clinical Predictors of Influenza in a College Health 

Population 

1.4.1 Background 

Development of a CDR has already been briefly described in this aim and includes: the 

identification of clinical predictors, assessment of these predictors and the outcome in an 

unbiased manner, then regression analyses will aid us in building a prediction model relevant to 

our patient population.  

1.4.2 Objective 

Determine the significant clinical predictors of influenza in a university student 

population. We hypothesize that cough, fever, myalgia and headache will be clinically and 

statistically significant predictors of influenza in university students. 

1.4.3 Developing Clinical Decision Rule from University Student Patient Data 

1.4.3.1 Identification of Clinical Predictors and Outcome 

Symptoms of suspected influenza as previously described will be included in our model 

building. Additionally, any other signs or symptoms identified through our systematic review of 
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previously developed CDRs will be included. Our outcome is binary: influenza diagnosis as 

determined by the PCR test. 

1.4.3.2 Assessment of Clinical Predictors in University Student Population 

All analyses will be performed in R. First the frequencies, sensitivity, specificities, 

likelihood ratios and predictive values will be calculated for each sign and symptom.   

1.4.3.3 Analysis: Logistic Regression 

We will build a model for predicting influenza in university students based on signs and 

symptoms. We will use the lasso technique (least absolute shrinkage and selection operator) for 

logistic regression to build our model and explore other model building techniques such as a 

fast and frugal tree. Lasso logistic regression is advantageous for our model building since we 

are developing a prediction model that needs to be memorable for clinicians 80.  

The lasso technique is a type of penalized regression, which is a flexible shrinkage 

approach that works well when the expected number of events per variable could possibly be 

less than 10.80 The lasso constrains the sums of the absolute values of the regression 

coefficients, meaning it can exclude parameters from a final model by shrinking their coefficient 

to 0.81 The lasso estimate of (𝛼, 𝛽)̂̂ is defined below in equation 3. We will use the glmnet 

package in R to perform the lasso regression. The glmnet package builds the logistic regression 

model using the lasso in relation to the tuning parameter, lambda. The glmnet package also will 

cross validate the model to evaluate its performance.  

𝛼, 𝛽)̂̂ = arg min{∑ (𝑦 − 𝛼 − ∑ 𝛽𝑗𝑥𝑖𝑗)𝑗

2
}𝑁

𝑖=1  subject to ∑ |𝛽| < 𝑡𝑗  

Equation 3. Definition of the Lasso Estimate 81 

1.4.3.4 Fast and Frugal Tree Analysis: FFTree Package  

We will use a fast and frugal tree analysis, a non-parametric method, to identify 

predictors of influenza. Our outcome is binary and is influenza diagnosis as determined by the 
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PCR test. Developing a CART model consists of two phases: training and testing. We will use 

the FFTree package developed for R.82 

We will split the data into a training and testing data sets at a 60:40 ratio. Using the 

training data set, the FFTree construction algorithm will complete four tasks. These four tasks 

may not be completed in this exact order; 1) select cues, 2) determine a decision threshold for 

each cue, 3) determine the order of the cues, and 4) determine the exit for each cue.82 To 

accomplish these tasks, the FFTree construction algorithm relies on the “dfan” and “ifan”, a 

class of the “fan” algorithms developed by Phillips and colleagues.82 The “dfan” and “ifan” 

algorithms are advantageous for addressing the tree size issues and sensitivity weighting 

necessary for an fast and frugal tree.82 This is accomplished by taking advantage of the very 

nature of a fast and frugal tree: each cue must produce at least one exit node. The combination 

of exit nodes in a fast and frugal tree is known as an “exit structure”. fast and frugal tree are 

adaptable and can consider all exit structures. The “dfan” and “ifan” algorithms explore the “fan” 

of possible trees for an analysis that can include a positive rake or zig zag structure. After 

creating the fan, the “ifan” and “dfan” algorithms selected the fast and frugal tree that maximizes 

the weighted accuracy.82 It is also possible to limit the tree to nodes that only substantially 

increase accuracy, limit the size of the fast and frugal tree, or nodes that do not classify enough 

cases.82  

Following selection of the tree from the “ifan” and “dfan” algorithms that has the highest 

weighted accuracy we then enter the testing phase. In testing, we use the algorithms to predict 

the criterion values using new data (the testing data set, 40% of the original data).82 These 

criterion values are determined by using the parameter values (i.e. the cues) developed in the 

training phase. The testing phase allows us to assess the algorithms abilities to make accurate 

predictions in a new data set. The FFTree package displays the final model fitted using the 

testing data, including a wide variety of statistics including sensitivity, specificity, and weighted 

accuracy.  
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A fast and frugal tree is advantageous for its speed and frugality. Speed refers to the 

mean number of cues (mcu) before a case is classified.82 Frugality is the amount of 

information that the algorithm ignores in order to make a classification. This is quantified 

by “percent cues ignored” (PCI).82 In addition to implementing the “ifan” and “dfan” 

algorithms, the FFTree package implements four additional analyses commonly used in 

classification. This includes logistic regression, supported vector machines, random 

forests, and a classification and regression tree. The FFtree implements the default 

parameters for these four analyses as set by their corresponding R packages. The 8 

fast and frugal trees and four analyses are then all plotted on a single receiver operating 

characteristic curve for comparison. Selection of the best model for predicting the data 

is determined by weighted accuracy, this model also maximizes the area under the 

receiver operating characteristic curve (AUROCC). We will use the FFTree package to 

develop a novel CDR for influenza in our college health population. 
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AIM 2: Impact of using the Cobas Liat Polymerase Chain Reaction Test as a Diagnostic 

Test for Patients with Suspected Influenza 

2.1 Background 

2.1.1 Influenza in the United States and College Students 

Influenza continues to be an important health problem in the United States, particularly 

for groups at high risk of hospitalization and death. This includes the very young (<5 years of 

age), the old (>65 years of age), pregnant women, residents of long term health care facilities, 

and those with comorbidities such as chronic pulmonary disease and neurological disorders.83 

The burden of influenza in the United States is determined by several factors including the 

timing of the influenza season, the number of people vaccinated, the subtypes of influenza virus 

included in the vaccine, and the characteristics of the viruses that are circulating.83 The Centers 

for Disease Control and Prevention (CDC) Influenza Surveillance System and FluView monitors 

the number of outpatient visits, hospitalizations, and deaths attributed to influenza like illness.83 

Previous influenza epidemics had a large burden in the United States, most notably the 

1918 influenza pandemic. Recently, the 2009 influenza A (H1N1) epidemic in the United States 

affected approximately 10% of students on many college and university campuses.15 The 2009 

epidemic highlighted the need for further research about influenza in college and university 

students. These students tend to live in crowded dormitories or apartments, which may serve as 

a reservoir for diseases such as influenza to circulate.84 While hospitalization rates are low, 

influenza can affect a student’s academic performance, lead to unnecessary antibiotic and 

antiviral prescriptions, and increase the use of outpatient health care services. At the peak of 

the H1N1 influenza season, approximately 13% of primary care visits were for influenza like 

illness at college health services.14 To address these effects, university and college students are 

encouraged to receive an annual influenza vaccination. Unfortunately, recent studies indicate 

that only 12-30% of these students receive their influenza vaccine.14 A study in 2007 revealed 
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that 29% of students believed that the influenza vaccination could infect them with influenza.85 

Similarly, a study of the 2009 H1N1 outbreak in England revealed that college students were 

hesitant to receive the vaccine due to a lack of information, fear of side effects, lack of perceived 

risk, and inconvenience.35 Therefore, there are many challenges surrounding the prevention of 

influenza and its burden on healthcare.  

2.1.2 Treatment and Testing for Influenza 

Current treatment of influenza is primarily supportive care. Antiviral medications, also 

known as neuraminidase inhibitors, may also be used. Antiviral medications currently 

recommended by CDC guidelines include oseltamivir (Tamiflu) and zanamivir.27 Guideline 

consistent use of antiviral medications reduces the duration of symptoms, and in observational 

studies appears to reduce the risk of complications that require antibiotics, and potentially 

decrease hospitalization and mortality rates.86 In addition, antiviral medications were viewed as 

a cost-effective treatment.87 However, recent reviews of published and unpublished data show 

that the use of these medications does not significantly reduce hospitalizations or complications, 

and are costly.28-30 Additionally, CDC guidelines have dictated that oseltamivir must be started 

within 48 hours of symptom onset.27 This is not the case, as most published and unpublished 

clinical trial patients began antiviral medication within 36 hours of symptom onset.28,29 Starting 

oseltamivir within 24 hours of symptom onset reduced symptom duration by approximately 28.8 

hours; beginning treatment within 24 to 36 hours reduced symptom duration by approximately 

14.8 hours.28 As the medication costs approximately $145 for a 5-day prescription 88, the 

symptom benefits must be weighed against the financial burden or potential side effects 

including nausea and vomiting.27 One study found that 38% of antiviral prescriptions are 

guideline inconsistent due to prescribing later than 48 hours after symptom onset or a in 

patients with a negative rapid influenza test.57 The lack of data supporting a benefit for antiviral 

start more than 36 hours after symptom onset suggests that the percentage of guideline 

inconsistent antiviral prescriptions may in fact be higher.  
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Antibiotic prescriptions are also frequently given to patients with influenza. A recent 

study demonstrated that 25% of patients with a diagnosis of influenza received an antibiotic 

prescription.56 In patients with influenza and a low risk for bacterial infections, antibiotics are 

guideline inconsistent. The use of antibiotics remains common for many viral acute respiratory 

infections, emphasizing the need for clinician and patient education regarding their 

ineffectiveness for these pathogens.56 One reason for the over-prescription of antibiotics is the 

overlapping signs and symptoms between many respiratory infections. When a patient presents 

with cough and fever, it is important to be able to rule out pneumonia to eliminate the need for 

an antibiotic. Clinicians cite concern of a bacterial pneumonia infection as one of the leading 

reasons for prescribing an unnecessary antibiotic.89 A recent validated CDR identified three 

criteria for ruling out pneumonia: absence of dyspnea, a daily feeling of increased body 

temperature since the onset of a cough, and C-reactive protein levels below 50 g/mL.89,90 This 

CDR can be easily used in clinical practice to increase the guideline consistent treatment of 

respiratory infections. However, the use of CRP is not currently an approved test for point of 

care use by the Food and Drug Administration. Therefore, alternative CDRs must be considered 

for our study to determine the guideline consistency of antibiotic use, such as the Gennis rule, 

the Hecklering rule, and the Diehr rule.91-93 These CDRs are explained in section 2.3.5.  

Another reason for the over-prescription of antibiotics is low confidence in the rapid 

influenza test. The use of rapid influenza tests for diagnosing patients is not advised 94. For 

example, in a study of BinaxNOW, the rapid antigen test is 61% sensitive; many rapid influenza 

tests have a poor sensitivity 94, Hurt, 2007 #110. This weakness in the rapid influenza test reduces its 

utility in clinical practice and can potentially lead to the overuse of antibiotics or antivirals. 

Polymerase chain reaction (PCR) tests are the gold standard in influenza diagnosis but until 

recently have taken 24 to 36 hours to yield results.94 The recent introduction of a rapid point of 

care PCR test combines the timeliness of the rapid flu test with the increased sensitivity and 

specificity of traditional PCR. Using a nasopharyngeal swab, the rapid point of care PCR test 
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takes approximately 15 minutes to complete at point of care. The result is a qualitative PCR 

result for the presence or absence of Influenza A or Influenza B. This test is 99.2% sensitive 

(95% CI: 95.1-99.9%) and 100% specific for influenza A virus (95%CI: not reported), and 100% 

sensitive (95%CI: 83.1-100%) and 100% specific for influenza B viruses (95%CI: not reported) 

when compared to a reference laboratory influenza A and B real-time PCR assay.12 With the 

increased certainty in the results from a rapid point of care PCR test, the clinician can now have 

greater confidence in the final diagnosis. This may decrease guideline inconsistent prescribing 

of antivirals and antibiotics in patients with acute respiratory infections. The rapid point of care 

PCR test has the potential to be a useful test in the clinical care of influenza but has yet to be 

independently tested.  

2.2 Objective 

The primary goal of our study is to identify whether the rapid point of care PCR test 

significantly increases the number of patients who receive guideline consistent treatment with 

antibiotics and/or oseltamivir (Table 2.1). Our secondary goal will be to assess the impact of the 

rapid PCR test on return visits. 

2.3 Methods 

2.3.1 Setting 

The University Health Center (UHC) at the University of Georgia (UGA) provides primary 

care, urgent care, and selected specialty services to the 35,000+ students enrolled at the 

university. UHC has been previously described in 1.3.2.1. 

2.3.2 Population 

The population at UGA has been previously described in section 1.3.2.2. 
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2.3.3 Data Collection and Source 

2.3.3.1 Sample Size 

The sample size for this data set has been previously described section 1.3.1. Our final 

sample size will include 300 PCR tested patients and a minimum 300 influenza patients who 

received usual care (possibly more, depending on how many patients are available). We will 

use equation 2.1 below to calculate the expected difference between the two groups. We 

assume an 80% power, a standard deviation of 0.5, and an alpha of 5%. Given our parameters, 

we expect to detect an 8% difference between the two groups. If the standard deviation was 0.3, 

we can detect a 4.9% difference. If the standard deviation was 0.6, we can detect a 9.7% 

difference.  

 𝑛 =
2(𝑍𝛼 + 𝑍𝛽)

2
 𝜎2

∆2

600 =
2(1.96 + 0.8416)2(0.5)2

∆2

∆ = 8.09%

Equation 2.1 Aim 2 Sample Size Calculation 

2.3.3.2 Collection 

Data collection has been previously described in section 1.3.2. In summary, we will 

recruit participants from December 2016-April 2017 or until our 300 rapid PCR test kits are used 

at UHC. While patients are being actively recruited for the PCR treatment group, the other clinic 

will continue to treat patients with influenza using usual care. These patients, described as our 

usual care patients, are described in section 1.3.2. After data collection is complete at UHC, we 

will then assign each patient to their appropriate exposure and outcome definitions based on the 

section 2.3.5.  
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2.3.4 Institutional Review Board and Funding 

Institutional Review Board approval has been obtained from the University of Georgia. 

Patients will give informed consent prior to administration of nasopharyngeal swab. Patients will 

be compensated $15 for participation in the nasopharyngeal swab and $10 for completion of our 

follow up survey at 5 days’ post appointment.  

2.3.5 Exposure and Outcome Variable Definitions 

To address our objectives, we need clear definitions of our outcome and our exposure. 

Our exposure will be influenza diagnosis and our outcome will be guideline consistent or 

inconsistent treatment classification. For patients who have received the rapid PCR test, the 

exposure and outcome definitions are as follows. A patient will be considered influenza positive 

if they had a positive rapid point of care PCR test. A patient will be considered influenza 

negative if they had a negative rapid point of care PCR test. For patients who received usual 

care will be classified as influenza positive if they have a final diagnosis from their clinician of 

influenza. Patients who received usual care will be considered influenza negative if influenza is 

not listed as one of their final diagnoses. 

Defining treatment as guideline consistent or inconsistent is more complex than defining 

our exposure, due to the overlapping symptom presentation of many respiratory diseases. We 

developed table 2.1 to illustrate what would be guideline consistent and guideline inconsistent 

treatment dependent on diagnosis. Tamiflu (oseltamivir phosphate) is only guideline consistent 

when administered within 48 hours of symptom onset in patients with influenza confirmed by 

PCR or clinician diagnosis per the drug companies’ instructions. Antibiotics are guideline 

consistent in patients with a high risk of pneumonia or a final clinical diagnosis of a bacterial 

infection. Patients who are diagnosed with influenza greater than 48 hours of symptom onset, 

that do not have influenza, are at low risk for pneumonia, and do not have a bacterial infection 

as a clinical diagnosis should not receive Tamiflu or antibiotics. Unfortunately, our data 

collection does not include the measurement of C-reactive protein as this is not an approved 
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point of care test in the United States. C-reactive protein is necessary to apply several CDRs for 

ruling out pneumonia.76,89,90 We must therefore consider other CDRs to identify patients at high 

risk for pneumonia that do not require CRP. 

A 2007 review of predicting pneumonia in patients presenting with a cough identified 

three CDRs that have been validated.91-93,95 Of the three validated CDRs, the Hecklering rule 

can be easily applied using our medical record data.93 The Hecklering rule gives one point for 

the each of the following patient characteristics: temperature greater than 100.7*F, heart rate 

greater than 100 beats per minutes, crackles, decreased breath sounds, and the absence of 

asthma.93 Patients with a score of 4 or 5 would be considered at increased risk for pneumonia. 

We therefore define that an antibiotic prescription would be guideline consistent for patients at 

an increased risk for pneumonia or with a diagnosis of a bacterial infection. Therefore, an 

antibiotic will be considered guideline inconsistent in patients who are influenza negative, are 

considered low risk of pneumonia based on the Hecklering rule, and/or do not have a diagnosis 

of another bacterial infection. Other bacterial infections that could guideline consistently be 

treated with an antibiotic include acute sinusitis, bronchitis, and urinary tract infection. 

Table 2.1 Guide for Determining Guideline Consistency of Treatment  

Diagnosis Guideline Treatment 

Oseltamivir Antibiotics 

Influenza positive (PCR 
confirmed or final clinical 
diagnosis) 

Consistent (<48 hours 
onset) 

Inconsistent 

No influenza, but high risk for 
pneumonia and/or bacterial 
infection diagnosis 

Inconsistent Consistent 

No influenza, low risk for 
pneumonia and no bacterial 
infection diagnosis 

Inconsistent Inconsistent 

2.3.6 Analysis: Primary Objective 

All statistical analyses will be performed in R. We will first describe the data by 

sociodemographic, signs, symptoms, and laboratory tests. We will use chi-square testing to 
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determine any differences between treatment groups; a p value less than 0.05 will be 

considered statistically significant.  

We will then determine whether care guided by a rapid PCR test is an independent 

predictor of guideline consistent treatment. The outcome of our study will be the dichotomous 

variable treatment (guideline consistent vs inconsistent) (Table 2.1). Guideline inconsistent 

treatment will be coded as the reference group. We will first assess this relationship with a 

simple logistic regression model for y (treatment)= x (PCR tested vs. not). We recognize that 

there are other variables that potentially confounded this relationship. These variables include 

the signs, symptoms, patient demographics, clinic assignment, and clinician type (MD vs other). 

We will first assess these variables with a univariate analysis to determine outcome-variable 

and exposure-variable relationships. Any relationships that are greater than 10% different from 

the exposure-outcome relationship will be considered potential covariates and will be included in 

our model building. We recognize there could be interaction between potential covariates, as 

many signs and symptoms work synergistically. These will be identified prior to model building 

through correlation and bivariate analyses. 

After we have identified our potential covariates, we will first build a logistic regression 

model through a manual forward addition using Aikake Information Criteria (AIC). The logistic 

regression model takes the form of equation 2.1 below no matter what strategy is used to obtain 

it.96 The will be final model will be displayed in Table 2.5 in Appendix 2.  

𝐿𝑜𝑔𝑖𝑡 𝑃(𝑥) = ln
𝑃(𝑥)

1 − 𝑃(𝑥)
= ln [

1
1 + ℯ−(𝛼+∑ 𝛽𝑖𝑋𝑖)⁄

1 − (1
1 + ℯ−(𝛼+∑ 𝛽𝑖𝑋𝑖)⁄ )

] = ln [ℯ(𝛼+∑ 𝛽𝑖𝑋𝑖)] = 𝛼 + ∑ 𝛽𝑖𝑋𝑖

Equation 2.1 Logistic Regression Model 

We can use the logistic regression model can be interpreted using odds, and from odds 

the odds ratio.96 T calculate the odds and odds ratio, assume that the presence and absence of 

a symptom have values of X1 and X2. From the logistic regression model presented in Equation 

2.1 the odds ratio can be calculated using equation 2.2. 
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𝜙 =

𝑃(𝑋1)
1 − 𝑃(𝑋1)

𝑃(𝑋2)
1 − 𝑃(𝑋2)

=

1
1 + ℯ−(𝛼+∑ 𝛽𝑖𝑋1𝑖)⁄

1 − (1
1 + ℯ−(𝛼+∑ 𝛽𝑖𝑋1𝑖)⁄ )

1
1 + ℯ−(𝛼+∑ 𝛽𝑖𝑋2𝑖)⁄

1 − 1
1 + ℯ−(𝛼+∑ 𝛽𝑖𝑋2𝑖)⁄

=  
ℯ−(𝛼+∑ 𝛽𝑖𝑋1𝑖)

ℯ−(𝛼+∑ 𝛽𝑖𝑋2𝑖)
= 

(𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒) =  ℯ−(𝛼+∑ 𝛽𝑖𝑋𝑖) −  ℯ−(𝛼+∑ 𝛽𝑖𝑋𝑖) = 𝑒∑ 𝛽𝑖(𝑋1𝑖−𝑋2𝑖)𝑘
𝑖

Equation 2.2. Calculating the Odds Ratio from a Logistic Regression Model 

Given the equation for the odds ratio, for every unit increase in x the odds that the 

variable (i.e. characteristic, trait) is present is increased by a multiplicative factor of ℯ𝛽.96 

A logistic regression will be fitted to the data, using a manual forward selection process 

based on Aikake information criteria (AIC).97 The change in AIC will be measured between the 

initial model with the addition of one covariate per model. Change in AIC is easy to interpret and 

allows a quick determination of strength of evidence when comparing a list of candidate models. 

The list of candidate models in each step will be compared to the best model selected in the 

previous step for a positive change in AIC. The model that gives the greatest change in AIC will 

be selected as the best model. Covariates continue to be added to this model until the change 

in AIC is less than 4.97 If the change in AIC is less than 4, then no additional terms will be added 

to the model.  

2.3.7 Analysis: Secondary Objective 

All statistical analysis will be performed in R. We will define returning of patients as 

patients who schedule a follow up visit within two weeks of their diagnosis. This return visit can 

be scheduled by the patients calling in to the clinic or through the nurse follow up phone call. 

Not all patients receive a follow up phone call. Most of the patients who do have return visits will 

schedule the appointment themselves. This outcome variable will be dichotomous; if a patient 

had a return visit they are a “yes”, a “no” if they did not. 

We will first assess the relationship between return visit and use of the PCR test with a 

simple logistic regression model for y (return visit) = x (PCR tested vs. not). We recognize that 
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there are other variables that potentially confounded this relationship. These variables include 

assess the signs, symptoms, patient demographic, clinic assignment, and clinician assignment. 

Investigators will first assess these variables with a univariate analysis to determine outcome-

variable and exposure-variable relationships. Any relationships that are greater than 10% 

different from the exposure-outcome relationship will be considered potential covariates and 

included in our model building.  

After we have identified our potential covariates a logistic regression will be fitted to the 

data, using a manual forward selection process based on Aikake information criteria (AIC).97 

The change in AIC will be measured between the initial model with the addition of one covariate 

per model. Change in AIC is easy to interpret and allows a quick determination of strength of 

evidence when comparing a list of candidate models. The list of candidate models in each step 

will be compared to the best model selected in the previous step for a positive change in AIC. 

The model that gives the greatest change in AIC will be selected as the best model. Covariates 

continue to be added to this model until the change in AIC is less than 4.97 If the change in AIC 

is less than 4, then no additional terms will be added to the model.  

2.3.8. Limitations 

 The use of the rapid point of care PCR test as our gold standard faces criticism for being 

a qualitative test. While the rapid point of care PCR test can only detect presence or absence of 

our pathogen, we are only testing in symptomatic patients. Therefore, we eliminate the concern 

of influenza being present without pathogenicity. Additionally, we are not randomizing the use of 

the PCR test because it is not feasible at UHC. We address this limitation by alternating 

between clinics. The lack of C reactive protein testing at UHC and its lack of FDA approval limits 

our ability to use a highly accurate CDR for classifying our patient’s risk for pneumonia. Finally, 

we are not able to confirm all patients with a pneumonia diagnosis with a chest X-ray. However, 

some patients do receive chest x-rays at UHC as deemed necessary by their clinician.  
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AIM 3: Influenza Diagnosis and Student Behavior 

3.1. Background 

3.1.1. Influenza in College and University Students 

Acute upper respiratory infections are a significant source of morbidity in adults each 

year with an annual incidence of 2 to 4 episodes per adult.98 Influenza has a significant 

economic burden of over $87 billion per year in the United States.99 Additionally, an average of 

610,660 life-years lost, 3.1 million hospitalized days, and 31.4 million outpatient visits are 

attributed to seasonal influenza in the United States.99 This represents a significant burden to 

the United States workforce, the elderly (>65 years of age), and the very young (>2 years of 

age).  

The burden of influenza is also significant for university and college students.16 The 

burden of influenza like illness (ILI) in university students is larger compared to other upper 

respiratory infections.16 Specifically, students with ILI miss more days of class, work, and social 

activities as compared to students with other upper respiratory infections.16 These students also 

report a longer duration of illness, number of days spent in bed, and number of days with 

physical impairment as compared to an upper respiratory infection.16  

3.1.2. Influenza Transmission Reduction 

There are many ways to reduce the burden of influenza, including seasonal influenza 

vaccination and non-pharmaceutical interventions. Unvaccinated persons report missing more 

work hours and a decrease in work productivity.100 As previously discussed in section 2.1.1, 

university students have varying concerns about the vaccine and low compliance. 

Other preventive behaviors are available to university students during an influenza 

outbreak. These non-pharmaceutical interventions include: handwashing, face masks, cough 

covering, and self-isolation.101 Students are more likely to participate in these behaviors as 

perceived personal risk increases.48 Frequent handwashing and covering of the mouth when 

coughing have the highest compliance among university students.48 Self-perceived risk is the 
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main contributor to low compliance to face masks and self-isolation.48, 49 Persons aged 16-24 

are the least likely to use a face mask unless the threat of pandemic influenza is high.49  

University students lead active social lives. Therefore, the low rates of compliance to 

self-isolating behaviors is not surprising.45,48 Students are unlikely to forgo social events such as 

Greek Week or parties when infected with influenza.45 Additionally, university students live in 

crowded conditions, but fewer than 40% recognize this as a health risk.54 Crowded living 

conditions and social events are significant factors in the spread of influenza. Even during a 

pandemic influenza outbreak, such as the H1N1 outbreak of 2009, student compliance with 

preventative behaviors and risk perception were low.44 The lack of understanding of risk and low 

compliance with many preventive behaviors is troubling, and requires a concentrated education 

effort by universities to overcome it.16,44,48,101  

3.1.3. The University Student Experience: in Sickness and in Health  

College students’ lack of compliance with self-isolating behaviors may be linked to the social 

health and support system of the student. For most university students, influenza infection can 

represent the first time a student is making health-related decisions without consultation of their 

family or guardians. Colleges and universities attempt to create strong social networks and ties 

to campus culture to support students to graduation. Many universities now institute a first year 

live on campus requirement for students, as it is demonstrated to have numerous social and 

educational benefits.102 This requirement yields a strong social network in a university; however, 

this network can also be a substantial risk for infection. 

College students’ understanding of risk as related to social networks and compliance to 

preventive behaviors is low. 35,33,44,54 However, these studies were conducted without the 

availability of a highly accurate test.35 By introducing a highly accurate rapid PCR test it is 

possible that perceived risk will increase since a student will be more certain of their diagnosis. 

If perceived risk increases, the compliance with self-isolation may increase. Therefore, we 

hypothesize that students with PCR confirmed influenza may miss significantly more days of 
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school/work, report a decreased use in public facilities, and an increase in reliance on others for 

healthcare decision making.  

3.2. Objective 

To assess the behavior of college students who had the diagnosis of influenza confirmed 

by PCR, compared to those whose PCR test was negative, in the following categories: number 

of days of work or class missed, self-reported stress level, reliance on friends and family for 

health care decisions, use of public transportation, and use of dining facilities. These categories 

will be combined into two composite variables: emotional impact and social distancing.  

3.3. Hypothesis 

Students with PCR confirmed influenza will miss more days of work or class, have 

increased self-reported stress levels, and rely more on friends and family for health care 

decisions as compared to PCR influenza negative students. We also hypothesize that influenza 

positive students will also report a decrease in use of public dining facilities and public 

transportation as compared to influenza negative students.  

3.4. Methods 

3.4.1. Setting 

The University Health Center (UHC) at the University of Georgia (UGA) provides primary 

care, urgent care, and selected specialty services to the 35,000+ students enrolled at the 

university. The UHC has four primary care clinics, with 20 primary care clinicians available to 

students for traditional business hours and Sunday urgent care hours. UHC is unique in that it is 

one of just two college health facilities in the nation that has been accredited by the Joint 

Commission for Ambulatory Care and Primary Care Medical Home. In addition to primary and 

urgent care, UHC provides dental, counseling and psychiatric services, vision clinic services, 

massages, physical therapy, and pharmacy services. Students can make same day 

appointments, so this health care facility serves as an ideal location for a study of suspected 

influenza in young adults. 
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3.4.2. Population 

UGA is the nation’s first land grant institution, with 36,130 students enrolled in 2015. Of 

those students, 27,547 are undergraduate students and 8,583 are graduate students.103 UHC 

serves currently enrolled UGA students who attend the Athens campus. UGA students must 

have paid their $196 UHC student fee to schedule appointments. Once the semester has begun 

a student may log into the online patient portal or call in same day to receive an appointment. 

These college students are ideal for study for several reasons. First, they are at an age that 

typically is not highly vaccinated against influenza. Second, they are assigned to a primary care 

clinician who oversees their care and is the first doctor available for scheduling. Third, these 

student’s records are easy to follow throughout their four years, as UHC uses a comprehensive 

electronic health record (EHR). 

3.4.3. Sample Size 

Our sample size is calculated below in Equation 3.1. We will have 300 patients who 

receive the PCR test and will be invited to complete the survey. We assume an 80% power, a 

standard deviation of 0.5, and an alpha of 5%. We will be able to detect an 11.44% difference 

between groups. If the standard deviation was 0.3, we can detect a 6.86% difference. If the 

standard deviation was 0.6, we can detect a 13.72% difference. 

𝑛 =
2(𝑍𝛼 + 𝑍𝛽)

2
 𝜎2

∆2

300 =
2(1.96 + 0.8416)2(0.5)2

∆2

∆ = 11.44%

Equation 3.1 Aim 3 Sample Size Calculation 

3.4.4. Data Collection 

After patients have been selected to participate in aim 2, they will also provide their 

UGAMail email address. Five days’ post patient visit, the patient will receive an email notification 
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requesting their participation in a follow up survey. This follow up survey is being delivered 

through Google Docs; two patient pieces of patient identifying information are collected to match 

the survey record to the EHR from aims 1 and 2. The survey in its entirety is included in 

Appendix C. This survey will assess vaccination status, symptom development, self-rated stress 

score, health care decision-making strategies, and presence in public areas around campus.  

Data collection will begin in December of 2016 and end in April of 2017 or when all PCR 

samples have been used. Ariella Perry will manage the email notifications daily in Qualtrics. 

Qualtrics is a subscription-based service which UGA currently provides to students free of 

charge. Informed consent will be collected in aim 1, as previously described. Therefore, only 

patients who receive a nasopharyngeal swab and a final PCR result of positive or negative will 

be included in this follow up procedure. Students who receive an invalid PCR result will not 

receive the follow up survey. Students will receive their first email notification the morning of the 

5th day post diagnosis. The students will then receive 3 reminder emails; students who have 

already completed the survey will not receive a reminder email. 

Participants are asked to provide their UGA myID, a unique username identifier used 

throughout the university, and date of birth as part of the survey. The UHC staff requires two 

identifying pieces of information to link the EHR to the survey data. The linking of these two data 

sets is required to know each student’s PCR influenza result as tied to their behaviors.  

3.4.5. Survey Response and Outcome Definitions 

To address our objectives, we need clear definitions of our outcome and our survey 

responses. Our outcomes will be two composite variables developed from our survey 

responses. The variables used to create these composite variables are number of days of work 

or class missed, self-reported stress level, reliance on family for health care decisions, use of 

public transportation, and use of dining facilities. The exposure will be the Cobas Liat PCR 

influenza test result. A patient will be considered influenza positive if they had a positive rapid 

point of care PCR test. A patient will be considered influenza negative if they had a negative 
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rapid point of care PCR test. We will also assess potential covariates such as vaccination status 

and patient demographics.  

The covariates are obtained from our survey, located in Appendix 3. All time-dependent 

variables are measured as within the last 5 days since UHC visit. We divide all the questions 

and corresponding covariates into two composite variables: emotional impact and social 

distancing. The emotional impact composite variable includes: self-rated stress level and 

reliance on a social network in relation to their health. Stress is reported on a five-point Likert 

scale, with 1 being less stressed than normal and 5 being a lot more stressed than normal. 

Health-related decision making will be reported as the number of times a parent, guardian or 

another family member was consulted from 0 to 5. Patients will also indicate their reliance on a 

social network of friends or significant others. Reliance on a social network is defined for the 

patient as driven to UHC, bought groceries or medicine on your behalf, and other situations that 

a patient deems as reliance. Patients will select one of the following options: a lot, occasionally, 

or not at all.  

The second composite variable, social distancing, will include the following variables: 

number of days of class or work missed, use of public dining facilities, and use of public 

transportation. Patients will report the number of days of class or work missed as a continuous 

variable from 0 to 5. Patients will report use of public dining facilities as a categorical variable by 

indicating all from the following list that apply: Bolton, O-House, Snelling, Joe Frank Harris, Tate 

dining commons (i.e. Panda Express, Starbucks, etc.), or I did not eat at an on-campus food 

vendor in the past 5 days. Patients will report use of public transportation as a categorical 

variable by selecting one from the following options: University of Georgia Bus/Athens Transit 

Bus, rideshare (Uber, Lyft), carpool (with friends), or no use of public transportation.  

Some important demographic information includes the vaccination status and residence 

type for the student. These variables are potential confounders or interactors with our survey 

responses. Students will indicate whether they received vaccination prior to diagnosis. We ask 
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students to indicate whether they received their influenza vaccine at least two weeks prior to 

diagnosis or not, as it takes two weeks for the influenza vaccination to be effective in the 

average human body. This vaccination variable will be collapsed into a dichotomous variable: 

those who received vaccination more than two weeks before diagnosis versus those who did 

not receive vaccination OR received vaccination less than two weeks before diagnosis. 

Residence type is a categorical variable and participants will select one of the following options: 

residence hall, apartment or house (alone), apartment or house (with roommates), I live at home 

with my family, or homeless.  

3.4.6. Analysis 

Each category of variables will be assessed as a separate model in our analyses. 

Therefore, we will build separates models through logistic regression as described by Hosmer, 

Lemeshow and Sturdivant for emotional impact and a model for the social distancing composite 

variable. The building of each model is described below. This process is similar between each 

category as only the outcome included in our model building change.  

Data will be stored on the Google Drive account of UGA Flu Study 

(ugaflustudy@gmail.com). The responses will be password protected in an excel file; this 

password will only be accessible to Ariella Perry and Brian McKay, the dissertation committee, 

and any other approved data analyzers. A codebook will be created, and data cleaned by Ariella 

Perry. R will be used to perform the analysis.  

3.4.7. Analysis: Emotional Impact 

Exploratory data analysis will involve the examination of the data set. Next, an item 

analysis will be conducted for each variable individually to assess for missing data, lack of 

variability, and outliers. The composite variable emotional impact will be the outcome in our 

model building. The variables include in this composite variable are: self-rated stress level, 

reliance of family for health-related decision making, and reliance on a social network in relation 

to their health. The main exposure of this model will be PCR influenza diagnosis (positive vs. 
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negative). We will also include patient demographic variables. All categorical and dichotomous 

variables will be plotted using a stem and leaf plot to assess variability, while continuous 

variables will be plotted using histograms and line graphs.  

Following the item analysis, correlation analysis will be used to assess relationship 

between the individual variables. All variables with a high correlation coefficient will be 

considered by the investigators for combination, exclusion, or inclusion based on the covariate 

relationship to the exposure-outcome pathway. All variables that will be included in the model 

building will be moved to a permanent data set. Recoding, for example a continuous to 

categorical variable, will be assessed on a case-by-case basis and transformed as necessary 

to satisfy model assumptions. All outcome and covariates will be assessed using univariate 

analysis to determine outcome-variable and variable-variable relationships.  

We will then conduct bivariate analyses for the initial relationships between influenza 

diagnosis and each question of the survey. A chi-square test will be used to assess for 

significant differences between groups per variable. For continuous variables, we will use simple 

logistic regression. Through stratified analyses, we will identify confounders and effect 

modifiers. We recognize that many of the covariates could be confounders or effect modifiers, 

so this analysis is important prior to model building. 

Finally, a logistic regression will be fitted to the data, using a manual forward selection 

process based on Aikake information criteria (AIC).97 The change in AIC will be measured 

between the initial model with the addition of one covariate per model. Change in AIC is easy to 

interpret and allows a quick determination of strength of evidence when comparing a list of 

candidate models. The list of candidate models in each step will be compared to the best model 

selected in the previous step for a positive change in AIC. The model that gives the greatest 

change in AIC will be selected as the best model. Covariates continue to be added to this model 

until the change in AIC is less than 4.97 If the change in AIC is less than 4, then no additional 

terms will be added to the model.  
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Analysis: Social Distancing 

Exploratory data analysis will involve the examination of the data set. Next, an item 

analysis will be conducted for each variable individually to assess for missing data, lack of 

variability, and outliers. The covariates included in this model building are number of days of 

class or work missed, use of public dining facilities, and use of public transportation. The 

outcome of this model will be PCR influenza diagnosis (positive vs. negative). 

 All categorical and dichotomous variables will be plotted using a stem and leaf plot to 

assess variability, while continuous variables will be plotted using histograms and line graphs. 

Following the item analysis, correlation analysis will be used to assess relationship between the 

individual variables. All variables with a high correlation coefficient will be considered by the 

investigators for combination, exclusion, or inclusion based on the covariate relationship to the 

exposure-outcome pathway. All variables that will be included in the model building will be 

moved to a permanent data set. Recoding, for example a continuous to categorical variable, will 

be assessed on a case-by-case basis and transformed as necessary to satisfy model 

assumptions. All outcome and covariates will be assessed using univariate analysis to 

determine outcome-variable and variable-variable relationships.  

We will then conduct bivariate analyses for the initial relationships between influenza 

diagnosis and each question of the survey. A chi-square test will be used to assess for 

significant differences between groups per variable. For continuous variables, we will use simple 

logistic regression. Through stratified analyses, we will identify confounders and effect 

modifiers. We recognize that many of the covariates could be confounders or effect modifiers, 

so this analysis is important prior to model building. 

Finally, a logistic regression will be fitted to the data, using a manual forward addition 

process based on Aikake Information Criteria.104 The model selection process has been 

described previously in section 3.4.7. 
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CHAPTER 4 

RESULTS 

Introduction 

The results of each aim of this dissertation are presented individually as manuscripts in chapters 

5, 6, and 7. This corresponds to aims 1, 2, and 3 respectively. Each manuscript contains a title 

page, abstracts, introduction, results, discussions, and applicable tables or figures. A single 

references list is included at the end of this dissertation. There may be some repetition between 

information presented and that found in chapters 1-3. After presenting the results of each aim in 

the form of a manuscript, chapter 8 will summarizes and discusses the future directions for 

research from all three aims. 
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CHAPTER 5 

CLINICAL DECISION RULES FOR THE DIAGNOSIS OF INFLUENZA: A SYSTEMATIC 

REVIEW, PROSPECTIVE VALIDATION, AND DEVELOPMENT OF A NOVEL PREDICTION 

MODEL IN A COLLEGE HEALTH POPULATION 

Dale, A.P., Ebell, M. H., McKay, B., Handel, A., Forehand, R., Dobbin, K. To be submitted to the 

Journal of the American Board of Family Medicine. 
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ABSTRACT 

Background: The diagnosis of influenza based on signs and symptoms alone can be difficult, 

given its overlap with many other acute respiratory infections. Clinical decision rules (CDRs) are 

prediction models that can be useful for disease diagnosis. We updated a previous systematic 

review that identified current CDRs for influenza diagnosis in outpatient care, externally 

validated these rules, and proposed novel CDRs for use in a college health population.  

Methods: We conducted a systematic review of PubMed, DARE, Google Scholar, and the 

Cochrane library to identify CDRs for influenza diagnosis. Two authors independently reviewed 

articles for inclusion criteria and data abstraction. A meta-analysis was performed for CDRs with 

three or more studies. Each CDR was then externally validated in a college health population for 

classification accuracy and calibration. A rapid polymerase chain reaction (PCR) test was used 

as the reference standard. Finally, we developed novel CDRs by fitting a lasso logistic 

regression model and a fast and frugal tree.  

Results: We identified 232 studies in our initial literature search. After full text review, we 

abstracted 16 studies including five types of heuristics, 12 multivariate models, four influenza-

like-illness case definitions, four classification and regression trees (CARTs), and one-point 

score. Summary statistics were calculated for the “cough+fever” and “cough+fever+acute onset” 

CDRs (area under receiver operating characteristic curve [AUROCC]: 0.70 and 0.78, 

respectively). Twelve CDRs were externally validated in our population. Lasso logistic 

regression yielded a CDR including myalgia, chills, fever, and the absence of tonsillar exudate 

as predictors of influenza in college students (AUROCC: 0.77). Similarly, our fast and frugal tree 

yielded a CDR that includes myalgia, chills, fever, and acute onset of less than or equal to 48 

hours (AUROCC: 0.69).  

Conclusions: “Cough+fever” and “cough+fever+acute onset” heuristics remain good predictors 

of influenza diagnosis. Our external validation demonstrated that the Flu Score and a CART 

have fair accuracy in a college health population. The predictors of influenza diagnosis in a 
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college health population present in both of our internally validated CDRs include fever, myalgia, 

and chills. The possibility of using fever, myalgia, chills and/or acute onset of less than 48 hours 

is a simple heuristic should be externally validated in a new population.  
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5.1 INTRODUCTION 

Influenza continues to have a significant annual burden in the United States. Influenza 

activity in the 2016-2017 season was rated “moderate” by the Centers for Disease Control and 

Prevention (CDC).105 Previous epidemics have demonstrated a large morbidity and mortality 

from influenza worldwide, particularly in vulnerable populations.106,107 The accurate and timely 

diagnosis of influenza is important to combating the consequences of poor vaccination 

coverage.13 An evidence based solution to a dynamic and evolving disease such as influenza is 

a clinical decision rule.  

Clinical decision rules (CDRs) are a type of prediction model that can be applied by 

clinicians to aid in diagnosis or prognosis.58 A CDR for influenza would be particularly useful in 

the peak of an epidemic when outpatient care facilities may become overwhelmed, such as in 

2009 of H1N1,41 because clinical decisions can be made quickly and on limited information. 

Additionally, CDRs for influenza can also reduce overall costs by decreasing unnecessary tests 

and prescriptions ordered.58  

A previous systematic review in 2010 identified 12 studies that included CDRs for the 

diagnosis of influenza.5 Two CDRs demonstrated modest accuracy: “cough and fever” and 

“fever, cough, and acute onset”.5 However, this systematic review has several limitations. It did 

not include influenza like illness (ILI) case definitions or any CDRs developed using modern 

multivariate techniques such as a classification and regression tree (CART) analysis, or perform 

split-sample or bootstrap validation.5 Additionally, studies of hospitalized persons were included 

in the previous systematic review, but the largest burden from influenza is placed on ambulatory 

care, with over 11 million outpatient visits in the 2015-16 outbreak. 13 Finally, none were 

evaluated in a college health population. 

Our systematic review will identify CDRs for the diagnosis of influenza in outpatient care. 

We will validate each CDR identified in our systematic review in a college health population 

seeking care at an on-campus outpatient clinic. In addition to external validation, we will also 
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develop novel CDRs for this population. For a detailed discussion of development and validation 

of CDRs, see chapter 3. 

5.2 METHODS 

We performed a systematic review to identify prediction rules for influenza diagnosis in 

adults in PubMed, Google Scholar, Database of Abstract of Reviews of Effectiveness (DARE), 

and the Cochrane Library following the PRISMA guidelines.68,108 

Search Strategy 

The search strategy was developed based on published best practices for each of the 

databases.68-73 The search strategy for each database is included in Table 5.1 in Appendix 1. 

We also reviewed any studies included in previous systematic reviews or meta-analyses, as 

well as those identified from the references lists of all included studies.  

Inclusion and Exclusion Criteria 

 We included studies that reported the accuracy of a combination of signs, symptoms 

and/or point of care tests (i.e. a CDR) for the diagnosis of influenza in ambulatory care. We 

included all studies from any country and in any language. Studies were excluded if they were 

conducted in a specialized population (i.e. patients who did not represent the general population 

at risk), were exclusively in immunocompromised persons, or were not published within the last 

30 years. Articles for influenza outbreaks that are not seasonal, such as the swine flu (H1N1) 

outbreak of 2009, were also excluded as these may not be comparable to seasonal influenza. 

Data abstraction 

Based on a review of the abstract, any study judged by either researcher to possibly 

report the accuracy of a combination of signs or symptoms or a CDR for the diagnosis of 

influenza was reviewed in full by both researchers. A CDR was defined as a point score or 

equation based on the history and physical examination. All articles included in previous 

systematic reviews of influenza diagnosis were also reviewed in full. Articles were screened for 
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the following information: clinical decision rule, measures of accuracy, type of care setting, age 

of patients, study design, influenza prevalence, country, years of data collection, and type of test 

used to confirm influenza diagnosis. A final list of included studies was developed, and all data 

were abstracted in parallel by two investigators (AD and BM). The reviewers also abstracted 

classification accuracy measures from the original studies including sensitivity, specificity, 

positive predictive value, negative predictive value, and likelihood ratios. If possible, we 

calculated missing accuracy measures, such as positive and negative likelihood ratios, when 

sensitivity and specificity were provided. Any disagreements were resolved by a discussion 

between the two investigators. If an agreement could not be reached, a third investigator was 

contacted to make the final decision (ME).  

Quality Assessment 

Study quality was assessed using the Quality Assessment tool for Diagnostic Accuracy of 

Studies (QUADAS-2).74 The full QUADAS-2 tool adapted to our study is shown in Appendix A of 

chapter 3, including specific definitions of low, high, and unclear risk of bias for each question.  

Analysis  

Meta-analysis of existing CDRs 

Meta-analysis was performed for CDRs that have been evaluated in at least 3 or more 

studies. We used the “mada” and “metafor” packages in R v.3.4.3. The two investigators 

abstracted the true positive, false positive, false negative, and true negative information from 

each study. We then computed a summary positive likelihood ratio, negative likelihood ratio, 

and diagnostic odds ratio. Finally, we plotted the accuracy of each included study for a CDR on 

a summary receiver-operating characteristic curve.  

External Validation of Existing CDRs in College Health Population 

We recruited students at the University of Georgia Health Center (UHC) presenting with 

cough or at least two other suspected influenza symptoms: headache, cough, fever, chills, 
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sweats, fatigue, myalgia or arthralgia.66,67 At UHC, an electronic health record is maintained for 

each patient, and includes structured data (e.g. checkboxes and plus/minus indicators) to record 

individual signs and symptoms. During the study period, key signs and symptoms for patients 

with acute respiratory tract infection (ARTI) were required to be completed by clinicians. All 

patients received a Roche Cobas Liat Polymerase Chain Reaction (PCR) test for influenza as 

the reference standard for the diagnosis. Compared to reference laboratory PCR, it is 99% 

sensitive and specific for the diagnosis.12 Each CDR was evaluated in this population for 

classification accuracy by calculating the sensitivity, specificity, positive predictive value, 

negative predictive value, positive likelihood ratio, negative likelihood ratio, and area under the 

receiver operating characteristic curve. Calibration was assessed using the Hosmer-Lemeshow 

goodness of fit test.  

Development of Novel Clinical Decision Rule using the LASSO Technique 

We built a model for predicting influenza diagnosis in university students based on signs 

and symptoms. We used the least absolute shrinkage and selection operator (lasso) technique 

for logistic regression to build our model. The lasso technique is a type of penalized regression, 

which is a flexible shrinkage approach that works well when the expected number of events per 

variable could possibly be less than 10.80 This is advantageous for our model building since we 

are developing a prediction model that needs to be memorable for clinicians.80  

The lasso constrains the sums of the absolute values of the regression coefficients, 

meaning it can exclude parameters from a final model by shrinking their coefficient to 0.81 We 

used the glmnet package in R v.3.4.3 to perform the lasso regression. The glmnet package built 

the logistic regression model using the lasso in relation to the tuning parameter, lambda. We 

also used cross validation to internally validate the model performance.  

Development of a Fast and Frugal Tree for Influenza Diagnosis 

We also fit a fast and frugal tree using the “FFTree” package in R version 3.4.3. For a 

detailed discussion of FFT see Chapter 3, page 43. A non-parametric method, a fast and frugal 
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tree has exactly two branches extending from each node where one of the branches will be an 

exit to a decision.109 Speed is measured by the FFTree package by “mean cues used” (mcu).82 

Frugality measures the percent of information ignored by the algorithm when it is implemented 

on a dataset.82 This is quantified by “percent cues ignored” (PCI).82  

We split our data 60:40, training and testing data sets respectively. The package used 

the fan construction algorithms known as “ifan” and “dfan”.82 These algorithms explore virtual 

fans of fast and frugal trees with varying error tradeoffs and exit structures.82 The algorithm 

ultimately selects the tree that maximizes the weighted accuracy and removes nodes that do not 

classify enough cases.82 After construction in the training data set, the algorithm then applies 

the fast and frugal tree to the test data set and reports accuracy measures.82 We will report 

mcu, pci, weighted accuracy (wacc), area under the receiver operating characteristic curve 

(AUROCC), sensitivity and specificity of the final selected fast and frugal tree.  

5.3 RESULTS 

Systematic Review 

 Our initial search and reference review yielded 232 studies, reduced to 199 studies after 

removal of duplicates. After review of the title and abstract, 27 appeared to meet our inclusion 

criteria. We excluded 11 articles after full text review because they did not gather original data, 

did not predict influenza diagnosis, did not include sufficient information on signs or symptoms 

of influenza, or the population of interest was hospitalized patients. No studies were excluded 

for being written in a language other than English (Figure 5.1). Study characteristics of the final 

16 included studies are presented in Table 5.2. Two studies were conducted exclusively in 

children110,111, one study in military trainees112, and two studies in older adults.113,114  

Studies were generally of good quality (Table 5.3). However, only three studies included 

split-sample validation of the proposed model.115-117 One study exclusively validated the Flu 

Score76, while 8 studies validated the commonly used “cough and fever” heuristic.6,111-113,116,118-

120 The most common source of bias was a failure to explain the reason for withdrawal. Four 
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studies did not use PCR or viral culture as their reference standard for all participants.6,111,113,121 

We chose to include these studies for our systematic review and external validation. However, 

the differences in diagnostic threshold, influenza prevalence, and the heterogeneity introduced 

by these four studies in particular led us to not calculate overall accuracy measures at this time. 

Studies reported 8 types of heuristics, 12 multivariate models, 4 ILI case definitions, 4 

classification and regression trees (CARTs), and 1-point score (Table 5.4).  

Meta-Analysis of “Cough+Fever” and “Cough+Fever+Acute Onset” CDRs 

Only two CDRs have been used in 3 or more studies: “cough+fever”6,111-113,116,118-120 and 

“cough+fever+acute onset”.6,113,116,119 We were unable to abstract true positive, false positive, 

false negative, and true negative data from one study that used the “cough+fever” CDR. 111 We 

abstracted data from 7 studies that reported the “cough+fever” rule and 4 studies that reported 

the “cough+fever+acute onset” rule. The “cough+fever” CDR had modest accuracy for a 

diagnosis of influenza (LR+: 3.3 95%CI: 1.4, 3.6; LR-0.54 95%CI: 0.5, 0.6), diagnostic odds 

(DOR:4.1, 95%CI: 2.7, 5.9), and an area under the receiver operating characteristic curve of 

0.70 (Figure 5.2). The “cough+fever+acute onset” CDR was more accurate for the diagnosis of 

influenza (LR+: 4.6, 95%CI: 2.4, 8.4; LR: -0.6 95%CI: 0.4, 0.8), a higher diagnostic odd 

(DOR:8.5, 95%CI: 4.0, 16.1), and an AUROCC of 0.79 (Figure 5.3).  

Validation of Existing CDRs in University Student Population 

External validation was conducted for 15 CDRs identified in our systematic review, using 

data from 265 UGA health center patients who had a rapid PCR test and a complete medical 

record data regarding signs and symptoms. Five multivariate models failed to report the entire 

logistic regression model; typically the intercept was excluded from publication.111,113,121-123 We 

contacted the authors of each multivariate model, but were unsuccessful in gaining access to 

the full models for validation. The accuracy and calibration of each included rule is summarized 

in Table 5.5. 
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Fever was defined as >37.8C in order to be consistent with the recommended fever 

threshold in the United States.124 The “cough+fever” CDR, where fever was objectively 

measured, had a sensitivity of 16% and a specificity of 95%. In contrast, when fever was 

measured either objectively or subjectively, the “cough+fever” CDR had a high sensitivity of 

87% and a low specificity of 44%. The “cough+fever”, “cough+fever+acute onset”, “fever, cough 

and/or sore throat”, and “fever + acute onset” CDRs when fever was measured only objectively 

performed poorly in regard to area under the receiver operating characteristic curve (range: 

0.54-0.56). The “Cough+pharyngitis+ headache” CDR had a high sensitivity (89%) and low 

specificity (19%).  

We validated three of the four case definitions for ILI in the UHC population. The case 

definition given by the Public Health Agency of Canada was excluded due to unclear definition 

of signs and symptoms, specifically fever, acute onset, and prostration likely due to influenza. 

All case definitions had low sensitivities and high specificities, indicating that they are most 

helpful for ruling in ILI rather than ruling ILI out. We were unable to validate one algorithm based 

on a CART117 analysis because fatigue was not a required element of our electronic health 

record. 

Our validation of the Flu Score116 and 3 algorithms based on a CART analysis115 is 

presented in Table 5.6. For the Flu Score, the proportion of patients with influenza in the high-

risk group was 74% (LR:2.4) compared to 29% in the low risk group (LR:0.4). The AUROCC 

was 0.66 (95%CI: 0.60,0.71). A CDR is most useful when it classifies as few patients as 

possible in the moderate risk group, which usually requires additional diagnostic testing. Only 

28% of patients were classified as moderate risk by the Flu Score, half as many patients as the 

3 CART models (28% vs 70%, 63%, and 60%, respectively).115. To check calibration, each 

model was assessed using the Hosmer-Lemeshow test. All models had a p value less than 

0.01, indicating a poor fit and calibration.  
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LASSO logistic regression 

Accuracy of individual signs and symptoms in our college health population are 

presented in Table 5.7. Chills, headache, nasal discharge and sore throat were highly sensitive 

for influenza (>92%) but had low specificity (<25%). Patients who were negative for one of these 

four symptoms more than likely do not have disease, as reinforced by the mnemonic 

“SnNOut”.125 Using the lasso logistic regression approach with cross validation, we derived a 

multivariable model for influenza diagnosis listed in Table 5.8. The final prediction model 

included the presence of fever, myalgia, chills and absence of tonsillar exudate. The area under 

the receiver-operating characteristic curve was 0.77, indicating this model is a good test for 

influenza diagnosis in this population. 

Fast and Frugal Tree 

Our final fast and frugal tree for influenza diagnosis is displayed in Figure 5.4. Of all the 

potential signs and symptoms, 4 were selected by the “ifan” and “dfan” algorithms for use in the 

fast and frugal tree with the best weighted accuracy (wacc=69%). The first split identified 

patients that had no fever as more likely to not have influenza. The next node split according to 

whether the patient had myalgia; patients who reported no myalgia were more likely to not have 

influenza. The third node split according to duration of symptoms; patients reported symptoms 

for less than or equal to 48 hours were more likely to have flu. Finally, the terminal node split 

based on chills. Patients who had chills were more likely to have influenza and patients who did 

not have chills were more likely to not have influenza. This fast and frugal tree had a mean cue 

used (mcu) of 2.5 and a percent cues ignored (pci) of 90. These measures confirm that this 

model is fast and frugal. Finally, our weighted overall accuracy was 69%, with a sensitivity of 

73% and a specificity of 64%. The ROC curve displaying all models fit using the FFTree 

package is in Figure 5.5; our fast and frugal tree is of fair accuracy (AUROCC: 0.69).  
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5.4 DISCUSSION 

Systematic Review 

Our systematic review yielded 40 CDRs from 16 studies. We were able to update the 

2011 systematic review5 of CDRs for influenza diagnosis and expand it by including ILI case 

definitions. Cough and fever were the most commonly used symptoms throughout the 14 CDRs 

we were able to validate. The most complex CDR was the Taiwanese ILI case definition, which 

required the exclusion of certain diagnoses (Table 5.4). “Cough+fever” and “cough+fever+acute 

onset” were the only CDRs to be reported in at least 3 studies. “Cough+fever+acute onset” CDR 

outperformed the “cough+fever” CDR in terms of discrimination and diagnostic odds ratios. This 

suggest that attendance to a clinic within 48 hours is important for distinguishing influenza from 

other acute respiratory infections. Overall, with the exception of these 2 CDRs, validation 

studies remain uncommon.  

External Validation in College Health Population 

Of all CDRs included, 5 of the 11 developed as a heuristic or ILI case definition were 

highly specific (>95%) in our validation cohort. However, no CDR demonstrated good calibration 

(per Hosmer-Lemeshow test). “Cough+fever+myalgia” was the sole CDR to have good 

discrimination (AUROCC: 0.70). The discrimination of the heuristics increased from poor to fair 

when the definition of fever was expanded from an “objective fever” (measure temperature only) 

to “objective or subjective” measure (either measured or patient-reported fever). It is important 

to note that all 265 patients in our study had a cough. Of the 15 CDRs we validated, 14 included 

the presence or absence of a cough. This reduced the contribution of cough to differentiating 

influenza from other illnesses. Therefore, the overall accuracy of rules that included cough was 

decreased.  

The 2nd CART and Flu Score demonstrated only fair discrimination in our UHC population 

as measured by the AUROCC (0.61 and 0.66, respectively). Interestingly, our external 

validation yielded likelihood ratios of similar magnitude for the low, medium, and high risks 
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groups of the original studies (Table 5.6). It is possible that the magnitude of the likelihood ratios 

are dampened because all patients in our population had a cough. Any CDR having cough as 

one of the diagnostic criteria would potentially be less accurate when validated in the UHC 

population since cough could not contribute to discriminating influenza from non-influenza.115 

For example, patients without a cough would not have been classified as “high risk” in CART 1; 

therefore the proportion of patients in the moderate risk group was decreased. Thus, it is not 

surprising that the proportion in each group does not mirror the original study.115 A useful CDR 

will classify a smaller proportion of the population as intermediate or moderate risk, thus 

minimizing the number of patients that require testing for disease. CARTs 1, 2, and 3 had large 

moderate risk groups (70%, 60%, and 63% of the population, respectively) which is significantly 

more than previously reported (Table 5.4).115 The fact that all of the college health population 

had cough therefore decreased the utility of the three CART CDRs since the moderate risk 

group is so large.  

The Flu Score increased the likelihood of influenza in the high-risk group (LR: 2.4) and 

reduced the likelihood of disease in the low risk group (LR:0.4). These are similar associations 

compared to the original study (high risk LR: 2.7, moderate risk LR: 0.8, low risk LR: 0.2).116 Our 

external validation has demonstrated that the Flu Score is successful in a third adult 

population.76,116 It is important to continue to externally validate CDRs in order to avoid threats to 

generalizability55,59 and reaffirms their utility.  

Novel Clinical Decision Rules for Diagnosis of Influenza in a College Health Population 

Lasso Logistic Regression 

Our lasso logistic regression yielded a model that included fever, myalgia, chills, and the 

absence of tonsillar exudate. Fever, myalgia, and chills are included in at least one of the 

clinical decision rules abstracted in our systematic review. The absence of tonsillar exudate as a 

significant predictor of influenza diagnosis is particularly interesting since this variable is not 

included in any of the CDRs identified in our systematic review. A possible explanation is the 
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overlap of signs and symptoms of influenza with acute pharyngitis. Specifically, if a patient were 

to present rapidly (within 48 hours) to primary care, it is possible that the only distinguishing sign 

or symptom for their diagnosis of pharyngitis would be tonsillar exudate. Tonsillar exudate is a 

common sign of Group A and non-Group A beta-hemolytic streptococcus infection.126 The 

presence or absence of tonsillar exudate in patients presenting with chills, fever, and myalgia 

could help distinguish between acute pharyngitis and influenza in a college health population.  

Fast and Frugal Tree 

In our fast and frugal tree, the following signs and symptoms were significantly associated 

with PCR confirmed influenza diagnosis: fever, myalgia, short duration of symptoms (less than 

or equal to 48 hours) and chills. All four of these symptoms and signs are commonly reported in 

patients with an influenza diagnosis.66 Interestingly, patients who had fever, myalgia, and chills 

but did not present to the clinic within 48 hours were still more likely to have influenza. This 

suggests that fever, myalgia, and chills could be used as a CDR in patients with suspected 

influenza.  

Limitations 

Our analysis does have limitations. First, we were unable to do an external validation of all 

models identified in our systematic review. Second, a majority our data was collected during the 

peak of the influenza outbreak of 2016-17. We did not include an analysis that compared the 

week of influenza diagnosis as seen in one of the identified models.122 However, seasonal 

influenza outbreak peak is unpredictable from year to year, therefore it would not be a useful 

predictor in a new CDR. Third, we did not have access to any demographic information. Several 

of the CDRs in this systematic review assessed demographic information such as age or sex as 

significant predictors.111,112 Age does not vary greatly among the UGA college health population. 

Finally, we were unable to include cough as a potential indicator for influenza in our novel CDR 

development, as all patients in this cohort had a cough. 
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5.5 CONCLUSION 

In our systematic review, we identified 40 models from 16 studies that predicted the 

diagnosis of influenza. Our meta-analysis of the “cough+fever” and “cough+fever+acute onset” 

CDRs revealed that these are fairly accurate rules for diagnosis of influenza when defining fever 

as either an objective or subjective measure. We externally validated 12 of these models in our 

265 college health patients who received a rapid point of care PCR test. The Flu Score 

performed well in external validation with the best classification accuracy. We also identified a 2 

new CDRs using fast and frugal tree analysis that require prospective validation. 
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Tables and Figures 

Table 5.1 Search Strategies for the Six Databases Included in our Systematic Review 
Database Search Terms Link to Database and Notes 

PubMed (influenza[Title/Abstract]) AND 
(diagnosis[Title/Abstract]) AND 
(multivariate[Title/Abstract] OR 
logistic[Title/Abstract] OR 
"prediction model"[Title/Abstract] 
OR "decision 
model"[Title/Abstract] OR 
"decision rule"[Title/Abstract] OR 
"clinical model"[Title/Abstract] 
OR "clinical rule"[Title/Abstract]) 
Filters: Abstract, Humans 

https://www.ncbi.nlm.nih.gov/pubmed?otool=gaugalib 

Google 
Scholar 

“influenza clinical decision” https://scholar.google.com/ 

DARE (Influenza):TI AND (Decision 
Support Techniques) 

https://www.crd.york.ac.uk/CRDWeb/ 

Cochrane 
Library 

((mh, "influenza, human") OR 
"influenza") AND ((mh, "decision 
support techniques") OR 
"prediction rule" OR "decision 
rule" OR "decision model" OR 
"prediction model" OR 
("diagnosis") 

http://www.cochranelibrary.com/ 

https://www.ncbi.nlm.nih.gov/pubmed?otool=gaugalib
https://scholar.google.com/
https://www.crd.york.ac.uk/CRDWeb/
http://www.cochranelibrary.com/
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Additional records identified 
through other sources 

(n = 20) 

Records after duplicates removed 
(n = 232) 

Records screened 
(n = 199) 

Records excluded 
(n = 173) 

Full-text articles assessed 
for eligibility 

(n = 27) 

Full-text articles excluded, 
Systematic Review: n = 1 
Did not predict influenza 

diagnosis: n=3 
Was not in outpatient clinic: 

n=6 
Did not contain sufficient 
information on signs and 

symptoms: n=1 
Studies included in 

qualitative synthesis 
(n = 16) 

Studies included in 
quantitative synthesis 

(validation) 
(n = 8) 

Figure 5.1 PRISMA68,108 Diagram for Systematic Review of Clinical Decision Rules for 
Influenza Diagnosis in Outpatient Setting  
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Table 5.2 Study Characteristics of Included Clinical Decision Rules 

Study, Year 
Country Setting 

Year 

Conducted 

Sample 

Size 

Age range 

(mean) 

Reference 

Standard 

Afonso et al, 

2012115 
USA/Switzerland 

Primary / Urgent / 

ER 

1999-2000; 

2002 
201 and 258 

17-90 

(36.55) 

Viral Culture and 

PCR* 

Boivin et al, 

2000118 
Canada Primary Care 1998-1999 100 (39.3) PCR 

Carrat et al, 

1999121*** 
France Primary Care 1995-1996 610 Not Reported DIF+ and ELISA** 

Ebell et al, 

2012116 
USA/Switzerland 

Primary / Urgent / 

ER 

1999-2000; 

2002 
201 and 258 

17-90 

(36.55) 

Viral culture and 

PCR 

Friedman et al, 

2004110 
USA ER 2002 118 (6.2) Viral culture 

Govaert et al, 

1998113 
Netherlands Primary Care 1991-1992 645 Not Reported 4xHIA++

Lam et al, 

2016114 
Canada ER 2011-2013 1318 

(77.4, 

median) 
PCR 

Monto et al, 

20006 

North America, 

Europe, Southern 

Hemisphere 

Outpatient 1994-1998 3744 (34.65) 
 Viral culture or 

4xHIA 

Ohmit and 

Monto, 2006111 

USA / Europe / 

Southern 

Hemisphere 

Outpatient / Urgent 

Care 
Not Reported 952 Not Reported 

Viral cultureulture or 

4xHIA 

Padin et al, 

2014112 
USA 

Military medical 

clinic 
2004-2009 21,570 (20.8) PCR 

Senn et al, 

2005122 
Switzerland 

Outpatient / Urgent 

Care 
1999-2000 201 (34.3)  Viral culture 

Stein et al, 

2005119 
USA ER / Urgent Care 2002 258 

18-90 

(34) 
PCR 



 83 

* PCR: Reverse transcriptase polymerase chain reaction test
+ DIF: Direct immunofluorescence  
** ELISA: Enzyme linked immunosorbent assay (ELISA) 
++ 4xHIA: fold or greater increase in influenza antibody titer vs active serum samples of hemagglutination inhibition 
*** PCR and Culture for patients who’s test results were uncertain 

Van Elden et al, 

2001123 
Netherlands Primary Care 1997-1998 81 Not Reported PCR 

Van Vugt et al, 

201576 
Europe Primary Care 2007-2010 1801 (48) PCR 

Yang et al, 

2015120 
Taiwan Outpatient 2010-2012 158 (33, median) Viral culture or PCR 

Zimmerman et 

al, 2016117 
USA 

Outpatient / Urgent 

Care 
2011-2012 4852 (34.15) PCR 
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Table 5.3 Quality Assessment based on QUADAS-2 of Included Clinical Decision Rules 
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Q1: Was the spectrum of patients representative of the patients who will receive test in practice? 

L L L L L L L L L L L L  H  L  H L 

Q2. Were selection criteria clearly described? 

L L L L L L U L L L L L  L  L  H L 

Q3. Is the reference standard likely to correctly classify the target condition? 

L L L L L H L L L L L L  L  L  L L 

Q4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not 

change between the two tests? 

L L L L L L L L L L L L L  L  L L 

Q5. Did the whole sample or a random selection of the sample, receive verification using a reference standard? 

L L L L L H L L L L L L  L  L  L L 

Q6. Did patients receive the same reference standard regardless of the index test result? 

L L L L L H H L L L L L  L L  L L 

Q7. Was the execution of the CDR described in sufficient detail to permit replication of the test? 

H H H L H H H L H L L L  L  L  H L 

Q8. Was the execution of the reference standard described in sufficient detail to permit its replication? 

L L L L L L H L H L L L  L  L  L L 

Q9. Was the clinical decision rule results interpreted without the knowledge of the results of the reference standard? 
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  H H L H H H L H H H H H  H  H  H H 

Q10. Were the reference standard results interpreted without knowledge of the results of the clinical decision rule? 

  L L L L U L L L L L L L  L  L  U L 

Q11. Were the same clinical data available when test results were interpreted as would be available when test is used in practice? 

  L L L L H L L L L L L L  L  L  U L 

Q12. Were uninterpretable/ intermediate test results reported? 

  L L L U L L U L L U U U  U  L  U U 

Q13. Were withdrawals from the study explained? 

  U H U U L H U H H U H U  U  L  L U 

 
*Judged as L(yes/low risk of bias), H(no/high risk of bias), or U (unclear if yes or no) 
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Table 5.4 Description of Included Clinical Decision Rules for Influenza Diagnosis and Accuracy Measures as reported in 
the original study 

Study and Rule Model 
Flu Prevalence 

(%) 
Sens 
(%) 

Spec 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+ LR- LR 

Cough+fever 

Stein et al, 2005 Fever (>37.8°C) and cough 21 40 92 58 84 5.1 0.7 --- 

Boivin et al, 2000 Fever (>37.8°C) and cough 79 78 55 87 39 1.7 0.4 --- 

Monto et al, 2000 Fever (>37.8°C) and cough 66 64 67 79 49 1.9 0.5 --- 

Ebell et al, 2012 Fever (>38°C) and cough 33 61 80 61 80 3.1 0.5 --- 

Govaert et al, 1998 Fever (>38°C) and cough 6.6 30 94 26 95 5 0.7 --- 

Padin et al, 2014 Fever (>38°C) and cough 6.6 84 27 8 96 1.2 0.6 --- 

Ohmit et al, 2006 
Fever (>38.2°C) and cough, in 
patients that received zanamivir 74 --- --- 83 --- --- --- --- 

Ohmit et al, 2006 
Fever (>38.2°C) and cough, in 
patients that received oseltamivir 67 --- --- 71 --- --- --- --- 

Yang et al, 2015 Fever(subjective) and cough 45 86 58 62 83 2 0.2 --- 

Cough+fever+acute onset 

Stein et al, 2005 Fever (>37.8°C), cough, acute onset 21 75 89 65 93 6.5 0.3 --- 

Monto et al, 2000 Fever (>37.8°C), cough, acute onset 66 63 68 77 51 2 0.5 --- 

Govaert et al, 1998 Fever (>38°C), cough, acute onset 6.6 27 95 30 95 5.4 0.8 --- 

Ebell et al, 2012 Fever (>38°C), cough, acute onset 33 41 93 74 75 5.9 0.6 --- 

Cough+fever+headache 

Monto et al, 2000 Fever (>37.8°C), cough, headache 66 60 69 79 47 1.9 0.6 --- 

Cough+fever+nasal congestion 

Monto et al, 2000 
Fever (>37.8°C), cough, nasal 
congestion 66 59 74 81 48 2.3 1.6 --- 

Cough+fever+myalgia 

Monto et al, 2000 Fever (>37.8°C), cough, myalgia 66 62 69 79 48 2 0.6 --- 
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Cough+headache+pharyngitis  

Friedman et al 2004 Cough, headache, pharyngitis 35 80 78 77 81 3.7 0.3 --- 

Fever+Acute Onset 

Govaert et al, 1998 Fever (>38°C) and acute onset 6.6 --- --- 24 --- --- --- --- 

Centers for Disease Control and Prevention Influenza Like Illness Case Definiton 

Lam et al, 2016 
Fever (>37.8°C) and (cough and/or 
sore throat) 11 31 92 34 91 3.9 0.8 --- 

Yang et al, 2015 
Fever (>37.8°C) and (cough and/or 
sore throat) 45 87 40 54 80 1.5 0.3 --- 

World Health Organization Influneza Like Illness Case Definition 

Yang et al, 2015 
Fever (>38°C), cough, onset within 
last 10 days 45 85 63 65 83 2.3 0.3 --- 

Tawain Centers for Disease Control and Prevention Case Definition 

Yang et al, 2015 

Must meet three criteria: sudden 
onset of disease with fever (ear 
temperature of ≥38°C [≥100.4°F]) and 
respiratory tract symptoms (including 
rhinorrhea, nasal congestion, 
sneezing, sore throat, cough, and 
dyspnea); (2) at least 1 of the 
following symptoms—muscle ache, 
headache, or extreme fatigue; and (3) 
exclusion for simple rhinorrhea, 
tonsillitis, or bronchitis  

45 86 39 54 77 1.4 0.4 --- 

Public Health Agency of Canada Influenza Like Illness Case Definition 

Lam et al, 2016 

acute onset of symptoms, fever and 
cough with sore throat, arthralgia, 
myalgia, or prostration 

11 32 91 31 91 3.6 0.8 --- 

Multivariate Models  

Carrat et al, 1999 

Any 3 of following: temperature 
>37.7°C, cough, chills, moderate or 
severe fatigue, pharyngitis, cervical or 
dorsal pain, and another case at 
home 

26 --- --- 27 91 --- --- --- 

  
Respiratory signs, myalgia or 
stiffness, temperature >38.9°C 26 --- --- 40 80 --- --- --- 

  
Temperature >37.7°C and cough or 
sore throat 26 --- --- 30 86 --- --- --- 
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Govaert et al, 1998 Cough, fever, vaccination 6.6 --- --- --- --- --- --- --- 

Monto et al, 2000 

Fever, cough, nasal congestion, age 
(>55 years), weakness, onset >36 
hours, loss of appetite, male sex, 
sore throat 

66 --- --- --- --- --- --- --- 

Ohmit et al, 2006 
Zanamivir study: age, fever, cough, 
myalgia, sore throat 74 --- --- --- 83 --- --- --- 

Oseltamivir study (5-12 years of age): 
headache, cough 66 --- --- --- 73 --- --- --- 

Oseltamivir study (1-4 years of age): 
myalgia 67 --- --- --- 73 --- --- --- 

Senn et al, 2005 

Duration of symptoms (>48 hours 
versus <48 hours), temperature 
>37.8°C, cough, and week of 
consultation (49-50 vs >51) 

52 80 59 67 73 2 0.3 --- 

Van Elden et al, 2001 

Temperature (>38°C), abrupt onset 
(<5 days) and at least 1 of following: 
cough, coryza, headache, retrosternal 
pain, or myalgia. Must be during 
outbreak 

52 --- --- 52 --- --- --- --- 

At least 4 of following during an 
outbreak: fever, cough, chills, 
malaise, myalgia, contact with 
influenza, hyperemic mucous 
membranes of nose and throat 

52 --- --- 54 85 --- --- --- 

Cough, headache at onset, fever at 
onset, unvaccinated, period of 
increased influenza activity 

52 --- --- 75 80 --- --- --- 

Classification and Regression Trees 

Afonso et al, 2012 33 

Model 1 
high risk: temperature >37.3°C, 
duration <2 days, cough 79 --- --- --- --- --- --- 7.1 

moderate risk: temperature is not 
>37.3°C, positive for chills and 
sweats. OR temperature >37.3°C, 
duration > 2 days 

32 --- --- --- --- --- --- 0.9 

low risk: temperature is not >37.3°C, 
no chills or sweating 6 --- --- --- --- --- --- 0.1 
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Model 2 
high risk: temperature >37.3°C, 
duration <2 days 58 --- --- --- --- --- --- 2.6 

moderate risk: temperature is not 
>37.3°C, positive for chills and 
sweats 

18 --- --- --- --- --- --- 0.4 

low risk: temperature is not >37.3°C, 
no chills or sweating 6 --- --- --- --- --- --- 0.1 

Model 3 high risk: temperature >38°C 63 --- --- --- --- --- --- 3.4 

moderate risk: temperature is not 
>38°C, positive for myalgia 26 --- --- --- --- --- --- 0.8 

low risk: temperature is not >38°C, no 
myalgia 8 --- --- --- --- --- --- 0.1 

Zimmerman et al Fever, cough, fatigue 15 84 49 23 95 1.6 0.3 --- 

Score 

Ebell et al, 2012 

Flu Score, sum of following: onset < 
48 hours (1 pt), myalgia (2 pts), 
chills/sweats (1 pt), fever and cough 
(2 pts) 

33 

Low risk (0-2 points) 8 --- --- --- --- --- --- 0.2 

Medium risk (3 points) 30 --- --- --- --- --- --- 0.8 

High risk (4-6 points) 59 --- --- --- --- --- --- 2.7 

Van Vugt et al, 2015 Flu Score 15 

winter months, full cohort 

(n=1801) 
Low risk (0-2 points) 10 --- --- --- --- 

--- --- 
0.6 

Medium risk (3 points) 21 --- --- --- --- --- --- 1.5 

High risk (4-6 points) 32 --- --- --- --- --- --- 2.7 

Van Vugt et al, 2015 Flu Score 15 

peak influenza season 

(n=505) 
Low risk (0-2 points) 14 --- --- --- --- 

--- --- 
0.5 

Medium risk (3 points) 32 --- --- --- --- --- --- 1.5 

High risk (4-6 points) 50 --- --- --- --- --- --- 3.2 
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Sens= sensitivity; Spec= specificity; PPV= positive predictive value; NPV=negative predictive value; LR+= positive 
likelihood ratio; LR- = negative likelihood ratio; LR = likelihood ratio  

Van Vugt et al, 2015 Flu Score 15 

onset of symptoms <2 

days (n=299) 
Low risk (0-2 points) 12 --- --- --- --- 

--- --- 
0.4 

Medium risk (3 points) 18 --- --- --- --- --- --- 0.7 

High risk (4-6 points) 36 --- --- --- --- --- --- 1.8 
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Figure 5.2 Summary Receiver Operating Characteristic Curve for the 7 Studies that Reported the “cough+fever” Clinical 
Decision Rule 
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Figure 5.3 Summary Receiver Operating Characteristic Curve for the 4 Studies that Reported the “Cough+fever+acute 
onset” Clinical Decision Rule 
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Table 5.5 External Validation of Each Dichotomous Clinical Decision Rule in a College Health Population 

 
CDR1 

Influenza  
(#/total) 

No 
influenza 
(#/total) 

Sensitivity Specificity PPV NPV LR+ LR- AUROCC 

Cough+measured 
fever* 

23/143 6/122 16% 95% 79% 49% 3.3 0.9 0.56 

Cough+measured 
or subjective fever*2 

124/143 68/122 87% 44% 65% 74% 1.6 0.3 0.67 

Cough+ measured 
or subjective fever 
+headache 

119/143 63/122 83% 48% 65% 71% 1.6 0.35 0.66 

Cough+measured 
or subjective fever + 
nasal congestion 

89/143 50/122 62% 59% 64% 57% 1.5 0.6 0.61 

Cough+measured 
or subjective fever 
+myalgia 

110/143 46/122 77% 62% 71% 70% 2.0 0.4 0.70 

Cough+headache+ 
pharyngitis 

127/143 99/122 89% 19% 56% 59% 1.1 0.6 0.54 

Cough+measured 
or subjective 
fever*+acute onset 

76/143 36/122 53% 70% 68% 56% 1.8 0.7 0.62 

Fever (measured or 
subjective)** + 
acute onset 

13/143 4/122 9% 97% 77% 48% 2.8 0.9 0.53 

CDC: fever+cough 
and/or sore throat 

22/143 6/122 15% 95% 79% 49% 3.1 0.9 0.55 

WHO:  17/143 5/122 12% 96% 77% 48% 2.9 0.9 0.54 

Taiwan CDC:  17/143 4/122 12% 97% 81% 48% 3.6 0.9 0.54 

LR = likelihood ratio; AUROCC = area under the receiver operating characteristic curve. 
*Fever is greater than or equal to 37.8 degrees Celsius 
**Fever is greater than or equal to 38 degrees Celsius 
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1Hosmer-Lemeshow p value was <0.01 for all CDRs 
2No difference between “cough+subjective fever” and “cough+measured or subjective fever” 
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Table 5.6 External Validation of the Three CART Clinical Decision Rules and Flu Score in a College Health Population 

Rule 
Influenza/Total 

(%) 
In Group (%) LR 

AUROCC (95% CI) Hosmer-Lemeshow p 

value 

Flu Score 

High risk 78/106 (74%) 40 2.4 0.66 (0.60, 0.71) <0.01 

Medium risk 40/73 (55%) 28 1.0 

Low risk 25/86 (29%) 32 0.4 

CART 1 

High risk 35/44 (80%) 17 3.3 0.59 (0.54, 0.63) <0.01 

Medium risk 103/186 (55%) 70 1.1 

Low risk 5/35 (14%) 13 0.1 

CART 2 

High risk 48/62 (77%) 23 2.9 0.61 (0.56, 0.66) <0.01 

Medium risk 90/168 (54%) 63 1.0 

Low risk 5/35 (14%) 14 0.1 

CART 3 

High risk 17/22 (77%) 8 2.9 0.54 (0.51, 0.57) <0.01 

Medium risk 101/159 (64%) 60 1.5 

Low risk 25/84 (30%) 32 0.4 

LR = likelihood ratio; AUROCC = area under the receiver operating characteristic curve. 
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Table 5.7 Frequency, Sensitivity, Specificity, Positive Likelihood Ratio, Negative 
Likelihood Ratio, and Diagnostic Odds Ratio for each Clinical Sign and Symptom in 
Patients with Suspected Influenza that Received the Rapid Point of Care PCR test 

Patients that Received the Rapid PCR Test (n=265) 

Sign or 
Symptom 

Influenza 
(#/total) 

No 
influenza 
(#/total) 

Sensitivity Specificity + LR -LR DOR 

Chills 138/143 91/122 97% 25% 1.3 0.1 13 

Congestion 102/143 91/122 71% 25% 0.9 1.2 0.8 

Diarrhea 14/143 9/122 10% 93% 1.4 1.0 1.4 

Headache 132/143 102/122 92% 16% 1.1 0.5 2.2 

Enlarged 
tonsils 

9/143 20/122 6% 84% 0.4 1.1 0.4 

Fever 
(>100.4*F) 

124/143 68/122 87% 44% 0.3 0.3 1.0 

Myalgia 118/143 61/122 83% 50% 1.7 0.3 5.7 

Nasal 
discharge 

136/143 108/122 95% 11% 1.1 0.5 2.2 

Nausea 36/143 19/122 25% 85% 1.7 0.9 1.9 

Pharynx 
erythema 

92/143 62/122 64% 49% 1.3 0.7 1.9 

Pharynx 
exudate 

3/143 9/122 2% 93% 0.3 1.1 0.3 

Rales 2/143 3/122 1% 98% 0.5 1.0 0.5 

Sore throat 137/143 116/122 96% 5% 1.0 0.8 1.3 

 Symptom 
duration < 
2 days 

81/143 50/122 57% 59% 1.4 0.7 2.0 

Tonsillar 
exudate 

0/143 7/122 0% 94% 0 1.1 0 

Unclear 
lungs 

16/143 11/122 11% 91% 1.2 1.0 1.2 

Vomit 18/143 9/122 13% 93% 1.9 0.9 2.1 

LR = likelihood ratio; DOR = diagnostic odds ratio;
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Table 5.8 Final Multivariate Logistic Regression via Lasso Technique for the Predictors 
of Influenza Diagnosis. Area under the receiver operating characteristic curve = 0.77. 

Variable β coefficient Hazard Ratio 

Myalgia 0.52 1.69 

Chills 0.44 1.56 

Fever 0.49 1.63 

Tonsillar 
Exudate -0.58 0.56 

Intercept -0.92 ---- 
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Figure 5.4 Fast and Frugal Tree for the Diagnosis of Influenza 
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Figure 5.5 ROC Curve of all Models Created Using FFT Package 

*FFT #: Fast and Frugal Tree, iteration number; CART = Classification and regression
tree; LR = Logistic regression; RF + Random forest; SVM = Supported vector machine; 
FAR = false alarm rate; HR = hit rate. 
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CHAPTER 6 

IDENTIFY WHETHER THE USE OF A RAPID POINT OF CARE POLYMERASE CHAIN 

REACTION TEST FOR THE DIAGNOSIS OF INFLUENZA A OR B INCREASES THE 

NUMBER OF PATIENTS WHO RECEIVE GUIDELINE CONSISTENT TREATMENT 

Dale, A.P., Ebell, M. H., McKay, B., Handel, A., Forehand, R., Dobbin, K. To be submitted to the 

Journal of the American Board of Family Medicine. 
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ABSTRACT 

Background: The proper treatment of acute respiratory infections, including influenza, continues 

to be of concern for outpatient care. Patients still receive guideline inconsistent antibiotic or 

antiviral prescriptions. The rapid influenza test is currently used throughout the United States, 

but has poor sensitivity. The objective of this study was to identify if the use of a new highly 

accurate and rapid point of care test would significantly increase the likelihood of guideline 

consistent care. We also assessed the impact of the rapid point of care test on the likelihood of 

return visits within 2 weeks.  

Methods: We prospectively recruited 300 students at a university health clinic who presented 

with cough or two influenza like illness symptoms between December 2016-February 2017 to 

receive a rapid polymerase chain reaction (PCR) test. These 300 patients were matched to at 

least one other patient who received usual care. We used five different strategies to build a 

logistic regression model to identify whether PCR-guided care increased the likelihood of US-

guideline consistent care. We also assessed whether PCR guided care decreased the likelihood 

of return visits within two weeks by patients.  

Results: Crude analysis revealed that the odds of guideline supported treatment was similar among 

patients who received care PCR-guided care compared to usual care (OR:1.24, 95% CI: 0.86-

1.80). Our manual forward selection logistic regression model building revealed that the odds of 

receive guideline supported care did not significantly increase for patients who received PCR-guided 

care (aOR: 1.24, 95%CI: 0.83, 1.88). We also performed a 10x10 cross validation with 4 model 

selection strategies; the best fitting model built through a stepwise backward process also 

confirmed no significant association between PCR-guided care and guideline consistent care. 

Post-hoc analyses revealed that PCR-guided care significantly decreased the likelihood of an 

antibiotic prescription (aOR: 0.61, 95%CI: 0.40, 0.94) and increased the likelihood of an antiviral 
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prescription (aOR: 1.57, 95%ci: 1.09, 2.28). Additionally, PCR-guided care significantly 

decreased the likelihood of return visit within 2 weeks (aOR: 0.19, 95%CI: 0.04, 0.81). 

Conclusions: In a quasi-experimental study of PCR-guided versus usual care, there was a 

positive trend that PCR-guided care increased the likelihood of guideline consistent treatment. 

Patients who received PCR-guided care were significantly more likely to receive an antiviral and 

patients were significantly less likely to receive an antibiotic or have a return visit within two 

weeks.  
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6.1 Introduction 

Influenza continues to be an important health problem in the United States, particularly 

for groups at increased risk of hospitalization and death. This includes the very young (<5 years 

of age), the old (>65 years of age), pregnant women, residents of long term health care 

facilities, and those with comorbidities such as chronic pulmonary disease and neurological 

disorders.83 The annual burden of influenza in the United States is determined by several 

factors including the timing of the influenza season, the number of people vaccinated, the 

subtypes of influenza virus included in the vaccine, and the characteristics of the viruses that 

are circulating.83 Recently, the 2009 influenza A (H1N1) epidemic in the United States affected 

approximately 10% of students on many college and university campuses.15 The 2009 epidemic 

highlighted the need for further research about influenza in college and university students. 

These students tend to live in crowded dormitories or apartments, which may serve as a 

reservoir for diseases such as influenza to circulate.84 While hospitalization rates are low, 

influenza can affect a student’s academic performance, lead to unnecessary antibiotic and 

antiviral prescriptions, and increase the use of outpatient health care services. At the peak of 

the H1N1 influenza season, approximately 13% of primary care visits were for influenza-like 

illness (ILI) at college health services.14 There are many challenges surrounding the prevention 

of influenza and its burden on the healthcare system.  

Current treatment of influenza is primarily supportive care. Antiviral medications may 

also be used. In the United States, the only antiviral medication class currently recommended to 

treat or prevent influenza are neuraminidase inhibitors (NIs). NIs currently recommended by 

CDC guidelines include oseltamivir (Tamiflu) and zanamivir (Relenza).27 Guideline consistent 

use of NIs reduces the mean duration of symptoms, and in observational studies appears to 

reduce the risk of complications that require antibiotics and may decrease hospitalization and 

mortality rates.86  
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In patients with influenza and a low risk for bacterial infections, antibiotics are not 

guideline consistent.127 The use of antibiotics remains common for many viral acute respiratory 

infections, emphasizing the need for clinician and patient education regarding their 

ineffectiveness for these pathogens.56 One reason for the over-prescription of antibiotics is the 

overlapping signs and symptoms between many respiratory infections. When a patient presents 

with cough and fever, it is important to be able to rule out pneumonia to eliminate the need for 

an antibiotic. Clinicians cite concern of a bacterial pneumonia infection as one of the leading 

reasons for prescribing an antibiotic in patients with influenza or lower respiratory tract 

infection.89  

Another reason for the over-prescription of antibiotics is low confidence in the rapid 

influenza test. The use of rapid influenza tests for diagnosing patients is common in the US 

despite their poor sensitivity.94 This lack of sensitivity in the rapid influenza test reduces its utility 

in clinical practice and can potentially lead to the overuse of antibiotics or NIs if physicians lack 

confidence in the test results. Polymerase chain reaction (PCR) tests are the gold standard in 

influenza diagnosis but until recently have taken 24 to 36 hours to yield results.94 The recent 

introduction of a rapid point of care PCR test for influenza A and B combines the timeliness of 

the rapid flu test with the increased sensitivity and specificity of traditional PCR. Using a 

nasopharyngeal swab, the rapid point of care PCR test takes approximately 15 minutes to 

complete at the point of care. The result is a qualitative PCR result for the presence or absence 

of Influenza A or Influenza B. This test is 99.2% sensitive (95% CI: 95.1-99.9%) and 100% 

specific for influenza A virus (95%CI: not reported), and 100% sensitive (95%CI: 83.1-100%) 

and 100% specific for influenza B viruses (95%CI: not reported) when compared to a reference 

laboratory influenza A and B real-time PCR assay.12 With the increased certainty in the results 

from a rapid point of care PCR test, the clinician can now have greater confidence in the final 

diagnosis.  
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The rapid point of care PCR test has the potential to be a useful test in the clinical care of 

patients with influenza-like illness but has yet to be independently evaluated for its impact on 

healthcare decision-making. We hypothesize that this may increase guideline consistent 

prescribing of antivirals and antibiotics in patients with acute respiratory infections. We also 

hypothesize that the use of PCR-guided care will decreased the likelihood of return visits within 

2 weeks. 

6.2 METHODS 

We recruited 300 participants from December 2016-February 2017 at UHC. While 

patients were actively recruited for the PCR treatment group, the other clinic continued to treat 

patients using usual care practices. These patients, described as our usual care patients, 

received the standard care at UHC and were not offered the rapid PCR test. After data 

collection was completed, we then assessed whether a patient receive guideline consistent care 

or not.  

Intervention and Outcome Variable Definitions 

To address our objectives, we need clear definitions of our outcome and our 

intervention. Our intervention was the type of care a patient received (PCR vs. usual) and our 

outcome will be guideline consistent care. For patients who received PCR-guided care, the 

intervention and outcome definitions are as follows. A patient was considered influenza positive 

if they had a positive rapid point of care PCR test or a final clinical diagnosis of influenza. The 

definition of influenza positive must include both the test-based and final clinician diagnosis 

because not all patients received PCR-guided care. A patient was considered influenza 

negative if they had a negative rapid point of care PCR test and no final clinical diagnosis of 

influenza. Patients who received usual care was classified as influenza positive if they have a 

final diagnosis from their clinician of influenza. Patients who received usual care were 

considered influenza negative if influenza is not listed as one of their final diagnoses.  
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Defining treatment as guideline consistent or guideline inconsistent is more complex than 

defining final diagnosis, due to the overlapping symptom presentation of many respiratory 

diseases. We developed Table 6.1 to illustrate what would be guideline consistent and guideline 

inconsistent treatment depending on the diagnosis. Oseltamivir is only guideline consistent 

when administered within 48 hours of symptom onset in patients with influenza confirmed by 

PCR or clinician diagnosis per the Food and Drug Administration.128 Antibiotics are guideline 

consistent in patients with a high risk of pneumonia or a final clinical diagnosis of a bacterial 

infection. For the purposes of this study, patients with a final diagnosis of acute otitis media or 

acute bacterial rhinosinusitis were excluded since antibiotic prescriptions are recommended for 

selected patients based on US treatment guidelines. 129,130Patients who are diagnosed with 

influenza more than 48 hours after symptom onset, that do not have influenza, are at low risk for 

pneumonia, and do not have a bacterial infection as a clinical diagnosis should not receive 

oseltamivir or antibiotics.  

Analysis: Primary Objective 

Preliminary statistical analyses were performed in Stata. First, we stratified the EHR data 

accordng to our intervention: PCR tested, usual care, and not enrolled. Patients were classified 

as PCR tested if they were enrolled and received a nasopharyngeal swab. Usual care patients 

were not offered enrollment in the study and were selected from clinics that did not have active 

recruitment. Finally, patients were considered not enrolled in the study if they did not receive the 

PCR test when recruitment was active in their assigned clinic. Unenrolled patients were not 

included in our final analyses but we compared students enrolled in the study with those not 

enrolled to determine whether the enrolled students were typical of the population as a whole. 

Our intervention after their exclusion is binary: PCR-guided care or usual care. We described 

the data in Table 6.2 by sociodemographic factors, signs, symptoms, and laboratory test results. 

We used chi-square testing to determine any preliminary differences between treatment groups; 
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a p value less than 0.05 was considered statistically significant. We used several multivariate 

techniques to identify the association between PCR-guided care and the outcome of guideline 

consistent or inconsistent care while adjusting for potential covariates. Finally, propensity score 

matching was used to control for any differences between the intervention groups and assess 

for the magnitude of the association between intervention and outcome.  

Multivariate Analysis 

Strategy 1: Manual Forward Addition Based on AIC 

After we identified our potential covariates, we first built a logistic regression model 

through a manual forward addition strategy. This technique involves beginning with the crude 

model and creating a model that adds characteristics. The AIC for each model was recorded 

and compared to the previous model. We then assessed the change in AIC between the two 

models; the model with the largest decrease in AIC was selected as the better fit.97 This process 

was continued until the AIC change was no longer positive.  

Strategy 2 Alternative Methods for Logistic Regression: Using MLR Package  

 We used R version 3.3.3 and its accompanying packages to perform cross validation 

with the MLR package. By using cross validation and repeating the model building, we 

increased the likelihood that our final model is a truly accurate representation of the relationship 

between PCR-guided care and guideline consistent care. We used stepwise forward addition, 

stepwise backward elimination, sequential floating forward addition, sequential floating 

backward elimination methods and a genetic algorithm.131,132 A sequential floating method for 

feature selection builds in “floating” in conjunction with a stepwise method for selection of 

predictors by avoiding the nesting issue of features often seen in manual model building.132 By 

combining the stepwise forward and stepwise backwards methods, this allows values of the 

features to “float” and remain unfixed as the model continues to grow with additional 

predictors.132 A genetic algorithm uses a stochastic tool combined with a “survival of the fittest” 
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selection to propagate the solution model.131 By combining these five methods with a 10-fold 

cross validation and 10 times repetition, we were more likely to find a repeatable result. These 

techniques were less likely to suffer from the inherent biases of manual model building by using 

the mlr package in R.  

Strategy 3: Propensity Score Matching Analysis 

We chose to use propensity score matching if the PCR-guided care and usual care 

groups appeared different in frequency of symptoms and signs. A propensity score represents 

the conditional probability that and individual will have received treatment, given the information 

available on covariates of interest.133 We attempted 1:1, 1:2, 1:3 and 1:4 nearest neighbor 

matching.134 We calculated the average treatment effect (ATE) and the average treatment effect 

in the treated (ATET). ATE represents the difference in expected outcomes between treatment 

and placebo groups.134 The ATE quantifies the expected effect on our outcome of interest if the 

individuals in our population had been randomly assigned treatment; by using propensity score 

matching and measuring ATE we can simulate true randomization since this was not possible in 

our study.134 ATET can be a more useful measure in that it directly quantifies the effect of 

treatment on the group intended.134 However, for the purposes of our study, ATE was the most 

suitable measurement of interest. 

Reconciliation of Multivariate Techniques 

Given that we used 7 different techniques for assessing the relationship between PCR-

guided care and guideline consistent care, a plan for selection of the best model is necessary. It 

is possible that these models would give different final interpretations since the inherent 

conditions of each technique are different. Foremost, the models that were built using cross-

validation would be selected as the most “truthful”. These cross-validated models were repeated 

100 times thereby increasing confidence in the final result. If all models reported a significant 

relationship between our intervention and outcome, the model that has the highest area under 
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the receiver operating curve in balance with parsimony was selected (AUROCC). If all the 

models reported a non-significant relationship between intervention and outcome, we reported 

the results of the cross-validated model that balances a high AUROCC and parsimony.  

Analysis: Secondary Objective 

We used Stata to perform all statistical analyses for the secondary objective. We 

used univariate and a manual multivariate analysis similar to what’s described in the previous 

sections. We used these methods to assess the relationship between PCR-guided care versus 

usual care and the likelihood of a return visit within 2 weeks of their initial visit. We assessed all 

signs, symptoms, and other characteristics as potential explanatory variables.  

6.3 RESULTS  

Between December 2016 and February 2017, 3,095 patients with a chief complaint that 

generated a respiratory template were seen in the three UHC clinics. A total of 300 patients 

were enrolled to receive the rapid PCR test. Twelve of these patients were excluded from our 

final analysis due to an invalid PCR test result. Seven patients who received an invalid result 

agreed to be tested again, although several of these received another invalid result (n=5). 

Seven patients were missing all sign and symptom data and therefore were excluded from our 

analysis. The visit notes for these seven patients were reviewed but did not contain the 

information necessary to be included in the analysis. Some patients had both an invalid PCR 

result and no signs or symptoms data. Finally, we excluded 16 patients for having no reported 

cough. There are two explanations for this phenomenon. Our study recruitment staff included 

persons who had two suspected influenza symptoms instead of a cough plus one suspected 

influenza symptoms. Second, patients seeking enrollment into the study may have reported a 

cough verbally to the study enrollment staff but not to their clinician. 

Therefore, 264 patients were included in the final PCR-guided care group for analysis. 

Patients were designated as receiving usual care if they presented with a respiratory infection 
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and met the inclusion criteria used by the PCR-guided care group, but to a clinic that was not 

currently enrolling patients to receive the PCR test at the time of visit. In the three clinics, 771 

patients presented with the same inclusion criteria (described in section 1.3.2.3.1). and received 

usual care. Of these patients, 234 (30.4%) received a rapid flu test (not PCR). The recruitment 

of each group is presented in Figures 2.1 and 2.2. Table 6.2 presents the symptoms, signs, and 

location breakdown for each care group. We also did a count of the 7 most common influenza 

signs and symptoms for each patient and created Figure 6.3. The seven most common 

influenza signs and symptoms included in this count were: headache, cough, chills, myalgia, 

fever, nasal discharge and duration < 2 days. We chose these signs and symptoms based on 

our literature review and the CDC guidelines for NI use. This further illustrates that PCR-guided 

care patients tended to have more symptoms and signs than usual care patients.  

Clinic 1 had 75 PCR treated patients, Clinic 2 had 134 PCR treated patients, and Clinic 3 

had 55 PCR treated patients. Recruitment was nearly equivalent between Clinics 1 and 3 

compared to Clinic 2, which is what we expected given our recruitment strategy. Patients in 

Clinics 1 and 3 were recruited nearly simultaneously and represent 49.3% of the final included 

participants, with an additional 10 days of recruitment taking place in Clinic 1 when the study 

first began.  

We compared our final entire data set (PCR-guided care group and usual care group, 

n=1035) to the patients who met inclusion criteria in the clinic during PCR recruitment but were 

not enrolled, either because they refused (n=100), cited a lack of enough time to take the test 

(n=28), same day cancellation of appointment (n=56), decided they were either too sick or not 

sick enough to be swabbed (n=3), had appointment times past the designated recruitment and 

swab cut off time each day (n=33) or were not approached because the researcher was not 

present or was recruiting another participant (n = 90). The clinical characteristics of these 

patients are included in Table 6.2 as “unenrolled”. Patients that we unenrolled were significantly 
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different from PCR-guided care patients. PCR-guided care patients still tended to be sicker and 

have more symptoms, similarly to the usual care patients. The only symptom that significantly 

different between unenrolled patients and the PCR-guided care group that was not also different 

for PCR-guided care versus usual care was tonsillar exudate. Patients who were unenrolled 

were more likely to have tonsillar exudate.  

Guideline Care: Consistent or Inconsistent 

Overall, 193 of the 1,035 patients received guideline inconsistent care (18.7%) as 

defined in section 2.3.6. Table 6.3 and Table 6.4 illustrates selected differences between 

guideline consistent and guideline inconsistent care groups. Of all patients who received a NI, 

27.5% had duration of symptoms greater than 48 hours. In the PCR-guided care group, 122 had 

a negative PCR test, of whom 27 (22.1%) were still given a final clinical diagnosis of influenza. 

Five of those 27 patients received an NI. In the usual care group, 537 of 772 (69.6%) did not 

receive a rapid influenza test, of whom 66 (21.2%) received an oseltamivir prescription. Finally, 

the PCR-guided care group had no significant difference in the odds of receiving guideline 

consistent care compared to the usual care group in the univariate logistic regression analysis 

(83.7% vs 80.5%, respectively, p=0.25, aOR:1.24, 95% CI: 0.86-1.80).  

Strategy 1: Manual Forward Addition Logistic Regression 

A multivariate logistic regression model using manual forward selection was selected to 

adjust for any signs, symptoms, or characteristics listed in Table 6.2. The final adjusted model is 

displayed in Table 6.5. Our manual forward addition strategy for logistic regression relied on a 

positive change in AIC of at least 2. Our model, fully adjusted for signs, symptoms, and clinic 

assignment found that the association between use of the PCR test and a greater likelihood of 

guideline supported care was not statistically significant (aOR 1.24, 95% CI 0.82 to 1.88), with a 

trend favoring guideline supported care in the PCR-guided care group. Our model included an 

adjustment for tonsillar exudate, clinic assignment, myalgia, pharynx erythema, pharynx 
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exudate, rales, enlarged tonsils, duration of symptoms, and unclear lungs. No other potentially 

confounding variables were statistically significant as shown in Table 6.5.  

We then used a Hosmer-Lemeshow test to check for the goodness of fit of the final 

adjusted model. There were 10 distinct groups in our Hosmer-Lemeshow test because there 

were no ties. The Hosmer-Lemeshow chi square statistic was 10.9 with a p value of 0.21. The 

area under the receiver operating characteristic curve (AUROCC) was 0.77. Therefore, the 

model is a good fit for the data which is important since we want to determine whether PCR-

guided-care is an independent predictor of outcome. 

Strategy 2: 10x10 Cross Validation with Machine Learning 

We chose to use R statistical software (v 1.0.136) to attempt 5 subset selection 

techniques, as described in section 2.3.6. We used a 10-fold cross validation, repeated 10 

times. We used the MLR package to apply a stepwise forward addition, stepwise backward 

elimination, sequential floating forward addition, sequential floating backward elimination 

methods and a genetic algorithm. Each final model is listed in Table 6.6. Stepwise backward 

elimination and sequential floating backwards eliminated yielded models with 11 and 10 

predictors. Area under the receiver operating curves (AUROCCs) were 0.75 and 0.749, 

respectively. Stepwise forward addition and sequential forward floating addition yielded 5 and 6 

predictors. The AUROCCs were 0.721 and 0.728, respectively. The genetic algorithm yielded a 

model with 13 predictors and an AUROCC of 0.739. We selected the model produced by 

stepwise backwards elimination as our final model, since it included our intervention and had 

the highest AUROCC. This model had 11 predictors and is listed in Table 6.7. A Hosmer-

Lemeshow test was used to assess the goodness of fit for the final fully adjusted model that did 

not include “care”. The Hosmer-Lemeshow chi-square statistics was 10.91, 8 degrees of 

freedom, and a p value of 0.21. Our intervention, PCR-guided care versus usual care, was only 

selected by the stepwise backward elimination and genetic algorithm. The stepwise backward 
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elimination model had the highest AUROCC and was more parsimonious that the final model 

built by the genetic algorithm. 

Strategy 3: Propensity Score Adjustment 

 To account for differences between care groups, we performed propensity score 

matching for all signs and symptoms with greater than 10% difference as well as clinic 

assignment. We used a 1:1 matching followed by logistic regression to find the average 

treatment effect (ATE) and the average treatment effect in the treated (ATET). The ATE 

coefficient was 0.02 (95%CI: -0.07, 0.11; p value 0.664) and the ATET coefficient was 0.04 

(95%CI: -0.01, 0.10; p value 0.125). Therefore, after propensity score matching followed by 

logistic regression, the type of care (PCR-guided vs usual care) was not a significant predictor 

of the likelihood that the patient received guideline consistent care.  

Post Hoc Analyses: Prescription of Antibiotics or Antivirals 

 We also conducted post hoc multivariate analyses to predict the likelihood of antiviral 

prescription and a model to predict the likelihood of antibiotic prescription using manual AIC 

logistic regression model building. The results of these multivariate analyses are listed in tables 

6.8 and 6.9 respectively. The relationship between the type of care received (PCR vs. usual) 

and likelihood of antiviral prescription was influenced by myalgia, duration of symptoms, fever, 

tonsillar exudate, unclear lungs, clinic assignment, nasal discharge, chills, and enlarged tonsils. 

Of note, patients who received PCR-guided care were significantly more likely to receive an 

oseltamivir prescription (aOR 1.58, 95% CI 1.09, 2.28) and significantly less likely to receive an 

antibiotic prescription (aOR 0.61, 95%CI 0.40, 0.94). The relationship between type of care 

received (PCR-guided vs. usual) and likelihood of antibiotic prescription was influenced by 

tonsillar exudate, pharynx erythema, pharynx exudate, duration of symptoms, sore throat, 

enlarged tonsils, unclear lungs, nasal discharge, and clinic assignment.  

Likelihood of Return Visit 
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 There were 28 return visits by patients within 2 weeks of their initial visit as listed in 

Table 6.10. We performed a chi-square test and a univariate logistic regression to determine if 

the relationship between PCR-guided care and a return visit were significantly associated. We 

found that the odds of a return visit for patients who received PCR-guided care were 

significantly lower than for patients who received usual care (aOR 0.22; 95%CI 0.05, 0.93). This 

represents an 78% decrease in the likelihood of a return visit among patients who received 

PCR-guided care. Adjusted multivariate analyses revealed that the relationship between PCR-

guided care and likelihood of return visit was influenced by week day of visit and pharynx 

erythema (Table 6.11).  

6.4 DISCUSSION 

The use of a rapid PCR test was associated with a small but non-significant increase in 

the percentage of patients that received guideline supported care. In addition, patients receiving 

PCR-guided care were significantly more likely to receive an NI prescription and significantly 

less likely to receive an antibiotic prescription. Finally, patients were significantly less likely to 

return for a second visit within 2 weeks if they received PCR-guided care. Patients tested by 

PCR tended to be sicker; they had higher frequencies of symptoms and higher counts of seven 

common suspected influenza symptoms. The effect persisted after adjusting for both the 

number of symptoms and clinic site.  

Discussion of Manually Adjusted Analysis 

Our fully adjusted manually built model adjusted for the being assigned to clinic 3, 

presence of myalgia and duration of symptoms for 2 days or less. The final model adjusted for 

the absence of tonsillar exudate, pharynx erythema, pharynx exudate, rales, enlarged tonsils, 

and unclear lungs.  

A possible explanation for why the presence of myalgia was an independent predictor of 

guideline consistent care points to the traditional presentation of influenza. Since influenza was 
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so common in our PCR-guided care group (50% prevalence), a typical influenza symptom like 

myalgia could influence the decision-making process. The absence of pharynx erythema, 

pharynx exudate, and tonsillar exudate may be explained by the high frequency of “acute 

pharyngitis-unspecified” diagnoses where bacterial cause was not clinically suspected.  

Most episodes of influenza resolve within a week, therefore students who were unable to 

be seen rapidly at UHC due to becoming ill during the weekend may have sought care 

elsewhere. These students may also choose not to receive care, as treatment of influenza is 

primarily supportive. There are other reasons students may fail to seek care quickly. University 

students have many obligations including coursework, part time jobs, on-campus involvement, 

and more. Students, due to poor time management or other extraneous factors, may not have 

the time to be seen at UHC within the first two days of symptom onset. However, the UHC can 

see a student by the end of the next business day for an appointment, so appointment 

availability should not be a significant limitation. 

The need to adjust for clinic assignment has several possible explanations. The clinics 

contain different clinicians who may have different practice patterns and serve different 

proportions of the university student population. Patients in Clinic 2 were less likely to receive 

guideline consistent care when adjusting for clinic assignment only (OR: 0.77, 95%CI: 0.49, 

1.23). The varying experience and education levels of clinicians, such as a nurse practitioner 

(NP) or physician assistant (PA) compared to a medical doctor/physician can affect prescribing 

behaviors, as can the local culture and expectations of patients. It has been previously 

demonstrated that NPs/PAs are more likely to prescribe an antibiotic for an outpatient visit 

compared to physicians.135  

Another reason for a guideline consistent care in Clinic 2 could be that clinicians did not 

accept or believe the PCR test results. If a clinician was highly confident in their diagnosis prior 

to the test result being shared, they could have chosen to accept their judgement over a test 
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result. This behavior was observed to occur in Clinic 2, but not in the other clinics. Our patient 

recruiters did receive complaints of anxiety and stress around the implementation of the PCR 

test, as many clinic assistants and clinicians were hesitant about the introduction of additional 

time into an appointment. At times, staff would not enroll a participant because they felt they 

wouldn’t have tested the patient in the first place. After careful conversations regarding the 

implementation of the study, this was quickly remedied with the staff within the first week of 

recruitment in each clinic. Finally, limitations on recruitment times set by the clinic (8-11 am and 

1-4 pm each day) eliminated some eligible participants.  

The rapid PCR test used in this study is a realistic substitute for the rapid influenza test 

in primary care. The test takes approximately 15 minutes longer to complete and uses the same 

swab technique as current rapid influenza tests. Therefore, the amount of discomfort to the 

patient is equivalent. Overall in our study, an average of 20 minutes was added to appointment 

times of patients who received the PCR test as compared to usual care. Many organizations 

make efforts to minimize the amount of time a patient spends in total at a primary care practice. 

Minimizing time is also balanced with an assessment of quality of care. Further research into the 

cost effectiveness of this test as the standard in primary care practice is needed. The test 

currently reimburses at a maximum of $116.73 nationally and $71.18 in the state of Georgia.136 

Comparatively, the rapid influenza tests cost between $12-24 per test depending on brand.137  

Other multivariate methods to predict guideline-consistent treatment 

 Among the 5 alternative methods used to create our final adjusted model for the 

likelihood of guideline consistent care, we chose the multivariate model that balanced 

parsimony and an increased AUROCC. for ease of memorization and due to the minimal 

increase in AUROCC between models. Therefore the stepwise backwards elimination methods 

is the best fit, given its fair AUROCC, our intervention being selected into the model, and a 

reasonable number of explanatory terms. In this model, we adjust for the myalgia, sore throat, 
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lung distress, unclear lungs, rales, pharynx exudate, tonsillar exudate, enlarged tonsils, PCR-

guided care, clinic assignment, and duration of symptoms. It’s positive beta estimate indicates 

that for patients with a duration of symptoms 48 hours or less, the participant was less more 

likely guideline consistent care. It is possible that the absence of enlarged tonsils, absence of 

pharynx exudate, and absence of tonsillar exudate is explained by the large number of 

diagnoses of acute pharyngitis with an unknown cause. These patients that received an 

antibiotic were considered guideline inconsistent, given that a large portion of acute pharyngitis 

cases are viral.138  

Our intervention, PCR-guided care versus usual care, was selected as a feature in one 

of our models. Consistent with our manual analysis, it appears that there is not a statistically 

significant relationship between PCR-guided care and guideline supported care. Therefore, our 

final model from this technique using a 10-fold cross validation, repeated 10 times, for the 

stepwise forward selection of predictors is listed in Table 6.7. This model presents the best 

balance between parsimony and discrimination based on AUROCC. A Hosmer-Lemeshow test 

determined that this model is a good fit for the data and contains similar terms to our model built 

using a manual forward addition strategy.  

Effect on NI Prescription 

The likelihood of a prescription for a NI was significantly increased in patients who 

received PCR-guided care versus usual care (aOR 1.58, 95% CI: 1.09, 2.28; Table 6.8). This 

illustrates that with increasing clinician certainty, patients were more likely to receive a guideline 

consistent NI that aided in symptom reduction. This is useful for seasonal influenza outbreaks 

and even in future pandemic situations, increasing clinician likelihood in giving guideline 

consistent NI prescriptions. It is important for clinicians to consider the cost and potential side 

effects of oseltamivir prior to prescription, even in cases when the patient has been sick less 

than 48 hours.29 Many clinicians noted throughout the study that they were surprised by patients 
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who did receive a positive rapid PCR test result, citing that many of them did not appear “sick 

enough” or follow “common symptoms” expected by the clinician. Some clinicians also did not 

believe the negative result.  

Effect on Antibiotic Prescription 

 Interestingly, our study found that the use of PCR-guided care resulted in a 39% 

statistically significant decrease in antibiotic prescription when adjusting for several covariates 

(Table 6.9). This was an unexpected but important secondary consequence of our study. 

Antibiotic stewardship continues to be at the forefront of public health work. Therefore, the 

guideline consistent prescription of antibiotics and significant decrease in unnecessary antibiotic 

prescriptions to those with influenza is an important finding.  

Likelihood of Return Visit 

 The likelihood of a return visit was significantly decreased in our unadjusted analysis. 

This trend held true even after adjusted analyses. The significant decrease in return visits within 

2 weeks to the primary care clinic is important for pandemic influenza planning. A possible 

explanation for the significant decrease in return visits is the increased patient certainty in final 

diagnosis. By being presented a highly accurate test result, the patient feels secure in the 

discharge instructions. This is important for seasonal and pandemic influenza planning, as it 

decreases the number of influenza negative patients returning to the clinic. By returning to the 

clinic, they overwhelm the outpatient and emergency resources and put themselves at 

increased risk for influenza infection.41  

Limitations 

Our research does have limitations. First, due to logistical constraints at the clinic, we 

were unable to randomize the enrollment of patients in our study. A lack of randomization can 

decrease the generalizability of our results and dampen the effect of the intervention. Second, 
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not all our participants received a diagnostic test. Patients in usual care may have been treated 

empirically, meaning influenza diagnosis was never biologically confirmed.  

Another limitation of our study was the baseline differences between patients in the 

PCR-guided and usual care groups. Patients who declined enrollment into the PCR-guided care 

group often told our recruiters that they did not feel they were “sick enough” or were very certain 

“I do not have the flu”. Based on our observations, many patients who declined to be enrolled 

during the study cited either a lack of severity of disease, a certainty in feeling they did not have 

influenza, or a lack of time as reasons for not participating. Therefore, it wasn’t surprising that 

students who were not recruited, but were eligible during the time of recruitment, appear less 

sick according to their recorded signs and symptoms in the EHR.  

Overall, unenrolled patients had fewer reported signs and symptoms. Patients meeting 

inclusion criteria but not recruited were had similar symptom frequencies to the usual care 

groups, as seen in Table 6.2. There are several reasons that patients were eligible but did not 

get enrolled besides declining. Some patients were not approached because only one person 

was available to do recruitment in the clinics at a time, limiting the number of patients that could 

be offered recruitment. For approximately one week there was only one PCR machine available, 

due to an issue with the second machine, which also limited recruitment.  

6.5 CONCLUSION 

 In a quasi-experimental study of PCR-guided versus usual care, there was a positive 

trend that PCR-guided care increased the likelihood of guideline consistent treatment. Patients 

who received PCR-guided care were significantly more likely to receive an antiviral and patients 

were significantly less likely to receive an antibiotic or have a return visit within two weeks. The 

future directions of this research are further discussed in the final chapter of this dissertation.  
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Tables and Figures 

Table 6.1 Guide for Determining Guideline Consistency of Treatment. 

Diagnosis Guideline Treatment 

Oseltamivir (n=312) Antibiotics (n=191) 

Influenza positive (PCR 
confirmed or final clinical 
diagnosis) 

Consistent (<48 hours 
onset) 

302 

Inconsistent 

27 

No influenza, but high risk for 
pneumonia and/or bacterial 
infection diagnosis 

Inconsistent 

10 

Consistent 

24 

No influenza, low risk for 
pneumonia and no bacterial 
infection diagnosis 

Inconsistent 

0 

Inconsistent 

140 
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Figure 6.1 Recruitment of Patients to PCR Testing 

610 patients that had at least 2 
suspected influenza symptoms

-100 who declined enrollment

- 28 who cited not enough time to 
participate in their schedule 

-56 who same day cancelled their 
appointment

-3 who described themselves as "too 
sick" or "not sick enough" to choose 

to enroll

-33 who were past our recruitment 
cutoff times during the day (after 11 

am or 4 pm)

-90 who were not recruited because 
the patient enroller was working 

with another eligible

-12 who received an invalid test 
result

-7 who had no sign or symptom 
information, due to their chief 

complaint not being respiratory

-16 for no cough recorded

Final Total: 264 patients received a 
PCR test
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Figure 6.2 Selection from EHR of Patients Who Received Usual Care 

3,095 patients seen in Clinics 1, 2, and 3 with a 
respiratory chief complaint 

1,589 patients had at least two suspected influenza 
symptoms during the duration of our study

-300 for receiving PCR test

-518 for being treated in a clinic where PCR 
recruitment was active

-260 for not meeting inclusion criteria
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Table 6.2 Signs, symptoms, and clinic assignments for PCR care and usual care 

  PCR (n=264) 
Usual Care 

(n=771) 
Unenrolled 

(n=518)  

 

Characteristic N Freq% N Freq % N Freq % 

p value 
PCR vs 

Usual care 

P value PCR 
vs 

unenrolled 

Cough 264 100.0% 771 100.0% 518 100.0% --- --- 

Sore throat 253 95.8% 726 94.2% 495 95.6% 0.30 0.87 

Nasal discharge 243 92.1% 670 86.9% 
 

442 
 

85.3% 0.03 
 

<0.01 

Headache 234 88.6% 620 80.4% 403 77.8% <0.01 <0.01 

Chills 229 86.7% 556 72.1% 345 66.6% <0.01 <0.01 

Fever 192 72.7% 428 55.5% 283 54.6% <0.01 <0.01 

Congestion 192 72.7% 534 69.3% 378 73.0% 0.29 0.92 

Myalgia 179 67.8% 399 51.8% 241 46.5% <0.01 <0.01 

Pharynx 
erythema 154 58.3% 371 48.1% 

 
241 

 
46.5% <0.01 

 
<0.01 

Nausea 55 20.8% 121 15.7% 82 15.8% 0.06 0.10 

Enlarged tonsils 29 11.0% 81 10.5% 
 

63 
 

12.2% 0.83 
 

0.64 

Vomit 27 10.2% 60 7.8% 50 9.7% 0.22 0.92 

Unclear lungs 27 10.2% 53 6.9% 42 8.1% 0.08 0.32 

Diarrhea 23 8.7% 96 12.5% 75 14.5% 0.10 0.02 

pharynx exudate 12 4.6% 25 3.2% 
 

22 
 

4.3% 0.33 
 

0.84 

tonsil exudate* 7 2.7% 35 4.5% 25 6.8% 0.18 0.02 

Rales 5 1.9% 29 3.8% 13 2.5% 0.14 0.59 

Lung distress 0 0.0% 3 0.4% 1 0.2% 0.31 0.48 

Clinic 1 75 28.4% 238 30.9% 133 25.7% <0.01 0.64 

Clinic 2 134 50.8% 270 35.0% 279 53.9% --- --- 

Clinic 3 55 20.8% 263 34.1% 106 20.5% --- --- 

Duration < 2 day 131 49.6% 296 38.4% 
 

176 
 

34.0% <0.01 
 

<0.01 

>2 days 133 50.4% 475 61.6% 342 66.0% --- --- 

Day of visit 
Friday 59 22.4% 205 18.7% 

 
--- 

 
--- 0.20** 

 
--- 

Day of visit 
other weekday 205 77.6% 627 81.3% 

 
--- 

 
--- --- 

 
--- 

**p value for chi-square testing between PCR-guided and usual care groups only. 
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Table 6.3 Final diagnosis and final prescriptions given to patients included in our study 

PCR Usual Care Total p value 

Influenza final diagnosis 64.0% 41.9% 47.5% <0.01 

Acute pharyngitis-unspecified diagnosis 8.3% 6.3% 0.7% 

Received NI 42.4% 25.9% 30.1% <0.01 

Received antibiotic 14.8% 19.7% 18.5% 0.07 

Guideline supported 83.7% 80.5% 81.4% 0.25 
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Table 6.4 Stratification of guideline consistent and inconsistent care on variables of interest 
including PCR testing, rapid influenza testing, clinic assignment, and duration of illness  

Guideline 
Consistent care 
n=842 (81.3%) 

Guideline 
Inconsistent care 

n= 193 (18.7%) 

p value 

PCR tested 221 (83.7%) 43 (16.3%) ----- 

Rapid flu tested 207 (88.4%) 27 (11.6%) ----- 

PCR positive 140 (97.9%) 3 (2.1%) <0.01 

PCR negative 82 (67.2%) 40 (32.8%) ----- 

Clinic 1 258 (82.4%) 55 (17.6%) <0.01 

Clinic 2 306 (75.7%) 98 (24.3%) ----- 

Clinic 3 278 (87.4%) 40 (12.6%) ----- 

Duration <=2 days 367 (86.0%) 60 (14.0%) <0.01 

Duration >2 days 475 (78.1%) 133 (21.9%) ----- 
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Figure 6.3 Influenza symptom count variable, stratified by type of diagnostic procedure used 

35.00% 25.00% 15.00% 5.00% 5.00% 15.00% 25.00%

1

2

3

4

5

6

7

Number of Classic Flu Symptoms Stratified by 
Type of Care

Usual Care PCR
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Table 6.5 Final fully adjusted model for the relationship between PCR testing and guideline 
consistent care 
 

Sign/Symptom Estimate 

( coefficient) 

Standard 
Error 

p value aOR (95% CI) 

PCR tested (y/n) 0.22 0.21 0.30 1.24 (0.83, 1.88) 

Tonsillar exudate -1.76 0.43 <0.01 0.17 (0.07, 0.39) 

Clinic 2 -0.28 0.23 0.22 0.76 (0.48, 1.18) 

Clinic 3 0.58 0.25 0.02 1.79 (1.09, 2.93) 

Myalgia 0.85 0.19 <0.01 2.35 (1.61, 3.42) 

Pharynx erythema -0.60 0.21 <0.01 0.55 (0.37, 0.82) 

Pharynx exudate -1.25 0.40 <0.01 0.29 (0.13, 0.63) 

Rales -0.98 0.39 0.01 0.38 (0.17, 0.81) 

Enlarged tonsils -0.80 0.28 <0.01 0.45 (0.26, 0.78) 

Duration of symptoms 0.55 0.20 <0.01 1.74 (1.17, 2.57) 

Unclear lungs -0.78 0.30 <0.01 0.46 (0.26, 0.82) 

Intercept 1.49 0.19 <0.01 --------------------- 

H-L chi-square statistic= 10.9, p=0.21; AUROCC: 0.77 
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Table 6.6 Final adjusted models for the prediction of guideline consistent treatment using five 
subset selection techniques using 10-fold cross validation, repeated 10 times using MLR 
package  
 

Model building 
technique 

Number 
of 

features 
selected 

List of features AUROCC 

Stepwise backward 11 Myalgia, sore throat, lung distress, 
unclear lungs, rales, pharynx 
exudate, tonsillar exudate, enlarged 
tonsils, PCR-guided care, clinic 
assignment, duration of symptoms 
dichotomized 

0.75 

Sequential floating 
backwards 
elimination* 

10 Myalgia, sore throat, lung distress, 
unclear lungs, rales, pharynx 
exudate, tonsillar exudate, enlarged 
tonsils, care, clinic assignment, 
duration of symptoms dichotomized 

0.749 

Stepwise forward 
addition* 

5 Myalgia, pharynx erythema, 
pharynx exudate, enlarged tonsils, 
clinic assignment 

0.721 

Sequential floating 
forward addition* 

6 Myalgia, rales, pharynx erythema, 
pharynx exudate, enlarged tonsils, 
clinic assignment 

0.728 

Genetic Algorithm 13 Myalgia, fever, sore throat, 
congestion, lung distress, unclear 
lungs, pharynx erythema, pharynx 
exudate, tonsillar exudate, enlarged 
tonsisl, PCR-guided care, clinic 
assignment, duration of symptoms 
dichotomized 

0.739 

*PCR-guided care was not selected as a feature. 
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Table 6.7 Final fully adjusted stepwise forward selection model selected from 5 subset selection 
techniques using 10-fold cross validation, 10 times repeated  

Sign/Symptom Estimate 

( coefficient) 

Standard 
Error 

p value aOR 

Myalgia 0.76 0.19 <0.01 2.15 

Sore throat -0.74 0.49 <0.01 0.48 

Lung distress 14.4 433.2 0.97 1.91 e06 

Unclear lungs -0.96 0.29 0.01 0.38 

Rales -1.13 0.40 <0.01 0.32 

Pharynx exudate -1.29 0.40 <0.01 0.27 

Tonsillar exudate -1.75 0.42 <0.01 0.17 

Enlarged tonsils -0.97 0.28 <0.01 0.38 

PCR-guided care 0.20 0.94 0.35 1.22 

Clinic 2 -0.49 0.21 0.02 0.62 

Clinic 3 0.44 0.25 0.07 1.55 

Duration of symptoms 0.55 0.20 <0.01 1.74 

Intercept 2.09 0.51 <0.01 ------------ 

Hosmer-Lemeshow chi-square statistic=10.91, df=8, p= 0.21 
AUROCC= 0.75 
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Table 6.8 Final fully adjusted model for likelihood of antiviral prescription: signs, symptoms, and 
clinic assignment 

Sign/Symptom Estimate 

( coefficient) 

Standard 
Error 

P value aOR (95% CI) 

PCR tested (y/n) 0.46 0.19 0.02 1.57 (1.09, 2.28) 

Myalgia 1.30 0.23 <0.01 3.65 (2.35, 5.68) 

Duration of symptoms 1.77 0.17 <0.01 5.89 (4.18, 8.28) 

Fever 0.93 0.24 <0.01 2.52 (1.57, 4.05) 

Tonsillar exudate -1.67 0.71 <0.01 0.19 (0.05, 0.77) 

Unclear lungs 1.05 0.30 <0.01 2.86 (1.58, 5.17) 

Clinic 2 0.13 0.21 0.55 1.13 (0.75, 1.72) 

Clinic 3 0.74 0.23 <0.01 2.09 (1.34, 3.25) 

Nasal discharge 0.80 0.32 0.01 2.24 (1.19, 4.19) 

Chills 0.87 0.33 <0.01 2.38 (1.25, 4.53) 

Enlarged tonsils -0.71 0.34 0.03 0.49 (0.25, 0.95) 

Intercept -5.13 0.47 <0.01 ------------ 

Hosmer-Lemeshow chi-square statistic= 3.16, df=10, p=0.92 
Unadjusted OR: 2.10 (1.57, 2.82), AUROCC: 0.86 
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Table 6.9 Final fully adjusted model for likelihood of antibiotic prescription: signs, symptoms, 
and clinic assignment  

Sign/Symptom Estimate 

( coefficient) 

Standard Error P value aOR (95% CI) 

PCR tested (y/n) -0.31 0.22 0.02 0.61 (0.40, 0.94) 

Tonsil exudate 1.63 0.44 <0.01 5.10 (2.14, 12.1) 

Pharynx erythema 0.96 0.21 <0.01 2.60 (1.73, 3.93) 

Pharynx exudate 1.78 0.43 <0.01 5.94 (2.56, 13.8) 

Duration of 
symptoms 

-0.73 0.19 <0.01 0.48 (0.33, 0.71) 

Sore throat 0.60 0.54 0.27 1.83 (0.63, 5.26) 

Enlarged tonsils 0.89 0.27 <0.01 2.43 (1.42, 4.16) 

Unclear lungs 0.79 0.29 <0.01 2.21 (1.26, 3.88) 

Nasal discharge -0.65 0.26 0.01 0.52 (0.31, 0.87) 

Clinic 2 0.09 0.23 0.69 1.10 (0.70, 1.73) 

Clinic 3 -0.44 0.25 0.08 0.64 (0.39, .05) 

Intercept -1.99 0.59 <0.01 ------------ 

Hosmer-Lemeshow chi-square statistic= 6.32, df=8, p=0.61 
Unadjusted OR: 0.71 (0.48, 1.04), AUROCC: 0.79 
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Table 6.10 Signs, symptoms, and clinic assignments stratified by if a patient had a return visit 
within 2 weeks of their initial appointment  

  
Returned within 2 

weeks (n=28) 
Did not Return within 2 

weeks (n=1007)  

Characteristic N Freq% N Freq % p value 

PCR-guided 
care 2 7.1% 262 26.0% 0.02 

Cough 264 100.0% 771 100.0% ----- 

Sore throat 25 95.8% 954 94.2% 0.21 

Nasal 
discharge 27 92.1% 886 86.9% 0.17 

Headache 22 88.6% 832 80.4% 0.58 

Chills 19 86.7% 766 72.1% 0.32 

Fever 15 72.7% 605 55.5% 0.49 

Congestion 18 72.7% 708 69.3% 0.49 

Myalgia 14 67.8% 564 51.8% 0.53 

Pharynx 
erythema 20 58.3% 505 48.1% 0.03 

Nausea 6 20.8% 170 15.7% 0.53 

Enlarged 
tonsils 7 11.0% 103 10.5% 0.01 

Vomit 4 10.2% 83 7.8% 0.26 

Unclear lungs 5 10.2% 75 6.9% 0.04 

Diarrhea 3 8.7% 116 12.5% 0.90 

pharynx 
exudate 2 4.6% 35 3.2% 0.30 

tonsil exudate* 3 2.7% 39 4.5% 0.07 

Rales 2 1.9% 32 3.8% 0.25 

Clinic 1 9 28.4% 304 30.9% 0.47 

Clinic 2 8 50.8% 396 35.0% --- 

Clinic 3 11 20.8% 307 34.1% --- 

Duration  
> 2 days 9 32.1% 418 41.5% 0.32 

 < 2 days 19 67.9% 589 58.5% --- 

Day of visit 
Friday 11 39.3% 192 19.1% <0.01 

Other 
Weekday 17 60.8% 815 80.9% --- 
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Table 6.11 Final fully adjusted model for likelihood of return visit: signs, symptoms, and clinic 
assignment 

Sign/Symptom Estimate 

( coefficient) 

Standard 
Error 

P 
value 

aOR (95% CI) 

PCR tested (y/n) -1.66 0.74 0.03 0.19 (0.04, 0.81) 

Day of visit (Friday vs. other 
weekdays) 

1.04 0.40 <0.01 2.83 (1.29, 6.19) 

Pharynx erythema 0.97 0.43 0.02 2.65 (1.15, 6.10) 

Intercept -4.22 0.39 <0.01 ------------ 

Hosmer-Lemeshow chi-square statistic= 2.56, p=0.63 
AUROCC: 0.70 
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CHAPTER 7 
 

PCR- CONFIRMED INFLUENZA DIAGNOSIS AND STUDENT BEHAVIOR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dale, A.P., Ebell, M. H., McKay, B., Handel, A., Forehand, R., Dobbin, K. To be submitted to the 

Journal of the American Board of Family Medicine. 
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ABSTRACT 
 
Background: Influenza continues to be a concern for the college health population, especially 

following the 2009 epidemic of H1N1. University students lead active social lives that may be 

less affected by influenza diagnosis than in the general population. We hypothesize that use of 

a rapid PCR test to diagnose influenza will positively change student behavior. Specifically, 

students will report decreased stress levels and increase social distancing practices defined as 

absence from school or work, avoidance of public dining commons, and avoidance of public 

transportation. 

Methods: We prospectively enrolled patients with clinically suspected influenza and cough to 

receive a rapid PCR test for influenza from December 2016 to February 2017 at a university 

health clinic. Patients then received a 10 question follow up survey assessing their behavior, 

vaccination status, and severity of symptoms after 5 days. We used logistic regression to 

assess the associations between influenza diagnosis and self-reported stress level and the 

three social distancing outcomes. Finally, we created a composite social distancing score using 

these three measures and performed a simple linear regression to evaluate the relationship. 

Results: Of the 300 patients enrolled, 227 had a cough at their appointment, received a final 

rapid PCR test result, and completed the one week follow-up survey. Patients with PCR 

confirmed influenza were more likely to report a decrease in stress levels when adjusting for 

number of days of work or class missed (aOR: 0.68; 95%CI: 0.55, 0.85). Students with influenza 

were also more likely to report any absence from work or school (aOR: 3.86; 95% CI: 

1.84,8.09). No difference was seen in the relationship between influenza diagnosis and 

attendance to dining commons or use of public transportation. Patients with PCR confirmed 

influenza were more likely to implement social distancing as defined by our social distancing 

score in simple linear regression (β : 1.65; 95%CI: 1.01, 2.29). 

Conclusions: In a college health population, PCR-confirmed influenza diagnosis increased the 

number of days of absence from work or class. Students are willing to implement some social 
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distancing, but universities must consider plans for dining services for sick students to 

encourage isolation in a pandemic.  
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7.1 INTRODUCTION 

Influenza creates a significant economic burden of over $87 billion per year in the United 

States.99 Additionally, an average of 610,660 life-years lost, 3.1 million hospitalized days, and 

31.4 million outpatient visits are attributed to seasonal influenza in the United States.99 This 

represents a significant burden to the United States workforce, the elderly (>65 years of age), 

and the very young (<2 years of age).99  

The impact of influenza is also significant for university and college students.16 The 

burden of influenza like illness (ILI) in university students is greater compared to that associated 

with other upper respiratory infections.16 Specifically, students with ILI miss more days of class, 

work, and social activities as compared to students with other upper respiratory infections.16 

These students also report a longer duration of illness, more days spent in bed, and more days 

with physical impairment as compared to an upper respiratory infection.16  

There are many ways to reduce the burden of influenza including seasonal influenza 

vaccination and non-pharmaceutical interventions. Unvaccinated persons report missing more 

work hours and a decrease in work productivity.100 As previously discussed in section 2.1.1, 

university students have beliefs about vaccine safety and efficacy that may decrease 

compliance. 

Other preventive behaviors are available to university students during an influenza 

outbreak. These non-pharmaceutical interventions include: handwashing, face masks, cough 

covering, and self-isolation.101 Students are more likely to participate in these behaviors as 

perceived personal risk increases.48 Frequent handwashing and covering of the mouth when 

coughing have the highest compliance among university students.48 A lack of self-perceived risk 

is the main contributor to low compliance with face masks and self-isolation.48,49 Persons aged 

16 to 24 years are the least likely to use a face mask compared to other adults unless the threat 

of pandemic influenza is high.49  
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University students lead active social lives. Therefore, the low rates of compliance to 

self-isolating behaviors is not surprising.45,48 Students are unlikely to forgo social events such as 

Greek Week or parties when infected with influenza.45 Additionally, university students live in 

crowded conditions, but fewer than 40% recognize this as a health risk.54 Crowded living 

conditions and social events may be significant factors in the spread of influenza.139 Even during 

a pandemic influenza outbreak, such as the H1N1 outbreak of 2009, student compliance with 

preventive behaviors and risk perception were low.44 The lack of understanding of risk and low 

compliance with many preventive behaviors is troubling and requires a concentrated education 

effort by universities to overcome it.16,44,48,101  

College students’ lack of compliance with self-isolating behaviors may be linked to the social 

health and support system of the student. For most university students, influenza infection can 

represent the first time a student is making health-related decisions without consulting their 

family or guardians. Colleges and universities attempt to create strong social networks and ties 

to campus culture to support students to graduation. Many universities now institute a first year 

live on campus requirement for students, as it is demonstrated to have numerous social and 

educational benefits.102 This requirement yields a strong social network in a university; however, 

this network can also be a substantial risk for infection.140  

College students’ understanding of risk as related to social networks and compliance with 

preventive behaviors is low.15,35,44,54 However, these studies were conducted without the 

availability of a highly accurate test.35 By introducing a highly accurate rapid PCR test it is 

possible that perceived risk will increase since a student will be more certain of their diagnosis. 

If perceived risk increases, the compliance with self-isolation may increase. Therefore, we 

hypothesize that students with PCR confirmed influenza will miss significantly more days of 

school/work, report a decreased use of public facilities, and a decrease in self-reported stress 

level.  
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7.2  METHODS 

Setting 

The University Health Center (UHC) at the University of Georgia (UGA) provides primary 

care, urgent care, and selected specialty services to the 35,000+ students enrolled at the 

university. The UHC has four primary care clinics with 20 primary care clinicians available to 

students for traditional business hours and Sunday urgent care hours. UHC is unique in that it is 

one of just two college health facilities in the nation that has been accredited by the Joint 

Commission for Ambulatory Care and Primary Care Medical Home. Students can make same 

day appointments, so this health care facility serves as an ideal location for a study of 

suspected influenza in young adults. 

Population 

In 2015, UGA enrolled 27,547 undergraduate students and 8,583 graduate students.103 

Further demographic information is included in Table 1.3 in Appendix 1. UHC serves currently 

enrolled UGA students who attend the Athens campus. These college students are ideal for 

study for several reasons. First, they are at an age that typically is not highly vaccinated against 

influenza. Second, they are assigned to a primary care clinician who oversees their care and is 

the first doctor available for scheduling. Third, these student’s records are easy to follow 

throughout their four years, as UHC uses a comprehensive electronic health record (EHR). 

Finally, same or next day visits are usually available, and students do not have to pay for their 

visits, so there is no barrier to access. 

Data Collection 

After patients were selected to receive a rapid point of care PCR test as described in aim 2, 

they also provided their UGAMail email address. Five days’ post patient visit, the patient 

received an email notification requesting their participation in a follow up survey. This follow up 

survey was delivered using Qualtrics, an online survey tool; two patient pieces of patient 
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identifying information were collected to match the survey record to the EHR from aims 1 and 2. 

The survey in its entirety is included in Appendix C. This survey assessed vaccination status, 

symptom development, self-rated stress score, health care decision-making strategies, and 

presence in public areas around campus. If necessary, students received up to 3 reminder 

emails. 

Data collection began in December of 2016 and ended in February of 2017. Email 

notifications were managed daily using Qualtrics. The informed consent process has been 

described previously in Aim 1. Therefore, only patients who receive a nasopharyngeal swab and 

a final PCR result of positive or negative were included in this follow up survey. Students who 

received an invalid PCR result did not receive the follow up survey.  

Survey Response and Outcome Definitions 

Self-reported stress, the first outcome variable assessed, was reported on a five-point 

Likert scale, with 1 being “a lot less stressed than normal” and 5 being “a lot more stressed than 

normal”. We treated this outcome as an ordinal categorical variable. We then had 3 outcomes 

that captured social distancing by students: number of days of work or class missed, number of 

public dining facilities attended, and types of public transportation used. Patients reported the 

number of days of class or work missed in the week following the clinic visit as a continuous 

variable from 0 to 5. We dichotomized this variable to taking at least one day off versus no 

missed work or school. Patients reported use of public dining facilities as a categorical variable 

by indicating which, if any, of the 5 campus dining facilities they had attended during the week 

following their clinic visit. A binary outcome was created for attendance to any public dining 

commons versus no attendance to public dining commons. There were three types of public 

transportation that a patient could select: bus, rideshare, and carpool. We dichotomized use of 

public transportation to any versus none. We define “public transportation” as any transportation 

that involves at least one other person regardless of relationship to the patient.  
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 We then created a continuous variable for “social distancing score” by subtracting the 

number of public dining facilities and number of public transportation modes used from the 

number of days of work or class missed. This created a social distancing categorical variable, 

with values from -8 (used all dining and transportation options and did not miss school) to 5 

(stayed home for 5 days and did not use any public transportation or dining facilities). We 

assessed the normality of distribution using a histogram of the social distancing score and a Q-

Q plot.141 R version 3.3.1 was used to perform all analyses. 

Univariate Analysis 

Exploratory data analysis involved the examination of the data set. Next, an item 

analysis was conducted for each variable individually to assess for missing data, lack of 

variability, and outliers. All categorical and dichotomous variables were plotted using a stem and 

leaf plot to assess variability, while continuous variables were plotted using histograms and line 

graphs.  

Following the item analysis, correlation analysis was used to assess the relationship 

between the individual variables. All variables with a high correlation coefficient were 

considered by the investigators for combination, exclusion, or inclusion based on the covariate 

relationship to the exposure-outcome pathway. Recoding, for example a continuous to 

categorical variable, was assessed on a case-by-case basis and transformed as necessary to 

satisfy model assumptions. We did not transform any covariates and chose to include all in our 

model building.  

  We then conducted bivariate analyses for the initial relationships between influenza 

diagnosis and each question of the survey. A chi-square test was used to assess for significant 

differences between groups per variable. For continuous variables, we used simple linear 

regression.  
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 Multivariate Analysis  

Finally, a logistic regression was fitted to the data using a manual forward addition 

technique based on Aikake Information Criteria.104 We first manually cross validated our data 

using a 10 times repeated, 10 fold process. Each outcome variable was assessed as a separate 

model in our analyses. We built an ordinal logistic regression as described by Hosmer, 

Lemeshow and Sturdivant for self-reported stress level.104 We then built 3 binary logistic 

regression models for each of the 3 social distancing score component variables: whether a 

patient missed class or work (yes vs no), whether a patient used any public dining commons 

(yes vs no) and whether the patient used any public transportation (yes vs no). The model 

building process was similar between each category as only the outcome included in our model 

building changed.  

We used the following covariates in our model building: influenza vaccination status, 

days with a fever, severity of cough, residence type, reported reliance on family and friends, 

antibiotic prescription, antiviral prescription, clinic assignment, duration of symptoms, and the 

day of the visit. These covariates capture baseline illness severity, baseline symptom duration, 

prescriptions received, and follow up for 5 days post appointment.  

We used a simple regression model building strategy using a manual forward addition 

technique for the analysis of the relationship between influenza diagnosis and the composite 

social distancing score variable.  

7.3 RESULTS 

Between December 2016 and February 2016, 300 students with ILI were enrolled in our 

study and tested for influenza using a rapid PCR test. Of the 300 patients, 242 completed the 9 

questions follow up survey (81% response rate). Fifteen patients were excluded from analysis 

because they had an invalid PCR test (n=2) or did not have a cough at their initial visit (n=13). 

Therefore, 227 patients were included in our final analysis.  
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Responses to the follow-up survey are summarized in Table 7.1, stratified by influenza 

diagnosis. Patients with PCR confirmed influenza were less likely to report a dramatic 

improvement in their cough after 5 days, reported a longer duration of fever, and reported 

relying on their social network “a lot”. Persons without influenza were more likely to report 

having received an influenza vaccination (23.8% vs 4.9%, p=0.02).  

Self-Reported Stress Level 

The final adjusted ordinal regression model for the prediction of stress score is 

summarized in Table 7.2. The final model included the result of the PCR test for influenza, 

which was our exposure of interest, and the number of days of work or classed the patient 

reported missing. We used a Hosmer-Lemeshow goodness of fit test to examine the calibration 

of this explanatory model; the chi-square statistic was 25.2 and the p value was 0.67, indicating 

a good fit. In the multivariate analysis, there was a nonsignificant association between influenza 

diagnosis and increased self-reported stress level (aOR: 1.32; 95% CI: 0.79, 2.21). Patients 

who reported an increased number of days of work or class missed were significantly less likely 

to report increased levels of stress (aOR: 0.68; 95%CI: 0.55, 0.85).  

Social Distancing: Univariate analysis  

We first performed univariate analysis on our three binary outcomes for social 

distancing: missing any work or class, using any public transportation, and attending any public 

dining commons. Patients with PCR confirmed influenza were significantly more likely in the 

univariate analysis to miss days of work or class and to not use any public transportation (Table 

7.1). However, there was no difference between influenza positive and negative patients 

regarding attendance to public dining commons (p=0.19). Patients were assigned a social 

distancing score based on their responses to number of days of classes missed, number of 

dining commons visited, and number of transportation services used. We first examined the 

social distancing score as a continuous variable. When plotted as a histogram in Figure 7.1, this 
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score appears to be skewed to the left in distribution. A Q-Q plot was generated, confirming an 

non-normal distribution in Figure 7.2. Of the 227 patients included in our analysis, 72 patients 

reported social distancing based on this definition. Finally, patients without influenza were more 

likely to report decreased social distancing per our composite score (83.8% vs 54.9%, p<0.01) 

in the univariate analysis.  

Social distancing: Multivariate analysis 

Separate binary logistic regression models were fit with the likelihood of missing class or 

work, eating in public dining commons, and using public transportation as the dependent 

variables. A Hosmer-Lemeshow test was used to assess goodness of fit for each model; the 

statistics are reported in Tables 3.3 to 3.6. All final adjusted explanatory models were deemed a 

good fit. Patients with PCR confirmed influenza were significantly more likely to miss days of 

class or work (aOR: 3.86; 95% CI: 1.84,8.09; Table 7.3). However, there was no association 

between having PCR confirmed influenza and any attendance of public dining commons or any 

use of public transportation (Tables 7.4 and 7.5). Patients with PCR confirmed influenza were 

more likely to implement social distancing as defined by our social distancing score in the linear 

regression (β : 1.65; 95%CI: 1.01, 2.29), Table 7.6.  

7.4 DISCUSSION 

 Of the 227 patients who completed follow up surveys, 54% had PCR confirmed 

influenza. In the univariate analysis, patients with PCR confirmed influenza were significantly 

less likely to report improvement in their cough and reported more days with a fever. Influenza 

negative students were more likely to have received the influenza vaccination at least 2 weeks 

before their visit; 76% of influenza negative patients were still unvaccinated, demonstrating lack 

of compliance among college students and suggesting some vaccine efficacy despite a poor 

antigenic match during the 2017/2018 flu season.14 Approximately 75% of patients reported 

missing at least one day of class due to their illness, regardless of the final diagnosis. Students 
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also shared similar responses to change in stress level regardless of their final influenza 

diagnosis. Students were evenly split amongst dining commons on campus, and typically lived 

with at least one other person. This suggests that students may view no difference in need for 

social isolation from public dining commons between an influenza final diagnosis and other 

respiratory diagnosis (pharyngitis, tonsillitis, bronchitis) since they already live in crowded 

conditions.  

Self-reported Stress Levels  

 Stress is documented to affect illness behavior and recovery.142 Patients with PCR-

confirmed influenza diagnosis had no change in the likelihood of experiencing significant stress 

(aOR:1.32 , 95% CI: 0.79, 2.21), while students who reported missing class or work were more 

likely to report a decrease in stress (aOR: 0.68; 95% CI: 0.55, 0.85). One possible explanation 

for this relationship is that students can use their day or days to recover from illness and catch 

up on any missed classroom assignments. Not only are they receiving a physical reprieve from 

the classroom or workplace, they are receiving a mental break. These patients are also 

practicing an isolation technique and not spreading their illness to their coworkers and 

classmates. This demonstrates that students are willing to take advantage of the most basic of 

isolation techniques; skipping a day of class and work.  

Social Distancing 

 It has been previously reported that students are unwilling to miss social gatherings or 

practice good isolation techniques when diagnosed with influenza.45,48 Our analysis of social 

distancing through a composite variable revealed that improved knowledge of their diagnosis by 

using a highly accurate PCR test did not change attendance to public dining commons and use 

of public transportation in the adjusted analysis. On the other hand, students had nearly four 

times greater odds of missing days of class or work if they had PCR confirmed influenza (aOR 

3.9, 95%CI: 1.8, 8.1). Additionally, the composite social distancing score variable analyses 
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revealed a statistically significant positive association with influenza diagnosis (β: 1.70, 95%CI: 

1.05, 2.34). This suggests a need for universities to come up with an alternative dining plan for 

students who are sick, especially in the event of a pandemic. It is possible that use of public 

transportation types and public dining commons are linked; a majority of students who live in the 

residence halls participate in the meal plan. Therefore, despite missing class or work, students 

would still take advantage of transportation to the public dining commons. 

Students were less likely to socially distance if they lived with at least one other person. 

In particular, students who lived in a residence hall were the least likely to practice social 

distancing. Considering the built environment of the residence hall, crowded conditions and 

lively company, it is not surprising that students would continue to interact with their residence 

hall mates. 

Interestingly, students who reported any days with fever were significantly more likely to 

practice some measure of social distancing. This replicates the findings of a study in high school 

students during a pandemic influenza school closure.143 Students were less likely to report doing 

outdoor activities, visiting friends, or working their job if they had a fever.143 Previous studies 

have indicated that the amount of viral shedding and daily fever score are strongly correlated; 

increased viral shedding is associated with increased communicability of the influenza 

virus.144,145 Most students would recognize fever as a sign of active infection. Even though 

number of days of reported fever did not different significantly between influenza positive and 

negative groups, this finding is important to emphasize in future public health campaigns. In a 

pandemic influenza (or other infectious respiratory disease outbreak), it will be important to 

educate the public to practice social distancing when they recognize certain signs and 

symptoms. A fever is easily recognizable, even without a thermometer, for most persons. 

Therefore, this would be a simple measure to reduce potential overcrowding of outpatient 

clinics. 
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 Limitations 

 Our analysis is limited in that we are unable to assess whether a difference in university 

classification (first year, second year, third year, etc.) has an effect on students’ response. 

Students who have been at the university longer or have previously experienced illness may 

have been more likely to socially distance. We also did not have an assessment of emotional 

status at appointment. This could have been useful in measuring student resilience to diagnosis 

of influenza during peak influenza season.  

7.5 Conclusion 

 In our adjusted analysis, patients positive for influenza using a highly accurate rapid 

PCR test for influenza were more likely to report days of missed work or school and decreased 

self-reported stress levels than students negative for influenza. Patient attendance to public 

dining commons and use of public transportation did not vary according to influenza diagnosis. 

We identified several interesting trends, and future research with a larger sample size is 

warranted.  
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Tables and Figures 
 

Table 7.1 Frequency of Responses to Follow Up Survey Questions for Patients Who Received 
Rapid Point of Care PCR Test 

  

Flu Positive 

by PCR 

(n=122) 

Flu negative 

by PCR 

(n=105)   

  N % N % p value * 

Flu vaccination 0.02 

Unvaccinated 98 80.3% 68 64.8%   

Vaccinated in last two weeks 11 9.0% 12 11.4%   

Vaccinated more than two weeks 

ago 13 4.9% 25 23.8%   

Days of class or work missed during 5 days after clinic visit <0.01 

0 days 13 10.7% 41 39.0%   

1 day 30 24.6% 32 30.5%   

2 days 38 31.1% 25 23.8%   

3 days 29 23.8% 5 4.8%   

4 days 8 6.6% 0 0%   

5 days 4 3.3% 2 1.9%   

Dichotomous days of class or work missed <0.01 

Missed no days of class or work 13 10.7% 41 39.0%  

Missed at least 1 day of class or 

work 109 89.3% 64 61.0%  

Self-reported stress level during follow-up 0.31  

A lot less stressed than normal 10 8.2% 11 10.5%   

Slightly less stressed than normal 20 16.4% 16 15.2%   

Average stress 48 39.3% 36 34.3%   

Slightly more stressed than normal 28 23.0% 35 33.3%   

A lot more stressed than normal 16 13.1% 7 6.7%   

Cough severity during follow-up 0.01  

I did not have cough 2 1.6% 14 13.3%   

Improved dramatically 53 43.4% 39 37.1%   

Improve somewhat 57 46.7% 42 40.0%   

No Improvement 11 9.0% 10 9.6%   

Days with a fever during follow-up <0.01  
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0 days 25 20.5% 46 43.8% 

1 day 30 24.6% 33 31.4% 

2 days 34 27.9% 17 16.2% 

3 days 25 20.5% 7 6.7% 

4 days 6 4.9% 0 0% 

5 days 2 1.6% 2 1.9% 

Dining facilities used during follow-up 0.77 

I did not eat at an on-campus dining 

commons 71 60.2% 52 46.0% 

1 dining commons 19 16.1% 17 15.0% 

2 dining commons 12 10.2% 12 10.6% 

3 dining commons 12 10.2% 13 11.5% 

4 dining commons 5 4.2% 8 7.1% 

All on campus dining commons 3 2.5% 3 2.7% 

Dichotomous dining facilities used 0.19 

I did not eat at an on-campus dining 

commons 71 58.7% 52 50.0% 

I ate at 1 or more dining commons 50 41.3% 52 50.0% 

Public transportation forms used during follow-up 0.07 

I did not use public transportation 30 25.4% 14 12.4% 

1 form of public transportation 50 42.4% 46 40.7% 

2 forms of public transportation 24 20.3% 33 29.2% 

3 forms of public transportation 18 15.3% 12 10.6% 

Dichotomous public transportation use 0.03 

I did not use public transportation 30 24.8% 14 13.5% 

I used at least 1 form of public 

transportation 91 75.2% 90 86.5% 

Residence type 0.32 

Residence Hall 33 27.0% 32 30.5% 

Apartment or house 84 68.9% 65 61.9% 

Apartment or house, alone 4 3.3% 8 7.6% 

Live at home with family 1 0.8% 0 0.0% 

Homeless 0 0.0% 0 0.0% 

Reliance on social network 0.03 

A Lot 32 26.2% 13 12.4% 
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* Pearson Chi-Square test 
**One student response missing  

Occasionally 36 29.5% 40 38.1%   

Not at all 54 44.2% 52 49.5%   

Composite Social Distancing Score (-8 to 5) <0.01 

Score of 5 1 0.8% 0 0.0%  

Score of 4 6 4.9% 1 0.8%  

Score of 3 15 12.3% 4 3.8%  

Score of 2 15 12.3% 3 2.9%  

Score of 1 18 14.8% 9 7.4%  

Score of 0 15 12.3% 17 16.2%  

Score of -1 14 11.5% 19 18.1%  

Score of -2 14 11.5% 20 19.0%  

Score of -3 9 7.4% 12 11.4%  

Score of -4 5 4.1% 6 5.7%  

Score of -5 3 2.5% 4 3.8%  

Score of -6 6 4.9% 5 4.8%  

Score of -7 0 0.0% 4 3.8%  

Score of -8 0 0.0% 0 0.0%  
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Figure 7.1 Histogram of Social Distancing Score 
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Figure 7.2 Q-Q Plot to Assess Normality of Social Distancing Score 
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Table 7.2 Final Ordinal Regression for the Impact of Influenza Diagnosis on Self-
Reported Stress Level 

Variable 
β 

coefficient 
Standard 

Error p value 
Hazard Ratio 

(95%CI) 

Flu diagnosis 
using PCR 0.28 

0.26 
0.29 1.32 (0.79, 2.21) 

Number of days 
of work or class 
missed 0.38 0.11 <0.01 0.68 (0.55, 0.85) 

Hosmer-Lemeshow chi-square statistic= 25.2, p=0.67 
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Table 7.3 Final Manual Forward Addition Selection Method for Logistic Regression for 
the Impact of Influenza Diagnosis on Number of Days of Work and Class Missed 

Variable 
β 

coefficient 
Standard 

error p value 
Odds Ratio 

(95%CI) 

Flu Diagnosis 1.32 0.37 <0.01 3.74 (1.80, 7.80) 

Number of days with a 
fever 0.81 

0.20 
<0.01 2.24 (1.52, 3.32) 

Intercept -0.22 0.25 0.39 ------ 

Hosmer-Lemeshow chi-square statistic=4.76, p=0.78 
Area under the receive operating characteristic curve =0.79 
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Table 7.4 Final Manual Forward Addition Selection Method for Logistic Regression for 
the Impact of Influenza Diagnosis on Attendance to Public Dining Commons 

Variable 
β 

coefficient 
Standard 

Error p value 
Odds Ratio 

(95%CI) 

Flu Diagnosis 0.65 0.22 0.19 0.65 (0.34, 1.24) 

Living in 
Apartment/House 4.87 

5.34 
0.15 4.87 (0.57, 41.7) 

Living in a Residence 
Hall 42.2 

47.9 
<0.01 42.2 (4.56, 390.6) 

Clinic 2 3.17 1.23 <0.01 3.17 (1.48, 6.78) 

Clinic 3 1.13 0.54 0.80 1.13 (0.45, 2.86) 

Number of public 
transportation types used 1.63 0.30 <0.01 1.63 (1.14, 2.35) 

Hosmer-Lemeshow chi-square statistic=48.6, p=0.26 
Area under the receive operating characteristic curve: 0.82 
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Table 7.5 Final Manual Forward Addition Selection Method for Logistic Regression for 
the Impact of Influenza Diagnosis on Use of Public Transportation 

Variable 
β 

coefficient 
Standard 

Error p value 
Odds Ratio 

(95%CI) 

Flu Diagnosis -0.23 0.41 0.58 0.80 (0.35, 1.79) 

Number of Public 
Dining Commons 
Attended 0.96 

 
0.28 

<0.01 2.60 (1.48, 4.58) 

Number of Days of 
Work and Class 
Missed -0.42 

 
0.15 

<0.01 0.67 (0.49, 0.89) 

Intercept 1.78 0.39 <0.01 ------ 

Hosmer-Lemeshow chi-square statistic=53.23, p=0.05 
Area under the receive operating characteristic curve: 0.79 
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Table 7.6 Final Stepwise Simple Linear Regression for the Impact of Influenza 
Diagnosis on Composite Variable Social Distancing 

Variable 
β coefficient (95% 

CI) 
Standard Error 

p value 

Flu Diagnosis 1.70 (1.05, 2.34) 0.32 <0.01 

Intercept -1.60 (-2.06, -1.13) 0.24 <0.01 

F Test statistic: 27.4, p <0.01 
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Chapter 8 

Conclusion 

This concluding chapter serves as brief summary of the problems addressed by this 

dissertation, the methods and results of each of the three aims, and to discuss possible future 

directions for research. This chapter is meant to satisfy the requirements of the dissertation and 

will not present novel findings or conclusions.  

The Issue: Influenza in a College Health Population 

Influenza continues to have a significant burden in the United States, as seen in the 

ongoing 2017-2018 outbreak.146 The rates of influenza like illness diagnosis and hospitalization 

have been the highest levels in recent years, underscoring the need for proper treatment and 

prevention.146 Influenza related outpatient visits rose to 7.7% in early February, mirroring the 

peak activity of the 2009 influenza epidemic.146 The 2009 epidemic greatly affected the college 

health population as emphasized in the literature review of this dissertation (chapter 2). Aside 

from the 2009 epidemic, college and university students are not the typical focus of influenza 

research as they do not represent a vulnerable population. Questions about diagnosis, 

treatment, and prognosis persist in a range of populations. 

In an effort to identify how influenza affects a college health population, this dissertation 

examined the diagnosis, treatment, and follow up behavior of persons with and without 

influenza. We used a quasi-experimental design of 300 patients that received PCR-guided care 

to validate current clinical decision rules and develop two novel clinical decision rules. We then 

compared the PCR-guided care patients to 771 patients that received usual care to assess the 

likelihood of guideline supported care, antibiotic prescription, antiviral prescription, and return 

visit within 2 weeks. Finally, the 300 PCR-guided care patients received a follow up survey 
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assessing their symptom severity and behavior for the 5-days post appointment. By better 

understanding influenza in adults, particularly young adults, we hope to enable clinicians, public 

health practitioners, and researchers to better prepare for future pandemics. 

Aim 1: A Systematic Review and External Validation of Existing Clinical Decision Rules for the 

Diagnosis of Influenza  

In our first aim, we identified current clinical decision rules (CDRs) for the diagnosis of 

influenza through a systematic review of four online databases. Following our search, we 

calculated summary measures for CDRs with at least 3 reported studies. Each CDR was then 

externally validated in our college health population through classification accuracy and 

calibration tests. Finally, we fit two novel CDR using novel methods: lasso regression and a fast 

and frugal tree. 

Our systematic review identified 16 studies that reported 8 types of heuristics, 12 

multivariate models, 4 ILI case definitions, 4 classification and regression trees (CARTs), and 1 

point score. We calculated summary statistics for the “cough+fever” and “cough+fever+acute 

onset” CDRs, since at least 3 studies reported their use in a validation population (7 studies and 

4 studies, respectively). Meta-analysis of these two CDRs revealed good discrimination for 

influenza diagnosis (area under receiver operating characteristic curve [AUROCC]: 0.70 and 

0.78, respectively). Twelve total CDRs were externally validated in our population, and were 

poor to fair in their discrimination with the exception of the “cough+fever+myalgia” CDR 

(AUROCC: 0.70). Lasso logistic regression yielded a CDR including myalgia, chills, fever, and 

the absence of tonsillar exudate as predictors of influenza in college students (AUROCC: 0.77). 

Similarly, our fast and frugal tree yielded a CDR that includes myalgia, chills, fever, and acute 

onset of less than or equal to 48 hours (AUROCC: 0.69).  

We successfully updated a 2011 systematic review of CDRs for influenza diagnosis. 

“Cough+fever” and “cough+fever+acute onset” heuristics remain fair predictors of influenza 
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diagnosis. Our external validation of CDRs demonstrated that the Flu Score had the best 

classification accuracy. The predictors of influenza diagnosis in a college health population 

present in both of our internally validated CDRs include fever, myalgia, and chills. We have 

identified two new CDRs in need of external validation in the college health population, and 

possibly in other groups.  

AIM 2: Identify whether the use of a rapid point of care PCR test for the diagnosis of influenza A 

or B increases the number of patients who receive guideline consistent treatment 

 We assessed the impact of PCR-guided care on guideline supported care and the 

likelihood of return visits in a quasi-experimental prospective study. Our adjusted analyses 

showed that PCR-guided care did not increase the likelihood of guideline supported care but did 

significantly affect prescriptions received and the likelihood of a return visit. Patients who 

received PCR-guided care were significantly more likely to receive an antiviral and to not 

receive an antibiotic. Adjusted analysis also revealed they were significantly less likely to return 

to clinic within 2 weeks. The over-prescription of antibiotics continues to be an issue in the 

treatment of acute respiratory infections; our finding suggests that the use of a highly sensitive 

and specific test assists in combating this public health issue. The reduction in likelihood of 

return visit is also important as outpatient care facilities may become overwhelmed during 

influenza outbreaks. Also, return visits medicalize illness behavior by reinforcing that every 

respiratory tract infection requires a physician visit or prescription.147 

AIM 3: Influenza Diagnosis and Student Behavior 

 We prospectively enrolled patients to receive a rapid PCR test for influenza diagnosis 

from December 2016 to February 2017 at a university health clinic, as described in aim 2. 

Patients then received a 10 question follow up survey assessing their behavior, vaccination 

status, and severity of symptoms after 5 days. We used logistic regression to assess the 

relationship between influenza diagnosis to self-reported stress level and the three social 
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distancing outcomes. Finally, we created a composite social distancing score using these three 

measures and performed a simple linear regression to evaluate the relationship. 

Of the 300 patients enrolled, 227 had a cough at their appointment, received a final rapid 

PCR test result, and completed the survey. Patients with an influenza diagnosis were more 

likely to report a decrease in stress levels when adjusting for number of days of work or class 

missed. Students with influenza were also more likely to report any absence from work or 

school. No difference was seen in the relationship between influenza diagnosis and attendance 

to dining commons or use of public transportation. Patients with PCR confirmed influenza were 

more likely to implement social distancing as defined by our social distancing score in simple 

linear regression. In a college health population, PCR-confirmed influenza diagnosis decreased 

reported stress and increased the number of days of absence from work or class. Students are 

willing to implement some social distancing, but universities must consider plans for dining 

services for sick students to encourage isolation in a pandemic.  

Future Directions 

Future studies should be conducted to replicate the findings of our studies. In particular, 

the external validation of our two novel CDRs presented in aim 1 in a new adult population 

would strengthen the generalizability of our results. A future CDR could incorporate surveillance 

data in the prediction of influenza diagnosis. In regard to the findings from our second aim, a 

randomized clinical trial addressing the use of the rapid PCR test for influenza diagnosis and the 

likelihood of guideline consistent care would ascertain the true relationship.  Future work may 

focus on the use of other highly accurate diagnostic tests for common respiratory infections and 

their relationship to prescription of antibiotics or antivirals. Antibiotic stewardship remains an 

important issue in public health; this presents a potential new way to attack their over 

prescription. Student behavior after an influenza diagnosis did appear to follow previous 

findings44, but we were able to build on this by categorizing the means by which a student 
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socially distanced. Examining a new cohort of a college health population may replicate our 

findings, and a direct comparison of the impact of more and less accurate diagnosis would be 

interesting. Finally, the consideration of vaccination status and implementation of other 

prevention methods such as social distancing could inform college and university administrators 

to best practices.  
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Appendix A 
 

Assessment of study quality using QUADAS criteria adapted to this clinical question 

Definitions for QUADAS table items 

1. Was the spectrum of patients representative of the patients who will receive the test in 

practice? 

Yes: Consecutive patients presenting with cough, influenza like illness symptoms, or 

suspected influenza. 

No: Other  

 

2. Were selection criteria clearly described? 

Yes: Inclusion and exclusion criteria were clearly described 

No: Other 

 

3. Is the reference standard likely to correctly classify the target condition? 

Yes: Viral culture or RT-PCR was used to classify the target condition 

No: Other 

 

4.Is the time period between reference standard and index test short enough to be reasonably 

sure that the target condition did not change between the two tests? 

Yes: Clinical assessment obtained at the same time as reference standard test. 

No: Other 

 

5. Did the whole sample or a random selection of the sample, receive verification using a 

reference standard? 

Yes: All patients received a reference standard test 

No: Not all patients received the same reference standard test.
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6. Did patients receive the same reference standard regardless of the index test result? 

Yes: All patients received the same reference standard test 

No: Different reference standard tests were used, depending on the results of the index 

test or other factors 

 

7. Was the execution of the CDR described in sufficient detail to permit replication of the test? 

Yes: The CDR was described in sufficient detail or represents a standard, widely used 

sign, symptom. 

No: Other 

8. Was the execution of the reference standard described in sufficient detail to permit its 

replication? 

Yes: The reference standard test was described in sufficient detail or represents a 

standard, widely used test elsewhere described 

No: Other 

 

9. Was the clinical decision rule results interpreted without knowledge of the results of the 

reference standard? 

Yes: CDR was used by personnel prior to results of the reference standard test, or this 

could be assumed based on the time needed to perform the reference standard test in 

relation to the CDR. 

No: Other 

 

10. Were the reference standard results interpreted without knowledge of the results of the 

clinical decision rule? 

Yes: The reference standard test was interpreted by personnel masked to the CDR 

results, or this could be assumed based on usual reference laboratory practices. 

No: Other 

 

11. Were the same clinical data available when test results were interpreted as would be 

available when the test is used in practice 

Yes: The CDR was performed or interpreted by personnel who had access to clinical 

data about the patient. 
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No: Other 

12. Were uninterpretable/ intermediate test results reported?

Yes: Uninterpretable or intermediate results were reported or numbers added up 

correctly 

No: Uninterpretable or intermediate results were not reported or there appear to be 

missing data. 

13. Were withdrawals from the study explained?

Yes: Withdrawals were adequately explained and accounted for by the researchers, or 

numbers add up (no missing data or patients). 

No: Other 
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Table 1.3 Demographic characteristics of UGA student population   

Strata Frequency Percentage (%)* 

Race 

American Indian 37 0.10 

Asian 3549 9.83 

African American/Black 2930 8.11 

Hispanic or Latino 1769 4.90 

Native Hawaiian or Pacific 
Islander 

37 0.10 

Unknown** 1630 4.51 

2 or more races 1224 3.39 

White 24954 69.07 

Sex 

Male 15338 42.45 

Female 20792 57.55 

Enrollment Status 

Full Time 32553 90.10 

Part Time 3577 9.90 

TOTAL 36130 100% 

*Percentages are rounded to nearest hundredth. 

**Student with no declared race are listed as unknown. 
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Appendix B 
Patient Recruitment Script 
 
At the UGA Health Center, all patients are asked to provide a reason for their visit to the primary 
care clinic. Among the most common reasons are acute infections such as cough, sore throat, 
suspected influenza, sinus symptoms, and urinary tract infections. This information is taken by a 
medical assistant and entered in the electronic health record (EHR). He or she then selects a 
template appropriate for the problem, such as "Sore throat template" or "Respiratory tract 
infection template". We will program the EHR to identify patients presenting with cough or 
suspected influenza or self-diagnosed influenza during the study period. If a patient has one of 
those reasons for visit, a reminder will pop-up for the medical assistant, asking him or her to 
attempt to recruit the patient for the study. The script for the medical assistant is as follows: 
 
Dr. Mark Ebell from the UGA College of Public Health is doing a research study on the 
diagnosis and treatment of influenza, and we'd like to ask you to participate. The purpose of the 
study is to see if more accurate tests for influenza can improve the quality of care.  
 
We are inviting patients 18 years and older making a first visit to the doctor cough or suspected 
influenza to participate. Patients who are severely ill are not eligible.  
 
It will take approximately 2 to 3 minutes to participate in the study. During this time, we will use 
a thin, flexible swab to get a sample of secretions from the back of your nose. This is the same 
kind of swab used for other kinds of rapid flu tests that you may have had in the past. Your 
doctor will receive the results of this new, highly accurate flu test. 
 
The main incentive to you is that if you participate, you will receive a $25 gift card. We do not 
expect that you will have any direct benefit from participating. The only potential harm is mild, 
brief discomfort from the nasal swab. If you have any questions, you can contact Dr. Ebell at 
706-542-1585. 
Checklist for eligibility 
Does the patient have a complaint of "cough", "cough and 
fever", "flu" or "suspected influenza"? 
 

☐Yes ☐No  

Is the patient interested in participating in the study? ☐Yes ☐No 

 

Initial visit to a clinician for this episode of illness and onset 
within the past week? 
 

☐Yes ☐No 

 

Is patient at least 18 years of age? 
 

☐Yes ☐No 

Does the patient speak English? 
 

☐Yes ☐No 

Is the patient not severely ill or in distress? 
 

☐Yes ☐No 

If "Yes" to all, obtain informed consent (next page) 
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UNIVERSITY OF GEORGIA ADULT CONSENT FORM 

Title of Study: Accuracy of signs and symptoms for diagnosis of influenza 

Researcher’s Statement 

We are asking you to take part in a research study. Before you decide to participate in this 
study, it is important that you understand why the research is being done and what it will 
involve. This form is designed to give you the information about the study so you can decide 
whether to be in the study or not. Please take the time to read the following information 
carefully. Please ask the researcher if there is anything that is not clear or if you need more 
information. When all your questions have been answered, you can decide if you want to be in 
the study or not. This process is called “informed consent.” A copy of this form will be given to 
you.  

This study will be performed, in part, at the University Health Center (UHC). Refusal to 
participate or decision to stop participating at any time will not compromise my access to care, 
treatment, and UHC services not related to the research, if I otherwise have such access. If I 
have a health record at UHC, my participation in this project will be noted on the summary list 
unless I specifically request that it not be added. 

Principal Investigator: Mark H. Ebell MD, MS 
Department of Epidemiology, College of Public Health 
University of Georgia 
706-542-1585 (l), 706-247-4953 (m), or ebell@uga.edu 

Purpose of the Study 

The purpose of this study is to evaluate the impact of a highly accurate PCR test for influenza 
on the appropriateness of prescribing and on the need for follow-up visits, as well as to evaluate 
accuracy of common signs and symptoms, alone and in combination, for the diagnosis of 
influenza. We will also track any treatments given, and whether you have to return to or call the 
clinic after this visit for the same problem. About 5 days from now, you will receive a text or 
email asking you to respond to a brief (2 minute) online survey about your symptoms and 
recovery. 

Study Procedures 

If you agree to participate, we will perform a test for influenza. The test involves taking a swab 
and inserting it into the back of the nose, near the back of the throat (the "nasopharynx") to get 
a sample of fluid secretions. The swab will be tested for influenza A and Influenza B (two strains 
of the virus) and the result will be given to your doctor. It takes about 20 minutes to run the test. 
In addition, about 5 days from now, you will receive a text or email asking you to respond to a 
brief (2 to 3 minute) online survey about your symptoms and recovery. Using the electronic 
health record, the research team will determine the signs and symptoms that were recorded, 
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any tests or treatments ordered, and whether you call or return to the clinic during the next two 
weeks. It is important that you know that all information will be kept confidential, and stored in 
secure servers without use of social security numbers.  

Risks and discomforts 

The test for influenza involves inserting a swab into the nasopharynx (back of the nose). This is 
the same procedure currently used for the current rapid flu test at the UGA Health Center. In 
both cases, there may be a few seconds of discomfort when the swab touches the tissue at the 
back of the hose. Otherwise there are no risks to the test.  

Benefits 

We expect that the information will provide important benefits for society and humankind by 
helping doctors take better care of patients with suspected influenza. This includes making sure 
the right patients get an antibiotic or Tamiflu. You are not expected to directly benefit from 
participating other than the incentive described below. 

Incentives for participation 

In exchange for participating in the study, you will receive a gift card for $15 today. If you 
respond to the brief follow-up survey in 5 days, you will receive an additional $10. 

Clinical Trial Notification 

A description of this clinical trial will be available on http://www.ClinicalTrials.gov, as required by 
U.S. Law. This Web site will not include information that can identify you. At most the Web site 
will include a summary of the results. ClinicalTrials.gov is a website that provides information 
about federally and privately supported clinical trials. You can search this Web site any time.  

Privacy/Confidentiality 

We will be using information from your health record about your visit today and any phone calls 
or return visits for the same problem during the next two weeks. The information will be retained 
in a secure manner on a password protected computer, and any paper files will be stored in a 
locked room. We will not download your name, address, or date of birth into the study dataset. 
The medical record number will be used to create a single data table for analysis, but that 
number will then be deleted. This study is funded by Roche Diagnostics, who makes the test, 
which has been approved by the FDA.  

The project’s research records may be reviewed by the departments at the University of 
Georgia responsible for regulatory and research oversight. Researchers will not release 
identifiable results of the study to anyone other than individuals working on the project without 
your written consent unless required by law. 

Taking part is voluntary 

Your involvement in the study is voluntary, and you may choose not to participate or to stop at 
any time without penalty or loss of benefits to which you are otherwise entitled. If you do not 
participate, you will receive usual care from your physician, which may or may not include a flu 

http://www.clinicaltrials.gov/
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test, depending on their usual decision-making. If you decide to stop or withdraw from the study, 
the information/data collected from or about you up to the point of your withdrawal will be kept 
as part of the study and may continue to be analyzed.  

If you are injured by this research 
The researchers will exercise all reasonable care to protect you from harm as a result of your 
participation. In the event that any research-related activities result in an injury, the sole 
responsibility of the researchers will be to arrange for your transportation to an appropriate 
health care facility. If you think that you have suffered a research-related injury, you should seek 
immediate medical attention and then contact Mark H. Ebell MD, MS right away at 706-542-
1585. In the event that you suffer a research-related injury, your medical expenses will be your 
responsibility or that of your third-party payer, although you are not precluded from seeking to 
collect compensation for injury related to malpractice, fault, or blame on the part of those 
involved in the research.  

If you have questions 

The main researcher conducting this study is Mark H. Ebell MD, MS, a Professor of 
Epidemiology at the University of Georgia. Please ask any questions you have now. If you have 
questions later, you may contact Dr. Ebell at ebell@uga.edu or at 706-542-1585. If you have 
any questions or concerns regarding your rights as a research participant in this study, you may 
contact the Institutional Review Board (IRB) Chairperson at 706-542-3199 or irb@uga.edu.  

Research Subject’s Consent to Participate in Research: 
To voluntarily agree to take part in this study, you must sign on the line below. Your signature 
below indicates that you have read or had read to you this entire consent form, and have had all 
of your questions answered. 
_________________________ __________________________ ____/____/_______ 
Name of Researcher  Signature Date 

_________________________ __________________________ ____/____/_______ 
Name of Participant  Signature Date 

Participant email address in order to send you your e-gift card at end of study: 

UGA email: ________________________________________________ 

UGA 81 number: 81_________________________________________ 

Compensation for Participation Record 
This is a compensation record for participation in the “Accuracy of Signs and Symptoms for 

Diagnosis of Influenza” under the direction of  
Dr. Mark Ebell at the UGA Health Center. 

Participant Name:___________________________________________ 

Type of Compensation: 

 Amazon Gift Card $15 Date: ___________ 

 Amazon e-Gift Card $10 Date: ___________ 
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Signature of Participant: ______________________________________ 
 
Participant Address: _________________________________________ 
     

 _________________________________________ 
 
 _________________________________________ 

 
 
Name of Witness: ___________________________________________ 
 
Signature of Witness: ________________________________________ 
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