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Abstract

Interval-valued data are one of the most common forms of symbolic data. Previous studies

have provided a number of approaches to conduct linear regression models for interval data,

while few have involved issues surrounding inference on the regression coefficient estimates.

In this dissertation, we propose a method of statistical inference on coefficient estimates

for interval data regression by means of the maximum likelihood principle. Under some

assumptions, this method not only enables us to provide point estimators of the parameters

in linear regression models, but also gives the distributions of the point estimators, as well as

the confidence intervals. Performances of the proposed method are evaluated by simulations

as well as real data analyses.
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Chapter 1

INTRODUCTION

Symbolic data is a new type of data. Considering data of p random variables, unlike classical

data which are represented by a single point in p-dimensional space Rp, values of symbolic

data are of p-dimensional hypercube forms in Rp, or Cartesian products of p distributions.

Because of the different structure, one of the most distinctive features of symbolic data is

the internal variations they have within the observation. To take account of the internal

variations, conventional theories and methodologies are not sufficient to properly study and

analyse symbolic data. Therefore, novel approaches for analysis on the new type of data are

needed to be proposed and studied.

There are different types of symbolic data. Interval, multi-valued, histogram as well as

distributions are the most common. Details of the first three types of symbolic data can be

found in Chapter 2. Symbolic data mainly arise from two sources: the data are inherently

symbolic, e.g., daily temperature of an area is [lowest temperature, highest temperature]; or

data aggregation, e.g., the amount of monthly premiums for drivers aged within a certain

range can be represented by a histogram.

Billard and Diday (2006) [1] provides a great number of examples as well as applications

of symbolic data. It can be observed that two major challenges trigger the study and analysis
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of symbolic data. The first comes from larger and larger data sets we face to deal with in

the future. As the size and dimensions of a data set become huge, capacities of conventional

analysis approaches are restricted with bad and inefficient performances due to limitations of

computer power; the other is for solving some problems by data analysis. We need to focus

more at group levels instead of individual levels. To conquer these challenges, by symbolic

data analysis, we aggregate observations of classical data into groups with characteristics

that are of great interest, and as a result, the data set is reorganized to be of reduced size

and dimensions while retaining as much information as possible. One example to consider is a

data set of individual medical records from a health insurance company. With demand-based

aggregations, the original data set is converted into one with symbolic data, representing

features such as marital status by gender groups, not those of individuals themselves. More

details of this example can be found in Chapter 2.

Among different types of symbolic data, interval-valued data are one of the most com-

mon formats to be studied. For linear regression models for interval-valued data, several

approaches have been proposed. The Center method, introduced by Billard and Diday

(2000) [2] fits a linear regression model on the center points of the intervals; then predictions

of the response were obtained by applying the fitted model to the lower and upper points

of independent variables, respectively. The Center and Range method by de Carvalho et al.

(2004) [3], Neto et al. (2005) [4] and Neto and de Carvalho (2008) [5], utilizes both centers

and ranges of intervals to fit regression models. The Constrained method, proposed by Lima

Neto et al. (2005, 2010) [6][7], sets constraints on the coefficient estimates to guarantee the

upper bound of the predicted response is always not smaller than the lower bound of the

predicted response; the Symbolic Covariance method, introduced by Xu (2010) [8], com-

putes the coefficient estimates by means of the symbolic sample covariance. Among these

approaches, most concentrate on the estimation of coefficients, while few have involved issues

surrounding inference on the regression coefficient estimates.
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This dissertation aims to propose a maximum likelihood estimator method on the coeffi-

cient estimates for linear regression of interval-valued data. The proposed method enables to

study internal variations within an interval-valued observation by the principle of maximum

likelihood, from where we obtain the point estimators of regression coefficients and their dis-

tributions. As a result, this approach can also give confidence intervals for the parameters

in linear regression models.

The dissertation is organized as follows: Chapter 2 reviews the concept of symbolic

data, the main types, recent studies on symbolic data analysis, and regression methods

on interval-valued data. In Chapter 3, we propose the statistical inference approach by

maximum likelihood principle for the coefficient estimates in interval data regression. In

Chapter 4, simulations and results by the proposed method are studied; Chapter 5 contains

examples with real data sets to evaluate performances of the proposed method. In Chapter

6, future research ideas are discussed.
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Chapter 2

LITERATURE REVIEW

For the purpose of building the foundation for our work, a review of the literature is presented

in this chapter. In Section 2.1, the concepts of symbolic data as well as sources where

symbolic data arise are introduced. Section 2.2 discusses the main types of symbolic data

and their descriptive statistics. Current studies surrounding symbolic data analysis are

described in Section 2.3. Section 2.4 reviews several linear regression methods on interval

valued data proposed in the literature, along with their advantages and disadvantages.

2.1 Symbolic Data

Unlike classical data on p random variables, which are represented by single points in p-

dimensional space Rp, realizations of symbolic data are represented by p-dimensional hy-

percubes in Rp, or Cartesian products of p distributions. For example, in symbolic data,

observations can take multi-values for a variable, e.g., the colors of a given species of birds

can be {white, black}, etc. Symbolic data can be intervals, lists, histograms or distributions.

There are several sources where symbolic data arise. The first is when observations are

inherently symbolic, such as the “colors of bird species” example in the above paragraph; the
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second is when symbolic data arise by data aggregation. This occurs when we are interested

in studying classes or groups. One example is about a data set comprising the medical records

of individuals retained by a health insurance corporation, taken from Billard and Diday

(2006) [1]. In the data set, values of several variables on geographic location information,

such as region (north, south, etc.) and city (Boston, Atlanta, etc.) are recorded for each

individual. It also contains some demographic variables, such as gender, marital status,

age, health provider, etc. Another kind of variable included is about health: incidences of

ailments and diseases, for instance. Table 2.1 (extracted from Billard and Diday, 2006) is a

simplified table with entries to be classical data values as described above.

Table 2.1 - Classical data

ID City/Town Age Gender Marital Status Weight Pulse Rate ...

1 Boston 24 Male Single 165 68 ...

2 Boston 56 Male Married 186 84 ...

3 Chicago 48 Male Married 175 73 ...

4 El Paso 47 Female Married 141 78 ...

It should be noted that when the size of a data set becomes considerably large (e.g.,

n =100 million, p > 100), using conventional approaches to handle the data set may cause

some problems. Firstly, the huge size of data challenges machines’ capabilities to save and

compute to conduct analysis; secondly, the primary importance of an analysis may not lie

at the individual level but at groups with certain characteristics defined by some variables.

Both of the above issues can be properly tackled by reorganizing the data set in the view

of symbolic data. For instance, suppose the ages of married women is the list {29, 31, 33,

34, 42, 44, 47, 54, 61, 63, 64, 69, 71, 75, 82, 88}. These values can instead be represented

as realizations within the interval [29, 88]; or the weight of this group of people can be

represented as a histogram (also, from Billard and Diday, 2006): {[78, 110), 3/14; [110, 160),
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7/14; [160, 170], 4/14}. Now, the variables ”Age” and ”Weight” for corresponding groups

have become lists, or an interval, or a histogram, respectively.

Table 2.2 below shows the reorganized dataset from Table 2.1, composed of symbolic list

and interval-valued data:

Table 2.2 - Symbolic data

ID Marital Status × Gender City/Town Age Weight Pulse Rate ...

1 Single × Male

{Akron, Boston,
Concord, Chicago,
Marion, Quincy} [6, 64] [35, 268] [57, 81] ...

2 Single × Female

{Amherst, Boston,
Chicago, Ila,

Medford, Yuma} [11, 66] [73, 166] [62, 75] ...

3 Married × Male

{Albany, Atlanta,
Barry, Bangor,

Boston, Chicago,
...} [24, 86] [128, 239] [59, 88] ...

4 Married × Female

{Atlanta, Boston,
Buffalo, Byron,

Detroit, El Paso,
...} [21, 87] [113, 178] [58, 88] ...

Additionally, symbolic data also come from government census data, as well as confi-

dentiality, such as selecting options of income ranges in a survey. Assume we want to add

another column to Table 2.2 showing information on respondents’ incomes. Because of its

sensitive feature, people would only provide ranges covering their exact incomes in the sur-

vey. Hence, the new column named will contain intervals instead of single numbers to reflect

their income levels, such as {[40, 50], [90, 100], [20, 30], [50, 70], [70, 90]...}.

2.2 Main Types of Symbolic Data

The main types of symbolic data include: interval-valued, multi- valued, histogram-valued,

and distributions. Definitions as well as some examples to be introduced below are taken

6



from Billard and Diday (2006) [1].

Interval-valued Data

Among all the types of symbolic data, interval-valued data have been studied the most.

One reason is it is the most common form of symbolic data; and it has been observed that

methods to analyse interval-valued data can to be generalized to other types of symbolic

data.

Note that all of the following definitions are based on the assumption that values across

each interval are distributed uniformly. Denote X(j) to be the jth variable of a random

sample Xi, i = 1, ..., n, with the ith realization as the interval [aij, bij] ⊂ R where aij ≤ bij,

j = 1, ..., p. By the uniform assumption for a point in X(j) denoted by W , we have

P (W ≤ ζ) =



0, ζ ≤ aij,

ζ−aij
bij−aij , aij ≤ ζ ≤ bij,

1, bij ≤ ζ.

(2.1)

Further, Bertrand and Goupil (2000) [9] define the sample mean and sample variance of

W , respectively, as

W =
1

2n

n∑
i=1

(aij + bij), (2.2)

S2 =
1

3n

n∑
i=1

(a2ij + aijbij + b2ij)
2 − 1

4n2
[
n∑
i=1

(aij + bij)]
2. (2.3)

Billard (2007, 2008) [10] [11] show that the sample variance in (2.3) is a function of the total

sum of squares (TSS) that can be divided into two terms: within sum of squares (WSS) to
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represent the internal varition and between sum of squares (BSS) to represent the external

variation:

nS2 = TSS = WSS +BSS (2.4)

where

WSS =
1

3

n∑
i=1

[(aij −W ij)
2 + (aij −W ij)(bij −W ij) + (bij −W ij)

2] (2.5)

with

W ij =
1

2
(aij + bij), i = 1, ..., n, j = 1, ..., p,

and

BSS =
n∑
i=1

(W ij −W (j))
2 (2.6)

where

W (j) =
1

2n

n∑
i=1

(aij + bij), i = 1, ..., n, j = 1, ..., p.

From (2.5), we know that aij −W ij = W ij − bij =
aij−bij

2
. Thus, we have

WSS =
1

12

n∑
i=1

(bij − aij)2. (2.7)

Next, the sample covariance between two interval-valued variables can be shown similarly.

Denote X1 and X2 to be two interval-valued random variables and assume Xi1 = [ai, bi],

Xi2 = [ci, di], i = 1, ..., n. From Billard (2008) [11], we have

Cov(X1, X2) =
1

6n

n∑
i=1

[2(ai −X1)(ci −X2) + (ai −X1)(di −X2) (2.8)

+ (bi −X1)(ci −X2) + 2(bi −X1)(di −X2)]

where

X1 =
1

2n

n∑
i=1

(ai + bi), X2 =
1

2n

n∑
i=1

(ci + di).
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The correlation coefficient between X1 and X2 is then defined as

Corr(X1, X2) =
Cov(X1, X2)

S1S2

(2.9)

where S1 and S2 are the square roots of the sample variances of X1 and X2, respectively.

Multi-valued Data

Assume X is a multi-valued symbolic random variable, with each possible value taking one

or more values from the list of values in its domain X . We assume the complete list of

possible values in X to be finite, and it may include well-defined quantitative or categorical

values.

Taking the case of medical records retained by a health insurance corporation illustrated

in Section 2.1 as an example, we can see in Table 2.2 that after aggregation of the original

data, the “City/Town” variable is multi-valued with values to be lists of a number of cities

in which individual of different groups live. Descriptive statistics for multi-valued data can

be found in Bertrand and Goupil (2000) [9].

Histogram-valued Data

Suppose X to be a quantitative randome variable that takes values on a finite number of non-

overlapping intervals [ai, bi), i = 1, 2, ..., with ai ≤ bi. Then the realization of an observation

for this variable has the form

ξu = {[ai, bi), pui; i = 1, ..., su} (2.10)

where su < ∞ is the number of intervals forming the support for the realization for obser-

vation ξu, and pui is the weight for the subinterval [aui, bui), i = 1, ..., su, with
∑su

k=1 pui = 1.
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An example of histogram-valued data was given in Billard (2011) [12]. To describe claims

(in $1000’s) from 35-year-old females after data aggregation from an original automobile

insurance data set, it is more appropriate to use a histogram-valued realization, or called

“histogram data”:

Y = {[0, 2), 0.05; [2, 4), 0.25; [4, 6), 0.45; [6, 8), 0.20; [8, 10], 0.05}. (2.11)

This cannot be interval-valued data, since the assumption that values within the interval

are uniformly distributed across the interval cannot be satisfied in this context; now, the

frequencies’ values in different subintervals vary.

We can generalize (2.10) to a p-dimensional scenario easily. Suppose X = (X1, · · · , Xp)

is a vector of histogram-valued random variables. Then for each observation wu, the variable

Xj(u) takes values

Xj(wu) = {[aujk, bujk), pujk, k = 1, ..., suj} (2.12)

where the non-overlapping intervals ξujk = [aujk, bujk) have relative frequencies pujk, k =

1, ..., suj, with
∑suj

k=1 pujk = 1 and suj is the number of subintervals in the histogram.

Based on the assumption that all values within each subinterval [aijk, bijk), k = 1, ..., sij,

i = 1, ..., n, j = 1, ..., p, are uniformly distributed, Billard and Diday (2003) [13] defined the

empirical distribution function of a histogram-valued variable as well as the sample variance

for histogram-valued data, respectively. The empirical density function of Xj is expressed as

fXj(ξ) =
1

n

n∑
u=1

∑
k:ξ∈ξujk

pujk
1

bujk − aujk
. (2.13)

The symbolic sample mean for Xj is

X̄j =
1

2n

n∑
u=1

suj∑
k=1

pujk(aujk + bujk) (2.14)
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and the sample variance S2
j is

S2
j =

1

3n

n∑
u=1

suj∑
k=1

pujk[a
2
ujk + aujkbujk + b2ujk]−

1

4n2
[
n∑
u=1

suj∑
k=1

pujk(aujk + bujk)]
2. (2.15)

2.3 Studies on Symbolic Data Analysis

Current studies surrounding symbolic data analysis focus on the following aspects: (1) Prin-

ciple component analysis methods for interval-valued data have been studied and developed

by Cazes et al. (1997) [14], Lauro and Palumbo (2000) [15], Billard et al. (2008) [16] and

Le-Rademacher and Billard(2012, 2013, 2016) [17] [18] [19]; (2) Factorial discriminant anal-

ysis methods for interval-valued data were proposed by Palumbo and Verde (2000) [20] and

Lauro et al. (2000) [21] and were generalized to deal with face recognition by Hiremath

and Prabhakar (2008) [22]; Silva and Brito (2006) [23] studied linear discriminant analysis

for interval data and recently Silva and Brito (2015) [24] further proposed parametric and

distance-based approaches for discriminant analysis of interval data; (3) Multidimensional

scaling methods to deal with interval-valued and fuzzy dissimilarity data were proposed by

Denoeux and Masson (2000) [25] and Masson and Denoeux (2002) [26], respectively. It was

further introduced by Groenen et al. (2006) [27] and developed by Huang et al. (2006) [28]

using a rough set concept. Terada and Yadohisa (2011) [29] proposed a multidimensional

scaling method with the nested hypersphere model for percentile dissimilarities in a differ-

ent direction; (4) In terms of classification methods, Ichino et al. (1996) [30] introduced

a symbolic classifier as a region-oriented approach and Rasson and Lissoir (2000) [31] pro-

posed a symbolic kernel classifier based on dissimilarity functions for interval-valued data; a

tree-growing algorithm for classification was introduced by Perinel and Lechevallier (2000)

[32]; Dinesh, Gowda and Nagabhushan (2005) [33] proposed a new generalized similarity

symbolic distance measure for classification and Maia et al. (2008) [34] studied approaches
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to interval-valued time series forecasting; (5) For clustering methods on symbolic data, a

number of methods considering different types of symbolic data as well as clustering criteria

were proposed in the following major articles: Gowda and Diday (1991, 1992) [35] [36] illus-

trated an agglomerative approach that forms composite symbolic objects by a joint operator

based on minimum dissimilarity or maximum similarity in hierarchical clustering methods;

and Ichino and Yaguchi (1994) [37] defined generalized Minkowski metrics for mixed feature

variables and displayed dendrograms by standard linkage methods. Chavent (1998) [38] in-

troduced a divisive clustering method which simultaneously performs hierarchy of objects

and a monothetic characterization of each cluster; Guru et al. (2004) [39] and Guru and

Kiranagi (2005) [40] proposed agglomerative clustering algorithms based on similarity and

dissimilarity, respectively; and Kiranagi and Guru (2010) [41] introduced a new statistical

measure for estimating the degree of dissimilarity between two symbolic objects with fea-

tures of multivalued type and proposed interval type and magnitude type as two new simple

representation techniques for dissimilarity computation;

(6) Regarding partitioning clustering algorithms for interval-valued data, Bock (2002) [42]

proposed several clustering algorithms and Kohonen maps for symbolic data, Chavent and

Lechevallier (2002) [43] introduced a dynamic clustering algorithm for interval-valued data,

Souza and Carvalho (2004) [44] proposed partitioning clustering methods for interval-valued

data based on city-block distances. De Carvalho et al. (2006) [45] presented a partitional

dynamic clustering method for interval data based on adaptive Hausdorff distances, and De

Carvalho (2007) [46] introduced adaptive and non-adaptive fuzzy clustering c-means meth-

ods. De Souza et al. (2006) [47] proposed a partitioning method for mixed feature-type

symbolic data and Pimentel et al. (2011) [48] proposed a K-means clustering method based

on kernelized squared L2 distance for interval valued data.

In the framework of symbolic data analysis, a number of approaches on fitting linear

regression models to interval-valued data have been proposed, which will be introduced in
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detail in the next section.

2.4 Regression Methods on Symbolic Data

So far, studies of linear regression methods on symbolic data mainly surround interval-valued

data and several approaches have been proposed.

The initial method was introduced by Billard and Diday (2000) [2] which is to use the

centers of intervals to fit the regression model; Lima Neto et al. (2004) [4], de Carvalho et

al. (2004) [3] and Lima Neto and de Carvalho (2008) [5] then developed methods utilizing

both centers and ranges of intervals to fit regression models. Billard and Diday (2006) [1]

proposed an approach as an improvement of previous methods, which is to use centers and

ranges simultaneously in model fitting. Later on, a constrained method was introduced by

Lima Neto et al. (2005, 2010) [6] [7]. Recently, another method called “Symbolic Covariance

Method” was proposed by Xu (2010) [8]. This method utilizes the symbolic sample covariance

of (2.8) to compute the coefficient estimates in the regression equation. In this section, these

methods are reviewed briefly based on different categories.

The Center Method

Billard and Diday (2000) [2] proposed the first approach to fit a linear regression model to

interval-valued data. They fitted regression models using the centers of intervals by classical

methods and made predictions on the response variable by means of applying the model to

both lower and upper bounds of a new interval-valued observation. This approach is the

so-called center method (CM).

Denote Xj to be the jth variable among p independent interval-valued variables, and Y

is the response variable. Let Xij = [aij, bij] and Yi = [ci, di] be the ith observation of the vari-

able Xj and the ith observation of the response, respectively, where i = 1, ..., n, j = 1, ..., p.
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The center points of Xij and Yi can be expressed as

Xc
ij =

aij + bij
2

, Y c
i =

ci + di
2

, i = 1, ..., n, j = 1, ..., p. (2.16)

The fitted regression model is

Yc = Xcβc + εc (2.17)

where Yc = (Y c
1 , ..., Y

c
n )
′
, Xc = (Xc

1, ..., X
c
n)
′
,βc = (β0, β1, ..., βp), ε = (ε1, ..., εn)

′
and Xc

i =

(1, Xc
i1, ..., X

c
ip)
′

for i = 1, ..., n.

As for the linear regression model for classical data, the least squares estimator of βc is

β̂
c

= ((Xc)
′
Xc)−1(Xc)

′
Y c (2.18)

with the condition that Xc has full rank (p+ 1) ≤ n.

For a given observation X∗ = (1, X∗1 , ..., X
∗
p ), where X∗j = [X∗jL, X

∗
jU ], j = 1, ..., p, the

predicted value of the response is

Ŷ ∗ = [ŶL, ŶU ] = [X∗Lβ̂
c
,X∗U β̂

c
] (2.19)

where X∗L = (1, X∗1L, ..., X
∗
nL) and X∗U = (1, X∗1U , ..., X

∗
nU).

This approach only takes the center points of intervals into consideration when calculating

the parameters, while it ignores other important information such as the internal variation

within each observation.

Center and Range Method

The center and range method (CRM method) was introduced by Neto et al. (2004, 2008)

[4] [5] and de Carvalho et al. (2004) [3] to estimate the parameter β using not only center
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points but also ranges of intervals. In this method, the regression model on center points

is the same as in the CM method above, which has the form as (2.11), and the parameter

estimate can be expressed by (2.12).

In addition to the model built on center points, the CRM method considers another

model on the ranges of the intervals. Let Xr
ij and Y r

i , i = 1, ..., n, j = 1, ..., p, be the ranges

of the interval-valued data, with Xr
ij = (bij−aij), Y r

i = (di− ci). Then, the regression model

on the range is

Yr = Xrβr + εr (2.20)

where Yr = (Y r
1 , ..., Y

r
n )
′
, Xr = (1, Xr

1 , ..., X
r
n)
′
,βr = (βr0 , β

r
1 , ..., β

r
p), ε = (εr1, ..., ε

r
n)
′

and

Xr
i = (1, Xr

i1, ..., X
r
ip)
′

for i = 1, ..., n.

As in (2.12), the least squares estimate of βr is

β̂
r

= ((Xr)
′
Xr)−1(Xr)

′
Y r (2.21)

with the condition that Xr has full rank (p+ 1) ≤ n.

For a given observation X∗ = (X∗1 , ..., X
∗
p ), where X∗j = [a∗j , b

∗
j ], j = 1, ..., p, the predicted

value of the response is given by

Ŷ ∗ = [ŶL, ŶU ] = [Ŷ c − Ŷ r

2
, Ŷ c +

Ŷ r

2
] (2.22)

where Ŷ c = Xc∗β̂c, Ŷ r = Xr∗β̂r, and Xc∗ = (Xc∗
1 , ..., X

c∗
p ), Xc∗

j =
a∗j+b

∗
j

2
,Xr∗ = (Xr∗

1 , ..., X
r∗
p ),

Xr∗
j = b∗j − a∗j , j = 1, ..., p.
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Bivariate Center and Range Method

For the CRM method, it is assumed that center points and ranges are independent and it

builds two regression models on each of them separately. In Billard and Diday (2006) [1], the

center points and ranges are considered simultaneously and a bivariate model was created

without assuming they are independent. In this approach, we have the model form to be

Y = Xβ + ε (2.23)

where Y = (Yc′ ,YrT )
′
, Yc = (Y c

1 , ..., Y
c
n )
′

and Yr = (Y r
1 , ..., Y

r
n )
′
, representing for the

center points and the ranges of response values; and X = (X1, ...,Xn)
′

= (Xc,Xr), Xi =

(1,Xc
i ,X

r
i ) = (1, Xc

i1, ..., X
c
ip, X

r
i1, ..., X

r
ip) for i = 1, ..., n, where Xc

ij, X
r
ij, i = 1, ..., n; j =

1, ..., p, represent values of the center points and ranges of the ith observation on the jth

predictor, and β = (β0, β
c
1, ..., β

c
p, β

r
1 , ..., β

r
p)
′
. On the condition that X is of full rank (2p+1) ≤

n, the least squares estimator of β is

β̂ = (β̂
c
, β̂

r
)
′
) = (X

′
X)−1X

′
Y. (2.24)

For a given observation X∗ = (X∗1 , ..., X
∗
p ) with the center point and the range to be X∗c =

(1, X∗c1 , ..., X
∗c
p ) and X∗r = (X∗r1 , ..., X

∗r
p ), the predicted value of the response is

Ŷ ∗ = [ŶL, ŶU ] = [Ŷ c − Ŷ r

2
, Ŷ c +

Ŷ r

2
] = [X∗cβ̂

c
− 1

2
X∗rβ̂

r
,X∗cβ̂

c
+

1

2
X∗rβ̂

r
]. (2.25)

Additionally, Billard and Diday (2006) [1] considers interactions between center points

and ranges. In this approach, interaction terms between the center point and range are

added into the model. The ith predictor vector of the n observations is expressed as

(1, Xc
i1, ..., X

c
ip, X

r
i1, ..., X

r
ip, X

c
i1 ×Xr

i1, ..., X
c
ip ×Xr

ip)
′
. (2.26)
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Other settings of the model remains the same as the model without interaction considerations

in (2.23).

The center and range methods take both center points and ranges into account in fitting

linear regression models on interval-valued data. However, one problem of these methods is

the value of the coefficient estimate for range cannot be guaranteed to be always positive.

Thus, a negative value will result in the situation that the lower bound of predicted response

value is larger than the upper bound.

Constrained Method

For the purpose of solving the problem identified at the end of Section 2.4.3, Neto et al. (2005,

2010) [6] [7] proposed the constrained method (CONM method). Within this framework,

the constrained center method was introduced first and then it was further developed as the

constrained center and range method.

For the constrained center method, the model has the form

Yc = Xcβ + ε (2.27)

where β = (β0, ..., βp)
′

with constraints βj ≥ 0, j = 0, ..., p. For the constrained center and

range method, the model settings are the same as those in the bivariate center and range

method, except for constraints βrj ≥ 0, j = 0, ..., p. To guarantee the constraints of non-

negativeness on β, Neto et al. (2005, 2010) [6] [7] used an algorithm by Lawson and Hanson

(1974) [49] and modified it to adapt to the constrained center and range method. This

algorithm identifies the negative elements of the least squares estimate of coefficient vector

β and changes them to non-negative values by a process of re-weighting.

Though this approach prevents the situation that the lower bound of the predicted re-

sponse value is larger than the upper bound from happening, it fails to discover the real
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nature of the data when the true parameter βj < 0, so therefore provides improper esti-

mates.

Symbolic Covariance Method

Xu (2010) [8] proposed a symbolic covariance method (SCM) to fit linear regression models

on interval-valued data. By utilizing the symbolic sample covariance of (2.8), this method

makes full use of both external and internal variations of data. To illustrate this method,

we use the same notations as in Xu (2010) [8] below.

In the situation of classical data where p predictor variables are considered, we have the

model to be

Y = β0 + β1X1 + · · ·+ βpXp + ε. (2.28)

Let

β0 ≡ Ȳ − (β1X̄1 + · · ·+ βpX̄p). (2.29)

Then (2.28) can be written as

Y − Ȳ = β1(X1 − X̄1) + · · ·+ βp(Xp − X̄p) + ε (2.30)

where X̄j = 1
n

∑n
i=1Xi, Ȳ = 1

n

∑n
i=1 Yi, and n is the number of observations. Based on the

form (2.30), the least squares coefficient vector estimate is obtained as

β̂ = ((X− X̄)
′
(X− X̄))−1(X− X̄)

′
(Y − Ȳ) (2.31)

where X = (1,X1, ...,Xp),Xi = (1, Xi1, ..., Xin)
′
, i = 1, ..., p, and Y = (Y1, ..., Yn)

′
. Then, we
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have

(X− X̄)
′
(X− X̄) =


∑n

i=1(X1i − X̄1)
2 · · ·

∑n
i=1(X1i − X̄1)(Xpi − X̄p)

...
...

...∑n
i=1(Xpi − X̄p)(X1i − X̄1) · · ·

∑n
i=1(Xpi − X̄p)

2


p×p

=

(∑n
i=1(Xj1i − X̄j1)(Xj2i − X̄j2)

)
p×p

= (n× Cov(Xj1 , Xj2))p×p, j1, j2 = 1, ..., p, (2.32)

and

(X− X̄)
′
(Y − Ȳ) =

(∑n
i=1(Xji − X̄j)(Yi − Ȳ )

)
p×1

= (n× Cov(Xj, Y ))p×1, i, j = 1, ..., p. (2.33)

Substituting (2.32) and (2.33) to (2.31), we obtain

β̂ = (n× Cov(Xj1, Xj2))
−1
p×p × (n× Cov(Xj, Y ))p×1. (2.34)

Assume for the ith interval-valued observation, the response value and the jth predictor

values are Yi = [ci, di] and Xij = [aij, bij], respectively, i = 1, ..., n, j = 1, ..., p. By (2.8), we

can obtain

Cov(Xj1 , Xj2) =
1

6n

n∑
i=1

[2(aij1−X̄j1)(aij2−X̄j2)+(aij1−X̄j1)(bij2−X̄j2)+(bij1−X̄j1)(bij2−X̄j2)]

(2.35)

and

Cov(Xj, Y ) =
1

6n

n∑
i=1

[2(aij − X̄j)(ci − Ȳ ) + (aij − X̄j)(di − Ȳ ) + (bij − X̄j)(di − Ȳ )] (2.36)
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where

Ȳ =
1

n

n∑
i=1

ci + di
2

, X̄j1 =
1

n

n∑
i=1

aij1 + bij1
2

, X̄j2 =
1

n

n∑
i=1

aij2 + bij2
2

, X̄j =
1

n

n∑
i=1

aij + bij
2

and i = 1, ..., n; j, j1, j2 = 1, ..., p. Substituting (2.35) and (2.36) into (2.34), we obtain the

estimate of (β1, ..., βp), and further the estimate of β0 from the equation

β̂0 = Ȳ − (β̂1X̄1 + · · ·+ β̂pX̄p). (2.37)

If we denote the lower bound and upper bound of a new interval-valued realization for

the predictor to be Xnew
L and Xnew

U , respectively, and the coefficient estimate to be β̂, then

the SCM method chooses the smaller value and the larger value of {Xnew
L β̂, Xnew

U β̂} to

be the lower and upper bounds of the predicted response respectively, which avoids the

situation that the predicted lower bound is larger than the predicted upper bound for the

response. Based on the simulation study by Xu (2010) [8], the proposed method has superior

performance in terms of estimation compared to previous methods.
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2.5 APPENDIX

R Function to Calculate the Symbolic Variance-Covariance Matrix

sym_cov <- function(...){

vars <- list(...)

p <- length(vars)

m <- length(vars[[1]][,1])

# x <- rep(0, m*p*2)

# dim(x) <- c(m, 2, p)

cov <- matrix(0, p, p) # covariance matrix

corr <- matrix(0, p, p) # correlation matrix

tmp <- matrix(0, p, 2)

x_mean <- rep(0, p) # variable means

# calculate the means

for (i in 1:p){

for (j in 1:2){

tmp[i,j] <- mean(vars[[i]][,j])

}

x_mean[i] <- mean(tmp[i,])

}

# calculate variance-covariance matrix of all pairs of variables

for (k in 1:p){

for (l in 1:p){
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q <- 0

for (r in 1:m){

q <- q + 2*(vars[[k]][r,1]-x_mean[k])*(vars[[l]][r,1]-x_mean[l])

+ (vars[[k]][r,1]-x_mean[k])*(vars[[l]][r,2]-x_mean[l])

+ (vars[[k]][r,2]-x_mean[k])*(vars[[l]][r,1]-x_mean[l])

+ 2*(vars[[k]][r,2]-x_mean[k])*(vars[[l]][r,2]-x_mean[l])

}

cov[k,l] <- q/6/m

}

}

# correlation matrix

for (k in 1:p){

for (l in 1:p){

corr[k,l] <- cov[k,l] / sqrt(cov[k,k]) / sqrt(cov[l,l])

}

}

return(list(cov, corr))

# return(x_mean)

}
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Chapter 3

LIKELIHOOD METHOD FOR

INTERVAL DATA REGRESSION

In Chapter 2, we reviewed previous studies of linear regression methods for symbolic interval-

valued data. Only a few of them have dealt with issues surrounding inference on the regres-

sion coefficient estimates. In addition, all the information in the data is not fully utilized by

those methods. In this chapter, we introduce a novel approach, including point estimation

as well as confidence intervals for interval data regression methods.

The remainder of this chapter is arranged as follows. Section 3.1 demonstrates the

problem, by outlining the basic settings of interval-valued regression models. Section 3.2 first

illustrates the residual forms, with two different assumptions on the residuals for interval-

valued regression analyses; then this section demonstrates our approach for point estimation

and confidence interval of regression coefficients. Section 3.3 gives predictions by the new

approach. Section 3.4 discusses how to determine the likelihood function form used for

statistical inference.
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3.1 Introduction

Assume we have n observations in a data set with response variable Y and p explanatory

variables X1, ..., Xp. Denote Xj to be the jth variable among the p explanatory interval-

valued variables, Xij to be the ith observation of the jth variable, and Yi to be the ith

observation of the response. Let the lower cases xij, yi denote the realizations of Xij and

Y , respectively. Then, xij = [xLij, xUij] and yi = [yLi, yUi] with xLij ≤ xUij, yLi ≤ yUi

can represent the ith realization of variable Xj and the ith realization of the response,

respectively, where i = 1, ..., n, j = 1, ..., p.

For a linear regression model, based on the above notation the interval-valued design

matrix, denoted by X, has the form as follows:

X =


1 x11 · · · x1p

1
...

. . .
...

1 xn1 · · · xnp

 =


1 [xL11, xU11] · · · [xL1p, xU1p]

1
...

. . .
...

1 [xLn1, xUn1] · · · [xLnp, xUnp]

 (3.1)

where xLij ≤ xUij for all i = 1, ..., n, and j = 1, ..., p, with p < n. Note that the point value

in the first column of X, x0 = 1 can be written as the interval x0 = [1, 1]. The response

variable Y has the form

Y =


Y1
...

Yn

 =


[yL1, yU1]

...

[yLn, yUn]

 . (3.2)

The linear regression model for interval-valued data is as follows:

Y = Xβ + ε (3.3)

where the parameter vector β = (β0, β1, ..., βp)
′

with βj denoting the effect of the jth ex-

planatory variable Xj to the response variable Y , for j = 1, ..., p, and β0 represents the
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intercept. The error term ε has the form

ε =


ε1
...

εn

 =


[εL1, εU1]

...

[εLn, εUn]

 . (3.4)

For now we consider the scenario of a simple linear regression model. The proposed idea

can be extended without losing generality to multiple regression models.

The simple linear regression model for interval-valued data can be written as:

[YLi, YUi] = β0 + [XLi, XUi]β1 + [εLi, εUi], i = 1, ..., n, (3.5)

where XLi, YLi and XUi, YUi represent realizations of lower points and upper points of the

explanatory and response variables, respectively; β0 and β1 are parameters of the intercept

and the slope, respectively; the error term is interval-valued, with εLi being the error for the

lower bound of response, and εUi being the error for the upper bound of response, respectively.

For the error term, there are two different assumptions to be given in the next section.

Each of the assumptions can be considered appropriate to describe interval-valued data,

depending on different ways the data sets arise.

3.2 Methodology

In this section, we first illustrate two different assumptions on the error term, together

with the corresponding forms of residuals. Then, we propose an approach to obtain point

estimators and confidence intervals for the regression coefficients in interval-valued regression

models by the second assumption. The method is developed utilizing the maximum likelihood

principle. By this approach, distributions of the coefficient estimators can be obtained, and
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issues surrounding point estimation as well as confidence interval are resolved based on the

theoretical results.

Assumptions on the Error Term and Forms of Errors

Assumption I: Order Statistic

For the first assumption, let us suppose for the ith observation, the error for the lower

response and the error for the upper response are dependent, for i = 1, ..., n. Using the same

notation as in (3.5), we assume εLi ≤ εUi, and further, εLi and εUi are the order statistics

of a random sample of size two from a normal distribution with mean zero and constant

variance, for i = 1, ..., n; i.e.,

εLi = ε(1)i, εUi = ε(2)i, ε(1)i, ε(2)i ∼ N(0, σ2), i = 1, ..., n. (3.6)

We consider the assumption of (3.6) is appropriate according to the following aspects:

1) Based on basic assumptions of interval-valued data, realizations are uniformly distributed

within an interval observation but normally distributed across observations. Therefore, the

error term of the linear regression model, coming from the difference between the interval-

valued response and the linear combination of interval-valued covariates, can be normally

distributed with mean zero.

2) Similar to classical linear regression models, from the perspective of residuals, the error

ε represents variation in the response variable Y which is not explained by the predictors.

Thus it is advisable to assume normality on the remaining variability after removing the

effects of the predictors.

3) Under some circumstances, the lower and upper residuals for the same interval-valued

observation by a linear model are dependent, and so we can initially consider that the lower

residual is smaller than or equal to the upper residual. The order statistic assumption on
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the error term is consistent to this condition.

4) Constant variance of the error term indicates the variance does not change across differ-

ent levels of the predictors, which is essential to guarantee that the linear model properly

describes the relationship between the explanatory variable and the response variable, and

provides advisable conclusions.

By (3.5), in order to ensure εLi is no larger than εUi, for i = 1, ..., n, the forms of [εLi, εUi]

are given depending on the sign of the slope parameter β1, under universal conditions as

follows:

YLi ≤ YUi, XLi ≤ XUi, ŶLi = β̂0 + β̂1XLi, ŶUi = β̂0 + β̂1XUi, (3.7)

for i = 1, ..., n, where β̂0 and β̂1 are coefficient estimators for the intercept and the slope,

respectively. To illustrate how we obtain the forms of residuals, we generate Figures 3.1 -

3.12 below as schematic diagrams. Points on each figure represents a certain interval-valued

observation in the sample, with the index i.

(1) For β1 ≥ 0

Since the slope is not less than zero, ŶLi and ŶUi are the predicted lower and upper points

of the ith response value by the linear regression, for i = 1, ..., n.

Scenario I

In this scenario, the observed response interval (yLi, yUi) is contained within the predicted

interval (ŷLi, ŷUi) as illustrated in Figure 3.1.
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Figure 3.1: Scenario I, when β1 ≥ 0

From Figure 3.1 above, we have

YUi − ŶUi = YUi − β̂0 − β̂1XUi < 0 < YLi − β̂0 − β̂1XLi = YLi − ŶLi. (3.8)

Then to satisfy the basic assumption that εLi ≤ εUi, we denote


εLi

4
= min{YUi − ŶUi, YLi − ŶLi} = YUi − ŶUi = YUi − β̂0 − β̂1XUi,

εUi
4
= max{YUi − ŶUi, YLi − ŶLi} = YLi − ŶLi = YLi − β̂0 − β̂1XLi.

(3.9)

Scenario II

In this scenario, the predicted response interval (ŷLi, ŷUi) is contained within the observed

interval (yLi, yUi) as illustrated in Figure 3.2.
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Figure 3.2: Scenario II, when β1 ≥ 0

From Figure 3.2, we have

YLi − ŶLi = YLi − β̂0 − β̂1XLi < 0 < YUi − β̂0 − β̂1XUi = YUi − ŶUi. (3.10)

To satisfy the basic assumption that εLi ≤ εUi, we need that


εLi

4
= min{YUi − ŶUi, YLi − ŶLi} = YLi − ŶLi = YLi − β̂0 − β̂1XLi,

εUi
4
= max{YUi − ŶUi, YLi − ŶLi} = YUi − ŶUi = YUi − β̂0 − β̂1XUi.

(3.11)

Scenario III

In this scenario, both of the predicted response lower and upper points, ŷLi and ŷUi are

larger than the observed response lower and upper points, yLi and yUi, respectively, and the

absolute value of the difference between the predicted and observed response lower points is
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greater than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.3.

Figure 3.3: Scenario III, when β1 ≥ 0

From Figure 3.3, we have

YLi − ŶLi = YLi − β̂0 − β̂1XLi < YUi − β̂0 − β̂1XUi = YUi − ŶUi < 0. (3.12)

To satisfy the basic assumption that εLi ≤ εUi, we have


εLi

4
= min{YUi − ŶUi, YLi − ŶLi} = YLi − ŶLi = YLi − β̂0 − β̂1XLi,

εUi
4
= max{YUi − ŶUi, YLi − ŶLi} = YUi − ŶUi = YUi − β̂0 − β̂1XUi.

(3.13)

Scenario IV

As in Scenario III, both of the predicted response lower and upper points, ŷLi and ŷUi are
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larger than the observed response lower and upper points, yLi and yUi, respectively, but the

absolute value of the difference between the predicted and observed response lower points is

smaller than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.4.

Figure 3.4: Scenario IV, when β1 ≥ 0

From Figure 3.4 above, we have

YUi − ŶUi = YUi − β̂0 − β̂1XUi < YLi − β̂0 − β̂1XLi = YLi − ŶLi < 0. (3.14)

To satisfy the basic assumption that εLi ≤ εUi, we need to define


εLi

4
= min{YUi − ŶUi, YLi − ŶLi} = YUi − ŶUi = YUi − β̂0 − β̂1XUi,

εUi
4
= max{YUi − ŶUi, YLi − ŶLi} = YLi − ŶLi = YLi − β̂0 − β̂1XLi.

(3.15)
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Scenario V

In this scenario, both of the predicted response lower and upper points, ŷLi and ŷUi, are

smaller than the observed response lower and upper points, yLi and yUi, respectively, and the

absolute value of the difference between the predicted and observed response lower points is

smaller than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.5.

Figure 3.5: Scenario V, when β1 ≥ 0

From Figure 3.5 above, we have

0 < YLi − ŶLi = YLi − β̂0 − β̂1XLi < YUi − β̂0 − β̂1XUi = YUi − ŶUi. (3.16)
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To satisfy εLi ≤ εUi, we set


εLi

4
= min{YUi − ŶUi, YLi − ŶLi} = YLi − ŶLi = YLi − β̂0 − β̂1XLi,

εUi
4
= max{YUi − ŶUi, YLi − ŶLi} = YUi − ŶUi = YUi − β̂0 − β̂1XUi.

(3.17)

Scenario VI

As in Scenario V, both of the predicted response lower and upper points, ŷLi and ŷUi, are

smaller than the observed response lower and upper points, yLi and yUi, respectively, but the

absolute value of the difference between the predicted and observed response lower points is

larger than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.6.

Figure 3.6: Scenario VI, when β1 ≥ 0
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From Figure 3.6, we have

0 < YUi − ŶUi = YUi − β̂0 − β̂1XUi < YLi − β̂0 − β̂1XLi = YLi − ŶLi. (3.18)

To satisfy εLi ≤ εUi, we have


εLi

4
= min{YUi − ŶUi, YLi − ŶLi} = YUi − ŶUi = YUi − β̂0 − β̂1XUi,

εUi
4
= max{YUi − ŶUi, YLi − ŶLi} = YLi − ŶLi = YLi − β̂0 − β̂1XLi.

(3.19)

Unifying the results of all these 6 scenarios, we obtain the forms of the lower and upper

points of the error as:

[εLi, εUi] = [min{YLi−XLiβ1−β0, YUi−XUiβ1−β0},max{YLi−XLiβ1−β0, YUi−XUiβ1−β0}],

(3.20)

for i = 1, ..., n.

(2) For β1 < 0

Note that since the slope is less than zero and XLi ≤ XUi, by (3.7), we have

ŶUi = β̂0 + β̂1XUi ≤ β̂0 + β̂1XLi = ŶLi, (3.21)

for i = 1, ..., n. Therefore, ŶLi is the predicted upper point, while ŶUi is the predicted lower

point of the ith response value by the linear regression model, for i = 1, ..., n.

Scenario I

In this scenario, the observed response interval (yLi, yUi) is contained within the predicted

34



interval (ŷLi, ŷUi) as illustrated in Figure 3.7.

Figure 3.7: Scenario I, when β1 < 0

From Figure 3.7, we have

YUi − ŶLi = YUi − β̂0 − β̂1XLi < 0 < YLi − β̂0 − β̂1XUi = YLi − ŶUi. (3.22)

To satisfy the basic assumption that εLi ≤ εUi, then


εLi

4
= min{YUi − ŶLi, YLi − ŶUi} = YUi − ŶLi = YUi − β̂0 − β̂1XLi,

εUi
4
= max{YUi − ŶLi, YLi − ŶUi} = YLi − ŶUi = YLi − β̂0 − β̂1XUi.

(3.23)

Scenario II

In this scenario, the predicted response interval (ŷLi, ŷUi) is contained within the observed

interval (yLi, yUi) as illustrated in Figure 3.8.
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Figure 3.8: Scenario II, when β1 < 0

From Figure 3.8, we have

YLi − ŶUi = YLi − β̂0 − β̂1XUi < 0 < YUi − β̂0 − β̂1XLi = YUi − ŶLi. (3.24)

To satisfy the basic assumption that εLi ≤ εUi, then


εLi

4
= min{YUi − ŶLi, YLi − ŶUi} = YLi − ŶUi = YLi − β̂0 − β̂1XUi,

εUi
4
= max{YUi − ŶLi, YLi − ŶUi} = YUi − ŶLi = YUi − β̂0 − β̂1XLi.

(3.25)

Scenario III

In this scenario, both of the predicted response lower and upper points, ŷLi and ŷUi, are

larger than the observed response lower and upper points, yLi and yUi, respectively, and the

absolute value of the difference between the predicted and observed response lower points is
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greater than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.9.

Figure 3.9: Scenario III, when β1 < 0

From Figure 3.9, we have

YLi − ŶUi = YLi − β̂0 − β̂1XUi < YUi − β̂0 − β̂1XLi = YUi − ŶLi < 0. (3.26)

To satisfy εLi ≤ εUi, then we have


εLi

4
= min{YUi − ŶLi, YLi − ŶUi} = YLi − ŶUi = YLi − β̂0 − β̂1XUi,

εUi
4
= max{YUi − ŶLi, YLi − ŶUi} = YUi − ŶLi = YUi − β̂0 − β̂1XLi.

(3.27)

Scenario IV

As in Scenario III, both of the predicted response lower and upper points, ŷLi and ŷUi, are
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larger than the observed response lower and upper points, yLi and yUi, respectively, but the

absolute value of the difference between the predicted and observed response lower points is

smaller than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.10.

Figure 3.10: Scenario IV, when β1 < 0

From Figure 3.10, we have

YUi − ŶLi = YUi − β̂0 − β̂1XLi < YLi − β̂0 − β̂1XUi = YLi − ŶUi < 0. (3.28)

To satisfy εLi ≤ εUi, then we need


εLi

4
= min{YUi − ŶLi, YLi − ŶUi} = YUi − ŶLi = YUi − β̂0 − β̂1XLi,

εUi
4
= max{YUi − ŶLi, YLi − ŶUi} = YLi − ŶUi = YLi − β̂0 − β̂1XUi.

(3.29)
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Scenario V

In this scenario, both of the predicted response lower and upper points, ŷLi, and ŷUi are

smaller than the observed response lower and upper points, yLi and yUi, respectively, and the

absolute value of the difference between the predicted and observed response lower points is

smaller than the absolute value of the difference between the predicted and observed response

upper points, which is as illustrated in Figure 3.11.

Figure 3.11: Scenario V, when β1 < 0

From Figure 3.11, we have

0 < YLi − ŶUi < YUi − ŶLi. (3.30)
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To satisfy εLi ≤ εUi, then we define


εLi

4
= min{YUi − ŶLi, YLi − ŶUi} = YLi − ŶUi = YLi − β̂0 − β̂1XUi,

εUi
4
= max{YUi − ŶLi, YLi − ŶUi} = YUi − ŶLi = YUi − β̂0 − β̂1XLi.

(3.31)

Scenario VI

As in the Scenario V, both of the predicted response lower and upper points, ŷLi and ŷUi,

are smaller than the observed response lower and upper points, yLi and yUi, respectively,

but the absolute value of the difference between the predicted and observed response lower

points is larger than the absolute value of the difference between the predicted and observed

response upper points, which is as illustrated in Figure 3.12.

Figure 3.12: Scenario VI, when β1 < 0
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From Figure 3.12, we have

0 < YUi − ŶLi < YLi − ŶUi. (3.32)

To satisfy εLi ≤ εUi, then we have


εLi

4
= min{YUi − ŶLi, YLi − ŶUi} = YUi − ŶLi = YUi − β̂0 − β̂1XLi,

εUi
4
= max{YUi − ŶLi, YLi − ŶUi} = YLi − ŶUi = YLi − β̂0 − β̂1XUi.

(3.33)

Combining the results of all these 6 scenarios, we have:

[εLi, εUi] = [min{YLi−XUiβ1−β0, YUi−XLiβ1−β0},max{YLi−XUiβ1−β0, YUi−XLiβ1−β0}],

(3.34)

for i = 1, ..., n.

Next, we generate the likelihood function of the errors for the linear regression model

(3.5), based on the order statistic assumption.

First we illustrate the joint distribution of (εLi, εUi), for i = 1, ..., n. Based on the

assumption (3.6), the probability density function of εi is

fεi(x) =
1√
2πσ

e−
x2

2σ2 ,−∞ < x <∞, i = 1, ..., n. (3.35)

We use the theorem on the joint probability density of order statistics of a random sample

(Casella and Berger, 2002 [50], Theorem 5.4.6):

Let X(1), ..., X(n) denote the order statistics of a random sample, X1, ..., Xn, from a con-

tinuous population with cumulative density function FX(x) and probability density function
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fX(x). Then, the joint probability density function of X(i) and X(j), 1 ≤ i < j ≤ n, is

fX(i),X(j)
(u, v) =

n!

(i− 1)!(j − 1− i)!(n− j)!
fX(u)fX(v)[FX(u)]

i−1

×[FX(v)− FX(u)]j−1−i[1− FX(v)]n−j , −∞ < u < v <∞. (3.36)

In our case, we have n = 2, and we are interested in the order statistics (i) = (1) and

(j) = (n). Thus, we can derive the joint distribution of (εLi, εUi), i = 1, ..., n, with probability

density function to be

g(εLi, εUi) =
2!

1!0!0!
fεi(εLi)fεi(εUi)

=
1

πσ2
e−

1
2σ2

(ε2Li+ε
2
Ui),−∞ < εLi < εUi <∞. (3.37)

Assuming the errors [εLi, εUi] are independent across observations, i = 1, ..., n, by (3.35),

we can show that the likelihood function of the errors is as follows:

L(εL1, εU1, ..., εLn, εUn) =
n∏
i=1

g(εLi, εUi)

= (πσ2)−nexp(− 1

2σ2

n∑
i=1

(ε2Li + ε2Ui))
n∏
i=1

I(εLi ≤ εUi) (3.38)

where g(εLi, εUi) is obtained in (3.37).

Assumption II: Independence

For the second assumption, suppose εLi and εUi are independent for i = 1, ..., n, and are

normally distributed with mean zero and constant variance, i.e.,

εLi, εUi
iid∼ N(0, σ2), i = 1, ..., n. (3.39)
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Compared with the first assumption, independence between the error for the lower bound

of response and the error for the upper bound of response is the only difference. This

assumption is appropriate from the point of view that corresponding to the error term, both

of the residuals by the lower and the upper bounds of response are caused by a random

component that failed to be explained by the linear combination of explanatory variables.

Therefore, the residuals are random, and can be considered as independent both within and

across observations.

By (3.5), we have the universal conditions: YLi ≤ YUi and XLi ≤ XUi. The forms of YLi

and YUi by the linear regression model vary depending on the sign of the slope parameter

β1. For β1 ≥ 0,

YLi = β0 + β1XLi + εLi, YUi = β0 + β1XUi + εUi, (3.40)

while for β1 < 0,

YLi = β0 + β1XUi + εLi, YUi = β0 + β1XLi + εUi (3.41)

for i = 1, ..., n, where εLi and εUi represent the errors for the lower bound and upper bound

of the response, respectively.

When β1 ≥ 0, we denote ŶLi and ŶUi to be the predicted lower and upper points of the ith

response value by the linear regression, and rLi and rUi to be the lower and upper residuals

for the ith response, i = 1, ..., n. With the assumption given by (3.39), and by (3.7), we have

ŶLi = β̂0 + β̂1XLi, rLi = YLi − ŶLi = YLi − β̂0 − β̂1XLi, (3.42)

ŶUi = β̂0 + β̂1XUi, rUi = YUi − ŶUi = YUi − β̂0 − β̂1XUi. (3.43)

When β1 < 0, by (3.7), since ŶLi = β̂0 + β̂1XLi > β̂0 + β̂1XUi = ŶUi, we denote the

predicted upper point of the ith response value to be ŶLi, and the predicted lower point of

the ith response value to be ŶUi. Therefore, letting rLi and rUi denote the lower and upper
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residuals for the ith response, we have

rLi = YLi − ŶUi = YLi − β̂0 − β̂1XUi, (3.44)

rUi = YUi − ŶLi = YUi − β̂0 − β̂1XLi, (3.45)

for i = 1, ..., n.

Figure 3.13 displays the relations between the interval predicted response value [ŶLi, ŶUi]

and the interval realization of the explanatory variable [XLi, XUi] by different signs of the

slope parameter.

Figure 3.13: Relations between [ŶLi, ŶUi] and [XLi, XUi]

Based on (3.39), we generate the likelihood function of the random error for the linear

regression model (3.5) under the second assumption.

By (3.35), the joint distribution of (εLi, εUi), i = 1, ..., n, with probability density function

44



is

g(εLi, εUi) = fεi(εLi)fεi(εUi)

=
1

2πσ2
e−

1
2σ2

(ε2Li+ε
2
Ui),−∞ < εLi, εUi <∞. (3.46)

Since [εLi, εUi] are independent across observations, i = 1, ..., n, the likelihood function of the

random error is:

L(εL1, εU1, ..., εLn, εUn) =
n∏
i=1

g(εLi, εUi)

= (2πσ2)−nexp(− 1

2σ2

n∑
i=1

(ε2Li + ε2Ui)) (3.47)

where g(εLi, εUi) is obtained in (3.46).

Point Estimation for Regression Coefficients

In this section, we first generate the point estimators for the regression coefficients by means

of the independence assumption and the maximum likelihood principle, and then study their

properties. There are two reasons why we choose the second assumption on the error term.

The first is that the independence between the error for the lower bound of response and the

error for the upper bound of response is more appropriate in terms of the establishments and

interpretations of linear regression models, especially for interval-valued data sets obtained

by data aggregation. The second is that by choosing the first assumption, we have to consider

the non-negative correlation between the lower and upper residuals within each observation,

which is complicated, in order to do statistical inference on the linear regression model. As

we are at the initial stage of the methodology development, it is more feasible to choose

the second assumption. Further development of the first option will be deferred for future

research.
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Maximum Likelihood Estimators of β0 and β1

Let us consider obtaining the maximum likelihood estimator (MLE) of the parameters β0

and β1. By (3.40) and (3.41),

εLi = YLi − β0 − β1XLi, εUi = YUi − β0 − β1XUi, when β1 ≥ 0, (3.48)

εLi = YLi − β0 − β1XUi, εUi = YUi − β0 − β1XLi, when β1 < 0, (3.49)

for i = 1, ..., n. Replacing εLi and εUi in (3.46) by (3.48) or (3.49), depending on whether

β1 is positive or negative, we can express the likelihood function of the random error as a

function of the intercept and the slope parameters. We consider each case in turn.

(1) For β1 ≥ 0

When the slope parameter β1 ≥ 0, we have, from (3.47) and (3.48),

L(εL1, εU1, ..., εLn, εUn) = (πσ2)−nexp{− 1

2σ2

n∑
i=1

[(YLi−XLiβ1− β0)2 + (YUi−XUiβ1− β0)2]}.

(3.50)

Then, the log-likelihood function is

l = logL(εL1, εU1, ..., εLn, εUn) = −nlogπ − nlogσ2

− 1

2σ2

n∑
i=1

[(YLi −XLiβ1 − β0)2 + (YUi −XUiβ1 − β0)2].

Taking the first derivative of l with respect to β1 and β0 gives

∂l

∂β1
=

1

σ2

n∑
i=1

[XLiYLi +XUiYUi − β1(X2
Li +X2

Ui)− β0(XLi +XUi)], (3.51)

∂l

∂β0
=

1

σ2
[
n∑
i=1

(YLi + YUi)−
n∑
i=1

(XLi +XUi)β1 − 2nβ0]. (3.52)
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Then setting the derivatives evaluated at β = β̂ to be 0, respectively, i.e., ∂l
∂β1
|β=β̂ = 0 and

∂l
∂β0
|β=β̂ = 0, we have:



∂l
∂β1
|β=β̂ = 1

σ2

∑n
i=1[XLiYLi +XUiYUi − β1(X2

Li +X2
Ui)− β0(XLi +XUi)]|β=β̂

4
= 0,

∂l
∂β0
|β=β̂ = 1

σ2 [
∑n

i=1(YLi + YUi)−
∑n

i=1(XLi +XUi)β1 − 2nβ0]|β=β̂
4
= 0.

(3.53)

Solving (3.53) for β̂1 and β̂0, we obtain

β̂1 =

∑n
i=1(XLi +XUi)

∑n
i=1(YLi + YUi)− 2n

∑n
i=1(XLiYLi +XUiYUi)

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)
, (3.54)

β̂0 =
1

2n

n∑
i=1

(YLi + YUi)

− 1

2n

[
∑n

i=1(XLi +XUi)]
2
∑n

i=1(YLi + YUi)− 2n
∑n

i=1(XLiYLi +XUiYUi)
∑n

i=1(XLi +XUi)

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)
.

(3.55)

Since ∂2l
∂β2

1
|β1=β̂1 < 0, and ∂2l

∂β2
0
|β0=β̂0 < 0, the estimators β̂1 and β̂0 are indeed MLE estimators.

(2) For β1 < 0

When the slope parameter β1 < 0, we proceed as we did for β1 > 0. By (3.47) and (3.49),

L(εL1, εU1, ..., εLn, εUn) = (πσ2)−nexp{− 1

2σ2

n∑
i=1

[(YLi−XUiβ1− β0)2 + (YUi−XLiβ1− β0)2]},

(3.56)

and the log-likelihood function is

l = logL(εL1, εU1, ..., εLn, εUn) = −nlogπ − nlogσ2

− 1

2σ2

n∑
i=1

[(YLi −XUiβ1 − β0)2 + (YUi −XLiβ1 − β0)2].
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Setting ∂l
∂β1
|β=β̂

4
= 0, we have

β̂1

n∑
i=1

(X2
Li +X2

Ui) + β̂0

n∑
i=1

(XLi +XUi) =
n∑
i=1

(XUiYLi +XLiYUi); (3.57)

and setting ∂l
∂β0
|β=β̂

4
= 0, we have

β̂1

n∑
i=1

(XLi +XUi) + 2nβ̂0 =
n∑
i=1

(YLi + YUi). (3.58)

Similar to the case when β1 ≥ 0, by (3.57) and (3.58), we obtain the MLEs of β1 and β0 as

β̂1 =

∑n
i=1(XLi +XUi)

∑n
i=1(YLi + YUi)− 2n

∑n
i=1(XLiYUi +XUiYLi)

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)
, (3.59)

β̂0 =
1

2n

n∑
i=1

(YLi + YUi)

− 1

2n

[
∑n

i=1(XLi +XUi)]
2
∑n

i=1(YLi + YUi)− 2n
∑n

i=1(XLiYUi +XUiYLi)
∑n

i=1(XLi +XUi)

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)
.

(3.60)

Properties of β̂0 and β̂1

Next, we study properties of the point estimators. First, we prove that β̂1 and β̂0 are unbiased

estimators. For β1 ≥ 0, from (3.40), we know

E(YLi) = XLiβ1 + β0, E(YUi) = XUiβ1 + β0, i = 1, ..., n. (3.61)

For β1 ≥ 0, by (3.54), we have
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E(β̂1) =
[
∑n

i=1(XLi +XUi)]
2β1 + 2n

∑n
i=1(XLi +XUi)β0

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)

− 2n
∑n

i=1(X
2
Li +X2

Ui)β1 + 2n
∑n

i=1(XLi +XUi)β0
[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)

=
{[
∑n

i=1(XLi +XUi)]
2 − 2n

∑n
i=1(X

2
Li +X2

Ui)}β1
[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)

= β1. (3.62)

Since, by (3.55),

β̂0 =
1

2n
[
n∑
i=1

(YLi + YUi)− β̂1
n∑
i=1

(XLi +XUi)], (3.63)

we have

E(β̂0) =
1

2n
[
n∑
i=1

(XLiβ1 +XUiβ1 + 2β0)− β1
n∑
i=1

(XLi +XUi)] = β0. (3.64)

Therefore, β̂1 and β̂0 are unbiased estimators.

Similarly, for β1 < 0, by (3.59) and (3.60), we also have

E(β̂1) = β1, E(β̂0) = β0. (3.65)

Therefore, both β̂1 and β̂0 are unbiased.

Distributions of β̂0 and β̂1

Next we give the distributions of the estimators β̂1 and β̂0. For β1 ≥ 0, since by (3.54) and

(3.55), both β̂1 and β̂0 are linear functions of the lower and upper points of the response.

Let us first obtain the variances and covariance of YLi and YUi, for i = 1, ..., n.
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By (3.40), we have

V ar(YLi) = V ar(β0 + β1XLi + εLi) = V ar(εLi) = σ2, (3.66)

V ar(YUi) = V ar(β0 + β1XUi + εUi) = V ar(εUi) = σ2, (3.67)

for i = 1, ..., n.

Now since εLi and εUi are independent, for i = 1, ..., n,

Cov(YLi, YUi) = Cov(XLiβ1 + β0 + εLi, XUiβ1 + β0 + εUi) = Cov(εLi, εUi) = 0. (3.68)

Therefore, the distribution of (YLi, YUi)
T is a bivariate normal distribution, i.e.,

YLi
YUi

 ∼ N2


XLiβ1 + β0

XUiβ1 + β0

 ,

σ2 0

0 σ2


 , i = 1, ..., n. (3.69)

By (3.54), since β̂1 is a linear function of YLi and YUi for i = 1, ..., n, and because of the

property that a linear combination of normal random variables has a normal distribution,

we have that β̂1 is a normally distributed random variable; likewise, by (3.55) β̂0 is also a

normally distributed random variable.

Let us now derive the variances of β̂1 and β̂0. By (3.54) and (3.68), we have

V ar(β̂1) =
V ar[

∑n
i=1(XLi +XUi)

∑n
i=1(YLi + YUi)] + 4n2V ar[

∑n
i=1(XLiYLi +XUiYUi)]

{[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)}2

− 2Cov[
∑n

i=1(XLi +XUi)
∑n

i=1(YLi + YUi), 2n
∑n

i=1(XLiYLi +XUiYUi)]

{[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)}2

=
−2nσ2[

∑n
i=1(XLi +XUi)]

2 + 4n2σ2
∑n

i=1(X
2
Li +X2

Ui)

{[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)}2

=
2nσ2

2n
∑n

i=1(X
2
Li +X2

Ui)− [
∑n

i=1(XLi +XUi)]2
4
= Vβ̂1 . (3.70)
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For β̂0, by (3.55) and (3.68), we have

V ar(β̂0) =
1

4n2

n∑
i=1

V ar(YLi + YUi) +
1

4n2
[
n∑
i=1

(XLi +XUi)]
2V ar(β̂1)

−
∑n

i=1(XLi +XUi)

2n2
Cov[

n∑
i=1

(YLi + YUi), β̂1]

=
σ2

2n
+
σ2

2n

[
∑n

i=1(XLi +XUi)]
2

2n
∑n

i=1(X
2
Li +X2

Ui)− [
∑n

i=1(XLi +XUi)]2

−
∑n

i=1(XLi +XUi)

2n2

∑n
i=1(XLi +XUi)

∑n
i=1 V ar(YLi + YUi)

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)

+
1

n

∑n
i=1Cov(YLi + YUi, XLiYLi +XUiYUi)

[
∑n

i=1(XLi +XUi)]2 − 2n
∑n

i=1(X
2
Li +X2

Ui)

=
σ2

2n
+
σ2

2n

[
∑n

i=1(XLi +XUi)]
2

2n
∑n

i=1(X
2
Li +X2

Ui)− [
∑n

i=1(XLi +XUi)]2

− σ2
∑n

i=1(XLi +XUi)

2n2

2n
∑n

i=1(XLi +XUi)− 2n
∑n

i=1(XLi +XUi)

2n
∑n

i=1(X
2
Li +X2

Ui)− [
∑n

i=1(XLi +XUi)]2

=

∑n
i=1(X

2
Li +X2

Ui)σ
2

2n
∑n

i=1(X
2
Li +X2

Ui)− [
∑n

i=1(XLi +XUi)]2
4
= Vβ̂0 . (3.71)

Based on the deviations of V ar(β̂1) and V ar(β̂0) in (3.70) and (3.71), respectively, and

the derivations of E(β̂1) and E(β̂0) in (3.62) and (3.64), we conclude that

β̂1 ∼ N(β1, Vβ̂1), β̂0 ∼ N(β0, Vβ̂0). (3.72)

Similarly, for β1 < 0, by (3.41), we can show that

V ar(YLi) = V ar(β0 + β1XUi + εLi) = V ar(εLi) = σ2, (3.73)

V ar(YUi) = V ar(β0 + β1XLi + εUi) = V ar(εUi) = σ2, (3.74)

for i = 1, ..., n.
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Since εLi and εUi are independent, for i = 1, ..., n, we have

Cov(YLi, YUi) = Cov(XUiβ1 + β0 + εLi, XLiβ1 + β0 + εUi) = Cov(εLi, εUi) = 0. (3.75)

Therefore, the distribution of (YLi, YUi)
T is a bivariate normal distribution, i.e.,

YLi
YUi

 ∼ N2


XUiβ1 + β0

XLiβ1 + β0

 ,

σ2 0

0 σ2


 , i = 1, ..., n. (3.76)

By (3.59), (3.60) and (3.76), we also obtain that V ar(β̂1) = Vβ̂1 , and V ar(β̂0) = Vβ̂0 .

With the unbiasedness of β̂1 and β̂0 by (3.65), we have

β̂1 ∼ N(β1, Vβ̂1), β̂0 ∼ N(β0, Vβ̂0). (3.77)

Confidence Intervals for Regression Coefficients

Based on the theoretical results generated in Section 3.2.2, we are able to give confidence

intervals for the point estimators of the intercept and the slope parameters.

First, we estimate the variance of the error term, i.e., σ2 in (3.39) through the residuals.

From (3.77), recall (3.42), (3.43), (3.44), and (3.45), when the estimate β̂1 is positive, we

predict the lower and upper points of the response by XLi and XUi, respectively; while when

the estimate β̂1 is negative, we predict the lower points of Yi by the upper bound XUi, and

predict the upper points of Yi by the lower bound XLi, for i = 1, ..., n.

Based on the definition of the covariance in (2.8), the variance var(ε) can be estimated

by
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V̂ ar(ε) =
1

6n

n∑
i=1

[2(rLi − r̄)(rLi − r̄) + 2(rLi − r̄)(rUi − r̄) + 2(rUi − r̄)(rUi − r̄)]

=
1

3n

n∑
i=1

[(rLi − r̄)2 + (rLi − r̄)(rUi − r̄) + (rUi − r̄)2] (3.78)

where r̄ = 1
n

∑n
i=1

rLi+rUi
2

.

By (3.78), the standard deviation of the error can be estimated by

σ̂ =

√
V̂ ar(ε). (3.79)

Since by (3.72) and (3.77), both β̂1 and β̂0 are normally distributed, confidence intervals

for the parameters β1 and β0 can be obtained by inverting the t−test statistic. By (3.70)

and (3.71), we know that the variances of β̂1 and β̂0, i.e., Vβ1 and Vβ0 , are functions of σ,

which can be estimated by (3.79). Let the significance level of the t−tests be α. Then, we

have the (1− α)100% confidence intervals for β̂1 and β̂0 to be

[β̂1 − tn−2,α
2

√
Vβ̂1(σ̂), β̂1 + tn−2,α

2

√
Vβ̂1(σ̂)], (3.80)

[β̂0 − tn−2,α
2

√
Vβ̂0(σ̂), β̂1 + tn−2,α

2

√
Vβ̂0(σ̂)] (3.81)

where Vβ̂1(σ̂) and Vβ̂0(σ̂) represent the estimated variances of β̂1 and β̂0 by σ̂, respectively,

given in (3.70) and (3.71), respectively.

3.3 Predictions

In addition to confidence intervals for the point estimators of the regression coefficients, the

predicted value and the confidence interval for the response variable also need to be addressed
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in the interval-valued data regression model. An application for this topic is illustrated by

the following example. Suppose a market research firm has the records of the consumers’

age, gender, income and annual flight expenses from a number of airlines. The firm wants to

discover relationships between annual flight expenses and covariates by a linear model built

on the aggregated interval-valued age and income levels. Assume we have a new consumer

with age, e.g., 30 years and income, e.g., $45,000/year. It would be quite meaningful to find

out the predicted value and confidence interval of this consumer’s annual travel expenditure.

For the simple regression specified in (3.5), assume we have a new observation with

realization of the explanatory variable to be Xnew = (Xnew
L , Xnew

U ). Then, the lower and

upper points of a predicted response Ŷ can be obtained as

ŶL = min{β̂0 + β̂1X
new
L , β̂0 + β̂1X

new
U }, ŶU = max{β̂0 + β̂1X

new
L , β̂0 + β̂1X

new
U }. (3.82)

By setting the lower point and the upper point equal to the minimum and the maximum

values in (3.82), respectively, we guarantee that the predicted lower bound is always not

greater than the predicted upper bound.

Next we consider confidence intervals of the predicted response. Again we need to consider

the two cases, namely when the slope parameter is positive or negative.

For the slope parameter β1 ≥ 0, by (3.46),

ŶL = β̂0 + β̂1X
new
L , ŶU = β̂0 + β̂1X

new
U . (3.83)

Then, by (3.72) and (3.77), we have
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E(ŶL) = β0 + β1X
new
L , E(ŶU) = β0 + β1X

new
U ,

V ar(ŶL) = V ar(β̂0) + (Xnew
L )2V ar(β̂1) = V ar(β̂0) + (Xnew

L )2β̂1 = Vβ̂0 + (Xnew
L )2Vβ̂1 ,

V ar(ŶU) = V ar(β̂0) + (Xnew
U )2V ar(β̂1) = V ar(β̂0) + (Xnew

U )2β̂1 = Vβ̂0 + (Xnew
U )2Vβ̂1 .

(3.84)

By (3.83),

Cov(ŶL, ŶU) = Cov(β̂0 + β̂1X
new
L , β̂0 + β̂1X

new
U )

= E[(β̂0 + β̂1X
new
L )(β̂0 + β̂1X

new
U )]− E(β̂0 + β̂1X

new
L )E(β̂0 + β̂1X

new
U )

= Vβ0 + Vβ1X
new
L Xnew

U + (Xnew
L +Xnew

U )Cov(β̂0, β̂1)

4
= δ.

(3.85)

Therefore, since both β̂0 and β̂1 are normally distributed, and ŶL and ŶU are linear

functions of β̂0 and β̂1, by (3.84) and (3.85), we have

ŶL
ŶU

 ∼ N2


β0 + β1X

new
L

β0 + β1X
new
U

 ,

Vβ̂0 + (Xnew
L )2Vβ̂1 δ

δ Vβ̂0 + (Xnew
U )2Vβ̂1


 . (3.86)

Then, since both variances Vβ̂0 and Vβ̂1 need to be estimated by σ̂2, by (3.86),

ŶL − (β0 + β1X
new
L )√

V̂β̂0 + (Xnew
L )2V̂β̂1

∼ tn−2,

ŶU − (β0 + β1X
new
U )√

V̂β̂0 + (Xnew
U )2V̂β̂1

∼ tn−2

where tn−2 represents the t distribution with degree of freedom n− 2.

Setting the significance level to be α, and inverting the t−statistic above, we obtain the
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(1− α)100% confidence intervals for ŶL and ŶU :

ŶL : [ŶL − tn−2,α
2

√
V̂β̂0 + (Xnew

L )2V̂β̂1 , ŶL + tn−2,α
2

√
V̂β̂0 + (Xnew

L )2V̂β̂1 ], (3.87)

ŶU : [ŶU − tn−2,α
2

√
V̂β̂0 + (Xnew

U )2V̂β̂1 , ŶU + tn−2,α
2

√
V̂β̂0 + (Xnew

U )2V̂β̂1 ]. (3.88)

Similarly, for the slope parameter β1 < 0, we have the (1− α)100% confidence intervals

for ŶL and ŶU , respectively, as

ŶL : [ŶL − tn−2,α
2

√
V̂β̂0 + (Xnew

U )2V̂β̂1 , ŶL + tn−2,α
2

√
V̂β̂0 + (Xnew

U )2V̂β̂1 ], (3.89)

ŶU : [ŶU − tn−2,α
2

√
V̂β̂0 + (Xnew

L )2V̂β̂1 , ŶU + tn−2,α
2

√
V̂β̂0 + (Xnew

L )2V̂β̂1 ]. (3.90)

3.4 Measurement of Model Fit

Similar to classical data regression, we can use the R-square statistic, which is the fraction

of explained variation by the linear regression model over the total variation of the response

to measure if the model fits the data well.

In Xu (2010) [8], the R-square is calculated by

R2 =
V ar(Ŷ )

V ar(Y )
(3.91)

where Y indicates the observed interval valued response, and Ŷ indicates the predicted

interval valued response. The variances are calculated by (2.3).

3.5 Determination of Likelihood Function Form

Since we have observed that the likelihood functions of residuals for β1 ≥ 0 and β1 < 0

are different, it is of importance to choose the correct likelihood function in order to obtain
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valid point estimates. Two approaches can be considered to use, which will be illustrated as

follows.

The first approach is to select the likelihood form with the larger value. Given the data,

by (3.50) and (3.56), we can calculate both values of the likelihood functions, after obtaining

the maximum likelihood estimators of β1 and β0 under β1 ≥ 0 and β1 < 0, respectively.

Then, we compare the two values, and choose to use the likelihood function with the larger

value, and the corresponding MLEs, i.e., β̂1 and β̂0, are treated as the point estimators for

the slope and the intercept parameters.

The second approach is by checking the sign of the correlation between the response

and the explanatory variable. By (2.8) and (2.9), we can calculate the correlation coefficient

between the response variable Y and the explanatory variableX, denoted by r = Corr(Y,X).

If r is no less than zero, we can assume the slope parameter β1 is non-negative, and therefore

we choose the likelihood function in (3.50); on the other hand, if r is less than zero, we then

assume the slope parameter β1 is negative, and choose the likelihood function in (3.56).

Compared to the second approach, the first approach is far less efficient, since we have

to first calculate the MLEs for β1 and β0 under the assumptions that β1 ≥ 0 and β1 < 0,

respectively, in order to obtain the values of the likelihood functions under the two scenarios

and compare. For the second approach, there is no need to calculate the MLEs before

selecting the appropriate likelihood form. In Chapter 5, we choose the second approach to

determine the likelihood function, and give the MLEs for the regression coefficients in our

data analysis of two real data sets.
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3.6 APPENDIX

R Function of the Maximum Likelihood Method for Statistical Inference on Interval-Valued

Data Regression

# Input:

# X_L: vector of lower point of X

# X_U: vector of upper point of X

# Y_L: vector of lower point of Y

# Y_U: vector of upper point of Y

est_ord1 <- function(X_L, X_U, Y_L, Y_U){

n <- length(X_L)

sum_X <- sum(X_L + X_U)

sum_Y <- sum(Y_L + Y_U)

sum_XY <- sum(X_L * Y_L + X_U * Y_U)

sum_X2 <- sum_X^2

sum_X22 <- sum(X_L^2 + X_U^2)

# 1) Point estimates of parameters

beta1_h <- ((sum_X * sum_Y) - 2*n*sum_XY) / (sum_X2 - 2*n*sum_X22)

beta0_h <- 1 / (2*n) * (sum_Y - beta1_h * sum_X)

# 2) estimate sd of error term

n <- length(X_L)

58



# calculate residuals

r_L <- Y_L - beta0_h - beta1_h * X_L

r_U <- Y_U - beta0_h - beta1_h * X_U

r_mean <- sum(r_L + r_U) / (2*n)

var_e <- 1/(3*n)*sum((r_L - r_mean)^2 + (r_L - r_mean)*(r_U - r_mean) +

(r_U - r_mean)^2)

sd_e <- sqrt(var_e)

# 3) Variances of parameter estimates

var_beta1 <- 2*n*sd_e^2 / (2*n*sum_X22 - sum_X2)

var_beta0 <- sum_X22 * sd_e^2 / (2*n*sum_X22 - sum_X2)

# 4) calculate 95% C.I.

lower_beta1 <- beta1_h - qt(.975, n-2)*sqrt(var_beta1)

upper_beta1 <- beta1_h + qt(.975, n-2)*sqrt(var_beta1)

lower_beta0 <- beta0_h - qt(.975, n-2)*sqrt(var_beta0)

upper_beta0 <- beta0_h + qt(.975, n-2)*sqrt(var_beta0)

# 5) calculate R square

Y_L_hat <- beta0_h + beta1_h * X_L

Y_U_hat <- beta0_h + beta1_h * X_U

var_Y_hat <- 1 / (3*n) * sum(Y_L_hat^2 + Y_L_hat * Y_U_hat + Y_U_hat^2) -
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1 / (4*n^2) * sum(Y_L_hat + Y_U_hat)^2

var_Y <- 1 / (3*n) * sum(Y_L^2 + Y_L * Y_U + Y_U^2) -

1 / (4*n^2) * sum(Y_L + Y_U)^2

ssm <- n*var_Y_hat

sst <- n*var_Y

R2 <- var_Y_hat / var_Y

res <- paste("beta1: ", round(beta1_h, 3), "beta0: "

, round(beta0_h, 3), "var(beta1): "

, round(var_beta1, 4), "var(beta0): "

, round(var_beta0, 4), "C.I. for beta_1: ["

, round(lower_beta1, 3), ",", round(upper_beta1, 3),"]",

"C.I. for beta_0: [", round(lower_beta0, 3), ",",

round(upper_beta0, 3),"]", "standard deviation of error: ",

round(sd_e, 4), "R Square: ", round(R2, 3))

return(res)

}
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Chapter 4

SIMULATION

In this chapter, two simulation methods for interval-valued data are introduced in Section 4.1.

Then in Section 4.2, we implement the proposed approach for different parameter settings,

and evaluate the performances under various settings of parameters.

4.1 Simulation: Methodology

To study the performance of the proposed method, we first illustrate the two simulation

methods in this section.

Method I

First, we simulate data for applying the proposed method as follows. At the beginning, we

generate the interval means of the explanatory variableX, X(c), by randomly sampling from a

normal distribution N(µ, σ2), and the interval ranges of X, X(r), from a uniform distribution

with positive support, i.e., Uniform[a, b]. This range value can also be generated from some

other distributions, such as the exponential, the chi-square, or the log-normal distribution.

Then, interval-valued observations for the explanatory variable can be simulated as xi =
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[xLi, xUi] = [x
(c)
i −0.5x

(r)
i , x

(c)
i +0.5x

(r)
i ], for i = 1, ..., n, where n is the number of observations.

By (3.5), we know that the interval-valued realization of the response variable, [yLi, yUi], is

composed of two elements, the systematic component β0 + [xLi, xUi]β1 and the random error

[εLi, εUi], for i = 1, ..., n. Based on the assumption shown by (3.39), for each observation, the

error, εLi, for the lower bound response yLi, and the error, εUi, for the upper bound response

yUi, are independently generated from a normal distribution N(0, σ2
e), respectively. Then,

the intervals for the response variable are obtained by

[yLi, yUi] = [β0 + xLiβ1 + εLi, β0 + xUiβ1 + εUi] (4.1)

for i = 1, ..., n.

This method to simulate interval-valued data guarantees that the expected interval re-

sponse Y and the interval explanatory variable X follow a linear relationship.

The drawback about this simulation method is that the ranges of Y are always positively

correlated with the ranges of X, which may not always be true in reality.

Method II

The other simulation method for interval-valued data originates from a common way that

interval data sets arise, which is by aggregating classical data. Similar to Method I, we first

generate the interval means, X(c), and ranges, X(r), for the explanatory variable X by ran-

domly sampling from a normal distribution, N(µ, σ2) and a truncated normal distribution,

denoted by Trun − N(a, b, µ0, σ
2
0), where a is the lower bound of support, b is the upper

bound of support, µ0 is the mean value, and σ0 is the standard deviation value, respectively.

Then, the interval for X can be obtained by [xL, xU ] = [x(c) − 0.5x(r), x(c) + 0.5x(r)].

By the basic assumption that the distribution within each interval is uniform, for the ith

observation, a certain number of values, i.e., m values are randomly drawn from the uniform
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distribution U(xLi, xUi), for i = 1, ..., n, where m is pre-specified, or a value drawn from a

distribution with integer support for more general cases, each of the m values is denoted by

xil. As in the first method, for the ith observation, we generate the random errors for the

lower and upper bounds of the response, i.e., εLi and εUi, respectively, by randomly sampling

from a normal distribution N(0, σ2
e). Then, the interval realization for the response variable

of the ith observation yi = [yLi, yUi] can be determined by

yLi = min
l∈{1,...,m}

{β0 + xilβ1}+ εLi,

yUi = max
l∈{1,...,m}

{β0 + xilβ1}+ εUi, (4.2)

where εLi, εUi
iid∼ N(0, σ2

e), for i = 1, ..., n, and l = 1, ...,m.

This simulation method is closer to how interval data arise in practice. For example,

the daily temperature is described by an interval, for the lower bound to be the mini-

mum temperature, while the upper bound is the maximum temperature among a number of

measurements during a day, respectively. A drawback of this method is that the obtained

intervals for the response variable yi, i = 1, ..., n, cannot be guaranteed to follow a uniform

distribution internally.

4.2 Simulation: Case Study

In this section, we conduct simulations by the two methods described in Section 4.1, respec-

tively, to investigate the performance of the proposed approach for interval data regression.

For each of the two simulation methods, we give different settings on pre-determined param-

eters to compare and analyse corresponding results.
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Simulation: Method I

The settings for simulation studies by the first method are as follows:

1. µ: the values of the means of the normal distributions from which the interval means

X(c) are generated, -35, -25, -15, -5, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125;

2. σ: the standard deviation of the normal distributions from which the interval means X(c)

are generated; this is set to be equal to 7;

3. n0: the numbers of observations with the interval means at each of the seventeen values in

Step 1. The n0 is randomly sampled from the discrete uniform distribution Uniform(5, 9)

with support k ∈ {5, 6, 7, 8, 9};

4. σe: the standard deviation of the error term to be generated, 3, 7, and 10;

5. (a, b): the lower and upper bounds of the uniform distribution from which the interval

ranges X(r) are generated, (6.5, 9.25) and (10, 12.45);

6. β1: the true slope parameters, 0.64, 2.15, -3.21;

7. β0: the true intercept parameters, 68.57 and -43.29;

8. B repetition times of drawing samples: 2000, 5000, and 10000.

We conduct simulations based on each of the settings delineated here, and use the pro-

posed method to estimate the slope parameter β1 and the intercept parameter β0, both by

point estimation and confidence interval. Then, we compare the results with the true pa-

rameter values, and we calculate variances, mean square errors (MSE) as well as empirical

confidence intervals for the point estimators β̂1 and β̂0, respectively.

To illustrate, we first take the setting σe = 10, (a, b) = (6.5, 9.25), β1 = 2.15 and

β0 = 68.57 as an example. Figure 4.1 shows the scatter plot with the fitted regression line

given by the average values of β̂1 and β̂0; and Figure 4.2 shows histograms of the observations

along the two point estimators. The results in Figure 4.2 are based on 10000 repetitions of

sampling.
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EXAMPLE I: When we set simulations for parameter values σe = 10, (a, b) = (6.5, 9.25),

β1 = 2.15, β0 = 68.57, we obtain the data shown in Figure 4.1. The histogram plots of the

resulting estimates for the slope parameter (β̂1) and for the intercept parameter (β̂0) are

shown in Figure 4.2.

Figure 4.1: Scatter plot - σe = 10, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = 68.57

Figure 4.2: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = 68.57
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In Figure 4.2, the values of β̂1 and β̂0 obtained by different repetitions are indicated on

the x−axis by beta1B and beta0B, respectively. The two vertical red lines on Figure 4.2

display the positions of the true parameter values, i.e., β1 = 2.15 and β0 = 68.57. The

following table summarizes the simulation results for the setting in EXAMPLE I for the

different numbers of repetitions, B = (2000, 5000, 10000).

Table 4.1: Summary of Simulation by Method I : β1 = 2.15, β0 = 68.57
σe = 10, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0
2000 2.150 68.560 2× 10−4 0.717 [2.124, 2.176] [66.894, 70.240]
5000 2.150 68.571 2× 10−4 0.761 [2.125 , 2.175] [66.861, 70.288]
10000 2.150 68.586 2× 10−4 0.756 [2.124, 2.175] [66.848, 70.289]

From Table 4.1, we can observe that the averages of the point estimators for both β1

and β0 are equal to or quite close to the true values, with small MSEs, indicating the

proposed approach gives accurate estimations for the regression coefficients, especially for

β1 with different repetitions from 2000 to 10000. From the histograms in Figure 4.2, it can

be observed that both of β̂1 and β̂0 are distributed with shapes consistent with normality,

which verifies the normal property shown in (3.72) and (3.77). The 95% confidence intervals

of both β̂1 and β̂0 given in Table 4.1 cover the true values of β1 and β0 and have almost the

same length from the lower bound to the true value, and from the upper bound to the true

value.

We now will use different sets of values for (β1, β0). There are six sets of values for

the error standard deviation σe, and the uniform distribution bounds (a, b). For each of

these sets, there are six different pairs of values for the regression parameters β1 and β0.

The simulation results for each of these set × pair (6× 6) combinations are provided along

the same lines above as illustrated in Figure 4.1 and Table 4.1 for EXAMPLE I. These are
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briefly described as follows. Then, for each (β1, β0) pairing, comparisons of these results are

discussed and presented in Tables 4.37-4.42.

Method 1 - Set 1: σe = 3, (a, b) = (6.5, 9.25)

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.3. Table 4.2 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.3: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (6.5, 9.25), β1 = 0.64, β0 = 68.57
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Table 4.2: Summary of Simulation by Method I : β1 = 0.64, β0 = 68.57
σe = 3, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.570 1× 10−5 0.068 [0.633, 0.647] [68.058, 69.079]

5000 0.640 68.566 2× 10−5 0.069 [0.632, 0.648] [68.047, 69.080]

10000 0.640 68.565 2× 10−5 0.070 [0.632, 0.648] [68.051, 69.083]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.565, with the MSE to be 0.070.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.4. Table 4.3 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.4: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (6.5, 9.25), β1 = 0.64, β0 = −43.29

Table 4.3: Summary of Simulation by Method I : β1 = 0.64, β0 = −43.29
σe = 3, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.289 2× 10−5 0.067 [0.632, 0.647] [-43.811, -42.792]

5000 0.640 -43.286 1× 10−5 0.072 [0.632, 0.647] [-43.821, -42.779]

10000 0.640 -43.294 2× 10−5 0.071 [0.632, 0.648] [-43.815, -42.780]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.294, with the MSE to be 0.071.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.5. Table 4.4 provides the overall estimates for each parame-
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ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.5: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = 68.57

Table 4.4: Summary of Simulation by Method I : β1 = 2.15, β0 = 68.57
σe = 3, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.572 2× 10−5 0.069 [2.143, 2.157] [68.051, 69.108]

5000 2.150 68.570 2× 10−5 0.068 [2.142, 2.158] [68.055, 69.086]

10000 2.150 68.573 2× 10−5 0.068 [2.142, 2.157] [68.066, 69.085]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.573, with the MSE to be 0.068.
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(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.6. Table 4.5 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.6: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = −43.29

Table 4.5: Summary of Simulation by Method I : β1 = 2.15, β0 = −43.29
σe = 3, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.282 2× 10−5 0.074 [2.142, 2.157] [-43.836, -42.771]

5000 2.150 -43.294 2× 10−5 0.070 [2.142, 2.158] [-43.800, -42.769]

10000 2.150 -43.288 2× 10−5 0.071 [2.142, 2.158] [-43.803, -42.763]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.288, with the MSE to be 0.071.
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(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.7. Table 4.6 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.7: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (6.5, 9.25), β1 = −3.21, β0 = 68.57

Table 4.6: Summary of Simulation by Method I : β1 = −3.21, β0 = 68.57
σe = 3, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.573 2× 10−5 0.069 [-3.218, -3.202] [68.074, 69.091]

5000 -3.210 68.573 2× 10−5 0.068 [-3.218, -3.202] [68.052, 69.081]

10000 -3.210 68.571 2× 10−5 0.069 [-3.218, -3.202] [68.047, 69.082]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.571, with the MSE to be 0.069.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.8. Table 4.7 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.8: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (6.5, 9.25), β1 = −3.21, β0 = −43.29

Table 4.7: Summary of Simulation by Method I : β1 = −3.21, β0 = −43.29,
σe = 3, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.281 1× 10−5 0.072 [-3.218, -3.202] [-43.804, -42.768]

5000 -3.210 -43.294 2× 10−5 0.070 [-3.217, -3.202] [-43.814, -42.779]

10000 -3.210 -43.289 2× 10−5 0.069 [-3.218, -3.202] [-43.800, -42.774]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.289, with the MSE to be 0.069.
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Method 1 - Set 2: σe = 7, (a, b) = (6.5, 9.25)

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.9. Table 4.8 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.9: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (6.5, 9.25), β1 = 0.64, β0 = 68.57

Table 4.8: Summary of Simulation by Method I : β1 = 0.64, β0 = 68.57
σe = 7, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.586 9× 10−5 0.399 [0.621, 0.659] [67.342, 69.837]

5000 0.640 68.571 8× 10−5 0.371 [0.623, 0.658] [67.374, 69.781]

10000 0.640 68.566 8× 10−5 0.370 [0.622, 0.658] [67.397, 69.760]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.566, with the MSE to be 0.370.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.10. Table 4.9 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.10: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (6.5, 9.25), β1 = 0.64, β0 = −43.29
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Table 4.9: Summary of Simulation by Method I : β1 = 0.64, β0 = −43.29
σe = 7, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.285 8× 10−5 0.372 [0.622, 0.658] [-44.535, -42.133]

5000 0.640 -43.281 9× 10−5 0.378 [0.622, 0.659] [-44.498, -42.097]

10000 0.640 -43.303 8× 10−5 0.382 [0.622, 0.658] [-44.498, -42.080]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.303, with the MSE to be 0.382.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.11. Table 4.10 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.11: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = 68.57
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Table 4.10: Summary of Simulation by Method I : β1 = 2.15, β0 = 68.57
σe = 7, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.586 8× 10−5 0.376 [2.131, 2.167] [67.316, 69.774]

5000 2.150 68.576 8× 10−5 0.375 [2.132, 2.168] [67.391, 69.755]

10000 2.150 68.569 8× 10−5 0.375 [2.133, 2.168] [67.370, 69.772]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.375.

(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.12. Table 4.11 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.12: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = −43.29
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Table 4.11: Summary of Simulation by Method I : β1 = 2.15, β0 = −43.29
σe = 7, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.281 8× 10−5 0.367 [2.132, 2.168] [-44.451, -42.123]

5000 2.150 -43.290 8× 10−5 0.377 [2.132, 2.168] [-44.492, -42.100]

10000 2.150 -43.288 8× 10−5 0.375 [2.132, 2.168] [-44.495, -42.099]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.288, with the MSE to be 0.375.

(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.13. Table 4.12 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.13: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (6.5, 9.25), β1 = −3.21, β0 = 68.57

78



Table 4.12: Summary of Simulation by Method I : β1 = −3.21, β0 = 68.57
σe = 7, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.553 8× 10−5 0.374 [-3.227, -3.192] [67.304, 69.734]

5000 -3.210 68.573 9× 10−5 0.402 [-3.228, -3.192] [67.322, 69.800]

10000 -3.210 68.570 8× 10−5 0.376 [-3.228, -3.192] [67.387, 69.770]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.570, with the MSE to be 0.376.

(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.14. Table 4.13 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.14: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (6.5, 9.25), β1 = −3.21, β0 = −43.29
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Table 4.13: Summary of Simulation by Method I : β1 = −3.21, β0 = −43.29
σe = 7, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.271 8× 10−5 0.402 [-3.228, -3.192] [-44.515, -42.058]

5000 -3.210 -43.292 8× 10−5 0.370 [-3.228, -3.192] [-44.501, -42.106]

10000 -3.210 -43.278 8× 10−5 0.379 [-3.228, -3.192] [-44.472, -42.057]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.278, with the MSE to be 0.379.

Method 1 - Set 3: σe = 10, (a, b) = (6.5, 9.25)

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.15. Table 4.14 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.15: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (6.5, 9.25), β1 = 0.64, β0 = 68.57

Table 4.14: Summary of Simulation by Method I : β1 = 0.64, β0 = 68.57
σe = 10, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.584 2× 10−4 0.770 [0.613, 0.667] [66.864, 70.277]

5000 0.640 68.569 2× 10−4 0.785 [0.613, 0.665] [66.823, 70.292]

10000 0.640 68.565 2× 10−4 0.771 [0.615, 0.666] [66.835, 70.272]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−4; the

average value of β̂0 for 10000 repetitions is 68.565, with the MSE to be 0.771.
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(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.16. Table 4.15 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.16: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (6.5, 9.25), β1 = 0.64, β0 = −43.29

Table 4.15: Summary of Simulation by Method I : β1 = 0.64, β0 = −43.29
σe = 10, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.297 2× 10−4 0.751 [0.615, 0.666] [-44.928, -41.540]

5000 0.640 -43.289 2× 10−4 0.796 [0.614 , 0.666] [-45.027, -41.494]

10000 0.640 -43.296 2× 10−4 0.790 [0.614, 0.666] [-45.035, -41.583]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−4; the

average value of β̂0 for 10000 repetitions is -43.296, with the MSE to be 0.790.
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(3) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.17. Table 4.16 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.17: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (6.5, 9.25), β1 = 2.15, β0 = −43.29

Table 4.16: Summary of Simulation by Method I : β1 = 2.15, β0 = −43.29
σe = 10, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.314 2× 10−4 0.797 [2.124, 2.176] [-44.993, -41.586]

5000 2.150 -43.296 2× 10−4 0.766 [2.124, 2.176] [-45.005, -41.601]

10000 2.150 -43.289 2× 10−4 0.762 [2.124, 2.175] [-44.998, -41.572]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−4; the

average value of β̂0 for 10000 repetitions is -43.289, with the MSE to be 0.762.
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(4) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.18. Table 4.17 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.18: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (6.5, 9.25), β1 = −3.21, β0 = 68.57

Table 4.17: Summary of Simulation by Method I : β1 = −3.21, β0 = 68.57
σe = 10, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.540 2× 10−4 0.745 [-3.234, -3.185] [66.754, 70.230]

5000 -3.210 68.578 2× 10−4 0.762 [-3.236 , -3.184] [66.870, 70.278]

10000 -3.210 68.581 2× 10−4 0.762 [-3.236, -3.185] [66.880, 70.315]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−4; the

average value of β̂0 for 10000 repetitions is 68.581, with the MSE to be 0.762.
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(5) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.19. Table 4.18 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.19: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (6.5, 9.25), β1 = −3.21, β0 = −43.29

Table 4.18: Summary of Simulation by Method I : β1 = −3.21, β0 = −43.29
σe = 10, (a, b) = (6.5, 9.25)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.298 2× 10−4 0.772 [-3.235, -3.184] [-45.083, -41.597]

5000 -3.210 -43.301 2× 10−4 0.759 [-3.236 , -3.185] [-44.993, -41.583]

10000 -3.210 -43.289 2× 10−4 0.747 [-3.235, -3.185] [-44.992, -41.593]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−4; the

average value of β̂0 for 10000 repetitions is -43.289, with the MSE to be 0.747.
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Method 1 - Set 4: σe = 3, (a, b) = (10, 12.45)

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.20. Table 4.19 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.20: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (10, 12.45), β1 = 0.64, β0 = 68.57

Table 4.19: Summary of Simulation by Method I : β1 = 0.64, β0 = 68.57
σe = 3, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.576 2× 10−5 0.073 [0.632, 0.648] [68.027, 69.104]

5000 0.640 68.573 1× 10−5 0.068 [0.632, 0.647] [68.061, 69.099]

10000 0.640 68.571 2× 10−5 0.070 [0.632, 0.648] [68.046, 69.089]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the
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average value of β̂0 for 10000 repetitions is 68.571, with the MSE to be 0.070.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.21. Table 4.20 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.21: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (10, 12.45), β1 = 0.64, β0 = −43.29

Table 4.20: Summary of Simulation by Method I : β1 = 0.64, β0 = −43.29
σe = 3, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.301 2× 10−5 0.070 [0.632, 0.648] [-43.823, -42.770]

5000 0.640 -43.294 2× 10−5 0.071 [0.632, 0.648] [-43.803, -42.770]

10000 0.640 -43.292 2× 10−5 0.070 [0.632, 0.648] [-43.807, -42.768]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.292, with the MSE to be 0.070.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.22. Table 4.21 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.22: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (10, 12.45), β1 = 2.15, β0 = 68.57
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Table 4.21: Summary of Simulation by Method I : β1 = 2.15, β0 = 68.57
σe = 3, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.573 2× 10−5 0.071 [2.142, 2.158] [68.058, 69.091]

5000 2.150 68.573 2× 10−5 0.070 [2.142, 2.158] [68.045, 69.080]

10000 2.150 68.571 2× 10−5 0.068 [2.142, 2.158] [68.053, 69.086]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.571, with the MSE to be 0.068.

(4) When β1 = 2.15,β0 = −43.29, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.23. Table 4.22 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.23: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (10, 12.45), β1 = 2.15, β0 = −43.29
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Table 4.22: Summary of Simulation by Method I : β1 = 2.15, β0 = −43.29
σe = 3, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.293 2× 10−5 0.067 [2.142, 2.158] [-43.805, -42.799]

5000 2.150 -43.294 2× 10−5 0.069 [2.142, 2.158] [-43.815, -42.787]

10000 2.150 -43.296 2× 10−5 0.069 [2.142, 2.158] [-43.805, -42.782]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.296, with the MSE to be 0.069.

(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.24. Table 4.23 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.24: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (10, 12.45), β1 = −3.21, β0 = 68.57
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Table 4.23: Summary of Simulation by Method I : β1 = −3.21, β0 = 68.57
σe = 3, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.580 1× 10−5 0.069 [-3.217, -3.202] [68.064, 69.089]

5000 -3.210 68.569 2× 10−5 0.070 [-3.218, -3.202] [68.057, 69.089]

10000 -3.210 68.569 2× 10−5 0.071 [-3.218, -3.202] [68.050, 69.089]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.071.

(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.25. Table 4.24 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.25: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, (a, b) = (10, 12.45), β1 = −3.21, β0 = −43.29
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Table 4.24: Summary of Simulation by Method I : β1 = −3.21, β0 = −43.29
σe = 3, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.290 2× 10−5 0.068 [-3.218, -3.202] [-43.821, -42.797]

5000 -3.210 -43.293 2× 10−5 0.370 [-3.218, -3.202] [-43.800, -42.780]

10000 -3.210 -43.290 2× 10−5 0.069 [-3.218, -3.202] [-43.804, -42.778]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.290, with the MSE to be 0.069.

Method 1 - Set 5: σe = 7, (a, b) = (10, 12.45)

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.26. Table 4.25 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.26: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (10, 12.45), β1 = 0.64, β0 = 68.57

Table 4.25: Summary of Simulation by Method I : β1 = 0.64, β0 = 68.57
σe = 7, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.641 68.556 9× 10−5 0.380 [0.622, 0.659] [67.385, 69.763]

5000 0.640 68.561 8× 10−5 0.383 [0.622, 0.658] [67.385, 69.824]

10000 0.640 68.580 8× 10−5 0.371 [0.622, 0.658] [67.367, 69.777]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.580, with the MSE to be 0.371.
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(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.27. Table 4.26 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.27: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (10, 12.45), β1 = 0.64, β0 = −43.29

Table 4.26: Summary of Simulation by Method I : β1 = 0.64, β0 = −43.29
σe = 7, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.315 8× 10−5 0.378 [0.623, 0.659] [-44.512, -42.117]

5000 0.640 -43.275 8× 10−5 0.381 [0.622, 0.657] [-44.458, -42.029]

10000 0.640 -43.292 9× 10−5 0.384 [0.622, 0.658] [-44.491, -42.075]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 9× 10−5; the

average value of β̂0 for 10000 repetitions is -43.292, with the MSE to be 0.384.
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(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.28. Table 4.27 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.28: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (10, 12.45), β1 = 2.15, β0 = 68.57

Table 4.27: Summary of Simulation by Method I : β1 = 2.15, β0 = 68.57
σe = 7, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.590 9× 10−5 0.375 [2.132, 2.167] [67.397, 69.774]

5000 2.150 68.573 8× 10−5 0.373 [2.132, 2.168] [67.378, 69.752]

10000 2.150 68.561 8× 10−5 0.380 [2.132, 2.168] [67.346, 69.745]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.561, with the MSE to be 0.380.
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(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.29. Table 4.28 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.29: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (10, 12.45), β1 = 2.15, β0 = −43.29

Table 4.28: Summary of Simulation by Method I : β1 = 2.15, β0 = −43.29
σe = 7, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.316 8× 10−5 0.374 [2.133, 2.168] [-44.512, -42.169]

5000 2.150 -43.281 8× 10−5 0.378 [2.132, 2.168] [-44.499, -42.087]

10000 2.150 -43.281 8× 10−5 0.377 [2.132, 2.168] [-44.484, -42.072]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.281, with the MSE to be 0.377.

96



(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.30. Table 4.29 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.30: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (10, 12.45), β1 = −3.21, β0 = 68.57

Table 4.29: Summary of Simulation by Method I : β1 = −3.21, β0 = 68.57
σe = 7, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.567 8× 10−5 0.374 [-3.228, -3.192] [67.384, 69.775]

5000 -3.210 68.573 9× 10−5 0.376 [-3.228, -3.192] [67.352, 69.754]

10000 -3.210 68.567 9× 10−5 0.389 [-3.228, -3.192] [67.371, 69.809]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 9× 10−5; the

average value of β̂0 for 10000 repetitions is 68.567, with the MSE to be 0.389.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.31. Table 4.30 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.31: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, (a, b) = (10, 12.45), β1 = −3.21, β0 = −43.29

Table 4.30: Summary of Simulation by Method I : β1 = −3.21, β0 = −43.29
σe = 7, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.303 9× 10−5 0.388 [-3.228, -3.193] [-44.512, -42.076]

5000 -3.210 -43.291 8× 10−5 0.376 [-3.228, -3.192] [-44.475, -42.051]

10000 -3.210 -43.289 9× 10−5 0.387 [-3.228, -3.192] [-44.526, -42.071]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 9× 10−5; the

average value of β̂0 for 10000 repetitions is -43.289, with the MSE to be 0.387.
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Method 1 - Set 6: σe = 10, (a, b) = (10, 12.45)

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.32. Table 4.31 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.32: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (10, 12.45), β1 = 0.64, β0 = 68.57

Table 4.31: Summary of Simulation by Method I : β1 = 0.64, β0 = 68.57
σe = 10, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.639 68.597 1.7× 10−4 0.705 [0.614, 0.665] [66.961, 70.170]

5000 0.640 68.558 1.7× 10−4 0.775 [0.615, 0.665] [66.814, 70.315]

10000 0.640 68.580 1.7× 10−4 0.767 [0.615, 0.665] [66.869, 70.272]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.580, with the MSE to be 0.767.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.33. Table 4.32 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.33: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (10, 12.45), β1 = 0.64, β0 = −43.29
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Table 4.32: Summary of Simulation by Method I : β1 = 0.64, β0 = −43.29
σe = 10, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.278 1.6× 10−4 0.754 [0.615, 0.665] [-43.018, -41.601]

5000 0.640 -43.303 1.7× 10−4 0.778 [0.615, 0.665] [-45.022, -41.539]

10000 0.640 -43.296 1.7× 10−4 0.752 [0.615, 0.666] [-45.000, -41.605]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.296, with the MSE to be 0.752.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.34. Table 4.33 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.34: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (10, 12.45), β1 = 2.15, β0 = 68.57

Table 4.33: Summary of Simulation by Method I : β1 = 2.15, β0 = 68.57
σe = 10, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.576 1.7× 10−4 0.776 [2.124, 2.176] [66.913, 70.361]

5000 2.150 68.576 1.7× 10−4 0.769 [2.125, 2.176] [66.886, 70.298]

10000 2.150 68.569 1.7× 10−4 0.768 [2.125, 2.175] [66.849, 70.271]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.768.
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(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.35. Table 4.34 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.35: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (10, 12.45), β1 = 2.15, β0 = −43.29

Table 4.34: Summary of Simulation by Method I : β1 = 2.15, β0 = −43.29
σe = 10, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.269 1.6× 10−4 0.716 [2.125, 2.174] [-44.859, -41.601]

5000 2.150 -43.300 1.7× 10−4 0.768 [2.124, 2.176] [-44.987, -41.579]

10000 2.150 -43.294 1.7× 10−4 0.755 [2.124, 2.176] [-44.992, -41.590]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.294, with the MSE to be 0.755.
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(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.36. Table 4.35 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.36: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (10, 12.45), β1 = −3.21, β0 = 68.57

Table 4.35: Summary of Simulation by Method I : β1 = −3.21, β0 = 68.57
σe = 10, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.547 1.8× 10−4 0.775 [-3.237, -3.185] [66.833, 70.235]

5000 -3.210 68.543 1.7× 10−4 0.767 [-3.235, -3.184] [66.860, 70.237]

10000 -3.210 68.586 1.7× 10−4 0.788 [-3.236, -3.184] [66.855, 70.337]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.586, with the MSE to be 0.788.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.37. Table 4.36 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.37: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, (a, b) = (10, 12.45), β1 = −3.21, β0 = −43.29

Table 4.36: Summary of Simulation by Method I : β1 = −3.21, β0 = −43.29
σe = 10, (a, b) = (10, 12.45)

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.291 1.7× 10−4 0.783 [-3.236, -3.184] [-45.093, -41.590]

5000 -3.210 -43.292 1.7× 10−4 0.784 [-3.236, -3.185] [-45.060, -41.578]

10000 -3.210 -43.290 1.7× 10−4 0.764 [-3.235, -3.185] [-44.992, -41.584]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.290, with the MSE to be 0.764.
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To compare the performances of the proposed method for different settings of the standard

deviation of the error term, σe, and the lower and upper bounds of the uniform distribution

from which the interval ranges X(r) are generated, (a, b), we create the six tables as follows

to summarize the averages of β̂1 and β̂0 as well as MSE(β̂1) and MSE(β̂0). Each table

corresponds to a setting of the slope and the intercept parameter values (β1, β0), and with

10000 repetitions.

I. When (β1, β0) = (0.64, 68.57), the results are summarized in Table 4.37.

Table 4.37: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (0.64, 68.57)

σe (a, b) β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
(6.5, 9.25) 0.640 68.565 2× 10−5 0.070

(10, 12.45) 0.640 68.571 2× 10−5 0.070

7
(6.5, 9.25) 0.640 68.566 8× 10−5 0.370

(10, 12.45) 0.640 68.580 8× 10−5 0.371

10
(6.5, 9.25) 0.640 68.565 2× 10−4 0.771

(10, 12.45) 0.640 68.580 1.7× 10−4 0.767

II. When (β1, β0) = (0.64, −43.29), the results are summarized in Table 4.38.

Table 4.38: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (0.64, −43.29)

σe (a, b) β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
(6.5, 9.25) 0.640 -43.294 2× 10−5 0.071

(10, 12.45) 0.640 -43.292 2× 10−5 0.070

7
(6.5, 9.25) 0.640 -43.303 8× 10−5 0.382

(10, 12.45) 0.640 -43.292 9× 10−5 0.384

10
(6.5, 9.25) 0.640 -43.296 2× 10−4 0.790

(10, 12.45) 0.640 -43.296 1.7× 10−4 0.752
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III. When (β1, β0) = (2.15, 68.57), the results are summarized in Table 4.39.

Table 4.39: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (2.15, 68.57)

σe (a, b) β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
(6.5, 9.25) 2.150 68.573 2× 10−5 0.068

(10, 12.45) 2.150 68.571 2× 10−5 0.068

7
(6.5, 9.25) 2.150 68.569 8× 10−5 0.375

(10, 12.45) 2.150 68.561 8× 10−5 0.380

10
(6.5, 9.25) 2.150 68.586 2× 10−4 0.756

(10, 12.45) 2.150 68.569 1.7× 10−4 0.768

IV. When (β1, β0) = (2.15, −43.29), the results are summarized in Table 4.40.

Table 4.40: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (2.15, −43.29)

σe (a, b) β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
(6.5, 9.25) 2.150 -43.288 2× 10−5 0.071

(10, 12.45) 2.150 -43.296 2× 10−5 0.069

7
(6.5, 9.25) 2.150 -43.288 8× 10−5 0.375

(10, 12.45) 2.150 -43.281 8× 10−5 0.377

10
(6.5, 9.25) 2.150 -43.289 2× 10−4 0.762

(10, 12.45) 2.150 -43.294 1.7× 10−4 0.755
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V. When (β1, β0) = (−3.21, 68.57), the results are summarized in Table 4.41.

Table 4.41: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (−3.21, 68.57)

σe (a, b) β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
(6.5, 9.25) -3.210 68.571 2× 10−5 0.069

(10, 12.45) -3.210 68.569 2× 10−5 0.071

7
(6.5, 9.25) -3.210 68.570 8× 10−5 0.376

(10, 12.45) -3.210 68.567 9× 10−5 0.389

10
(6.5, 9.25) -3.210 68.581 2× 10−4 0.762

(10, 12.45) -3.210 68.586 1.7× 10−4 0.788

VI. When (β1, β0) = (−3.21, −43.29), the results are summarized in Table 4.42.

Table 4.42: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (−3.21, −43.29)

σe (a, b) β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
(6.5, 9.25) -3.210 -43.289 2× 10−5 0.069

(10, 12.45) -3.210 -43.290 2× 10−5 0.069

7
(6.5, 9.25) -3.210 -43.278 8× 10−5 0.379

(10, 12.45) -3.210 -43.289 9× 10−5 0.387

10
(6.5, 9.25) -3.210 -43.289 2× 10−4 0.747

(10, 12.45) -3.210 -43.290 1.7× 10−4 0.764

From Table 4.37 to Table 4.42, we can observe that

1) The average value of β̂1 is always equal to the true value of β1, and the average value

of β̂0 is consistently very close to the true value of β0, with each of the settings for β1,

β0, σe and (a, b). This indicates that the proposed method gives unbiased estimators

for both the slope and the intercept parameters.
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2) Under the same setting of (β1, β0) and (a, b), the MSEs of both β̂1 and β̂0 become

larger as the value of σe is set larger.

3) Under the same setting of (β1, β0) and σe, the larger values set for (a, b) do not

result in big differences in MSE(β̂1) or MSE(β̂0).

4) Under the same settings for σe and (a, b), the MSEs of β̂1 are almost the same to

each other, no matter of whether the slope or the intercept parameters are set to be

positive or negative; so do the MSEs of β̂0.

In conclusion, the proposed approach performs well in estimating the regression coeffi-

cients on the data sets simulated by the first method.

Simulation: Method II

Now we study the performance of the proposed approach by simulations conducted by the

second method. The settings for simulations are given as follows:

1. µ: the values of the means of the normal distributions from which the interval means

X(c) are generated, -35, -25, -15, -5, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125;

2. σ: the standard deviation of the normal distributions from which the interval means X(c)

are generated; this is set to be equal to 7;

3. n0: the numbers of observations with the interval means at each of the seventeen values in

Step 1. The n0 is randomly sampled from the discrete uniform distribution Uniform(5, 9)

with support k ∈ {5, 6, 7, 8, 9};

4. σe: the standard deviation of the error term to be generated, 3, 7, and 10;

5. (a, b, µ0): the lower bound, the upper bound and the value of the mean of the truncated

normal distribution from which the interval ranges X(r) are generated, (9.43, 13.69, 11.12);

6. σ0: the standard deviation of the truncated normal distribution from which the interval

ranges X(r) are generated, 5.25 and 8.07;
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7. β1: the true slope parameters, 0.64, 2.15, -3.21;

8. β0: the true intercept parameters, 68.57 and -43.29;

9. m: the number of values drawn from the uniform distribution U(xLi, xUi), for i = 1, ..., n,

and n is the total number of observations. Set m to be 3000;

10. B repetition times of drawing samples: 2000, 5000, and 10000.

Simulations based on the settings delineated here are conducted, and we apply the pro-

posed method to give point estimators and confidence intervals for the slope parameter β1

and the intercept parameter β0, respectively.

To illustrate, we take the setting σe = 10, σ0 = 5.25, β1 = 2.15 and β0 = 68.57 as an

example. Figure 4.38 presents the scatter plot with the fitted regression line given by the

average values of β̂1 and β̂0; and Figure 4.39 shows the histograms of the observations along

the point estimators β̂1 and β̂0. Table 4.43 summarizes the MSEs as well as 95% confidence

intervals. The results are based on 10000 repetitions of sampling.

EXAMPLE II: When we set simulations for parameter values σe = 10, σ0 = 5.25,

β1 = 2.15, β0 = 68.57, we obtain the data shown in Figure 4.38. The histogram plots

of the resulting estimates for the slope parameter (β̂1) and for the intercept parameter (β̂0)

are shown in Figure 4.39.
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Figure 4.38: Scatter plot - σe = 10, σ0 = 5.25, β1 = 2.15, β0 = 68.57

Figure 4.39: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 5.25, β1 = 2.15, β0 = 68.57

In Figure 4.39, the values of β̂1 and β̂0 obtained by different repetitions are indicated

on the x−axis by beta1B and beta0B, respectively. The two vertical red lines on Figure
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4.39 display the positions of the true parameter values, i.e., β1 = 2.15 and β0 = 68.57. The

following table summarizes the simulation results for the setting in EXAMPLE II for the

different numbers of repetitions, B = (2000, 5000, 10000).

Table 4.43: Summary of Simulation by Method II : β1 = 2.15, β0 = 68.57
σe = 10, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0
2000 2.150 68.576 2× 10−4 0.780 [2.125, 2.175] [66.858, 70.371]
5000 2.150 68.578 2× 10−4 0.755 [2.125 , 2.176] [66.881, 70.263]
10000 2.150 68.560 2× 10−4 0.763 [2.124, 2.176] [66.844, 70.276]

From Table 4.43, similar to what we have observed in the simulation results in Section

4.2.1, under simulation method I, the average of the point estimators for both β1 and β0

are also equal to or quite close to the true values, with small values of MSEs, indicating the

proposed approach gives accurate estimations for the regression coefficients, especially for β1

with different repetitions from 2000 to 10000; by the histograms in Figure 4.39, we also see

that both of β̂1 and β̂0 are distributed with shapes of normality, which verifies the normal

property shown in (3.72) and (3.77). The 95% confidence intervals of both β̂1 and β̂0 given

in Table 4.43 cover the true values of β1 and β0 and have almost the same length from the

lower bound to the true value, and from the upper bound to the true value.

We now will use different sets of values for (β1, β0). There are six sets of values for the

error standard deviation σe, and the standard deviation of the truncated normal distribu-

tions from which the interval ranges X(r) are generated, σ0. For each of these sets, there

are six different pairs of values for the regression parameters β1 and β0. The simulation

results are provided along the same lines above as illustrated in Figure 4.39 and Table 4.43

for EXAMPLE II. These are briefly described as follows. Then, for each (β1, β0) pairing,
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comparisons of these results are discussed and presented in Tables 4.79 - 4.84.

Method 2 - Set 1: σe = 3, σ0 = 5.25

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.40. Table 4.44 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.40: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 5.25, β1 = 0.64, β0 = 68.57
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Table 4.44: Summary of Simulation by Method II : β1 = 0.64, β0 = 68.57
σe = 3, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.586 2× 10−5 0.068 [0.632, 0.647] [68.084, 69.091]

5000 0.640 68.571 2× 10−5 0.067 [0.632 , 0.648] [68.066, 69.072]

10000 0.640 68.570 2× 10−5 0.070 [0.632, 0.647] [68.047, 69.089]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.570, with the MSE to be 0.070.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.41. Table 4.45 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.41: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 5.25, β1 = 0.64, β0 = −43.29

Table 4.45: Summary of Simulation by Method II : β1 = 0.64, β0 = −43.29
σe = 3, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.289 2× 10−5 0.070 [0.633, 0.648] [-43.797, -42.784]

5000 0.640 -43.288 2× 10−5 0.069 [0.632, 0.648] [-43.812, -42.775]

10000 0.640 -43.287 2× 10−5 0.068 [0.632, 0.648] [-43.793, -42.771]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.287, with the MSE to be 0.068.
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(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.42. Table 4.46 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.42: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 5.25, β1 = 2.15, β0 = 68.57

Table 4.46: Summary of Simulation by Method II : β1 = 2.15, β0 = 68.57
σe = 3, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.572 2× 10−5 0.070 [2.142, 2.158] [68.053, 69.088]

5000 2.150 68.572 2× 10−5 0.070 [2.142, 2.158] [68.061, 69.078]

10000 2.150 68.572 2× 10−5 0.070 [2.142, 2.158] [68.051, 69.084]
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The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.572, with the MSE to be 0.070.

(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.43. Table 4.47 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.43: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 5.25, β1 = 2.15, β0 = −43.29
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Table 4.47: Summary of Simulation by Method II : β1 = 2.15, β0 = −43.29
σe = 3, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.295 2× 10−5 0.071 [2.142, 2.158] [-43.801, -42.761]

5000 2.150 -43.292 2× 10−5 0.069 [2.142, 2.158] [-43.805, -42.769]

10000 2.150 -43.293 2× 10−5 0.070 [2.142, 2.158] [-43.809, -42.777]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.293, with the MSE to be 0.070.

(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.44. Table 4.48 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.44: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 5.25, β1 = −3.21, β0 = 68.57

Table 4.48: Summary of Simulation by Method II : β1 = −3.21, β0 = 68.57
σe = 3, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.565 2× 10−5 0.068 [-3.217, -3.202] [68.053, 69.076]

5000 -3.210 68.571 2× 10−5 0.070 [-3.218, -3.202] [68.047, 69.079]

10000 -3.210 68.567 2× 10−5 0.068 [-3.218, -3.202] [68.055, 69.076]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.567, with the MSE to be 0.068.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.45. Table 4.49 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.45: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 5.25, β1 = −3.21, β0 = −43.29

Table 4.49: Summary of Simulation by Method II : β1 = −3.21, β0 = −43.29
σe = 3, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.294 2× 10−5 0.069 [-3.217, -3.203] [-43.796, -42.777]

5000 -3.210 -43.296 2× 10−5 0.070 [-3.218, -3.202] [-43.825, -42.774]

10000 -3.210 -43.291 2× 10−5 0.068 [-3.218, -3.202] [-43.800, -42.780]
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The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.291, with the MSE to be 0.068.

Method 2 - Set 2: σe = 7, σ0 = 5.25

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.46. Table 4.50 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.46: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 5.25, β1 = 0.64, β0 = 68.57
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Table 4.50: Summary of Simulation by Method II : β1 = 0.64, β0 = 68.57
σe = 7, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.569 8× 10−5 0.379 [0.623, 0.658] [67.373, 69.795]

5000 0.640 68.585 8× 10−5 0.381 [0.622, 0.658] [67.368, 69.791]

10000 0.640 68.564 8× 10−5 0.378 [0.622, 0.658] [67.355, 69.799]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.564, with the MSE to be 0.378.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.47. Table 4.51 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.47: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 5.25, β1 = 0.64, β0 = −43.29

Table 4.51: Summary of Simulation by Method II : β1 = 0.64, β0 = −43.29
σe = 7, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.307 9× 10−5 0.375 [0.622, 0.658] [-44.514, -42.123]

5000 0.640 -43.296 8× 10−5 0.374 [0.622, 0.658] [-44.499, -42.090]

10000 0.640 -43.290 8× 10−5 0.370 [0.622, 0.658] [-44.485, -42.097]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.290, with the MSE to be 0.370.
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(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.48. Table 4.52 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.48: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 5.25, β1 = 2.15, β0 = 68.57

Table 4.52: Summary of Simulation by Method II : β1 = 2.15, β0 = 68.57
σe = 7, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.555 8× 10−5 0.373 [2.132, 2.168] [67.375, 69.721]

5000 2.150 68.585 8× 10−5 0.365 [2.131, 2.167] [67.398, 69.766]

10000 2.150 68.571 9× 10−5 0.378 [2.132, 2.168] [67.375, 69.781]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 9× 10−5; the

average value of β̂0 for 10000 repetitions is 68.571, with the MSE to be 0.378.
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(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.49. Table 4.53 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.49: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 5.25, β1 = 2.15, β0 = −43.29

Table 4.53: Summary of Simulation by Method II : β1 = 2.15, β0 = −43.29
σe = 7, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.316 9× 10−5 0.367 [2.132, 2.169] [-44.533, -42.102]

5000 2.150 -43.289 8× 10−5 0.377 [2.132, 2.168] [-44.521, -42.096]

10000 2.150 -43.287 8× 10−5 0.382 [2.132, 2.168] [-44.482, -42.067]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.287, with the MSE to be 0.382.
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(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.50. Table 4.54 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.50: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 5.25, β1 = −3.21, β0 = 68.57

Table 4.54: Summary of Simulation by Method II : β1 = −3.21, β0 = 68.57
σe = 7, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.574 8× 10−5 0.370 [-3.227, -3.192] [67.412, 69.737]

5000 -3.210 68.574 8× 10−5 0.378 [-3.228, -3.192] [67.369, 69.783]

10000 -3.210 68.564 8× 10−5 0.382 [-3.228, -3.192] [67.355, 69.776]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.564, with the MSE to be 0.382.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.51. Table 4.55 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.51: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 5.25, β1 = −3.21, β0 = −43.29

Table 4.55: Summary of Simulation by Method II : β1 = −3.21, β0 = −43.29
σe = 7, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.287 9× 10−5 0.375 [-3.228, -3.191] [-44.505, -42.110]

5000 -3.210 -43.298 8× 10−5 0.382 [-3.228, -3.192] [-44.478, -42.066]

10000 -3.210 -43.295 8× 10−5 0.372 [-3.228, -3.192] [-44.467, -42.085]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.295, with the MSE to be 0.372.
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Method 2 - Set 3: σe = 10, σ0 = 5.25

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.52. Table 4.56 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.52: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 5.25, β1 = 0.64, β0 = 68.57

Table 4.56: Summary of Simulation by Method II : β1 = 0.64, β0 = 68.57
σe = 10, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.563 1.6× 10−4 0.737 [0.615, 0.664] [66.882, 70.172]

5000 0.640 68.555 1.7× 10−4 0.786 [0.614, 0.665] [66.795, 70.301]

10000 0.640 68.578 1.7× 10−4 0.760 [0.614, 0.665] [68.857, 70.273]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 1.7 × 10−4;

128



the average value of β̂0 for 10000 repetitions is 68.578, with the MSE to be 0.760.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.53. Table 4.57 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.53: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 5.25, β1 = 0.64, β0 = −43.29

Table 4.57: Summary of Simulation by Method II : β1 = 0.64, β0 = −43.29
σe = 10, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.639 -43.235 1.7× 10−4 0.759 [0.613, 0.665] [-44.852, -41.509]

5000 0.640 -43.278 1.8× 10−4 0.777 [0.615, 0.667] [-44.957, -41.554]

10000 0.640 -43.280 1.7× 10−4 0.783 [0.614, 0.666] [-45.026, -41.549]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.280, with the MSE to be 0.783.

(3) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.54. Table 4.58 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.54: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 5.25, β1 = 2.15, β0 = −43.29
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Table 4.58: Summary of Simulation by Method II : β1 = 2.15, β0 = −43.29
σe = 10, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.303 1.8× 10−4 0.760 [2.124, 2.176] [-44.942, -41.533]

5000 2.150 -43.279 1.7× 10−4 0.759 [2.125, 2.175] [-45.034, -41.584]

10000 2.150 -43.290 1.7× 10−4 0.771 [2.124, 2.176] [-45.018, -41.567]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be ×10−5; the

average value of β̂0 for 10000 repetitions is -43.290, with the MSE to be 0.771.

(4) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.55. Table 4.59 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.55: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 5.25, β1 = −3.21, β0 = 68.57

Table 4.59: Summary of Simulation by Method II : β1 = −3.21, β0 = 68.57
σe = 10, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.545 1.6× 10−4 0.766 [-3.235, -3.184] [66.846, 70.277]

5000 -3.210 68.582 1.7× 10−4 0.783 [-3.235, -3.185] [66.861, 70.289]

10000 -3.210 68.572 1.7× 10−4 0.748 [-3.236, -3.185] [66.861, 70.289]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.572, with the MSE to be 0.748.
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(5) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.56. Table 4.60 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.56: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 5.25, β1 = −3.21, β0 = −43.29

Table 4.60: Summary of Simulation by Method II : β1 = −3.21, β0 = −43.29
σe = 10, σ0 = 5.25

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.309 1.7× 10−4 0.728 [-3.236, -3.184] [-44.987, -41.625]

5000 -3.210 -43.290 1.7× 10−4 0.781 [-3.235, -3.184] [-45.050, -41.556]

10000 -3.210 -43.277 1.7× 10−4 0.767 [-3.236, -3.184] [-44.988, -41.540]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.277, with the MSE to be 0.767.
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Method 2 - Set 4: σe = 3, σ0 = 8.07

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.57. Table 4.61 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.57: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 8.07, β1 = 0.64, β0 = 68.57

Table 4.61: Summary of Simulation by Method II : β1 = 0.64, β0 = 68.57
σe = 3, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.575 2× 10−5 0.069 [0.632, 0.648] [68.063, 69.088]

5000 0.640 68.563 2× 10−5 0.069 [0.632, 0.648] [68.041, 69.090]

10000 0.640 68.568 2× 10−5 0.069 [0.632, 0.648] [68.051, 69.075]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.568, with the MSE to be 0.069.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.58. Table 4.62 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.58: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 8.07, β1 = 0.64, β0 = −43.29

135



Table 4.62: Summary of Simulation by Method II : β1 = 0.64, β0 = −43.29
σe = 3, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.288 2× 10−5 0.072 [0.632, 0.648] [-43.809, -42.751]

5000 0.640 -43.291 2× 10−5 0.070 [0.632, 0.648] [-43.794, -42.763]

10000 0.640 -43.292 2× 10−5 0.067 [0.633, 0.648] [-43.806, -42.788]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.292, with the MSE to be 0.067.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.59. Table 4.63 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.59: FHistograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 8.07, β1 = 2.15, β0 = 68.57

Table 4.63: Summary of Simulation by Method II : β1 = 2.15, β0 = 68.57
σe = 3, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.571 2× 10−5 0.067 [2.143, 2.158] [68.071, 69.074]

5000 2.150 68.566 2× 10−5 0.070 [2.142, 2.158] [68.037, 69.074]

10000 2.150 68.570 2× 10−5 0.068 [2.142, 2.158] [68.054, 69.086]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.570, with the MSE to be 0.068.
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(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.60. Table 4.64 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.60: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 8.07, β1 = 2.15, β0 = −43.29

Table 4.64: Summary of Simulation by Method II : β1 = 2.15, β0 = −43.29
σe = 3, σ0 = 8.07

B. β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.287 2× 10−5 0.071 [2.142, 2.158] [-43.807, -42.769]

5000 2.150 -43.290 2× 10−5 0.072 [2.142, 2.158] [-43.810, -42.766]

10000 2.150 -43.288 2× 10−5 0.069 [2.142, 2.158] [-43.801, -42.779]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.288, with the MSE to be 0.069.
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(5) β1 = −3.21,β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0 values

shown in Figure 4.61. Table 4.65 provides the overall estimates for each parameter, the

resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.61: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 8.07, β1 = −3.21, β0 = 68.57

Table 4.65: Summary of Simulation by Method II : β1 = −3.21, β0 = 68.57
σe = 3, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.571 2× 10−5 0.073 [-3.218, -3.202] [68.035, 69.094]

5000 -3.210 68.576 2× 10−5 0.070 [-3.218, -3.202] [68.071, 69.105]

10000 -3.210 68.569 2× 10−5 0.069 [-3.218, -3.202] [68.054, 69.085]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.069.
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(6) β1 = −3.21,β0 = −43.29, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.62. Table 4.66 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.62: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 3, σ0 = 8.07, β1 = −3.21, β0 = −43.29

Table 4.66: Summary of Simulation by Method II : β1 = −3.21, β0 = −43.29
σe = 3, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.301 2× 10−5 0.066 [-3.218, -3.202] [-43.821, -42.797]

5000 -3.210 -43.292 2× 10−5 0.069 [-3.218, -3.202] [-43.814, -42.772]

10000 -3.210 -43.294 2× 10−5 0.068 [-3.218, -3.202] [-43.800, -42.784]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 2× 10−5; the

average value of β̂0 for 10000 repetitions is -43.294, with the MSE to be 0.069.
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Method 2 - Set 5: σe = 7, σ0 = 8.07

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.63. Table 4.67 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.63: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 8.07, β1 = 0.64, β0 = 68.57

Table 4.67: Summary of Simulation by Method II : β1 = 0.64, β0 = 68.57
σe = 7, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.582 9× 10−5 0.391 [0.621, 0.658] [67.366, 69.741]

5000 0.640 68.572 9× 10−5 0.373 [0.622, 0.657] [67.385, 69.773]

10000 0.640 68.574 9× 10−5 0.373 [0.622, 0.658] [67.378, 69.767]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 9× 10−5; the

average value of β̂0 for 10000 repetitions is 68.574, with the MSE to be 0.373.

(2) When β1 = 0.64,β0 = −43.29, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.64. Table 4.68 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.64: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 8.07, β1 = 0.64, β0 = −43.29
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Table 4.68: Summary of Simulation by Method II : β1 = 0.64, β0 = −43.29
σe = 7, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.300 8× 10−5 0.378 [0.622, 0.658] [-44.500, -42.127]

5000 0.640 -43.300 8× 10−5 0.379 [0.622, 0.659] [-44.529, -42.088]

10000 0.640 -43.294 8× 10−5 0.369 [0.622, 0.658] [-44.484, -42.091]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.294, with the MSE to be 0.369.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.65. Table 4.69 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.65: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 8.07, β1 = 2.15, β0 = 68.57

Table 4.69: Summary of Simulation by Method II : β1 = 2.15, β0 = 68.57
σe = 7, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.574 9× 10−5 0.375 [2.131, 2.167] [67.406, 69.768]

5000 2.150 68.584 8× 10−5 0.372 [2.132, 2.168] [67.383, 69.783]

10000 2.150 68.569 8× 10−5 0.376 [2.132, 2.168] [67.355, 69.755]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.376.
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(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.66. Table 4.70 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.66: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 8.07, β1 = 2.15, β0 = −43.29

Table 4.70: Summary of Simulation by Method II : β1 = 2.15, β0 = −43.29
σe = 7, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.295 8× 10−5 0.357 [2.133, 2.168] [-44.485, -42.145]

5000 2.150 -43.298 8× 10−5 0.371 [2.133, 2.168] [-44.512, -42.118]

10000 2.150 -43.283 8× 10−5 0.371 [2.132, 2.168] [-44.496, -42.108]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.283, with the MSE to be 0.371.
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(5) When β1 = −3.21, β0 = 68.57, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.67. Table 4.71 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.67: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 8.07, β1 = −3.21, β0 = 68.57

Table 4.71: Summary of Simulation by Method II : β1 = −3.21, β0 = 68.57
σe = 7, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.570 9× 10−5 0.385 [-3.228, -3.192] [67.326, 69.778]

5000 -3.210 68.564 8× 10−5 0.381 [-3.228, -3.191] [67.359, 69.783]

10000 -3.210 68.583 9× 10−5 0.374 [-3.228, -3.192] [67.395, 69.791]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 9× 10−5; the

average value of β̂0 for 10000 repetitions is 68.583, with the MSE to be 0.374.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.68. Table 4.72 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.68: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 7, σ0 = 8.07, β1 = −3.21, β0 = −43.29

Table 4.72: Summary of Simulation by Method II : β1 = −3.21, β0 = −43.29
σe = 7, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.282 8× 10−5 0.375 [-3.228, -3.192] [-44.486, -42.126]

5000 -3.210 -43.302 8× 10−5 0.382 [-3.227, -3.192] [-44.552, -42.100]

10000 -3.210 -43.296 8× 10−5 0.374 [-3.228, -3.192] [-44.511, -42.096]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 8× 10−5; the

average value of β̂0 for 10000 repetitions is -43.296, with the MSE to be 0.374.
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Method 2 - Set 6: σe = 10, σ0 = 8.07

(1) When β1 = 0.64, β0 = 68.57, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.69. Table 4.73 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.69: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 8.07, β1 = 0.64, β0 = 68.57

Table 4.73: Summary of Simulation by Method II : β1 = 0.64, β0 = 68.57
σe = 10, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 68.560 1.7× 10−4 0.755 [0.615, 0.666] [66.895, 70.263]

5000 0.640 68.565 1.7× 10−4 0.767 [0.614, 0.666] [66.866, 70.295]

10000 0.640 68.569 1.7× 10−4 0.766 [0.614, 0.665] [66.810, 70.282]
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The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.766.

(2) When β1 = 0.64, β0 = −43.29, we obtain the histograms of the estimated β̂1 and

β̂0 values shown in Figure 4.70. Table 4.74 provides the overall estimates for each parame-

ter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the

B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.70: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 8.07, β1 = 0.64, β0 = −43.29
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Table 4.74: Summary of Simulation by Method II : β1 = 0.64, β0 = −43.29
σe = 10, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 0.640 -43.262 1.8× 10−4 0.792 [0.613, 0.666] [-45.028, -41.525]

5000 0.640 -43.288 1.8× 10−4 0.781 [0.614, 0.666] [-45.049, -41.598]

10000 0.640 -43.290 1.7× 10−4 0.767 [0.615, 0.665] [-45.025, -41.593]

The average value of β̂1 for 10000 repetitions is 0.640, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.290, with the MSE to be 0.767.

(3) When β1 = 2.15, β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.71. Table 4.75 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.71: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 8.07, β1 = 2.15, β0 = 68.57
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Table 4.75: Summary of Simulation by Method II : β1 = 2.15, β0 = 68.57
σe = 10, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 68.561 1.7× 10−4 0.736 [2.125, 2.175] [66.964, 70.273]

5000 2.150 68.564 1.7× 10−4 0.751 [2.125, 2.175] [66.866, 70.296]

10000 2.150 68.569 1.7× 10−4 0.764 [2.124, 2.176] [66.882, 70.300]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.569, with the MSE to be 0.764.

(4) When β1 = 2.15, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.72. Table 4.76 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.
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Figure 4.72: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 8.07, β1 = 2.15, β0 = −43.29

Table 4.76: Summary of Simulation by Method II : β1 = 2.15, β0 = −43.29
σe = 10, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 2.150 -43.265 1.6× 10−4 0.738 [2.124, 2.174] [-44.948, -41.567]

5000 2.150 -43.263 1.7× 10−4 0.722 [2.125, 2.176] [-45.092, -41.615]

10000 2.150 -43.293 1.7× 10−4 0.783 [2.124, 2.176] [-45.041, -41.534]

The average value of β̂1 for 10000 repetitions is 2.150, with the MSE to be 1.7 × 10−5;

the average value of β̂0 for 10000 repetitions is -43.293, with the MSE to be 0.783.
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(5) When β1 = −3.21,β0 = 68.57, we obtain the histograms of the estimated β̂1 and β̂0

values shown in Figure 4.73. Table 4.77 provides the overall estimates for each parameter,

the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each of the B =

2000, 5000, 10000 numbers of repetitions.

Figure 4.73: Histograms of β̂1 and β̂0 with 10000 repetitions,
σe = 10, σ0 = 8.07, β1 = −3.21, β0 = 68.57

Table 4.77: Summary of Simulation by Method II : β1 = −3.21, β0 = 68.57
σe = 10, σ0 = 8.07

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 68.568 1.7× 10−5 0.742 [-3.236, -3.184] [66.895, 70.226]

5000 -3.210 68.576 1.7× 10−4 0.782 [-3.235, -3.184] [66.818, 70.258]

10000 -3.210 68.564 1.7× 10−4 0.756 [-3.236, -3.184] [66.859, 70.223]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is 68.564, with the MSE to be 0.756.
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(6) When β1 = −3.21, β0 = −43.29, we obtain the histograms of the estimated β̂1

and β̂0 values shown in Figure 4.74. Table 4.78 provides the overall estimates for each

parameter, the resulting MSEs, and 95% confidence intervals for β̂1 and β̂0, based on each

of the B = 2000, 5000, 10000 numbers of repetitions.

Figure 4.74: Histograms of β̂1 and β̂0 with 10000 repetitions
σe = 10, σ0 = 8.07, β1 = −3.21, β0 = −43.29

Table 4.78: Summary of Simulation by Method II : β1 = −3.21, β0 = −43.29

B β̂1 β̂0 MSE(β̂1) MSE(β̂0) 95% C.I. of β̂1 95% C.I. of β̂0

2000 -3.210 -43.298 1.7× 10−4 0.751 [-3.236, -3.185] [-44.960, -41.593]

5000 -3.210 -43.287 1.7× 10−4 0.774 [-3.236, -3.185] [-44.975, -41.550]

10000 -3.210 -43.311 1.7× 10−4 0.763 [-3.235, -3.185] [-45.036, -41.577]

The average value of β̂1 for 10000 repetitions is -3.210, with the MSE to be 1.7 × 10−4;

the average value of β̂0 for 10000 repetitions is -43.311, with the MSE to be 0.763.
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As in Section 4.2.1, to compare the performances of the proposed method under the

second simulation approach, for different settings of the standard deviation of the error

term, σe, and the standard deviation of the truncated normal distribution from which the

interval ranges X(r) are generated, σ0, we create the following six tables to summarize the

averages of β̂1 and β̂0 as well as MSE(β̂1) and MSE(β̂0). Each table corresponds to a

setting of the slope and the intercept parameter values (β1, β0), and with 10000 repetitions.

I. When (β1, β0) = (0.64, 68.57), the results are summarized in Table 4.79.

Table 4.79: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (0.64, 68.57)

σe σ0 β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
5.25 0.640 68.570 2× 10−5 0.070

8.07 0.640 68.568 2× 10−5 0.069

7
5.25 0.640 68.564 8× 10−5 0.378

8.07 0.640 68.574 9× 10−5 0.373

10
5.25 0.640 68.569 1.7× 10−4 0.760

8.07 0.640 68.569 1.7× 10−4 0.766

II. When (β1, β0) = (0.64, −43.29), the results are summarized in Table 4.80.

Table 4.80: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (0.64, −43.29)

σe σ0 β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
5.25 0.640 -43.287 2× 10−5 0.068

8.07 0.640 -43.292 2× 10−5 0.067

7
5.25 0.640 -43.290 8× 10−5 0.370

8.07 0.640 -43.294 8× 10−5 0.369

10
5.25 0.640 -43.280 1.7× 10−4 0.783

8.07 0.640 -43.290 1.7× 10−4 0.767
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III. When (β1, β0) = (2.15, 68.57), the results are summarized in Table 4.81.

Table 4.81: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (2.15, 68.57)

σe σ0 β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
5.25 2.150 68.572 2× 10−5 0.070

8.07 2.150 68.570 2× 10−5 0.068

7
5.25 2.150 68.571 9× 10−5 0.378

8.07 2.150 68.569 8× 10−5 0.376

10
5.25 2.150 68.560 2× 10−4 0.763

8.07 2.150 68.569 1.7× 10−4 0.764

IV. When (β1, β0) = (2.15, −43.29), the results are summarized in Table 4.82.

Table 4.82: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (2.15, −43.29)

σe σ0 β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
5.25 2.150 -43.293 2× 10−5 0.070

8.07 2.150 -43.288 2× 10−5 0.069

7
5.25 2.150 -43.287 8× 10−5 0.382

8.07 2.150 -43.283 8× 10−5 0.371

10
5.25 2.150 -43.290 1.7× 10−4 0.771

8.07 2.150 -43.293 1.7× 10−4 0.783
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V. When (β1, β0) = (−3.21, 68.57), the results are summarized in Table 4.83.

Table 4.83: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (−3.21, 68.57)

σe sigma0 β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
5.25 -3.210 68.567 2× 10−5 0.068

8.07 -3.210 68.569 2× 10−5 0.069

7
5.25 -3.210 68.564 8× 10−5 0.382

8.07 -3.210 68.583 9× 10−5 0.374

10
5.25 -3.210 68.572 1.7× 10−4 0.748

8.07 -3.210 68.564 1.7× 10−4 0.756

VI. When (β1, β0) = (−3.21, −43.29), the results are summarized in Table 4.84.

Table 4.84: β̂1, β̂0, MSE(β̂1), MSE(β̂0) for (β1, β0) = (−3.21, −43.29)

σe σ0 β̂1 β̂0 MSE(β̂1) MSE(β̂0)

3
5.25 -3.210 -43.291 2× 10−5 0.068

8.07 -3.210 -43.294 2× 10−5 0.068

7
5.25 -3.210 -43.295 8× 10−5 0.372

8.07 -3.210 -43.296 8× 10−5 0.374

10
5.25 -3.210 -43.277 1.7× 10−4 0.767

8.07 -3.210 -43.311 1.7× 10−4 0.763

From Table 4.79 to Table 4.84, we can observe that

1) The average value of β̂1 is always equal to the true value of β1, and the average value

of β̂0 is consistently very close to the true value of β0, with each of the settings for β1,

β0, σe and σ0. This indicates that the proposed method gives unbiased estimators for

both the slope and the intercept parameters.
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2) Under the same setting of (β1, β0) and σ0, the MSEs of both β̂1 and β̂0 become

larger as the value of σe is set larger.

3) Under the same setting of (β1, β0) and σe, the larger values set for σ0 do not result

in big differences on MSE(β̂1) or MSE(β̂0).

4) Under the same settings for σe and σ0, the MSEs of β̂1 are almost the same to each

other, no matter of whether the slope or the intercept parameters are set to be positive

or negative; so do the MSEs of β̂0.

Comparing the simulation results in Tables 4.37 to 4.42 and the ones in Tables 4.79 to

4.84, we observe that for the same pairing of (β1, β0) and the same value of σe, the estimated

average of β̂1, β̂0, and MSE(β̂1), MSE(β̂0) are all quite close to each other. Recalling

Section 4.1, we know that the first simulation method guarantees the linear relationship

between the expected interval response Y and the interval explanatory variable X, while

it has the drawback that the range of the simulated yi is always no less than the range of

xiβ1, i = 1, ..., n and n is the sample size, which may not be true in the real world. For

the second method, since the way it generates the interval explanatory variable satisfies the

basic assumption that the distribution within each interval is uniform, and the lower and

upper bound of each response interval are given by the minimum and maximum values of

the m values of β0 + xiβ1, i = 1, ..., n, respectively, this method is closer to how interval

data arise and avoids the drawback of the first method, though it is hard to guarantee the

response follows a uniform distribution internally. Therefore, the two simulation methods

can be considered complementary, in terms of their advantages and disadvantages.

From the above simulation results, we can see that by both of the two simulation ap-

proaches, the proposed method preforms very well in estimating the slope parameter β1

and the intercept parameter β0, with very small mean square errors. The properties of

unbiasedness as well as normality for the coefficient estimators are also verified.
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4.3 APPENDIX

Simulation Method I

R Function for the Simulation Studies Under Method I, and R code for the simulations

# Method I

sim_m1 <- function(B, beta1, beta0, X_mean, sig, n_sam, a, b, sigma_e){

beta1B <- NULL

beta0B <- NULL

var_beta1B <- NULL

var_beta0B <- NULL

for (i in 1:B){

# 1st, generate interval-valued X

X_i <- NULL

n_i <- NULL

for (l in 1:length(X_mean)){

n_i <- c(n_i, sample(n_sam, 1))

X_i <- c(X_i, rnorm(n_i[l], X_mean[l], sig))

}

len_Xi <- length(X_i)

r <- runif(len_Xi, a, b)
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# 3. generate lower and upper points of X

X_Li <- X_i - 1/2 * r

X_Ui <- X_i + 1/2 * r

# 2nd, generate error terms based on assumption

e_Li <- NULL

e_Ui <- NULL

e_Li <- rnorm(len_Xi, 0, sigma_e)

e_Ui <- rnorm(len_Xi, 0, sigma_e)

if (beta1 >= 0){

Y_Li <- X_Li * beta1 + beta0 + e_Li

Y_Ui <- X_Ui * beta1 + beta0 + e_Ui

# Next, calculate beta1B, beta0B and variances for each time

# call function "est_ord"

beta1B <- c(beta1B, est_ord(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[1])

beta0B <- c(beta0B, est_ord(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[2])

var_beta1B <- c(var_beta1B, est_ord(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[3])

var_beta0B <- c(var_beta0B, est_ord(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[4])

}else{
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# Calculate beta1B, beta0B and variances for each time

# call function "est_ord_n"

Y_Li <- X_Ui * beta1 + beta0 + e_Li

Y_Ui <- X_Li * beta1 + beta0 + e_Ui

beta1B <- c(beta1B, est_ord_n(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[1])

beta0B <- c(beta0B, est_ord_n(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[2])

var_beta1B <- c(var_beta1B, est_ord_n(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[3])

var_beta0B <- c(var_beta0B, est_ord_n(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[4])

}

}

# Obtain all the outputs

beta1_hat <- mean(beta1B)

beta0_hat <- mean(beta0B)

var_beta1 <- mean(var_beta1B)

var_beta0 <- mean(var_beta0B)

MSE_beta1 <- mean((beta1B - beta1)^2)

MSE_beta0 <- mean((beta0B - beta0)^2)
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# empirical Confidence Interval

cl_beta1B <- quantile(beta1B, probs = c(.025, .975))[1]

cl_beta0B <- quantile(beta0B, probs = c(.025, .975))[1]

cu_beta1B <- quantile(beta1B, probs = c(.025, .975))[2]

cu_beta0B <- quantile(beta0B, probs = c(.025, .975))[2]

# histograms h1 and h0

par(mfrow = c(1, 2))

y1hist <- hist(beta1B, plot = FALSE)

y0hist <- hist(beta0B, plot = FALSE)

highestDensity1 <- max(y1hist$density)

highestDensity2 <- max(y0hist$density)

h1 <- hist(beta1B, breaks = 20, freq = FALSE,

ylim = c(0, highestDensity1 * 1.1),

main = expression(paste("Histogram of ", hat(beta)[1])))

abline(v = beta1, col = "red")

lines(density(beta1B), lwd = 2, col = "blue")

h0 <- hist(beta0B, breaks = 20, freq = FALSE,

ylim = c(0, highestDensity2 * 1.1),

main = expression(paste("Histogram of ", hat(beta)[0])))

abline(v = beta0, col = "red")

lines(density(beta0B), lwd = 2, col = "blue")

res1 <- paste("avg beta1: ", round(beta1_hat, 3), "avg beta0: "
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, round(beta0_hat, 3), "avg var(beta1): "

, round(var_beta1, 5), "avg var(beta0)"

, round(var_beta0, 3), "MSE(beta1): "

, round(MSE_beta1, 5), "MSE(beta0): "

, round(MSE_beta0, 3), "C.I. for beta_1: ["

, round(cl_beta1B, 3), ",", round(cu_beta1B, 3),"]",

"C.I. for beta_0: [", round(cl_beta0B, 3), ",",

round(cu_beta0B, 3),"]")

res <- list(res1, h1, h0)

return(res)

}

set.seed(1025)

# Generate (X_L, X_U) with the following settings:

sigma_e <- 10

a <- 6.5

b <- 9.25

# Generate the interval means

mu <- c(-35, -25, -15, -5, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95,

105, 115, 125)

N0 <- c(5, 6, 7, 8, 9)

sigma_e <- c(3, 7, 10)

a1 <- c(6.5, 10)
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b1 <- c(9.25, 12.45)

beta1 <- c(.64, 2.15, -3.21)

beta0 <- c(68.57, -43.29)

B0 <- 10000

rec11 <- matrix(list(), 3, 2) # save all the results by different values of

# beta1 and beta0

for (i in 1:2){

for (j in 1:3){

rec11[[j,i]] <- sim_m1(B1, beta1[j], beta0[i], X_mean = mu, sig = 7,

n_sam = N0, a = 10, b = 12.45, sigma_e = 3)

}

}

rec11[[1, 1]] # beta1 = .64, beta0 = 68.57

rec11[[1, 2]] # beta1 = .64, beta0 = -43.29

rec11[[2, 1]] # beta1 = 2.15, beta0 = 68.57

rec11[[2, 2]] # beta1 = 2.15 beta0 = -43.29

rec11[[3, 1]] # beta1 = -3.21, beta0 = 68.57

rec11[[3, 2]] # beta1 = -3.21, beta0 = -43.29

rec21 <- matrix(list(), 3, 2) # save all the results by different values of

# beta1 and beta0

for (i in 1:2){

for (j in 1:3){
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rec21[[j,i]] <- sim_m1(B1, beta1[j], beta0[i], X_mean = mu, sig = 7,

n_sam = N0, a = 10, b = 12.45, sigma_e = 7)

}

}

rec21[[1, 1]] # beta1 = .64, beta0 = 68.57

rec21[[1, 2]] # beta1 = .64, beta0 = -43.29

rec21[[2, 1]] # beta1 = 2.15, beta0 = 68.57

rec21[[2, 2]] # beta1 = 2.15 beta0 = -43.29

rec21[[3, 1]] # beta1 = -3.21, beta0 = 68.57

rec21[[3, 2]] # beta1 = -3.21, beta0 = -43.29

rec31 <- matrix(list(), 3, 2) # save all the results by different values of

# beta1 and beta0

for (i in 1:2){

for (j in 1:3){

rec31[[j,i]] <- sim_m1(B1, beta1[j], beta0[i], X_mean = mu, sig = 7,

n_sam = N0, a = 10, b = 12.45, sigma_e = 10)

}

}

rec31[[1, 1]] # beta1 = .64, beta0 = 68.57

rec31[[1, 2]] # beta1 = .64, beta0 = -43.29

rec31[[2, 1]] # beta1 = 2.15, beta0 = 68.57

rec31[[2, 2]] # beta1 = 2.15 beta0 = -43.29
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rec31[[3, 1]] # beta1 = -3.21, beta0 = 68.57

rec31[[3, 2]] # beta1 = -3.21, beta0 = -43.29

# Scatter plot as example

X_mean <- NULL

n_lev <- NULL

for (l in 1:length(mu)){

n_lev <- c(n_lev, sample(N0, 1)) # consider if 1 need to be changed

X_mean <- c(X_mean, rnorm(n_lev[l], mu[l], sig))

}

n_lev

len_X <- length(X_mean) # 124 points of X

# 2. generate interval ranges

r <- runif(len_X, a, b)

# 3. generate lower and upper points of X

X_L <- X_mean - 1/2 * r

X_U <- X_mean + 1/2 * r

# 4. generate the lower and upper points of the error term

e_L <- NULL
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e_U <- NULL

e_L <- rnorm(len_X, 0, sigma_e)

e_U <- rnorm(len_X, 0, sigma_e)

# 5. generate lower and upper points of Y

Y_L <- beta0 + X_L * beta1 + e_L

Y_U <- beta0 + X_U * beta1 + e_U

# plot with regression line

par(mfrow = c(1, 1))

plot(c(min(X_L)-5,max(X_U)+5), c(min(Y_L)-20, max(Y_U)+20),

type = "n", xlab = "", ylab = "",

main = expression(paste("Scatter Plots with Regression Line, ",

hat(beta)[1] == 2.150, " , ", hat(beta)[0] == 68.574)))

rect(X_L, Y_L, X_U, Y_U, border = "blue")

clip(min(X_L)-5, max(X_U)+5, min(Y_L)-10, max(Y_U)+10)

abline(a = 67.574, b = 2.150, lwd = "2", col = "red")

Simulation Method II

R Function for the Simulation Studies Under Method II, and R code for the simulations

# Simulation: Method II

library(truncnorm)
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# Input:

# B: times of repeats

# beta1: true value of \beta1

# beta0: true value of \beta0

# X_mean: mu for X interval means

# sig: standard deviation for X interval means

# n_sam: vector for number of X around each mu to be sampled

# a, b, mu0: parameter of truncated normal distribution to

# generate interval range

# sigma0: sd of truncated normal distribution

# sigma_e: standard deviation of the error term

# m0: number of values generated form each X interval

# Output:

# beta1_hat: average point estimate of \beta1

# beta0_hat: average point estimate of \beta0

# var_beta1: average variance of beta1B

# var_beta0: average variance of beta0B

# MSE_beta1: mean square error of beta1B

# MSE_beta0: mean square error of beta0B

# h1: histogram of beta1_B

# h0: histogram of beta0_B

sim_m2 <- function(B, beta1, beta0, X_mean, sig, n_sam, a, b, mu0,

sigma0, sigma_e, m0 = 3000){
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beta1B <- NULL

beta0B <- NULL

var_beta1B <- NULL

var_beta0B <- NULL

for (i in 1:B){

# 1st, generate interval-valued X

X_i <- NULL

n_i <- NULL

for (l in 1:length(X_mean)){

n_i <- c(n_i, sample(n_sam, 1))

X_i <- c(X_i, rnorm(n_i[l], X_mean[l], sig))

}

len_Xi <- length(X_i)

r2 <- rtruncnorm(len_Xi, a, b, mu0, sigma0)

# generate lower and upper bounds of X

X_Li <- X_i - 1/2 * r2

X_Ui <- X_i + 1/2 * r2

# generate lower and upper points of Y

# generate the lower and upper points of the error term

# draw m random samples from U(X_Li, X_Ui)
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Y_Li0 <- NULL

Y_Ui0 <- NULL

for (j in 1:len_Xi){

X_jl <- runif(m0, X_Li[j], X_Ui[j])

Y_Li0 <- c(Y_Li0, beta0 + min(X_jl * beta1))

Y_Ui0 <- c(Y_Ui0, beta0 + max(X_jl * beta1))

}

# 2nd, generate error terms based on assumption

e_Li <- NULL

e_Ui <- NULL

e_Li <- rnorm(len_Xi, 0, sigma_e)

e_Ui <- rnorm(len_Xi, 0, sigma_e)

Y_Li <- Y_Li0 + e_Li

Y_Ui <- Y_Ui0 + e_Ui

# Next, calculate beta1B, beta0B and variances for each time

# call function "est_ord"

if (beta1 >= 0){
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beta1B <- c(beta1B, est_ord(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[1])

beta0B <- c(beta0B, est_ord(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[2])

var_beta1B <- c(var_beta1B, est_ord(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[3])

var_beta0B <- c(var_beta0B, est_ord(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[4])

}else{

beta1B <- c(beta1B, est_ord_n(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[1])

beta0B <- c(beta0B, est_ord_n(X_Li, X_Ui, Y_Li, Y_Ui, sigma_e)[2])

var_beta1B <- c(var_beta1B, est_ord_n(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[3])

var_beta0B <- c(var_beta0B, est_ord_n(X_Li, X_Ui, Y_Li,

Y_Ui, sigma_e)[4])

}

}

# Obtain all the outputs

beta1_hat <- mean(beta1B)

beta0_hat <- mean(beta0B)

var_beta1 <- mean(var_beta1B)

var_beta0 <- mean(var_beta0B)

MSE_beta1 <- mean((beta1B - beta1)^2)

MSE_beta0 <- mean((beta0B - beta0)^2)

# empirical Confidence Interval

cl_beta1B <- quantile(beta1B, probs = c(.025, .975))[1]
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cl_beta0B <- quantile(beta0B, probs = c(.025, .975))[1]

cu_beta1B <- quantile(beta1B, probs = c(.025, .975))[2]

cu_beta0B <- quantile(beta0B, probs = c(.025, .975))[2]

# histograms h1 and h0

par(mfrow = c(1, 2))

y1hist <- hist(beta1B, plot = FALSE)

y0hist <- hist(beta0B, plot = FALSE)

highestDensity1 <- max(y1hist$density)

highestDensity2 <- max(y0hist$density)

h1 <- hist(beta1B, breaks = 20, freq = FALSE,

ylim = c(0, highestDensity1 * 1.1),

main = expression(paste("Histogram of ", hat(beta)[1])))

abline(v = beta1, col = "red")

lines(density(beta1B), lwd = 2, col = "blue")

h0 <- hist(beta0B, breaks = 20, freq = FALSE,

ylim = c(0, highestDensity2 * 1.1),

main = expression(paste("Histogram of ", hat(beta)[0])))

abline(v = beta0, col = "red")

lines(density(beta0B), lwd = 2, col = "blue")

res2 <- paste("avg beta1: ", round(beta1_hat, 3), "avg beta0: "

, round(beta0_hat, 3), "avg var(beta1): "

, round(var_beta1, 5), "avg var(beta0)"
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, round(var_beta0, 3), "MSE(beta1): "

, round(MSE_beta1, 5), "MSE(beta0): "

, round(MSE_beta0, 3), "C.I. for beta_1: ["

, round(cl_beta1B, 3), ",", round(cu_beta1B, 3),"]",

"C.I. for beta_0: [", round(cl_beta0B, 3), ",",

round(cu_beta0B, 3),"]")

res <- list(res2, h1, h0)

return(res)

}

# Simulation results of all different settings by Method II

sigma_e <- c(3, 7, 10)

a <- 9.43

b <- 13.69

mu0 <- 11.12

sigma0 <- c(5.25, 8.07)

beta1 <- c(.64, 2.15, -3.21)

beta0 <- c(68.57, -43.29)

B1 = 10000

rec21 <- matrix(list(), 3, 2) # save all the results by different values of

# beta1 and beta0

for (i in 1:2){
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for (j in 1:3){

rec21[[j,i]] <- sim_m2(B1, beta1[j], beta0[i], X_mean = mu, sig = 7,

n_sam = N0, a = 9.43, b = 13.69, mu0 = 11.12,

sigma0 = 5.25, sigma_e = 10)

}

}

rec21[[1, 1]] # beta1 = .64, beta0 = 68.57

rec21[[1, 2]] # beta1 = .64, beta0 = -43.29

rec21[[2, 1]] # beta1 = 2.15, beta0 = 68.57

rec21[[2, 2]] # beta1 = 2.15, beta0 = -43.29

rec21[[3, 1]] # beta1 = -3.21, beta0 = 68.57

rec21[[3, 2]] # beta1 = -3.21, beta0 = -43.29

rec22 <- matrix(list(), 3, 2) # save all the results by different values of

# beta1 and beta0

for (i in 1:2){

for (j in 1:3){

rec22[[j,i]] <- sim_m2(B1, beta1[j], beta0[i], X_mean = mu, sig = 7,

n_sam = N0, a = 9.43, b = 13.69, mu0 = 11.12,

sigma0 = 8.07, sigma_e = 10)

}

}

rec22[[1, 1]] # beta1 = .64, beta0 = 68.57

rec22[[1, 2]] # beta1 = .64, beta0 = -43.29

174



rec22[[2, 1]] # beta1 = 2.15, beta0 = 68.57

rec22[[2, 2]] # beta1 = 2.15, beta0 = -43.29

rec22[[3, 1]] # beta1 = -3.21, beta0 = 68.57

rec22[[3, 2]] # beta1 = -3.21, beta0 = -43.29

# Scatter plot as example

set.seed(1025)

# 1. generate interval ranges

a <- 9.43

b <- 13.69

mu0 <- 11.21

sigma0 <- 5.25

r2 <- rtruncnorm(len_X, a, b, mu0, sigma0)

# 2. generate lower and upper points of X

X_L <- X_mean - 1/2 * r2

X_U <- X_mean + 1/2 * r2

m <- 3000

# 3. generate lower and upper points of Y

# generate the lower and upper points of the error term

# draw m random samples from U(X_Li, X_Ui)
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sigma_e <- 10

Y_L0 <- NULL

Y_U0 <- NULL

for (i in 1:len_X){

X_il <- runif(m, X_L[i], X_U[i])

Y_L0 <- c(Y_L0, beta0 + min(X_il * beta1))

Y_U0 <- c(Y_U0, beta0 + max(X_il * beta1))

}

e_L <- NULL

e_U <- NULL

e_L <- rnorm(len_X, 0, sigma_e)

e_U <- rnorm(len_X, 0, sigma_e)

Y_L <- Y_L0 + e_L

Y_U <- Y_U0 + e_U

# Scatter plot of X and Y

## set up the plot region:

plot(c(min(X_L)-5,max(X_U)+5), c(min(Y_L)-20, max(Y_U)+20),
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type = "n", xlab = "", ylab = "")

rect(X_L, Y_L, X_U, Y_U, border = "blue")

# plot with regression line

par(mfrow = c(1, 1))

plot(c(min(X_L)-5,max(X_U)+5), c(min(Y_L)-20, max(Y_U)+20),

type = "n", xlab = "", ylab = "",

main = expression(paste("Scatter Plots with Regression Line, ",

hat(beta)[1] == 2.150, " , ", hat(beta)[0] == 68.573)))

rect(X_L, Y_L, X_U, Y_U, border = "blue")

clip(min(X_L)-5, max(X_U)+5, min(Y_L)-10, max(Y_U)+10)

abline(a = 68.573, b = 2.150, lwd = "2", col = "red")
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Chapter 5

REAL DATA APPLICATION

In Chapter 5, we apply the proposed method on two real data sets to conduct statistical

inference and evaluate the model performances. The first data set contains information

about price, velocity, acceleration and cylinder capacity for eight different car models. It is

an example of inherently interval-valued data. The second data set records measurements for

three features of 100 species of mushrooms. It is an example of interval-valued data arising

by data aggregation.

5.1 EXAMPLE I: CARS data set

Data Description

First, we apply the proposed approach to the cars data set. The data set is referred from

Billard and Diday (2006) [1]. In this data set, measurements of eight different car models

are recorded. There are four interval-valued variables, namely Y = Price (×10−3, in euros),

X1 = Maximum Velocity, X2 = Acceleration Time to reach a given speed, and X3 = Cylinder

Capacity of the car. The data set is given in Table 5.1.
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Table 5.1: Cars data set

Car Y = Price X1 = Maximum

Velocity

X2 = Acceleration

Time

X3 = Cylinder

Capacity

Aston Martin [260.5, 460.0] [298, 306] [4.7, 5.0] [5935, 5935]

Audi A6 [68.2, 140.3] [216, 250] [6.7, 9.7] [1781, 4172]

Audi A8 [123.8, 171.4] [232, 250] [5.4, 10.1] [2771, 4172]

BMW 7 [104.9, 276.8] [228, 240] [7.0, 8.6] [2793, 5397]

Ferrari [240.3, 391.7] [295, 298] [4.5, 5.2] [3586, 5474]

Honda NSR [205.2, 215.2] [260, 270] [5.7, 6.5] [2977, 3179]

Mercedes C [55.9, 115.2] [210, 250] [5.2, 11.0] [1998, 3199]

Porsche [147.7, 246.4] [280, 305] [4.2, 5.2] [3387, 3600]

We first conduct an explanatory analysis to discover relations between the interval-valued

variables in the data set. As the first step, by (2.3) and (2.8), we compute the symbolic

variance-covariance matrix. The result is as follows:

V =



2591.93 901.80 6.43 34756.76

901.80 397.96 − 3.96 13013.41

6.43 − 3.96 0.71 30.77

34756.76 13013.41 30.77 606978.69


. (5.1)

The variance-covariance matrix in (5.1) is of the order (Y,X1, X2, X3). By the matrix V , we

can see that the variances of the four variables are very different, ranging from as small as

0.71 for X2 Acceleration Time, to as large as 606978.69 for X3 Cylinder Capacity, with the

variance forX1, Maximum Velocity, to be 397.96, and the variance for Y , Price, to be 2591.93.

The huge difference between the variances is largely because of different measurement units
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for each of the four variables.

In addition, by (5.1) and (2.9), we can also compute the symbolic correlation matrix as

R =



1.000 0.888 0.149 0.876

0.888 1.000 − 0.235 0.837

0.149 − 0.235 1.000 0.047

0.876 0.837 0.047 1.000


. (5.2)

From (5.2), the correlations among Maximum Velocity, Cylinder Capacity and Price are

all greater than 0.8, indicating they are positively, highly correlated to each other. The

coefficient of correlation between Price and Maximum Velocity is 0.888. The coefficient of

correlation between Price and Cylinder Capacity is 0.876. Meanwhile, the correlation matrix

shows the correlation coefficient between Price and Acceleration Time is 0.149, indicating

very weak correlation between these two variables. The only negative correlation coefficient

is the one between Maximum Velocity and Acceleration Time, which is -0.235, indicating

weak negative correlation between these two variables.

By the variance-covariance matrix in (5.1), and the correlation matrix in (5.2), we con-

sider building two simple regression models, both of which are with Y = Price as the response.

For the first model, we use X1 = Max Velocity as the explanatory variable; for the second

model, we use X3 = Cylinder Capacity as the explanatory variable.

Data Analysis

First, we use Y = Price as the response variable and X1 = Max Velocity as the explanatory

variable to build the simple regression model.

By the proposed approach illustrated in Sections 3.2.2, we build the model by the fol-

lowing steps.
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1. We determine the sign of the slope parameter β1 by checking the correlation between

Price (Y ) and Max Velocity (X1). By the correlation matrix in (5.2), the coefficient of

correlation is 0.888, which is greater than zero. By Section 3.4, we judge that β1 ≥ 0 and

use the corresponding likelihood function in (3.50) to fit the model.

2. We give the point estimators for the intercept parameter β0 and the slope parameter

β1. Through calculation by (3.54) and (3.55), we have β̂0 = −509.115, β̂1 = 2.715. Therefore,

by substituting the values of β̂0 and β̂1 to (3.5), the regression model is given by

[YL, YU ] = −509.115 + 2.715× [X1L, X1U ]. (5.3)

3. We estimate the standard deviation of the error term by (3.78) and (3.79), which

gives σ̂e = 52.835.

Next, by Section 3.2.3, Section 3.3 and Section 3.4, we give confidence intervals for the

estimated regression coefficients β̂0 and β̂1, predictions of the response, and the measurement

of the model fit.

4. By (3.70) and (3.71), substituting the standard deviation of the error term by the value

of σ̂e obtained in Step 3, we have the estimated variances of β̂0 and β̂1 as: V ar(β̂0) = 0.178

and V ar(β̂1) = 12396.195, respectively.

5. By (3.80) and (3.81), with all the values of β̂0, β̂1, V ar(β̂0), and V ar(β̂1) obtained

through Step 2 to 4, the 95% confidence intervals for β0 and β1 are as follows:

β0 ∈ [−781.549, −236.68], β1 ∈ [1.681, 3.748]. (5.4)

6. The predicted response value, together with the 95% confidence intervals for the lower

bound and the upper bound of the response of a new observation can be given by (3.83),

(3.87) and (3.88). Suppose we have another car model, say, its Maximum Velocity is in the
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interval [273, 285]. Then we can predict the price range for the vehicle using Equation (3.83):

ŶL = −509.115 + 2.715× 273 = 232.08, (5.5)

ŶU = −509.115 + 2.715× 285 = 264.66. (5.6)

By (3.87), the 95% confidence interval for ŶL is:

ŶL ∈ [−160.13, 624.29]; (5.7)

and by (3.88), the 95% confidence interval for ŶU is:

ŶU ∈ [−136.56, 665.88]. (5.8)

From (5.8) and (5.9), we can observe that the confidence intervals for ŶL and ŶU are too

wide, with the lower bounds smaller than zero, which are not valid values for the response

Price. Recalling from classical regression, the same problem that the prediction intervals

exceed a reasonable range may also exist.

7. To measure the model fit, by Section 3.4, we calculate the predicted value for each of

the observations in the data set by (5.3), and based on the predicted values we calculate the

residuals for the lower and upper bounds of the response by (3.42) and (3.43), respectively.

The predicted values of Price (Y ), the residuals, as well as the real values of Price (Y ) are

displayed in Table 5.2:
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Table 5.2: Predictions and Residuals for Y = Price, X1 = Max V elocity, Cars data set

i
Response (Y ) Prediction (Ŷ ) Residual (r)

YiL YiU ŶiL ŶiU riL ril

1 260.5 460.0 300.0 321.68 -39.46 138.33

2 68.2 140.3 77.33 169.64 -9.13 -29.34

3 123.8 171.4 120.77 169.64 3.04 1.77

4 104.9 276.8 109.91 142.49 -5.01 134.32

5 240.3 391.7 291.81 299.96 -51.51 91.75

6 205.2 215.2 196.79 223.94 8.42 -8.74

7 55.9 115.2 61.04 169.64 -5.14 -54.44

8 147.7 246.4 251.09 318.96 -103.39 -72.56

From the data values in Table 5.2, by (3.91), the R-square value is

R2 =
V ar(Ŷ )

V ar(Y )
= 0.715. (5.9)

By (5.9), R2 = 0.715, which indicates that 71.5% of the total variance for the response is

explained by the model.

Then, as the second simple regression model, we use Y = Price as the response variable

and X3 = Cylinder Capacity as the explanatory variable.

Similar to the model building procedure for the first model, in Step 1, since the correlation

between Y = Price and X3 = Cylinder Capacity is positive, we judge that β1 > 0, and use

the likelihood function in (3.50) to calculate maximum likelihood estimators (MLEs) of the

slope and the intercept parameters.
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In Step 2, we calculate the point estimators by (3.54) and (3.55), which gives β̂0 =

−66.941, and β̂1 = 0.071. Therefore, by substituting the values of β̂0 and β̂1 to (3.5), the

regression model is given by

[YL, YU ] = −66.941 + 0.071× [X3L, X3U ]. (5.10)

In step 3, by (3.78) and (3.79), the standard deviation of the error term is estimated as

σ̂e = 46.392.

In step 4, we estimate the variances for β̂0 and β̂1, by (3.70) and (3.71), respectively. We

have V ar(β̂0) = 1321.092, V ar(β̂1) = 1× 10−4.

In step 5, with all the values of β̂0, β̂1, V ar(β̂0), and V ar(β̂1) obtained in the previous

steps, we have the 95% confidence intervals for β0 and β1 to be: β0 ∈ [−155.878, 21.997],

β1 ∈ [0.049, 0.093].

In step 6, suppose we have a new car model with the Cylinder Capacity to be [3615,

4279]. By (3.83), the predicted lower bound and upper bound of the price for this model are

ŶL = −66.941 + 0.071× 3615 = 189.72, (5.11)

ŶU = −66.941 + 0.071× 4279 = 236.87. (5.12)

By (3.87) and (3.88), the 95% confidence intervals for ŶL and ŶU are:

ŶL ∈ [64.28, 315.16], ŶU ∈ [99.49, 374.25]. (5.13)

In step 7, to measure the model fit, we calculate the predicted price for each of the car

models in the data set by (5.3), and calculate the residuals for the lower and upper bounds

of the price by (3.42) and (3.43), respectively. Then the R-square value, calculated by (3.91),

is 0.662.
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5.2 EXAMPLE II: MUSHROOM data set

Data Description

As the second example, we apply the proposed approach to the mushroom data set to see its

performance. The data set records measurements of three features of 100 species of mush-

rooms. All the measurements are interval-valued and they are extracted from the Fungi of

California Species Index. The original data set can be accessed at http://www.myknoweb.com

/CAF/species index.html. There are three interval-valued variables, namely Y1 = Pileus

Cap Width, Y2 = Stipe Length, Y3 = Stipe Thickness. There are in total 274 observations

recorded in the data set, which can be found in Xu’s dissertation (2010, page 111) [8]. To cal-

culate the variance and covariance matrix and build the simple regression model, we remove

the 10 observations with missing values.

First, we compute the sample variance and covariance matrix by (2.3) and (2.8). The

result is as follows:

V =


3.89 − 0.23 5.13

−0.23 5.87 1.37

5.13 1.37 10.62

 . (5.14)

The variance-covariance matrix in (5.14) is of the order (Y1, Y2, Y3). From the matrix V ,

we can observe that the variance of Y3, Stipe Thickness, has the largest variance, which is

10.62, the variance of Y1, Pileus Cap Width, is the smallest, which is 3.89. For Y2, Stipe

Length, the variance is 5.87.

By (5.14) and (2.9), we can also compute the symbolic correlation matrix as

R =


1.000 − 0.048 0.798

−0.048 1.000 0.173

0.798 0.173 1.000

 . (5.15)
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From (5.15), Pileus Cap Width (Y1) and Stipe Thickness (Y3) have the largest correlation

coefficient, which is 0.798, and the coefficient of correlation between Stipe Length (Y2) and

Stipe Thickness (Y3) is 0.173. The coefficient of correlation between Pileus Cap Width (Y1)

and Stipe Length(Y2) is -0.048.

By the variance-covariance matrix in (5.14), and the correlation matrix in (5.15), we

consider building a simple regression model with Y1 = Pileus Cap Width as the response,

and Y3 = Stipe Thickness as the explanatory variable.

Data Analysis

By the proposed approach illustrated in Section 3.2.2, we build the simple regression model:

[Y1L, Y1U ] = β0 + β1[Y3L, Y3U ] + ε (5.16)

where [Y1L, Y1U ] = Pileus Cap Width and [Y3L, Y3U ] = Stipe Thickness.

As the first step, we judge that β1 > 0 since the correlation coefficient for Y1 and Y3 is

positive. Therefore, we use the likelihood function in (3.50) to compute MLEs of the slope

and the intercept parameters.

Then, for step 2, we calculate the point estimators by (3.54) and (3.55). We have β̂0 =

−1.692, and β̂1 = 0.575. Therefore, the regression model is

[Y1L, Y1U ] = −1.692 + 0.575× [Y3L, Y3U ]. (5.17)

In step 3, we estimate the standard deviation of the error term by (3.78) and (3.79),

which gives σ̂e = 2.716.

Next, we estimate the variances for β̂0 and β̂1 by (3.70) and (3.71), respectively, in step

4. We have V ar(β̂0) = 0.066, V ar(β̂1) = 3× 10−4.
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For step 5, we give the 95% confidence intervals for β0 and β1 by (3.80) and (3.81), with

values of β̂0, β̂1, V ar(β̂0) and V ar(β̂1) obtained above, which gives

β0 ∈ [−2.197, −1.186], β1 ∈ [0.542, 0.608]. (5.18)

In step 6, we provide the predicted lower bound and upper bound of the Pileus Cap

Width (Y1) for a new species with the Stipe Thickness (Y3) value [10, 19] by (3.83). We have

Ŷ1L = −1.692 + 0.575× 10 = 4.06, (5.19)

Ŷ1U = −1.692 + 0.575× 19 = 9.23. (5.20)

By (3.87) and (3.88), the 95% confidence intervals for Ŷ1L and Ŷ1U are:

Ŷ1L ∈ [3.45, 4.67], Ŷ1U ∈ [8.41, 10.05]. (5.21)

To measure the model fit in step 7, by (5.3), we compute the predicted Pileus Cap Width

for each of the observations in the data set, and by (3.42) and (3.43), we compute the

residuals for the lower and upper bounds of the Pileus Cap Width, respectively. Then, the

R-square value, calculated by (3.91), is 0.759.
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5.3 APPENDIX

R code for data analyses on Cars data set and Mushroom data set

# 1st Model: Price (Y) ~ Max Velocity (X1)

# scatter plot

plot(c(min(mv$at_l)-50,max(mv$at_u)+50), c(min(price$mv_l)-100,

max(price$mv_u)+100), type = "n", xlab = "", ylab = "")

rect(mv$at_l, price$mv_l, mv$at_u, price$mv_u, border = "blue")

m1 <- est_ord1(mv$at_l, mv$at_u, price$mv_l, price$mv_u)

# prediction: X_1 = [273, 285]

-509.115 + 2.715*273

-509.115 + 2.715*285

# 95% CI for Y_L

var_beta0 <- 12396.195

var_beta1 <- 0.1784

lower_YL <- 232.08 - qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 273^2)

upper_YL <- 232.08 + qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 273^2)

# 95% CI for Y_U

lower_YU <- 264.66 - qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 285^2)

upper_YU <- 264.66 + qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 285^2)
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# predicted Y

pred1_YL <- -509.115 + 2.715*mv$at_l

pred1_YU <- -509.115 + 2.715*mv$at_u

pred1_YL

pred1_YU

# Residuals

r1_L <- price$mv_l - pred1_YL

r1_U <- price$mv_u - pred1_YU

# 2nd Model: Price (Y) ~ Cylinder Capacity (X3)

# scatter plot

plot(c(min(cc$w_l)-100,max(cc$w_u)+100), c(min(price$mv_l)-100,

max(price$mv_u)+100), type = "n", xlab = "", ylab = "")

rect(cc$w_l, price$mv_l, cc$w_u, price$mv_u, border = "blue")

m2 <- est_ord1(cc$w_l, cc$w_u, price$mv_l, price$mv_u)

# prediction: X_3 = [3615, 4279]

-66.941 + 0.071*3615

-66.941 + 0.071*4279
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# 95% CI for Y_L

var_beta0 <- 1321.0917

var_beta1 <- 0.0001

lower_YL <- 189.72 - qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 3615^2)

upper_YL <- 189.72 + qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 3615^2)

# 95% CI for Y_U

lower_YU <- 236.87 - qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 4279^2)

upper_YU <- 236.87 + qt(.975, 8-2)*sqrt(var_beta0 + var_beta1 * 4279^2)

# 2nd data set: mushroom

setwd("C:/Users/Colin Cai/Documents/RESEARCH/Desertation/1st paper/data")

# use this one

mushroom1 <- read.table("mushroomsALL.dat", header = FALSE)

head(mushroom1)

dim(mushroom1)

mushroom1 <- mushroom1[,3:8]

head(mushroom1)

# remove missing values

mushroom[which(mushroom[,3]=="."),]

mushroom[which(mushroom[,4]=="."),]
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mushroom <- mushroom1[-c(3, 31, 57, 59, 184, 194, 198, 202, 210, 218),]

dim(mushroom) # 264*6

# assign variable names

colnames(mushroom) <- c("Y1_l", "Y1_u", "Y2_l", "Y2_u", "Y3_l", "Y3_u")

# calculate var-cov matrix for mushroom

cw <- mushroom[,1:2] # cap width

sl <- mushroom[,3:4] # stipe length

st <- mushroom[,5:6] # stipe thickness

# convert factor to numeric

sl[,1] <- as.numeric(sl[,1])

st[,1] <- as.numeric(st[,1])

st[,2] <- as.numeric(st[,2])

sym_cov(cw, sl, st)

plot(c(min(st$Y3_l)-30,max(st$Y3_u)+30), c(min(cw$Y1_l)-30,

max(cw$Y1_u)+30), type = "n", xlab = "", ylab = "")

rect(st$Y3_l, cw$Y1_l, st$Y3_u, cw$Y1_u, border = "blue")

plot(c(min(sl$Y2_l)-40,max(sl$Y2_u)+40), c(min(cw$Y1_l)-40,

max(cw$Y1_u)+40), type = "n", xlab = "", ylab = "")

rect(sl$Y2_l, cw$Y1_l, sl$Y2_u, cw$Y1_u, border = "blue")
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# fit model

m3 <- est_ord1(st$Y3_l, st$Y3_u, cw$Y1_l, cw$Y1_u)

# prediction: Y_3 = [10, 19]

-1.692 + 0.575*10

-1.692 + 0.575*19

# 95% CI for Y_L

var_beta0 <- 0.0659

var_beta1 <- 0.0003

lower_YL <- 4.058 - qt(.975, 264-2)*sqrt(var_beta0 + var_beta1 * 10^2)

upper_YL <- 4.058 + qt(.975, 264-2)*sqrt(var_beta0 + var_beta1 * 10^2)

# 95% CI for Y_U

lower_YU <- 9.233 - qt(.975, 264-2)*sqrt(var_beta0 + var_beta1 * 19^2)

upper_YU <- 9.233 + qt(.975, 264-2)*sqrt(var_beta0 + var_beta1 * 19^2)
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Chapter 6

FUTURE WORK

In Chapter 3, we proposed a novel approach to conduct statistical inference with point

estimation and confidence interval on interval-valued data regressions. This approach is for

now applied to deal with the simple regression model in (3.5). We also used the assumption

in (3.39) to restrict that the error for the lower bound of response and the error for the

upper bound of response within the same observation are independent, which may not be

always advisable for real cases. In Section 6.1, we discuss about how to generalize the

proposed method to handle multiple regression models; in Section 6.2, we consider relaxing

the independence assumption in (3.39) to take account of possible relations between the

lower and upper bounds for a response within each observation when applying the proposed

method.
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6.1 Generalization to Multiple Regression

Determination of Likelihood Function

Recalling (3.1) to (3.3), we can express the multiple regression model as

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε (6.1)

where Y = [YL, YU ], Xj = [XjL, XjU ], for j = 1, ..., p, are all interval-valued variables. The

Y is the response variable and Xj, j = 1, ..., p, are the predictors. In order to obtain the

maximum likelihood estimators (MLEs) of the regression coefficients, βj, j = 0, ..., p, we first

need to generate the likelihood function for the error term. With the assumption that the

errors are independent across observations, and the lower and upper bounds of the error are

independent for each of the observations in (3.39), by (3.47), the likelihood function of the

random error is

L(εL1, εU1, ..., εLn, εUn) =
n∏
i=1

g(εLi, εUi)

= (2πσ2)−nexp(− 1

2σ2

n∑
i=1

(ε2Li + ε2Ui)) (6.2)

where g(εLi, εUi) is obtained in (3.46), for i = 1, ..., n, and n is the number of observations.

By (3.40), (3.41) and Figure 3.13, we know that the forms of εLi and εUi are determined by

whether the effect of each predictor is positive or negative. Suppose among the p predictors,

k of them have positive effects to the response, denoted by X1, ..., Xk; the rest of the p− k

predictors have negative effects to the response, denoted by Xk+1, ..., Xp. Then the random
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error εi = [εLi, εUi] can be expressed as

εLi = YLi − β0 − β1X1Li − β2X2Li − · · · − βkXkLi − βk+1Xk+1,Ui − · · · − βpXpUi, (6.3)

εUi = YUi − β0 − β1X1Ui − β2X2Ui − · · · − βkXkUi − βk+1Xk+1,Li − · · · − βpXpLi, (6.4)

for i = 1, ..., n. Replacing εLi and εUi in (6.2) by (6.3) and (6.4), we can express the likelihood

function of the random error as function of the p+ 1 predictors.

Before computing the MLEs of βj, for j = 0, ..., p, it is of importance to detect which of

the predictors have positive effects or negative effects. Expanding upon the idea in Section

3.5, the value of the correlation between the jth predictor Xj and the response variable

Y , for j = 1, ..., p, can be used as an indicator of positive effect or negative effect that the

predictor has on the response. Therefore, we first calculate the correlation, rj = Corr(Y,Xj),

j = 1, ..., p, by (2.8) and (2.9), and judge βj ≥ 0 if rj ≥ 0, and βj < 0 if rj < 0, for j = 1, ..., p.

Then, the likelihood function with respect to the p predictors can be generated by (6.2), (6.3),

and (6.4).

Point Estimation and Confidence Interval

Similar to what we did in Section 3.2.2 and Section 3.2.3, to give the point estimators and

confidence intervals for the regression coefficients, βj, j = 1, ..., p, firstly, we take the first

derivative of the log likelihood function with respect to β = (β0, β1, ..., βp)
T , and set it at

β = β̂ to be 0 = (0, 0, ..., 0)p×1. Then, we solve the equations and obtain the MLEs of each

of the p + 1 predictors, βj, j = 0, 1, ..., p. Secondly, the expectation, the variance, as well

as the distribution of the MLE β̂j, j = 0, 1, ..., p, can be obtained based on the assumption

in (3.39). As the third step, we compute confidence intervals for the p + 1 predictors, βj,

j = 0, 1, ..., p, by the distributions obtained in the second step.
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6.2 Measurement of Correlations Between the Lower

and the Upper Bounds of Error Term

By the assumption given in (3.39), we restrict that the error for the lower bound of response

and the error for the upper bound of response within the same observation are independent

to each other. In the following two subsections, we try to relax this assumption to make it

more flexible in order to fit more general cases encountered in the real world.

Correlation Measured by Additive Factor

The first relaxation for the assumption in (3.39) is to consider the difference between εLi and

εUi as being described as a constant, for i = 1, ..., n, where n is the number of observations.

We call the constant as the “Additive Factor” in the error:

εUi = εLi + c0, εLi
iid∼ N(0, σ2), i = 1, ..., n. (6.5)

In (6.5), c0 is a constant, which can be pre-determined by two different ways. The first

is to estimate it. Specifically, with the framework of simple regression models in (3.5), as

the initial step, we assume c0 is zero and compute the MLEs of the slope and the intercept

parameters, β1 and β0, as proposed in Section 3.2.2. Then, we compute the predicted values

of the response and the residuals by (3.42) and (3.43). The c0 can be estimated by taking

the average value of rUi − rLi, where rUi and rLi refer to the lower bound and the upper

bound of the residual for the ith observation, for i = 1, ..., n. The second way to give the

value of c0 is by connecting it with the background of the data set. Sometimes the difference

between the upper bound and the lower bound of error within the same observation is stable

around a fixed value. With the relaxed assumption in (6.5), this kind of data sets can be fit

better by a linear regression model.
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With c0 pre-determined, by (6.5), we have εUi
iid∼ N(c0, σ

2), i = 1, ..., n. Then, similar to

the procedures in Section 3.2.2 and 3.2.3, we can express the likelihood function of the error

term with respect to β1 and β0, and then give the point estimators as well as confidence

intervals for the slope and the intercept parameters under the assumption in (6.5).

Correlation Measured by Multiplication Factor

The second relaxation for the assumption in (3.39) is to consider the ratio of εLi and εUi as

a constant, for i = 1, ..., n, where n is the number of observations. We call the constant, ω,

as the “Multiplication Factor” in the error:

εUi
εLi

= ω, εLi
iid∼ N(0, σ2), i = 1, ..., n. (6.6)

As in Section 6.2, the constant ω can also be given in two different ways. The first is

by taking the average of the ratios rUi
rLi

, where rUi and rLi refer to the lower bound and the

upper bound of the residual for the ith observation, i = 1, ..., n, after assuming ω = 1 as

the initial step to calculate β̂1 and β̂0 by the proposed approach in Section 3.2.2 and Section

3.2.3, and then to obtain the corresponding predicted responses and residuals. The second

way to set the value of ω is by studying the features of the data set, and detect the multiple

factor accordingly.

With ω pre-specified, by (6.6), we have εUi
iid∼ N(0, ω2σ2), i = 1, ..., n. Then, similar to

the procedures in Section 3.2.2 and 3.2.3, we can express the likelihood function of the error

term with respect to β1 and β0, and then give the point estimators as well as confidence

intervals for the slope and the intercept parameters under the assumption in (6.6).
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