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Abstract

The usual methodology for detection of differential item functioning (DIF) is to examine

differences among manifest groups formed by such characteristics as gender, ethnicity, age,

etc. Unfortunately, membership in a manifest group is often only modestly related to the

actual cause(s) of DIF. Mixture item response theory (IRT) models have been suggested as

an alternative methodology to identifying groups formed along the nuisance dimension(s)

assumed to be the actual cause(s) of DIF. A multilevel mixture IRT model (MMixIRTM) is

described that enables simultaneous detection of DIF at both examinee- and school-levels.

The MMixIRTM can be viewed as a combination of an IRT model, an unrestricted latent

class model, and a multilevel model. Three perspectives on this model were presented: First,

the MMixIRTM can be formed by incorporating mixtures into a multilevel IRT model;

second, the MMixIRTM can be formed by incorporating a multilevel structure into a mixture

IRT model; and third, the model can be formed by including an IRT model in a multilevel

unrestricted latent class model. A fully Bayesian estimation of the MMixIRTM was described

including analysis of label switching, use of priors, and model selection strategies along with

a discussion of scale linkage. A simulation study and a real data example were presented.

Index words: Bayesian Estimation, Differential Item Functioning, Finite Mixture
Modeling, Item Response Theory, and Multilevel Modeling
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Chapter 1

INTRODUCTION

1.1 Statement of Problem

The Preliminary Scholastic Aptitude Test (PSAT)/National Merit Scholarship Qualifying

Test (NMSQT) is a standardized testing program co-sponsored by the College Board and

the National Merit Scholarship Corporation. The program provides firsthand practice for

the Scholastic Assessment Test (SAT) Reasoning Test to high school students considering

taking the SAT. A major concern of the College Board is providing feedback to schools of

students who have participated in this program.

The Summary of Answers and Skills (SOAS) is a report provided by the College Board

to each school that has 25 or more students participating in the PSAT/NMSQT program.

The SOAS gives a snapshot of a given school’s performance on the PSAT/NMSQT items

administered in a given year. The report allows schools to compare their students’ perfor-

mance with those of students in what is termed a comparable group of schools as well as

with state and national groups. One aspect of the report compares the performance on an

item by item basis of students in the given school with those in the comparision group. This

part of the SOAS report is based on a differential item functioning (DIF) analysis in which

a standardized p-difference (STD P-DIF) analysis is used to compare the item performance

in the given school to that in the comparision group after matching on ability as measured

by the PSAT/NMSQT. The SOAS report provides extensive information about item perfor-

mance of the given school relative to a comparision group defined based on schools with a

similar performance profile.

1
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A comparision group is a statistically created group of schools with this same performance

profile and used for illustrating what the expected performance on each item would have been

of schools like the given school. Feedback from schools indicates that the concept of how the

comparable group is defined is difficult to explain. Further, schools have indicated they would

like greater flexibly in comparing the performance of their students with those from other

schools that have similar demographic characteristics in order to better understand why their

students may or may not have performed as well as students in the comparision group.

1.2 The Purpose of the Study

In this study, we examine an alternative approach to defining comparison groups and provide

a means of detecting items which function differentially. DIF is said to arise, when different

groups of examinees, who are of the same ability, have different probabilities of getting a

question correct (Pine, 1977). More generally, DIF arises when the propensity for a particular

response differs among groups of examinees conditioned on the ability being measured by

the test. The presence of DIF is a serious problem in educational testing as it indicates a

threat to the validity of the test (Thissen, Steinberg, & Wainer, 1988, 1993). The purpose of

this study is to develop a general methodology that identifies and describes characteristics

of comparison groups in the context of a DIF detection analysis. In so doing, the method

provides a descriptive profile of schools that are like the given school based on easily observed

and understood characteristics. This study develops a model that integrates an IRT model,

a finite mixture model (i.e., a latent class model), and a multilevel model. In addition, this

study presents a method of estimating model parameters with a Bayesian solution.

1.3 Significance of the Study

DIF arises when groups differ in item level performance on one or more nuisance dimensions

after conditioning on some matching variable (Ackerman, 1992; Roussos & Stout, 1996). Use

of manifest groups to explain that performance differential, however, does not accurately
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reflect the actual causes of the DIF (DeAyala et al., 2002; Cohen & Bolt, 2005; Cohen,

Gregg, & Deng, 2005; Samuelsen, 2005). The causes of DIF may be more accurately assessed

by analyzing performance along the nuisance dimension(s) rather than focusing on the char-

acteristics associated with manifest group membership such as gender or ethnicity. Previous

research suggests that differences among latent classes may be due, for example, to differ-

ences in curricular experiences (Cohen, Gregg, & Deng, 2005) or to difficulty with particular

types of items rather than with membership in a particular manifest group (Kang & Cohen,

in press). In the general approach described in this study, latent classes are formed on the

basis of homogeneities among class members with respect to response patterns. Members

of these classes differ in ways that are directly related to the response strategies used for

answering questions on the test (Mislevy & Verhelst, 1990; Rost, 1990).

An additional component addressed in the model developed in this study focuses on the

impact of the hierarchical structure that is typical of much educational and psychological

data such as those from the PSAT/NMSQT. If this structure is not accounted for in the

model, the model used to scale the item responses will be inadequate. One result of this

is that detection of the latent classes will likely be obscured. The model proposed for this

study will account for this structure using a multilevel model combined with a mixture IRT

model (MixIRTM). This approach addresses a general problem in the use of standard DIF

detection methods.

DIF detection methods that focus on manifest group membership assume a homogeneity

among group members that is not always justified. Use of the proposed model in this study

accounts for the natural nesting that is characteristic of much educational data, and also

provides a means of explaining why the differences among latent classes may have arisen by

obtaining the homogeneous group (i.e., latent class) with respect to their response pattern.

Such information has greater explanatory power than the standard DIF test and may provide

users such as the College Board with a tool to help schools more easily understand how they

are like schools in the same latent class and how they are dissimilar from schools in other
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latent classes. This explanation is expressed using easy to understand information about the

kinds of questions that are differentially harder or easier for one latent class compared to

others and the characteristics of examinees and of schools that are members of these latent

classes. Providing this type of information may help in conceptualizing the reasons items are

functioning differentially. It also may even be useful for revising the items, as item writers

can incorporate into any revisions the fact that the item functions differently for schools of

a particular latent class.

1.4 Overview of Chapters

The first section of Chapter 2 provides a description of the STD P-DIF method currently

used in the PSAT/NMSQT program. Next, the general rationale for DIF analysis using the

MixIRTM is described, followed by the description of the proposed model.

The multilevel mixture IRT model (MMixIRTM) can be viewed as a combination of an

item response theory (IRT) model, a finite mixture model (or latent class model), and a

multilevel model. We show the development of this model as a combination of three separate

perspectives on modeling item response data using a multilevel mixture modeling approach.

First, the MMixIRTM is considered as an extension of multilevel IRT models and is described

to include individual-level and school-level mixtures. The multilevel structure of test data is

described using this perspective followed by the incorporation of the multilevel structure into

IRT. In the second perspective, the MMixIRTM is described as an extension of a MixIRTM

in order to include the multilevel structure of test data. A finite mixture model is described in

this section and then the incorporation of the mixture model into an IRT model is presented.

In the third perspective, the MMixIRTM is described as an extension of a multilevel latent

class model. This is described as an unrestricted latent class model and used to show this

third perspective indicating how the IRT model can be included in the context of a latent

class model. Finally, the MMixIRTM as a general model and its three special models are
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described as the extension of the three perspectives. In addition, covariates are incorporated

into the MMixIRTM and use of the model for DIF detection is described.

Chapter 3 describes some Bayesian estimation issues that are applicable for both multi-

level IRT and MixIRTMs. A fully Bayesian estimation of the MMixIRTM is presented along

with a simulation study designed to assess the recovery of the proposed model. Chapter 4

presents the results of the simulation study. The proposed model was also applied to the

PSAT/NMSQT Mathematics test to illustrate the proposed model and then that result was

compared with results from the STD P-DIF analysis. Chapter 5 summarizes the methods

and results, and discusses limitations and possible future work.



Chapter 2

Theoretical Background

The presence of DIF is an indication that the items on the test do not measure the latent

variable that is the intended focus of the test (Ackerman, 1992). To address this, the devel-

opment and application of a MMixIRTM is described for use in detection of DIF. The

multilevel portion of the MMixIRTM is used to account for the inherent nesting of stu-

dents within schools that is present in much educational testing data, such as data from the

PSAT/NMSQT. Ignoring this hierarchical data structure can lead to distorted estimates of

model parameters, particularly random components such as ability (Adams, Wilson, & Wu,

1999). In this study, we present a DIF detection model using the MMixIRTM that accounts

for this natural hierarchical structure at both a student-level and at a school-level.

The mixture portion of the MMixIRTM is used to identify latent groups (or classes)

at two levels, the student-level and the school-level. At the student-level, the latent classes

are composed of persons who are homogeneous in their use of particular response strategies

(Mislevy & Verhelst, 1990; Rost, 1990). At the school-level, the latent classes are composed of

schools which share similar characteristics (Vermunt & Magidson, 2005). The MMixIRTM is

extended at the person-level to incorporate person-level covariates such as gender, ethnicity,

socio-economic status. At the school-level, the model is extended to include school-level

covariates, such as socio-economic status and urban/suburban/rural location, to describe

the composition of the latent groups at each level. This model incorporates an approach to

DIF analysis based on differences in examinee response patterns described by Cohen and

Bolt (2005).

6
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In addition, the IRT model portion of the MMixIRTM provides item-level information

that can be used to identify questions which are differentially harder or easier for students

and for schools in each latent group. The complete model is described below, preceded by a

description of the STD P-DIF method.

The STD P-DIF method currently used in the PSAT/NMSQT program is described,

followed by the description of the proposed model in this chapter. Three perspectives on this

model are presented below: First, the MMixIRTM can be formed by incorporating mixtures

into a multilevel IRT model; second, the MMixIRTM can be formed by incorporating a

multilevel structure into a MixIRTM; and third, the model can be formed by including an

IRT model in a multilevel unrestricted latent class model.

2.1 Standardized P-DIF

The STD P-DIF statistic (Dorans & Kulick, 1986) is currently used by the PSAT/NMSQT

program to compare the item performance in a particular school (the focal school) to that

in a reference group population of schools after matching on ability (i.e., the total score).

Dorans and Kulick (1986) describe the STD P-DIF as

STDP −DIF =
S∑

s=1

[
Ks∑S
s=1Ks

· (Pfs − Prs)], (2.1)

where s refers to the score interval of the matching variable, Ks∑S

s=1
Ks

is the weighting factor at

score level s supplied by the standardized group and used to weight differences in performance

between the focal group Pfs and the reference group Prs. STD P-DIF weights the difference

in terms of a numerical index indicating the discrepancy between the reference and focal

groups. This approach emphasizes the importance of comparing groups based on a matching

variable. In practice, the matching variable is the total test score.

As it is implemented, the STD P-DIF is defined as the difference in item perfor-

mance between the focal group and reference group members matched on the appropriate

PSAT/NMSQT score. The calculation of STD P-DIF for PSAT/NMSQT is same as that
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used by Dorans and Kulick (1986). The proportion of students in each score level supplied by

the focal group is given as Ks∑S

s=1
Ks

. As indicated above, in the context of the PSAT/NMSQT

analysis provided in the SOAS, the comparision group is defined as the reference group and

the local group is defined as the focal group.

The STD P-DIF can take values from −100% to 100%. Positive values indicate the

studied item favors the focal group; negative values indicate the studied item favors the

reference group. Currently, the College Board views STD P-DIF values between −5% and

5% as containing negligible DIF, although STD P-DIF values between −10% and −5% and

between 5% and 10% are inspected to ensure that no possible effect is overlooked. Items

with STD P-DIF values outside the −10%, 10% range are more unusual and are examined

very carefully.

2.2 Differential Item Functioning Analysis with Mixture IRT Models

Mixture Models for DIF Analysis. DIF analysis is typically based on manifest grouping

variables such as gender or ethnicity. This approach to DIF analysis makes an implicit

assumption that the characteristic that is the cause of the DIF is homogeneous within a

given manifest group. Unfortunately, this is not usually the case. This approach differs,

however, from a more recently developed one in which DIF is modeled as a function of

nuisance dimensionality not accounted for directly by the model. The nuisance dimensionality

is assumed to be the actual cause(s) of the DIF (DeAyala et al., 2002; Cohen & Bolt, 2005;

Cohen, Gregg, & Deng, 2005). As Samuelsen (2005) has shown, this dimensionality is only

moderately related at best to the manifest variables (e.g., gender or ethnicity) commonly

assumed to be the cause of DIF. Once a DIF item has been identified using the standard

approach for DIF detection, little is known about the examinees for whom the item functions

differentially. This is because DIF detection methods focus on manifest group characteristics

that are associated with, but do not explain why examinees respond differentially to items.
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Samuelsen (2005) notes three problems with respect to the detection of DIF using simply

a manifest grouping variable. First, the manifest grouping variables often do not represent

homogeneous populations. The Hispanic population in the United States, for example, is

diverse in origin and ethnicity, such that classification as Hispanic does not yield a group

that is homogeneous on a dimension related to DIF. With respect to DIF at a school-

level, von Davier and Yamamoto (2004) illustrated this by suggesting that the data can

be viewed as partially missing, because traditional school types are a track system with

students ranked in proficiency, whereas the mixed-school types generally accept a broader

range of students. Concrete examples include types of schools in which some set the standard

of comparisons, perhaps for historic reasons, such as the well-known public and private.

Other schools (e.g., schools based on some faith or religion or on a special educational

theory) may have innovative concepts that make it impossible to classify them as one of the

traditional types. This setup is often due to ambiguous responses that do not allow grouping

all schools into a fixed number of known categories. In addition, not all schools offer the same

opportunities to their students; there are differences in staff, equipment, and course offerings

(O’neill & Mcpeek, 1993). Another example is the recent reform in marking ethnicity in

large-scale assessments; this variable is now allowed to have multiple responses, so students

can indicate more than one ethic group to which they belong. Reference and focal groups

based on ethnicity and gender are quite heterogeneous and their difference are not easy to

describe (Schmitt, Holland, & Dorans, 1993).

The second problem described by Samuelsen (2005) is that the groups being affected by

DIF are not well-defined by the manifest groups being studied. Hu and Dorans (1989) note

that the removal of an item favoring females resulted in slightly lower scores for females

and slightly higher scores for males (Samuelsen, 2005). Scores of both Hispanics and Asian-

Americans, however, were subsequently raised more than scores of males, meaning that

females in those groups actually received an advantage from the removal of the item favoring

females.
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The third problem resulting from use of a manifest grouping variable is that the manifest

groups used for DIF comparisons are not directly related to the issues of learning about which

educators care. Manifest groups defined by characteristics such as gender and ethnicity are

really proxies for something else. As a result, using manifest groups for DIF comparisons

instead of the real sources of the nuisance dimensionality leaves open the clear possibility

that we may actually miss items that are functioning differentially based on the latent

attribute(s). In addition, it is incorrect to assume an item or set of items exhibiting DIF

disadvantages all members of a manifest group. Finally, for items that exhibit DIF, the true

magnitude of the DIF may be obscured due to the lack of overlap between the manifest

groups and the latent classes.

Samuelsen (2005) notes that the use of manifest groups will result in inflated Type I

error rates in detection of DIF, loss of power, and underestimation of the magnitude of the

DIF, when manifest groups and latent classes do not completely overlap. As the amount of

overlap between manifest groups and latent classes decreases, however, so will the power to

correctly identify items with DIF. Further, as overlap decreases, the true magnitude of the

DIF is increasingly obscured, making it more difficult to successfully detect items.

Perspectives of DIF Analysis with Mixture IRT model. The presence of different

response patterns on a test may be an indication of the use of different response strategies.

Depending on the purpose of the test, this may or may not be a problem. When decisions that

rely on uses of different strategies are of interest, however, useful information is less likely to

be obtained, when these different response patterns are ignored. This is the usual case with

existing conventional tests, which are currently often constructed so that differential patterns

of responding are minimized or at least ignored in the analysis. In fact, most current academic

achievement tests are constructed to minimize differentiation among strategies, since such

differences act to lower the reliability of overall scores (Mislevy & Verhelst, 1990). When this

is the focus of test construction, different response strategies may be construed as evidence of

lack of construct validity. The impetus for using MixIRTM is that we assume the population
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of examinees consists of latent classes defined by important differences in use of response

strategies for answering items on a test.

MixIRTMs have been used to detect latent subpopulations that differ systematically

in their responses on educational tests. Rost (1990, 1997) used a mixture Rasch model

(MRM) to detect qualitative differences among examinees. A mixture linear logistic test

model was used to detect random guessing behavior on a multiple-choice test (Mislevy &

Verhelst, 1990). Bolt, Cohen, and Wollack (2001) similarly used a mixture nominal model

to investigate individual differences in the selection of response categories in multiple-choice

items. A MRM with ordinal constraints was used to model test speededness (Bolt, Cohen,

& Wollack, 2002) and to help maintain scale stability in the presence of test speededness

(Wollack, Cohen, & Wells, 2003). MixIRTMs have also been used for detecting differential

functioning on items (Cohen & Bolt, 2005; Cohen, Gregg, & Deng, 2005; Samuelsen, 2005),

a testlet (Cohen, Cho, & Kim, 2005), and suggested an item bundle or a scale (von Davier

& Yamamoto, 2004). This methodology enables the identification of subgroups for which an

item or a group of items function differently among groups without the need of specifying

these groups priori. As Mislevy and Verhelst (1990) and Rost (1990) have noted, this is done

by fitting an IRT model to the different latent classes, each of which differs in the propensity

to answer the items on the test. This is a key element in the rationale for the development

of MMixIRTM in the present study.

Dimensionality is not a function of the test by itself, but a function of the test in the

context of a particular group of examinees (Angoff, 1993). Although the MixIRTM techni-

cally contains only one ability level for each person, it can be viewed as multidimensional

because (1) the probability of a particular response is predicted with class membership, and

(2) the order of item difficulty varies across persons, as in multidimensional models. The

MixIRTM approach is consistent with Ackerman (1992) and with the multidimensional DIF

analysis described by Roussos and Stout (1996), in that both deal with residual variation not

accounted for by unidimensional IRT models. The two approaches are different, however, in
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the following ways. First, Ackerman (1992) and Roussos and Stout (1996) identify construct-

related dimensions that elicit group differences with the multidimensional IRT model. The

MixIRTM approach, on the other hand, follows the method of Cohen and Bolt (2005) that

identifies construct-related categories with the mixture portion of the MixIRTM.

Being dimension-like requires within category homogeneity and between-category quanti-

tative differences and being category-like requires within-category homogeneity and between-

category qualitative differences (De Boeck et al., 2005). As Ackerman (1992) illustrated,

nuisance abilities can be thought of as skills which the examinee uses to solve particular

items but which were not intended to be assessed. In his example, reading ability may be

considered to be a nuisance skill in a test designed to measure the pure ability of algebraic

symbol manipulation. Rost (1990) identifies two latent classes (i.e., categories) that reflected

knowledge states on a physics achievement test. For one class, items that concerned textbook

knowledge were relatively more difficult than items that reflected practical experience. For

the other class, the opposite pattern was observed.

Ackerman (1992) and Roussos and Stout (1996) suggest that the nuisance dimensionality

is not accounted for by a unidimensional IRT model and, as a result, is the cause of DIF.

DIF, from this perspective, is related to the presence of one or more secondary dimensions

not accounted for by the primary construct of interest. The Cohen and Bolt (2005) approach

addresses the issue of residual variation by seeking to isolate unknown or latent groups of

persons. This can be done in an exploratory or a confirmatory fashion. The MixIRTM is used

to identify latent classes of examinees which are homogeneous with respect to item response

patterns. The members of each latent class may vary in ability, but the response strategies

differ among classes.

Embretson and Reise (2000) suggest two ways in which identifying latent classes is impor-

tant for understanding validity. First, if there is only one class, then it is correct to assume

that all examinees use the same strategies. If two or more latent classes are present, however,

the nature of the construct depends on the characteristics of the examinees in each latent
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class. Class membership actually may be a moderator variable, in fact, in the sense that it

may be more important for criterion-related validity for one latent class than another. The

second way in which latent classes are important is in the way in which comparisons are made

among groups. The typical DIF analysis, including that for Ackerman (1992) and Roussos

and Stout (1996) is based on manifest groups. Items that measure the secondary dimension

and produce DIF demonstrate a quantitative difference between the manifest focal and ref-

erence group(s) due to the nuisance dimension(s). However, the DIF analysis described by

Cohen and Bolt (2005) is based on the comparisons among two or more latent classes.

It is often the case in performing a DIF analysis that comparisons are made between

a single reference group and multiple focal groups (Penfield, 2001). It is also possible that

multiple reference groups are possible. It is this latter approach, that is, the possibility of

multiple reference groups, that is most useful for the College Board PSAT/NMSQT program

as that program seeks to provide individual schools with information about the performance

of their particular school relative to other groups of schools.

Patterns of Mixtures. Rost (1990) suggested the primary diagnostic potential of the

MRM (i.e., without school-level mixtures) is in its use for accounting for qualitative dif-

ferences among examinees. The presence of nonintersecting item parameter profiles justifies

the interpretation that there are quantitative differences between abilities among the dif-

ferent latent classes. Similarly, intersecting item parameter profiles indicate the presence of

qualitative differences. De Boeck et al. (2005) describe two types of qualitative differences

between manifest categories. These descriptions also can be applied to differences among

latent categories. The qualitative differences are simple when item difficulties in one latent

class have shifted relative to the item difficulties of the other latent class(-es). The qual-

itative differences are complex when there does not appear to be a discernible pattern to

the item difficulties among the latent classes. When qualitative differences are not present

between two categories, then location (and possibly discrimination) are the same in the two

categories. This is shown in the right panel in Figure 2.1 (reused from De Boeck et al, 2005).
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If item difficulties are same in the two categories, then quantitative differences are present.

Quantitative and qualitative differences are shown in Figure 2.1.

Figure 2.1: Different Kinds of Differences, reused from De Boeck et al. (2005)

Description of Latent Classes. DIF analysis with MixIRTMs has been shown to be

useful for helping to understand the causes of DIF, although with respect to latent popu-

lations of examinees rather than with manifest ones. By classifying individuals into latent

classes, we then focus efforts on describing (and measuring) the members of each class with

respect to specific attributes. Typically, in an educational testing context, we do this by

examining possible attributes of educational advantage or disadvantage. In this study, two

procedures were used to describe the latent classes. First, it is possible to compare the

membership of examinees classified into different latent classes (i.e., the estimated group

membership) with their manifest group memberships and then do some type of associa-

tion analysis. A second method is to model mixtures with covariates that help to describe

members of each latent class.

The use of covariates also has been shown to improve detection of the latent classes

(Smit, Kelderman, & van der Flier, 1999; Cho, Cohen, & Kim, 2006). The covariates that

are selected are those that are of potential help in describing the characteristics of mixtures.
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In the context of this study, this is going to be important at both student- and school-levels.

In other words, the description of mixtures with covariates helps to describe which students

are clustered with respect to both student- and school-level mixtures. Student- and school-

level covariates will be selected from variables in the PSAT/NMSQT dataset. In addition,

the characteristics of mixtures can be described with respect to the content and cognitive

skills required for each item by examining the class-specific item difficulties.

A Strategy of Use of Mixture IRT DIF Procedure. Samuelsen (2005) suggested

a four-step approach for examining DIF using a latent class perspective. The first step is to

assess how many mixtures fit the data based on both statistical model selection criteria and

on substantive rationale. The second step is to determine the appropriateness of the use of

the manifest group as a proxy for the latent group. That is, it is necessary to determine to

what extent the manifest group overlaps with the latent group. Samuelsen (2005) suggested it

would be appropriate to indicate that an item functioned differentially against one manifest

group if the overlap with the latent group was 99 percent. It would be inappropriate, however,

to use the manifest groups for DIF detection if the overlap was only 60 percent. In a two-

group model, this would mean 40 percent of the people have response strategies like those

in the other manifest group. The third step is to examinee the data from the latent class

analysis for clues as to why the items may have functioned differentially. Samuelsen suggests

starting by examining mean abilities within the latent classes, differences in item difficulties

between the latent classes, and patterns of item difficulties within classes. The fourth step

is to use covariates to predict latent class membership.

Comparison of STD P-DIF and MMixIRTM for DIF Detection. STD P-DIF is

based on the observed item scores uses a manifest grouping variable to define the focal and

reference groups. The proposed model for DIF analysis in this study, however, is based on

using a latent variable, as measured by an IRT model, and a latent grouping variable, as

indicated by latent class membership.
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The comparision group for STD P-DIF analysis is composed of students who have critical

reading, mathematics, and writing scores between 20 and 80 inclusive in Grades 10 and 11

for the current school year. Non-standard students are excluded. Formation of comparision

groups with the MMixIRTM approach, however, is done based on students’ item response

patterns.

2.3 Latent Variable Modeling Approaches

In this section, different modeling approaches are described for representing the latent vari-

able (i.e., the latent ability) in the MMixIRTM. Each of the modeling approaches is presented

in order to help distinguish among some of the possible approaches that can be used to model

the latent variable. The intention is to provide a context for the approach taken in this study

in developing the MMixIRTM.

IRT, latent class, and multilevel models each have their own features as shown in Table

2.1. IRT models have an advantage in that they include the invariance property and explicit

functional relationships between response probabilities and the latent variable(s). The unre-

stricted latent class model (LCM), likewise, is useful in that it is often used for the clustering,

that is, for finding homogeneous groups among the data. Multilevel models also can be devel-

oped to account for the multilevel structure that is present in so much educational testing

data.

The three models are combined in Table 2.1 to illustrate how features of each of the

models fit together. The MixIRTM itself is a combination of an IRT model and a LCM.

Multilevel IRT is a combination of an IRT model and multilevel models. Multilevel latent

class model (MLCM) is a combination of multilevel models and LCM. The combined models

do have some flaws as noted in Table 2.1.

The proposed MMixIRTM is described in the sequel as a combination of three different

models: a MixIRTM, a multilevel IRT model, and a multilevel LCM. The three different

combinations lead to three different perspectives for the MMixIRTM as shown in the Venn
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Table 2.1: Features of Models Combined to Form the Multilevel Mixture IRT Model

Model Unique Features Aspects of Flaws
1. IRT Invariance property Mixture, Multilevel

Explicit functional relationship
between response probability and
latent variable

2. (Unrestricted) LCM Data reduction/Clustering IRT, Multilevel
3. Multilevel Incoporation of multilevel structure IRT, LC
4. MixIRTM Multilevel
5. Multilevel IRT Mixture
6. MLCM IRT
7. MMixIRTM None

diagrams in Figure 2.2: First, a MMixIRTM can be formed by the incorporation of mixtures

into a multilevel IRT model; second, a MMixIRTM can be formed by incorporating a multi-

level structure into a mixture IRT model; and third, a MMixIRTM can be composed of an

IRT model included in a multilevel unrestricted latent class model.

IRT Model. The latent variable, ability (θj), is typically modeled in IRT as follows:

θj ∼ N(0, 1), (2.2)

where j = 1, . . . , J students.

Latent Class Model. The latent variable in a LCM is as follows:

θj =
G∑

g=1

πg · θg, (2.3)

where θg ability is discrete in a latent class, and πg is the proportion of students in class g.

In this study, a restricted form of the LCM is of interest.

Multilevel Model. There is no latent variable in the multilevel model for incorpo-

rating measurement error. However, the random effects in the multilevel model are arbitrarily

assumed to be normally distributed in the same way as ability is assumed to be distributed
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Figure 2.2: Latent Variable Modeling
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in IRT model. Combining the two models yields a multilevel IRT model. When the latent

variable is assumed to be discrete, as is the case for the LCM, the result is a multilevel

LCM. Thus, there is some similarity between multilevel modeling and latent variable mod-

eling. This similarity can lead to combined models like a multilevel IRT model, which is a

combination of a multilevel nonlinear model and an IRT model, and multilevel structural

equation modeling (SEM), which is a combination of a multilevel linear model and a SEM.

The multilevel nonlinear model is of interest in this study.

Mixture IRT Model. The latent variable modeling in the MixIRTM is as follows:

θjg ∼ N(µg, σ
2
g), (2.4)
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where j = 1, . . . , J students, g = 1, . . . , G student-level latent class, µg is the mean of ability

for a class g, and σ2
g is the variance of ability for a class g.

Multilevel IRT Model. Modeling of the latent variable in the multilevel IRT model is

as follows:

θjt = γ00 + ujt + νt, (2.5)

where j = 1, . . . , J students, t = 1, . . . , T schools, γ00 is the average ability for school t, ujt

is the ability across students, ujt follows N(0, τ), which τ is the variance of ability at the

student level, and νt follows N(0, ζ), which ζ is the variance of ability at the school level. The

total variance of ability in the multilevel IRT model is decomposed into the student-level

ability variance (i.e., τ) and the school-level ability variance (i.e., ζ).

Multilevel Latent Class Model. The latent variable modeling in a MLCM is as follows:

θjt =
K∑

k=1

G∑

g=1

πk · πg|k · θgk, (2.6)

where j = 1, . . . , J students, t = 1, . . . , T schools, g = 1, . . . , G student-level latent classes,

and k = 1, . . . , K school-level latent classes. If the restricted LCM is used, this is a non-

parametric multilevel IRT model.

Multilevel Mixture IRT Model. Modeling of the latent variable in the MMixIRTM

developed in this study is as follows:

θjtgk ∼ N(µgk, σ
2
gk), (2.7)

where j = 1, . . . , J students, t = 1, . . . , T schools, g = 1, . . . , G student-level latent classes,

k = 1, . . . , K school-level latent classes, µgk is the mean of ability for classes g and k, and

σ2
gk is the variance of ability for classes g and k.

2.4 The Multilevel Structure of Test Data and a Multilevel IRT model

2.4.1 The Multilevel Structure of Test Data

The basic structure of PSAT/NMSQT data is hierarchical in that item responses are nested

within students and students are nested within schools. This is typical of much educational
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data, and creates a data structure which presents problems for estimation of some item-level,

person-level, and school-level parameters. Students within a particular school, for example,

share the same physical environment, and have a set of similar experiences, including similar

instructional sequencing, similar teachers, and similar peers. The assumption that observa-

tions are independent of school effects, therefore, is potentially violated. The result of this

violation is that the standard errors of parameters realized in a traditional regression analysis

will be often too small. This fact makes the traditional regression analyses (i.e., aggregated

regression and disaggregated regression for the multilevel structure) less conservative.

Several studies have demonstrated improvements in parameter estimation for hierarchi-

cally structured data with use of multilevel analysis. With respect to estimates of fixed

parameters, both traditional regression analysis and multilevel analysis have been found to

produce unbiased estimates (Kim, 1990; Bassiri, 1988). The improvement in estimates of

parameters using multilevel analysis arises for random components of the model. This is

because the standard errors of parameters in multilevel modeling are not underestimated.

2.4.2 Multilevel Item Response Theory Model

Multilevel models, also known as hierarchical linear models (HLM), allow the natural mul-

tilevel structure of educational and psychological data to be represented formally in the

analysis of the data (Bryk & Raudenbush, 1992; Goldstein, 1987; Longford, 1993). The com-

bination of HLM with IRT provides more accurate estimation of the standard errors of the

parameters (Adams et al., 1997; Maier, 2001, 2002; Fox, 2005). This combination also has

led to the development of psychometric models for item response data that contain hierar-

chical structure, thus enabling a researcher to study the impact of different predictors such

as schools and curriculum on the lower level units (e.g., students) (e.g., Adams et al., 1997;

Kamata, 2001; Maier, 2001, 2002; Fox & Glas, 2001).
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Kamata’s Three-Level IRT Model

A useful model to begin with is the three-level IRT model developed by Kamata (2001).

This model is explained below and then extensions are made to develop the MMixIRTM.

The IRT portion of Kamata’s model is a Rasch model. The multilevel IRT model formulation

for binary items in that model is presented below.

First-Level Model. The first level of this model identifies the measurement model.

log

[
Pi(θjt)

1− Pi(θjt)

]
= θjt − βijt (2.8)

with j = 1, . . . , J examinees, t = 1, . . . , T schools, for a test of i = 1, . . . , I items, θjt is

the ability of examinee j in school t, and Pi(θjt) is the probability of person j in a school t

answering the item i correctly, and βijt is the difficulty of item i. βijt has two subscripts, j

and t, even though item difficulty is actually a characteristic of the item. The reason is that

at the first level, the regression coefficients in the hierarchical linear model are expressed

for each item, but these are not treated as variables in the regression analysis. The j and t

subscripts for items are removed at the second and third levels of the model.

Second-Level Model. The second level of the model is the student- or person-level of

the model. At this level, the model provides student ability estimates as follows:

θjt = γ0t + ujt , (2.9)

where γ0t is the average ability of individuals js in a school t, and ujt follows N(0, τ), in

which τ is the variance of ability at the student level. Item difficulty estimates are given as

βijt = βit (2.10)

with the change in notation indicating that item difficulties βijt = βit are characterized as

being constant across students.

Third-Level Model. The third level specifies the school-level of the model. At this level,

estimates are provided of school-level ability estimates:

γ0t = γ00 + νt, (2.11)
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where γ00 is the average ability for school t, and νt follows N(0, ζ), in which ζ is the variance

of ability at the school level. Item difficulty estimates are given as

βit = βi (2.12)

indicating that at this level of the model item difficulties, βit = βi, are characterized as con-

stant across schools. One useful outcome of this formulation is that the variance of ability

can be decomposed into two components, a student-level component and a school-level com-

ponent.

Kamata’s model is specified for binary items, but it is also possible to incorporate poly-

tomous items into this same three-level structure. Maier (2002) presented this for a partial

credit model (PCM). Maier’s multilevel PCM model is presented below at level one in the

multilevel model. The multilevel PCM is reformulated here to enable it to be used in the

MMixIRTM being developed in the present study.

First-Level Model. The first level identifies the measurement model. The PCM is based

on the adjacent logit, and is an extension of the Rasch model.

log

[
Pim|m−1,m(θjt)

1− Pim|m−1,m(θjt)

]
= −(θjt − bimjt) (2.13)

with j = 1, . . . , J examinees, t = 1, . . . , T schools, for a test of i = 1, . . . , I items, θjt is the

ability of examinee j in school t, Pim|m−1,m(θjt) is defined as

Pim(θjt)

[Pim−1(θjt) + Pim(θjt)]
, (2.14)

where Pim(θjt) is the probability of person j in a school t selecting category m of the item i

correctly, and bimjt is the item i step parameter. bimjt has both j and t subscripts to enable

its representation as regression coefficients in the HLM, even though the item step parameter

is from the item characteristic curve (i.e., from the second level of the model). In the model

(below), j and t subscripts are deleted at the second- and third-levels.

Second-Level Model. The second level, the student-level, provides student ability esti-

mates,

θjt = γ0t + ujt, (2.15)
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where γ0t is the average ability of individual j in a school t, ujt follows N(0, τ), in which τ

is the variance of ability at the student level, and

bimjt = bimt . (2.16)

This notation indicates that the item step parameters, bimjt = bimt, are constant across

students.

Third-Level Model. Level 3 is the school-level of the model and provides estimates of

school-level ability as

γ0t = γ00 + νt, (2.17)

where γ00 is the average ability for school t, νt follows N(0, ζ), in which ζ is the variance of

ability at the school level, and

bimt = bim . (2.18)

At this level, the notation above indicates that the item step parameters, bimt = bim, are

constant across schools.

The bim in the multilevel PCM are the item step parameters. These can be decomposed

into an overall item difficulty, δi, for item i. This is equivalent to the average of the xth step

parameters for item i, and a category-specific mean deviation, ηim. That is,

bim = δi + ηim, (2.19)

where

δi =

∑x
v=1 biv
x

(2.20)

indicates the location of the item on the ability scale, and ηim = bim − δi is the location of

step x relative to the location of item i.

In this formulation, as in the previous one by Kamata, the variance of ability can be

decomposed into two components, a student-level component and a school-level component.
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Limitations of Multilevel IRT

In this section, some limitations of multilevel IRT models are discussed to provide moti-

vation for the development of the MMixIRTM. One important limitation of multilevel IRT

models is that they do not provide information about group membership beyond that pro-

vided by manifest predictors included in the model. As is noted below, this is consistent with

previous approaches to detection of DIF. It is not necessarily the most useful way to detect

DIF, however, if one is concerned with developing meaningfully related latent classes with

respect to the causes of that DIF.

Information about comparison groups is a necessary feature of any DIF detection method

and a central feature of the method to be developed in this study. We address the description

of comparison groups in the context of a DIF analysis by using an approach that identifies

latent groups in the data. Such groups are not immediately observable but share certain

homogeneous response propensities that can be used to help explain how one latent group

differs from another in item performance. It is these differences in response propensities that

help to explain the causes of DIF.

Individuals may share a common set of response strategies, for example, when answering

test questions (Mislevy & Verhelst, 1990; Rost, 1990). Likewise, schools within the same

latent class may be homogeneous on certain criteria, while differing from schools in

other school-level latent classes in particular and potentially important ways (Vermunt

& Magidson, 2005). The incorporation of mixture models into multilevel IRT enables us

to provide item and ability information for individuals in each student-level latent class

as well as information about performance at the school-level. In this study, therefore, the

multilevel IRT model is extended to include student-level and school-level mixtures. In

addition, covariates are incorporated in the model at both the student-level and school-level

to help describe characteristics of membership in the latent classes that are detected at each

level.
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2.5 Finite Mixture Models and Mixture IRT Models

2.5.1 Finite Mixture Models

Finite mixture models provide an appealing semi-parametric framework in which to model

some unknown distributional shapes and model-based clustering (McLachlan & Peel, 2000).

LCM is finite mixture modeling with categorical response variables. The terms finite mixture

models and LCM are used interchangeably in this study. This kind of modeling began to

emerge in 1960s in the sociology literature as a way of explaining respondent heterogeneity

in survey response patterns involving dichotomous items. In LCM, latent classes are unob-

servable subgroups or segments in the data. Cases (e.g., individuals or students) within the

same latent class are homogeneous on some relevant criteria, and cases in other latent classes

are dissimilar on the same criteria.

The LCM can be parameterized in several ways. Heinen (1996) summarized three different

parameterizations: conditional probability formulation, log-linear formulation, and log-linear

with conditional probability formulation. These three LCM formulations are referred to in

this study as unrestricted LCMs. Each formulation imposes restrictions on the model param-

eters in particular ways. By imposing some restrictions on a LCM, we have a restricted LCM.

A LCM using log-linear parameterization with linear restrictions and an IRT model based

on the cumulative logistic distribution provide comparable results (Heinen, 1996). In fact,

however, there is still a difference between the two models in that the latent variable is

discrete in the linear restricted LC model but continuous in the IRT model.

The log-linear formulation of the unrestricted LCM for the adjacent-categories logits is

as follows:

log

[
Pim(θg)

Pi,m−1(θg)

]
= (uim − ui,m−1) + ui,m−1θg (2.21)

where Pim(θg)
Pi,m−1(θg)

is the logit in which the probabilities for responding in categories m and

m − 1 to item i, uim and ui,m−1, respectively, are category effects of item i, and ui,m−1θg

describes the difference between item i and the latent variable θg. If it can be assumed that
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latent classes are ordered along a latent continuum, the G different logits (where G is the

maximum number of latent classes) can be hypothesized to be linearly related to the latent

variable (Heinen, 1996). This assumption can be formalized by imposing the following linear

restriction on the ui,m−1θg :

ui,m−1θg = ui,m−1
∗ · θg. (2.22)

2.5.2 Mixture Item Response Theory Model

The LCM is based on the assumption of conditional independence of items, which is the

same as the local independence assumption in IRT. The two models differ, however, in

important ways. One important difference is that the latent ability in a LCM is assumed

to be categorical whereas in IRT, it is assumed to be continuous. The result is that the

MixIRTM, which is itself a combination of LCM and IRT, permits within-class variation on

the latent variable θ. Members within a latent class formed using a MixIRTM, in other words,

experience the same propensity for a response to each of the items on the test. That is, the

IRT model within a latent class is the same for all members of the class, although examinees

in the same class can vary on the underlying ability. In the LCM, however, examinees within

a latent class are homogeneous in both their responses to items and on the latent ability.

Another difference between the two models is that there is an explicit functional relation-

ship between the response probabilities and the latent variable in IRT while there is no such

explicit functional relationship in LCM (Masters, 1985). The LCM also handles increase in

test length differently than a MixIRTM. When test length increases, the matrix of response

patterns becomes increasingly sparse. This sparseness can be a problem for LCMs because

model parameters may not be well-estimated. The IRT portion in a MixIRTM potentially

handles this sparseness somewhat better in that it imposes a parametric model (e.g., a cumu-

lative logistic or normal ogive function) with strong assumptions describing the relationship

between the response probabilities and the latent variable. The MixIRTM is also typically
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seen to fit data better than conventional models of LCM or IRT (Muthén & Asparouhov,

2006).

Rost (1990, 1997) described a MRM in which an examinee population is assumed to be

composed of a fixed number of discrete latent classes. In each latent class, a Rasch model is

assumed to hold, but each class has different item difficulty parameters. In a MRM, members

of the same latent class are assumed to experience the same relative difficulty among the

items on the test, although within the same class members do differ in ability. The MRM

also associates a class membership parameter, g, with each examinee that determines the

relative difficulty of the items for that examinee, as well as a latent ability parameter, θjg,

that influences the number of correct answers the examinee is expected to make to items on

the test. The probability of a correct response in the MRM is written as

P (yijg = 1|g, θjg) =
1

1 + exp[−(θjg − βig)] , (2.23)

where g is an index for the latent class, g = 1, . . . , G, j = 1, . . . , J examinees, θjg is the latent

ability of a examinee j within class g, and βig is the Rasch difficulty parameter of item i for

class g. Rost (1990) suggested that the primary diagnostic potential of the MRM is in its

use for accounting for qualitative differences among examinees, and its simultaneous ability

to quantify that ability with respect to the same items.

von Davier and Yamamoto (2004) extended Masters’s PCM and Muraki’s generalized

partial credit model (GPCM) to the class of discrete mixture models. The mixture PCM, a

Rasch model, is formulated as follows:

PP (yijg = x|g, θjg) =
Mi∏

m=1

exp[
∑x
v=0(θjtg − bimg)]∑Mi

h=0 exp[
∑h
v=0(θjtg − bimg)]

, (2.24)

where g = 1, . . . , G student-level latent classes, and j = 1, . . . , J examinees. The polytomous

item scores are 0, 1, . . . ,Mi for the i = 1, . . . , I items. x is the given item score. θjtg is the

ability of examinee j in school t in the class g, and bimg is the item step parameter of the

category m of item i for the class g.
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Extending Mixture IRT Models. An important limitation of MixIRTMs is that they

essentially ignore the basic multilevel structure that is present beyond the student-level in

much of educational test data. In this study, we incorporate that multilevel structure into a

MixIRTM, and extend the model into a multilevel MixIRTM (MMixIRTM). We then use this

model for DIF detection at both the student- and school-levels, focusing on detection of latent

classes of students and school whose performance on particular items differs along lines that

are not necessarily associated with membership in a particular manifest group. The approach

proposed in this study provides DIF information at the student- and school-levels along with

information describing the composition of the different groups in the DIF comparisons. In

this way, information can be provided that will enable school personnel or others involved

in interpretation of test results to easily describe the composition of comparison groups,

including other schools like themselves.

2.6 Multilevel Latent Class Models

An alternative approach to DIF detection is found in LCMs (Webb, Cohen, & Schwanen-

fluegel, in press). The rationale for use of a LCM is the same as that proposed by Cohen

and Bolt (2005). The difference is that a LCM is used in place of an IRT model. Webb et

al. demonstrated that nuisance dimensionality was responsible for what was previously per-

ceived as a bias on the Peabody Picture Vocabulary Test III (Dunn & Dunn, 1997) against

African-American preschool children. Using a LCM, Webb et al. showed that the actual cause

of the DIF was due to use of particular response strategies by latent classes of examinees.

An important limitation of the LCM, that is shared with IRT models, is it assumes that

observations are independent. Unfortunately, this assumption is often violated. Multilevel

LCMs have been suggested that relax this assumption (Vermunt, 2003; Vermunt & Magidson,

2005; Bijmount, Paas, & Vermunt, 2004; Asparouhov & Muthén, 2007). This type of model

uses a discrete unspecified distribution, which provides a nonparametric multilevel LCM.
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In the context of the PSAT/NMSQT, this type of model would allow for both student-

level latent classes and school-level latent classes sharing the same parameter values. This

approach imposes less restrictive distributional assumptions and typically provides faster

and more stable estimation than non-linear regression models (Vermunt, 2003).

As Vermunt (2003) notes, nonparametric does not mean distribution free. Rather, non-

parametric is used to indicate that the normal distribution assumption is replaced by a

multinomial distribution assumption. The MLCM can be described as follows:

P (yijt) =
K∑

k=1

G∑

g=1

πk · πg|k · P (yijtgk|θgk), (2.25)

where g = 1, . . . , G student-level latent classes, k = 1, . . . , K school-level latent classes, πg|k

indicates the relative sizes of latent classes at the student-level conditional on latent class

membership at the school level, πk is the proportion of schools for each class, P (yijtgk) is the

conditional probability to item i for latent classes g and k.

P (yijtgk|θgk) in a LCM can be restricted or unrestricted. An unrestricted LCM may not

always be the most useful, however, when the analysis is intended to be for measurement

rather than for data reduction (Heinen, 1996; Masters, 1985). A number of restricted LCMs

can be obtained to investigate the relationship between the latent variable and manifest

indicators such as items.

As mentioned earlier, Heinen (1996) reported equivalence of restricted LCMs and IRT

models using a log-linear parametrization for the LC model and a cumulative logistic function

for the IRT model. Vermunt’s modeling using a restricted LCM as the measurement model

(Vermunt, 2003; Bijmount, Paas, & Vermunt, 2004) is similar to the multilevel IRT model.

The MixIRTM portion of a MMixIRTM, however, can be more easily viewed as a combination

of an unrestricted and a restricted LCM. This combined model combines a discrete LCM

with a continuous IRT model.

Comparison of Kamata’s multilevel IRT model with a restricted multilevel

latent class model. The comparison of Kamata’s (2001) multilevel IRT model with a

multilevel restricted LCM is revisited here to illustrate the meaning of nonparametric as
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used in this study. The ability structure of a multilevel IRT model can be given as follows:

θjt = γ00 + ujt + νt, (2.26)

where j = 1, . . . , J students, t = 1, . . . , T schools, γ00 is the average ability for school t, ujt

is the ability across students, ujt follows N(0, τ), in which τ is the variance of ability at the

student level, and νt follows N(0, ζ), in which ζ is the variance of ability at the school level.

The total variance of ability in the multilevel IRT model is decomposed into the student-level

ability variance (i.e., τ) and the school-level ability variance (i.e., ζ).

The ability structure of a MLCM can be given as follows:

θjt =
K∑

k=1

G∑

g=1

πk · πg|k · θgk, (2.27)

where g = 1, . . . , G student-level latent classes, and k = 1, . . . , K school-level latent classes.

The multilevel restricted LCM can be considered a nonparametric version of a multilevel

IRT model in that class-specific ability, θgk (where g indicates latent class at level 2 and k

indicates latent class at level 3), in the multilevel restricted LCM is similar to the random

effect of ability, θjt in the IRT model. The gk subscript on θ for the LCM indicates class

specific ability whereas the jt subscript in Equation (2.26) is a random effect specific to

student j in school t.

This perspective is of interest in that a multilevel LCM can be considered as a nonpara-

metric approach to the multilevel IRT portion of a MMixIRTM. We employ the point of

view in this study, however, that the MMixIRTM is an extension of a multilevel unrestricted

LCM by including an IRT model.

Limitations of a Multilevel Latent Class Model. One concern with a multilevel

LCM is there is no variation in ability across latent classes. That is, θgk, is the same for

all examinees within a latent class in a MLCM. The probability for giving a response on a

particular item i, conditional on membership in a latent class is the same for all students

in that latent class. The proposed MMixIRTM allows for variability in ability within latent

classes.
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Asparouhov and Muthén (2007) extended the structural equation model and factor mix-

ture model (which can be formulated as a MixIRTM) into a multilevel model. This approach

and a MMixIRTM approach are similar in that both use a factor mixture model in the

multilevel extension. In other words, both approaches allow examinees to vary on the latent

ability. The group level mixture is a parametric random effect (i.e., normally distributed)

rather than a nonparametric model in Asparouhov and Muthén (2007).

2.7 Multilevel mixture item response theory model

2.7.1 Model rationale

The proposed MMixIRTM estimates mixtures of latent classes at two levels, a student-level

and a school-level. Student-level latent classes capture the association between the responses

at the student-level unit. The MixIRTM assumes that there may be heterogeneity in response

patterns at the student-level which should not be ignored (Mislevy & Verhelst, 1990; Rost,

1990). The MMixIRTM does not exclude the possibility, however, that there may be no

student-level latent classes. It is interesting to note that, if no student-level latent classes

exist, this would indicate that there would also be no school-level latent classes. The reason

is that school-level units are clustered based on the likelihood of their students belonging to

one of the latent classes. In a MMixIRTM as presented in this study, in other words, it is

not meaningful to have school-level classes if no student-level latent classes are present.

Viewed in this way, school-level latent classes capture the association between the stu-

dents within school-level units. Latent classes at the school-level, however, may differ in the

probability that students belong to particular latent classes. This is accommodated in the

MMixIRTM by allowing for the possibility that school-level latent classes may differ in the

proportions of students in each student-level latent class contained in a school-level latent

class.

The modeling of ability variance in the MMixIRTM is different from that of a multi-

level IRT model in that the total variance of ability is modeled rather than the component
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variances. A special case of the MMixIRTM may arise if there are the same proportions of

student-level latent classes in each school-level latent class and there is only student-level

class-specific item difficulties. In this case, the total ability variance can be decomposed into

student-level and school-level components. This is not usually the case, however. A more real-

istic possibility is that the proportions of student-level latent classes will be different in each

school-level latent class. In this case, the total variance of ability can not be decomposed.

The hierarchical data structure of ability variance allows the estimation of both student-

and school-specific variance of ability. This approach to ability specification provides not

only class-specific information, but also can be used to approximate a continuous mixture

distribution (Vermunt, 2003). If there are large differences between schools with respect to

the proportion of student-level latent classes, it indicates that the students belonging to the

same school-level latent class are strongly homogeneous (Vermunt & Magidson, 2005).

Ability Structure of MMixIRTM. Equation (2.7) is revisited here to describe the

structure of data in terms of students, nested within school with probabilities of mixtures at

the student- and school-level literally and graphically.

θjtgk ∼ N(µgk, σ
2
gk) . (2.28)

Each student has manifest identification, j and t. Student j is nested within school t. In

addition, he/she has latent identification, g and k. Abilities of students (i.e., θjtgk) have

variability for each mixture unit of g and k, which has its own mean (i.e., µgk) and variability

(i.e., σ2
gk). Students are composed with student-level probability of mixture (i.e., πg|k) and

school-level probability of mixture (i.e., πk). This structure is represented in Figure 2.3.

Proportion Structure of MMixIRTM. The structure of π1:G|k is shown in Table 2.2.

There are K probability arrays π1:G|k, k = 1, · · · , K, where G is the dimension of each array.

Item Difficulty Structure of MMixIRTM. In the general model of a MMixIRTM,

item difficulty parameters have both student- and school-level class-specific values. These

can be represented as βigk. A graphical visualization of this relationship is shown in the

three-dimensional array in Figure 2.4. The column in Figure 2.4 represents items (i.e., i),
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Figure 2.3: Graphical Representation of Data Structure
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1π 2π Kπ

1|1π 2|1π |1Gπ 1|2π 2|2π |2Gπ 1|Kπ 2|Kπ |G Kπ

the row represents the student-level mixture (i.e., g), and the school-level mixture (i.e., k),

is represented by the dotted line. Figure 2.4 is intended to help visualize the item difficulty

structure, so it can be seen that student-level class-specific item difficulties stack up at the

school-level mixtures.

Probability Structure of MMixIRTM. The probability of getting a correct response

in the MMixIRTM can be given as follows:

Pijt =
K∑

k=1

G∑

g=1

πk · πg|k · P (yijtgk = 1|g, k, θjtgk). (2.29)

In the structure shown in Figure 2.5, the circles represent the latent variable (i.e., ability)

and the rectangles represent the manifest variable (i.e., item responses). The arrows from g

and k indicate that the probability of getting a correct response is a function of g and k.
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Table 2.2: Proportion Structure of MMixIRTM

K = 1 K = 2 . . K = K
G = 1 π1|1 π1|2 . . π1|K
G = 2 π2|1 π2|2 . . π2|K

. . . . . .

. . . . . .
G = G πG|1 πG|2 . . πG|K
Sum

∑G
g=1 πg|1 = 1

∑G
g=1 πg|2 = 1 . .

∑G
g=1 πg|K = 1

Meaning of the term Multilevel in MMixIRTM. In this subsection, the term

multilevel is explained to emphasize the model rationale. This term can be used with both

mixture and IRT. As described earlier for the model rationale, the school-level mixture is

composed of different proportions of student-level mixtures. The result is that ability and

item difficulty are modelled with both student- and school-levels mixtures. In this case, the

term, multilevel is used for the description of the two-level for mixture. If there are the same

proportions of student-level latent classes in each school-level latent class as a special case

of the MMixIRTM, the term multilevel is used for the description of multilevel IRT model.

The three sections of the PSAT/NSMQT, the critical reading, mathematics, and writing

skills sections, include multiple-choice, and gridded-response items. The MMixIRTM was

used in this study only for the binary response items. The model formulation for each

multiple-choice, short and extended response item, however, is described for the example.

The MMixIRTM developed in this study is described below from three different perspec-

tives to show how the MMixIRTM can be formulated by adding the flaw feature to the com-

bined models like a MixIRTM, a multilevel IRT model, and a MLCM. First, a MMixIRTM is

formed as the incorporation of mixtures into a multilevel IRT model. Second, a MMixIRTM
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Figure 2.4: Visualization of Class-Specific Item Difficulties
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is formed by incorporating multilevel structure into a MixIRTM. Finally, a MMixIRTM is

formed of an IRT model incorporated into a multilevel unrestricted LCM.

2.7.2 The Multilevel Mixture IRT Model as an Extension of a Multilevel IRT

Model

The following MMixIRTM formulation is based on the multilevel IRT model described in

the previous section. The first part presents the MMixIRTM for binary items.

First-Level Model. At the first level of the model, the measurement model is identified:

log

[
Pi(θjtgk)

1− Pi(θjtgk)

]
= θjtgk − βijtgk (2.30)
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Figure 2.5: MMixIRTM Diagram
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where g = 1, . . . , G student-level latent classes, k = 1, . . . , K school-level latent classes,

j = 1, . . . , J examinees, and t = 1, . . . , T schools, for a test of i = 1, . . . , I items, θjtgk is the

class-specific ability of examinee j in school t, Pi(θjtgk) is the probability of person j in a

school t answering the item i correctly, and βijtgk is the class-specific difficulty of item i. As

was the case for Kamata’s (2001) model (described earlier), βijtgk at the first level has both

j and t subscripts, even though item difficulty is an item characteristic and is not actually

estimated at this level. This form of representation for item difficulty is due to the regression
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coefficients present for each component in the model at the first level in the HLM. The j

and t subscripts are deleted at the second- and third-level respectively.

Second-Level Model. The second level is the student-level model. Student ability esti-

mates are given as follows:

θjtgk = γ0tgk + ujtgk, (2.31)

where γ0tgk is the class-specific average ability of individual j in school t, ujtgk is distributed

N(0, τg.), where τg. is the variance of ability at the student -level, and

βijtgk = βitgk (2.32)

are class-specific difficulties βijtgk = βitgk. As indicated in the notation, these are character-

ized at the second level as being constant across students.

Third-Level Model. The third level specifies the school-level model and provides esti-

mates of school-level ability estimates:

γ0tgk = γ00gk + νtgk, (2.33)

where γ00gk is the class-specific average ability, νtgk follows N(0, ζ.k), which ζ.k is the variance

of ability at the school level, and

βitgk = βigk (2.34)

are item difficulties βitgk = βigk which are characterized at this level as constant across

schools.

As was noted above for the multilevel IRT model, polytomous items also can be incor-

porated into the MMixIRTM. This is done as follows:

First-Level Model. The first level identifies the measurement model. The probability

of a response to category m for item i is defined as a function of ability, θ, and an item step

parameter, b:

log

[
Pim|m−1,m(θitgk)

1− Pim|m−1,m(θitgk)

]
= −(θjtgk − bimjtgk) (2.35)
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where g = 1, . . . , G student-level latent classes, k = 1, . . . , K school-level latent classes,

j = 1, . . . , J examinees, and t = 1, . . . , T schools. The polytomous item scores are 0, 1, . . . ,Mi

for the i = 1, . . . , I items. θjtgk is the ability of examinee j in school t and in both latent

classes g and k, Pim|m−1,m(θjtgk) is defined as

Pim(θjtgk)

[Pi,m−1(θjtgk) + Pim(θjtgk)]
, (2.36)

where Pim is the probability of person j in a school t answering the category m of the item

i correctly, bimgk is the difficulty of the category m item i for classes g and k.

Second-Level Model. The second level, the student-level model, provides student

ability estimates:

θjtgk = γ0tgk + ujtgk, (2.37)

where γ0tgk is the average ability of individual j in a school t for both latent classes g and k,

ujtgk follows N(0, τg.), which τg. is the variance of ability at the student level, and

bimjtgk = bimtgk (2.38)

indicating that item difficulties bimjgkt = bimtgk are treated as constant across students in

both classes g and k.

Third-Level Model. Level 3 specifies the school-level model and provides estimates of

school level ability estimates:

γ0tgk = γ00gk + νtgk, (2.39)

where γ00gk is the average ability for school t in both classes g and k, νtgk follows N(0, ζ.k),

which ζ.k is the variance of ability at the school level,

bimtgk = bimgk (2.40)

and item difficulties bimtgk = bimgk are characterized as constant across schools in latent

classes.

The bimgk in the multilevel mixture PCM are the item step parameters. These can be

decomposed into an overall item difficulty, δigk, for item i in latent group g and latent group
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k, which is equal to the average of the xth step parameters for item i, and a category-specific

mean deviation, ηimgk. That is,

bimgk = δigk + ηimgk , (2.41)

where

δigk =

∑x
v=1 bivgk
x

(2.42)

is the item’s location on the ability scale, and ηimgk = bimgk − δigk is the location of step x

relative to the location of item i.

In the multilevel IRT formulation of Kamata (2001), the variance of ability is decomposed

into two components, a student-level component, τ , and a school-level component ζ. Even

though the formulation above in Equations (2.37) and (2.39) is based on the same multilevel

IRT model, the modeling of the variance of ability in the MMixIRTM is different in that

the total ability variance is not decomposed into student-level and school-level ability vari-

ances. If the proportions in student-level latent classes are the same across school-level latent

classes, then the total ability variance can be decomposed into student-level and school-level

variances. If this is not the case, however, then the total ability variance can not be decom-

posed, because the proportion of student-level latent classes is different across school-level

latent classes. Since this is the likely case with real data, the structure of θjtgk is as follows:

θjtgk ∼ N(γ00gk, σ
2
gk), (2.43)

where γ00gk is the mean of ability for classes g and k, and σ2
gk is the variance of ability for

classes g and k, which sum τg. and ζ.k. γ00gk in Equation (2.43) is the same as µgk in Equation

(2.49).

2.7.3 A Multilevel Mixture IRT Model Extension of a Mixture IRT Model

Equation (2.44) presents a MixIRTM with mixtures at the student-level and school-levels.

The probability of a correct response is given as

PB(yijtgk = 1|g, k, θjtgk) =
1

1 + exp[−(θjtgk − βigk)] , (2.44)
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where g = 1, . . . , G student-level latent classes, k = 1, . . . , K school-level latent classes,

j = 1, . . . , J examinees, and t = 1, . . . , T schools, for a test of i = 1, . . . , I items. θjtgk is the

ability of examinee j in school t and in both latent classes g and k, and βigk is the difficulty

of item i for classes g and k.

Below, we describe a multilevel mixture PCM for constructed-response items. We modify

this formulation in the sequel depending on the types of item response formats. The model

formulation is as follows:

PP (yijtgk = x|g, k, θjtgk) =
Mi∏

m=1

exp[
∑x
v=0(θjtgk − bivgk)]∑Mi

h=0 exp[
∑h
v=0(θjtgk − bivgk)]

, (2.45)

where g = 1, . . . , G student-level latent classes, k = 1, . . . , K school-level latent classes,

j = 1, . . . , J examinees, and t = 1, . . . , T schools. The polytomous item scores are 0, 1, . . . ,Mi

for the i = 1, . . . , I items, x is the item score, θjtgk is the ability of examinee j in school t

and in both latent classes g and k, and bivgk is the difficulty of the category m item i for

classes g and k.

The bivgk in the multilevel mixture PCM are the item step parameters. These can be

decomposed into an overall item difficulty, δigk, for item i in latent groups g and k, which

is equal to the average of the xth step parameters for item i, and a category-specific mean

deviation, ηivgk. That is,

bivgk = δigk + ηivgk, (2.46)

where

δigk =

∑x
v=1 bivgk
x

(2.47)

is the item’s location on the ability scale and ηivgk = bivgk − δigk is the location of step x

relative to the location of item i.

For both binary and polytomous items, θjtgk has the following structure:

θjtgk ∼ N(µgk, σ
2
gk) (2.48)

where µgk is the mean of ability for classes g and k, and σ2
gk is the variance of ability for

classes g and k.
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2.7.4 A Multilevel Mixture IRT Model as an Extension of a Multilevel LCM

The following presents a multilevel unrestricted LCM with an IRT model extension. This

combination provides a MixIRTM in the MMixIRTM. It leads to the same model formulation

as the previous two perspectives, i.e., the incorporation of mixtures into a multilevel IRT

model and the incorporation of a multilevel structure into a MixIRTM. It is of interest to

compare the θ structure of MMixIRTM among these three formulations.

As we can see below, θjtgk follows N(µgk, σ
2
gk), indicating that there is variability in θ

within classes g and k. This θ structure is different from the MMixIRTM in Vermunt’s (2003)

multilevel LCM. In Equation (2.25) of Vermunt’s MLCM, there is no variability in ability,

θgk. However, in the MMixIRTM, there is variability in ability, N(µgk, σ
2
gk), as is shown

below:

θjtgk ∼ N(µgk, σ
2
gk) (2.49)

where j = 1, . . . , J students, t = 1, . . . , T schools, g = 1, . . . , G student-level latent classes,

k = 1, . . . , K school-level latent classes, µgk is the mean of ability for classes g and k, and

σ2
gk is the variance of ability for classes g and k.

2.7.5 A Multilevel Mixture IRT Model with Covariates

In this section, we extend the MMixIRTM to a finite mixture regression model that incor-

porates covariates. Covariates can be particulary useful for helping to identify latent classes

in the data (Smit, Kelderman, & van der Flier, 1999). Smit et al. also indicated that item

parameters and group memberships were recovered better as the strength of the association

between the latent class and the covariates increased.

The extension described below is a finite mixture regression model that includes covari-

ates. As indicated above, these covariates can be used both to predict latent class membership

for individual j and school t and to describe the relationship between the means for indi-

vidual j on each of the G latent class means and the relationship between the means for

school t on each of the k latent class means.
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Using covariates in the MMixIRTM provides a change in the usual approach for detecting

membership in latent classes. This latter approach follows a two-step procedure in which a

class is estimated for each examinee in Step 1 and then in Step 2, cross-tabulation, regres-

sion, or some other method is used to relate membership in a latent group to one or more

covariates. One disadvantage of this two-step approach is that it permits estimation errors to

intrude on the classification process which attenuate the relationship between the covariate(s)

and the latent classes (Vermunt & Magidson, 2005). Smit et al. (1999) demonstrate how

standard errors can be reduced and the accuracy of classification improved by incorporating

variables associated with the latent class variable into the model. Cho, Cohen, and Kim

(2006) found that the use of a covariate improved the recovery of both item difficulties and

group membership, when there was an overlap of 80 percent or more among the covariate

and the latent groups, and when no guessing was simulated. Including such covariates in the

same model, in other words, helped to reduce the attenuation that can occur in the two-step

approach mentioned above.

The MMixIRTM with covariates is modeled as followed: Students and schools are modeled

as belonging to the latent class for which they have the highest probability of membership.

The proportion of individuals in class g conditional on school level latent class, πg|k, is

πg|k,Wj
=

exp(γ0gk +
∑P
p=1 γpgWjp)∑G

g=1 exp(γ0gk +
∑P
p=1 γpgWjp)

, (2.50)

where πg|k is the probability of an individual belonging to a class g given k. The G latent

groups are modeled as functions of the individual-level covariates Wj, and πg|k is a multino-

mial logistic regression. γpg is a class-specific effect of covariate p on group membership. For

identifiability, γ01k = 0 for all ks and γp1 = 0.

In addition, the probability of a school belonging to latent class k, πk, can be written as

πk|Wt =
exp(γ0k +

∑P
p=1 γpkWtp)∑K

k=1 exp(γ0k +
∑P
p=1 γpkWtp)

, (2.51)
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where K latent groups are modeled as functions of the school-level covariates, Wt, and γpk

is a class-specific effect of covariate p on group membership. For identifiability, γ01 = 0 and

γ.(k=1) = 0.

2.7.6 Special Cases of the Multilevel Mixture IRT Model with Covariates

Below, we introduce three special cases of the MMixIRTM which have some utility for

estimation of DIF in the multilevel model. These are each obtained through the use of

different sets of constraints.

Special Case I. The first special case of a MMixIRTM is that in which the proportions of

student-level latent classes are same among school-level latent classes. When this assumption

holds, item (i.e., βigk and bigk) and ability (i.e., θjtgk) parameters can be split into student-

level and school-level parameters. We illustrate this special case as follows for binary items:

PB(yijtgk = 1|g, k, θjtg, θjtk) =
1

1 + exp[−(θjtg + θjtk)− (βig + βik)]
. (2.52)

Equation (2.52) shows that the item difficulty parameters βig and βik are estimated separately

for the student-level and for the school-level latent groups. If this assumption holds, this

formulation indicates that DIF can be analyzed separately at the student-level and at the

school-level.

Special Case II. The second special case we consider is that for which item and ability

parameters do not vary across school-level classes. This model can be useful when the purpose

of analysis is on identifying different students’ strategies with incorporating multilevel data

structure. We illustrate this special case as follows for binary items:

PB(yijtgk = 1|g, k, θjtg, θjt) =
1

1 + exp[−(θjg + θjt − βig)] . (2.53)

It can be seen in Equation (2.53) that the item difficulty parameter βig differs among student-

level latent classes. It does not contain a k subscript indicating that the same estimates hold
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for each school-level latent class. If this model holds, then DIF is tested only at the student-

level. The j subscript in θjt of Equation (2.53) indicates students in school t of class g. A

similar model was described in Asparouhov and Muthén (2007).

Special Case III. The third special case of the MMixIRTM is one in which item and

ability parameters do not vary among student-level classes. This special model is of interest in

case we seek to obtain school-level DIF information. In fact, this model contains information

aggregated across student-level latent classes for each school-level latent class. We illustrate

this special case for binary items as follows:

PB(yijtgk = 1|g, k, θjt, θjtk) =
1

1 + exp[−(θjt + θjtk − βik)] . (2.54)

The item difficulty estimates, βik, contain a k subscript but not a g subscript indicating

that they differ only by school-level latent class. This formulation was illustrated in Vermunt

(2007), and is of interest when we seek to examine DIF only among the school-level latent

classes.

The general MMixIRTM described earlier and the three special cases of the general model

are summarized in Table 2.3.

In the next section, DIF will be defined with respect to the MMixIRTM as the general

model and the three special cases, respectively.

2.7.7 DIF Analysis using Multilevel Mixture IRT Model

Kamata and Binici (2003) extended a two-level DIF model to a three-level DIF model using

a hierarchical generalized linear model (HGLM) framework. The three-level model accounted

for variation of DIF across schools as well as identification of school characteristics that help

explain such variation. The magnitude of DIF was modeled across schools by Kamata et al.

(2005) and included school characteristics (i.e., predictors) to determine whether they can

help explain the variation of DIF among schools. Kamata et al. also modeled the magnitude

of DIF at the school-level with random effects and described it with school-level predictors.



45

T
ab

le
2.

3:
C

om
p
ar

is
on

s
of

th
e

M
u
lt

il
ev

el
M

ix
tu

re
IR

T
M

o
d
el

M
o
d

el
M

o
d

el
R

a
ti

o
n

a
le

L
ev

el
A

b
il

it
y

D
is

tr
ib

u
ti

o
n

P
ro

p
o
rt

io
n

s
It

em
D

iffi
cu

lt
y

G
en

er
a
l

M
o
d

el
k

h
a
s

d
iff

er
en

t
p

ro
p

o
rt

io
n

s
o
f
g
s.

B
o
th

S
tu

d
en

t-
a
n

d
S

ch
o
o
l-

L
ev

el
s

θ j
tg
k
∼
N

(µ
g
k
,σ

2 g
k
)

π
g
|k
,π
k

β
ig
k

S
p

ec
ia

l
C

a
se

I
k

h
a
s

th
e

sa
m

e
p

ro
p

o
rt

io
n

s
o
f
g
s.

S
tu

d
en

t-
L

ev
el

θ j
tg
∼
N

(µ
g
,σ

2 g
)

π
g

β
ig

S
ch

o
o
l-

L
ev

el
θ j
tk
∼
N

(µ
k
,σ

2 k
)

π
k

β
ik

S
p

ec
ia

l
C

a
se

II
g
s

a
re

cl
u

st
er

ed
S

tu
d

en
t-

L
ev

el
θ j
g
∼
N

(µ
g
,σ

2 g
)

π
g

β
ig

(M
u

th
én

,
&

A
sp

a
ro

u
h

o
v
,

2
0
0
7
)

w
it

h
re

sp
ec

t
to

sa
m

e
st

u
d

en
t-

le
v
el

a
b

il
it

y
d

is
tr

ib
u

ti
o
n

.
S

ch
o
o
l-

L
ev

el
θ j
t
∼
N

(0
,1

)
N

A
N

A
S

p
ec

ia
l

C
a
se

II
I

k
s

a
re

cl
u

st
er

ed
S

tu
d

en
t-

L
ev

el
θ j
t
∼
N

(0
,1

)
N

A
N

A
(V

er
m

u
n
t,

2
0
0
7
)

w
it

h
re

sp
ec

t
to

sa
m

e
sc

h
o
o
l-

le
v
el

a
b

il
it

y
d

is
tr

ib
u

ti
o
n

.
S

ch
o
o
l-

L
ev

el
θ j
tk
∼
N

(µ
k
,σ

2 k
)

π
k

β
ik



46

That is, Kamata et al. modeled a three-way interaction of item difficulty × student-level

manifest group × school characteristics for the item difficulty parameters.

This approach to detection of school-level DIF is different from that of the proposed model

in two ways: First, it is based on the use of manifest groups, and second, the modeling of DIF

is incorporated directly into estimation of item difficulty. This approach by Kamata et al. is

markedly different from the usual approach which detects DIF by calculating some function

indicating a difference between item parameters among the different manifest groups.

The MMixIRTM proposed in this study functions differently from that of either the

standard DIF detection approach or the one described by Kamata et al. (2005). Kamata

et al. (2005) examined DIF based on item performance differences among manifest groups.

In the current study, DIF is considered by examining differential item performance among

different latent classes of students and schools. Performance in this approach is not directly

associated with membership in a particular manifest group and group-specific item difficulties

are present for both student-level and school-level latent classes.

Four Different Types of DIF. DIF can be investigated at both student-level and

school-level for the general MMixIRTM as well as for each of the three special cases described

above. For the general MMixIRTM, item difficulty and item step parameters have both sub-

scripts g and k. This indicates that each school-level latent class, k, has its own set of

student-level latent classes. This in turn indicates that item parameters need to be repre-

sented for each student-level latent class and for each school-level latent class.

In the general MMixIRTM, both student-level DIF and school-level DIF can be detected.

School-level DIF is defined as the differences between the item difficulties given the student-

level latent classes. Student-level DIF can be detected by calculating and testing the dif-

ferences between the item difficulties (i.e., βigk) within a school-level latent class. For poly-

tomous items, item step parameters, bivgk, can be decomposed into a class-specific item

difficulty, δigk, and a category-specific mean deviation, ηimgk. In the general MMixIRTM, it

is assumed that item difficulties, δigk, may differ among latent classes. The category param-
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eters, ηimgk, are common for latent classes which results in the formulation of ηimgk as ηim.

This formulation is consistent with the approach in Muraki (1999) for DIF in the PCM

among manifest groups. Thus, student-level DIF for polytomous items is defined as the

difference between the overall item difficulties (i.e., δigk) within a school-level latent class.

School-level DIF for polytomous items is defined as the difference between item difficulties

for the school-level latent classes given the student-level latent classes.

Second, both student-level DIF and school-level DIF can be detected for Special Case I,

but only if the proportions of student-level latent class are same across school-level latent

classes. As noted above, student-level DIF is detected as differences among the item diffi-

culties, βig and δig for student-level latent classes, g. School-level DIF is detected from the

differences among the item difficulties, βik, among school-level latent groups, k. One caveat

with respect to Special Case I is that it is somewhat unrealistic to assume that the same

proportions of student-level latent classes exist in each school-level latent class.

Third, as noted above for Special Case II, only student-level DIF is defined. As mentioned

earlier, this approach, which can be useful if group-level information is not needed, is done

by nonparametrically incorporating the hierarchical structure of the data into the model.

Fourth, for Special Case III, only school-level DIF is possible. As noted earlier, this

DIF is detected as differences among the item difficulties, βik and δik. This version of DIF

is somewhat less informative than that of the general MMixIRTM as differences among

student-level item difficulty estimates are aggregated within each school-level latent class.

That is, βigk in the general MMixIRTM is only available as βi.k = βik in Special Case III. In

other words, information is not available on item characteristics meaning that student-level

covariates, Wjp, do not enter into the model for this special case.

Although four different DIF analyses are available with the general MMixIRTM and

the three special cases described above, DIF analysis using the MMixIRTM is of primary

interest. This is because the group-level information for both student-level and group-level
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DIF is of most interest and more flexibility is allowed in terms of student-level proportions.

The specific DIF analysis procedures to be used will be presented in the next chapter.

Multiple-Group DIF Among Latent Classes. The current SOAS report provides

performance comparisons between a given school, defined as the local group, and a reference

group that is used to represent expected academic performance for the given school. The

DIF analysis approach in this study, however, is different from the usual multiple-group DIF

analysis in that there is a potential for more than one reference group, when there are more

than three school-level latent classes (i.e., when K ≥ 3). The number of reference groups

is calculated in this study as K − 1. The given school is included in one school-level latent

class and the class-specific item difficulty parameters, βigk or bigk, for the given school can

be compared with those for the other latent classes (i.e., with the βigk′ or bigk′ ). In other

words, since school characteristics are to be clustered with respect to particular performance

characteristics, the given school is compared to schools with different performance character-

istics. This approach has the potential to provide more information regarding why the given

school’s performance is the same or different from that of the schools in the other school-level

latent groups.

For reporting purposes, we define each of the other groups as reference groups. These

can be described by considering the characteristics of each group. As mentioned earlier, the

school-level latent classes are composed of student-level latent classes. In the MMixIRTM,

these differ with respect to the proportion of students-level latent classes within each school-

level latent class. In addition, both student-level and school-level latent classes can be

described with respect to the demographic variables for both students and schools. In this

sense, a reference group at the school-level can be described by considering the proportion of

student-level classes and by the particular composition of demographic variables and ability.



Chapter 3

METHODS

The Rasch model, the multilevel IRT model and the MixIRTM are each special cases of

the proposed MMixIRTM. If no student-level and school-level mixtures are detected, the

MMixIRTM reduces to the Rasch model or multilevel Rasch model. Further, if no school-

level latent classes are detected, then the MMixIRTM reduces to a MixIRTM. In this study,

the Rasch model, the multilevel IRT model, and the MixIRTM were fitted in the process of

model selection. In this chapter, the estimation methods are described for the multilevel IRT

model, the MixIRTM, and the MMixIRTM for binary responses. As suggested above, the

Rasch model can be considered as a special case of the MixIRTM for a one-group solution,

so its estimation is not described here.

3.1 Estimation

3.1.1 A Bayesian Approach to Estimation of a Multilevel Item Response

Theory Model

Browne and Draper (2006) list the following programs currently available with specific algo-

rithm for estimation of multilevel models: Maximum likelihood estimation (MLE) Fisher-

scoring is implemented in the computer program VARCL (Longford, 1987); the computer

program MLwiN (Goldstein, 1986, 1989; Rasbash et al., 2005) implements a number of algo-

rithms including MLE via iterative generalized least squares (IGLS), restricted IGLS for

Gaussian data, and marginal quasi-likelihood (MQL) and penalized quasi-likelihood (PQL)

algorithms for dichotomous data; empirical-Bayes estimation via the EM algorithm is imple-

mented in the computer program HLM (Raudenbush et al., 2005); and a fully-Bayesian

49
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algorithm is implemented in the computer program MLwin (Goldstein, 1986, 1989; Rasbash

et al., 2005).

The PQL estimation method is known to underestimate model parameters for dichoto-

mous data with small sample sizes (Rodriguez & Goldman, 1995; Goldstein & Rashbash,

1996). Rodriguez and Goldman (1995) found that estimates of fixed effects produced by

the MQL method had larger bias than estimates produced by standard logistic regression,

whether or not the hierarchical nature of the data was accounted for in the model. Gold-

stein and Rashbash (1996) found PQL estimation to provide biased results albeit less biased

than MQL. Browne and Draper (2006) compared random-effects logistic regression (RELR),

Bayesian and likelihood-based methods for fitting variance-components. Results with RELR

can be considered as similar to those which would be obtained from IRT. Browne and Draper

found that PQL for Bernoulli outcomes used for estimating variances of random-effects (e.g.,

the variance of ability in IRT) with a three-level RELR model performed poorly with respect

to bias and convergence. This can be a problem when estimating multilevel IRT models for

tests scored dichotomously.

Adams, Wilson, and Wu (1997), Cheong and Raudenbush (2000), and Mislevy (1987)

estimated hierarchical models using large-sample approximation or empirical Bayes estima-

tion. These methods introduce constraints that depend on normal distribution theory on

the minimum allowable sample size and also on the extent to which sparse data sets affect

model estimates in a hierarchical structure (Maier, 2001). Multilevel IRT models also are

complex, requiring complex integrations to obtain maximum likelihood solutions. Bayesian

approaches do not rely on normal approximations and may permit easier solution strate-

gies that produce unbiased estimates and eliminate computation of complex integrations

(Maier, 2001). In addition, Bayesian methods handle missing data relatively well within the

parameter estimation scheme (Patz & Junker, 1999a, 1999b; Maier, 2002).

Gibbs Sampling and Markov chain Monte Carlo (MCMC) estimation in general provide

flexibility in estimation of multilevel IRT models (Patz & Junker, 1999a, 1999b). Maier
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(2001, 2002) described a fully Bayesian approach using MCMC estimation. Fox and Glas

(2001) describe a fully Gibbs sampling approach for a multilevel two-parameter normal

ogive IRT model and a two-level HLM. In this study, we exploit the fully Bayesian approach

for estimation of general MMixIRTM.

Specifying a Model in WinBUGS

Scale anchoring for Multilevel IRT Model. Combining Equations (2.8) - (2.12), the

multilevel IRT model can be described as follows:

log

[
Pi(θjt)

1− Pi(θjt)

]
= θjt − βi = (γ00 + ujt + νt)− βi, (3.1)

where ujt follows N(0, τ) and νt follows N(0, ζ). Since the γ00 is the average mean of ability

for the school t, νt can be considered, following N(γ00, ζ). The metric was anchored based

on ability by re-parameterizing ujt into
√
τ · ηjt, and setting ηjt ∼ N(0, 1).

Priors and Posterior Distributions. The following priors and hyper-priors were used

to estimate the parameters of the multilevel IRT model in this study:

ηjt ∼ Normal (0, 1)

νt ∼ Normal (0, ζ)

βi ∼ Normal (0, 1)

ζ ∼ Gamma(0.1, 0.001)

τ ∼ Normal(0, 1)I(0, )

γ00 ∼ Normal (0, 1)

where I(0, ) indicates that observations of τ were sampled above zero.

The likelihood function for the multilevel IRT model is as follows:

L(θjt) =
I∏

i=1

J∏

j=1

P (yijt = 1|θjt)uij · {(1− P (yijt = 1|θjt)}1−uij , (3.2)
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where uij is dichotomously scored responses as 0 and 1. Note that school identification index

ts can be deleted in the likelihood function because student identification index js are nested

within the ts.

The joint posterior distribution of

S = {ηjt, νt, βi, ζ, τ, γ00} (3.3)

can be written as

P (S|U) ∝ L(θjt)P (ηjt|τ)P (τ)P (νt|γ00, ζ)P (γ00)P (ζ)P (βi) . (3.4)

The conditional distribution of each of the individual parameters is derived then from the

joint posterior distribution.

Sampling in WinBUGS. WinBUGS includes a graphical modelling facility, called

DoodleBUGS, that can be used to graphically represent the full conditional distribution

for the multilevel IRT. The resulting graph can also be used in WinBUGS to generate the

code to estimate the model. Figure 3.1 shows a graphical model for the multilevel IRT using

DoodleBUGS that can be used to generate code which will provide the same result as that

in the Appendix A.

The processing in WinBUGS proceeds by sampling all nodes starting at the outer edge of

the diagram with the hyperparameters (i.e., tau, gamma, and zeta) and working inwards in

the diagram to the p[j, i]. eta[j] is the variable name used in the program code for ηj (Note

that t was deleted in (3.3)), b[i] is used for bi, nu[group[j]] is νt, tau is used for τ , gamma is

the index for γ00, and zeta is the variable name used in the program code for ζ. A solid arrow

indicates a stochastic dependence and a hollow arrow indicates a logical function. From the

diagram, it can be seen that eta[j] depends on tau, and nu]group[j]] depends on gamma

and zeta with p[j, i] being a logical function of b, eta, and nu]group[j]].

Once the model is specified, including all priors and distributions, WinBUGS can deter-

mine the necessary sampling methods directly from the graphical structure. The form of the

full conditional distributions for γ00 and ζ is conjugate, so that direct sampling using standard
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Figure 3.1: Graphical Representation of Multilevel IRT

for(j IN 1 : J)

for(i IN 1 : I)

zeta

gamma

nu[group[j]]b[i]

taueta[j]

r[j,i]

p[j,i]

algorithms is done. In addition, the form of the full conditional distributions of ηjt, νt, βi, ζ,

and τ are log-concave distribution, so that derivative-free adaptive rejection sampling is

carried out. The truncated version of the normal distribution of τ is also log-concave.

Monitoring Convergence. To determine when convergence was attained, the Gelman

and Rubin (1992) statistic, implemented in WinBUGS, was run for two chains using widely

disparate initial values for each of the parameters. For example, the initial values for the

difficulty parameters, β, were set at −2 and 2, respectively, for the two chains, for the

standard deviation of ability, τ , the initial values were 1 and 2, respectively, for the two chains.

In addition, the autocorrelation plots were examined. The Geweke (1992), Heidelberger and

Welch (1993), and the Raftery and Lewis (1992) methods also were run and analyzed for a

single chain.
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3.1.2 Bayesian Estimation of Mixture IRT Models

Estimation of MixIRTMs has been accomplished using a number of different algorithms. Esti-

mation using conditional maximum likelihood estimation (CMLE) has been demonstrated

for the Rasch family of models (Rost, 1990). The CMLE algorithm is also implemented in the

computer program WINMIRA (von Davier, 2001). The MRM and the mixture 2-parameter

IRT model also can be fitted with the computer programs Latent GOLD 4.0 (Vermunt &

Magidson, 2005) and Mplus (Muthén & Muthén, 2006). MRM formulation in the Latent

GOLD 4.0 is based on the conditional response probabilities expressed in terms of log-linear

parameters. Latent GOLD uses both the EM and the Newton-Raphson algorithms. In prac-

tice, the estimation process starts with a number of EM iterations. When the estimate is

judged to be close enough to the final solution, the program switches to the Newton-Raphson

algorithm (Vermunt & Magidson, 2005). MRM estimation is also possible in the computer

program Mplus (Muthén & Muthén, 2006). Formulation in Mplus is based on conditional

response probabilities expressed using a logistic function. Maximum likelihood optimization

for the mixture model in Mplus is done in two stages. Muthén and Muthén recommended that

optimization first be carried out by using several different randomly specified sets of starting

values. The starting values with the highest log-likelihood from among these runs is then used

as the starting values in the final stage optimizations. The second (i.e., the final) stage for

optimization is carried out using the default optimization settings for TYPE=MIXTURE.

When ALGORITHM=INTEGRATION is specified, Mplus employs a maximum likelihood

estimator with robust standard errors using a numerical integration algorithm.

Several practical problem arise in MLE for mixture models (Frühwirth-Schnatter, 2006).

First, it may be difficult to find the global maximum of the likelihood numerically. Conver-

gence will often fail when the sample size is small or the mixtures are not well-separated

(Finch et al., 1989). Second, the likelihood function of mixture models is unbounded and can

have many spurious local modes (Kiefer & Wolfowitz, 1956). Third, the provision of standard

errors is not straightforward with MLE of finite mixture models, in particular when using
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an EM algorithm. Finally, as McLachlan & Peel noted, the sample size has to be very large

to apply the asymptotic theory of maximum likelihood for mixture models.

A Markov chain Monte Carlo (MCMC) estimation algorithm, however, has been found

to be useful for estimating mixture distributions (Diebolt & Robert, 1994; Robert, 1996),

including MixIRTMs (Bolt, Cohen, & Wollack, 2001, 2002; Cho, Cohen, & Kim, 2006; Cohen

& Bolt, 2005; Cohen, Cho, & Kim, 2005; Samuelsen, 2005; Wollack, Cohen, & Wells, 2003).

A Bayesian approach can be useful for estimating finite mixture models, in fact, because

use of a proper prior will usually operate to smooth the likelihood function of the mixture

model (Frühwirth-Schnatter, 2006). This, in turn, serves to reduce the possibility that a

spurious model might be selected in cases where an approach such as an EM algorithm

would possibly lead to a degenerate solution. Further, parameter uncertainty is easier to

address, since the complete posterior is available (Frühwirth-Schnatter, 2006). Also, since

a Bayesian estimation algorithm does not rely on asymptotic normality, it will yield valid

inferences in situations in which regularity conditions are violated, such as small data sets

and mixtures with small mixture proportions (Frühwirth-Schnatter, 2006).

Three issues are addressed below for mixture modeling: Label switching, model selection,

and use of priors.

Label switching

A potentially serious problem in Bayesian estimation of mixture models is that of identi-

fication. Identification of a model implies that different parameter estimates yield different

likelihood values. In a Bayesian context, non-identification would mean that the posterior is

the same for different values of the parameter.

Identifiability for a mixture distribution is defined as follows (McLachlan & Peel, 2000).

Let

f(yj; Ψ) =
G∑

g=1

πg · fg(yj; θg) (3.5)
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and

f(yj; Ψ∗) =
G∗∑

g=1

π∗g · fg(yj; θ∗g) (3.6)

be any two members of a parametric family of mixture densities. yj is the observed value of

the random vector Yj, Ψ is a parameter in the parameter space, Ω, θg and θ∗g are the vectors

of unknown parameters, and πg and π∗g are mixing proportions. This class of finite mixtures

is said to be identifiable for Ψ ∈ Ω if

f(yj; Ψ) ≡ f(yj; Ψ∗) (3.7)

if and only if G = G∗.

Bayesian analysis can sometimes help with model identification by the use of priors. For

example, priors imposing just enough information can be added to uniquely determine the

parameter values (Vermunt & Magidson, 2005).

Cho et al. (2006) describe two types of label switching in the MixIRTM. The first type

is that which is commonly referred to as label switching in mixture models: It occurs across

iterations within a single MCMC chain. The second type occurs when the latent classes

switch among replications (as in a simulation study) or for different initial values. This

latter kind occurs in both maximum likelihood and Bayesian solutions.

The first type of label switching can be a serious problem in Bayesian estimation because

the labels of the mixtures can change within the MCMC chain on different iterations. That

is, the meaning of the latent classes can simply switch. This type of label switching occurs

essentially because there is a lack of sufficient information that can be used by the algorithm

to discriminate between the latent groups of mixture models belonging to the same para-

metric family (McLachlan & Peel, 2000). The root of this type of label switching is that the

likelihood is the same for all permutations of parameters (Stephens, 2000). It can be seen,

when distinct jumps occur in the traces of a parameter over the course of the MCMC chain,

and also when the plot of the density for the parameter has multiple modes (Stephens, 2000).

If multiple modes do exist for any of the distributions of parameters, then label switching
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is present with the result that interpretation of the posterior of the parameter is distorted.

This type of label switching also can be detected by examining the marginalized posterior

distribution of each parameter.

The second type of label switching sometimes arises in a MCMC chain. This is not the

usual within-chain label switching but rather occurs among different chains. The result of

this form of label switching can cause confusion in interpretation of results because the

latent classes have a different order in each chain. This kind of label switching can easily be

observed in a simulation study because the generating parameters are available and can be

compared with the parameter estimates to determine which labels should be applied to each

of the latent classes. This second form of switching of latent class labels among replications

is not uncommon and was observed in the simulation study described in Cho et al. (2006).

Evidence for this second type of label switching was found by comparing results for multiple

chains with different starting values. Group memberships were compared for each chain

with the generating parameters to determine whether class labels had switched among the

different replications. Checking convergence when this kind of label switching occurs can be a

problem with more than two chains for empirical data since the true group memberships are

not known. The approach used here was to try to match the estimated group memberships

by comparing estimated group ability means and proportions across the different chains.

The following suggestions may be useful in helping to avoid the first type of the label

switching for the empirical data described above. One way to limit label switching is to

impose an identifiability constraint on the parameter space that can be satisfied by only one

of the possible permutations for a given parameter. Although there are many choices that

could be made for identifiability constraints for any given data set, not all will be effective in

removing the symmetry in the posterior distribution (Stephens, 2000). Furthermore, setting

constraints is somewhat problematic in that such constraints may possibly distort the final

estimate (Congdon, 2003). Stephens (2000) also showed, however, that artificial identifiability

constraints generally do not solve this type of label switching. Instead, Stephens suggested
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a relabelling algorithm, based on a decision theoretic approach, in which first a loss function

is defined, and then the estimates are chosen that minimize the posterior expected loss for

that function.

Model Selection

When the number of components in a model is unknown, the parameter space is ill-defined

and of infinite dimension (McLachlan & Peel, 2000). One approach in Bayesian estimation of

mixture models is to consider the number of latent mixtures, g, to be an unknown parameter

with a prior distribution. Richardson and Green (1997) describe an approach in which the

number of latent mixtures is an unknown parameter that is to be estimated. The usual

approach in mixture modeling, and the one assumed in this paper, however, is to fit a range

of mixture models each with a different number of latent classes, and then to consider the

selection of a model according to some theoretical rationale often including use of some

appropriate statistical criteria.

Li et al. (2006) examined several model selection indices for use in Bayesian estimation

of dichotomous MixIRTMs: Akaike’s information coefficient (AIC), Bayesian information

coefficient (BIC), deviance information coefficient (DIC), pseudo-Bayes factor (PsBF), and

posterior predictive checks (PPP). The five indices provided somewhat different recommen-

dations for a set of real data. Results from a simulation study indicated that BIC selected

the generating model well under all conditions simulated and for all three of the dichoto-

mous MixIRTMs (i.e., the MRM, the mixture 2-parameter logistic model, and the mixture

3-parameter logistic model) considered. PsBF was almost as effective. AIC and DIC tended

to select the more complex model, and PPP was essentially ineffective for this use.

AIC and BIC were used in this study for selection of the model with the correct number

of mixtures. Since the ζtjg may be different at each iteration in sampling, it is necessary to

monitor the likelihood at each iteration. The definitions of AIC and BIC in this study are
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as follows:

AIC = −2Dt + 2m, (3.8)

BIC = −2Dt +m log n (3.9)

where m is the number of parameters, and n is the number of observations.

The model selection strategy taken in this study is one in which the candidate models,

each describing different numbers of mixtures, are run in parallel. Information is then accu-

mulated over iterations to provide a probability that a specific model is selected by AIC

and BIC (Congdon, 2003). This approach compares the averages of the AIC and BIC fit

measures over iterations in a MCMC run following burn-in.

The Use of Priors

Problems which may arise in estimation of MixIRTMs can sometimes be avoided or at least

ameliorated to some extent by use of a Bayesian estimation algorithm. Information in the

form of priors can be used to direct the algorithm away from extremes which might otherwise

be approached during estimation. Bayesian algorithms make use of priors to constrain or

guide the estimation of model parameters. The effect of the prior is greater, given the data,

to the extent it imposes a stronger constraint on the algorithm. When the information used by

the estimating algorithm comes solely from the data, or when priors are uninformative, then

a Bayesian estimate would be comparable to that obtained from a non-Bayesian algorithm

such as a MLE algorithm.

A fully Bayesian estimation of the MRM requires that priors are set for ability, item

parameters, and mixture probabilities. Cho et al. (2006) followed standard practice by setting

the prior distribution for ability as normal with mean 0 and standard deviation 1 for the

reference group. Normal prior distributions on the item parameters were also used to improve

the stability of the fitting process. These priors have been reported to yield reasonable

estimates of the item parameters (Johnson & Albert, 1998).
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The form of the prior is an important issue in Bayesian estimation. Improper priors

will yield improper posterior distributions. If an improper prior is adopted for the mix-

ture component parameters, then the posterior distribution will be improper. One approach

to avoiding improper posterior distributions in mixture models is to use conjugate priors

(Diebolt & Robert, 1994). Cho et al. (2006) implemented an MCMC method for the MRM

and compared a Dirichlet prior, a Dirichlet process with stick-breaking prior, and a multi-

nomial regression model on the probability of mixture for model parameter recovery. There

were no noticeable differences between the Dirichlet prior and the Dirichlet process with

stick-breaking prior. For the two-group simulation, recovery was nearly the same for both

priors and the logistic regression model with a covariate. For the three-group simulation,

however, recovery of item difficulties and group memberships improved with the use of the

logistic regression model with a covariate. The four-group condition was simulated as having

one group that was a guessing group. Recovery for this condition was less consistent than

for the three-group condition. The Dirichlet prior was used for MRM in this study.

Specifying a Model in WinBUGS

Scale Anchoring and Linking. Scales were linked so parameter estimates from different

latent classes were placed on the same metric. This permits direct comparisons of the param-

eter estimates among the different latent classes. The usual way of identifying the metric

for the MRM is to impose the restriction
∑
i big = 0 on the difficulty parameters within

each class (Rost, 1990). Using this approach is effective for identification and also for scale

anchoring in the MRM. For other models, an additional step is needed to link the metrics of

the different latent classes.

In this study, the metric was anchored by selecting one of the latent classes in the MRM as

a reference group, and setting the ability distribution as logit[P (yijg = 1|g, ηjg)] = θjg−βig =

σg · ηjg − βig with the following priors:

ηjg ∼ Normal(µg, 1), g = 1, . . . , G
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µ1 = 0, µ2 ∼ Normal(0, 1)

σg ∼ Normal(0, 1)I(0, ).

where ηjg = θjg√
σ2
g

. For anchoring, the mean of η was set to 0 by selecting one of the latent

classes in the model as the reference group. In this study, the metric of the first latent class

was selected as the base or reference metric. The means for the remaining latent classes were

set to µg, that is, they were estimated relative to the metric of the reference group. Thus, the

mean and variance of the ability distributions of the other groups were estimated relative to

the N(0, 1) scale of the reference group.

Priors and Posterior Distributions.The following priors and its hyper-priors were

used to estimate the parameters of the MRM:

g ∼ Multinomial (1, πg[1 : G])

ηj|G = g ∼ Normal (µg, 1), j = 1, . . . , N

big ∼ Normal (0, 1), i = 1, . . . , n, g = 1, . . . , G

σg ∼ Normal(0, 1)I(0, ), g = 1, . . . , G

µg ∼ Normal (0, 1), g = 2, . . . , G, µ1 = 1,

where I(0, ) indicates that observations of a were sampled above zero.

Two things were used on πg: a Dirichlet prior as a conjugate prior and a multinomial

logistic regression model with a covariate for πg. An mildly informative prior was used on

item difficulty. This prior was set at big ∼ N(0, 1) across items and classes. The use of

diffuse priors failed to provide enough bound on the item difficulty and standard deviation

of ability parameters for MRM. As a result, mildly informative prior was used. The use of

mildly informative priors was done to provide rough bounds on the parameters of the model

and to make fitting procedures more stable (Bolt, Cohen, & Wollack, 2001, 2002; Cohen &

Bolt, 2005; Cohen, Cho, & Kim, 2005; Samuelsen, 2005; Wollack, Cohen, & Wells, 2003).

The likelihood function for the MRM is as follows:

L(g, θjg) =
∏I
i=1

∏J
j=1[{∑G

g=1 πg · P (yijg = 1|g, θjg)}uij
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· {∑G
g=1 πg · (1− P (yijg = 1|g, θjg)}1−uij ]ζ

t
jg , (3.10)

where uij is dichotomously scored as 0 =incorrect and 1 =correct, ζjg = 1 if examinee j is

from mixture g and 0 otherwise.

With θjg =
√
σ2
g · ηjg = σg · ηjg, the joint posterior distribution of

S = {ηj, µg, σg, big, g, πg} (3.11)

the Dirichlet prior as a conjugate prior can be written as

P (S|U) ∝ L(g, θj)P (ηj|µg)P (µg)P (σg)P (big)P (g|πg)P (πg). (3.12)

For a multinomial logistic regression model, the joint posterior distribution of

S = {ηj, µg, σg, big, g, πg, γ0g, γpg} (3.13)

can be written as

P (S|U) ∝ L(g, θj)P (ηj|µg)P (µg)P (σg)P (big)P (g|πg)P (γ0g)P (γpg). (3.14)

Since the Rasch model can be considered as a special case of a MRM with a one-group

solution, the above procedure can be used. The WinBUGS code for this model is given in

Appendix B.

Sampling in WinBUGS. As noted above, WinBUGS includes a graphical modeling

facility called DoodleBUGS that can be used to graphically represent the full conditional

distributions for the MRM. DoodleBUGS can also render WinBUGS code based on the

diagram to estimate the model based. Figure 3.2 shows a graphical model for the MRM

using DoodleBUGS that can be used to generate code which will provide the same results

as the code in Appendix C. For illustration purposes, a Dirichlet prior on the probabilities

of the mixtures is shown in Figure 3.2.

The order of the processing in WinBUGS can be found in the same DoodleBUGS diagram.

Processing (as described in Figure 3.2) proceeds by sampling all nodes starting at the outer
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Figure 3.2: Graphical Representation of MRM

for(j IN 1 : J)

for(i IN 1 : I)

b[g[j],i]

mutg[g[j]]

pi[1:G]g[j]

sigma[g[j]] eta[j]

r[j,i]

p[j,i]

edge of the diagram with the hyperparameters and working inwards in the diagram to the

p[j, i]. eta[j] is the variable name used in the program code for ηj, mutg[g[j]] is used for

µg, sigma[g[j]] is σg, b[g[j], i] is used for class-specific item difficulty big, g[j] is the index

for group membership for person j, and pi[g] is the variable name used in the program

code for πg. A solid arrow indicates a stochastic dependence and a hollow arrow indicates

a logical function. From the diagram, it can be seen that eta[j] depends on mutg[g[j]], and
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g[j] depends on pi[g] with p[j, i] being a logical function of sigma[g[j]], eta[j], b[g[j], i], and

g[j].

Once the model is specified, including all priors and distributions, WinBUGS can deter-

mine the necessary sampling methods directly from the graphical structure. The form of the

full conditional distributions for µg and πg are both conjugate (i.e., normal and Dirichlet dis-

tribution, respectively), so that direct sampling using standard algorithms is done. The form

of the full conditional distribution of g is a discrete distribution with a finite upper bound

so that the inversion method is implemented. In addition, the forms of the full conditional

distributions of ηj, σg, and big are log-concave distribution, so that derivative-free adaptive

rejection sampling is carried out. The truncated version of the normal distribution of σg is

also log-concave.

A common MCMC strategy is to sample a class membership parameter for each obser-

vation at each stage of the Markov chain (Robert, 1996). In this study, the algorithm imple-

mented the following strategy: A class membership parameter, g = 1, 2, · · · , G, was sampled

for each examinee j along with a continuous latent ability parameter ηj. The group mem-

bership parameter was determined as the mode of gs across iterations following burn-in.

Monitoring Convergence. In Cho et al. (2006), some of the chains had not converged

by the time they had reached 100,000 iterations. This occurred for all the 10-item conditions

for each sample size and for the 30-item and 50-item conditions with 360 examinees in

that study. These results indicate that the data were not sufficiently informative to obtain

stable parameter estimates for these conditions. The results further suggest that test lengths

for the MRMs simulated should be at least 30 items and sample sizes should be around

1,000 examinees. For those conditions in Cho et al. that did converge, results suggested a

conservative burn-in of 7,000 iterations would be appropriate for all conditions for which

convergence was obtained. Based on the results from these procedures, Cho et al. adopted

a common conservative burn-in of 7,000 burn-in iterations and 8,000 post burn-in iterations

for all remaining conditions.
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Mixture models in general are likely to have multiple local maxima of the likelihood

(Muthén et al., 2002). Maximizing a likelihood yields a solution that provides a local max-

imum only within a restricted set of parameter values rather than globally over all possible

combinations of parameter values. The usual method used to check whether the model is

identified or whether there is merely a local solution is to run the model with different

starting values (McLachlan & Peel, 2000). Observing the same log likelihood obtained from

multiple set of initial values, for example, increases confidence that the solution is not a

local maximum. This is similar to the checking of convergence of two or more chains by

using markedly different starting values in a Bayesian solution. Once convergence has been

reached, a Bayesian solution may prevent the possibility both of non-identification and local

maxima when estimating mixture models.

3.1.3 Bayesian Estimation of the Multilevel Mixture IRT Model

The MMixIRTM parameters were estimated using a Bayesian algorithm. A MCMC Gibbs

sampling algorithm was written using WinBUGS 1.4 (Spiegelhalter, et al., 2003) to estimate

the MMixIRTM with covariates model described above (The WinBUGS program code used

is given in Appendix D and E.) Considered below are issues to be addressed in the MCMC

solution.

Label Switching

There are three possible types of label switching that can arise in a MMixIRTM. Label

switching within a chain is the first type, and label switching across chains is the second

type. The third type of label switching is a variant of Type II switching in which student-

level latent classes switch within a school-level latent class. Each type of label switching is

described below.

The lack of identifiability causes problems in a Bayesian framework where the posterior

distribution is used to make inferences regarding model parameters. This problem is harder
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to deal with for a MMixIRTM because of the multilevel structure of mixtures. Employing

the notion of the hierarchical mixtures-of experts (HME) model suggested in Jordan and

Jacobs (1992), the MMixIRTM can be viewed as having a two-layer mixture structure. The

higher-level is the school level and mixing proportions in the latent classes are πk. At the

lower-level, the student-level, latent class have mixing proportions πg|k. Vermunt (in press

a) described the model identification issue for the multilevel mixture model as follows: A

necessary condition for identification is that the higher-level model has the structure of an

identifiable latent class model. Separate identifiability of the lower part of the model is a

sufficient condition but not always necessary when the number of higher-level classes is larger

than 1. A necessary condition for identification is that the πk for the K latent classes should

be identified. As noted earlier, label switching can be seen when distinct jumps occur in the

traces of a parameter and when the density for the parameter has multiple modes (Stephens,

2000). If multiple modes do not exist for the πk, it can be concluded that there is no the first

type label switching and a necessary condition for identification is satisfied.

The second type of label switching arises in a MCMC chain as described MixIRTM. This

kind of label switching may happen within each school-level mixture in the MMixIRTM since

the student-level proportion is modelled within a school-level mixture. That is, the labelling

of student-level membership is different for each school-level mixture, if this second type of

label switching arises within a school-level mixture. This type of label switching is called the

third type of label switching in this study. In a simulation study, the parameter estimates can

be compared with the generating parameters to determine which labels should be applied

to each of the latent classes for each school-level mixture. In an empirical data sets, group

memberships can be matched across chains and across school-level mixtures by looking at

the patterns of the means of ability, mixture proportions, and difficulty.
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Model Selection

As described (above) in the section on model selection for Bayesian estimation of MixIRTM,

AIC and BIC were used for the model selection indices.

Specifying a Model in WinBUGS

Scale Anchoring and Linking for the MMixIRTM. Linking of scales is necessary in

order to make comparisons among the different latent groups in the model. In this study,

we anchor the metric with respect to ability distribution. This procedure is done by re-

parameterizing θjtgk into
√
σ2
gk · ηjtgk. That is, θjtgk and ηjtgk are set, respectively, as follows:

θjtgk ∼ Normal(µgk, σ
2
gk),

ηjtgk ∼ Normal(µgk, 1),

where ηjtgk =
θjtgk√
σ2
gk

. For metric anchoring, the mean of ηgk is set to 0 for the reference group

(in this study, µ11 = 0). The means for the remaining latent classes are set to µgk, that

is, they are to be estimated. Thus, the mean and variance of the distributions of the other

groups are estimated relative to the N(0, 1) scale of the reference group in terms of ηjtgk.

That is, the procedure can be described as follows:

logit[P (yijtgk = 1|g, k, ηjtgk)] =
√
σ2
gk · ηjtgk − bigk. (3.15)

DIF analysis with MMixIRTM is the situation where the same set of items are admin-

istrated across unknown groups, i.e., latent classes, g and k. That is, each (latent) group

of examinees responded to the same set of items. Given the particular items used, one can

think of every item on the scale as being a potential anchor item to be used in estimating

an appropriate link. This is similar to a common-item internal anchor nonequivalent groups

linking design. However, in the MMixIRTM, class-specific item difficulties as well as group

memberships g and k are estimated simultaneously. For comparisons of the item difficulties
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across latent classes, g and k, The bTigk are calculated for each classes g and k with the

∑I
i bigk = 0.

Priors and Posterior Distributions. The following priors were used for the binary

response version of the MMixIRTM:

g ∼ Categorical (πg|k[1 : G])

k ∼ Categorical (πk[1 : K])

ηjt|G = g,K = k ∼ Normal (µgk, 1), j = 1, . . . , J, t = 1, . . . , T

µgk ∼ Normal (0, 1), g = 2, . . . , G, k = 2, . . . , K, µ11 = 1

σgk ∼ Normal(0, 1)I(0, ), g = 1, . . . , G,

βigk ∼ Normal (0, 1), i = 1, . . . , I, g = 1, . . . , G,

where I(0, ) indicates that observations of σ were sampled above 0. An mildly informative

prior on item difficulty was set at bigk ∼ N(0, 1) for items across classes. The use of diffuse

priors failed to provide enough bound on the item difficulty and standard deviation of ability

parameters for MMixIRTM. As a result, mildly informative prior was used. The use of such

priors was done to provide rough bounds on the parameters of the model and to make fitting

procedures more stable (Bolt, Cohen, & Wollack, 2001, 2002; Cohen & Bolt, 2005; Cohen,

Cho, & Kim, 2005; Samuelsen, 2005; Wollack, Cohen, & Wells, 2003).

A multinomial logistic regression with a covariate model was used for representing the

student-level mixtures conditional on the school-level mixture (i.e., πg|k). The following

models were used:

πg|k,Wj
=

exp(γ0gk +
∑P
p=1 γpgWjp)∑G

g=1 exp(γ0gk +
∑P
p=1 γpgWjp)

, (3.16)

and

πg|k,Wj
=

exp(γ0gk +
∑P
p=1 γpgkWjp)∑G

g=1 exp(γ0gk +
∑P
p=1 γpgkWjp)

. (3.17)

The difference between the first model and the second model is that the first model contains

a covariate effect (γpg) for school-level mixtures, whereas the second model contains the
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covariate effect (γpgk) for school-level mixtures. Priors for γ0gk, γpg, and γpgk, were set to

N(0, 1).

For the prior of πg|k, a Dirichlet distribution can be used as the conjugate prior of the

parameters of the multinomial distribution:

Γ(
∑
g αg)∏

g Γ(αg)
·
G∏
g

π
αg−1
g|k , (3.18)

where
∑G
g=1 πg|k = 1 for all school-level latent class ks with the proportion of πk, and G

indicates the number of student-level latent classes.

One way to sample πg|k from the Dirichlet distribution is to sampleG independent random

variables π∗g|k from the Gamma distribution, Gamma(αg, 1), g = 1, · · · , G normalizing

πg|k =
π∗g|k∑G
g=1 π

∗
g|k
, (3.19)

for each k.

A second way to sample πg|k from the Dirichlet distribution is to set αg directly. The

parameters αg can be interpreted as “prior observation counts” for events governed by πg|k

(Gelman et al., 2003). The density is proper if all αg|k are positive. The density of the

Dirichlet distribution is improper if all αg|k are 0. When αg|k → 0, the distribution becomes

noninformative. The order of mixtures in a mixture density is arbitrary. Consequently, the

usual procedure is to select priors that reflect this information, such that they are invariant

to relabelling of the mixtures (Frühwirth-Schnatter, 2006). Thus, the hyperparameters of

the prior in this study were assumed to be the same, yielding invariant priors. That is, the

means of all the πg|k priors were the same in this study. The marginal distribution of πg|k is

a Beta distribution, therefore, the mean and variance of the πg|k are respectively as follows:

(Frühwirth-Schnatter, 2006):

E(πg|k) =
αg∑
g αg

(3.20)

and

V ar(πg|k) =
αg · (∑g αg − αg)

(
∑
g αg)2 · (∑g αg + 1)

. (3.21)
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The variances decrease as the parameter values of αg increase. In this study, αg = 1 as a

uniform Dirichlet prior and as αg = 4 were both studied as possible priors. A multinomial

logistic regression with a school-level covariate, a Dirichlet prior as a conjugate prior, a

Dirichlet prior with the Gamma distribution, and a Dirichlet process with stick-breaking

prior also can be used for the school-level probabilities of mixtures (i.e., πk).

The probability of a school belonging to latent class k, πk, can be written as

πk|Wt =
exp(γ0k +

∑P
p=1 γpkWtp)∑K

k=1 exp(γ0k +
∑P
p=1 γpkWtp)

. (3.22)

Priors of γ0k and γpk, were set to N(0, 1).

The Dirichlet distribution is the conjugate prior of the parameters of the multinomial

distribution. It is defined as follows in the computer program WinBUGS 1.4 (Spigelhalter et

al., 2003):

Γ(
∑
k αk)∏

k Γ(αk)
·
K∏

k

παk−1
k , (3.23)

where 0 < pk < 1,
∑
k pk = 1, and K indicates the number of school-level mixtures. In this

study, αk = 1 as a uniform Dirichlet prior and αk = 4 were tried for prior investigation.

Another way to sample πk from the Dirichlet distribution is to sample K independent

random variables π∗k from the Gamma distribution, Gamma(αk, 1), k = 1, · · · , K normalizing

πk =
π∗k∑K
k=1 π

∗
k

, (3.24)

for each k.

The Dirichlet process prior (DPP) offers an approach which avoids parametric assump-

tions and is less impeded by uncertainty about the appropriate number of classes. The

DPP method deals with possible clustering in the data by only requiring specification of a

maximum conceivable number of latent classes (Congdon, 2003). πk at any iteration may

be constructed by defining a sequence r1, r2, · · · , rK−1 of Beta(1, α) random variables, with

rK = 1 (Congdon, 2003). The distribution of Beta(a, b) is defined as follows in the computer

program WinBUGS 1.4 (Spigelhalter et al., 2003):

pa−1(1− p)b−1
Γ(a+ b)

Γ(a)Γb
, (3.25)
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where 0 < p < 1.

The stick-breaking prior proceeds as follows: Sample

rg ∼ Beta(1, α), g = 1, · · · , G, (3.26)

and set

π1 = r1, (3.27)

π2 = r2 · (1− r1), (3.28)

π3 = r3 · (1− r2) · (1− r1), (3.29)

and so on. This is known as a stick-breaking prior since at each stage what is left of a stick

of unit length is broken and the length of the broken portion assigned to the current value

πk. At any iteration, some of the K potential classes may be empty. It is possible to monitor

the actual number K of non-empty, though differing, classes.

The likelihood function for the binary response version of the MMixIRTM is as follows:

L(g, k, θjg) =
∏I
i=1

∏J
j=1[{∑K

k=1

∑G
g=1 πk · πg|kP (yijtgk = 1|g, k, θjtgk)}uij

· {∑K
k=1

∑G
g=1 πk · πg|kP (yijtgk = 1|g, k, θjtgk)}1−uij ]ζ

t
jgk , (3.30)

where uij is dichotomously scored responses as 0 and 1, ζjgk = 1 if the examinee j is from

mixtures g and k and ζjgk = 0 otherwise.

The joint posterior distribution for the use of priors on πg|k and πk,

S = {g, k, ηjt, µgk, σgk, βigk, πk, πg|k}

can be written as

P (S|U) ∝ L(g, k, ηjt)P (ηjt|µgk)P (µgk)P (g|πg|k)

· P (πg|k)P (k|πk)P (πk)P (agk)P (βigk) . (3.31)

The joint posterior distribution for the use of a multinomial logistic regression model on

πg|k and πk,

S = {g, k, ηjt, µgk, σgk, βigk, πk, πg|k, γ0gk, γpg, γ0k, γpk}



72

can be written as

P (S|U) ∝ L(g, k, ηjt)P (ηjt|µgk)P (µgk)P (g|γ0gk, γpg)P (γ0gk)P (γpg)

· P (k|γ0k, γpk)P (γ0k)P (γpk)P (agk)P (βigk) . (3.32)

Sampling in WinBUGS. MCMC sampling in WinBUGS is shown below for the use

of priors on the probability of mixtures. WinBUGS uses a graphical model to calculate full

conditional distribution. Figure 3.3 is shown to represent the graphical model of MMixIRTM

with DoodleBUGS, which leads the same code in the Appendix D we used for the estimation.

Figure 3.3: Graphical Representation of MMixIRTM with Priors

for(i IN 1 : I)

for(j IN 1 : J)

pi1

pi

gg[group[j]]

g[j]

a[g[j],gg[group[j]]] mutg[g[j],gg[group[j]]]

beta[i,g[j],gg[group[j]]]

eta[j]

r[j,i]

p[j,i]
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The processing in WinBUGS proceeds by sampling all nodes starting at the outer edge

of the diagram with the hyperparameters and working inwards in the diagram to the p[j, i].

As an example, pi is the variable name used in the program code for πg|k, pi1 is the

variable name used in the program code for πk, g[j] is the index for group membership

for student j, gg[group[j]] is the index for group membership for school k, eta[j] is ηj,

a[g[j], gg[group[j]] is σgk, beta[i, g[j], gg[group[j]]] is βigk and mutg[g[j], gg[group[j]]] is µgk.

A solid arrow indicates a stochastic dependence and a hollow arrow indicates a logical func-

tion. From the diagram, it can be seen that eta[j] depends on mutg[g[j], gg[group[j]]], g[j]

depends on pi, and gg[group[j]] depends on pi1. p[j, i] (which is the code in the program for

p(P (yijt = 1|g, k, θjgk))) is a logical function of a[g[j], gg[group[j]], beta[i, g[j], gg[group[j]]],

eta[j],mutg[g[j], gg[group[j]]], g[j], and gg[group[j]].

Once the model is fully specified using the distributions given above, WinBUGS then

determines the necessary sampling methods directly from the structure in the diagram. The

form of the full conditional distribution of µgk, πg|k, and πk is a conjugate distribution of the

parameters (i.e., normal and Dirichlet distributions), so that in this study, direct sampling

was conducted using standard algorithms. The form of the full conditional distribution of g

and k is a discrete distribution with a finite upper bound so that the inversion method is

implemented. The form of the full conditional distribution of ηj, agk, and βigk is log-concave,

so that WinBUGS uses derivative-free adaptive rejection sampling. The truncated version of

the normal distribution of σgk is log-concave as well.

Starting values are needed for each parameter being sampled in order to define the first

state of the Markov chain. The starting values for the remaining model parameters were

randomly generated in the WinBUGS software except that the school-level group member-

ship to monitor the trace of it. It was randomly set with the random permutation for both

simulation and empirical study.

Monitoring Convergence. The Gelman and Rubin (1992) statistic was run for two

chains using widely disparate initial values for each of the parameters (e.g., the initial values
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for the difficulty parameters, βgk, were set at −2 and 2, respectively, for the two chains, for

the standard deviation of ability, σgk, the initial values were 1 and 2, respectively, for the

two chains). The autocorrelation plot was examined. The Geweke (1992), Heidelberger and

Welch (1993), and the Raftery and Lewis (1992) methods also were run and analyzed for a

single chain.

3.2 DIF Detection Procedure

In this section, the DIF detection procedure of the general MMixIRTM is described at both

student- and school-levels.

Student-level DIF in the General MMixIRTM. As described earlier, DIF at the

student-level is defined based on differences in item difficulties within a school-level latent

class. In other words, we obtain information about student DIF for each school-level latent

class. Since we are concerned with school-level comparisons in this study, we do not define

one of the student-level latent classes as a reference group. Further, the student-level DIF

measures are based on differences in item difficulties of all pairwise comparisons for binary

and for polytomous items as follows:

DIFM = β̂Tigk − β̂Tig′k, (3.33)

and

DIFM = δ̂Tigk − δ̂T ig′k, (3.34)

where β̂T igk and δ̂T igk are transformed (T) estimated item difficulties for the given k.

For studied item i of the given school-level in latent class k, the following comparisons

are of interest:

H0 : βTigk − βTig′k = 0, (3.35)

and

H0 : δTigk − δTig′k = 0 , (3.36)
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indicating that there is no hypothesized difference in item difficulties between two student-

level groups.

School-level DIF in the General MMixIRTM. DIF at the school-level can be deter-

mined by comparing the differences between the item difficulties among school-level latent

classes. The current procedure used by the College Board is to provide a DIF analysis for

each school relative to a single comparison group. In this study, this same approach is used

except that there are K − 1 latent classes, each of which is used as a comparison group.

Each school is classified by the MMixIRTM into to one of the K school-level latent classes.

For purposes of reporting to each school, we identify the latent class in which that school

is a member and define that latent class as the focal group. For ease of discussion, we refer

to the given school of interest as the focal school. The notation F in the equations below

is used to indicate the latent class in which the focal school is located, i.e., the focal group.

The remaining K− 1 latent classes are each separately used as reference groups for this DIF

analysis. If K ≥ 3, then the DIF analysis is a multi-group DIF analysis.

The school-level DIF measures are based on differences in item difficulties between the

focal group and each of the K−1 other latent classes separately defined as follows for binary

and for polytomous items, respectively:

DIFM = β̂Tigk − β̂TigK , (3.37)

and

DIFM = δ̂Tigk − δ̂T igK , (3.38)

where β̂T igk and δ̂T igk are estimated item difficulties transformed.

Let the group k = 1 be the focal group for the focal school and the remaining K − 1

groups (i.e., k = 2, . . . , K) be the reference groups for that school. For the studied item i

and for student-level latent class g, the following comparisons are of interest:

H0 : βTigk − βTigK = 0, (3.39)
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and

H0 : δTigk − δTigK = 0 , (3.40)

indicating that there is no difference in item difficulties between two school-level groups.

DIF Detection Procedure. Since Bayesian estimation is used to estimate model

parameters, then a Bayesian method for estimation of DIF needs to be used as well. In

this regard, the difference between each pair of item difficulties can be tested with a cred-

ibility interval. Box and Tiao (1973) describe this interval as the highest posterior density

(HPD) interval. The HPD interval containing 95 percent of the probability under the pos-

terior is referred to as the 95 percent highest posterior density (HPD) interval. Assuming

a nominal alpha of .05 for rejection of the null hypothesis in which a parameter value or a

function of parameter values is 0, the HPD interval can be used to test, if the value differs

significantly from zero (Box & Tiao, 1973). In this study, if the HPD interval of the DIF

measure for each item does not include 0, the item is considered as DIF item (Samuelsen,

2005).

3.3 Simulation design

Simulation of Mixtures. Rost (1990) suggested the primary diagnostic potential of the

MRM (i.e., without school-level mixtures) is in its use for accounting for qualitative differ-

ences among examinees. De Boeck et al. (2005) describe two types of qualitative differences

between manifest categories. The qualitative differences are “simple” when the location of

item difficulties has shifted relative to the location of the other item difficulties. The qualita-

tive differences are “complex” when there does not appear to be a discernible pattern to the

locations of the item difficulties among the latent classes. Likewise, two types of qualitative

differences at the school-level mixture are possible: simple and complex qualitative differ-

ences. In this study, complex qualitative differences were simulated among both school-level

and student-level latent classes.
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Mixtures were simulated to represent different item difficulty patterns for each class at

the student- and school-levels. In a mathematics test used in the PSAT/NMSQT, there

are four math concepts in mathematics section (i.e., number of operations, algebra and

functions, geometry and measurement, and data analysis, statistics, and probability). Like-

wise, there are three kinds of problems of writing skills questions in the writing test in the

PSAT/NMSQT (i.e., improving sentences, identifying sentence errors, and improving para-

graphs). Four knowledge levels were assumed for generating item difficulty parameters are

generated. It was assumed that each concept was measured by 10 items. Further, each school-

level latent class was assumed to have its own student-level class-specific item difficulty. Item

difficulty parameters were set as shown in Tables 3.1 and 3.2. In this study, school-level DIF

was generated by increasing and decreasing the β parameters by different magnitudes. Two

levels of the percent of DIF items on the test were simulated: Four items (i.e., 10 percent

items in the test) and 12 items (i.e., 30 percent of the items in the test) were generated as

DIF items at the school-level. Ability was simulated as θ ∼ Normal (0, 1) for each latent

class (i.e., g and k) for these item difficulties, resulting in multilevel mixture structures.

Simulation Conditions. A simulation study was done to describe the detection of

DIF for the MMixIRTM under typical testing conditions. The following conditions were

examined in the simulation study: test length, effect size of DIF, numbers of items with

DIF, numbers of latent classes at the student- and school-level, student and school sizes,

proportion of mixtures, modeling of probabilities of mixtures, and strength of relationship

between covariates and mixtures. Strength of relationship between covariates and mixtures

condition was examined only for the multinomial regression modeling on the probabilities of

mixtures.

There were a total of 32 conditions simulated for the use of priors: 1 test length × 1

magnitude of the differences in item difficulties × 2 levels of the percent of items with DIF

× 2 latent classes at the student- and school-levels × 2 numbers of students for each school
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× 1 total number of examinees × 1 proportion of mixtures × 8 different models fit to each

data set.

There were a total of 48 conditions simulated to investigate the use of a multinomial

logistic regression model: 1 test length × 1 magnitude of the differences in item difficulties

× 2 levels of the percent of items with DIF × 1 class at the student- and school-level ×
2 numbers of students for each school × 1 total number of examinees × 1 proportion of

mixtures × 2 strength of relationship between covariates and mixtures × 6 model selection

(2 models are overlapped with models with the priors).

Thus, 80 conditions were simulated with five replications for each condition, yielding a

total of 400 simulated data sets analyzed. The simulation conditions are described below.

Test length. A recovery study for the MMixIRTM for a fixed length test of 40-items

was used. The length of 40 items was used since this was similar to the number of items on

the sections of the PSAT/NMSQT. That is, there are 39 items on the Writing Skills section

and 38 items on the Mathematics section (28 multiple-choice items and 10 gridded items).

Magnitudes of the differences in item difficulties. Differences among latent classes

are larger than typically observed among manifest groups (Samuelsen, 2005). This is a func-

tion of the clustering which is done by the MixIRTMs. These models function to detect

groups that are homogeneous with respect to the latent ability and also to increase differ-

ences on the latent ability among different latent classes. This result was also observed in

studies of DIF based on analysis of latent groups by Cohen and Bolt (2005) and by Cohen

et al. (2005).

The size of DIF was simulated as the difference between the item difficulty parame-

ters among the classes. DIF was introduced into items by increasing and decreasing the β

parameters by 0.4, 0.6, 0.8, 1, and 1.2 magnitudes, which reflect the “complex” qualitative

difference at the school level. The strategy of increasing and decreasing the β parameters

by magnitudes are used in the Smit et al. (1999) and Samuelsen (2005) at the student-level.
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Smit et al. (1999) used differences of 1 and 2; Samuelsen (2005) used differences of 0.4, 0.8,

and 1.2.

Numbers of Items with DIF. 10 and 30 percent of DIF items at the school-level will

be used. The percentages of DIF items simulated were based on previous research which

suggests that it is not uncommon to observe between 10% and 30% of the items to func-

tion differentially on many tests (Hambleton & Rogers, 1989; Raju, Bode, & Larsen, 1989).

Such percentages are larger than would typically be observed in operational forms of well-

constructed tests, but it also was expected that more DIF items would be observed with a

latent classes approach than with a manifest groups approach (Samuelsen, 2005).

Numbers of Latent Classes at the Student- and School-Level. The simulation

study examined the number of students and schools, and the number of latent classes at the

student-level and at the school-level. These conditions are described in Table 3.3 .

In Table 3.3, I indicates the case when g < k, II indicates the case when g = k, and

III indicates the case g > k. For g = 1 and k = 1, the model is actually Rasch model or a

multilevel IRT model rather than a MMixIRTM. In addition, when g = 2 or g = 3 and k = 1,

the model is actually a MixIRTM. The multilevel IRT model and MixIRTM in Table 3.3

will be considered in this study but will be excluded for the recovery study portion. Model

recovery of a MixIRTM with fully Bayesian estimation is done in the Cho et al. (2006) and

in Li et al. (2006).

In modeling of a MMixIRTM, the combination of g = 1 with k ≥ 1 is not meaningful

in the current study, because the number of school-level latent classes, k, is composed of

different proportions of the g. In addition, it is less likely to have a condition of g = 2 and

k = 3, as there is a smaller likelihood that two different latent classes at the student-level

will be capable of forming three different proportions of mixtures at the school level. In this

study, g = 2 and k = 2 were simulated.

Student and School Sample Sizes. As mentioned earlier, Cho et al. (2006) found

that some of the MCMC chains had not converged by the time they had reached 100,000
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iterations. This occurred for all the 10-item conditions for each sample size and for the 30-

item and 50-item conditions with 360 examinees as well. These results suggest that the data

for these conditions were not sufficiently informative to obtain stable parameter estimates

for these conditions. The results also suggest that test lengths for the MRM should be at

least 30 items and sample sizes should be at least 1,000 examinees. Finally, Cho et al. found

that, when the sample size was small, DIF was detected, if the overlap between the latent

classes and manifest groups was greater than 80 percent and the magnitude of the DIF was

large.

The proposed MMixIRTM is a complex model in that it assumes a multilevel latent class

structure. In addition, a hierarchical data structure is incorporated into the model so it is

appropriate for use with school-level data. The effect of the number of students in each school

was considered in this study as it is likely of more interest than the total number of examinees.

In addition, it was of interest how many students and schools were needed in each latent

class for recovery of parameters. This was be investigated by considering the proportions of

each class (g and k) using the different conditions shown in Table 3.4. The total sample size

as well as the number of students for each school were considered in determining how many

students and schools were included in each class.

With respect to student- and school-sample sizes, we focused on MMixIRTM behavior

with respect to the ratio of the number of examinees to the number of latent classes. The

efficiency and power of multilevel tests rests on pooled data across the units comprising

two or more levels. This typically implies large datasets. Simulation studies by Kreft (1996)

found adequate statistical power with 30 groups of 30 observations each, 60 groups with 25

observations each, and 150 groups with 5 observations each.

Currently, the SOAS report from The College Board is provided to each school that has

25 or more students participating in the PSAT/NMSQT program. 25, therefore, was the

number of students chosen as the small student sample size and 100 as the large size. One

fixed number of examinees, 8,000, was used for the simulations. This yielded 320 schools for
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the small student sample size and 80 schools for the large student sample size. The two ratios

for these sample sizes were .078 and 1.25, respectively. These two sample sizes of the number

of students for each school and the fixed number of the examinees provide two different sizes

of the number of schools for each latent class.

Proportion of mixtures. Equal proportions of membership in school-level latent class

were simulated in this study. In the two-group simulations, the proportions were both .50.

Table 5 describes the proportion of each latent class for each combination of student-level

× school-level mixture for the g = 2 and k = 2 condition. For K = 1, the first student-level

class (i.e., G = 1) was simulated to have a dominant group with 92 percent of the examinees

in the first school-level class. For K = 2, the second student-level class (i.e., G = 2) was

simulated as the dominant group with 68 percent of the cases. This reflected a less dominant

group in the second school-level latent class.

Modeling of Probabilities of Mixtures. Preliminary checking of priors and hyper-

parameter combinations suggested the Dirichlet distribution with Gamma sampling for both

student-level and school-level probabilities of mixtures should yield good recovery of school-

level group membership. In addition, probabilities of mixtures from a multinomial logistic

regression model also were used for both student- and school-level as another condition.

Strength of Relationship Between Covariates and Recovery of Mixtures. This

condition applies only to the use of a multinomial logistic regression model on mixture

probabilities. Previous research suggests that the relationship between a covariate and the

mixture is a potentially important factor in the accuracy of detection of latent classes (Smit

et al., 1999; Cho et al., 2006). Results from Cho et al. (2006) suggest the use of a prior

with a covariate improved recovery of item difficulties and the probabilities of latent classes

for three and four-class models when overlap was 80 percent or more and no guessing was

simulated. In addition, Samuelsen (2005) has shown that, as the amount of overlap between

manifest groups and latent classes decreased, so did the power to correctly detect DIF items.
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Two levels of overlap were simulated between manifest and latent groups: 60 percent

overlap, and 100 percent overlap for each level of latent class. This condition will not be

fully crossed, however, for each level of number of latent classes. One hundred percent overlap

referred to a condition in which one latent class was composed entirely of examinees from a

single manifest group and the other overlap conditions refers to situations in which the latent

class was increasingly more heterogeneous with respect to the manifest groups (Samuelsen,

2005). Sixty percent overlap means 40 percent of the people in the manifest groups behaved

like those in the other manifest group. The resulting numbers of examinees within the sim-

ulated classes are shown in Table 3.5.

Model selection. Eight different numbers of mixtures were fitted to each number of

student- and school-level mixture. Frühwirth-Schnatter (2006) noted that label switching is

unavoidable for a model that is overfitting the number of mixtures because one or more than

probabilities of mixtures can be 0, or there are the possibilities that model parameters are

equal. Each combination of numbers of mixtures was monitored if the model is identified or

not first before AIC and BIC values are obtained.

Models were checked for G = 1, . . . , 4 at the student-level and K = 1, . . . , 4 at the school-

level. However, three combinations, G = 1 and K = 2, G = 1 and K = 3, and G = 1 and

K = 4, were not simulated as those two cases do not make sense in the present context. That

is, if there is no student-level mixture (i.e., G = 1), a school-level mixture will not exist.

Recovery Evaluation. The accuracy of parameter estimation is dependent on having

examinees classified correctly, and classification accuracy is dependent on accurate param-

eter estimation (Bolt, Cohen, & Wollack, 2002). Thus, only conditions that for recovery of

item difficulties and latent class memberships for the correct number of latent classes were

considered .

For the recovery of item difficulty, the root mean square error (RMSE), bias (Bias), and

Pearson correlations (Corr) were computed across replications with the following equations:

RMSE(b) =

√√√√ 1

IGK

I∑

i=1

G∑

g=1

K∑

k=1

( ˆbigk − bigk)2, (3.41)
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Bias(b) =
1

IGK

I∑

i=1

G∑

g=1

K∑

k=1

[E( ˆbigk)− bigk)], (3.42)

and

Corr =
Cov( ˆbigk, bigk)

σ ˆbigk
, σbigk

. (3.43)

Recovery of latent group membership was assessed by comparing the estimated group mem-

bership with the generating parameters. This was done at the mode of the sampled group

memberships following burn-in.

Linking of Scales for RMSE and Bias Analyses. To compare estimates of model

parameters with the generating parameters using the RMSE and bias statistics, it was nec-

essary first to place the estimates and the generating parameters on the same scale. Pearson

correlations do not require both variables to be placed on the same scale. In this study, the

estimates were placed on the scale of the generating parameters. The following adjustment

was needed to calculate RMSE and bias statistics:

β∗T = βT − (β̄T − β̄B), (3.44)

T represents target scale, that is, the estimates scale in the simulation study and B does

base scale, that is, the true parameter scale in the simulation study.
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Table 3.3: Model Selection for the Number of Latent Classes

K = 1 K = 2 K = 3
G = 1 II (MulIRT Model) I (Unavailable) I (Unavailable)
G = 2 III(MixIRT Model) II I
G = 3 III(MixIRT Model) III II

Table 3.4: Proportions Simulated in Each Latent Class

P (K = 1)=.5 P (K = 2)=.5
P (G = 1) .92 .32
P (G = 2) .08 .68

Table 3.5: Numbers of Examinees Within Latent Classes

Overlap LC1 LC2
100 M1 4000 0

M2 0 4000
60 M1 2400 600

M2 600 2400



Chapter 4

Results

4.1 Result of simulation study

4.1.1 Detection of Label Switching

As described earlier, there are three possible types of label switching in MMixIRTM. Given

that the estimated marginal posterior densities for πk in the MMixIRTM were unimodal, it

was appropriate to conclude that there was no label-switching within the MCMC chains for

both models with and without covariates. That is, the first type of label-switching was not

observed, and a necessary condition for identification was satisfied.

However, we did find the second type of label switching (i.e., label switching across chains)

for a few of the simulation conditions for both the models with and without covariates. By

comparing parameter estimates with the generating parameters, it was possible to determine

which labels should be applied to each of the latent classes. The third type of label switching

was not detected since labelling of student-level group membership was consistent across

school-level mixtures for models with and without covariates.

4.1.2 Monitoring Convergence

In this study, evidence was examined from four convergence methods, the Gelman and Rubin

(1992) method as implemented in WinBUGS, and the Geweke (1992) method, and the

Raftery and Lewis (1992) method as implemented in the computer program Bayesian Output

Analysis (Smith, 2004). In addition, evidence was examined from autocorrelation plots from

WinBUGS.
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The Rasch model, multilevel Rasch model, the MRM, and the MMixIRTM all were fitted

for each dataset generated as a MMixIRTM with G = 2 and K = 2 (as described in the

section on model selection). The Rasch model and multilevel Rasch model converged within

100 iterations for all simulated conditions. The two-group solution for the MRM converged

within 6,000 iterations for all simulated conditions. The three-group solution for the MRM

did not converge for most item difficulty parameters except for the condition with 25 students

per school and 30 percent DIF items. Given this result, it seems likely that the three-group

solution was not a reasonable approximation to data generated for two groups.

Figure 4.1 presents plots of the Gelman and Rubin statistics and autocorrelations for a

difficulty parameter of a single item as an example to show what the convergence looked

like for the simulation condition 10 % DIF items and 25-student/320-school. In Figure 4.1,

the left column presents the plot of the Gelman and Rubin statistics and the right column

presents the plot of autocorrelations. The Gelman and Rubin statistic approaches 1 quickly

and the level of the autocorrelations was low, which indicates convergence. Similar patterns

were observed for the other parameters and conditions.

Figure 4.1: Selected Plots of Gelman and Rubin Statistic and Autocorrelation: (a) Rasch
Model, (b) Multilevel Rasch Model, and (c) MRM: 2-Group Solution
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For the MMixIRTM two-group solution at the student-level, two- and three-group solu-

tions at the school-level converged within 5,000 iterations, although there were relatively

high autocorrelations for some item parameter estimates. To deal with this, the chains were

thinned by sampling every 40 iterations. The result was the autocorrelations decreased. The

top of Figure 4.1 shows the plots of the Gelman and Rubin statistics and autocorrelations

for a difficulty parameter of one item as an example to represent the convergence for the

simulation condition 10 % DIF items and 25-student/320-school for the MMixIRTM. For

other models, Gelman and Rubin statistic also approached 1 quickly and the level of auto-

correlations was low after thinning to sample every 40th iteration. These results indicate

convergence. Other parameters and conditions had similar patterns to those shown in Figure

4.1.

The chain for estimating group membership at the school-level became stuck at initial

values for the three-group student-level simulation for the two- and three-group school-level

solutions as shown in the lower part of Figure 4.2. This may have occurred because a three-

group solution for the MRM may actually be overfitting given the generated data.

Figure 4.2: Figures on MMixIRTM
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For this study, a 7,000 iteration burn-in and an 8,000 iteration post-burn-in were used

across all conditions. Since thinning was set at 40 for MMixIRTM, this meant that 32,000

iterations were required after burn-in.

4.1.3 Simulation Results

Model selection

The recovery of the generating model was assessed using a model selection approach in

which two information-based indices, AIC and BIC, were used to determine model fit. The

two indices were calculated inside the MCMC algorithm and compared as averages over

the post-burn-in iterations (Congdon, 2003). The usual approach in mixture modeling, and

the one assumed in this study, was to fit a range of appropriate candidate mixture models

each with a different number of latent classes, and then to consider the selection of a model

according to some theoretical rationale using one or more statistical criteria to guide the

choice. Results from Li et al. (2006) suggested that the BIC was more accurate than the

AIC for model selection with MixIRTMs. AIC tended to select the more complex model

(McLachlan & Peel, 2000; Cho et al., 2006; Li et al., 2006). In this study, therefore, AIC is

shown (because it is a commonly reported index), but correct models were determined based

only on the value of BIC. Tables 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 show the probabilities that a

model had the minimum AIC and BIC across iterations after burn-in. The probabilities are

averaged across replications.
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Table 4.1: Model Selection Result: AIC and BIC for 10 Percent DIF Items with a Prior on
the Probabilities of Mixtures

Number of 25 students/320 schools 100 students/80 schools
Mixtures Model BIC AIC BIC AIC
G = 1 K = 1 Rasch Model 0 0 0 0
G = 1 K = 1 Multilevel Rasch Model 0 0 0 0
G = 2 K = 1 Mixture IRT Model 0.93 0.13 0.88 0.14
G = 2 K = 2 Multilevel mixture IRT Model 0.07 0.66 0.12 0.72
G = 2 K = 3 Multilevel mixture IRT Model 0 0.21 0 0.13

Table 4.2: Model Selection Result: AIC and BIC for 30 Percent DIF Items with a Prior on
the Probabilities of Mixtures

Number of 25 students/320 schools 100 students/80 schools
Mixtures Model BIC AIC BIC AIC
G = 1 K = 1 Rasch Model 0 0 0 0
G = 1 K = 1 Multilevel Rasch Model 0 0 0 0
G = 2 K = 1 Mixture IRT Model 0.11 0 0.08 0
G = 2 K = 2 Multilevel mixture IRT Model 0.89 0.74 0.92 1
G = 2 K = 3 Multilevel mixture IRT Model 0 0.26 0 0
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Table 4.3: Model Selection Result: AIC and BIC for 10 Percent DIF Items with a Multinomial
Regression Model with a 60 Percent Overlap on the Probabilities of Mixtures

Number of 25 students/320 schools 100 students/80 schools
Mixtures Model BIC AIC BIC AIC
G = 1 K = 1 Rasch Model 0 0 0 0
G = 1 K = 1 Multilevel Rasch Model 0 0 0 0
G = 2 K = 1 Mixture IRT Model 0.80 0.22 0.72 0.22
G = 2 K = 2 Multilevel mixture IRT Model 0.20 0.59 0.11 0.32
G = 2 K = 3 Multilevel mixture IRT Model 0 0.19 0.17 0.46

Table 4.4: Model Selection Result: AIC and BIC for 10 Percent DIF Items with a Multinomial
Regression Model with a 100 Percent Overlap on the Probabilities of Mixtures

Number of 25 students/320 schools 100 students/80 schools
Mixtures Model BIC AIC BIC AIC
G = 1 K = 1 Rasch Model 0 0 0 0.00
G = 1 K = 1 Multilevel Rasch Model 0 0 0 0.00
G = 2 K = 1 Mixture IRT Model 0.82 0.02 1 0.11
G = 2 K = 2 Multilevel mixture IRT Model 0.18 0.78 0 0.36
G = 2 K = 3 Multilevel mixture IRT Model 0 0.20 0 0.53

As shown in Tables 4.1, 4.2, and 4.3 for the 10-percent DIF condition, the correct number

of mixtures (i.e., G = 2 and K = 2) was not selected by using BIC. In the 30-percent DIF

condition, however, BIC accurately selected the correct model for both 25 and 100 students

per school. Consistent with previous research, AIC tended to select the more complex model.

BIC selected the MRM with a two-group solution for the 10-percent DIF condition. This

result implied that more than 10 percent DIF was needed on a test at the school-level to

detect the correct number of latent classes at student- and school-levels.
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Table 4.5: Model Selection Result: AIC and BIC for 30 Percent DIF Items with a Multinomial
Regression Model with a 60 Percent Overlap on the Probabilities of Mixtures

Number of 25 students/320 schools 100 students/80 schools
Mixtures Model BIC AIC BIC AIC
G = 1 K = 1 Rasch Model 0 0 0 0
G = 1 K = 1 Multilevel Rasch Model 0 0 0 0
G = 2 K = 1 Mixture IRT Model 0.18 0 0.07 0
G = 2 K = 2 Multilevel mixture IRT Model 0.82 0.75 0.93 0.83
G = 2 K = 3 Multilevel mixture IRT Model 0 0.25 0 0.17

Recovery of Generating Parameters

A recovery analysis was done to determine whether the MCMC algorithm programmed in

WinBUGS accurately recovered the generating parameters under the conditions simulated.

The accuracy of parameter estimation is dependent on having examinees classified correctly

and classification accuracy is likewise dependent on accurate parameter estimation (Bolt,

Cohen, & Wollack, 2001). Thus, the recovery study was conducted only for conditions with

the correct numbers of latent classes. One replication of a condition was chosen to indicate

recovery of item difficulty parameters and transformed item difficulty estimates (see Table

4.9).

The recovery results for the 30-percent DIF condition is shown in Tables 4.7 and 4.8.

The recovery of group membership for both student- and school-level mixtures was good

for both 25 students/320 schools and 100 students/80 schools. With respect to the correctly

selected number of mixtures and identified model, the accuracy of detection of student-level

group membership was 98.5% − 99.6% and the accuracy of detection of school-level group

membership was 100%. RMSE of item difficulty was .094 − .115, bias was −.001 − .033,
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Table 4.6: Model Selection Result: AIC and BIC for 30 Percent DIF Items with a Multinomial
Regression Model with a 100 Percent Overlap on the Probabilities of Mixtures

Number of 25 students/320 schools 100 students/80 schools
Mixtures Model BIC AIC BIC AIC
G = 1 K = 1 Rasch Model 0 0 0 0
G = 1 K = 1 Multilevel Rasch Model 0 0 0 0
G = 2 K = 1 Mixture IRT Model 0.05 0 0.01 0
G = 2 K = 2 Multilevel mixture IRT Model 0.95 0.82 0.99 0.89
G = 2 K = 3 Multilevel mixture IRT Model 0 0.18 0 0.11

Table 4.7: Model Parameter Recovery with 30 Percent DIF Items: Item Difficulty Recovery

25 Students/320 Schools 100 Students/80 Schools
RMSE Bias Correlation RMSE Bias Correlation

Prior 0.096 0.033 .997 0.101 0.000 .997
Covariate 60 percent 0.097 -0.001 .997 0.100 0.000 .997

100 percent 0.094 0.000 .997 0.115 0.001 .997

Pearson correlations were .997 for all 30% DIF items conditions. This result indicates that

the item difficulty parameter are recovered well.

4.2 Empirical illustration: Mathematics Section

In this section, the proposed model, MMixIRTM, is illustrated with the PSAT/NMSQT

Mathematics section. The sample was selected with respect to the definition of the compa-

rable group, which is defined as students in a group in the 10th or 11th grade for the current

school year, who have scores between 20 and 80 inclusive, excluding non-standard students.
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Table 4.8: Model Parameter Recovery with 30 Percent DIF Items: Group Membership
Recovery

25 Students/320 Schools 100 Students/80 Schools
Student-Level School-Level Student-Level School-Level

Prior 98.7 100 98.6 100
Covariate 60 percent 98.7 100 98.6 100

100 percent 99.4 100 99.9 100

In addition, the schools having more than 25 students were considered. In doing so, we show

how heterogeneous the comparable group is with model-based clustering. The data includes

987 schools and 39, 614 students. An approximately 20% random sub-sample of 206 schools

and 8, 362 students is used for the empirical illustration.

The first part in this section describes the data for the MMixIRTM preliminary analysis.

Next, the results for the MMixIRTM and STD P-DIF analyses are shown and then compared

with regard to the detected DIF items at the school-level.

4.2.1 Data

Before using the model it was necessary to investigate the adequacy and plausibility of

the model. In this regard, the multilevel structure was investigated. In addition, covariates

associated with students’ achievement are reviewed below.

Investigation of Hierarchical Structure. Before fitting a multilevel model to the

data, it was first necessary to determine whether a hierarchical structure was present in the

data. The standard technique is to use intra-class correlations (ICC, Raudenbush & Bryk,

2002) for both total score and latent score. Two ICC values are shown with a multilevel IRT

model using “latent item score” and with a multilevel analysis using “observed sum score”

(i.e., the sum of the number of correct answers).
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Fox and Glas (2001) note that the use of latent as opposed to observed scores as dependent

variables in a multilevel model provides the potential for separation of the effects of item

difficulty and ability, and also enables the modeling of response measurement error. Unlike

observed scores, latent scores are also invariant over items meaning it is possible to use

different forms of a test and estimating parameters for the items and the multilevel model

simultaneously.

For the multilevel IRT model, estimated student-level variance was .946, and estimated

school-level variance was .385. Both were statistically significant. The ICC for those two

estimates were .289, which indicated 28.9% of the student-level variance was explained at

the school level.

The dependent variable in a multilevel analysis is the sum of the number of correct

answers. This variable was standardized to be normal and no predictors were used to obtain

the ICC with varying intercept. A linear mixed-effects model was fitted using the lmer func-

tion (Bates & Debroy, 2004) written in R (R Development Core Team 2007). The estimated

student-level variance was .794, and the estimated school-level variance was .223. The ICC

for these two estimates was .219, which indicates 21.9% of the student-level variance was

explained at the school level.

Demographic information. Since gender and ethnicity have been shown to be asso-

ciated with student math achievement (Maple & Stage,1991; Tate, 1997) both variables

were considered as a student-level covariates. School-level variables were grouped into three

categories using information available from the PSAT/NMSQT data file as follows: (1) the

structural feature of the school including school location and school enrollment size, (2)

school-level SES variables including Title I schoolwide program, household income codes, and

poverty-level code, and (3) minority percentage for Caucasian, African-American, Native-

American, Asian, and Hispanic. In this study, the structural feature of the school and school-

level SES variables were considered for analysis.
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4.2.2 MMixIRTM Result

Fitting MMixIRTM: Statistical Analysis

Model Identification Checking and Label Switching Analysis. As mentioned earlier,

there are three possible types of label switching that can arise in a MMixIRTM. That is,

label switching within a chain as Type I, label switching across chains as Type II. And Type

III label switching, a variant of Type II switching, in which student-level latent classes switch

within a school-level latent class. These three types of label switching were considered in the

empirical data analysis.

Since the pattern of three types of label switching was similar for both with and without

covariates models, the label switching analysis for only the model without covariates is

reported below. The necessary condition for identification of a MMixIRTM is that the school-

level classes should be identified. Since there was no multimodality in the density of π̂k (as

can be seen in Figure 4.3), it was concluded that a necessary condition for identification was

satisfied and that there was no label switching within a chain (i.e., Type I label switching

did not occur). In addition, there was also no multimodality in the density of ˆπg|k.

However, we did find label switching across chains (i.e., Type II label switching was

observed). This was detected in convergence checking with more than two chains and was

evident as the patterns of the means of ability and mixture proportions were different across

chains. In addition, we investigated the possibility of the Type III label switching by exam-

ining the patterns of class-specific item difficulties at the student-level across school-level

mixtures. Since patterns of relative difficulty for certain items appear to be similar in a con-

sistent manner across school-level mixtures, we concluded that there was no Type III label

switching.

Model Selection. Results from Li et al. (2006) suggested that the BIC was more accu-

rate than the AIC for model selection with MixIRTMs. In this study, therefore, both AIC and

BIC were computed for the comparisons. Model selection, however, was determined based

only on the value of BIC. Tables 4.10 and 4.11 present the averaged AIC and BIC values
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Figure 4.3: Marginalized Density Function for the Probability of Mixtures at the School-
Level: (a) For School-Level Class 1, (b) For School-Level Class 2
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across iterations after burn-in and the probabilities that a model had the minimum AIC and

the minimum BIC over the MCMC chain after burn-in.

Based on the BIC values shown in Table 4.10, G = 4 and K = 2 were chosen based for

the model without covariates. BIC values in Table 4.11 show that G = 4 and K = 2 were

chosen for the model with covariates.

Model Convergence Checking. We examined convergence using three methods, the

Gelman and Rubin (1992) method as implemented in WinBUGS, and the Geweke (1992)

method and the Raftery and Lewis (1992) method as implemented in the computer pro-

gram Bayesian Output Analysis (Smith, 2004) for both without covariate and with covariate

models. The Gelman and Rubin (1992) statistic was run for two chains using widely dis-

parate initial values for each of the parameters (e.g., the initial values for the difficulty

parameters, b, were set at −2 and 2, respectively, for the two chains, for the deviation of
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ability, σ, the initial values were 1 and 2, respectively, for the two chains). Since the second-

type of label switching did occur for with covariate model, we got Gelman-Rubin statistic

after we matched the labelling of mixtures across chains by looking at the pattern of the

mean of ability and mixture proportions. The Geweke (1992) and the Raftery and Lewis

(1992) methods were run for a single chain.

The model without covariates was chosen to illustrate the convergence analysis mentioned

above. Figure 4.4 represents the plot of Gelman-Rubin statistic for the standard deviation

of ability (i.e., a2[2,2] in Figure 4.4) for a class and item difficulty (i.e., b2[2,2,2] in Figure

4.4) for a item as an example. Patterns from the other estimates were similar to that of the

estimates in Figure 4.4.

This method compared the within and between chain variances for each variable. In the

plot, line I presents the width of the central 80% interval of the pooled runs. Line II represents

the average width of the 80% interval within the individual runs. Line III represents the

ratio of pooled over within (= R). When the chains have converged, the variance within

each sequence and the variance between sequences for each variable will be roughly equal,

so R should approximately equal one. Since R is almost equal to 1 from 5000th iteration for

all other parameters shown in Figure 4.4), the chains were converged.

Geweke’s test is based on a time-series analysis approach. It splits the sample into two

parts, say after the first 10% and the last 50%. If the chain is at stationarity, the means

of the two samples should be equal. A modified z-test, referred to as a Geweke z-score, is

evaluated with a value larger than 2 indicating that the mean of the series is still drifting.

When this is the case, a longer burn-in is required before the chain can be assumed to have

reached stationarity. If the p-value for the Geweke z-score is less than .05 for all parameter

estimates, the chains are assumed to be at stationarity.

The method of Raftery and Lewis is based on how many iterations are necessary to

estimate the posterior for a given quantity. Here, a particular quantile (q) of the distribu-

tion of interest (typically 2.5% and 97.5%, yielding a 95% confidence interval), accuracy
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Figure 4.4: Plot of Gelman-Rubin Statistic: (a) For Standard Deviation of Ability of a Class,
(b) For Item Difficulty for a Item
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of the quantile, and power for achieving this accuracy on the specified quantile need to be

specified. With these three parameters set, the Raftery-Lewis test breaks the chain into a

(1, 0) sequence. This generates a two-state Markov chain, and the Raftery-Lewis test uses

the sequence to estimate the transition probabilities. With these probabilities in hand, the

number of addition burn-ins required to approach stationarity and the total chain length

required to achieve the preset level of accuracy can be estimated. Results for the Raftery-

Lewis test indicated less than 1,000 iterations were needed for the burn-in for all parameter

estimates.

Based on results from these different methods, a conservative burn-in for all parameters

was set at 7,000 iterations. An additional 8,000 iterations were run after discarding the

burn-in iterations in order to obtain the posterior estimates.
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Fitting MMixIRTM: Empirical Results

Class Proportions. Table 4.12 presents student-level class proportions for each school-

level class, k. There was a similar pattern in proportions with the use of covariates and

without. Without covariates, school-level class 1 had student-level class 2 and class 4 as

dominant groups while school-level class 2 had student-level class 1 as a dominant group.

Using covariates, school-level class 1 had student-level class 4 as a dominant group, while

school-level class 2 had student-level class 1 as a dominant group.

Ability Comparisons. Both with and without covariates, student-level latent classes

1, 2, 3, and 4 were “Average”, “Low”, “High”, and “Very Low” ability groups, respectively,

as shown in Table 4.13. It appears that school-level class 1 was a low ability group while

school-level class 2 was a high ability group.

Item Difficulty Profile. Class-specific item difficulty estimates are shown in Table 4.14

for both with and without covariates models. Correlations between item difficulty estimates

without covariates and item difficulty estimates with covariates was .973. Different item

difficulty profiles provide information on how each item functioned for each class. Table 4.14

shows both student- and school-level item profiles. In the DIF analysis, we compared item

difficulties in two ways: (1) student-level (i.e., g) item difficulty comparison within a school-

level class (i.e., k) for student-level DIF analysis, and (2) school-level (i.e., k) item difficulty

comparison given a student-level class (i.e., g) for school-level DIF analysis.

DIF Detection. As previously indicated, hypotheses can be tested using the HPD

interval. In this study, the 95-percent HPD interval was used. Tables 4.15, 4.16, 4.17, 4.18,

4.19, and 4.20 show DIF items detected at both student- and school-levels. Values inside

parenthesis in those tables indicates the lower bound of HPD and upper bound of HPD.

Items with bolded entries were detected as DIF items.

Tables 4.15, 4.16, and 4.17 present the DIF items detected for the model without covari-

ates. As mentioned earlier, school-level DIF item(s) can be detected by comparing student-

level item difficulties across school-level latent classes. At the school-level, shown in Table
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4.15, there was 1 item at student-level class 1, 6 items at student-level class 2, 2 items at

student-level class 3, and 7 items at student-level class 4 that were detected as DIF items.

In addition, student-level DIF item(s) can be detected by comparing pairwise item difficul-

ties within each school-level class. At school-level class 1 (i.e., K = 1) shown in 4.16, the

number of DIF items varied from 10 to 30 across pairwise comparison of difficulties at the

student-level class. At school-level class 2 (i.e., K = 2) shown in Table 4.17, the number of

DIF items varied from 16 to 30 across pairwise comparison of difficulties at the student-level

class.

Tables 4.18, 4.19, and 4.20 show the DIF items detected for the model with covariates.

At the school-level shown in Table 4.18, there were 13 items at student-level class 1, 7 items

at student-level class 2, 13 items at student-level class 3, and 2 items at student-level class 4

detected as DIF items. At school-level class 1 (i.e., K = 1) shown in Table 4.19, the number

of DIF items varied from 12 to 29 across pairwise comparison of difficulties at the student-

level class. At school-level class 2 (i.e., K = 2) shown in Table 4.20, the number of DIF items

varied from 13 to 33 across pairwise comparison of difficulties at the student-level class.

Since looking at differential item functioning using a latent class approach should max-

imize the differences between groups, the large differences in item difficulties are expected

(Samuelsen, 2005). The number of DIF items mentioned above based on a latent class group

is larger than the what one would expect based on DIF analysis using manifest groups.

This result is consistent with that previous research based on a latent class for DIF analysis

(Cohen & Bolt, 2005; Cohen, Gregg, & Deng, 2005; Samuelsen, 2005).

DIF information shown in Tables 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20 provides information

about the characteristics of latent classes with respect to item characteristics at both student-

and school-levels. One approach is to have individuals with content expertise examine the

items and categorize them based on differences such as the kinds of cognitive skills required

or perhaps surface level characteristics of the items involved (see, for example, Li, Cohen, &

Ibarra, 2004). The categorizations of cognitive skills required by the items are shown in Table
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4.21 as a Q-matrix (Tatsuoka, 1983). This Q-matrix is constructed based on skill information

provided from the College Board for the PSAT/NMSQT. In Table 4.21, 1 was assigned if

the skill was required by an item and 0 otherwise.
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Table 4.10: Model Selection Result for Mathematics Section: Without Covariate Model

Number of
Mixtures Model Npar BIC AIC
G = 1 K = 1 Multilevel Rasch Model 40 310200(0) 309900(0)
G = 2 K = 2 MMixIRTM 162 300500(0) 299300(0)
G = 3 K = 2 MMixIRTM 244 299000(0.12) 297300(0)
G = 4 K = 2 MMixIRTM 326 298800(0.88) 296500(0.25)
G = 5 K = 2 MMixIRTM 408 299500(0) 296400(0.67)
G = 3 K = 3 MMixIRTM 367 300200(0) 297200(0.02)
G = 4 K = 3 MMixIRTM 490 300800(0) 297300(0.01)
G = 5 K = 3 MMixIRTM 613 301200(0) 296900(0.05)

Table 4.11: Model Selection Result for Mathematics Section: With Covariate Model

Number of
Mixtures Model Npar BIC AIC
G = 1 K = 1 Multilevel Rasch Model 40 310200(0) 309900(0)
G = 2 K = 2 MMixIRTM 182 300800(0) 299500(0)
G = 3 K = 2 MMixIRTM 266 299700(0.05) 297800(0)
G = 4 K = 2 MMixIRTM 370 299400(0.64) 296800(0.03)
G = 5 K = 2 MMixIRTM 438 299500(0.31) 296400(0.93)
G = 3 K = 3 MMixIRTM 409 301900(0) 299100(0)
G = 4 K = 3 MMixIRTM 545 301400(0) 297600(0)
G = 5 K = 3 MMixIRTM 681 301700(0) 296900(0.04)

Table 4.12: Class Proportions for Mathematics Section Within School-Level Group Member-
ship

π̂k G = 1 G = 2 G = 3 G = 4
Without K = 1 .462 .187 .386 .058 .369

Covariates K = 2 .538 .404 .272 .194 .130
With K = 1 .465 .246 .272 .130 .351

Covariates K = 2 .535 .396 .279 .100 .224
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Table 4.13: Distribution of Ability for Mathematics Section: With and Without Covariates

G = 1 G = 2 G = 3 G = 4
Without K = 1 N(0∗, 0.5722) N(−1.965, 0.4312) N(1.344, 0.8932) N(−4.557, 0.2992)
Covariate K = 2 N(0.562, 0.5752) N(−1.768, 0.4122) N(1.474, 1.0672) N(−4.001, 0.3192)

With K = 1 N(0∗, 1.1312) N(−1.842, 0.4252) N(0.535, 0.5642) N(−4.524, 0.3112)
Covariate K = 2 N(0.570, 0.5632) N(−1.730, 0.4422) N(1.621, 1.0322) N(−4.250, 0.3072)
* Fixed for identification



107

T
ab

le
4.

14
:

C
la

ss
-S

p
ec

ifi
c

It
em

D
iffi

cu
lt

y
fo

r
fo

r
M

at
h
em

at
ic

s
S
ec

ti
on

W
it

h
o
u

t
C

o
v
a
ri

a
te

s
W

it
h

C
o
v
a
ri

a
te

s
K

=
1

K
=

2
K

=
1

K
=

2
It

em
G

=
1

G
=

2
G

=
3

G
=

4
G

=
1

G
=

2
G

=
3

G
=

4
G

=
1

G
=

2
G

=
3

G
=

4
G

=
1

G
=

2
G

=
3

G
=

4
1

-2
.7

4
5

-2
.6

4
6

-1
.6

1
0

-2
.6

5
4

-2
.3

4
5

-2
.5

1
1

-2
.3

2
0

-2
.5

5
3

-2
.5

2
1

-2
.5

7
8

-2
.1

3
2

-2
.6

8
6

-1
.9

6
7

-2
.5

8
5

-2
.4

1
1

-2
.5

6
2

2
-2

.0
7
2

-1
.9

2
4

-1
.9

0
6

-2
.5

8
4

-2
.1

0
5

-1
.9

1
1

-2
.0

7
0

-2
.3

9
8

-2
.2

7
3

-2
.0

3
9

-1
.9

8
1

-2
.4

7
5

-2
.1

0
3

-1
.7

9
6

-2
.0

1
5

-2
.5

2
8

3
-2

.4
1
5

-1
.1

4
0

-2
.0

6
3

-0
.4

4
6

-2
.6

5
0

-1
.2

8
1

-3
.1

6
7

-0
.3

6
8

-2
.6

8
0

-1
.1

8
2

-2
.6

9
8

-0
.2

6
1

-2
.5

5
8

-1
.3

5
6

-2
.8

5
8

-0
.6

7
4

4
-1

.3
7
6

-0
.9

0
4

-1
.0

5
7

-0
.6

6
6

-1
.3

5
8

-0
.9

8
3

-0
.6

8
1

-0
.3

4
8

-1
.5

3
5

-0
.9

9
0

-0
.8

5
5

-0
.6

1
2

-0
.6

9
7

-1
.0

1
0

-1
.2

7
4

-0
.4

8
9

5
-2

.0
0
3

-1
.9

8
6

-1
.4

8
6

-1
.7

2
3

-1
.8

6
1

-1
.8

9
0

-1
.4

2
3

-1
.7

7
2

-1
.9

6
7

-2
.0

6
0

-1
.3

7
5

-1
.7

8
2

-1
.3

9
7

-1
.8

8
0

-1
.9

1
2

-1
.6

7
2

6
-1

.5
9
5

-1
.2

2
4

-1
.0

6
9

-0
.5

3
8

-1
.5

8
3

-0
.9

2
8

-1
.6

7
9

-0
.4

4
9

-1
.6

8
8

-1
.0

3
1

-1
.4

8
5

-0
.5

8
9

-1
.5

5
0

-1
.3

0
5

-1
.4

8
7

-0
.3

8
7

7
-1

.3
5
7

-1
.8

8
9

-0
.8

5
9

-1
.0

0
8

-1
.0

8
1

-1
.7

9
0

-0
.8

1
5

-0
.9

7
4

-0
.9

4
0

-1
.7

9
2

-1
.0

0
7

-1
.1

0
2

-0
.8

4
4

-1
.8

6
4

-1
.1

5
1

-1
.0

0
9

8
-1

.1
1
0

-0
.9

8
5

-0
.9

5
0

-0
.9

0
8

-1
.2

9
4

-0
.7

8
9

-1
.0

6
5

-0
.7

6
9

-1
.0

1
1

-0
.8

8
8

-1
.1

8
3

-0
.8

6
9

-0
.8

5
7

-0
.9

8
3

-1
.4

4
0

-0
.8

0
5

9
-0

.8
9
2

-0
.5

0
2

-1
.0

9
3

-0
.2

9
0

-1
.1

9
3

-0
.6

2
2

-1
.1

7
0

-0
.1

4
6

-0
.1

5
7

-0
.5

9
4

-1
.2

1
8

-1
.1

1
8

-0
.3

4
9

-0
.5

6
2

-1
.2

2
2

-0
.9

6
7

1
0

-0
.5

2
9

-0
.6

6
5

-0
.9

2
3

-0
.5

8
3

-0
.6

6
1

-0
.7

0
2

-0
.2

8
7

-0
.5

9
1

-0
.6

1
9

-0
.7

7
3

-0
.3

5
2

-0
.6

2
8

-0
.5

6
0

-0
.5

7
6

-0
.6

4
9

-0
.5

1
1

1
1

-0
.0

5
2

-0
.3

0
3

-0
.9

1
6

-0
.8

2
7

0
.0

6
2

-0
.2

6
6

-0
.5

9
7

-0
.5

8
9

0
.2

0
2

-0
.3

1
6

-0
.4

3
1

-0
.7

6
5

-0
.7

8
6

-0
.2

5
3

-0
.0

7
3

-0
.6

7
1

1
2

-0
.4

6
6

-0
.1

9
9

-0
.3

8
9

-0
.4

9
2

-0
.3

8
4

-0
.0

7
6

-0
.2

4
4

-0
.2

0
7

-0
.4

3
1

-0
.1

4
5

-0
.3

9
5

-0
.3

8
3

-0
.1

1
5

-0
.2

1
7

-0
.3

9
2

-0
.3

7
5

1
3

0
.1

0
9

0
.2

5
4

-0
.5

3
9

-0
.5

0
3

-0
.0

6
2

-0
.0

8
0

-0
.4

0
0

-0
.3

3
3

-0
.3

1
8

-0
.0

1
1

-0
.3

5
9

-0
.4

7
6

-0
.5

4
8

0
.2

2
7

0
.0

4
0

-0
.3

1
2

1
4

0
.3

3
8

-0
.0

8
6

0
.3

9
6

-0
.1

3
3

0
.2

9
9

0
.1

8
5

0
.4

9
5

-0
.1

8
5

0
.2

6
4

0
.0

3
9

0
.3

4
8

-0
.1

9
2

0
.5

0
8

0
.0

9
1

0
.3

8
6

-0
.0

9
8

1
5

0
.2

9
8

0
.9

4
2

-0
.0

8
0

-0
.6

3
6

0
.1

9
4

0
.8

3
2

0
.2

3
0

-0
.2

7
7

0
.0

1
7

0
.9

6
1

0
.2

6
4

-0
.4

4
9

-0
.0

2
4

0
.7

8
4

0
.2

9
4

-0
.4

8
1

1
6

2
.1

0
1

1
.2

4
8

1
.6

7
2

-0
.1

9
8

2
.4

4
2

1
.2

1
5

1
.8

8
0

-0
.1

0
2

2
.4

6
4

1
.1

4
5

1
.8

2
5

-0
.0

4
3

1
.7

6
2

1
.5

3
6

2
.3

3
4

-0
.1

9
8

1
7

1
.5

6
1

0
.7

3
6

2
.1

6
9

-0
.1

3
7

1
.4

6
0

0
.7

3
7

1
.9

2
0

-0
.1

7
8

1
.3

0
4

0
.6

9
8

1
.9

4
4

-0
.0

0
5

1
.8

7
3

0
.9

3
8

1
.6

7
2

-0
.2

4
2

1
8

2
.4

5
4

0
.7

1
2

2
.6

0
1

-0
.2

6
7

2
.0

3
2

0
.7

3
7

2
.4

3
4

-0
.0

7
1

2
.2

7
0

0
.7

4
5

2
.4

3
0

-0
.1

2
7

2
.3

3
3

0
.8

8
7

2
.1

8
4

-0
.2

2
7

1
9

2
.4

2
5

1
.3

8
9

2
.4

0
0

-0
.3

1
0

2
.4

0
3

1
.5

6
0

2
.3

3
9

0
.1

8
4

2
.2

5
9

1
.7

1
6

2
.3

2
4

-0
.1

4
6

2
.2

7
0

1
.4

8
4

2
.5

7
1

-0
.0

6
3

2
0

2
.1

7
2

1
.4

5
9

1
.9

7
0

0
.2

8
0

2
.0

8
5

1
.4

8
8

1
.9

0
9

0
.3

8
8

2
.1

3
8

1
.5

0
3

1
.8

8
7

0
.4

5
9

1
.8

9
2

1
.6

5
5

2
.0

7
3

0
.2

2
6

2
1

-1
.7

2
1

-1
.2

3
3

-1
.2

0
1

-0
.1

3
9

-1
.4

6
7

-1
.3

0
2

-1
.0

8
1

-0
.0

3
4

-1
.4

7
6

-1
.2

0
9

-1
.1

1
9

-0
.2

5
6

-1
.1

7
7

-1
.4

8
9

-1
.5

0
8

0
.0

1
7

2
2

-2
.6

4
0

-1
.9

0
7

-2
.0

8
4

-0
.7

3
0

-2
.1

6
6

-1
.8

8
0

-1
.9

0
0

-0
.7

4
0

-2
.4

4
4

-1
.8

8
6

-1
.8

6
8

-0
.7

8
2

-1
.8

8
7

-2
.0

7
6

-2
.1

7
0

-0
.7

7
7

2
3

-0
.7

6
3

-0
.0

2
2

-0
.6

4
3

0
.1

1
2

-0
.7

7
8

0
.0

8
3

-0
.3

9
5

0
.1

4
4

-0
.6

9
2

-1
.1

1
0

-0
.5

2
8

0
.3

1
6

-0
.5

0
3

-0
.0

7
9

-0
.7

8
4

-0
.0

2
4

2
4

-1
.1

8
0

-0
.6

5
2

-0
.8

3
9

-0
.1

4
1

-1
.2

6
1

-0
.6

7
8

-1
.7

5
4

-0
.1

7
0

-1
.0

9
3

-0
.7

0
7

-1
.6

6
1

-0
.1

5
3

-1
.1

7
7

-0
.7

2
1

-1
.3

9
2

-0
.1

6
6

2
5

0
.0

3
7

0
.0

8
2

-0
.4

7
9

0
.2

2
8

-0
.1

5
1

0
.0

8
4

-0
.1

5
0

0
.6

9
5

-0
.0

4
6

0
.2

6
1

-0
.2

0
4

0
.2

8
7

-0
.3

0
3

-0
.0

8
4

-0
.1

4
3

0
.3

8
5

2
6

1
.5

0
6

0
.6

0
3

2
.0

0
3

-0
.3

2
1

1
.4

4
0

0
.7

6
8

2
.2

5
2

0
.0

6
8

1
.4

2
7

0
.6

7
8

2
.0

7
5

-0
.2

1
6

2
.2

3
3

0
.8

4
3

1
.5

3
7

-0
.1

4
2

2
7

1
.5

2
6

0
.9

7
5

0
.6

1
3

0
.2

4
3

1
.5

2
9

0
.9

5
7

1
.0

0
4

-0
.0

5
5

1
.5

1
9

1
.1

8
7

0
.9

9
2

0
.1

6
6

0
.8

5
4

0
.9

1
1

1
.4

7
8

0
.2

1
3

2
8

1
.5

3
5

0
.4

4
6

1
.3

9
6

-0
.5

1
0

1
.7

7
5

0
.7

3
6

1
.3

5
0

-0
.7

4
3

1
.8

6
9

0
.6

9
2

1
.2

8
5

-0
.5

1
4

1
.3

5
8

0
.6

5
5

1
.6

8
6

-0
.5

9
1

2
9

0
.2

9
6

-0
.0

4
2

-1
.1

2
3

-0
.8

0
7

0
.2

9
7

-0
.3

2
9

-0
.7

2
1

-0
.5

3
2

0
.4

5
6

-0
.1

2
0

-0
.5

7
5

-0
.6

8
5

-0
.8

6
8

-0
.1

5
3

0
.1

7
8

-0
.7

0
6

3
0

-0
.3

8
7

0
.1

0
7

0
.1

3
1

1
.5

5
6

-0
.1

5
5

0
.0

3
0

0
.1

8
9

1
.1

4
9

-0
.2

1
1

-0
.0

4
8

-0
.0

0
3

1
.1

7
0

0
.3

4
8

0
.0

6
3

-0
.2

3
1

1
.6

3
3

3
1

-1
.1

5
7

-1
.1

2
5

-0
.7

4
0

0
.2

8
4

-1
.1

4
8

-0
.9

0
1

-1
.1

2
4

0
.2

7
1

-1
.1

9
0

-1
.0

6
0

-1
.0

3
2

0
.3

5
8

-0
.8

8
9

-1
.1

9
2

-1
.2

8
3

0
.1

7
2

3
2

-0
.8

6
9

-0
.0

4
1

-0
.9

8
9

1
.4

6
4

-1
.0

4
7

-0
.2

2
9

-0
.9

8
9

1
.1

4
1

-1
.2

0
0

-0
.1

7
2

-0
.7

8
7

1
.2

4
7

-1
.1

7
5

-0
.2

9
7

-0
.9

1
9

1
.3

6
0

3
3

-0
.4

9
6

-0
.1

6
1

-0
.2

4
5

1
.2

4
6

-0
.4

6
3

-0
.1

4
4

-0
.2

9
3

1
.3

2
1

-0
.4

7
8

-0
.2

3
4

-0
.3

8
6

1
.2

7
0

-0
.3

3
9

-0
.2

1
3

-0
.4

0
4

1
.1

8
1

3
4

1
.1

5
8

0
.5

3
3

1
.8

9
6

-0
.0

8
6

1
.3

7
4

0
.4

5
3

2
.0

4
5

-0
.1

6
3

1
.2

9
9

0
.5

2
8

1
.9

4
9

0
.0

0
7

1
.9

1
7

0
.5

8
9

1
.4

2
7

-0
.2

2
2

3
5

3
.1

0
1

3
.6

0
1

1
.3

8
5

3
.6

7
1

2
.7

2
5

3
.5

7
2

1
.1

8
1

3
.2

6
3

3
.0

5
9

3
.8

8
0

1
.3

4
3

3
.5

7
7

1
.0

1
7

3
.4

8
2

2
.6

3
2

3
.4

7
4

3
6

1
.3

2
1

1
.0

4
7

1
.2

9
4

2
.9

9
7

1
.3

1
6

1
.1

6
6

1
.5

6
9

2
.1

3
6

1
.3

7
5

1
.0

7
8

1
.4

0
6

2
.5

3
3

1
.5

2
7

0
.9

9
8

1
.3

9
4

2
.6

5
1

3
7

1
.5

9
9

1
.1

8
7

1
.9

3
5

1
.5

3
4

1
.5

6
9

1
.3

5
9

2
.2

2
5

0
.7

6
6

1
.5

4
5

1
.0

5
5

2
.1

2
8

1
.2

4
0

2
.0

9
9

1
.5

0
9

1
.6

5
5

1
.2

4
4

3
8

2
.6

9
9

4
.3

1
3

1
.4

2
1

4
.0

2
4

2
.2

1
2

3
.3

3
0

1
.3

0
5

3
.2

2
1

2
.2

9
2

3
.7

7
8

1
.4

3
2

3
.7

1
2

1
.2

5
1

4
.0

3
6

2
.1

7
6

3
.7

7
2



108

T
ab

le
4.

15
:

M
ag

n
it

u
d
e

of
S
ch

o
ol

-L
ev

el
D

IF
V

al
u
es

fo
r

M
at

h
em

at
ic

s
S
ec

ti
on

:
W

it
h
ou

t
C

ov
ar

ia
te

s

A
cr

o
ss

S
ch

o
o
l-

L
ev

el
L

a
te

n
t

C
la

ss
es

It
em

S
tu

d
en

t-
L

ev
el

C
la

ss
1

S
tu

d
en

t-
L

ev
el

C
la

ss
2

S
tu

d
en

t-
L

ev
el

C
la

ss
3

S
tu

d
en

t-
L

ev
el

C
la

ss
4

1
-0

.4
0
0

(-
0
.9

4
4
,

0
.0

9
6
)

-0
.1

3
5

(-
0
.4

0
9
,

0
.1

4
0
)

0
.7

1
0

(-
0
.1

6
0
,

1
.6

1
7
)

-0
.1

0
1

(-
0
.3

6
4
4
,

0
.1

5
4
3
)

2
0
.0

3
3

(-
0
.4

0
1
,

0
.4

5
6
)

-0
.0

1
2

(-
0
.2

3
5
,

0
.2

1
7
)

0
.1

6
5

(-
0
.7

9
1
,

1
.1

2
4
)

-0
.1

8
6

(-
0
.4

4
8

,
0
.0

8
1
6
3
)

3
0
.2

3
4

(-
0
.4

3
0
,

0
.8

4
9
)

0
.1

4
1

(-
0
.1

0
0
,

0
.3

8
4
)

1
.1

0
4

(-
0
.0

4
1
,

2
.3

0
4
)

-0
.0

7
7

(-
0
.4

1
3
6
,

0
.2

3
8
6
)

4
-0

.0
1
8

(-
0
.3

6
4
,

0
.3

1
6
)

0
.0

7
9

(-
0
.1

3
4
,

0
.2

9
6
)

-0
.3

7
6

(-
1
.0

6
7
,

0
.3

2
4
)

-0
.3

1
8

(-
0
.6

1
3
2
,

-0
.0

2
7
6
)

5
-0

.1
4
2

(-
0
.5

6
4
,

0
.2

5
1
)

-0
.0

9
6

(-
0
.3

2
8
,

0
.1

3
4
)

-0
.0

6
3

(-
0
.8

4
5
,

0
.6

8
5
)

0
.0

4
9

(-
0
.1

9
8
4
,

0
.2

9
4
8
)

6
-0

.0
1
2

(-
0
.3

6
6
,

0
.3

3
4
)

-0
.2

9
6

(-
0
.5

1
4
,

-0
.0

7
1
)

0
.6

1
0

(-
0
.1

3
8
,

1
.3

6
1
)

-0
.0

8
9

(-
0
.3

8
1
9
,

0
.1

9
5
1
)

7
-0

.2
7
6

(-
0
.6

0
7
,

0
.0

4
2
)

-0
.0

9
9

(-
0
.3

4
0
,

0
.1

4
0
)

-0
.0

4
5

(-
0
.6

9
4
,

0
.5

8
8
)

-0
.0

3
4

(-
0
.3

4
0
2
,

0
.2

4
3
2
)

8
0
.1

8
4

(-
0
.1

3
1
,

0
.5

1
4
)

-0
.1

9
6

(-
0
.4

0
5
,

0
.0

2
1
)

0
.1

1
5

(-
0
.5

7
6
,

0
.7

8
0
)

-0
.1

3
9

(-
0
.4

1
4
6
,

0
.1

3
9
4
)

9
0
.3

0
1

(-
0
.0

0
7
,

0
.6

1
2
)

0
.1

2
0

(-
0
.1

0
5
,

0
.3

4
1
)

0
.0

7
7

(-
0
.7

1
5
,

0
.7

6
9
)

-0
.1

4
4

(-
0
.4

6
2
7
,

0
.1

6
0
8
)

1
0

0
.1

3
3

(-
0
.1

3
1
,

0
.3

9
5
)

0
.0

3
7

(-
0
.1

7
3
,

0
.2

4
2
)

-0
.6

3
6

(-
1
.3

4
5
,

-0
.0

4
0
)

0
.0

0
8

(-
0
.2

7
7
8
,

0
.2

9
9
4
)

1
1

-0
.1

1
4

(-
0
.3

8
0
,

0
.1

4
9
)

-0
.0

3
8

(-
0
.2

5
4
,

0
.1

8
3
)

-0
.3

1
9

(-
1
.2

0
2
,

0
.4

1
1
)

-0
.2

3
8

(-
0
.5

1
6
7
,

0
.0

3
2
9
)

1
2

-0
.0

8
2

(-
0
.3

4
2
,

0
.1

7
6
)

-0
.1

2
3

(-
0
.3

5
6
,

0
.1

1
0
)

-0
.1

4
5

(-
0
.7

0
6
,

0
.3

8
7
)

-0
.2

8
5

(-
0
.5

9
2
2
,

0
.0

1
1
1
8
)

1
3

0
.1

7
1

(-
0
.0

9
2
,

0
.4

3
4
)

0
.3

3
4

(0
.0

9
6
,

0
.5

7
8
)

-0
.1

3
8

(-
0
.9

4
0
,

0
.4

5
1
)

-0
.1

7
0

(-
0
.4

5
4
7
,

0
.1

1
4
5
)

1
4

0
.0

3
9

(-
0
.2

2
0
,

0
.3

1
2
)

-0
.2

7
0

(-
0
.5

0
5
,

-0
.0

4
1
)

-0
.0

9
9

(-
0
.5

7
9
,

0
.3

5
5
)

0
.0

5
1

(-
0
.2

5
5
5
,

0
.3

5
6
3
)

1
5

0
.1

0
4

(-
0
.1

8
6
,

0
.3

8
6
)

0
.1

1
0

(-
0
.2

0
8
,

0
.4

1
6
)

-0
.3

1
0

(-
0
.8

3
3
,

0
.1

9
0
)

-0
.3

5
9

(-
0
.6

6
9
2
,

-0
.0

5
2
3
)

1
6

-0
.3

4
2

(-
0
.7

1
1
,

0
.0

4
6
)

0
.0

3
3

(-
0
.3

3
0
,

0
.3

9
5
)

-0
.2

0
8

(-
0
.6

5
5
,

0
.2

1
8
)

-0
.0

9
6

(-
0
.4

,
0
.2

0
3
9
)

1
7

0
.1

0
1

(-
0
.2

4
1
,

0
.4

3
7
)

-0
.0

0
1

(-
0
.2

9
9
,

0
.2

8
7
)

0
.2

4
9

(-
0
.1

6
3
,

0
.6

7
7
)

0
.0

4
1

(-
0
.2

5
9
4
,

0
.3

3
9
)

1
8

0
.4

2
2

(-
0
.1

2
7
,

0
.9

8
1
)

-0
.0

2
5

(-
0
.3

2
2
,

0
.2

6
1
)

0
.1

6
7

(-
0
.2

7
4
,

0
.5

9
7
)

-0
.1

9
6

(-
0
.5

1
7
5
,

0
.1

1
1
2
)

1
9

0
.0

2
2

(-
0
.4

0
8
,

0
.4

6
8
)

-0
.1

7
1

(-
0
.5

4
3
,

0
.1

9
8
)

0
.0

6
1

(-
0
.3

7
9
,

0
.4

7
6
)

-0
.4

9
4

(-
0
.8

1
2
3
,

-0
.1

6
5
1
)

2
0

0
.0

8
7

(-
0
.2

7
7
,

0
.4

6
0
)

-0
.0

2
9

(-
0
.4

0
5
,

0
.3

3
4
)

0
.0

6
2

(-
0
.3

9
3
,

0
.4

7
8
)

-0
.1

0
8

(-
0
.4

5
8

,
0
.2

5
0
1
)

2
1

-0
.2

5
4

(-
0
.6

3
5
,

0
.1

0
5
)

0
.0

6
9

(-
0
.1

6
8
,

0
.3

0
9
)

-0
.1

2
0

(-
0
.8

3
3
,

0
.5

6
4
)

-0
.1

0
5

(-
0
.4

7
9
3
,

0
.2

5
0
2
)

2
2

-0
.4

7
4

(-
1
.0

5
1
,

0
.0

5
2
)

-0
.0

2
6

(-
0
.2

8
9
,

0
.2

3
9
)

-0
.1

8
4

(-
1
.2

6
2
,

0
.8

3
6
)

0
.0

0
9

(-
0
.2

9
6
3
,

0
.3

0
3
7
)

2
3

0
.0

1
5

(-
0
.2

6
7
,

0
.2

9
9
)

-0
.1

0
5

(-
0
.3

6
3
,

0
.1

7
3
)

-0
.2

4
8

(-
0
.8

2
3
,

0
.3

2
6
)

-0
.0

3
2

(-
0
.3

7
2
2
,

0
.2

9
8
2
)

2
4

0
.0

8
1

(-
0
.2

4
3
,

0
.3

9
3
)

0
.0

2
7

(-
0
.1

9
4
,

0
.2

5
1
)

0
.9

1
5

(0
.1

8
2
,

1
.6

5
2
)

0
.0

2
9

(-
0
.3

0
5
,

0
.3

5
1
7
)

2
5

0
.1

8
8

(-
0
.0

7
9
,

0
.4

5
7
)

-0
.0

0
1

(-
0
.2

3
6
,

0
.2

2
8
)

-0
.3

2
9

(-
1
.1

0
8
,

0
.2

6
3
)

-0
.4

6
7

(-
0
.9

0
7
7
,

-0
.0

6
2
)

2
6

0
.0

6
6

(-
0
.2

5
7
,

0
.3

9
0
)

-0
.1

6
5

(-
0
.4

6
6
,

0
.1

1
6
)

-0
.2

4
9

(-
0
.6

6
2
,

0
.1

7
9
)

-0
.3

8
9

(-
0
.7

0
1
9
,

-0
.0

7
9
4
)

2
7

-0
.0

0
3

(-
0
.3

4
4
,

0
.4

0
1
)

0
.0

1
8

(-
0
.3

0
0
,

0
.3

3
1
)

-0
.3

9
2

(-
0
.8

8
3
,

0
.0

6
0
)

0
.2

9
8

(-
0
.0

2
0
1
,

0
.6

1
7
4
)

2
8

-0
.2

3
9

(-
0
.5

6
5
,

0
.1

1
0
)

-0
.2

9
0

(-
0
.6

0
9
,

0
.0

2
7
)

0
.0

4
6

(-
0
.3

6
6
,

0
.4

6
5
)

0
.2

3
3

(-
0
.0

4
0
7
,

0
.5

1
3
7
)

2
9

-0
.0

0
1

(-
0
.2

9
9
,

0
.3

1
0
)

0
.2

8
7

(0
.0

4
8
,

0
.5

1
8
)

-0
.4

0
2

(-
1
.2

9
8
,

0
.3

7
8
)

-0
.2

7
5

(-
0
.5

4
7
1
,

-0
.0

1
1
8
)

3
0

-0
.2

3
2

(-
0
.5

1
6
,

0
.0

4
4
)

0
.0

7
7

(-
0
.1

7
0
,

0
.3

3
1
)

-0
.0

5
9

(-
0
.5

6
4
,

0
.4

6
1
)

0
.4

0
7

(-
0
.2

0
3
9
,

0
.9

8
0
6
)

3
1

-0
.4

1
9

(-
0
.7

6
4
,

-0
.0

9
6
)

-0
.2

2
4

(-
0
.4

4
5
,

-0
.0

1
2
)

0
.3

8
4

(-
0
.2

7
4
,

1
.0

7
2
)

0
.0

1
3

(-
0
.4

3
3
,

0
.4

1
8
9
)

3
2

0
.1

7
8

(-
0
.1

3
9
,

0
.4

9
3
)

0
.1

8
8

(-
0
.0

6
9
,

0
.4

4
7
)

0
.0

0
0

(-
0
.7

1
0
,

0
.6

9
7
)

0
.3

2
3

(-
0
.2

8
9
8
,

0
.8

8
8
9
)

3
3

-0
.0

3
3

(-
0
.3

3
5
,

0
.2

5
1
)

-0
.0

1
8

(-
0
.2

5
3
,

0
.2

1
6
)

0
.0

4
9

(-
0
.5

8
1
,

0
.5

8
6
)

-0
.0

7
5

(-
0
.7

7
5
4
,

0
.5

5
8
5
)

3
4

-0
.2

1
6

(-
0
.5

7
6
,

0
.1

3
2
)

0
.0

7
9

(-
0
.1

8
5
,

0
.3

4
3
)

-0
.1

4
9

(-
0
.5

5
7
,

0
.2

5
3
)

0
.0

7
7

(-
0
.2

3
5
4
,

0
.3

7
5
8
)

3
5

0
.3

7
6

(-
0
.2

1
8
,

1
.0

3
9
)

0
.0

2
9

(-
0
.8

8
0
,

0
.9

2
8
)

0
.2

0
4

(-
0
.3

6
8
,

0
.7

0
7
)

0
.4

0
8

(-
0
.7

8
2
2
,

1
.5

8
4
)

3
6

0
.0

0
6

(-
0
.3

0
0
,

0
.3

0
9
)

-0
.1

1
9

(-
0
.4

3
6
,

0
.1

8
3
)

-0
.2

7
5

(-
0
.7

0
4
,

0
.1

0
0
)

0
.8

6
1

(-
0
.0

6
1
1
,

1
.7

9
5
)

3
7

0
.0

3
0

(-
0
.3

2
1
,

0
.3

9
6
)

-0
.1

7
2

(-
0
.5

0
7
,

0
.1

6
6
)

-0
.2

9
0

(-
0
.7

1
5
,

0
.1

0
9
)

0
.7

6
8

(0
.2

8
5
7

,
1
.2

6
9
)

3
8

0
.4

8
7

(-
0
.0

0
6
,

1
.1

0
6
)

0
.9

8
3

(0
.0

3
1
,

1
.9

6
4
)

0
.1

1
6

(-
0
.4

1
6
,

0
.5

6
2
)

0
.8

0
3

(-
0
.4

3
3
7
,

2
.0

2
5
)

N
u

m
b

er
o
f

D
IF

It
em

s
1

6
2

7



109

T
ab

le
4.

16
:

M
ag

n
it

u
d
e

of
S
tu

d
en

t-
L

ev
el

D
IF

V
al

u
es

fo
r

M
at

h
em

at
ic

s
S
ec

ti
on

:
W

it
h
ou

t
C

ov
ar

ia
te

s
M

o
d
el

fo
r
K

=
1

It
em

G
=

1
V
s.
G

=
2

G
=

1
V
s.
G

=
3

G
=

1
V
s.
G

=
4

G
=

2
V
s.
G

=
3

G
=

2
V
s.
G

=
4

G
=

3
V
s.
G

=
4

1
-0

.0
9
9

(-
0
.6

6
6
,

0
.3

8
7
)

-1
.1

3
5

(-
1
.9

9
1
,

-0
.2

3
3
)

-0
.0

9
1

(-
0
.5

8
6
,

0
.3

4
9
)

-1
.0

3
6

(-
1
.7

3
0
,

-0
.3

3
4
)

0
.0

0
8

(-
0
.2

3
3
,

0
.2

4
9
)

1
.0

4
4

(0
.3

4
2
,

1
.7

1
0
)

2
-0

.1
4
9

(-
0
.5

5
9
,

0
.2

3
5
)

-0
.1

6
7

(-
1
.0

1
2
,

0
.7

6
4
)

0
.5

1
2

(0
.1

4
2
,

0
.8

4
7
)

-0
.0

1
8

(-
0
.7

5
0
,

0
.7

9
9
)

0
.6

6
1

(0
.4

3
9
,

0
.8

8
5
)

0
.6

7
9

(-
0
.1

3
8
,

1
.3

9
7
)

3
-1

.2
7
5

(-
1
.8

6
9
,

-0
.7

7
9
)

-0
.3

5
3

(-
1
.4

3
3
,

0
.7

1
1
)

-1
.9

7
0

(-
2
.5

2
1
,

-1
.5

1
1
)

0
.9

2
3

(0
.1

2
1
,

1
.8

1
2
)

-0
.6

9
4

(-
0
.9

3
8
,

-0
.4

5
5
)

-1
.6

1
7

(-
2
.5

1
1
,

-0
.8

1
6
)

4
-0

.4
7
2

(-
0
.8

2
2
,

-0
.1

3
6
)

-0
.3

1
9

(-
1
.1

0
8
,

0
.4

4
0
)

-0
.7

1
0

(-
1
.0

2
7
,

-0
.4

1
1
)

0
.1

5
3

(-
0
.5

0
1
,

0
.7

8
7
)

-0
.2

3
8

(-
0
.4

6
3
,

-0
.0

1
5
)

-0
.3

9
1

(-
1
.0

2
6
,

0
.2

6
5
)

5
-0

.0
1
7

(-
0
.4

3
8
,

0
.3

6
7
)

-0
.5

1
8

(-
1
.2

7
6
,

0
.2

8
1
)

-0
.2

8
0

(-
0
.6

4
2
,

0
.0

4
9
)

-0
.5

0
1

(-
1
.1

5
4
,

0
.1

7
8
)

-0
.2

6
3

(-
0
.4

8
3
,

-0
.0

4
4
)

0
.2

3
8

(-
0
.4

4
0
,

0
.8

8
5
)

6
-0

.3
7
1

(-
0
.7

3
9
,

-0
.0

2
2
)

-0
.5

2
6

(-
1
.2

4
9
,

0
.2

1
4
)

-1
.0

5
7

(-
1
.3

8
3
,

-0
.7

4
3
)

-0
.1

5
5

(-
0
.7

6
3
,

0
.4

8
6
)

-0
.6

8
6

(-
0
.9

2
2
,

-0
.4

6
1
)

-0
.5

3
2

(-
1
.1

6
5
,

0
.0

8
7
)

7
0
.5

3
1

(0
.1

8
8
,

0
.8

6
7
)

-0
.4

9
8

(-
1
.1

1
1
,

0
.1

7
7
)

-0
.3

4
9

(-
0
.6

5
9
,

-0
.0

4
6
)

-1
.0

3
0

(-
1
.5

6
0
,

-0
.4

5
5
)

-0
.8

8
1

(-
1
.1

2
3
,

-0
.6

4
5
)

0
.1

4
9

(-
0
.4

1
7
,

0
.6

9
2
)

8
-0

.1
2
6

(-
0
.4

4
4
,

0
.1

7
8
)

-0
.1

6
0

(-
0
.8

3
1
,

0
.5

4
0
)

-0
.2

0
2

(-
0
.4

7
9
,

0
.0

7
1
)

-0
.0

3
5

(-
0
.6

0
3
,

0
.5

6
1
)

-0
.0

7
6

(-
0
.2

9
2
,

0
.1

3
9
)

-0
.0

4
1

(-
0
.6

3
9
,

0
.5

3
7
)

9
-0

.3
9
0

(-
0
.7

0
9
,

-0
.0

7
6
)

0
.2

0
1

(-
0
.4

6
2
,

0
.9

8
4
)

-0
.6

0
2

(-
0
.8

9
0
,

-0
.3

2
6
)

0
.5

9
1

(0
.0

1
8
,

1
.3

0
0
)

-0
.2

1
2

(-
0
.4

5
3
,

0
.0

3
1
)

-0
.8

0
3

(-
1
.5

2
6
,

-0
.2

2
3
)

1
0

0
.1

3
6

(-
0
.1

6
0
,

0
.4

1
8
)

0
.3

9
4

(-
0
.2

2
1
,

1
.1

1
8
)

0
.0

5
4

(-
0
.2

0
6
,

0
.3

0
0
)

0
.2

5
8

(-
0
.2

8
1
,

0
.9

4
6
)

-0
.0

8
2

(-
0
.3

1
3
,

0
.1

4
6
)

-0
.3

4
0

(-
1
.0

2
2
,

0
.2

1
0
)

1
1

0
.2

5
1

(-
0
.0

4
0
,

0
.5

4
1
)

0
.8

6
3

(0
.1

8
0
,

1
.7

6
1
)

0
.7

7
5

(0
.5

2
2
,

1
.0

2
9
)

0
.6

1
2

(0
.0

0
7
,

1
.4

5
3
)

0
.5

2
4

(0
.3

0
7
,

0
.7

3
8
)

-0
.0

8
8

(-
0
.9

4
3
,

0
.5

2
2
)

1
2

-0
.2

6
7

(-
0
.5

7
1
,

0
.0

2
1
)

-0
.0

7
7

(-
0
.6

1
6
,

0
.5

2
6
)

0
.0

2
6

(-
0
.2

3
3
,

0
.2

8
2
)

0
.1

9
0

(-
0
.2

8
2
,

0
.6

9
5
)

0
.2

9
3

(0
.0

6
6
,

0
.5

3
4
)

0
.1

0
3

(-
0
.4

2
9
,

0
.5

7
5
)

1
3

-0
.1

4
5

(-
0
.4

4
9
,

0
.1

6
0
)

0
.6

4
8

(0
.0

5
9
,

1
.4

3
7
)

0
.6

1
2

(0
.3

4
2
,

0
.8

8
1
)

0
.7

9
3

(0
.2

7
5
,

1
.5

6
1
)

0
.7

5
7

(0
.5

2
4
,

0
.9

9
2
)

-0
.0

3
6

(-
0
.8

1
4
,

0
.4

8
5
)

1
4

0
.4

2
3

(0
.1

3
7
,

0
.7

0
8
)

-0
.0

5
8

(-
0
.5

4
0
,

0
.4

7
0
)

0
.4

7
1

(0
.1

9
9
,

0
.7

4
6
)

-0
.4

8
1

(-
0
.8

8
8
,

-0
.0

3
3
)

0
.0

4
8

(-
0
.2

1
4
,

0
.2

8
7
)

0
.5

2
9

(0
.0

7
7
,

0
.9

5
5
)

1
5

-0
.6

4
4

(-
1
.0

0
3
,

-0
.2

8
0
)

0
.3

7
8

(-
0
.2

0
2
,

0
.9

6
0
)

0
.9

3
4

(0
.6

2
5
,

1
.2

5
0
)

1
.0

2
2

(0
.5

3
8
,

1
.5

2
2
)

1
.5

7
8

(1
.3

0
3
,

1
.8

6
5
)

0
.5

5
6

(0
.0

7
0
,

1
.0

0
2
)

1
6

0
.8

5
3

(0
.4

3
1
,

1
.2

9
0
)

0
.4

2
9

(-
0
.0

9
3
,

0
.9

9
1
)

2
.2

9
8

(1
.9

7
2
,

2
.6

5
6
)

-0
.4

2
4

(-
0
.8

7
7
,

0
.0

7
9
)

1
.4

4
6

(1
.1

5
2
,

1
.7

3
7
)

1
.8

6
9

(1
.4

2
2
,

2
.2

7
6
)

1
7

0
.8

2
5

(0
.4

6
1
,

1
.1

7
3
)

-0
.6

0
8

(-
1
.0

8
1
,

-0
.1

0
0
)

1
.6

9
8

(1
.3

8
3
,

2
.0

3
0
)

-1
.4

3
3

(-
1
.8

4
0
,

-1
.0

2
5
)

0
.8

7
3

(0
.6

1
1
,

1
.1

3
1
)

2
.3

0
6

(1
.9

1
3
,

2
.7

1
1
)

1
8

1
.7

4
2

(1
.2

2
4
,

2
.2

7
7
)

-0
.1

4
8

(-
0
.8

3
4
,

0
.6

2
4
)

2
.7

2
1

(2
.2

3
1
,

3
.2

5
6
)

-1
.8

8
9

(-
2
.3

1
2
,

-1
.4

3
5
)

0
.9

7
9

(0
.7

1
1
,

1
.2

3
4
)

2
.8

6
8

(2
.4

3
5
,

3
.2

8
6
)

1
9

1
.0

3
6

(0
.5

7
7
,

1
.5

1
3
)

0
.0

2
5

(-
0
.5

5
3
,

0
.6

7
5
)

2
.7

3
5

(2
.3

4
9
,

3
.1

4
7
)

-1
.0

1
1

(-
1
.4

4
3
,

-0
.5

5
6
)

1
.6

9
9

(1
.4

0
2
,

1
.9

8
9
)

2
.7

1
0

(2
.2

8
1
,

3
.1

1
3
)

2
0

0
.7

1
3

(0
.2

8
2
,

1
.1

3
6
)

0
.2

0
2

(-
0
.3

5
2
,

0
.7

9
9
)

1
.8

9
2

(1
.5

3
4
,

2
.2

5
5
)

-0
.5

1
1

(-
0
.9

5
6
,

-0
.0

1
8
)

1
.1

7
9

(0
.8

6
2
,

1
.5

0
1
)

1
.6

9
0

(1
.2

2
9
,

2
.1

0
1
)

2
1

-0
.4

8
8

(-
0
.8

7
8
,

-0
.1

2
6
)

-0
.5

2
0

(-
1
.2

5
9
,

0
.2

3
4
)

-1
.5

8
2

(-
1
.9

3
3
,

-1
.2

5
1
)

-0
.0

3
2

(-
0
.6

5
2
,

0
.6

1
0
)

-1
.0

9
4

(-
1
.3

5
9
,

-0
.8

3
6
)

-1
.0

6
2

(-
1
.7

1
2
,

-0
.4

2
6
)

2
2

-0
.7

3
3

(-
1
.2

7
8
,

-0
.2

4
3
)

-0
.5

5
6

(-
1
.6

4
6
,

0
.5

7
1
)

-1
.9

0
9

(-
2
.4

1
6
,

-1
.4

7
2
)

0
.1

7
7

(-
0
.6

7
6
,

1
.1

0
0
)

-1
.1

7
7

(-
1
.4

2
2
,

-0
.9

3
1
)

-1
.3

5
3

(-
2
.2

7
3
,

-0
.4

9
3
)

2
3

-0
.7

4
1

(-
1
.0

7
8
,

-0
.4

2
7
)

-0
.1

2
0

(-
0
.7

4
2
,

0
.4

9
7
)

-0
.8

7
4

(-
1
.1

7
8
,

-0
.5

8
1
)

0
.6

2
1

(0
.0

8
8
,

1
.1

4
3
)

-0
.1

3
3

(-
0
.4

0
9
,

0
.1

5
9
)

-0
.7

5
4

(-
1
.2

9
6
,

-0
.2

1
5
)

2
4

-0
.5

2
9

(-
0
.8

6
2
,

-0
.2

1
0
)

-0
.3

4
1

(-
0
.9

7
7
,

0
.3

3
1
)

-1
.0

3
9

(-
1
.3

3
8
,

-0
.7

5
5
)

0
.1

8
7

(0
.3

7
8
,

0
.7

7
8
)

-0
.5

1
0

(-
0
.7

5
3
,

-0
.2

7
2
)

-0
.6

9
8

(-
1
.2

7
6
,

-0
.1

4
6
)

2
5

-0
.0

4
5

(-
0
.3

4
5
,

0
.2

5
7
)

0
.5

1
6

(-
0
.1

1
4
,

1
.3

2
9
)

-0
.1

9
1

(-
0
.4

7
4
,

0
.0

8
7
)

0
.5

6
1

(0
.0

2
0
,

1
.3

2
4
)

-0
.1

4
5

(-
0
.4

3
3
,

0
.1

2
9
)

-0
.7

0
6

(-
1
.4

8
4
,

-0
.1

3
5
)

2
6

0
.9

0
3

(0
.5

5
2
,

1
.2

3
8
)

-0
.4

9
7

(-
0
.9

8
4
,

0
.0

1
1
)

1
.8

2
7

(1
.5

1
5
,

2
.1

3
8
)

-1
.4

0
0

(-
1
.8

0
1
,

-1
.0

0
1
)

0
.9

2
4

(0
.6

5
1
,

1
.1

8
2
)

2
.3

2
4

(1
.9

3
7
,

2
.7

3
3
)

2
7

0
.5

5
1

(0
.1

3
1
,

1
.0

2
6
)

0
.9

1
4

(0
.3

7
1

,
1
.5

1
9
)

1
.2

8
3

(0
.9

2
8
,

1
.6

8
9
)

0
.3

6
3

(-
0
.0

7
7
,

0
.8

5
9
)

0
.7

3
2

(0
.4

4
0
,

1
.0

2
8
)

0
.3

6
9

(-
0
.1

1
7
,

0
.8

0
7
)

2
8

1
.0

8
9

(0
.7

3
3
,

1
.4

6
6
)

0
.1

4
0

(-
0
.3

7
2
,

0
.6

8
6
)

2
.0

4
5

(1
.7

4
9
,

2
.3

6
9
)

-0
.9

5
0

(-
1
.3

5
0
,

-0
.5

3
0
)

0
.9

5
6

(0
.6

9
5
,

1
.2

1
3
)

1
.9

0
6

(1
.5

0
3
,

2
.3

0
5
)

2
9

0
.3

3
8

(-
0
.0

0
1
,

0
.6

9
9
)

1
.4

1
9

(0
.7

2
8

,
2
.2

2
9
)

1
.1

0
3

(0
.8

1
1
,

1
.4

0
4
)

1
.0

8
1

(0
.4

3
5
,

1
.8

8
8
)

0
.7

6
5

(0
.5

3
8
,

0
.9

9
4
)

-0
.3

1
6

(-
1
.1

1
0
,

0
.3

1
1
)

3
0

-0
.4

9
4

(-
0
.8

2
3
,

-0
.1

7
8
)

-0
.5

1
7

(-
1
.0

6
6
,

0
.0

3
6
)

-1
.9

4
3

(-
2
.3

8
6
,

-1
.5

4
3
)

-0
.0

2
4

(-
0
.5

2
8
,

0
.4

4
9
)

-1
.4

4
9

(-
1
.8

7
8
,

-1
.0

5
3
)

-1
.4

2
5

(-
2
.0

1
9
,

-0
.8

2
8
)

3
1

-0
.4

4
2

(-
0
.8

1
2
,

-0
.1

0
2
)

-0
.8

2
7

(-
1
.5

1
2
,

-0
.1

7
2
)

-1
.8

5
1

(-
2
.2

2
7
,

-1
.5

0
8
)

-0
.3

8
5

(-
1
.0

1
9
,

0
.1

8
8
)

-1
.4

0
9

(-
1
.6

8
9
,

-1
.1

3
5
)

-1
.0

2
4

(-
1
.6

2
1
,

-0
.3

7
7
)

3
2

-0
.8

2
9

(-
1
.1

5
7
,

-0
.5

0
9
)

0
.1

2
0

(-
0
.6

0
1
,

0
.8

5
0
)

-2
.3

3
3

(-
2
.7

6
7
,

-1
.9

2
2
)

0
.9

4
8

(0
.3

1
7
,

1
.5

9
3
)

-1
.5

0
5

(-
1
.9

2
6
,

-1
.1

2
4
)

-2
.4

5
3

(-
3
.1

7
2
,

-1
.7

6
5
)

3
3

-0
.3

3
4

(-
0
.6

7
2
,

-0
.0

1
4
)

-0
.2

5
1

(-
0
.8

5
0
,

0
.4

6
3
)

-1
.7

4
2

(-
2
.1

9
5
,

-1
.3

4
6
)

0
.0

8
3

(-
0
.4

0
2
,

0
.6

6
0
)

-1
.4

0
7

(-
1
.8

3
1
,

-1
.0

2
9
)

-1
.4

9
1

(-
2
.1

4
4
,

-0
.9

1
4
)

3
4

0
.6

2
6

(0
.2

2
8
,

0
.9

9
2
)

-0
.7

3
8

(-
1
.2

3
2
,

-0
.2

1
4
)

1
.2

4
4

(0
.9

0
0
,

1
.5

8
4
)

-1
.3

6
4

(-
1
.7

4
9
,

-0
.9

8
2
)

0
.6

1
9

(0
.3

5
1
,

0
.8

8
6
)

1
.9

8
2

(1
.5

8
6
,

2
.3

6
5
)

3
5

-0
.5

0
0

(-
1
.4

2
0
,

0
.4

0
1
)

1
.7

1
6

(1
.0

8
1
,

2
.4

1
5
)

-0
.5

7
0

(-
1
.5

4
9
,

0
.3

4
9
)

2
.2

1
6

(1
.5

3
1
,

3
.0

5
8
)

-0
.0

6
9

(-
1
.1

0
9
,

0
.9

5
2
)

-2
.2

8
5

(-
3
.2

7
4
,

-1
.4

4
2
)

3
6

0
.2

7
5

(-
0
.1

0
1
,

0
.6

3
1
)

0
.0

2
8

(-
0
.4

4
8
,

0
.5

4
7
)

-1
.6

7
5

(-
2
.4

4
2
,

-1
.0

1
6
)

-0
.2

4
7

(-
0
.6

2
1
,

0
.1

5
3
)

-1
.9

5
0

(-
2
.7

1
4
,

-1
.3

0
0
)

-1
.7

0
3

(-
2
.5

1
3
,

-1
.0

0
9
)

3
7

0
.4

1
2

(-
0
.0

1
2
,

0
.8

1
9
)

-0
.3

3
7

(-
0
.8

6
1
,

0
.2

3
5
)

0
.0

6
5

(-
0
.3

9
1
,

0
.5

0
4
)

-0
.7

4
8

(-
1
.1

4
7
,

-0
.3

3
6
)

-0
.3

4
7

(-
0
.8

0
3
,

0
.0

6
6
)

0
.4

0
1

(-
0
.1

1
6
,

0
.8

8
4
)

3
8

-1
.6

1
4

(-
2
.5

2
5
,

-0
.6

8
2
)

1
.2

7
8

(0
.7

0
7
,

1
.8

9
9
)

-1
.3

2
5

(-
2
.3

5
3
,

-0
.3

6
3
)

2
.8

9
2

(2
.0

7
4
,

3
.8

1
3
)

0
.2

8
9

(-
0
.8

5
7
,

1
.4

2
5
)

-2
.6

0
3

(-
3
.6

3
9
,

-1
.6

9
8
)

N
u

m
b

er
o
f

D
IF

It
em

s
2
4

1
0

3
0

2
3

2
8

2
5



110

T
ab

le
4.

17
:

M
ag

n
it

u
d
e

of
S
tu

d
en

t-
L

ev
el

D
IF

V
al

u
es

fo
r

M
at

h
em

at
ic

s
S
ec

ti
on

:
W

it
h
ou

t
C

ov
ar

ia
te

s
fo

r
K

=
2

It
em

G
=

1
V
s.
G

=
2

G
=

1
V
s.
G

=
3

G
=

1
V
s.
G

=
4

G
=

2
V
s.
G

=
3

G
=

2
V
s.
G

=
4

G
=

3
V
s.
G

=
4

1
0
.1

6
6

(-
0
.1

9
6
,

0
.5

1
8
)

-0
.0

2
5

(-
0
.6

8
0
,

0
.7

0
1
)

0
.2

0
8

(-
0
.1

1
3
,

0
.5

2
2
)

-0
.1

9
1

(-
0
.7

4
6
,

0
.4

5
6
)

0
.0

4
2

(-
0
.3

0
1
,

0
.3

7
0
)

0
.2

3
3

(-
0
.4

2
0
,

0
.8

1
5
)

2
-0

.1
9
4

(-
0
.5

2
8
,

0
.1

1
4
)

-0
.0

3
5

(-
0
.6

8
3
,

0
.7

0
4
)

0
.2

9
3

(-
0
.0

3
6
,

0
.6

1
3
)

0
.1

5
9

(-
0
.3

6
7
,

0
.7

9
8
)

0
.4

8
7

(0
.1

9
0
,

0
.7

8
4
)

0
.3

2
8

(-
0
.3

1
0
,

0
.8

8
1
)

3
-1

.3
6
8

(-
1
.7

6
9
,

-1
.0

0
4
)

0
.5

1
8

(-
0
.3

8
5
,

1
.5

5
3
)

-2
.2

8
1

(-
2
.7

0
8
,

-1
.8

9
1
)

1
.8

8
6

(1
.1

2
1
,

2
.8

1
8
)

-0
.9

1
2

(-
1
.2

6
2
,

-0
.5

8
1
)

-2
.7

9
9

(-
3
.7

4
9
,

-2
.0

1
2
)

4
-0

.3
7
5

(-
0
.6

4
0
,

-0
.1

1
3
)

-0
.6

7
7

(-
1
.0

6
6
,

-0
.2

7
3
)

-1
.0

1
0

(-
1
.3

2
2
,

-0
.7

0
9
)

-0
.3

0
2

(-
0
.6

3
9
,

0
.0

3
6
)

-0
.6

3
5

(-
0
.9

5
9
,

-0
.3

2
5
)

-0
.3

3
3

(-
0
.7

4
4
,

0
.0

4
6
)

5
0
.0

2
9

(-
0
.2

8
7
,

0
.3

3
4
)

-0
.4

3
9

(-
0
.9

3
9
,

0
.1

0
2
)

-0
.0

8
9

(-
0
.3

8
6
,

0
.1

9
9
)

-0
.4

6
8

(-
0
.8

7
6
,

-0
.0

2
3
)

-0
.1

1
8

(-
0
.4

2
1
,

0
.1

8
0
)

0
.3

5
0

(-
0
.1

1
7
,

0
.7

7
7
)

6
-0

.6
5
5

(-
0
.9

3
2
,

-0
.3

8
9
)

0
.0

9
6

(-
0
.4

2
1
,

0
.6

7
2
)

-1
.1

3
4

(-
1
.4

3
1
,

-0
.8

5
0
)

0
.7

5
1

(0
.3

0
9
,

1
.2

5
3
)

-0
.4

7
9

(-
0
.8

0
0
,

-0
.1

6
1
)

-1
.2

3
0

(-
1
.7

7
1
,

-0
.7

4
9
)

7
0
.7

0
8

(0
.4

5
6
,

0
.9

6
8
)

-0
.2

6
7

(-
0
.6

5
2
,

0
.1

5
6
)

-0
.1

0
8

(-
0
.4

2
7
,

0
.1

8
5
)

-0
.9

7
5

(-
1
.3

2
4
,

-0
.5

9
6
)

-0
.8

1
5

(-
1
.1

6
3
,

-0
.5

0
2
)

0
.1

5
9

(-
0
.2

4
6
,

0
.5

3
2
)

8
-0

.5
0
6

(-
0
.7

7
8
,

-0
.2

3
9
)

-0
.2

2
9

(-
0
.6

7
9
,

0
.2

4
1
)

-0
.5

2
5

(-
0
.8

1
4
,

-0
.2

5
3
)

0
.2

7
6

(-
0
.0

9
8
,

0
.6

8
9
)

-0
.0

1
9

(-
0
.3

2
0
,

0
.2

8
5
)

-0
.2

9
6

(-
0
.7

2
7
,

0
.1

1
0
)

9
-0

.5
7
2

(-
0
.8

3
4
,

-0
.3

1
7
)

-0
.0

2
4

(-
0
.4

9
1
,

0
.4

6
8
)

-1
.0

4
7

(-
1
.3

6
5
,

-0
.7

4
3
)

0
.5

4
8

(0
.1

5
3
,

0
.9

6
5
)

-0
.4

7
5

(-
0
.8

2
0
,

-0
.1

3
8
)

-1
.0

2
3

(-
1
.5

1
2
,

-0
.5

6
8
)

1
0

0
.0

4
0

(-
0
.1

8
9
,

0
.2

7
4
)

-0
.3

7
5

(-
0
.7

0
8
,

-0
.0

2
8
)

-0
.0

7
1

(-
0
.3

5
1
,

0
.2

0
2
)

-0
.4

1
5

(-
0
.7

1
6
,

-0
.1

1
5
)

-0
.1

1
1

(-
0
.4

1
6
,

0
.1

9
7
)

0
.3

0
4

(-
0
.0

5
3
,

0
.6

4
9
)

1
1

0
.3

2
8

(0
.0

8
8
,

0
.5

6
1
)

0
.6

5
9

(0
.2

7
2
,

1
.1

1
1
)

0
.6

5
1

(0
.3

8
8
,

0
.9

0
7
)

0
.3

3
1

(-
0
.0

2
5
,

0
.7

4
8
)

0
.3

2
3

(0
.0

1
0
,

0
.6

3
0
)

-0
.0

0
8

(-
0
.4

6
1
,

0
.4

0
5
)

1
2

-0
.3

0
8

(-
0
.5

5
6
,

-0
.0

7
1
)

-0
.1

4
0

(-
0
.4

6
5
,

0
.2

0
1
)

-0
.1

7
7

(-
0
.4

5
6
,

0
.1

0
3
)

0
.1

6
8

(-
0
.1

3
2
,

0
.4

7
1
)

0
.1

3
1

(-
0
.2

0
0
,

0
.4

6
2
)

-0
.0

3
7

(-
0
.4

0
7
,

0
.3

2
6
)

1
3

0
.0

1
8

(-
0
.2

2
7
,

0
.2

5
7
)

0
.3

3
8

(-
0
.0

1
6
,

0
.6

9
8
)

0
.2

7
1

(0
.0

0
7
,

0
.5

3
5
)

0
.3

2
0

(-
0
.0

0
8
,

0
.6

6
2
)

0
.2

5
3

(-
0
.0

7
3
,

0
.5

7
5
)

-0
.0

6
7

(-
0
.4

4
0
,

0
.3

0
3
)

1
4

0
.1

1
5

(-
0
.1

2
5
,

0
.3

4
1
)

-0
.1

9
6

(-
0
.4

7
6
,

0
.0

8
9
)

0
.4

8
4

(0
.2

0
7
,

0
.7

5
8
)

-0
.3

1
0

(-
0
.5

7
3
,

-0
.0

4
3
)

0
.3

6
9

(0
.0

4
8
,

0
.6

9
1
)

0
.6

7
9

(0
.3

4
9
,

1
.0

0
3
)

1
5

-0
.6

3
8

(-
0
.9

2
2
,

-0
.3

6
8
)

-0
.0

3
6

(-
0
.3

3
6
,

0
.2

6
8
)

0
.4

7
1

(0
.1

8
2
,

0
.7

6
7
)

0
.6

0
2

(0
.2

9
7
,

0
.9

1
6
)

1
.1

0
9

(0
.7

5
8
,

1
.4

7
3
)

0
.5

0
6

(0
.1

7
3
,

0
.8

4
7
)

1
6

1
.2

2
7

(0
.8

9
3
,

1
.5

6
8
)

0
.5

6
3

(0
.2

5
1
,

0
.8

8
8
)

2
.5

4
4

(2
.2

2
7
,

2
.8

6
7
)

-0
.6

6
5

(-
0
.9

8
0
,

-0
.3

3
8
)

1
.3

1
7

(0
.9

5
0
,

1
.6

6
8
)

1
.9

8
2

(1
.6

5
7
,

2
.2

9
6
)

1
7

0
.7

2
3

(0
.4

4
4
,

0
.9

9
2
)

-0
.4

6
1

(-
0
.7

3
2
,

-0
.1

7
7
)

1
.6

3
7

(1
.3

4
2
,

1
.9

2
5
)

-1
.1

8
3

(-
1
.4

5
6
,

-0
.9

1
2
)

0
.9

1
5

(0
.5

7
1
,

1
.2

5
7
)

2
.0

9
8

(1
.7

8
5
,

2
.4

1
0
)

1
8

1
.2

9
5

(0
.9

9
8
,

1
.5

8
6
)

-0
.4

0
2

(-
0
.7

1
7
,

-0
.0

7
3
)

2
.1

0
3

(1
.7

7
7
,

2
.4

1
9
)

-1
.6

9
7

(-
1
.9

8
0
,

-1
.4

1
1
)

0
.8

0
8

(0
.4

3
7
,

1
.1

6
1
)

2
.5

0
5

(2
.1

8
6
,

2
.8

2
4
)

1
9

0
.8

4
3

(0
.4

8
9
,

1
.1

8
3
)

0
.0

6
4

(-
0
.2

4
9
,

0
.3

8
7
)

2
.2

1
9

(1
.8

9
4
,

2
.5

4
4
)

-0
.7

7
9

(-
1
.1

1
0
,

-0
.4

2
4
)

1
.3

7
6

(0
.9

7
7
,

1
.7

9
1
)

2
.1

5
5

(1
.8

1
4
,

2
.5

0
4
)

2
0

0
.5

9
7

(0
.2

3
8
,

0
.9

3
5
)

0
.1

7
6

(-
0
.1

2
1
,

0
.4

8
1
)

1
.6

9
7

(1
.3

6
5
,

2
.0

2
7
)

-0
.4

2
1

(-
0
.7

2
8
,

-0
.0

9
4
)

1
.1

0
0

(0
.6

9
3
,

1
.5

1
4
)

1
.5

2
1

(1
.1

6
1
,

1
.8

7
9
)

2
1

-0
.1

6
5

(-
0
.4

5
5
,

0
.1

1
2
)

-0
.3

8
6

(-
0
.8

3
5
,

0
.0

5
6
)

-1
.4

3
2

(-
1
.7

9
9
,

-1
.0

9
7
)

-0
.2

2
1

(-
0
.6

0
5
,

0
.1

6
7
)

-1
.2

6
7

(-
1
.6

3
7
,

-0
.9

2
0
)

-1
.0

4
6

(-
1
.5

1
8
,

-0
.5

9
4
)

2
2

-0
.2

8
5

(-
0
.6

5
9
,

0
.0

7
6
)

-0
.2

6
5

(-
0
.9

3
5
,

0
.4

6
8
)

-1
.4

2
6

(-
1
.7

9
5
,

-1
.0

8
3
)

0
.0

2
0

(-
0
.5

0
9
,

0
.6

1
0
)

-1
.1

4
1

(-
1
.4

8
4
,

-0
.8

1
3
)

-1
.1

6
1

(-
1
.8

0
4
,

-0
.6

0
4
)

2
3

-0
.8

6
1

(-
1
.1

2
4
,

-0
.6

0
2
)

-0
.3

8
2

(-
0
.7

3
5
,

-0
.0

2
3
)

-0
.9

2
1

(-
1
.2

3
6
,

-0
.6

2
1
)

0
.4

7
9

(0
.1

4
4
,

0
.8

1
4
)

-0
.0

6
0

(-
0
.4

2
4
,

0
.3

0
6
)

-0
.5

3
9

(-
0
.9

2
4
,

-0
.1

5
7
)

2
4

-0
.5

8
3

(-
0
.8

4
1
,

-0
.3

2
5
)

0
.4

9
3

(-
0
.0

5
4
,

1
.0

8
4
)

-1
.0

9
1

(-
1
.4

1
3
,

-0
.7

9
1
)

1
.0

7
6

(0
.6

0
0
,

1
.6

0
8
)

-0
.5

0
7

(-
0
.8

5
9
,

-0
.1

7
6
)

-1
.5

8
4

(-
2
.1

8
3
,

-1
.0

4
4
)

2
5

-0
.2

3
5

(-
0
.4

8
0
,

0
.0

0
3
)

-0
.0

0
1

(-
0
.3

3
3
,

0
.3

3
8
)

-0
.8

4
6

(-
1
.2

4
2
,

-0
.4

8
7
)

0
.2

3
4

(-
0
.0

6
4
,

0
.5

4
0
)

-0
.6

1
1

(-
1
.0

7
5
,

-0
.1

9
5
)

-0
.8

4
5

(-
1
.3

1
4
,

-0
.4

2
2
)

2
6

0
.6

7
2

(0
.4

0
6
,

0
.9

3
2
)

-0
.8

1
2

(-
1
.0

7
3
,

-0
.5

4
8
)

1
.3

7
2

(1
.0

6
1
,

1
.6

7
1
)

-1
.4

8
4

(-
1
.7

5
1
,

-1
.2

0
9
)

0
.7

0
0

(0
.3

3
7
,

1
.0

5
4
)

2
.1

8
5

(1
.8

5
5
,

2
.5

1
2
)

2
7

0
.5

7
2

(0
.2

7
1
,

0
.8

6
8
)

0
.5

2
5

(0
.2

2
8
,

0
.8

2
4
)

1
.5

8
4

(1
.2

8
9
,

1
.8

8
6
)

-0
.0

4
7

(-
0
.3

4
8
,

0
.2

6
4
)

1
.0

1
2

(0
.6

6
3
,

1
.3

6
4
)

1
.0

5
9

(0
.7

1
0
,

1
.3

9
3
)

2
8

1
.0

3
9

(0
.7

2
1
,

1
.3

5
6
)

0
.4

2
5

(0
.1

3
9
,

0
.7

2
5
)

2
.5

1
8

(2
.2

4
5
,

2
.8

0
7
)

-0
.6

1
4

(-
0
.8

9
9
,

-0
.3

1
2
)

1
.4

7
9

(1
.1

5
0
,

1
.8

1
0
)

2
.0

9
3

(1
.7

8
5
,

2
.3

9
7
)

2
9

0
.6

2
6

(0
.3

9
6
,

0
.8

5
4
)

1
.0

1
9

(0
.5

9
8
,

1
.5

2
1
)

0
.8

2
9

(0
.5

6
8
,

1
.0

8
0
)

0
.3

9
3

(-
0
.0

1
6
,

0
.8

9
8
)

0
.2

0
3

(-
0
.1

0
6
,

0
.5

0
5
)

-0
.1

9
0

(-
0
.6

9
6
,

0
.2

3
5
)

3
0

-0
.1

8
6

(-
0
.4

4
1
,

0
.0

6
6
)

-0
.3

4
4

(-
0
.6

5
0
,

-0
.0

2
2
)

-1
.3

0
4

(-
1
.8

1
5
,

-0
.8

6
3
)

-0
.1

5
9

(-
0
.4

4
5
,

0
.1

3
6
)

-1
.1

1
9

(-
1
.6

6
9
,

-0
.6

3
7
)

-0
.9

6
0

(-
1
.4

9
8
,

-0
.4

8
0
)

3
1

-0
.2

4
6

(-
0
.5

0
4
,

0
.0

0
6
)

-0
.0

2
3

(-
0
.4

6
3
,

0
.4

3
7
)

-1
.4

1
9

(-
1
.8

1
7
,

-1
.0

6
5
)

0
.2

2
3

(-
0
.1

5
8
,

0
.6

2
8
)

-1
.1

7
2

(-
1
.5

7
1
,

-0
.8

0
9
)

-1
.3

9
6

(-
1
.9

0
6
,

-0
.9

1
9
)

3
2

-0
.8

1
9

(-
1
.1

0
4
,

-0
.5

4
5
)

-0
.0

5
8

(-
0
.4

8
9
,

0
.3

9
9
)

-2
.1

8
8

(-
2
.7

0
8
,

-1
.7

2
6
)

0
.7

6
1

(0
.3

8
4

,
1
.1

6
4
)

-1
.3

6
9

(-
1
.9

3
3
,

-0
.8

6
3
)

-2
.1

3
0

(-
2
.7

6
4
,

-1
.5

6
9
)

3
3

-0
.3

1
9

(-
0
.5

7
6
,

-0
.0

7
9
)

-0
.1

6
9

(-
0
.5

1
6
,

0
.1

9
5
)

-1
.7

8
4

(-
2
.4

0
3
,

-1
.2

7
9
)

0
.1

5
0

(-
0
.1

5
5
,

0
.4

7
5
)

-1
.4

6
5

(-
2
.1

1
0
,

-0
.9

2
8
)

-1
.6

1
5

(-
2
.2

8
6
,

-1
.0

3
8
)

3
4

0
.9

2
1

(0
.6

7
7
,

1
.1

6
9
)

-0
.6

7
0

(-
0
.9

3
8
,

-0
.3

9
8
)

1
.5

3
7

(1
.2

4
2
,

1
.8

2
1
)

-1
.5

9
1

(-
1
.8

5
4
,

-1
.3

3
2
)

0
.6

1
6

(0
.2

7
4
,

0
.9

4
1
)

2
.2

0
7

(1
.8

8
8
,

2
.5

2
0
)

3
5

-0
.8

4
7

(-
1
.6

3
5
,

-0
.1

5
9
)

1
.5

4
4

(1
.1

7
2
,

1
.9

3
8
)

-0
.5

3
8

(-
1
.5

1
7
,

0
.3

1
7
)

2
.3

9
1

(1
.7

4
1
,

3
.1

3
8
)

0
.3

0
9

(0
.7

7
8
,

1
.4

0
0
)

-2
.0

8
2

(-
3
.0

4
5
,

-1
.2

3
6
)

3
6

0
.1

5
0

(-
0
.1

6
2
,

0
.4

4
2
)

-0
.2

5
3

(-
0
.5

1
4
,

0
.0

1
1
)

-0
.8

2
0

(-
1
.5

3
0
,

-0
.2

3
0
)

-0
.4

0
3

(-
0
.6

8
0
,

-0
.1

0
5
)

-0
.9

6
9

(-
1
.7

3
0
,

-0
.3

1
6
)

-0
.5

6
7

(-
1
.2

8
6
,

0
.0

3
7
)

3
7

0
.2

1
0

(-
0
.1

2
0
,

0
.5

2
4
)

-0
.6

5
6

(-
0
.9

2
9
,

-0
.3

8
7
)

0
.8

0
3

(0
.4

1
8
,

1
.1

7
2
)

-0
.8

6
6

(-
1
.1

6
2
,

-0
.5

6
3
)

0
.5

9
3

(0
.1

1
9
,

1
.0

5
8
)

1
.4

5
9

(1
.0

6
2
,

1
.8

5
1
)

3
8

-1
.1

1
8

(-
1
.7

8
9
,

-0
.5

1
2
)

0
.9

0
7

(0
.5

9
6
,

1
.2

2
3
)

-1
.0

0
9

(-
1
.9

6
7
,

-0
.1

7
4
)

2
.0

2
5

(1
.4

4
8
,

2
.6

9
9
)

0
.1

0
9

(-
1
.0

0
7
,

1
.1

7
0
)

-1
.9

1
6

(-
2
.8

6
2
,

-1
.1

0
5
)

N
u

m
b

er
o
f

D
IF

It
em

s
2
5

1
6

3
1

2
3

3
0

2
6



111

T
ab

le
4.

18
:

M
ag

n
it

u
d
e

of
S
ch

o
ol

-L
ev

el
D

IF
V

al
u
es

fo
r

M
at

h
em

at
ic

s
S
ec

ti
on

:
W

it
h

C
ov

ar
ia

te
s

A
cr

o
ss

S
ch

o
o
l-

L
ev

el
L

a
te

n
t

C
la

ss
es

It
em

S
tu

d
en

t-
L

ev
el

C
la

ss
1

S
tu

d
en

t-
L

ev
el

C
la

ss
2

S
tu

d
en

t-
L

ev
el

C
la

ss
3

S
tu

d
en

t-
L

ev
el

C
la

ss
4

1
-0

.5
5
4
4
(-

1
.2

9
3
,

0
.2

4
6
)

0
.0

0
7
(-

0
.2

4
4
,

0
.2

6
4
)

0
.2

7
9
(-

0
.3

3
7
,

0
.8

5
4
)

-0
.1

2
4
(-

0
.3

4
2
,0

.0
9
9
)

2
-0

.1
7
0
1
(-

0
.9

3
3
,

0
.6

4
6
)

-0
.2

4
2
(-

0
.4

6
4
,

-0
.0

2
8
)

0
.0

3
4
(-

0
.5

2
7
,

0
.5

5
8
)

0
.0

5
3
(-

0
.2

1
0
,0

.3
0
3
)

3
-0

.1
2
2
5
(-

1
.0

5
4
,

0
.9

2
3
)

0
.1

7
5
(-

0
.0

3
5
,

0
.3

8
8
)

0
.1

6
0
(-

0
.6

7
1
,

0
.9

4
4
)

0
.4

1
3
(0

.0
9
9
,0

.7
2
5
)

4
-0

.8
3
8
2
(-

1
.3

2
8
,

-0
.3

4
3
)

0
.0

1
9
(-

0
.1

9
6
,

0
.2

3
4
)

0
.4

2
0
(0

.0
2
3
,

0
.8

2
4
)

-0
.1

2
3
(-

0
.3

8
6
,0

.1
2
7
)

5
-0

.5
7
0
4
(-

1
.1

7
4
,

0
.0

4
9
)

-0
.1

8
1
(-

0
.4

0
5
,

0
.0

4
8
)

0
.5

3
7
(0

.0
6
1
,

1
.0

0
1
)

-0
.1

1
0
(-

0
.3

2
5
,0

.0
9
7
)

6
-0

.1
3
7
3
(-

0
.7

6
0
,

0
.5

4
8
)

0
.2

7
4
(0

.0
7
7
,

0
.4

7
1
)

0
.0

0
2
(-

0
.4

6
8
,

0
.4

5
2
)

-0
.2

0
3
(-

0
.4

7
2
,0

.0
6
1
)

7
-0

.0
9
5
9
(-

0
.5

8
2
,

0
.4

0
6
)

0
.0

7
2
(-

0
.1

8
5
,

0
.3

1
4
)

0
.1

4
4
(-

0
.2

5
8
,

0
.5

3
8
)

-0
.0

9
3
(-

0
.3

2
5
,0

.1
3
4
)

8
-0

.1
5
3
7
(-

0
.6

4
5
,

0
.3

4
6
)

0
.0

9
4
(-

0
.1

6
1
,

0
.3

3
0
)

0
.2

5
8
(-

0
.2

1
1
,

0
.6

8
6
)

-0
.0

6
4
(-

0
.2

9
8
,0

.1
7
1
)

9
-0

.1
5
1
2
(-

0
.6

5
2
,

0
.3

9
5
)

-0
.0

3
2
(-

0
.2

6
4
,

0
.1

9
0
)

0
.0

0
5
(-

0
.4

6
8
,

0
.4

3
3
)

0
.1

9
1
(-

0
.0

6
5
,0

.4
6
2
)

1
0

-0
.1

1
6
3
(-

0
.5

4
2
,

0
.3

4
0
)

-0
.1

9
7
(-

0
.3

9
2
,

-0
.0

0
8
)

0
.2

9
8
(-

0
.0

3
9
,

0
.6

3
9
)

-0
.0

5
9
(-

0
.3

0
5
,0

.1
9
4
)

1
1

0
.9

8
8
(0

.4
9
5
,

1
.5

7
2
)

-0
.0

6
4
(-

0
.2

6
2
,

0
.1

4
1
)

-0
.3

5
9
(-

0
.7

6
5
,

-0
.0

1
3
)

-0
.0

9
4
(-

0
.3

3
7
,0

.1
4
8
)

1
2

-0
.3

1
5
8
(-

0
.7

0
4
,

0
.0

8
1
)

0
.0

7
3
(-

0
.1

8
2
,

0
.3

1
6
)

-0
.0

0
3
(-

0
.3

4
2
,

0
.3

3
6
)

-0
.0

0
7
(-

0
.2

7
4
,0

.2
5
1
)

1
3

0
.4

1
0
2
(-

0
.0

2
4
,

0
.9

0
3
)

-0
.2

3
8
(-

0
.4

8
1
,

0
.0

1
3
)

-0
.3

9
9
(-

0
.7

7
5
,

-0
.0

6
5
)

-0
.1

6
5
(-

0
.4

2
2
,0

.1
0
4
)

1
4

-0
.2

4
4
3
(-

0
.5

8
6
,

0
.1

1
8
)

-0
.0

5
2
(-

0
.2

7
3
,

0
.1

7
5
)

-0
.0

3
8
(-

0
.3

2
3
,

0
.2

5
3
)

-0
.0

9
4
(-

0
.3

6
1
,0

.1
6
7
)

1
5

0
.0

4
0
6
7
(-

0
.3

4
5
,

0
.4

5
0
)

0
.1

7
7
(-

0
.1

2
9
,

0
.5

1
7
)

-0
.0

3
0
(-

0
.3

1
9
,

0
.2

8
5
)

0
.0

3
2
(-

0
.2

2
5
,0

.2
8
2
)

1
6

0
.7

0
2
(0

.3
1
3
,

1
.1

1
8
)

-0
.3

9
1
(-

0
.7

2
4
,

-0
.0

6
1
)

-0
.5

1
0
(-

0
.8

7
7
,

-0
.1

9
9
)

0
.1

5
4
(-

0
.1

4
1
,0

.4
4
1
)

1
7

-0
.5

6
9
1
(-

0
.9

0
4
,

-0
.2

2
2
)

-0
.2

4
0
(-

0
.5

2
2
,

0
.0

5
4
)

0
.2

7
2
(-

0
.0

3
4
,

0
.5

6
8
)

0
.2

3
6
(-

0
.0

3
2
,0

.5
0
8
)

1
8

-0
.0

6
3
1
(-

0
.4

6
8
,

0
.3

5
3
)

-0
.1

4
2
(-

0
.4

0
7
,

0
.1

3
0
)

0
.2

4
6
(-

0
.0

9
5
,

0
.5

6
1
)

0
.1

0
0
(-

0
.1

7
3
,0

.3
6
7
)

1
9

-0
.0

1
1
4
(-

0
.3

7
5
,

0
.3

5
7
)

0
.2

3
2
(-

0
.1

4
5
,

0
.6

1
1
)

-0
.2

4
7
(-

0
.6

0
3
,

0
.0

7
8
)

-0
.0

8
3
(-

0
.3

8
3
,0

.2
1
8
)

2
0

0
.2

4
5
5
(-

0
.1

0
8
,

0
.6

2
8
)

-0
.1

5
2
(-

0
.5

1
6
,

0
.2

0
6
)

-0
.1

8
7
(-

0
.5

4
3
,

0
.1

1
4
)

0
.2

3
4
(-

0
.0

9
3
,0

.5
6
8
)

2
1

-0
.2

9
9
(-

0
.8

3
0
,

0
.2

7
2
)

0
.2

8
1
(0

.0
5
7
,

0
.5

0
6
)

0
.3

8
9
(-

0
.0

3
0
,

0
.8

0
9
)

-0
.2

7
3
(-

0
.5

9
0
,0

.0
2
4
)

2
2

-0
.5

5
7
(-

1
.3

2
3
,

0
.2

5
8
)

0
.1

8
8
(-

0
.0

6
2
,

0
.4

4
7
)

0
.3

0
2
(-

0
.2

4
9
,

0
.8

3
9
)

-0
.0

0
5
(-

0
.2

5
0
,0

.2
4
0
)

2
3

-0
.1

8
9
4
(-

0
.6

3
1
,

0
.2

5
8
)

-0
.0

3
1
(-

0
.2

4
4
,

0
.1

9
0
)

0
.2

5
6
(-

0
.1

0
2
,

0
.6

0
5
)

0
.3

4
1
(0

.0
5
0
,0

.6
3
5
)

2
4

0
.0

8
4
6
8
(-

0
.4

1
4
,

0
.6

4
8
)

0
.0

1
4
(-

0
.1

9
3
,

0
.2

2
6
)

-0
.2

6
9
(-

0
.8

4
3
,

0
.2

2
9
)

0
.0

1
4
(-

0
.2

6
2
,0

.2
8
7
)

2
5

0
.2

5
6
8
(-

0
.1

6
0
,

0
.7

0
3
)

0
.3

4
6
(0

.0
3
4
,

0
.6

3
4
)

-0
.0

6
2
(-

0
.4

0
7
,

0
.2

5
4
)

-0
.0

9
9
(-

0
.4

4
9
,0

.2
4
8
)

2
6

-0
.8

0
5
1
(-

1
.1

4
9
,

-0
.4

6
4
)

-0
.1

6
5
(-

0
.4

3
2
,

0
.0

9
8
)

0
.5

3
8
(0

.2
3
9
,

0
.8

3
9
)

-0
.0

7
3
(-

0
.3

7
1
,0

.2
2
8
)

2
7

0
.6

6
5
3
(0

.3
2
2
,

1
.0

4
8
)

0
.2

7
6
(-

0
.0

0
5
,

0
.5

6
3
)

-0
.4

8
6
(-

0
.8

0
4
,

-0
.1

9
5
)

-0
.0

4
7
(-

0
.3

5
1
,0

.2
5
7
)

2
8

0
.5

1
1
7
(0

.1
5
8
,

0
.9

0
4
)

0
.0

3
7
(-

0
.2

6
8
,

0
.3

3
2
)

-0
.4

0
1
(-

0
.7

0
0
,

-0
.1

1
7
)

0
.0

7
6
(-

0
.1

6
9
,0

.3
2
8
)

2
9

1
.3

2
4
(0

.8
0
3
,

1
.9

1
7
)

0
.0

3
2
(-

0
.2

1
7
,

0
.2

9
1
)

-0
.7

5
3
(-

1
.2

5
0
,

-0
.3

5
8
)

0
.0

2
1
(-

0
.2

1
6
,0

.2
5
4
)

3
0

-0
.5

5
8
9
(-

0
.9

4
4
,

-0
.1

9
3
)

-0
.1

1
1
(-

0
.3

3
6
,

0
.1

1
3
)

0
.2

2
9
(-

0
.0

8
4
,

0
.5

4
2
)

-0
.4

6
2
(-

1
.0

6
0
,0

.0
8
7
)

3
1

-0
.3

0
1
4
(-

0
.8

0
1
,

0
.2

1
5
)

0
.1

3
2
(-

0
.1

2
8
,

0
.3

7
8
)

0
.2

5
1
(-

0
.1

5
7
,

0
.6

5
2
)

0
.1

8
6
(-

0
.2

9
3
,0

.6
3
3
)

3
2

-0
.0

2
5
3
(-

0
.5

8
0
,

0
.5

8
3
)

0
.1

2
4
(-

0
.1

0
8
,

0
.3

5
3
)

0
.1

3
2
(-

0
.2

4
7
,

0
.5

3
3
)

-0
.1

1
2
(-

0
.6

6
8
,0

.4
1
5
)

3
3

-0
.1

3
9
3
(-

0
.5

7
5
,

0
.3

4
5
)

-0
.0

2
1
(-

0
.2

3
0
,

0
.1

8
7
)

0
.0

1
8
(-

0
.3

4
2
,

0
.3

5
3
)

0
.0

8
9
(-

0
.5

0
7
,0

.6
8
6
)

3
4

-0
.6

1
7
4
(-

0
.9

5
5
,

-0
.2

7
8
)

-0
.0

6
1
(-

0
.3

0
6
,

0
.1

8
5
)

0
.5

2
2
(0

.2
2
7
,

0
.8

4
0
)

0
.2

2
9
(-

0
.0

4
5
,0

.5
0
3
)

3
5

2
.0

4
3
(1

.4
0
2
,

2
.8

2
6
)

0
.3

9
7
(-

0
.5

1
2
,

1
.3

3
1
)

-1
.2

8
9
(-

1
.7

8
7
,

-0
.8

5
9
)

0
.1

0
4
(-

1
.0

3
9
,1

.2
1
9
)

3
6

-0
.1

5
2
1
(-

0
.4

7
0
,

0
.1

7
3
)

0
.0

8
0
(-

0
.2

2
3
,

0
.3

7
0
)

0
.0

1
2
(-

0
.2

5
5
,

0
.2

7
5
)

-0
.1

1
8
(-

1
.0

5
1
,0

.8
5
0
)

3
7

-0
.5

5
4
(-

0
.8

9
8
,

-0
.2

2
6
)

-0
.4

5
5
(-

0
.7

6
5
,

-0
.1

4
7
)

0
.4

7
3
(0

.1
9
7
,

0
.7

6
4
)

-0
.0

0
4
(-

0
.4

8
5
,0

.5
0
7
)

3
8

1
.0

4
1
(0

.6
0
0
,

1
.5

4
4
)

-0
.2

5
8
(-

1
.2

6
4
,

0
.6

9
1
)

-0
.7

4
4
(-

1
.0

7
4
,

-0
.4

3
8
)

-0
.0

6
0
(-

1
.2

6
4
,1

.1
4
0
)

N
u

m
b

er
o
f

D
IF

It
em

s
1
3

7
1
3

2



112

T
ab

le
4.

19
:

M
ag

n
it

u
d
e

of
S
tu

d
en

t-
L

ev
el

D
IF

V
al

u
es

fo
r

M
at

h
em

at
ic

s
S
ec

ti
on

:
W

it
h

C
ov

ar
ia

te
s

fo
r
K

=
1

It
em

G
=

1
v
s.
G

=
2

G
=

1
v
s.
G

=
3

G
=

1
v
s.
G

=
4

G
=

2
v
s.
G

=
3

G
=

2
v
s.
G

=
4

G
=

3
v
s.
G

=
4

1
-0

.0
5
7
(-

0
.4

9
9
,

0
.4

3
7
)

0
.3

8
9
(-

0
.4

0
8
,

1
.1

3
4
)

-0
.1

6
5
(-

0
.5

8
4
,

0
.2

9
8
)

0
.4

4
7
(-

0
.1

3
6
,

0
.9

6
4
)

0
.1

0
7
(-

0
.1

4
1
,

0
.3

6
1
)

0
.5

5
4
(-

0
.0

0
5
,

1
.0

4
7
)

2
0
.2

3
5
(-

0
.1

7
8
,

0
.7

0
5
)

0
.2

9
2
(-

0
.4

4
0
,

0
.9

9
9
)

-0
.2

0
2
(-

0
.5

8
4
,

0
.2

2
4
)

0
.0

5
7
(-

0
.4

9
8
,

0
.5

5
4
)

0
.4

3
6
(0

.1
8
3
,

0
.6

8
5
)

0
.4

9
4
(-

0
.0

2
8
,

0
.9

6
5
)

3
1
.4

9
9
(0

.9
9
9
,

2
.1

0
1
)

-0
.0

1
8
(-

1
.0

2
7
,

0
.9

9
3
)

2
.4

1
9
(1

.9
0
2
,

3
.0

3
9
)

-1
.5

1
7
(-

2
.2

6
4
,

-0
.8

7
3
)

-0
.9

2
0
(-

1
.1

8
9
,

-0
.6

6
2
)

-2
.4

3
7
(-

3
.2

0
3
,

-1
.7

9
7
)

4
0
.5

4
5
(0

.2
1
2
,

0
.9

0
5
)

0
.6

8
1
(0

.1
6
1
,

1
.2

1
4
)

0
.9

2
4
(0

.6
0
9
,

1
.2

6
9
)

0
.1

3
5
(-

0
.2

6
0
,

0
.5

3
7
)

-0
.3

7
9
(-

0
.6

1
5
,

-0
.1

5
2
)

-0
.2

4
3
(-

0
.6

0
7
,

0
.1

3
6
)

5
-0

.0
9
3
(-

0
.4

7
5
,

0
.3

2
2
)

0
.5

9
2
(-

0
.0

3
4
,

1
.2

1
6
)

0
.1

8
5
(-

0
.1

5
9
,

0
.5

5
8
)

0
.6

8
5
(0

.2
4
4
,

1
.1

2
8
)

-0
.2

7
8
(-

0
.5

1
1
,

-0
.0

5
5
)

0
.4

0
7
(-

0
.0

2
8
,

0
.8

3
0
)

6
0
.6

5
7
(0

.3
2
2
,

1
.0

2
9
)

0
.2

0
3
(-

0
.4

1
0
,

0
.8

1
5
)

1
.0

9
9
(0

.7
8
0
,

1
.4

5
3
)

-0
.4

5
4
(-

0
.9

1
2
,

-0
.0

1
2
)

-0
.4

4
2
(-

0
.6

7
0
,

-0
.2

1
5
)

-0
.8

9
6
(-

1
.3

4
8
,

-0
.4

6
3
)

7
-0

.8
5
2
(-

1
.1

5
6
,

-0
.5

3
8
)

-0
.0

6
7
(-

0
.5

8
7
,

0
.4

4
6
)

-0
.1

6
2
(-

0
.4

4
8
,

0
.1

3
0
)

0
.7

8
5
(0

.3
7
3
,

1
.1

7
0
)

-0
.6

9
0
(-

0
.9

4
0
,

-0
.4

3
6
)

0
.0

9
5
(-

0
.3

0
5
,

0
.4

6
6
)

8
0
.1

2
3
(-

0
.1

8
1
,

0
.4

4
1
)

-0
.1

7
2
(-

0
.7

6
0
,

0
.3

5
2
)

0
.1

4
2
(-

0
.1

4
4
,

0
.4

3
6
)

-0
.2

9
4
(-

0
.7

6
0
,

0
.0

9
9
)

-0
.0

2
0
(-

0
.2

6
7
,

0
.2

2
3
)

-0
.3

1
4
(-

0
.7

4
9
,

0
.0

7
6
)

9
0
.5

2
5
(0

.2
1
4
,

0
.8

4
8
)

-0
.0

9
9
(-

0
.6

8
2
,

0
.4

3
5
)

0
.9

6
1
(0

.6
5
6
,

1
.2

7
8
)

-0
.6

2
4
(-

1
.0

7
5
,

-0
.2

2
5
)

-0
.4

3
7
(-

0
.6

9
1
,

-0
.1

9
0
)

-1
.0

6
0
(-

1
.5

2
3
,

-0
.6

6
1
)

1
0

-0
.1

4
5
(-

0
.4

1
2
,

0
.1

3
6
)

0
.2

7
6
(-

0
.1

5
6
,

0
.7

2
1
)

0
.0

0
9
(-

0
.2

6
0
,

0
.2

8
6
)

0
.4

2
1
(0

.0
8
9
,

0
.7

5
0
)

-0
.1

5
4
(-

0
.3

8
4
,

0
.0

6
8
)

0
.2

6
7
(-

0
.0

5
5
,

0
.6

0
0
)

1
1

-0
.5

1
8
(-

0
.7

7
0
,

-0
.2

6
2
)

-0
.6

3
3
(-

1
.1

1
8
,

-0
.1

9
8
)

-0
.9

6
7
(-

1
.2

2
0
,

-0
.7

1
3
)

-0
.1

1
5
(-

0
.5

3
8
,

0
.2

4
0
)

0
.4

4
9
(0

.2
2
8
,

0
.6

6
8
)

0
.3

3
3
(-

0
.0

7
5
,

0
.6

7
8
)

1
2

0
.2

8
7
(0

.0
0
6
,

0
.5

8
0
)

0
.0

3
6
(-

0
.4

1
2
,

0
.4

7
2
)

0
.0

4
9
(-

0
.2

2
1
,

0
.3

2
3
)

-0
.2

5
0
(-

0
.6

1
9
,

0
.0

9
3
)

0
.2

3
8
(-

0
.0

1
6
,

0
.5

0
6
)

-0
.0

1
2
(-

0
.3

5
6
,

0
.3

1
4
)

1
3

0
.1

2
7
(-

0
.1

5
0
,

0
.4

0
3
)

-0
.2

2
2
(-

0
.6

7
1
,

0
.1

9
2
)

-0
.3

3
9
(-

0
.6

0
5
,

-0
.0

8
2
)

-0
.3

4
8
(-

0
.7

1
0
,

-0
.0

1
2
)

0
.4

6
5
(0

.2
2
5
,

0
.7

0
2
)

0
.1

1
7
(-

0
.2

3
5
,

0
.4

4
3
)

1
4

-0
.2

2
5
(-

0
.4

8
7
,

0
.0

4
1
)

0
.0

8
4
(-

0
.2

7
0
,

0
.4

5
0
)

-0
.4

5
6
(-

0
.7

0
2
,

-0
.2

0
5
)

0
.3

0
9
(0

.0
2
8
,

0
.6

0
2
)

0
.2

3
1
(-

0
.0

2
0
,

0
.4

7
9
)

0
.5

4
0
(0

.2
3
9
,

0
.8

4
1
)

1
5

0
.9

4
4
(0

.6
2
6
,

1
.3

0
3
)

0
.2

4
7
(-

0
.1

2
5
,

0
.6

4
4
)

-0
.4

6
6
(-

0
.7

4
4
,

-0
.1

7
9
)

-0
.6

9
7
(-

1
.0

2
7
,

-0
.3

5
3
)

1
.4

1
0
(1

.1
0
5
,

1
.7

3
1
)

0
.7

1
3
(0

.4
1
4
,

1
.0

1
1
)

1
6

-1
.3

1
9
(-

1
.7

3
9
,

-0
.9

1
1
)

-0
.6

4
0
(-

1
.1

1
8
,

-0
.1

7
9
)

-2
.5

0
7
(-

2
.8

6
6
,

-2
.1

7
0
)

0
.6

8
0
(0

.2
9
2
,

1
.0

1
3
)

1
.1

8
8
(0

.8
8
1
,

1
.4

9
7
)

1
.8

6
8
(1

.5
1
8
,

2
.1

7
9
)

1
7

-0
.6

0
6
(-

0
.9

2
1
,

-0
.2

9
3
)

0
.6

4
0
(0

.2
5
0
,

1
.0

0
0
)

-1
.3

0
9
(-

1
.5

9
5
,

-1
.0

2
6
)

1
.2

4
6
(0

.9
4
0
,

1
.5

5
6
)

0
.7

0
3
(0

.4
2
4
,

0
.9

8
2
)

1
.9

4
9
(1

.6
5
3
,

2
.2

5
2
)

1
8

-1
.5

2
6
(-

1
.9

1
0
,

-1
.1

5
0
)

0
.1

6
0
(-

0
.3

8
8
,

0
.6

1
6
)

-2
.3

9
7
(-

2
.7

6
3
,

-2
.0

4
2
)

1
.6

8
5
(1

.3
4
3
,

1
.9

8
2
)

0
.8

7
2
(0

.5
9
3
,

1
.1

4
1
)

2
.5

5
7
(2

.2
2
9
,

2
.8

5
9
)

1
9

-0
.5

4
2
(-

0
.9

4
2
,

-0
.1

3
4
)

0
.0

6
6
(-

0
.3

6
5
,

0
.4

6
6
)

-2
.4

0
5
(-

2
.7

2
2
,

-2
.0

8
7
)

0
.6

0
8
(0

.2
3
1
,

0
.9

6
7
)

1
.8

6
3
(1

.5
2
1
,

2
.2

2
0
)

2
.4

7
1
(2

.1
6
0
,

2
.7

7
5
)

2
0

-0
.6

3
5
(-

1
.0

1
3
,

-0
.2

5
4
)

-0
.2

5
1
(-

0
.7

6
2
,

0
.1

7
3
)

-1
.6

7
8
(-

2
.0

3
1
,

-1
.3

4
3
)

0
.3

8
4
(-

0
.0

2
3
,

0
.7

1
8
)

1
.0

4
4
(0

.7
1
9
,

1
.3

7
0
)

1
.4

2
8
(1

.0
6
4
,

1
.7

5
2
)

2
1

0
.2

6
7
(-

0
.0

6
6
,

0
.6

2
0
)

0
.3

5
7
(-

0
.1

5
9
,

0
.8

8
9
)

1
.2

2
0
(0

.9
0
8
,

1
.5

5
7
)

0
.0

8
9
(-

0
.3

0
0
,

0
.4

8
6
)

-0
.9

5
3
(-

1
.2

0
0
,

-0
.7

0
3
)

-0
.8

6
4
(-

1
.2

5
9
,

-0
.4

6
3
)

2
2

0
.5

5
8
(0

.1
0
7
,

1
.0

8
1
)

0
.5

7
6
(-

0
.1

6
2
,

1
.3

3
6
)

1
.6

6
2
(1

.2
4
2
,

2
.1

6
1
)

0
.0

1
8
(-

0
.5

0
2
,

0
.5

1
9
)

-1
.1

0
4
(-

1
.3

6
5
,

-0
.8

4
4
)

-1
.0

8
6
(-

1
.5

9
6
,

-0
.6

1
6
)

2
3

0
.5

8
3
(0

.3
0
0
,

0
.8

8
0
)

0
.1

6
5
(-

0
.2

8
7
,

0
.5

9
2
)

1
.0

0
9
(0

.7
1
6
,

1
.3

1
7
)

-0
.4

1
8
(-

0
.7

8
0
,

-0
.0

7
5
)

-0
.4

2
6
(-

0
.7

0
0
,

-0
.1

4
8
)

-0
.8

4
4
(-

1
.2

1
7
,

-0
.4

9
1
)

2
4

0
.3

8
6
(0

.1
0
4
,

0
.6

8
0
)

-0
.5

6
9
(-

1
.1

9
4
,

0
.0

3
3
)

0
.9

4
0
(0

.6
4
8
,

1
.2

5
8
)

-0
.9

5
5
(-

1
.4

9
3
,

-0
.4

7
3
)

-0
.5

5
4
(-

0
.8

1
0
,

-0
.3

0
5
)

-1
.5

0
9
(-

2
.0

5
3
,

-1
.0

2
8
)

2
5

0
.3

0
7
(-

0
.0

0
7
,

0
.6

1
5
)

-0
.1

5
9
(-

0
.5

8
9
,

0
.2

4
7
)

0
.3

3
2
(0

.0
5
1
,

0
.6

2
2
)

-0
.4

6
6
(-

0
.8

5
4
,

-0
.1

1
1
)

-0
.0

2
5
(-

0
.3

4
7
,

0
.3

1
8
)

-0
.4

9
1
(-

0
.8

5
8
,

-0
.1

4
6
)

2
6

-0
.7

5
0
(-

1
.0

4
5
,

-0
.4

4
8
)

0
.6

4
8
(0

.2
8
6
,

1
.0

1
0
)

-1
.6

4
3
(-

1
.9

2
6
,

-1
.3

5
5
)

1
.3

9
7
(1

.1
0
3
,

1
.7

0
0
)

0
.8

9
3
(0

.6
2
1
,

1
.1

7
4
)

2
.2

9
1
(1

.9
9
8
,

2
.5

9
7
)

2
7

-0
.3

3
2
(-

0
.6

5
7
,

-0
.0

1
2
)

-0
.5

2
7
(-

0
.9

3
3
,

-0
.1

4
5
)

-1
.3

5
3
(-

1
.6

5
4
,

-1
.0

7
1
)

-0
.1

9
5
(-

0
.5

7
0
,

0
.1

2
8
)

1
.0

2
1
(0

.7
2
8
,

1
.3

1
7
)

0
.8

2
7
(0

.4
8
4
,

1
.1

3
3
)

2
8

-1
.1

7
8
(-

1
.5

6
5
,

-0
.8

0
5
)

-0
.5

8
4
(-

1
.0

0
3
,

-0
.1

8
9
)

-2
.3

8
4
(-

2
.7

1
5
,

-2
.0

7
7
)

0
.5

9
4
(0

.2
5
4
,

0
.8

9
8
)

1
.2

0
6
(0

.9
4
1
,

1
.4

7
3
)

1
.8

0
0
(1

.5
0
8
,

2
.0

7
2
)

2
9

-0
.5

7
7
(-

0
.8

5
1
,

-0
.3

0
2
)

-1
.0

3
1
(-

1
.5

5
8
,

-0
.5

7
3
)

-1
.1

4
2
(-

1
.4

1
5
,

-0
.8

7
8
)

-0
.4

5
5
(-

0
.9

6
7
,

-0
.0

6
8
)

0
.5

6
5
(0

.3
2
7
,

0
.7

9
4
)

0
.1

1
0
(-

0
.3

7
8
,

0
.4

8
7
)

3
0

0
.1

6
3
(-

0
.1

2
2
,

0
.4

6
3
)

0
.2

0
8
(-

0
.2

0
1
,

0
.6

0
9
)

1
.3

8
1
(1

.0
1
7
,

1
.7

6
0
)

0
.0

4
5
(-

0
.2

6
5
,

0
.3

6
0
)

-1
.2

1
8
(-

1
.5

9
1
,

-0
.8

7
8
)

-1
.1

7
3
(-

1
.5

9
6
,

-0
.7

8
2
)

3
1

0
.1

3
0
(-

0
.2

0
3
,

0
.4

8
2
)

0
.1

5
9
(-

0
.3

6
1
,

0
.6

7
7
)

1
.5

4
8
(1

.1
7
3
,

1
.9

5
4
)

0
.0

2
8
(-

0
.3

6
8
,

0
.4

1
6
)

-1
.4

1
8
(-

1
.7

2
6
,

-1
.1

3
1
)

-1
.3

9
0
(-

1
.8

4
2
,

-0
.9

6
5
)

3
2

1
.0

2
8
(0

.7
0
2
,

1
.3

7
7
)

0
.4

1
4
(-

0
.0

9
6
,

0
.9

4
9
)

2
.4

4
8
(2

.0
4
7
,

2
.8

8
8
)

-0
.6

1
4
(-

1
.0

0
0
,

-0
.2

0
8
)

-1
.4

1
9
(-

1
.8

0
9
,

-1
.0

5
8
)

-2
.0

3
4
(-

2
.5

1
4
,

-1
.5

6
4
)

3
3

0
.2

4
4
(-

0
.0

2
9
,

0
.5

3
6
)

0
.0

9
2
(-

0
.3

5
6
,

0
.5

3
2
)

1
.7

4
9
(1

.3
4
3
,

2
.2

1
6
)

-0
.1

5
2
(-

0
.5

0
3
,

0
.1

8
1
)

-1
.5

0
5
(-

1
.9

3
9
,

-1
.1

1
4
)

-1
.6

5
6
(-

2
.1

6
9
,

-1
.1

9
7
)

3
4

-0
.7

7
1
(-

1
.0

6
8
,

-0
.4

7
8
)

0
.6

5
0
(0

.2
9
8
,

0
.9

9
0
)

-1
.2

9
2
(-

1
.5

8
0
,

-0
.9

9
2
)

1
.4

2
1
(1

.1
4
2
,

1
.7

1
7
)

0
.5

2
1
(0

.2
4
5
,

0
.7

8
5
)

1
.9

4
2
(1

.6
5
3
,

2
.2

5
2
)

3
5

0
.8

2
0
(-

0
.1

3
1
,

1
.7

9
1
)

-1
.7

1
6
(-

2
.4

2
6
,

-1
.1

4
4
)

0
.5

1
8
(-

0
.4

4
9
,

1
.4

6
9
)

-2
.5

3
7
(-

3
.3

6
4
,

-1
.8

5
6
)

0
.3

0
2
(-

0
.7

6
3
,

1
.3

6
8
)

-2
.2

3
5
(-

3
.0

9
1
,

-1
.4

7
7
)

3
6

-0
.2

9
6
(-

0
.6

1
7
,

0
.0

2
7
)

0
.0

3
1
(-

0
.3

4
7
,

0
.3

9
1
)

1
.1

5
9
(0

.5
3
4
,

1
.9

1
4
)

0
.3

2
8
(0

.0
1
4
,

0
.6

3
3
)

-1
.4

5
5
(-

2
.2

1
9
,

-0
.8

1
3
)

-1
.1

2
7
(-

1
.8

3
6
,

-0
.5

1
7
)

3
7

-0
.4

9
0
(-

0
.8

2
1
,

0
.1

5
0
)

0
.5

8
3
(0

.2
1
1
,

0
.9

4
8
)

-0
.3

0
5
(-

0
.6

9
1
,

0
.0

9
3
)

1
.0

7
3
(0

.7
8
0
,

1
.3

6
7
)

-0
.1

8
5
(-

0
.5

8
4
,

0
.1

8
9
)

0
.8

8
8
(0

.5
0
3
,

1
.2

5
3
)

3
8

1
.4

8
6
(0

.7
6
1
,

2
.2

6
5
)

-0
.8

6
1
(-

1
.3

6
0
,

-0
.4

2
0
)

1
.4

1
9
(0

.5
8
3
,

2
.3

6
2
)

-2
.3

4
6
(-

3
.0

5
9
,

-1
.7

3
4
)

0
.0

6
7
(-

0
.9

9
3
,

1
.1

1
2
)

-2
.2

8
0
(-

3
.1

6
3
,

-1
.5

0
7
)

N
u

m
b

er
o
f

D
IF

It
em

s
2
3

1
2

2
9

2
5

2
9

2
7



113

T
ab

le
4.

20
:

M
ag

n
it

u
d
e

of
S
tu

d
en

t-
L

ev
el

D
IF

V
al

u
es

fo
r

M
at

h
em

at
ic

s
S
ec

ti
on

:
W

it
h

C
ov

ar
ia

te
s

fo
r
K

=
2

It
em

G
=

1
V
s.
G

=
2

G
=

1
V
s.
G

=
3

G
=

1
V
s.
G

=
4

G
=

2
V
s.
G

=
3

G
=

2
V
s.
G

=
4

G
=

3
V
s.
G

=
4

1
-0

.6
1
9
(-

1
.2

2
3
,

0
.0

9
5
)

-0
.4

4
4
(-

1
.2

1
9
,

0
.3

9
2
3
)

-0
.5

9
5
(-

1
.2

0
8
,

0
.1

2
5
)

0
.1

7
5
(-

0
.2

3
3
,

0
.5

5
4
)

-0
.0

2
3
(-

0
.2

8
3
,

0
.2

3
2
)

0
.1

5
1
(-

0
.2

1
6
,

0
.4

9
3
)

2
0
.3

0
7
(-

0
.3

4
4
,

1
.0

6
6
)

0
.0

8
7
8
2
(-

0
.6

7
0
9
,

0
.9

5
0
7
)

-0
.4

2
5
(-

1
.0

8
2
,

0
.3

5
8
)

-0
.2

1
9
(-

0
.5

5
9
,

0
.1

0
2
)

0
.7

3
2
(0

.4
7
4
,

0
.9

8
4
)

0
.5

1
3
(0

.2
0
2
,

0
.8

0
9
)

3
1
.2

0
1
(0

.4
2
3
,

2
.1

3
1
)

-0
.3

0
0
2
(-

1
.3

2
2
,

0
.8

0
6
5
)

1
.8

8
4
(1

.1
2
3
,

2
.8

2
8
)

-1
.5

0
2
(-

2
.0

3
2
,

-1
.0

5
9
)

-0
.6

8
2
(-

0
.9

4
4
,

-0
.4

2
4
)

-2
.1

8
4
(-

2
.7

1
4
,

-1
.7

3
8
)

4
-0

.3
1
3
(-

0
.7

4
0
,

0
.1

1
1
)

-0
.5

7
7
2
(-

1
.0

5
3
,

-0
.0

6
6
9
1
)

0
.2

0
9
(-

0
.2

3
0
,

0
.6

6
3
)

-0
.2

6
5
(-

0
.5

4
6
,

0
.0

1
0
)

-0
.5

2
1
(-

0
.7

9
7
,

-0
.2

6
1
)

-0
.7

8
6
(-

1
.0

5
5
,

-0
.5

2
1
)

5
-0

.4
8
3
(-

1
.0

0
3
,

0
.0

8
4
)

-0
.5

1
4
9
(-

1
.1

5
5
,

0
.1

5
)

-0
.2

7
5
(-

0
.8

0
7
,

0
.3

0
4
)

-0
.0

3
2
(-

0
.3

6
8
,

0
.2

8
6
)

-0
.2

0
8
(-

0
.4

5
0
,

0
.0

2
2
)

-0
.2

4
0
(-

0
.5

3
9
,

0
.0

4
7
)

6
0
.2

4
6
(-

0
.3

0
1
,

0
.8

9
4
)

0
.0

6
3
4
6
(-

0
.5

7
8
4
,

0
.7

7
9
5
)

1
.1

6
4
(0

.5
9
3
,

1
.8

3
4
)

-0
.1

8
2
(-

0
.4

6
5
,

0
.0

8
5
)

-0
.9

1
8
(-

1
.1

8
4
,

-0
.6

7
0
)

-1
.1

0
0
(-

1
.4

0
0
,

-0
.8

1
5
)

7
-1

.0
2
0
(-

1
.4

6
0
,

-0
.5

5
4
)

-0
.3

0
7
(-

0
.8

0
7
4
,

0
.2

2
2
7
)

-0
.1

6
5
(-

0
.6

1
4
,

0
.3

0
9
)

0
.7

1
3
(0

.4
4
7
,

0
.9

7
7
)

-0
.8

5
5
(-

1
.1

0
0
,

-0
.6

0
9
)

-0
.1

4
2
(-

0
.4

0
5
,

0
.1

1
0
)

8
-0

.1
2
6
(-

0
.5

7
1
,

0
.3

2
7
)

-0
.5

8
3
1
(-

1
.1

1
6
,

-0
.0

3
2
2
9
)

0
.0

5
2
(-

0
.4

0
4
,

0
.5

2
8
)

-0
.4

5
8
(-

0
.7

6
3
,

-0
.1

6
1
)

-0
.1

7
8
(-

0
.4

2
3
,

0
.0

7
6
)

-0
.6

3
5
(-

0
.9

2
5
,

-0
.3

6
4
)

9
0
.4

0
5
(-

0
.0

4
6
,

0
.9

3
1
)

-0
.2

5
5
1
(-

0
.8

0
9
8
,

0
.3

5
8
4
)

0
.6

1
9
(0

.1
3
4
,

1
.1

5
7
)

-0
.6

6
0
(-

0
.9

6
2
,

-0
.3

8
3
)

-0
.2

1
4
(-

0
.4

7
6
,

0
.0

5
0
)

-0
.8

7
4
(-

1
.1

5
7
,

-0
.6

0
5
)

1
0

-0
.0

6
5
(-

0
.4

5
9
,

0
.3

5
4
)

-0
.1

3
7
8
(-

0
.5

7
9
6
,

0
.3

3
9
5
)

-0
.0

4
9
(-

0
.4

6
2
,

0
.3

8
2
)

-0
.0

7
3
(-

0
.3

1
7
,

0
.1

6
4
)

-0
.0

1
6
(-

0
.2

7
2
,

0
.2

3
6
)

-0
.0

8
9
(-

0
.3

3
0
,

0
.1

5
0
)

1
1

0
.5

3
3
(0

.0
5
4
,

1
.0

7
5
)

0
.7

1
3
4
(0

.1
9
2
3
,

1
.3

0
9
)

0
.1

1
5
(-

0
.3

7
5
,

0
.6

8
7
)

0
.1

8
0
(-

0
.0

5
2
,

0
.4

0
5
)

0
.4

1
8
(0

.1
7
7
,

0
.6

5
2
)

0
.5

9
8
(0

.3
6
2
,

0
.8

2
7
)

1
2

-0
.1

0
2
(-

0
.4

5
5
,

0
.2

7
7
)

-0
.2

7
6
7
(-

0
.6

7
5
8
,

0
.1

4
0
3
)

-0
.2

6
0
(-

0
.6

2
9
,

0
.1

2
3
)

-0
.1

7
5
(-

0
.4

2
8
,

0
.0

7
3
)

0
.1

5
8
(-

0
.1

0
9
,

0
.4

3
6
)

-0
.0

1
7
(-

0
.2

6
2
,

0
.2

2
4
)

1
3

0
.7

7
5
(0

.3
6
9
,

1
.2

3
1
)

0
.5

8
7
9
(0

.1
3
3
3
,

1
.0

8
)

0
.2

3
7
(-

0
.1

8
7
,

0
.7

0
9
)

-0
.1

8
7
(-

0
.4

2
9
,

0
.0

5
8
)

0
.5

3
9
(0

.2
7
6
,

0
.7

9
1
)

0
.3

5
1
(0

.1
1
2
,

0
.6

0
1
)

1
4

-0
.4

1
7
(-

0
.7

3
8
,

-0
.0

8
2
)

-0
.1

2
1
8
(-

0
.4

9
3
4
,

0
.2

7
5
5
)

-0
.6

0
6
(-

0
.9

6
6
,

-0
.2

3
7
)

0
.2

9
6
(0

.0
5
9
,

0
.5

3
0
)

0
.1

8
8
(-

0
.0

9
1
,

0
.4

5
1
)

0
.4

8
4
(0

.2
3
6
,

0
.7

3
1
)

1
5

0
.8

0
8
(0

.4
4
3
,

1
.1

9
7
)

0
.3

1
7
4
(-

0
.0

8
8
4
4
,

0
.7

5
4
4
)

-0
.4

5
7
(-

0
.8

3
5
,

-0
.0

3
2
)

-0
.4

9
1
(-

0
.7

7
5
,

-0
.2

0
1
)

1
.2

6
5
(0

.9
7
4
,

1
.5

4
9
)

0
.7

7
5
(0

.5
3
6
,

1
.0

1
4
)

1
6

-0
.2

2
7
(-

0
.5

5
9
,

0
.1

2
7
)

0
.5

7
2
(0

.2
2
7
5
,

0
.9

3
9
3
)

-1
.9

6
0
(-

2
.2

6
4
,

-1
.6

3
2
)

0
.7

9
9
(0

.4
3
5
,

1
.1

5
4
)

1
.7

3
3
(1

.4
1
1
,

2
.0

5
6
)

2
.5

3
2
(2

.2
4
4
,

2
.8

3
7
)

1
7

-0
.9

3
6
(-

1
.2

4
8
,

-0
.6

2
3
)

-0
.2

0
1
4
(-

0
.5

4
1
4
,

0
.1

6
4
4
)

-2
.1

1
5
(-

2
.4

2
5
,

-1
.7

9
9
)

0
.7

3
4
(0

.4
4
2
,

1
.0

2
9
)

1
.1

7
9
(0

.8
8
7
,

1
.4

6
5
)

1
.9

1
3
(1

.6
5
1
,

2
.1

7
7
)

1
8

-1
.4

4
7
(-

1
.7

5
4
,

-1
.1

3
9
)

-0
.1

4
9
9
(-

0
.5

3
7
4
,

0
.2

4
8
5
)

-2
.5

6
1
(-

2
.8

6
7
,

-2
.2

3
5
)

1
.2

9
7
(0

.9
9
3
,

1
.6

0
8
)

1
.1

1
4
(0

.8
3
8
,

1
.3

8
5
)

2
.4

1
1
(2

.1
1
6
,

2
.7

0
0
)

1
9

-0
.7

8
6
(-

1
.1

1
6
,

-0
.4

4
7
)

0
.3

0
1
1
(-

0
.0

9
8
7
2
,

0
.7

1
5
3
)

-2
.3

3
3
(-

2
.6

6
4
,

-1
.9

9
8
)

1
.0

8
7
(0

.7
1
8
,

1
.4

5
6
)

1
.5

4
8
(1

.2
2
7
,

1
.8

7
4
)

2
.6

3
5
(2

.3
1
0
,

2
.9

7
5
)

2
0

-0
.2

3
8
(-

0
.5

9
0
,

0
.1

2
4
)

0
.1

8
1
(-

0
.1

7
1
1
,

0
.5

4
5
1
)

-1
.6

6
7
(-

2
.0

0
7
,

-1
.3

2
4
)

0
.4

1
9
(0

.0
7
2
,

0
.7

6
2
)

1
.4

2
9
(1

.0
8
4
,

1
.7

8
4
)

1
.8

4
8
(1

.5
5
4
,

2
.1

3
8
)

2
1

-0
.3

1
2
(-

0
.7

8
1
,

0
.2

0
4
)

-0
.3

3
1
4
(-

0
.8

8
5
7
,

0
.2

7
8
6
)

1
.1

9
4
(0

.6
7
2
,

1
.7

6
5
)

-0
.0

1
9
(-

0
.3

1
4
,

0
.2

6
4
)

-1
.5

0
6
(-

1
.8

0
5
,

-1
.2

3
1
)

-1
.5

2
5
(-

1
.8

6
0
,

-1
.2

1
4
)

2
2

-0
.1

8
7
(-

0
.8

0
8
,

0
.5

2
4
)

-0
.2

8
3
2
(-

1
.0

3
4
,

0
.5

5
1
6
)

1
.1

1
0
(0

.4
5
8
,

1
.8

3
4
)

-0
.0

9
6
(-

0
.4

5
6
,

0
.2

5
1
)

-1
.2

9
7
(-

1
.5

6
2
,

-1
.0

3
3
)

-1
.3

9
3
(-

1
.7

3
8
,

-1
.0

7
8
)

2
3

0
.4

2
5
(0

.0
3
4
,

0
.8

3
6
)

-0
.2

8
0
7
(-

0
.7

4
5
2
,

0
.2

1
0
8
)

0
.4

7
9
(0

.0
3
6
,

0
.9

1
8
)

-0
.7

0
5
(-

0
.9

6
3
,

-0
.4

5
0
)

-0
.0

5
4
(-

0
.3

3
1
,

0
.2

2
7
)

-0
.7

5
9
(-

1
.0

3
3
,

-0
.4

8
8
)

2
4

0
.4

5
6
(-

0
.0

4
6
,

0
.9

8
8
)

-0
.2

1
4
9
(-

0
.8

3
0
8
,

0
.4

1
6
5
)

1
.0

1
1
(0

.4
9
6
,

1
.5

6
5
)

-0
.6

7
1
(-

0
.9

6
0
,

-0
.3

9
0
)

-0
.5

5
5
(-

0
.8

4
0
,

-0
.2

9
1
)

-1
.2

2
6
(-

1
.5

4
4
,

-0
.9

3
1
)

2
5

0
.2

1
8
(-

0
.1

7
2
,

0
.6

5
0
)

0
.1

5
9
9
(-

0
.2

6
3
6
,

0
.6

2
0
3
)

0
.6

8
8
(0

.2
5
5
,

1
.1

4
5
)

-0
.0

5
8
(-

0
.3

1
4
,

0
.1

8
4
)

-0
.4

7
0
(-

0
.7

9
1
,

-0
.1

4
9
)

-0
.5

2
8
(-

0
.8

1
5
,

-0
.2

5
4
)

2
6

-1
.3

9
0
(-

1
.6

8
7
,

-1
.0

9
2
)

-0
.6

9
5
2
(-

1
.0

2
4
,

-0
.3

4
8
3
)

-2
.3

7
5
(-

2
.7

0
1
,

-2
.0

5
9
)

0
.6

9
4
(0

.4
1
7
,

0
.9

6
7
)

0
.9

8
5
(0

.7
0
1
,

1
.2

8
1
)

1
.6

8
0
(1

.4
0
7
,

1
.9

5
4
)

2
7

0
.0

5
7
(-

0
.2

7
2
,

0
.4

1
5
)

0
.6

2
4
(0

.2
7
5
8
,

1
)

-0
.6

4
1
(-

0
.9

8
9
,

-0
.2

7
0
)

0
.5

6
7
(0

.2
8
5
,

0
.8

4
8
)

0
.6

9
8
(0

.3
9
7
,

0
.9

9
8
)

1
.2

6
5
(0

.9
9
2
,

1
.5

4
2
)

2
8

-0
.7

0
3
(-

1
.0

2
1
,

-0
.3

6
5
)

0
.3

2
8
5
(-

0
.0

2
2
7
7
,

0
.7

0
2
6
)

-1
.9

4
9
(-

2
.2

5
8
,

-1
.6

2
6
)

1
.0

3
1
(0

.7
4
7
,

1
.3

0
8
)

1
.2

4
6
(0

.9
7
6
,

1
.5

2
6
)

2
.2

7
7
(2

.0
2
9
,

2
.5

3
4
)

2
9

0
.7

1
5
(0

.2
0
8
,

1
.3

0
0
)

1
.0

4
6
(0

.5
0
5
3
,

1
.6

6
1
)

0
.1

6
2
(-

0
.3

4
0
,

0
.7

4
3
)

0
.3

3
1
(0

.0
8
6
,

0
.5

8
4
)

0
.5

5
4
(0

.2
9
6
,

0
.7

9
9
)

0
.8

8
5
(0

.6
4
7
,

1
.1

2
3
)

3
0

-0
.2

8
5
(-

0
.6

4
0
,

0
.0

5
1
)

-0
.5

7
9
3
(-

0
.9

6
4
8
,

-0
.1

9
6
)

1
.2

8
4
(0

.7
4
7
,

1
.8

7
3
)

-0
.2

9
5
(-

0
.5

5
1
,

-0
.0

5
0
)

-1
.5

6
9
(-

2
.1

2
8
,

-1
.0

7
9
)

-1
.8

6
4
(-

2
.3

8
2
,

-1
.4

0
7
)

3
1

-0
.3

0
3
(-

0
.7

4
7
,

0
.1

6
7
)

-0
.3

9
3
7
(-

0
.9

0
9
,

0
.1

4
3
8
)

1
.0

6
1
(0

.5
5
3
,

1
.6

0
2
)

-0
.0

9
0
(-

0
.3

7
8
,

0
.1

8
5
)

-1
.3

6
4
(-

1
.6

9
3
,

-1
.0

7
1
)

-1
.4

5
5
(-

1
.8

4
3
,

-1
.1

1
2
)

3
2

0
.8

7
9
(0

.3
9
3
,

1
.4

4
4
)

0
.2

5
6
3
(-

0
.2

9
7
3
,

0
.8

7
6
)

2
.5

3
5
(1

.9
4
8
,

3
.2

3
5
)

-0
.6

2
2
(-

0
.8

7
7
,

-0
.3

7
1
)

-1
.6

5
6
(-

2
.1

2
8
,

-1
.2

4
1
)

-2
.2

7
8
(-

2
.7

4
3
,

-1
.8

7
4
)

3
3

0
.1

2
6
(-

0
.2

7
0
,

0
.5

8
7
)

-0
.0

6
4
6
3
(-

0
.5

3
4
3
,

0
.4

7
8
1
)

1
.5

2
0
(0

.9
7
2
,

2
.1

8
1
)

-0
.1

9
0
(-

0
.4

3
7
,

0
.0

5
7
)

-1
.3

9
5
(-

1
.8

7
5
,

-0
.9

8
7
)

-1
.5

8
5
(-

2
.0

5
0
,

-1
.1

8
5
)

3
4

-1
.3

2
8
(-

1
.6

2
0
,

-1
.0

3
4
)

-0
.4

8
9
6
(-

0
.8

1
9
,

-0
.1

3
2
2
)

-2
.1

3
8
(-

2
.4

5
1
,

-1
.8

2
4
)

0
.8

3
8
(0

.5
6
8
,

1
.1

0
7
)

0
.8

1
0
(0

.5
3
4
,

1
.0

8
5
)

1
.6

4
8
(1

.3
8
1
,

1
.9

1
9
)

3
5

2
.4

6
6
(1

.8
4
0
,

3
.1

8
5
)

1
.6

1
5
(1

.1
6
2
,

2
.1

0
5
)

2
.4

5
7
(1

.6
4
3
,

3
.3

9
7
)

-0
.8

5
1
(-

1
.5

6
3
,

-0
.1

6
2
)

0
.0

0
8
(-

1
.0

1
7
,

1
.0

0
1
)

-0
.8

4
2
(-

1
.7

6
1
,

-0
.0

0
8
)

3
6

-0
.5

2
8
(-

0
.8

3
0
,

-0
.2

2
0
)

-0
.1

3
3
(-

0
.4

5
3
8
,

0
.1

9
5
5
)

1
.1

2
5
(0

.4
8
2
,

1
.8

4
3
)

0
.3

9
5
(0

.1
2
4
,

0
.6

6
4
)

-1
.6

5
3
(-

2
.3

9
4
,

-0
.9

9
2
)

-1
.2

5
8
(-

1
.9

4
9
,

-0
.6

3
8
)

3
7

-0
.5

8
9
(-

0
.9

0
6
,

-0
.2

6
6
)

-0
.4

4
3
8
(-

0
.7

6
8
3
,

-0
.1

1
2
)

-0
.8

5
5
(-

1
.2

8
8
,

-0
.4

2
6
)

0
.1

4
6
(-

0
.1

7
7
,

0
.4

6
3
)

0
.2

6
5
(-

0
.1

9
0
,

0
.7

2
5
)

0
.4

1
1
(0

.0
0
5
,

0
.8

0
7
)

3
8

2
.7

8
5
(2

.0
8
3
,

3
.6

3
8
)

0
.9

2
4
7
(0

.5
3
9
5
,

1
.3

0
5
)

2
.5

2
1
(1

.6
4
4
,

3
.4

9
1
)

-1
.8

6
0
(-

2
.7

2
5
,

-1
.1

4
8
)

0
.2

6
4
(-

0
.8

8
4
,

1
.4

2
0
)

-1
.5

9
6
(-

2
.5

6
0
,

-0
.7

3
4
)

N
u

m
b

er
o
f

D
IF

It
em

s
1
9

1
3

2
7

2
3

2
7

3
3



114

Student- and School-Level Characteristics of Latent Classes. Tables 4.22 and

4.23 present the association analysis result between the estimated student-level group mem-

bership and manifest group membership at both student-level and school-level. As shown

in Table 4.22, there were significant associations between the estimated group membership

and ethnicity and the estimated group membership and gender. Class 1 is predominantly

White, Class 2 is predominantly Mexican and Hispanic, Class 3 is predominantly Asian, and

Class 4 is predominantly African American. At the school-level shown in Table 4.23, there

were significant associations between the estimated school-level group membership and Title

I schoolwide program, household income, and poverty-level code, respectively. 88% of those

in a Title I schoolwide program were categorized into K = 1. As the school-level household

income increases, schools were more likely to belong to K = 2. In addition, all schools having

more than 30% poverty level were included into K = 1.

Tables 4.24 and 4.25 show student- and school-level covariate effects based on the multi-

nomial logistic regression covariate model. Values in Tables 4.24 and 4.25 are estimated

regression coefficients. As shown in Table 4.24, males were more likely than female to belong

to Class 1. American Indians were more likely than Whites to belong to Class 4, Asian

Americans were less likely than Whites to belong to Class 2, African Americans and Mex-

ican Americans were more likely than Whites to belong to Classes 2 and 4, and Puerto

Ricans and Hispanics were more likely than Whites to belong to Class 2. In Table 4.25, only

household income and poverty levels (the higher the value is, the higher the poverty level is)

were significant among school-level covariates. Schools which have higher household incomes

and lower poverty levels were more likely to belong to school Class 2.

Response Patterns in Latent Classes. Mixture portions of MMixIRTM are intended

to differentiate among latent groups of examinees with similar patterns of responses. The

methods of identifying DIF typically focus on the correct option. Omitted responses can also
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provide useful information concerning differential functioning and are sometimes considered

useful indicators of speededness (Mroch & Bolt, 2006).

The last five items on the test were examined as a group to determine whether particular

response patterns might emerge conditional on group membership using models with and

without covariates. These five items were gridded-in items and were classified as “high”

level difficulty in the item descriptions provided by The College Board. There were some

noticeable patterns of omitted responses: 99900, 99909, 99990, and 99999 (where 0, 1, and

9 indicate incorrect, correct, and omitted responses, respectively). No students assigned to

Class 3, the high ability group, had any omitted responses. Students with 0s and 1s, that is,

students who tried to answer the question, were mostly classified into the average and high

ability groups. Table 4.26 shows this pattern for the model without covariates. There was a

similar pattern to that shown Table 4.26 for the model with covariates.
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Table 4.22: Chi-Squares Between Group Membership and Demographic Variables for Math-
ematics Section: Student-Level

G=1 G=2 G=3 G=4 χ2 df p-value
Gender Missing 0(.0) 3(.300) .2(.200) 5(.500) 35.344 6 .000

Female 1267(.294) 1442(.334) 501(.116) 1103(.256)
Male 1272(.315) 1271(.315) 592(.147) 904(.224)

Ethnicity No Response 52(.185) 86(.306) 18(.064) 125(.445) 1501.166 24 .000
American Indian or Alaska Native 13(.245) 17(.321) 7(.132) 16(.302)
Asian, Asian-American, or Pacific Islander 174(.316) 130(.236) 184(.335) 62(.113)
Black, or African-American 258(.157) 596(.363) 60(.037) 726(.443)
Mexican, or Mexican-American 163(.218) 309(.414) 23(.031) 251(.336)
Puerto Rican 25(.170) 56(.381) 8(.054) 58(.295)
Other Hispanic, Latino, or Latin American 126(.215) 236(.403) 26(.044) 198(.338)
White 1653(.404) 1188(.291) 736(.18) 512(.125)
Other 75(.278) 98(.363) 33(.122) 64(.237)

Numbers in columns are frequencies
Values in parentheses are within-category proportions

Table 4.23: Chi-Squares Between Group Membership and Demographic Variables for Math-
ematics Section: School-Level

K=1 K=2 χ2 df p-value
Metro Code Unclassified 2(.500) 2(.500) 6.571 3 .087

Rural 13(.520) 12(.480)
Suburban 42(.393) 65(.607)
Urban 41(.586) 29(.414)

School Enrollment Size Code D (300 - 499) 1(1.000) 0(0.000) 1.635 3 .651
E (500 - 999) 6(.545) 5(.455)
F (1,000 - 2,499) 71(.480) 77(.520)
G (2,500 - more) 20(.435) 26(.565)

Title I Schoolwide Program No/Unknown 77(.423) 105(.577) 17.363 1 .000
Yes 21(.875) 3(.125)

Household Income A ($ 1 - 19,999) 1(1.000) 0(.000) 62.667 16 .000
B (20,000 - 22,999) 2(1.000) 0(.000)
C (23,000 - 24,999) 3(1.000) 0(.000)
D (25,000 - 27,999) 6(.667) 3(.333)
E (28,000 - 29,999) 2(1.000) 0(.000)
F (30,000 - 32,999) 5(.833) 1(.167)
G (33,000 - 34,999) 0(.000) 2(1.000)
H (35,000 - 37,999) 13(.929) 1(.071)
I (38,000 - 39,999) 3(.600) 2(.400)
J (40,000 - 42,999) 10(.769) 3(.231)
K (43,000 - 44,999) 4(.571) 3(.429)
L (45,000 - 47,999) 10(.556) 8(.444)
M (48,000 - 49,999) 4(1.000) 0(0.000)
N (50,000 - 59,999) 12(.400) 18(.600)
O (60,000 - 69,999) 10(.476) 11(.524)
P (70,000 Plus ) 12(.176) 56(.824)
Z (Unclassified ) 1(.000) 0(0.000)

Poverty Level Code A (0 - 5.9 %) 4(.095) 38(.905) 45.057 3 0.000
B (6 - 15.9 %) 44(.458) 52(.542)
C (16 - 29.9 %) 43(.705) 18(.295)
D (30 % - More) 7(1.000) 0(.000)

Values in parentheses are within-category proportions
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Table 4.26: Response Patterns for Each Latent Class for Last 5 Items Of Mathematics Section

Pattern Class 1 Class 2 Class 3 Class 4
(Average Ability) (Low Ability) (High Ability) (Very Low Ability) Total

00000 287 546 14 677 1524
00001 42 3 46 0 91
00009 95 104 4 61 264
00010 87 85 3 33 208
00011 33 3 10 0 46
00019 18 20 2 3 43
00090 7 10 0 17 34
00091 0 0 1 0 1
00099 41 57 1 17 116
00100 102 82 7 8 199
00101 18 2 31 0 51
00109 34 21 2 1 58
00110 37 16 3 0 56
00111 14 0 13 0 27
00119 9 6 0 0 15
00190 3 3 1 0 7
00191 1 0 3 0 4
00199 6 5 0 1 12
00900 7 19 0 20 46
00909 13 24 1 15 53
00910 0 2 0 4 6
00911 0 1 0 0 1
00919 2 3 0 1 6
00990 1 4 0 6 11
00999 30 42 2 22 96
01000 16 9 40 1 66
01001 3 0 59 0 62
01009 11 1 21 0 33
01010 13 1 15 0 29
01011 3 0 38 0 41
01019 4 0 8 0 12
01090 2 0 1 0 3
01091 0 0 2 0 2
01099 3 2 10 1 16
01100 9 1 31 0 41
01101 3 0 55 0 58
01109 4 0 16 0 20
01110 5 0 17 0 22
01111 0 0 55 0 55
01119 3 0 6 0 9
01190 2 0 0 0 2
01191 0 0 2 0 2
01199 1 0 4 0 5
01900 1 0 2 0 3
01901 0 0 1 0 1
01909 0 0 1 0 1
01919 1 0 0 0 1
01999 3 0 2 0 5
09000 101 118 3 67 289
09001 35 4 15 0 54
09009 157 211 1 55 424
09010 25 13 4 5 47
09011 9 0 6 0 15
09019 48 32 0 10 90
09090 6 14 1 8 29
09091 2 0 1 0 3
09099 50 50 2 18 120
09100 43 25 3 1 72
09101 13 1 9 0 23
09109 80 55 4 1 140
09110 18 1 6 0 25
09111 7 0 2 0 9
09119 24 6 1 0 31
09190 3 1 0 1 5
09191 1 0 0 0 1
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Table 4.26 continued: Response Patterns for Each Latent Class for Last 5 Items Of Mathematics Section

Pattern Class 1 Class 2 Class 3 Class 4
(Average Ability) (Low Ability) (High Ability) (Very Low Ability) Total

09199 17 21 4 1 43
09900 9 19 0 26 54
09901 1 0 0 1 2
09909 29 77 0 43 149
09910 4 4 0 1 9
09911 0 0 1 0 1
09919 4 17 0 3 24
09990 5 12 0 18 35
09991 1 0 0 0 1
09999 60 135 2 87 284
10000 80 154 3 156 393
10001 35 1 10 0 46
10009 18 37 2 14 71
10010 43 19 2 14 78
10011 5 0 16 0 21
10019 12 4 1 1 18
10090 0 0 0 8 8
10091 0 1 0 0 1
10099 13 12 2 5 32
10100 36 23 2 0 61
10101 11 0 22 0 33
10109 18 4 0 0 22
10110 22 2 10 0 34
10111 7 0 22 0 29
10119 4 0 1 0 5
10190 0 1 1 0 2
10199 3 5 0 0 8
10900 1 2 0 9 12
10909 2 10 0 9 21
10910 0 1 0 2 3
10919 1 2 0 1 4
10990 1 2 0 2 5
10999 12 10 1 5 28
11000 16 6 19 1 42
11001 2 0 38 0 40
11009 5 1 7 0 13
11010 10 0 9 0 19
11011 2 0 28 0 30
11019 2 0 6 0 8
11099 1 1 3 0 5
11100 11 0 21 0 32
11101 2 0 62 0 64
11109 1 1 6 0 8
11110 6 0 29 0 35
11111 0 0 112 0 112
11119 3 0 4 0 7
11190 0 0 1 0 1
11199 2 0 3 0 5
11909 1 0 0 0 1
11919 0 0 2 0 2
11999 2 1 2 0 5
19000 38 33 0 16 87
19001 14 1 2 0 17
19009 59 62 0 16 137
19010 8 8 0 2 18
19011 9 1 3 0 13
19019 18 15 0 4 37
19090 2 1 0 1 4
19091 1 0 0 0 1
19099 19 14 0 8 41
19100 20 3 3 0 26
19101 13 0 10 0 23
19109 24 23 1 0 48
19110 13 1 1 0 15
19111 4 0 6 0 10
19119 12 4 1 0 17
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Table 4.26 continued: Response Patterns for Each Latent Class for Last 5 Items Of Mathematics Section

Pattern Class 1 Class 2 Class 3 Class 4
(Average Ability) (Low Ability) (High Ability) (Very Low Ability) Total

19199 9 5 0 0 14
19900 2 5 0 9 16
19901 2 1 0 0 3
19909 11 25 0 15 51
19910 1 0 0 1 2
19911 1 0 0 0 1
19919 0 6 0 3 9
19990 1 3 0 5 9
19991 1 0 0 0 1
19999 20 33 1 21 75
90000 6 5 0 5 16
90001 1 0 1 0 2
90009 9 4 0 4 17
90010 0 1 0 0 1
90019 2 1 0 0 3
90099 4 6 0 1 11
90100 1 0 0 0 1
90101 1 0 0 0 1
90109 1 2 0 0 3
90119 1 0 0 0 1
90900 0 2 0 2 4
90909 0 6 0 3 9
90910 0 0 0 2 2
90919 0 2 0 0 2
90990 0 0 0 1 1
90999 2 5 0 6 13
91000 0 0 2 0 2
91009 2 0 1 0 3
91010 0 0 1 0 1
91101 0 0 5 0 5
91109 0 0 1 0 1
91111 0 0 4 0 4
91119 0 0 1 0 1
91191 0 0 1 0 1
91199 0 0 2 0 2
91910 0 0 1 0 1
91919 1 0 1 0 2
99000 2 4 0 4 10
99001 1 0 0 0 1
99009 12 18 1 13 44
99010 2 2 0 2 6
99011 1 0 0 0 1
99019 6 3 0 0 9
99090 0 1 0 2 3
99091 0 0 1 0 1
99099 8 13 0 7 28
99100 1 0 1 0 2
99101 1 0 0 0 1
99109 7 6 0 0 13
99110 0 1 0 0 1
99119 2 1 0 0 3
99199 4 4 0 0 8
99900 1 4 0 10 15
99901 2 1 1 0 4
99909 6 22 0 32 60
99910 1 0 0 1 2
99919 2 2 0 5 9
99990 0 8 0 15 23
99999 31 160 0 335 526
Total 2539 2716 1095 2012 8362
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4.2.3 STD P-DIF Results

One school was selected as the focal group to illustrate the results from the MMixIRTM

and the STD P-DIF approaches. In this section, we report the STD P-DIF results. The

comparison with the MMixIRTM results is given in the next section. The focal group school

was selected because it had the largest number of students taking the PSAT/NMSQT, 114

students, according to STD P-DIF comparison group definitions. Score-levels were collapsed

across the 20 to 80 point reporting scale used by The College Board, to yield 10 score intervals

as follows: 20 - 30, 31 - 40, 41 - 50, 51 - 60, 61 - 70, and 71 - 80. STD P-DIF values are shown

in Table 4.27. As mentioned earlier, College Board policy is to inspect STD P-DIF values

between −10% and −5% and between 10% and 5% to ensure that no possible DIF effect

is overlooked. There were 10 items having STD P-DIF values in these ranges. Items with

STD P-DIF values outside the −10% and 10% range are more unusual and are examined

carefully. There was one item with such a value.

4.2.4 Comparisons Between STD P-DIF and MMixIRTM

In this section, we compare results from the STD P-DIF and MMixIRTM at the school-level.

Detected DIF items based on STD P-DIF were different across schools while those items

based on the MMixIRTM were the same within the same school-level group. For comparison

purposes, results for the school reported in Table 4.27 are presented. The school used for the

analysis of STD P-DIF also was included in school-level class 2 and used for estimating the

MMixIRTM.

For comparison purposes, three cases were identified in Table 4.28. Case I were items that

were identified as DIF by STD P-DIF, but not by MMixIRTM, Case II were items identified

as DIF by MMixIRTM, but not by STD P-DIF, and Case III were items identified DIF by

both STD P-DIF and MMixIRTM.

Item categorization results as shown Table 4.28 are different across models without and

with covariates. The number of DIF items in Case II was larger than that of Case I especially
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with covariate model, which is mainly because the DIF analysis based on latent groups works

to find the nuisance dimension(s) along which the latent classes differ and then separates

latent classes based on that dimension (or dimensions)
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Table 4.27: STD P-DIF Value

Item STD P-DIF Value
1 0.56
2 -1.75
3 -0.87
4 4.58
5 0.32
6 2.05
7 -1.97
8 0.73
9 -4.61
10 -3.66
11 5.36
12 7.03
13 6.18
14 0.28
15 5.93
16 6.64
17 -5.82
18 2.97
19 -4.04
20 3.93
21 9.5
22 5.67
23 -2.01
24 8.61
25 -2.69
26 -2.86
27 -4.11
28 1.13
29 -12.25
30 0.76
31 7.89
32 1.52
33 -1.89
34 -0.94
35 2.72
36 -1.39
37 -2.31
38 -1.5
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Table 4.28: Result Comparisons with STD P-DIF and MMixIRTM for a School

Model Case DIF Items
Without Covariate Model Case I Items 11, 12, 16, 17, 21, and 22

Case II Items 4, 6, 10, 14, 19, 25, 26, and 38
Case III Items 13, 15, 24, 29, and 31

With Covariate Model Case I Items 12, 15, 22, 24, and 31
Case II Items 2, 3, 4, 5, 6, 10, 23, 25, 26, 27, 28, 30, 34, 35, 37, and 38
Case III Items 13, 16, 17, 21, and 29
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CONCLUSIONS

5.1 Summary and Implications of Results

The purpose of this study was to provide a model that would assist The College Board

in describing the comparison groups used in reporting DIF results to schools. The model

developed in this study, the MMixIRTM, employs features of an IRT model, an unrestricted

LCM, and a multilevel model, the description of the model was described from those three

perspectives. Model estimation is often an important concern. Therefore, in this study, a a

fully Bayesian method for estimation of the model parameters was described using the freely

available software, WinBUGS. A simulation study was done to investigate the performance

of the estimation algorithm that was developed to study the behavior of the MMixIRTM for

detection of DIF under some typical testing conditions. The results indicated that the gener-

ated parameters were recovered very well for the conditions considered. Use of MMixIRTM

also was illustrated with the PSAT/NMSQT Mathematics Test. Finally, the results from

the MMixIRTM were compared with those from the STD P-DIF, the currently used DIF

detection method, on a school selected as an example.

There are several differences between the STD P-DIF and the MMixIRTM approaches to

DIF detection. First, the DIF detection using the STD P-DIF is based on manifest groups

in which a comparable group is composed (a) of those students who have scored between

20 and 80 for all three sections in PSAT/NMSQT and (b) who were in Grades 10 and 11.

The comparable group also does not include any non-standard students. The MMixIRTM,

on the other hand, uses a model-based method for detecting latent groups in the data at

both the student-level and at the school-level. As a result, DIF information from by the

127
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MMixIRTM is provided about student-level differences in response propensities and school-

level factors associated with different proportions of student-level latent classes. That is,

the MMixIRTM clusters students into latent classes with respect to their response patterns,

and schools are clustered with respect to different proportions of student-level groups. With

this type of clustering, the MMixIRTM makes it possible to provide a given school with

descriptions of student- and school-level characteristics associated with the given school

as well as associated with other schools not in the same latent class as the given school.

Student-level characteristics include such things as ability levels, response patterns (including

patterns of omissions), particular demographic characteristics that predominate in one or

more student- or school-level latent classes, and profiles of item parameter values as well as

DIF item information about individual items. At the school-level, results from a MMixIRTM

analysis provide each school with descriptions of schools in each school-level latent class,

including their own. This description can then be used to provide schools with a framework

within which to compare the results of their school with other schools in their latent class

and in the other latent classes. As an example, with respect to the school used in the example

of Mathematics section in this study, those schools that were classified into the same latent

class, (i.e., school-level latent group 2) were characterized by lower Title I enrollment, higher

household income, lower poverty levels and a predominance of students in student-level latent

class 1. Other information describing individual schools can be similarly used to describe

members of each school-level latent class.

Second, STD P-DIF is based on observed scores while MMixIRTM is based on latent

score from IRT model. The use of latent instead of observed scores provided the potential

for separation of the effects of item difficulty and ability, and also enables the modeling of

response measurement error (Fox & Glas, 2001).

Third, STD P-DIF provides DIF information for each school using only a single com-

parable group. The characteristics of this group are described in terms of information that

may not be closely related to why students in a given school performed better than or worse
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than other schools in the comparable group. The MMixIRTM, on the other hand, provides

DIF information for all schools that are members of the same school-level latent class. Fur-

ther, there is also the possibility that there may be more than one such comparable group.

STD P-DIF currently provides DIF information only at the school-level. The MMixIRTM

provides DIF information simultaneously at both school- and student-levels. It is further

possible to incorporate information regarding specific item-level skill as shown in Figure 5.1

to explain the meaning of the differences in item functioning among the latent groups. For

example, in Figure 5.1, 13 Mathematics items are shown to illustrate simultaneous school-

and student-level DIF information. In this figure, the x-axis represents item number (from

13 to 25) and the y-axis represents item difficulty. Highlighted values in the table indicate

both student-level and school-level DIF items. As an example, items 15, 19, and 25 were

detected as a DIF item at the school-level but all except item 13 were detected as DIF items

at the student-level. In this study, item-level skill information was not incorporated into the

description of items, but this is clearly possible.

5.2 Limitations

Substantive Usefulness of MMixIRTM

The substantive usefulness of the model is based on the assumption that the resulting classes

represent discrete subpopulations and not just statistical artifacts of non-normality that may

incidentally exist in the data (Bauer & Curran, 2003). At the present time, previous findings

are not available indicating what schools look like based on the latent classes. This kind of

information can be developed, however, and will soon lead to a better understanding of how

many school-level latent classes might be expected. The resulting student- and school-level

mixtures in the data examined in the empirical example were clearly distinguishable in terms

of ability level, response patterns (such as omission rate), item difficulty profile, and student

and school demographic characteristics. When several factors determine a class, however,

finding those factors that cause is often difficult.
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Statistical Issues

Label Switching. The second-type of label switching, that is, label switching among dif-

ferent replications of the same simulation conditions was detected in the simulation study.

This type of label switching can be problematic (1) for checking convergence using more

than two chains, (2) for comparing student-level latent group membership across school-

level latent classes (because the student-level probability of mixtures is modeled for each

school-level class), and (3) for comparing results with and without covariates.

The WinBUGS code developed for this study was not designed to prevent the second

type of label switching. This type of label switching can be easily detected and taken care of

in a simulation study, but it can be a problem in an empirical study. The strategy we used in

this study to check for this type of label switching was to investigate item difficulty profiles

and ability patterns for each school latent class to see if the representation is similar across

school-level mixtures, and to crosstabulate group memberships to find the dominant group.

Limitation of the Simulation Study. We investigated model recovery only for binary

responses. The behavior of the MMixIRTM for the polytomous responses and mixed binary

and polytomous responses needs to be investigated. It may also be useful to investigate the

behavior of the MMixIRTM with respect to different numbers of items and examinees.

In this study, only one covariate was used with two different percentages of overlap

between the latent classes and manifest covariate. There were no differences in the parameter

recovery with- and without-covariate models. However, there were little differences between

the two models in the empirical study, when more than one covariate was used, at both

student- and school levels. This suggests that additional simulation studies are needed to

examine the effect of covariates on parameter recovery.

Use of Priors on the Probabilities of Mixtures. Three different kinds of priors

on the probabilities of mixtures were studied along with their hyperparameters, αg and αk.

For student-level mixture probabilities, a Dirichlet distribution provides a conjugate prior. A

Dirichlet distribution with the Gamma distribution also was studied for the hyperparameters,
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αg = 1 and αg = 4. At the school-level, probabilities of mixture were studied using a Dirichlet

prior as a conjugate prior, a Dirichlet prior with the Gamma distribution, and a Dirichlet

process with stick-breaking prior for the hyperparameters, αk = 1 and αk = 4.

A small simulation study for the priors was done to determine whether these priors

worked well under the conditions simulated. The Dirichlet distribution with the Gamma

distribution with αg = 1 and αk = 1 for both student-level and school-level performed well

in that the models were identified. It is important to note that this result is limited to the

conditions studied here. More extensive simulation study of the behavior of these priors on

the probabilities of mixture is still needed.

Algorithm Efficiency using WinBUGS. von Davier and Yamamoto (2007) have

noted that MCMC typically requires substantial computing time to obtain usable results. The

use of multiple starting points is necessary with empirical data, in particular, to determine

whether stationarity has been attained (i.e., whether the algorithm has converged). For this

reason, the amount of computing required can sometimes be very large. In the case of the

example in this study: 90 hours were required for one condition in the simulation study and

121.5 hours for the empirical study, respectively, on a 3.0 GHz computer with 1GB of RAM to

complete a single replication. In order to implement this model in an operational situation,

a much faster algorithm would be required. Results such as this are not uncommon, and

MCMC estimation of model parameters for long tests and very large samples is clearly going

to require substantial computing resources or development of speedier algorithms. When

compared to relatively speedy computation using software implementing EM algorithms for

some simpler IRT models, MCMC does not yet appear to be ready for use in most operational

testing programs.

5.3 Discussion

Anchoring and Linking for a MMixIRTM DIF Analysis. In a DIF analysis with a

MMixIRTM, each latent group of examinees is evaluated over the same set of test items.
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Thus, one can think of every item on the scale as being a potential anchor item to be used in

estimating an appropriate set of linking coefficients. This design is similar to the common-

item nonequivalent group design except that group membership is latent. Following the

rationale for that design, group membership and class-specific item difficulty parameters are

estimated simultaneously with metric anchoring done in terms of the ability distribution.

An alternative way of anchoring and linking in MMixIRTM is that we set the anchor

item(s) before fitting the MMixIRTM. This would be consistent with Thissen, Steinberg,

and Wainer (1993) who suggest that a set of anchor items first be identified that contains

no DIF. These anchor items then serve to identify the metric of the latent trait scale, and

thus item parameters from the non-anchor items are directly comparable. Implementing this

kind of apriori determination of DIF-free items is a potentially useful means of establishing

a set of anchor items, but how this should be done in the context of a latent groups DIF

analysis is not clear. What would be needed to do this would be a substantive rationale

clearly indicating what latent groups one might anticipate, given the test and the sample,

and then how these latent groups might be expected to perform on particular items. Lacking

that kind of rationale, apriori specification of anchor items that are assumed to be DIF-free

would seem premature.

Interpretation of Class-Specific Construct Representation. The ability esti-

mates reflect somewhat different processes across classes. The following questions remain

(Embretson & Reise, 2000): Should abilities be interpreted equivalently across classes? In

addition, do we need to adjust scores for deficient knowledge states?

Use of Covariates and Predictors for MMixIRTM. An important distinction

between covariates and predictors is that covariates are variables that may be used to describe

or predict (rather than to define or measure) the latent classes while predictors are variables

that may be used to describe or predict the dependent variable (Vermunt & Magidson, 2005).

In this study, only covariates were used for both simulation and empirical studies. Further

study would be useful to explore inclusion of covariates and predictors in a MMixIRTM.
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Palardy and Vermunt (2007) note that, to the degree that the predictors adjust the

ability estimates, group membership can change. For school comparisons based on student

achievement, it is possible to equalize schools in terms of predictors and then determine the

number of classes based on achievement. Failing to control for excessive random variation in

between-level ability, however, will lead to over extraction of classes.

Type I Error Rate Control of Multiple Pairwise Comparisons. In this study,

the HPD interval was used in the detection of DIF items. If more than three latent classes

(i.e., G ≥ 3, K ≥ 3) were present, then a multigroup DIF analysis is potentially needed

(depending on the types of comparisons that are of interest). A concern with multigroup

DIF comparisons is control of Type I error.

Two candidate methods for multiple comparisons are the Benjamini-Hochberg (B-H:

Steinberg, 2001) sequential approach and Bonferroni methods. Williams, Jones, and Tukey

(1999) showed that a sequential approach to controlling the false discovery rate in multiple

comparisons yields much greater power than the widely used Bonferroni method. The B-H is a

sequential procedure implemented as follows: Consider testing hypotheses H1, H2, . . . , HK−1

based on the corresponding p-values, P1, P2, . . . , PK−1. Let P(1) ≤ P(2) ≤ . . . ≤ P(K−1) be the

ordered p-values of the z statistics, and denote by H(r) the null hypothesis corresponding to

P(i). Let k be the largest r for which

P(r) ≤ [
r

(K − 1) + 1− r ] · α (5.1)

then reject all Hr for r = 1, 2, . . . , K − 1.

The above multiple comparisons in the H0 is the situation where all multiple comparisons

are ones with one control group (i.e., the focal group) and planned rather than post-hoc tests.

Dunnett’s method is recommended for pairwise multiple comparisons with one control group

(i.e., the focal group) (Hsu, 1999). In this study, a given school can be a focal group at the

school-level and a dominant group can be a focal group at the student-level.

Descriptive Latent DIF Measure. As statistical power is a function of sample size

(Cohen, 1988), relatively small differences in population parameters will be statistically sig-
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nificant for sufficiently large samples. The result is that we can expect to reject the null

hypothesis, in this case of no DIF, when the sample size is very large but the difference

between parameters is small, possibly even trivially small (Dorans & Holland, 1993; Kim et

al., 2007). Since the College Board often has very large sample sizes for some of its testing

programs, a DIF analysis relying solely on statistical tests is not likely to be useful, as most

if not all items will be identified as functioning differentially. In addition to testing the sig-

nificance of differences in item parameter estimates, indices of the magnitude of DIF, that is,

effect sizes, often can be used to help determine whether or not the DIF that was detected

is sufficiently large to be meaningful. In this study, therefore, we employed indices of the

magnitude of DIF suggested for the manifest DIF analysis (e.g., Dorans & Kulick, 1986;

Dorans & Schmitt, 1991; Kim, 2000; Wainer, 1993; Zumbo, 1999) to latent DIF analysis

after group membership and its class-specific item difficulty were obtained.

5.4 Possible Applications of MMixIRTM and Related Modeling for Educa-

tional Research

5.4.1 Applications of MMixIRTM

Educational Policy Research. The MMixIRTM may also have application in school effec-

tiveness research. Most of current school effectiveness research is done to explore differ-

ences within and between schools by investigating the relationship between student-level

and school-level background variables. The outcome variable is typically a sum score on a

test, and the analysis is is usually done by studying differences among schools after adjusting

for relevant background variables.

As was shown in the analysis of empirical data, using the MMixIRTM enabled a clustering

of students and schools with respect to response patterns. In addition, it was then possible to

to determine what may have caused these differences by examining covariates either directly

in the model or subsequently, by means of tests of association. In addition, it was possible

to show the heterogeneity across groups in the DIF analysis. Results such as these also can
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provide useful information for educational policy research mainly by addressing to what

homogeneous groups look like based on students’ achievement at both the student-level and

school-level.

Application MMixIRTM to Longitudinal Data. Longitudinal data can be viewed

as a special type of multilevel data in which the first level units refer to responses over time.

Typically the second level units are individuals like students. The higher level units can be

schools, for example. In a cross-sectional analysis, students are clustered with respect to

their response patterns at the first level for cross-sectional data, and growth patterns are

clustered with respect to their initial status and growth rate at the first level for longitudinal

data. In addition, just as schools are clustered with respect to different proportions of first-

level groups (i.e., student-level), at the second level for the cross-sectional data, students are

clustered with respect to different proportions of growth patterns for longitudinal data.

5.4.2 Modeling of Other Item Structures

Modeling of Testlet Effect for Reading Test. Standardized educational achievement

tests often include sections composed of groups of items based on a common stimulus (e.g.,

a set of test items all focusing on a single passage in a reading comprehension test). These

groups of items, known as testlets, may offer greater efficiency in test construction, as a

single stimulus can be associated with several items, but they are also the potential cause

of nuisance dimensionality extraneous to the construct being measured. This dimensionality,

reflected as local dependence, arises because items within a testlet rely on a common stimulus.

Cohen, Cho, and Kim (2005) proposed a MixIRTM for the data structure having testlets.

The MMixIRTM should be capable of being extended to incorporate items with a testlet

structure.

Non-Uniform DIF Analysis. The MMixIRTM was tested in this study using the Rasch

model, which allows the item difficulty to differ across mixtures. The structure of the Rasch

model only allows for uniform DIF among latent classes. It should be possible to extend the
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MMixIRTM to other models such as the 2- or 3-parameter IRT model to account not only

for differences between the groups with respect to item difficulty, but also differences with

respect to discriminating power or guessing parameters.

Incorporation of a Q-Matrix in a MMixIRTM for Diagnostic Modeling. In

the linear logistic test model (LLTM, Fisher, 1983), cognitive skills are modeled to reflect

basic features of items and how they affect probabilities of responses (Tatsuoka, 1983). A

Q-matrix (Tatsuoka, 1983) is used to contain this information, the entries of which indicate

whether or not a particular cognitive skill is required by attribute h in item i. Elements of

the Q-matrix, qih, are either 1 if attribute h is required by item i or 0 if is is not. The LLTM

extends the Rasch model by positing a linear structure for item difficulty, βi:

βi =
∑

h

qihηh = q
′
ihη, (5.2)

where ηh is a contribution to item difficulty entailed by attribute h.

We can incorporate the following linear structure for the item difficulty in MMixIRTM

to support the narrative theme of fundamental measurement:

βigk =
∑

h

qigkhηgkh = q
′
iηgk, (5.3)

where ηgkh is a contribution to item difficulty required by attribute h for each class, g and k.
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Figure 5.1: Item Difficulty Profile with DIF Information and Item Skill Information: (a) For
School-Level Comparison G = 4, K = 1 Vs. G = 4, K = 2 (Selected Classes), and (b) For
Student-Level Comparison of G = 3, K = 1 Vs. G = 4, K = 1 (Selected Classes)
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Appendix A

WinBUGS Code Used for Multilevel IRT Model

# J: the number of students

# I: the number of items

# T: the number of schools

# b: item difficulty

# eta: ability at the student-level

# nu: ability at the school-level

# gamma: mean of ability at the school-level

# tau (square root of tau in model description): the SD of ability at the student-level

# zeta: inverse variance of ability at the school-Level

model

{

for (j in 1:J) {

for (i in 1:I) {

r[j,i]<-resp[j,i]

}}

# Multilevel Rasch

for (j in 1:J) {

for (i in 1:I) {

logit(p[j,i]) <- tau*eta[j] + nu[group[j]] - b[i]

r[j,i]~dbern(p[j,i])

}}

# Ability

for (j in 1:J) {

eta[j] ~ dnorm(0, 1)

}

for (j in 1:T){

nu[j] ~ dnorm(gamma, zeta)

}

gamma ~ dnorm(0,1)
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# Standard Deviation of Ability at the Student-Level

tau ~ dnorm(0,1)I(0,)

# (1/Variance) of Ability at the School-Level

zeta ~ dgamma(0.1,0.001)

# Item Difficulty

for (i in 1:I) {

b[i]~dnorm(0, 1)

}

# Log Likelihood

for (j in 1:J) {

for (i in 1:I) {

l[j,i]<-log(p[j,i])*r[j,i]+log(1-p[j,i])*(1-r[j,i])

}}

loglik <-sum(l[1:J,1:I])

AIC <- -2*(loglik - np)

BIC <- -2*loglik + np*log(N)

}

list(J=8000, I=40, T=320, np=42,

group=c(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3

...),

resp=structure(.Data=c(

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,0.0,1.0,0.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,0.0,1.0,1.0,0.0,

...

0.0,1.0,1.0,1.0,0.0,

0.0,0.0,1.0,1.0,0.0,

1.0,1.0,0.0,0.0,0.0,
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1.0,0.0,0.0,0.0,0.0),.Dim = c(8000,40)))



Appendix B

WinBUGS Code Used for Rasch Model

# J: the number of students

# I: the number of items

# tau (square root of tau in model description): the SD of ability

# b: item difficulty

# eta: ability

model

{

for (j in 1:J) {

for (k in 1:I) {

r[j,k]<-resp[j,k]

}}

# Rasch model

for (j in 1:J) {

for (i in 1:I) {

logit(p[j,i]) <- tau*eta[j] - b[i]

r[j,i]~dbern(p[j,i])

}}

# Ability

for (j in 1:J) {

eta[j] ~ dnorm(0, 1)

}

# SD of Ability

tau ~ dnorm(0, 1) I(0, )

# Item Difficulty

for (i in 1:I) {

b[i]~dnorm(0, 1)

}

# Log Likelihood

for (j in 1:J) {

for (i in 1:I) {

l[j,i]<-log(p[j,i])*r[j,i]+log(1-p[j,i])*(1-r[j,i])

}}

loglik <-sum(l[1:J,1:I])
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AIC <- -2*(loglik - np)

BIC <- -2*loglik + np*log(N)

}

list(J=8000, I=40, np=41,

resp=structure(.Data=c(

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,0.0,1.0,0.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,0.0,1.0,1.0,0.0,

...

0.0,1.0,1.0,1.0,0.0,

0.0,0.0,1.0,1.0,0.0,

1.0,1.0,0.0,0.0,0.0,

1.0,0.0,0.0,0.0,0.0),.Dim = c(8000,40)))



Appendix C

WinBUGS Code Used for Mixture IRT Model

# 2 student-level class (G) with prior

# J: the number of students

# I: the number of items

# g: group membership at the student-level

# sigma: the SD of ability

# beta: item difficulty

# eta: ability

# mutg: the mean of ability

# pi: the probability of mixture

model

{

for (j in 1:J) {

for (i in 1:I) {

r[j,i]<-resp[j,i]

}}

# Mixture Rasch Model: 2-Group Solution

for (j in 1:J) {

for (i in 1:I) {

logit(p[j,i]) <- sigma[g[j]]* eta[j] - b[g[j],i]

r[j,i]~dbern(p[j,i])

}}

# Ability

for (j in 1:J) {

eta[j] ~ dnorm(mutg[g[j]], sigt[g[j]])

}

mutg[1] <- 0

mutg[2] ~ dnorm(mut,1)

mut ~ dnorm(0,1)

sigt[1] <- 1

sigt[2] <- 1

# SD of Ability

for (i in 1:G2) {

sigma[i] ~dnorm(0,1) I(0,)
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}

# Group Membership

for (j in 1:J) {

g[j] ~ dcat(pi[1:G2])

}

for (g in 1:G2) {

pi[g] <- delta[g]/sum(delta[1:G2])

delta[g] ~ dgamma(alpha[g],1)

}

# Item Difficulty

for (g in 1:G2) {

for (i in 1:I) {

beta[g,i]~dnorm(0,1)

}}

# Log-Likelihood

for (j in 1:J) {

for (i in 1:I) {

l[j,i]<-log(p[j,i])*r[j,i]+log(1-p[j,i])*(1-r[j,i])

}}

loglik <-sum(l[1:J,1:I])

AIC <- -2*(loglik - np)

BIC <- -2*loglik + np*log(N)

}

list(J=8000, I=40, G2=2, np=84,

alpha=c(1,1),

resp=structure(.Data=c(

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,0.0,1.0,0.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,0.0,1.0,1.0,0.0,

...

0.0,1.0,1.0,1.0,0.0,

0.0,0.0,1.0,1.0,0.0,

1.0,1.0,0.0,0.0,0.0,

1.0,0.0,0.0,0.0,0.0),.Dim = c(8000,40)))



Appendix D

WinBUGS Code Used for MMixIRTM: Prior

# 2 student-level class (G) with prior

# 2 school-level class (K)with prior

# J: the number of students

# I: the number of items

# T: the number of schools

# g: group membership at the student-level

# gg: group membership at the school-level

# a: the SD of ability

# b: item difficulty

# eta: ability

# mutg: the mean of ability

model

{

for (j in 1:J) {

for (i in 1:I) {

r[j,i] <- resp[j,i]

}}

# G=2

for (j in 1:J) {

for (i in 1:I) {

logit(p[j,i]) <- a[g[j], gg[group[j]]] *eta[j]

- b[i,g[j],gg[group[j]]]

r[j,i]~dbern(p[j,i])

}}

# Ability

for (j in 1:J) {

eta[j]~dnorm(mutg[g[j],gg[group[j]]], sigt[g[j],gg[group[j]]])

}

mutg[1,1] <- 0

mutg[2,1] ~ dnorm(0,1)

mutg[1,2] ~ dnorm(0,1)

mutg[2,2] ~ dnorm(0,1)

sigt[1,1] <- 1

sigt[2,1] <- 1
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sigt[1,2] <- 1

sigt[2,2] <- 1

# SD of Ability

for (g in 1:G2) {

for (k in 1:K2){

a[g, k] ~ dnorm(0,1) I(0,)

}}

# Student Level

for (j in 1:N) {

g[j] ~ dcat(pi[g[group[j]],1:G2])

}

for (k in 1:K2) {

for (g in 1:G2) {

pi[k,g] <- delta[k,g] /sum(delta[k,])

delta[k,g] ~ dgamma(alpha[g],1)

}

}

# School Level

for (t in 1:T){

gg[t] ~ dcat(pi1[1:K2])

}

for (k in 1:K2) {

pi1[k] <- delta1[k]/sum(delta1[1:K2])

delta1[k] ~ dgamma(alpha1[k],1)

}

# Item Difficulty

for (i in 1:T) {

for (g in 1:G2) {

for (k in 1:K2){

b[i,g,k]~dnorm(0,1)

}}}

# Log-Likelihood

for (j in 1:J) {

for (i in 1:I) {

l[j,i]<-log(p[j,i])*r[j,i]+log(1-p[j,i])*(1-r[j,i])

}}

loglik <-sum(l[1:J,1:I])

AIC <- -2*(loglik - np)
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BIC <- -2*loglik + np*log(N)

}

# Initial Value of School-Level Group Membership

list(gg=c(1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

...

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2))

list(J=8000, I=40, T=320, G2=2, K2=2, np=169,

alpha=c(1,1), alpha1=c(1,1),

group=c(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3

...),

resp=structure(.Data=c(

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,0.0,1.0,0.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,0.0,1.0,1.0,0.0,

...

0.0,1.0,1.0,1.0,0.0,

0.0,0.0,1.0,1.0,0.0,

1.0,1.0,0.0,0.0,0.0,

1.0,0.0,0.0,0.0,0.0),.Dim = c(8000,40)))



Appendix E

WinBUGS Code Used for MMixIRTM: Multinomial Logistic Regression
Model

# 2 student-level class (G) with multinomial logistic regression model

# 2 school-level class (K)with multinomial logistic regression model

# J: the number of students

# I: the number of items

# T: the number of schools

# g: group membership at the student-level

# gg: group membership at the school-level

# a: the SD of ability

# b: item difficulty

# eta: ability

# mutg: the mean of ability

# beta’s: coefficients of multinomial logistic regression model

model

{

for (j in 1:J) {

for (i in 1:I) {

r[j,i] <- resp[j,i]

}}

# G=2

for (j in 1:J) {

for (i in 1:I) {

logit(p[j,i]) <- a[g[j], gg[group[j]]] *eta[j]

- b[i,g[j],gg[group[j]]]

r[j,i]~dbern(p[j,i])

}}

# Ability for (j in 1:J) {

eta[j]~dnorm(mutg[g[j],gg[group[j]]], sigt[g[j],gg[group[j]]])

}

mutg[1,1] <- 0

mutg[2,1] ~ dnorm(0,1)

mutg[1,2] ~ dnorm(0,1)

mutg[2,2] ~ dnorm(0,1)

sigt[1,1] <- 1
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sigt[2,1] <- 1

sigt[1,2] <- 1

sigt[2,2] <- 1

# SD of Ability

for (g in 1:G2) {

for (k in 1:K2){

a[g, k] ~ dnorm(0,1) I(0,)

}}

# Student Level

for (j in 1:N) {

g[j] ~ dcat(pi[gg[group[j]],j,1:G2])

}

for (k in 1:K2) {

for (j in 1:J) {

for (g in 1:G2) {

pi[k,j,g] <- phi[k,j,g] /sum(phi[k,j,])

log(phi[k,j,g]) <- beta20[k,g]+beta21[g]*gender[j]

}

}

}

for (k in 1:K2) {

for (g in 1:G2){

beta20[k,g] ~ dnorm(0,1)

}

}

for (g in 1:G2){

beta21[g] ~ dnorm(0,1)

}

# Covariate Identification

beta20[1,1] <- 0

beta20[2,1] <- 0

beta21[1] <- 0

# School Level

for (t in 1:T){

ggmem2[t] ~ dcat(pi21[t,1:K2])

}

for (t in 1:T){

for (k in 1:K2) {

log(phi21[t,k]) <- beta200[k]+ beta211[k]*cito[t]

pi21[t,k] <- phi21[t,k]/sum(phi21[t,1:K2])

}

}

for (k in 1:K2){
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beta200[k] ~ dnorm(0,1)

beta211[k] ~ dnorm(0,1)

}

# Covariate Identification

beta200[1] <- 0

beta211[1] <- 0

# Item Difficulty

for (i in 1:I) {

for (g in 1:G2) {

for (k in 1:K2){

b2[i,g,k]~dnorm(0,1)

}}}

# Log-Liklihood

for (j in 1:J) {

for (i in 1:I) {

l[j,i]<-log(p[j,i])*r[j,i]+log(1-p[j,i])*(1-r[j,i])

}}

loglik <-sum(l2[1:J,1:I])

AIC <- -2*(loglik - np)

BIC <- -2*loglik + np*log(N)

}

# Initial Value of School-Level Group Membership

list(gg=c(1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

...

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2))

list(J=8000, I=40, T=320, G2=2, K2=2, np=169,

group=c(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2

, 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3

...),

resp=structure(.Data=c(

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,0.0,1.0,0.0,

1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,

1.0,0.0,1.0,1.0,0.0,
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...

0.0,1.0,1.0,1.0,0.0,

0.0,0.0,1.0,1.0,0.0,

1.0,1.0,0.0,0.0,0.0,

1.0,0.0,0.0,0.0,0.0),.Dim = c(8000,40)))




