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Chapter 1

Introduction

The problem of finding a natural compact moduli space of (some class of) algebraic K3 sur-

faces has a long history. Immediately from the global Torelli theorem of Piatetski-Shapiro

and Shafarevich, which expresses the moduli of K3’s with some polarization as a quotient

of a type IV symmetric domain, we have a natural compactification, the Baily-Borel com-

pactification. Unfortunately the resulting space is quite singular, and so the search for

compactifications with rich geometric meaning continues. Friedman and Scattone [Fri84]

[FS86] discuss partial compactifications from a Hodge theoretic perspective, which agree

with Mumford’s toroidal construction. Scattone [Sca87] raises the question, as yet unan-

swered, as to whether there exist natural toroidal compactifications of a moduli of algebraic

K3’s.

Various authors have used GIT to address the same problem. In particular, Shah [Sha80]

produced a geometric compactification of degree 2 K3’s as a blowup of a quotient of the

space of plane sextics. Also of relevance to the current project, Miranda [Mir89] considered

a GIT quotient of the space of Weierstrass equations to obtain a compactification of a moduli

space of elliptic K3’s.
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Recently a technology has been developed to produce in a canonical way compactifications

of moduli of surfaces of general type, or pairs (X,B) of log general type, introduced by Kollár

and Shepherd-Baron [KSB88], and Alexeev [Ale94]. It is tempting to use this method to

study the K3 case. This was done by Laza [Laz12], who studied the case of degree 2 pairs

(X,B) with B arbitrary. If one wishes to remove the element of choice for B, there are

several options for canonically associating an ample divisor to a polarized K3. For example,

in the degree 2 case one may take the ramification of the involution. This situation is

currently being studied by Alexeev and A. Thompson. Alternatively, it was suggested to

study B =
∑
εBi, where Bi are the rational curves in the polarization class. We provisionally

call the corresponding moduli spaces FRC
2d (for rational curves), where 2d is the degree of

the polarization.

In this thesis I describe work towards continuing this program in the case of (jacobian)

elliptic K3 surfaces using the latter approach. We call the resulting space Fell. Beyond it’s

intrinsic interest this lends insight into the (much harder) problem of describing FRC
2d , since

Fell is exactly the intersection of FRC
2d for all d (though the modular interpretation changes

slightly with small d). The main “result” of this work is the conjecture:

Conjecture 1.0.1. The normalization Fell
ν

of Fell is a toroidal compactification FJell of the

period domain Fell corresponding to the fan J described in chapter (12).

The main actual results are paraphrased below:

Theorem 1.0.2. Let (X,B) be a stable pair parameterized by Fell. Then X is a Weierstrass

fibration over a chain of rational curves, and B = ε
∑24

i=1 fi + δs, where fi are some fibers

and s is the section.

The specific pairs that occur are of course enumerated when the theorem is fully stated.

This allows a description of each boundary stratum. In particular:
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Theorem 1.0.3. The boundary strata of Fell
ν \ Fell are isomorphic to the boundary strata

of FJell.

We now briefly discuss the layout of this document. Part I consists of background mate-

rial, with the aim being to introduce just enough concepts and notation to understand the

second part. While the reader may safely skip to the new results, certain crucial calculations

are performed as examples when the appropriate concepts are introduced. The reader is

referred back to these when they are used. Also, the level of detail in the exposition varies

not only depending on the results needed but also on the technicality of the proofs. While

toric geometry (3), elliptic surfaces (6), and lattices (5) are elementary, the Minimal Model

Program (4), Mixed Hodge Theory (7), and toroidal compactification (8) are intimidating

machines, and it would lead too far afield to even hint at the proofs of many key results. In

any case the proofs provided more to provide the flavor of the arguments than to completely

develop the results. The most assiduous reader is referred to the references.

The second part details new results. First the possible stable pairs are enumerated (9).

Next the type III boundary components are parameterized (10). Explicit semistable models

are constructed for degenerations and it is shown that all the possible limits described earlier

in fact occur (11). Finally the fan J is described, and the isomorphism of boundary strata

is shown (12).

Finally, a word on the technical approach used. Many statements here have a distinctly

“old fashioned” feel, and it is likely that a modern approach using stacks and log geometry

would simplify much of this work. The reason for this is two fold. First, the old fashioned

approach was easier for me to learn. Since a dissertation is partly a historical artifact of the

student’s learning process this shapes the exposition enormously. Second, some of the main

inspirations for this study predate the development of these tools, and so they need to be

integrated along with the primary sources. I hope that readers will be able to shape this

discussion to their personal tastes.
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Part I

Background
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Chapter 2

K3 Surfaces

2.1 Introduction and Examples

K3 surfaces were first introduced by Weil in the late 1950’s. He chose the name “K3” in

honor of Kummer, Kodaira, and Kähler, as well as the Himalayan peak. The definition is:

Definition 2.1.1. A K3 surface over k is a complete nonsingular algebraic surface X/k with

1 KX = 0

2 H1(X,OX) = 0

A polarized K3 surface is a pair (X,L) where X is a K3 surface and L ∈ Pic(X) is an

ample line bundle. The degree of the surface is L2.

In this work, we will assume k = C unless otherwise specified. In the category of complex

manifolds notice that the above definition still holds. We recall from the classification of

surfaces that the only complete algebraic surfaces with trivial canonical class are abelian

surfaces and K3 surfaces, so we can replace “2” in the definition with any other property

that rules out abelian surfaces, for example:
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2’ π1(X) trivial.

Notice this also rules out Kodaira surfaces (which have odd first Betti number), so in fact

serves as an alternate definition of complex analytic K3 surfaces.

Because of the fact that they naturally form an analytic family, for algebraic purposes it

is often easier to deal with polarized K3’s.

Example 2.1.2. A double cover π : X → P2 branched over a sextic with L = π∗O(1)

describes a K3 surface of degree 2.

K3 surfaces of small degree generically occur as complete intersections. In particular,

smooth quartics in P3, and smooth 2, 3 or 2, 2, 2 complete intersections in P4 and P5, respec-

tively are K3’s.

The smooth minimal model of the quotient of an abelian surface by the involution p 7→ −p

is a K3. Such surfaces are known as Kummer surfaces, and in some sense are dense among

all K3 surfaces.

Finally, a smooth elliptic surface with affine equation

y2 = x3 + Ax+B, A ∈ Γ(O(8)), B ∈ Γ(O(12))

defines a K3 surface, an elliptic K3, the main subject of this work.

2.2 Basic Properties

We collect various useful facts about K3 surfaces here, mostly following Huybrechts [Huy].

Noting that h0(X,OX) = h2(X,OX) by Serre duality and h1(X,OX) = 0 by definition the

Riemann-Roch theorem reduces to:

χ(L) =
L · L

2
+ 2.
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From this one sees that any class l with l2 ≥ 0 has either l or −l effective. Moreover, the

arithmetic genus of an element of |l| is l2

2
+ 1, by adjunction.

We proceed to describe the cohomology of a K3 surface.

Proposition 2.2.1. Let X be a K3 surface over C. Any numerically trivial class l ∈ Pic(X)

is in fact trivial. In particular Pic0(X) = 0 and the Chern class map Pic(X)→ H2(X,Z) is

injective.

Proof. First assume for the sake of contradiction that l 6= 0 ∈ Pic(X) is numerically trivial.

Let L be any ample class. The fact l · L = 0 implies h0(l) = 0. Similarly h0(−l) = 0 so by

Serre duality h2(l) = 0 and so χ(l) ≤ 0. But then the Riemann Roch formula shows l2 < 0,

contradicting the assumption of numerical triviality.

For the statement on the Chern class map, consider the long exact sequence obtained

from the exponential sequence:

H1(X,O)→ H1(X,O∗)→ H2(X,Z)→ H2(X,O)

Now H1(X,O) = 0 and H1(X,O∗) = Pic(X) both by definition, so the result follows.

Proposition 2.2.2. Let X be a K3 surface over C. H2(X,Z) equipped with the cup product

is an even unimodular lattice of signature (3, 19).1

Proof. Observe that Pic(X) is torsion free, since X has no nontrivial ètale cover. Hence

the exponential exact sequence used in the proof of the previous proposition gives H2(X,Z)

torsion free as well. Noether’s formula

χ(OX) =
c2

1 + c2

12

1See 5 for the definition of these terms.
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gives χ(X) = 24. The Hodge diamond (see chapter 7 for details and references) is then:

1

0 0

1 19 1

0 0

1

so the claim on the rank and signature of H2(X,Z) follows. Finally,

H2(X,Z) is unimodular by Poincar duality and even by the Riemann Roch formula.

One denotes by LK3 the (unique up to isomorphism) abstract lattice isomorphic to

H2(X,Z) .
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Chapter 3

Toric Geometry

Here we review the facts of toric geometry that will come in handy later. A standard reference

is the book by Cox, Little, and Schenck [CLS11].

Definition 3.0.3. Let Gm(k) be the multiplicative group variety Spec k[x, x−1], and write

T n(k) for the n dimensional torus Gn
m(k) = Spec k[x±1

1 . . . x±1
n ] (again considered as a group

variety). In cases where n is understood or irrelevant we will simply write T . In our situation

we will usually work over C, and often choose to write “C∗” and “C∗n for the group varieties

Gm(C) and T n(C), respectively.

A toric variety is a variety with an action of T with a dense orbit and connected stabi-

lizers. One calls the dense orbit the interior and its complement the (toric) boundary. We

assume that toric varieties are normal unless otherwise stated.

One associates two lattices to T , called M and N . (In the context of toric varieties only

we use the word lattice to refer to a free abelian group with no extra structure. Compare

the definition in 5).

M , or the monomial lattice, represents the monomials in the ring k[x, x−1]. Equivalently,

these are the possible weights for an action of T on Gm.
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Definition 3.0.4. Let S be an additive (commutative) monoid and k a field. The monoid

algebra k[S] of S over k is the commutative k algebra generated by {[s], s ∈ S} with the

condition that [s1][s2] = [s1 + s2].

So we can now write T = Spec(k[M ]).

N , or the lattice of one parameter subgroups1, is the free abelian group dual to M

and represents all homomorphisms Gm → T . (The pairing is simply by noting such a

homomorphism sends monomials to monomials. Alternatively, given any linear action of

T on k determined by some weight f we can restrict to an action of any one parameter

subgroup φ : Gm → T , with weight 〈φ, f〉.

3.1 Affine Toric Varieties

If X = SpecR is an affine toric variety, and x ∈ X is contained in the dense T orbit, write

T ′ = T/ Stabx, and let the corresponding sublattice of M be M ′, with its dual being the

quotient N ′. T ′ has a well defined action on the dense orbit Tx, which extends to X. Hence

X is also a toric variety for T ′. Now T ′ has a (noncanonical) dominant embedding into

X, so there is an injection R → k[M ′] → k[M ]. We can choose generators of ri ∈ R that

diagonalize the action of T ′, where T ′ acts with weights mi ∈ M on ri. Thus R is a direct

sum of weight spaces. Indeed, let the cone σ∨ be the cone in M ⊗ R generated by ri. Then

we claim R = k[σ∨∩M ]. Indeed clearly R = k[〈mi〉], and if m ∈ σ∨∩M then nm =
∑
aimi,

with n, ai ∈ Z, so xm satisfies the monic equation Y n =
∏
xaimi in Y , so by normality

xm ∈ R. Thus:

Proposition 3.1.1. Affine toric varieties X are in bijection with:

• Rational polyhedral cones σ∨ in M ⊗ R, where M ←→ Spec k[σ∨ ∩M ]

1The words “M
¯

onomials” and “oN
¯

e parameter subgroups” are MN
¯

emonics
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• Rational polyhedral cones σ in N ⊗ R, by first taking the dual cone σ∨ We interpret

σ∩M as the set of one parameter subgroups C∗ → X that have a limit at 0, i.e. extend

to C→ X.

Where “ rational polyhedral cone in L ⊗ R” simply means a cone generated by a finite

number of elements of L ⊂ L⊗ R.

In either case we write TV (C) for the toric variety corresponding to the cone C, where

will be clear from context which construction is being used.

We will frequently abuse notation by writing σ, σ∨ for the monoids σ ∩N, σ∨ ∩M .

Note that when dealing with toric varieties defined by cones we consider the natural

viewpoint to be in the lattice N .

The faces of the cone σ ⊂ N ⊗ Q are of special importance. Let σ′ ⊂ σ be any face.

Then the associated toric varieties both contain the same torus and TV (σ) ⊂ TV (σ′). There

is a bijection between faces σ′ of σ and T orbits (“strata”) in X. This bijection works by

associating σ′ to the unique closed torus orbit of TV (σ′), which is isomorphic to the torus

TV (σ′⊥ ⊂M). Note this bijection is dimension reversing, i.e. if σ′ has codimension n, then

the corresponding toric stratum has dimension n.

3.2 Non-Affine and Projective Toric Varieties.

From the proceeding discussion one notes that two rational polyhedral cones σ1, σ2 ⊂ N ⊗R

that intersect along a face can glue to a toric variety. We thus define:

Definition 3.2.1. Let L be a lattice. A collection Σ of cones in L⊗ R is called a fan if:

• If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 ∈ Σ.

• If σ1 is a face of σ2 ∈ Σ, then σ1 ∈ Σ.

11



Given an arbitrary toric variety T ↪→ X and x ∈ X the subring Rx of k[M ] consisting of

functions on the interior that extend to x is torus invariant and since X is normal defined

by a cone σx. One thinks of σx as the closure of the cone generated by all one parameter

subgroups limiting to x. It turns out σx is rational polyhedral and so defines an affine toric

subvariety in X. Hence (modulo details):

Proposition 3.2.2. A toric variety X is determined by a fan Σ in N ⊗R. Conversely, any

such fan determines a toric variety, which we write TV (Σ).

TV (Σ) is proper if and only if Σ has support equal to N ⊗ R.

In the case of projective toric varieties there is another picture that is more intuitive. Let

(X,L) be a pair of a toric variety and a very ample line bundle (a polarized toric variety).

Then we note that Pic(X) is discrete (the action of a generic one parameter subgroup of T

pushes an arbitrary divisor on X to one supported on the boundary), so L is T invariant.

We choose a linearization of L. That is, we construct an action of T on the ring

RX =
⊕

H0(X,nL)

(graded by n) compatible with the multiplication. Just as in the affine case each graded piece

decomposes as a direct sum of weight spaces. In particular Gr1RX = 〈xm1 , xm2 . . .〉 where

mi are the lattice points in a polytope PX,L in M . Notice that the choice of linearization only

affects the result by translation of PX . Conversely given any polytope P ⊂M one considers

the cone CP generated by (P, 1) in M ⊕Z. Then the last coordinate gives a natural grading

on k[CP ] and Proj k[CP ] defines a polarized toric variety that we write TV (P ). Note that if

mi are the corners of the polytope PX we can cover X by the affine charts xmi 6= 0. Explicitly

dehomogenizing the ring RX shows that each chart corresponds to the normal cone (in N)

of PX at the point mi. Summarizing:

12



Proposition 3.2.3. There is a bijection between polarized toric varieties (X,L) and lattice

polytopes.

The fan ΣX is the fan of inward facing normal vectors to P(X,L).

In particular n dimensional faces of the polytope are in bijection with n dimensional torus

orbits of X.

Observe the figure 3.1 for a diagram showing the polytopes and fans corresponding to

(P2,O(3)) and (F1, 2s+ 4f).

Example 3.2.4. We give an example of a toric variety not of finite type with a group action,

and show that there is a well defined quotient in a neighborhood of the boundary. (This is

one of the standard constructions of the Tate curve).

Let M = Z2, T = Spec k[M ]. Let Z+ act on M by the matrix φ = ( 1 1
0 1 ). Define the cone

σ0 = 〈(0, 1), (1, 1)〉, and write σi = φi · σ0. Then the collection of all σi form the maximal

dimensional cones of a fan Σ. The corresponding variety T = TV (Σ) is glued from an infinite

collection of planes. T can be thought of as the result of blowing up A1×P1 at a toric fixed

point of 0 × P1 and then blowing up infinitely often at toric fixed points on exceptional

divisors, with the resulting collection of (strict transforms of) exceptional divisors being an

infinite chain of -2 curves, ∪Di. Write T0 = ∪Di. Note that the projection π1 : A1×P1 → A1

induces a map π : TV (Σ)→ A1. T0 = π−10.

Clearly the action of Z on Σ induces an action on T . We cannot take a meaningful

quotient of the whole variety, but we can do so in a neighborhood of π−1(0). Indeed, consider

an n-th order neighborhood of 0 in A1, Sn = Spec k[x]/xn. Now T ×A1 S is supported on

π−1(0), so φ2 acts freely and a quotient exists. Dividing by the remaining order 2 group we

construct En = T ×A1 Sn/φ. It is apparent that if m > n there is an embedding En → Em,

so we can produce a formal scheme E as the limit.

13



Now let L be the line bundle OT (
∑

i2−i
2
Di). With some work we can show that  L|En is

ample. By “Grothendieck’s Algebrization Theorem”, then, E is a formal neighborhood of

the fiber over the closed point in some actual scheme E over Spec k[[x]].

14



F1

P2

Figure 3.1: Diagram of polytopes and normal fans for some surfaces.
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Chapter 4

The Minimal Model Program and

Moduli of Stable Pairs

In this section we recall definitions and results from the minimal model program (MMP) and

how they apply to the compactification of moduli spaces (the KSBA program). Fundamental

references are [KM98] for the MMP, and [KSB88], [Ale94], [Ale96a], [Ale96b] for the KSBA

machinery. J. Kollár is producing a book on the subject, [Kol]. See also the introduction to

the expository notes [Ale15], which this review loosely follows, and contain many examples

useful to the current project.

4.1 Prehistory: Moduli of Pointed Curves

The KSBA program is motivated by, and a generalization of, well known compact moduli

spaces for curves with marked points. In particular, recall:

Definition 4.1.1. Fix real numbers 0 < bi ≤ 1, i = 1 . . . n. A weighted stable curve of genus

g with weights bi is a (reduced and connected but not necessarily irreducible) curve C with

arithmetic genus g and n marked points pi satisfying the two conditions:
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Not too bad singularities C is at worst nodal and the points pi are contained in the

smooth locus. pi may coincide, but in no case should the sum of the weights corre-

sponding to coincident points exceed 1.

Numerical Condition The divisor KC +
∑
bipi is ample on C, where KC is a generic

divisor of the dualizing sheaf. This condition is trivial on components of C with genus

> 1, says that any genus one component contains either a marked point or a node,

and says that on any rational component the sum of the weights of the points on that

component plus the degree of the double locus on that component must be > 2.

We then have the following theorem of Hassett[Has03] generalizing the classical result of

Deligne and Mumford[DM69] for weights bi = 1:

Theorem 4.1.2 (Hassett, after Deligne-Mumford ). For any choice of weights bi and genus

g the moduli of weighted stable curves is represented by a smooth proper Deligne-Mumford

stack Mg,bi. The coarse moduli space is a projective variety.

Recall in particular how one takes limits: if one has a family of marked (say, for simplicity,

smooth) curves C → ∆◦, where ∆◦ = ∆ \ {0} is a small punctured curve, then one first

completes to an arbitrary family C ′ → ∆. The semi-stable reduction theorem asserts one

can perform a sequence of blowups and base changes to obtain (keeping the notation C ′) a

family C ′ → ∆ with smooth total space and reduced normal crossing central fiber C0. By

further blowing up and base changing one can assume the strict transform of the markings

of C meet C0 in distinct smooth points. One now proceeds to contract components of C0

where the “Numerical Condition” above is not met. An assertion of the theorem is that this

is possible and that the resulting curve C0 is independent of the choices made.

17



4.2 Singularities in the Minimal Model Program

We wish to generalize to the case of a pair consisting of a surface with a marked divisor.

Our first step should be to define an appropriate class of singularities, replacing the first

condition in the definition of a weighted stable curve. We will in fact need to discuss both

surface and 3-fold singularities (i.e. the singularities in 1 parameter families).

Let (X,B) be a pair of a normal variety and a R divisor (i.e. R linear combination

of effective Weil divisors). Recall Hironaka’s resolution of singularities (or a slight gener-

alization): we can find a birational morphism f : Y → X such that Y is nonsingular and

∪f−1
∗ Bi ∪Ej is normal crossing, where f−1

∗ Bi are the strict transforms of the components of

B and Ej are the exceptional divisors of f . We define:

Definition 4.2.1. Assume KX +B is R-Cartier (i.e. can be written as a linear combination

of Cartier divisors, so that f ∗(KX +B) makes sense). Write:

KY = f ∗(KX +B) +
∑
Di

aiDi

where Di are distinct irreducible divisors. The numbers ai are called the discrepencies.

If ai ≥ 0 one says the pair (X,B) is canonical.

If ai ≥ −1 one says the pair (X,B) is log canonical.

If additionally ai > −1 for Di not in the strict transform of B one says (X,B) is log

terminal.

We demonstrate this definition for some pairs on a smooth surface.

Example 4.2.2. Let X = A2 and B = 1
2
C, where C is the curve x2 = yn+1. One calls the

singularity type of C a type An curve singularity. For simplicity assume n is odd, so n+ 1 =

2m. Blowing up the singular point produces a surface X1 with an exceptional divisor E1 and

a type An−2 singularity on f−1
∗ C ∩E1 (for this example, we abuse notation by always letting
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f denote the current map to X). Blowing up this singularity to produce X2 introduces a new

exceptional divisor E2, and now f−1
∗ C has a type An−4 singularity. Inductively then we have

Xm being a log resolution, and KXm =
∑

i iEi = f ∗(KX +B)− 1
2
f−1
∗ C, so the discrepencies

along the exceptional curves are 0, and the pair is log terminal (indeed, canonical).

Similarly, let X = A2 and B = 1
2
C, with C the curve yx2 = yn−1. One calls this curve

singularity type Dn. For simplicity assume n even, say n = 2m + 2. Then a single blowup

produces X1 with a type An−5 singularity on the exceptional divisor E1. The remaining

blowups to produce a resolution Xm happen as in the previous example. One checks that

KXm =
∑

i iEi = f ∗(KX +B)− 1
2

∑
iEi − 1

2
f−1
∗ C, so this singularity is also log terminal.

Continuing on the theme with X = A2, B = 1
2
C let C have a triple tacnode, say x3 = xy4.

A single blow up at the singularity produces X1 with a type D4 curve singularity on the

exceptional divisor, which is resolved by a second blowup to X2. Now, though KX2 =

E1 + 2E2 = f ∗(KX +B)− 1
2
E1 −E2 − 1

2
f−1
∗ C. This is still log canonical, but strictly so, in

the sense that adding any additional effective R divisor passing through the singularity of C

will cause the pair to no longer be log canonical.

Finally, let X = A2 and B = 1
2
C + F , where C = V (x2 = yn+1) and F = V (y).

Proceeding as in the previous cases we find that KXm = f ∗(KX + B) −
∑
Ei − 1

2
f−1
∗ C, so

this pair is log canonical. Note the similar computation with C having a type D singularity

fails.

The results in the example are actually statements about surface singularities in disguise,

due to the following fact:

Proposition 4.2.3. Let Y → X be a double cover of X branched over a divisor B. Then

Y is log canonical iff (X, 1
2
B) is.

One can easily generalize our computation to include the exceptional curve singularities

E6 : x3 = y4, E7 : x3 = xy3, E8 : x3 = y5.
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The corresponding surface singularities one calls ADE singularities1 and denotes by the

same symbols An, Dn, En. We get:

Proposition 4.2.4. ADE surface singularities are log terminal (in fact they are canonical).

A type An singularity with a curve passing through it in a generic direction is strictly log

canonical, but not for types Dn, En. The simple elliptic singularities (double covers branched

over a triple tacnode) are strictly log canonical by themselves.

We now introduce a companion definition to that of log canonical singularities for non-

normal varieties. This concept is due to Kollàr and Shepherd-Barron, but the formulation

here is from Alexeev.

Definition 4.2.5. A pair (X,B) is semi log canonical or slc if:

• X is reduced and has at worst nodal singularities in codimension 1 and B has no

components in common with the double locus of X.

• X satisfies Serre’s condition S2.

• The normalization ν : Xν → X has (Xν , Dν + ν−1B) log canonical.

Remark 4.2.6. Recall Serre’s theorem that normality is equivalent to regularity in codimen-

sion 1 and S2, where S2 is an algebraic analogue of Hartog’s theorem, stating that any regular

function defined away from a set of codimension ≥ 2 extends uniquely. In our situation it

will always be satisfied, so we view it as a technicality.

Finally, we need a hard result due to Kawakita [Kaw07], confirming a conjecture of

Shokurov and Kollár [KA92] relating singularities in a variety to those in a subvariety. We

state it for surfaces contained in threefolds, since this is the case we need, and for a long

time was the highest dimension known.

1Variously ADE singularities, rational double points, Kleinian singularities, etc.. They are exactly the
canonical surface singularities, though we don’t need this fact.
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Theorem 4.2.7 (Inversion of Adjunction). Let (X,B) be a 3-fold, S ⊂ X a reduced divisor

sharing no components with the support of B. Then (X,B + S) is log canonical on some

neighborhood of S if and only if (S,B|S) is semi log canonical.

4.3 The Minimal Model Program and Application to

Moduli

Here we recall the results we need from the minimal model program and apply them to

the moduli of surfaces. Recall that for surfaces of general type the canonical model can be

formed by taking any smooth projective birational model X and writing:

Xcan = Proj(⊕H0(OX(nKX)))

or in the relative setting F : X → S:

Xcan = ProjS(⊕(f∗OX(nKX)))

and that Xcan may be obtained by contracting -1 and -2 curves in fibers of f .

(Here, and for the remainder, we formally write H0(
∑
diDi) = H0(

∑
bdicDi).)

One aim of the minimal model program is to obtain a similar procedure for varieties of

any dimension. Some results are conjectural for higher dimension, but we only need the 3

dimensional version, which is known.

Recall:

Definition 4.3.1. An R-Cartier divisor D ⊂ X is nef if D · C ≥ 0 for all curves C ⊂ X.

D is big if lim suph0(OX(nD))/ndimX > 0, i.e. the linear system |ND| gives a map to a

variety of the same dimension as X for some (but not necessarily all) large enough N .
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The main result of the Minimal Model Program is:

Theorem 4.3.2 (Minimal Model Program). Let (X,B) be a smooth projective variety,

dimX = 3, and B a normal crossing R divisor. Assume KX + B is R-Cartier and big.

Then

• The canonical model Proj(⊕OX(n(KX +B))) exists.

• Xcan is independent of the model X chosen.

• Xcan has at worst log canonical singularities.

• Xcan can be produced algorithmically by a sequence of “ divisorial contractions” (i.e.

contracting divisors onto subvarieties of higher codimension) and flips.

Similarly, given a map f : X → S and assuming KX + B is R-Cartier and f big (i.e.

big when restricted to a generic fiber) the relative canonical model

ProjS(⊕(f∗OX(nKX)))

exits, is independent of the choice of birational model, has log canonical singularities, and

can be arrived at constructively.

The only part of this statement that is mysterious is the notion of a flip. For brevity

we note that for our examples the requisite flips can be effected by simple flops on the

underlying 3 fold, where the flops of interest can be of two types:

Atiyah Flop Let X− be a threefold and C ' P1 ⊂ X have normal bundle O(−1)⊕O(−1).

Blowing up C results in an exceptional divisor isomorphic to P1 × P1 with one of the

ruling being the fibers of the blowup. Blow down the “other way” to produce a new

surface X+. This is the Atiyah flop.
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Pagoda Flop This is a generalization of the above. Let C ' P1 ⊂ X− have normal bundle

O(−2)⊕O(0). Blowing up along C produces an exceptional divisor isomorphic to the

Hirzebruch surface F2, the exceptional section of which is a new curve with normal

bundle either O(−1)⊕O(−1) or O(−2)⊕O(0). In the first case, perform an Atiyah

flop and blow down the (transforms of) the exceptional divisors of the previous blowup.

In the second we blow up more until eventually we arrive at a curve with normal bundle

O(−1) ⊕ O(−1), at which point we flop and blow down all the previous exceptional

divisors.

To apply MMP to moduli, we first define the objects we wish to parameterize:

Definition 4.3.3. A stable pair (X,B) is a pair of a surface and an R divisor B satisfying

the conditions:

Not too bad singularities (X,B) has semi log canonical singularities.

Numerical Condition The divisor KX +B is ample.

The first use of the MMP in moduli is showing how to produce limits of one parameter

families. Indeed, let (X ,B)→ ∆◦ be such a family, with (X ,B) log canonical and KXt +Bt

R-Cartier and ample on each fiber (Xt, Bt). One finds a log resolution of (X ,B) and apply

the semistable reduction theorem (possibly base changing) to produce a family (X ,B) with

central fiber (X0, B0), where X0 is reduced and normal crossing. Applying the relative MMP

produces a unique family over ∆, independent up to base change of the choices made in the

construction.

This shows in some sense the properness of the moduli functor. Showing representability

is a lot more delicate, so we simply assert it, in a form specialized to K3 surfaces:

Theorem 4.3.4. (Verbatim from Alexeev [Ale15, Corollary 1.5.5]) For any d ∈ 2N there

exists a small irrational ε such that the moduli space Pd of stable K3 surface pairs (X, εH)
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such that H2 = d is an open subset of a proper coarse moduli space P d of stable slc pairs

(X, εH). Further:

• There exists N ∈ N such that for all stable pairs parameterized by P d one has NKX ∼

0.

• For any family in the closure of Pd in P d, one has KX ∼ 0 and H is Cartier.

The case of d = 2 has been examined in detail by Laza in [Laz12].

4.4 Application to the Moduli of Varieties of Non-

General Type

The above approach can sometimes be specialized to produce “good” moduli spaces for

varieties that are not of general type. The idea is to uniformly and uniquely associate a R

divisor B to each variety X such that (X,B) is a stable pair. Some examples are:

del Pezzo Surfaces Letting B =
∑
Bi, where Bi are the lines on a del Pezzo produces a

space studied by Hacking, Keel, and Tevelev [HKT09].

Polarized Abelian Varieties Letting B = εΘ allows one to produce a moduli space of

abelian varieties, as was shown by Alexeev [Ale02].

K3 Surfaces, degree 2 Degree 2 K3 surfaces are double covers of a rational surface. Let-

ting B = εR, where R is the ramification divisor of this map produces a moduli space

currently being studied by Alexeev and Alan Thompson.

K3 Surfaces, any degree For an arbitrary polarized K3 surface we can let B =
∑
εBi,

where Bi are the rational curves in the polarization class. The present work aims to

describe details of this space restricted to the elliptic locus.
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Chapter 5

Some Lattice Theory

5.1 Definitions and general theory.

The object of study for this chapter are lattices. Basic references are [Ser73] for the structure

theorems and [CS99] for more detailed theory of unimodular lattices and reflection groups.

The primary reference for Vinberg’s algorithm and related results is the Russian [Vin72]. I

choose to give references to the English [Vin75].

Definition 5.1.1. A lattice is a free abelian group equipped with a (R valued) quadratic

form. There is an associated symmetric bilinear form which we will denote either with angle

brackets (“〈, 〉”) or as multiplication if the meaning is clear.

A lattice is integral if the associated bilinear form is integral.

If L is a lattice, the dual lattice, denoted L∗ is defined as:

L∗ = {l ∈ L⊗ R|〈l,m〉 ∈ Z∀m ∈ L}

(where the form on L is extended by linearity.) Note that a lattice is integral if and only if

L ⊂ L∗.
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An isomorphism of lattices is an isomorphism of abelian groups compatible with the

bilinear form. The set of all automorphism of a lattice L is the orthogonal group, denoted

OL.

A sublattice is a subgroup with the bilinear form obtained by restriction. A sublattice

L′ ⊂ L is primitive if nl ∈ L′ =⇒ l ∈ L′ for all n ∈ Z, l ∈ L.

If L and M are lattices with bilinear forms given by matrices KL, KM the direct sum

L⊕M is the group direct sum with form given by the matrix
(
KL 0
0 KM

)
.

We collect basic terminology below:

Definition 5.1.2. A lattice is irreducible if it cannot be expressed as a direct sum of sub-

lattices.

The discriminant of a lattice is the determinant of a Gram matrix of associated form.

More generally, the discriminant group DiscL of a lattice L is L∗/L. The form on L ⊗ Q

induces a well defined discriminant form on L∗/L, taking values in Q/Z.

A lattice is nondegenerate if the associated form is (equivalently, if the discriminant is

nonzero).

The radical of a lattice L is the maximal subspace L′ ⊂ L such that 〈l′, l〉 = 0 for all

l′ ∈ L′, l ∈ L. (i.e. the nullspace of the Gram matrix).

A lattice L is isotropic if the quadratic form is 0.

A integral lattice is unimodular if it has discriminant 1 (so L = L∗).

An integral lattice is even if the quadratic form takes values in 2Z. Otherwise it is odd.

Recall that any quadratic form can be diagonalized over R and that the number of

positive and negative terms is independent of the diagonalization chosen (“Sylvester’s Law

of Inertia”). Hence, we define:

Definition 5.1.3. The signature (r, s) of a nondegenerate lattice is the number of positive

and negative, respectively, terms in a diagonalization of the quadratic form of L.
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A non-degenerate lattice is positive (resp. negative) definite if it has signature (r, 0) (resp.

(0, s)).

A degenerate lattice L with 〈L,L〉 ≥ 0 (resp. ≤ 0) is positive (resp. negative) semidefinite

If L is neither definite nor semidefinite it is indefinite.

A definite lattice will also be called elliptic. A semidefinite lattice with rank 1 radical is

called parabolic. A lattice with signature (1, n) is called hyperbolic.

Example 5.1.4. The rank 2 lattice U with bilinear form given by the matrix ( 0 1
1 0 ) is non-

degenerate, even, and unimodular with signature (1, 1).

For any (r, s) the rank r + s lattice Ir,s with form given by the block matrix
(
Ir 0
0 −Is

)
is

odd and unimodular with signature (r, s).

The subset of R8 (with bilinear form given by −I8, i.e. the negative of the standard one)

of vectors either in Z8 or in (Z + 1
2
)8 with even coordinate sum is a negative definite even

unimodular lattice which one calls E8
1.

The subset of R16 satisfying the similar conditions is an even unimodular lattice called

D+
16.

Example 5.1.5. Complete surfaces with their intersection form are an important source of

lattices. For a rational surface X for example, H2(X) = PicX ' I1,ρ(X)−1. If instead X is a

K3 surface H2(X) ' II3,19. For this reason we will use the notation LK3 = II3,19.

In general, the classification of lattices, even unimodular ones, is a hard problem. However

we have the following strong result for indefinite lattices[Ser73]:

Theorem 5.1.6. There is a unique (up to isomorphism) indefinite odd unimodular lattice

Ir,s of signature (r, s) for each (r, s), rs 6= 0.

For each (r, s), rs 6= 0 such that r − s ≡ 0( mod 8) there is a unique even unimodular

lattice IIr,s.

1This is the convention most useful for geometry. Other authors may use the symbol E8 to refer to the
positive definite lattice obtained by negating our quadratic form.
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In the definite case, the problem is only solved in low rank. In particular, for the even

unimodular case[CS99]:

Theorem 5.1.7. E8 is the unique even unimodular lattice of signature (0, 8).

E8 ⊕ E8 and D+
16 are the only even unimodular lattices of signature (0, 16).

There are exactly 24 even unimodular lattices of signature (0, 24).

(The problem apparently becomes very hard after this. There are at least 8 ·1016 lattices

of signature (0, 32).)

5.2 Even Root Lattices

For this section let L denote an even lattice.

Definition 5.2.1. Let L be an arbitrary even lattice. A vector v ∈M is a root if v2 = −2.

The set of all roots is denoted ΦL.

The root sublattice R(L) is the sublattice of L spanned by its roots.

If L is equal to its root sublattice, one says it is a root lattice.

For a definite lattice there are clearly a finite number of roots. Part of the utility of

this concept come from the fact that each pair ±v of roots induces a reflection Rv : w 7→

w + 〈w, v〉v on L. This is clearly a automorphism of order 2, so we define:

Definition 5.2.2. The Weyl group W (L) ⊂ O(L) of a lattice L is the subgroup of automor-

phisms of L generated by root reflections Rv.

The fixed locus of a reflection is a reflection hyperplane.

Example 5.2.3. Let L be the sublattice of I0,n+1 of vectors with coordinate sum 0. One calls

this root lattice An. The roots are exactly αi,j = ei − ej, and the corresponding reflections

interchange the i and j coordinates, so W (An) ' Sn+1, acting by permuting the coordinates.
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Similarly let L be the sublattice of I0,n with even coordinate sum. One calls this root

lattice Dn. The roots have the form ±ei± ej, with the corresponding reflections being either

interchanging the i and j coordinates or negating them. W (Dn) is an extension of Sn, in

particular an index 2 normal subgroup of the wreath product Sn n Zn2 .

Finally consider the unimodular lattice D+
16 defined previously. This is not a root lattice,

as its root sublattice is just D16 (i.e. the vectors with integral coordinates).

5.2.1 Negative Definite Root Lattices

Let L be a (negative) definite root lattice and f : L → R be a generic2 linear form. Then

L \ {0} = L+ ∪ L−, where L+ = {l ∈ L|f(l) > 0}, L− = {l ∈ L|f(l) < 0}. Let {αi}i be the

set of minimal roots in L+, in the sense that αi 6= u+ v for any u, v ∈ L+. We have:

Proposition 5.2.4. αi is a basis of roots of L. Every root α ∈ L+ can be is a nonnegative

integral combinations of the αi, i.e. α =
∑
aiαi, ai ∈ Z≥0.

The proof is just long enough to omit, see [FH91] or your favorite representation theory

text. As a corollary, note:

Lemma 5.2.5. If α is a simple root and β ∈ L+ any positive root, then Rα(β) ∈ L− if and

only if α = β.

Proof. Indeed, β − Rα(β) ∈ 〈α〉, so if γ 6= α appears with nonzero (positive) coefficient in

the expression of β in terms of simple roots it does in Rα(β) as well.

We refer to αi as simple roots (with respect to f , or the partition L+, L−). The utility

of this concept is due to the fact that the configuration of simple roots is an invariant of the

lattice.

2That is, an injective group homomorphism.
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Proposition 5.2.6. The cone σ = {l ∈ L|αi · l ≥ 0} forms a fundamental domain for W (L).

Proof. The reflection hyperplanes perpendicular to roots of L divide L⊗ R into some finite

number of regions. We need to show that the cone σ is one of these regions, that W (L) acts

transitively on them, and that Stab(σ) ⊂ W (L) = {1}.

No hyperplane α⊥ can pass though the interior of σ. Indeed assume the contrary. Then

there are l ∈ σ and α ∈ ΦL with α · l = 0 and αi · l > 0 for all simple roots αi. WLOG we

assume α ∈ L+ so write α =
∑
aiαi, ai > 0. But this implies α · l > 0, a contradiction.

Now reflections in simple roots map σ to any adjacent region, which can be further

mapped to any region adjacent to it, and so on. Thus the transitivity claim follows from the

connectedness of L⊗ R.

Finally, if w ∈ Stab(σ) we need to show that w = 1. Assume not, and w preserves σ, and

so preserves L+, L−. Let w = σ1σ2 . . . σn be a representation of w as a product of reflections

through simple roots of minimal length. Then σn = Rαn takes the simple root αn from L+

to L−. Let w′ = σi . . . σn be the subword of w of minimum length that takes αn to L+. Now

by the lemma 5.2.5 σi = Rα, where α = σi+1 . . . σn(αn). Since the conjugate of a reflection

is a reflection in the obvious way we can write w′ = σi+1 . . . σn−1σnσn , contradicting the

minimality of the original expression for w.

Corollary 5.2.7. The Weyl group acts simply transitively on sets of simple roots.

A fundamental domain of the action of W (L) on L⊗ R is called a Weyl chamber. Note

that the set of all Weyl chambers and their faces form a fan, which we call ΣL. The specific

chamber in 5.2.6 is called the dominant chamber.

The combinatorics of definite root systems and the associated root systems are studied

in representation theory, and the interested reader is referred to, for example, [FH91].
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There is also a unique maximal root α̃ with respect to f . Clearly if {α∨i }i is a dual basis

to the simple roots, α̃ ·α∨i is maximal for each i, i.e. α̃ is the maximal linear combination of

roots that is still a root.

We can encode the configuration of simple roots in a diagram, the so-called Dynkin

diagram3. The Dynkin diagram is a graph with one node for each simple root and an edge

connecting each pair of non-orthogonal simple roots. If αiαj = 1 the edge is left undecorated,

otherwise it is marked with the product αiαj. Note that a root lattice is irreducible if and

only if the corresponding Dynkin diagram is connected. The Dynkin type diagram whose

nodes consist of the simple roots and the minimal root −α̃ is called an affine or extended

Dynkin diagram. The rank of the Dynkin diagram corresponding to a definite root lattice is

the rank of that lattice and the rank of an extended diagram is the rank of the corresponding

(non-extended) diagram.

Example 5.2.8. Choose a generic linear form on I0,n+1 such that f(ei) > f(ei+1). The

simple roots of An ⊂ I0,n+1 are αi = ei − ei+1. The Dynkin diagram is as shown 5.1. The

maximal root α̃ = e1 − en+1 is also shown.

Similarly, choose a generic linear form on I0,n such that f(ei) > f(ei+1) > 0. The simple

roots of Dn ⊂ I0,n are αi = ei−ei+1, i = 1 . . . n−1 and αn = en−1 +en. The Dynkin diagram

is as shown, along with the maximal root α̃ = e1 + e2.

Finally, choose a linear form on I0,8 with f(e1) >> f(ei) > f(ei+1) > 0, i > 1. The simple

roots of E8 ⊂ I0,8 are

ei − ei+1, i = 2 . . . 7

e7 + e8

1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8),

3Variously named after Coxeter, Dynkin, and Vinberg. We use Dynkin for the crystallographic and affine
cases, and Vinberg for the hyperbolic case. Coxeter is responsible for the abstract theory and so we will
refer to the diagrams in general as Coxeter diagrams.
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with Dynkin diagram as shown. α̃ = e1 + e2.

Connected subdiagrams of the E8 diagram clearly give irreducible root lattices, the new

ones of which we label E6 and E7 (see the definition below). The corresponding Dynkin

diagrams and affine Dynkin diagrams are shown.

D

E6

A E7

E8

1

1

111

12

1 1

2

1

11

2

22 3

11

3

2465432

1 123432

2

Figure 5.1: Dynkin diagrams for types A, D, and E. The lowest root −α̃ is also shown, as
the empty vertex, forming the corresponding extended Dynkin diagrams Ã, D̃, Ẽ. The red
numbers indicate the coefficients in the unique relation among the roots.

The irreducible negative definite even root lattices are easily classified:

Proposition 5.2.9. The irreducible definite even root lattices are exactly type An, Dn, or

one of the three exceptional types E6, E7, E8.

The technology of Dynkin diagrams is quite strong, and was first developed by Dynkin

[Dyn52] (Russian). As a useful start one has a complete description of the orthogonal group

O(L) and the fan ΣL:

Proposition 5.2.10. The automorphism group of a even definite root lattice L is a semidi-

rect product

O(L) = D nW (L)
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where D is the group of automorphisms of the Dynkin diagram of L.

The facets of a Weyl chamber (and therefore the orbits of cones in ΣL) are in bijection

with subdiagrams of the Dynkin diagram of L.

Subspaces of L⊗ R spanned by roots are of the form σ⊥ for σ ∈ ΣL.

Proof. L is spanned by its simple roots, which D permutes, giving the embedding D ⊂ O(L).

Let σ be the fundamental Weyl chamber. Any o ∈ O(L) stabilizing σ must permute the

facets of L, so in fact Stab(σ) = D. If α ∈ L is a simple root and d ∈ D is arbitrary then

dRαd
−1 = Rdα, so W (L)/O(L). Finally, since W (L) acts transitively on Weyl chambers any

element of O(L) can be written as wd for some w ∈ W (L), d ∈ D. This proves the claim on

the structure of O(L).

The claim on the facets of a Weyl chamber simply says that the chamber is a simplicial

cone, which it must be since it has dimL⊗ R + 1 facets (perpendicular to each αi).

Finally suppose L′ ⊂ L is a primitive sublattice spanned by its root sublattice. Choose

f1 to be a generic linear form vanishing on L′ and f2 to be a generic linear form on L. For

sufficiently small ε the simple roots corresponding to the form f = f1 + εf2 contain a simple

root basis for L′, which by the previous point span a cone of ΣL.

5.2.2 Semidefinite Root Lattices

The parabolic case is similar, and mostly follows from the previous analysis. Let L be a

rank n + 1 irreducible semidefinite even root lattice and 〈z〉 its radical. Then L = L/〈z〉 is

an even definite root lattice, and sections L→ L correspond to points in L
∗

(more precisely,

they’re a principal L
∗

homogeneous space). Indeed, choose one section s : L → L. Then

any other section has the form s′(v) = s(v) + (w · v)z for some w ∈ L
∗
. Moreover, each

root α ∈ L, α = az + s(α′) determines an affine function w 7→ w · (α′) + a on L
∗

and a

corresponding reflection Rα, so the Weyl group acts on L
∗
.
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Choose a system of simple roots for L and lift them via s to obtain roots {αi}n1 ⊂ L.

We wish to find a fundamental domain, or alcove, for the action of W (L) on L
∗
, by adding

additional facets to the chosen Weyl chamber.

Lemma 5.2.11. Write α0 = z− α̃. Then {w|w ·αi ≥ 0, i = 0 . . . n} defines an alcove in L
∗
.

Proof. We proceed similarly to the previous case (5.2.6).

Call the purported alcove S.

The reflection hyperplane for α0 meets the one dimensional faces R+α∨i of the Weyl

chamber at 1
α∨i ·α̃

α∨i , the minimum positive multiple for any reflection hyperplane. Hence S

is a connected component of L
∗ ⊗ R \ (reflection hyperplanes).

As before W (L) acts transitively on these regions since L
∗ ⊗ R is connected.

Finally note that S ∩ α⊥0 contains no lattice points of L, and W (L) preserves L, so any

element of w ∈ W (L) stabilizing S fixes 0 = S ∩ L. But now by the definite case (5.2.6) w

is trivial, so W (L) acts simply transitively on the complement of reflection hyperplanes.

We again refer to the walls of any given alcove as simple roots.

Theorem 5.2.12. The irreducible parabolic root lattices are classified by the affine Dynkin

diagrams Ãn, D̃nẼn.

Proof. The preceding discussion shows how to associate an affine Dynkin diagram to a

parabolic lattice L̃, where L is one of An, Dn, En. For the converse, given an affine Dynkin

diagram simply endow the free abelian group L̃ spanned by the nodes αi with the quadratic

form indicated by the diagram. That is

α2
i = −2, αiαj = 1 if connected by an edge 0 else.

There is a linear combination z =
∑
giαi with z · αi = 0 for all i (use the coefficients shown

in red in 5.1). L/〈z〉 may then be identified with the definite lattice L.
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We have a direct analog to 5.2.10, for which we omit the proof.

Proposition 5.2.13. The automorphism group of a parabolic root lattice L is a semidirect

product

O(L) = D nW (L)

where D is the group of automorphisms of the Dynkin diagram of L.

The faces of an alcove are in bijection with subdiagrams of the Dynkin diagram of L.

Definite subspaces of L⊗ R spanned by roots are of the form σ⊥ for σ ∈ ΣL.

5.2.3 Hyperbolic Root Lattices and Vinberg’s Algorithm

A hyperbolic root lattice L defines two cones of vectors with positive square. (Time-like

cones, after relativity theory. The set of isotropic vectors is a light cone.) Choose one such

cone C+ and define the hyperbolic space Hn = {v ∈ C+/R×}. Then we can view W (L) as

acting on Hn, similarly to the case of the positively curved space Sn−1 in the definite case

and the flat space L
∗

in the semidefinite case. Alternatively, we view W (L) as acting on the

cone C+. The reflection hyperplanes divide C+ into a fan, which we will call the Vinberg

fan.

Analysis of the type employed previously is complicated by the fact that a fundamental

domain of W (L) may not be simplicial. With a bit more work similar results can be obtained,

as was noticed by Vinberg [Vin75].

First, choose a “controlling vector” v0 ∈ L with v2
0 > 0 such that v0 lies on at least n

separate reflection hyperplanes. Then Stab(v0) ⊂ W (L) is the Weyl group of the definite

lattice v⊥0 , so choose a Weyl chamber defined by, say, αi · v ≥ 0 for simple roots αi. We

will proceed to add more simple roots corresponding to the facets of the unique fundamental

domain containing v0 and contained in the choice of Weyl chamber. The key is that there is

a mechanized way to do this.
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Proposition 5.2.14 (Vinberg’s Algorithm [Vin75]). The algorithm is iterative. At the n’th

stage of the algorithm we will add all the simple roots α with α · v0 = n. Start with the set

of simple roots α with α · v = 0 (this is stage i = 0). For the n’th stage add all roots α such

that α · v = n and α · α′ ≥ 0 for all simple roots α′ previously constructed.

Note that there may be an infinite number of simple roots.

Proposition 5.2.15. The Vinberg diagrams of the lattices II1,9 and II1,17 are as shown in

the figure. In both cases the lattice is a root lattice spanned by the simple roots. In the II1,9

case the simple roots form a basis, whereas in the II1,17 case there is the unique relation

3α1 + 2α2 + 4α3 + 6α4 + 5α5 + 4α6 + · · · − 4α14 − 5α15 − 6α16 − 4α17 − 2α18 − 3α19

, i.e. the linear combination corresponding to the red numbers on the diagram.

1

2 3 4 5 6 7 8 9 10

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19

II1,9

II1,17

2

-3

-2-4-6-5-4-3-2-10123456

3

4

Figure 5.2: Vinberg diagrams for the even unimodular lattices II1,9 and II1,17. The black
numbers label the simple roots αi The red numbers correspond to the relation among the
simple roots for II1,17

Proof. II1,9 Write II1,9 = E8⊕U and choose the controlling vector v0 = (0, (1, 1)). Choosing

a simple root basis αi of E8 we see that the 9 roots (αi, 0), (0, (1,−1)) define a simple

basis for v⊥0 , thus completing stage 0.
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For stage 1, we find the unique root (−α̃, (1, 0)). It’s easily checked that there are no

more simple roots. The Vinberg diagram is as shown. The simple roots form a basis

by inspection.

II1,17 Similarly, write II1,17 = E8 ⊕ E8 ⊕ U and let v0 = (0, 0, (1, 1)). Then (αi, 0, 0),

(0, αi, 0), and (0, 0, (1,−1)) are a simple root basis for v⊥0 . These are the roots labeled

1 . . . 8, 12 . . . 19, and 10, respectively, in the diagram. This is stage 0.

For stage 1, there are two roots: (−α̃, 0, (1, 0)) and (0,−α̃, (1, 0)). These are the roots

labeled 9 and 10. There are no more simple roots, and the Vinberg diagram is shown.

The fact that the 19 simple roots span II1,17 is by inspection, and so there is exactly

one linear relation among them. That is, there is up to scaling one combination of

simple roots that pairs as 0 with each. In terms of the diagram this means that the

sum of the coefficients on the node adjoining any given node must sum to twice the

coefficient at that node, a condition that we immediately check.

This is as convenient a point as any to introduce a not entirely standard definition (and

a nonstandard one).

Definition 5.2.16. Let Tn represent theAn sublattice of II1,9 spanned by the roots α10, α9 . . . α10−n.

We define E9−n = T⊥n . Note this agrees with the standard definitions for E8, E7, E6. The

definitions E5 = D5, E4 = A4, E3 = A1 ⊕ A2 are common but not completely standard.

E2 = 〈α2, α3 − α1〉 and E1 = 〈2α2 + α3 − α1〉 are not root lattices. They have Gram

matrices
( −2 1

1 −4

)
and (−8), respectively.

Observe ([Dyn52]) there is a unique conjugacy class of An sublattice in E8 for n 6= 7.

These are primitive sublattices. The other embedding of A7 is non-primitive and has A⊥7 =

〈α2〉 we call this lattice E ′1.
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The Vinberg diagram encodes information about the Vinberg fan, in a manner entirely

analogous to the elliptic and parabolic cases though the analysis is more complicated. We

introduce an auxiliary definition:

Definition 5.2.17. A Coxeter diagram is elliptic if it is a disjoint union of diagrams for

irreducible definite root systems. Equivalently the associated Gram matrix is negative defi-

nite.

Similarly a Coxeter diagram is parabolic if it is the disjoint union of affine diagrams

associated to parabolic lattices.

The rank of an elliptic or parabolic diagram is the sum of the ranks of its components.

The analog of 5.2.10 and 5.2.13 can now be stated. The reader is referred to Vinberg’s

text for proof.

Proposition 5.2.18 (Vinberg, [Vin75]). The automorphism group of a hyperbolic root lattice

L is a semidirect product

O(L) = D nW (L)

where D is the group of automorphisms of the Vinberg diagram of L.

Assume that D is finite.

Then W (L) orbits of cones in the interior of the Vinberg fan are in a bijection with

elliptic subdiagrams of the Vinberg diagram.

Definite subspaces of L⊗R spanned by roots are of the form σ⊥ for the cones σ determined

by elliptic subdiagrams.

The W (L) orbits of isotropic vectors in L are in bijection with parabolic subdiagrams of

rank rankL− 2.

Semidefinite subspaces of L ⊗ R spanned by roots are of the form σ⊥ for the cones σ

determined by parbolic subdiagrams.
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Inspecting the Dynkin diagram for II1,17 yields:

Corollary 5.2.19. The lattice II1,17 has two O(II1,17) orbits of isotropic vectors, corre-

sponding to the Ẽ8 ⊕ Ẽ8 and D̃16 subdiagrams shown 5.3.

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19
2E8

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

19
D16
~

~

Figure 5.3: Parabolic subdiagrams of the Vinberg diagram for the lattice II1,17.
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Chapter 6

Elliptic Surfaces

Here we review basic facts about elliptic curves and surfaces that we will need later. Basic

references are [Sil86] for curves and [Mir89] for surfaces.

Definition 6.0.20. An elliptic curve (E, 0) over a field K is a smooth genus 1 curve over

K along with a choice of rational point 0. We assume K has characteristic 0.

We recall some basic facts of elliptic curve theory.

Proposition 6.0.21. Every elliptic curve (E, 0) is isomorphic to a plane curve (V (y2 =

x3 +Ax+B),∞), where ∞ is the unique flex point at infinity. This representation is unique

up to a rescaling:

V (y2 = x3 + Ax+B) =V (y2 = x3 + A′x+B′)

⇐⇒ A′ = t4A,B′ = t6B for some t ∈ K∗

Such a representation is called a Weierstrass equation of the curve.

A given Weierstrass equation y2 = x3 + Ax + b defines a nonsingular curve iff the dis-

criminant:

∆ = 4A3 + 27B2
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vanishes.

Over an algebraically closed field the function j = A3

∆
classifies elliptic curves up to

isomorphism.

Over a non-algebraically closed field, the j function classifies elliptic curves up to quadratic,

cubic and biquadratic twists (see below).

The automorphism group of a curve is Z/2 if j 6= 0, 1, Z/4 if j = 1, and Z/6 if j = 0.

Note the choice of normalization of the j function used here is the same as Miranda

[Mir89] and omits the factor of 123 commonly used by number theorists.

Definition 6.0.22. If C = V (y2 = x3 +Ax+B) is an elliptic curve, a quadratic twist of C

is any curve with Weierstrass equation y2 = x3 + d2Ax+ d3B for some d ∈ K∗.

Similarly, if C has j invariant 1, then C = V (y2 = X3 +Ax) and we define a biquadratic

twist to be any curve C = V (y2 = X3 + dAx), d ∈ K∗.

If C has j invariant 0, then C = V (y2 = X3 + B) and we define a cubic twist to be any

curve C = V (y2 = X3 + dB), d ∈ K∗.

Remark 6.0.23. The correct way to look at twisting and the fact that the j function is

only a complete invariant up to twists is to assert that the moduli space of elliptic curves is

in fact represented by a Deligne-Mumford stack with the j line being only the coarse moduli

space. The automorphism group of the generic point is Z/2 and the automorphism group of

the points over 0 and 1 are Z/6 and Z/4, respectively.

The theory of elliptic surfaces is parallel.

Definition 6.0.24. An elliptic surface is a surface X, along with a map π : X → C to a

curve and a section1 s : C → X such that the general fiber of π is a smooth genus 1 curve

and π ◦ s = id.

1Not all authors require a section.
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X is minimal if it is relatively minimal over C.

Again we assume characteristic 0.

In other words, for our purposes an elliptic surface is simply a projective model of an

elliptic curve over the generic point of the base C.

We explicitly describe the action of twists on surfaces with constant j invariant (for ease

of calculation).

Example 6.0.25. Consider a trivial elliptic fibration X = E×P1 with arbitrary j invariant,

and let C → P1 be a double cover with hyperelliptic involution τ . Say, locally, C = V (y2−d)

with d square free. Then X ×P1 C has an involution (i, τ), where i is the involution on E.

The quotient of X×P1C by this involution is an new (singular) elliptic surface with the same

j function, where the elliptic curve over the generic point is the quadratic twist by d. The

singular fiber introduced over a zero of d has multiplicity 2 and 4 singular points of type

A1, corresponding to the fixed points of the involution. Blowing up at these points produces

the minimal smooth model, where the new singular fibers are type D̃4 configurations of

smooth rational curves. (In general a type Φ̃ configuration is a collection of lines with dual

graph isomorphic to the corresponding affine Dynkin diagram and multiplicities given by the

coefficients of the relation on the roots. See figure 6.1.)

D4 E6 A4
~~~

2

2

2

3

2

Figure 6.1: Fiber configurations of types D̃4, Ẽ6, Ã4. The numbers next to thick curves
indicate the multiplicity of that curve. Compare figure 5.1.
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Similarly, if j(E) = 0 (so E has an order 6 automorphism i6) we take a cyclic Z/6 cover

C → P1, say C = V (y6−d). Then quotienting X×P1 C by the action (i6, τ6) gives a singular

surface corresponding to the cubic twist by d. We can resolve by blowing up. The form of a

fiber over a point p varies depending on vp(d):

vp(d) = 0 Smooth fiber.

vp(d) = 1 Cuspidal curve.

vp(d) = 2 Three rational curves meeting at a point.

vp(d) = 3 D̃4 configuration.

vp(d) = 4 Ẽ6 configuration.

vp(d) = 5 Ẽ8 configuration.

For example, in the case vp(d) = 5 we have the fiber over p occurring with multiplicity 6

and having 3 quotient singularities of types (1,−1)
6

, (1,−1)
3

and (1,−1)
2

(that is, types A5, A2, A1).

Blowing up gives the claimed fiber.

In the remaining case j(E) = 1 E has an order 4 automorphism i4, and taking cyclic

Z/4 covers of C → P1 and quotienting X ×P1 C by the action (i4, τ4) gives singular fibers

containing singular points of the surface with form depending on vp(d):

vp(d) = 0 Smooth fiber.

vp(d) = 1 Two rational curves meeting at a tacnode

vp(d) = 2 D̃4 configuration.

vp(d) = 3 Ẽ7 configuration.
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Finally, we note that given a smooth elliptic surface X → P1 where the j function has a

simple pole over (say) 0 and the fiber over 0 is an irreducible nodal curve , base changing by

P1 → P1 : x 7→ xn produces a type An surface singularity. After resolving the fiber over 0 is

a type Ãn configuration. If we perform a further quadratic twist over 0 (by base changing

x 7→ x2 and then dividing by the composition of x 7→ −x and the hyperelliptic involution)

we arrive at a surface with singularities that resolve to a type D̃n+4 configuration.

Singular Fibers of Elliptic Surfaces The possible singular fibers of the relatively min-

imal model of an elliptic surface were classified by Kodaira [Kod63]. Over C the theory

is essentially topological, the isomorphism class of the fiber being determined by the mon-

odromy around that fiber. Indeed, the above example considers all the cases, which is easily

seen by pulling back to the universal elliptic curve. We record this below:

Proposition 6.0.26 (Kodaira [Kod63]). The singular fibers of the relatively minimal model

of an elliptic surface are given in the table, where “Name” is the Kodaira label and e is the

contribution to the Euler characteristic.

Name Configuration in minimal model j e

I0 Elliptic Curve 6=∞ 0

I∗0 D̃4 6=∞ 6

In Ãn−1 ∞ n

I∗n D̃n+4 ∞ n+ 6

II Cuspidal Curve 0 2

IV Three rational curves meeting at a point. 0 4

IV ∗ Ẽ6 0 8

II∗ Ẽ8 0 10

III Two rational curves meeting at a tacnode. 1 3

III∗ Ẽ7 1 9
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Proof. Since the statement is local on the base, all the claims except the Euler characteristic

follow from the example. By a quadratic twist of a trivial surface E×P1 we obtain a rational

elliptic surface with 2 type I∗0 fibers. Similarly, a quadratic twist of any surface with an In

singularity can be performed to obtain a surface with the In singularity replaced by an I∗n

singularity and an additional I∗0 fiber. Since the fundamental line bundle’s degree (6.1.1) is

increased by one, and χ increased by 12, we see the local Euler characteristic increased by

6. The same argument relates the Euler characteristics of fibers of types II, III, IV with

those of types II∗, III∗, IV ∗. But cubic and biquadratic twists of trivial elliptic surfaces can

produce rational elliptic surfaces with fiber types 6II, 4III, 3IV . Dividing the total χ of 12

by the number of fibers gives the result.

6.1 Weierstrass Fibrations

We proceed to globalize the concept of the Weierstrass model of an elliptic curve. The

appropriate definition is:

Definition 6.1.1 (Miranda, [Mir89]). A Weierstrass fibration Is a surface X with a flat

proper map π : X → C to a curve C, where the general fiber is smooth, every geometric

fiber has arithmetic genus 1, and there is the additional data of a section s : C → X meeting

every fiber at a smooth point.

An important invariant of a Weierstrass fibration is the fundamental line bundle L =

(Ns/X)−1 (equivalently (R1π∗OX)−1).

Observing the classification of singular fibers we see that contracting rational fiber com-

ponents of a (smooth) elliptic surface X ′ disjoint from the section produces a Weierstrass

fibration. The result is clearly a birational invariant of X ′ (although there are other Weier-

strass fibrations birational to it).
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We will accept the following fact ([Mir89][II.2])

Proposition 6.1.2. Let X be an elliptic surface. X is birational to a double cover of

F2 degL = P(O ⊕ L2) branched over the exceptional section and a trisection T .

Assuming this, one can complete the construction of the Weierstrass equation:

Lemma 6.1.3. There are coordinates on F2 degL such that the trisection T = V (X3 +AX2 +

B) for some A ∈ H0(L4), B ∈ H0(L6).

Corollary 6.1.4. X can be written as a divisor in the P2 bundle P(O ⊕ L−2 ⊕ L−3) with

equation Y 2Z = X3 + AXZ2 +BZ3 (where the section is then X = Z = 0).

Definition 6.1.5. Weierstrass data for a Weierstrass fibration consist of a line bundle L,

and a pair of sections A ∈ |L4|, B ∈ |L6|. We define the discriminant ∆ = 4A3 +27B2 ∈ L12.

We will frequently abuse notation and write the divisors of A,B,∆ as A,B,∆, respec-

tively.

We now describe the singular fibers of a Weierstrass fibration in terms of the trisection.

The following two propositions are the content of Miranda’s “a, b, δ” table ([Mir89][IV.3]),

broken up for easier reading.

Proposition 6.1.6. The singular fibers of a Weierstrass fibration are as follows, where the

“Kodaira fiber” column indicates which fiber type, if any, of a minimal (smooth) elliptic

surface yields the corresponding fiber in the Weierstrass fibration when the components not

meeting the section are contracted:
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Singularity Kodaira Fiber Configuration of T

Smooth I0 T meets f in distinct points

An−1 In A type A double point, x2 = yn+1

D4 I∗0 Ordinary triple point.

Dn+4 I∗n A double point with local equation

yx2 = yn−1

Smooth II T is flexed to f

A2 IV T meets f three times at a cusp.

E6 IV ∗ A triple point with local equation

x3 = y4

E8 II∗ A triple point with local equation

x3 = y5

A1 III T meets f three times at a node.

E7 III∗ A triple point with local equation

x3 = xy3

Elliptic or worse None A triple tacnode.

The fiber is a nodal curve in type In and a cuspidal curve in all other cases.

Further, the singularity type can be read directly off of the Weierstrass data:

Proposition 6.1.7. Let π : X → C be a Weierstrass fibration with a chosen fiber f and

p = πf ∈ C. The Kodaira type of X on f , as well as the j invariant and degree of

the discriminant can be determined by the valuations vp(A), vp(B) of the sections A,B as

follows.
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Fiber type vp(A) vp(B) j vp(∆)

I0 0 0 6= 0, 1 1

≥ 0 0 0 1

0 ≥ 0 1 1

In (An−1) 0 0 ∞ n

I∗0 (D4) 2 3 6= 0, 1 4

≥ 2 3 0 4

2 ≥ 3 1 6

I∗n (Dn+4) 2 3 ∞ 6 + n

II ≥ 1 1 0 2

IV (A2) ≥ 2 2 0 8

IV ∗ (E6) ≥ 3 4 0 8

II∗ (E8) ≥ 4 5 0 10

III (A1) 1 ≥ 2 1 3

III ∗ (E7) 3 ≥ 5 1 9

Elliptic ≥ 4 ≥ 6 * ≥ 12

Where the j invariant at an elliptic singu-

larity may be arbitrary.

The results of (6.1.7) simply the expression of the twists and base changes in the example

(6.0.25) in terms of Weierstrass equations. The non-notational part of 6.1.6 then follows

immediately.

Observing the tables and recalling the discussion of surface singularities (4.2.4) we have

the following corollary:

Corollary 6.1.8. Let X → C be a Weierstrass fibration and consider the pair (X,B), B =

ε(s+
∑
fi)+

∑
Fj) for small ε > 0, where Fj are distinct fibers and fi are the singular fibers

not in {Fj}j. Then (X,B) is log canonical if and only if X has at only rational double point

singularities and the fibers Fj contain at at worst type An singularities.
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In terms of the Weierstrass data, (X,B) is log canonical if and only if the divisors A and

B are disjoint from the points on C corresponding to Fj and A and B do not simultaneously

vanish to order 4 and 6, respectively.

6.2 The Mordell-Weil Lattice

Given an elliptic surface π : X → C (with marked section s) one can put a group structure on

the set of sections σ : C → X, π ◦σ = id. This is of course the group of rational points of the

generic fiber of π and is called the Mordell-Weil group, or MW(X). The subgroup MW(X)◦ of

MW(X) consisting of sections passing through the identity components of each singular fiber

is also important, and named the narrow Mordell-Weil group. Following Shioda ([Shi90]), we

will define a canonical bilinear form on MW(X), allowing us to view MW(X)/MW(X)tors

as a lattice2.

Indeed, NS(X) is already an (indefinite) lattice. Define the trivial sublattice T ⊂ NS(X)

as the sublattice spanned by the section and all fiber components. The orthogonal projection

φ : NS(X) → T⊥ ⊗ Q induces a well defined map MW(X)/MW(X)tors → T⊥ ⊗ Q. If

p1, p2 ∈ MW(X) then one defines 〈p1, p2〉 = 〈φ(p1), φ(p2)〉.

We will mostly need to know about the Mordell-Weil lattice in the case of rational elliptic

surfaces, in which case the following description is available:

Proposition 6.2.1 (Shioda 10.3). Let X be a rational elliptic surface, T ⊂ NS(X) be the

trivial lattice as defined above. Write L = T⊥. Then

• MW(X)◦ = L as lattices.

• MW(X)/MW(X)tors = L∗ as lattices.

• Let T ′ be the primitive closure of T . Then MW(X)tors = (T ′/T ) ∩ 〈s, f〉⊥.

2This pairing is essentially the canonical height on the generic fiber, constructed in a much easier manner
due to the special nature of our situation.
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Finally note that Oguiso and Shioda explicitly calculated all the Mordell-Weil lattices

that occur, and give them as a table in [OS91].

6.3 Elliptic K3 Surfaces

In this brief section we collect some important facts and definitions about elliptic K3 surfaces.

Definition 6.3.1. An elliptic K3 surface is a Weierstrass fibration π : X → P1 with at

worst ADE singularities such that the minimal model is a K3 surface.

Notice that set theoretically elliptic K3’s are in bijection with smooth K3’s equipped

with the extra structure of being an elliptic surface. The reason for the definition given is

to avoid having to deal with a nonseparated moduli problem.

Specializing the above discussion to elliptic K3 surfaces, we see that the fundamental line

bundle is O(2) and that there are 24 singular fibers, counted with multiplicity. The possible

types of singular fibers have been classified by Shimada [Shi00].

Examples 6.3.2. Starting with any rational elliptic surface Y → P1 a 2:1 base change (and

contracting -2 curves away from the section) produces an elliptic K3.

An elliptic K3 can also be obtained from a rational elliptic surface by a general quadratic

twist.

Several modular surfaces are elliptic K3’s, such as those corresponding to the groups

Γ(4), Γ1(7), and Γ0(12). The full list of 9 possibilities is due to Sebbar [Seb01].

Finally we note that there is a coarse moduli space of elliptic K3 surfaces, which we call

Fell.

Theorem 6.3.3 ([CD07]). The locally symmetric space

Fell = O(II2,18) O(2, 18)/ SO(2)× SO(18)
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is a coarse moduli space for elliptic K3 surfaces.

This is discussed in more (but still incomplete) detail in the next chapter (7.3). For a

complete discussion see Clingher and Doran ([CD07]).
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Chapter 7

Hodge theory of Kulikov

degenerations

In this chapter we briefly recall some classical analytic results on degenerations of K3 sur-

faces. We start by discussing the Kulikov-Persson-Pinkham theorem on the structure of nice

models of degenerations (“Kulikov degenerations”). We then mention Friedman’s criterion

classifying exactly which surfaces may appear as the central fiber in a Kulikov degeneration.

Finally we discuss the Hodge theory of K3 surfaces and Kulikov degenerations, starting with

the general setup before discussing smooth surfaces and the global Torelli theorem and fin-

ishing with a description of Hodge theoretic aspects of Kulikov degenerations. The results

of this chapter are quite technical and for the most part we don’t even attempt to sketch

proofs.

The primary source for the theory of Kulikov degenerations is of course Kulikov’s paper

[Kul77], but the recommended starting point is Persson and Pinkham’s proof of the key

result [PP81]. The detailed study of degeneration of K3’s was undertaken by Friedman

[Fri84] and Friedman-Scattone [FS86]. Scattone later studies the moduli theory [Sca87]. A
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useful general reference is [Per77]. For a moderately quick general introduction to Hodge

theory in our context try [Loo11].

7.1 Kulikov Degenerations

A central theme has been given a degeneration X → ∆◦ how to create a good model

X → ∆. The aim of the KSBA approach outlined previously (4) is to produce models

that are essentially unique, though perhaps somewhat singular. There is a complementary

body of classical work studying smooth models. We define the central object:

Definition 7.1.1. Let X → ∆◦ be a degeneration of K3 surfaces. A Kulikov model or

Kulikov degeneration is a degeneration X → ∆ satisfying

1. X is semistable, i.e. smooth with reduced normal crossing central fiber.

2. KX ' OX .

The main result then is an enhanced semistable reduction theorem:

Theorem 7.1.2 (Kulikov [Kul77] Persson-Pinkham [PP81]). After base change every de-

generation X → ∆◦ has a Kulikov model π : X → ∆. Moreover the central fiber X0 = π−10

is of one of three types:

• (Type I) Smooth K3 surface.

• (Type II) A chain X0 = Y1 ∪ Y2 · · · ∪ Yn were Yi ∩ Yj = D, some fixed genus 1 curve if

j = i± 1 (otherwise empty), Y1, Yn are rational, and Yi, i 6= 1, n are elliptic ruled.

• (Type III) A union of rational surfaces, satisfying the triple point formula, such that the

dual graph is a triangulation of the sphere and each the double locus on each component

is an anticanonical cycle.
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We give a name to the surfaces satisfying the numerical conditions on X0 in the theorem:

Definition 7.1.3. A surface of any one of types above satisfying the triple point formula

will be called a combinatorial K3 surface1 of the appropriate type. We call a type II surface

short if it has only 2 components2.

Kulikov models are far from unique, but are convenient and can provide a starting point

to produce unique models (for example by running the MMP). The interesting question arises

as to which combinatorial K3 surfaces may actually arise as the central fiber of a Kulikov

degeneration. This was answered by Friedman [Fri83].

Definition 7.1.4. Let X be a combinatorial K3 surface. X is said to be d-semistable if

Ext1
OX

(Ω1
X ,OX) = OXsing

.

Write X =
⋃
Vi as a union of irreducible components. For each Vi define a divisor ξi by

its pullback on the normalization tVi by ν∗ξi =
∑

j(Vi · Vj)|Vi − (Vi · Vj)|Vj . Then X is

d-semistable if each ξ is a Cartier divisor on X.

The main theorem is then:

Theorem 7.1.5 (Friedman). A combinatorial (analytic) K3 surface X is smoothable if an

only if it is d-semistable. If it is smoothable then the smoothing component of the deformation

space is smooth and 20 dimensional.

A polarized combinatorial K3 surface (X,H) is smoothable if and only if it is d-semistable,

and if so the smoothing component of the deformation space is smooth and 19 dimensional.

The analytic statement is from [Fri83] and the polarized one from [FS86].

1Note that, unlike some authors, we do not include an analytic condition, e.g. d-semistability.
2 Friedman uses the word “stable”, which already has several meanings here.
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Friedman [Fri84][Theorem 2.3] shows that if X is a type II degeneration then after bi-

rational modification there is an equivalent family with X0 a short d-semistable type II

combinatorial K3 surface. Henceforth we restrict ourself to short type II surfaces.

7.2 Definitions and Common Results

The basic definitions are:

Definition 7.2.1. A (pure) Hodge structure of weight n on a free abelian group L is a

decreasing filtration

L⊗ C = F 0 ⊃ F 1 · · · ⊃ F n

such that if p+ q = n+ 1 then Fp ∩F
q

= 0 (one says that F, F ′ are opposite). Equivalently,

there is a decomposition

L = ⊕p+q=nHp,q

such that Hp,q = H
q,p

.

A Mixed Hodge structure on L is a pair of a decreasing Hodge filtration F • and a rationally

defined increasing weight filtration W with the property that the Hodge filtration induces a

Hodge structure of weight i on the weight graded pieces GrWi L.

Proposition 7.2.2 ([Wel08]). Every smooth compact Kähler (in particular, projective) va-

riety X has a pure Hodge structure of weight i on each H i(X,Z), with

Hp,q = Hq(X,Ωp)

Note that this is the E1 page for the spectral sequence associated to the complex

Ox → Ω1 → Ω2 . . .
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with the filtration

F p = . . . 0→ Ωp → Ωp+1 . . . .

The content of the theorem is mostly in the degeneration of this sequence at the E1 page.

It is conventional to display this information diagrammatically, in the so-called Hodge

diamond, where the i’th row from the bottom represents the dimensions of the graded pieces

of the filtration on H i, the so-called Hodge numbers. In our case:

Proposition 7.2.3. The Hodge numbers of a K3 surface are given by the diamond:

1

0 0

1 19 1

0 0

1

Proof. The only Hodge number that is not obvious from the definition of a K3 surface is

h1,1. But this follows from knowing χ(X) = 24 (directly in the elliptic case, or by Noether’s

formula in the general case).

In the case of a degeneration X → ∆◦ that can be completed to a family of smooth K3

surfaces the variation of pure Hodge structures is all we need to understand. In the case

where the limit is singular, however, there is more to do. In particular, we will associate 2

distinct mixed Hodge structures to X → ∆: one depending only on the central fiber and

one depending only on the general fiber X → ∆◦ (and on a choice of tangent direction to

the point 0 ∈ ∆, a slight technicality.)

The holomorphic universal cover of ∆◦ is the upper half plane H+. Write X∞ to be

the pullback of X to H+ (since the base is contactable, this is deformation retracts to

any smooth fiber). The deck transformations on H+ induce the monodromy action on

T : H2(X )→ H2(X ), where X ' LK3.

We recall general results on the monodromy T .
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Proposition 7.2.4. • T is quasi-unipotent in general, and unipotent for semistable de-

generations. Hence the logarithm N = 1− T + (1−T )2

2
. . . is well defined.

• N2 = 0 for type II degenerations and N3 = 0 for type III.

• T is orthogonal with respect to the intersection form on H2, so N is antisymmetric

with respect to the same form.

An additional algebraic result that is useful is:

Theorem 7.2.5 (Jacobson-Morozov). Any nilpotent element e in a semisimple Lie algebra

can be extended to a triple {e, f, h} defining an sl2 subalgebra, where e, f, h correspond to the

standard matrices

e = { 0 1
0 0 } f = { 0 0

1 0 } h = { 1 0
0 −1 }

As a corollary (this pathway is somewhat standard, we loosely follow [Loo11]) we get:

Lemma 7.2.6 (“Jacobson-Morozov lemma”). If N is a nilpotent endomorphism of a finite

dimensional vector space, there is a unique filtration W• such that:

• N(Wi) ⊂ Wi−2

• Ni induces an isomorphism of graded pieces GriW ' Gr−iW

We will call this filtration the Jacobson-Morozov filtration W JM
• .

Note that the sl2 subalgebra in 7.2.5 is well defined only up to the action of the action

of some group, but the filtration is still well defined.

In our case we shift the Jacobson-Morozov filtration on H2(X∞) by 2, i.e.

Wk = W JM
k−2 .

57



The orthogonality statement in 7.2.4 now implies that W• is self dual in the sense:

Wi
⊥ = Wn−i−1

where n is the index of nilpotency of N .

Let D be some space parameterizing pure Hodge structures of appropriate type (we

describe this explicitly for K3 surfaces in 7.3). The map G : H+ → D given by G(τ) =

exp(τN)F (τ) is invariant under translation by Z, so descends to a map G : ∆◦ → D. (This

construction is well defined up to a factor of exp(αN) for some α). The big result is:

Theorem 7.2.7 ([Sch73]). The map G is holomorphic, and limz→0G(z) ∈ D corresponds to

a filtration F • such that the pair W,F is a mixed Hodge structure.

Definition 7.2.8. The mixed hodge structure above is called the limit mixed Hodge structure

of the degeneration. We will denote the limit mixed Hodge structure for a degeneration X

by LH•(X ).

There is also a mixed hodge structure associated to the variety X0. In the case of a

semistable degeneration we can access this by observing that the maps in the Mayer-Vietoris

spectral sequence are maps of Hodge structures.

We now specialize to the cases of type I, II and III degenerations, noting that the case

of type I is of special importance since it provides a description of the (coarse) moduli space

of polarized K3 surfaces.

58



7.3 The Global Torelli Theorem and Type I Degener-

ations

A weight 2 Hodge structure on a rank 22 lattice is said to be of K3 type if dimH2,0 =

dimH0,2 = 1. We can parameterize the possible pure Hodge structures on LK3 of K3

type in a straightforward way. Indeed, given such a structure we have a distinguished one

dimensional subspace H2,0 = 〈ω〉 ∈ H2(X,C). Noting that the intersection form on LK3 is

simply the restriction of the cup product we have ω2 = 0 and ω · ω > 0, so a first choice for

the space of all Hodge structures of K3 type would be

D = {ω ∈ P(LK3 ⊗ C))|ω · ω = 0, ω · ω > 0}

There is the small detail that D has 2 components, exchanged under complex conjugation.

We resolve this by choosing one arbitrarily, which we call D−. This is a Hermitian symmetric

domain of type IV. The remaining problem is that different period points may correspond

to the same Hodge structure, being related by an automorphism of LK3. So we define the

period domain:

FK3 = D−/Γ+

where Γ+ is the subgroup of the orthogonal group O(LK3) that fixes the component D−.

The period domain FK3 provides an adequate parameter space for complex analytic K3

surfaces. To consider algebraic K3’s, one must first fix a class h ∈ LK3, which we require

to be ample. We can assume that h is primitive in LK3, and write h2 = 2d. It follows from

James’s theorem3 [Jam68] that there is in fact a unique conjugacy class of such vector. So

3Any nonsingular lattice of rank less than the index of an even unimodular lattice has a unique conjugacy
class of primitive embedding.
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we write:

L2d = h⊥ ∈ LK3

D2d = one component of {ω ∈ P(L2d ⊗ C)|ω · ω = 0, ω · ω > 0}

F2d = D2d/Γ2d

Where Γ2d is the subgroup of O(L2d) obtained by restricting the elements of O(LK3) fixing

h and stabilizing the component D2d. It is in this situation that we can establish a strong

Torelli theorem, originally due to Piatetskii-Shapiro and Shafarevic [PSS71]. Friedman’s

argument [Fri84] is more fitting here, though.

Theorem 7.3.1 (Global Torelli). The period domain F2d is a coarse moduli space for K3

surfaces with primitive polarization of degree 2d.

In our situation instead of a single polarizing vector we have the additional data of an

elliptic fibration, that is a pair s, f of algebraic classes, one for the chosen section and one for

a fiber. s, f span a unimodular sublattice isomorphic to H of LK3, so LK3 = 〈s, f〉⊕II2,18 (by

the structure theorem for indefinite unimodular lattices) and thus the sublattice is unique

up to conjugation. We repeat the previous construction to obtain a moduli space Fell as a

subspace of F2d for all d. Explicitly:

Definition 7.3.2. Write

D = one component of {ω ∈ P(II2,18 ⊗ C)|ω · ω = 0, ω · ω > 0}

and let

Γ ⊂ O(II2,18).

be the index 2 subgroup stabilizing the component Γ. The period domain for elliptic K3
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surfaces is then defined as

Fell = D/Γ

.

The appropriate Torelli theorem is an application of Dolgachev’s ([Dol96]) theory of

(psuedo-ample) lattice polarized K3 surfaces, and is carefully explained by Clingher and

Doran [CD07].

Theorem 7.3.3 (Torelli Theorem for Elliptic K3 Surfaces ([CD07]).). Fell is a coarse moduli

space for elliptic K3 surfaces.

The Torelli theorem provides a complete description of the Hodge theory of degenerations

with X0 smooth. We now expand to study degenerations with X0 singular.

7.4 Type II

The statements in this section mostly follow [Fri84].

Lemma 7.4.1. ([Fri84] 3.4) Let X0 be a short type II surface with the components joined

along a genus 1 curve D. Then

1. dimH2(X0) = 21

2. W2H
2(X0)/W1H

2(X0) has dimension 19 and is pure of type (1,1).

3. W1H
2(X0) ' H1(D) as Hodge structures.

Proof. 1 follows from the Mayer-Vietoris sequence, which has E1 page

H0(D) H1(D) H2(D) 0 0⊕
H0(Vi) 0

⊕
H2(Vi) 0

⊕
H4(Vi)
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Since we have (by the triple point formula) KV1|D + KV2|D = −K2
V1
− K2

V2
= 0 and (since

they are rational) dimH2(Vi) = 10 − K2
Vi

. Furthermore, the map
⊕

H2(Vi) → H2(D) is

surjective. Indeed this is merely the statement that some curve on at least one of the Vi

meets D at a point. Putting this together we get:

dimH2(X0) = dimH2(V1) + dimH2(V2) + dimH1(D)− dimH2(D) = 21

The statement on the graded pieces (2) follows immediately by recalling the weight

filtration is given by the columns of the sequence and observing that the Hodge structures

on H2(Vi) are pure of type (1, 1).

The final claim is obvious, since there are no nonzero differentials that can affect the

term H1(D).

We also need to understand the limit Hodge structure of a degeneration. Define E =

D|V1 −D|V2 . E is clearly a isotropic vector in H2(X̃0). We have

Lemma 7.4.2. (Verbatim from Friedman [Fri84])

1. The Clemens-Schmid exact sequence

H4(X0)→ H2(X0)→ LH2(X )→ LH2(X )

is exact over Z.

2. W1LH
2(X ) ' W1LH

2(X )

3. GrW2 LH2(X ) ' E⊥/ZE as a sublattice of H2(X̃0).

4. The signature of the intersection pairing on GrW2 LH2(X ) is (1,17).

This information becomes especially useful considering the following theorem of Carlson,

as quoted in Friedman [Fri84].
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Theorem 7.4.3. • The mixed Hodge structure on H2(X0) determines a homomorphism

ψ : GrW2 H2(X0)→ J(D).

• This homomorphism is given geometrically by ψ(l) = (l|V1 ·D)⊗ (l|V2 ·D).

• A class l ∈ H2(X0) is Cartier only if ψ(l) = 0.

For a degeneration of polarized K3 surfaces, write the polarization class as h and write

L = h⊥ ⊂ GrW2 H2(X0). Clearly L has signature (0, 17). Since h is Cartier we can factor ψ

through a map L→ J(D), and so it is of interest to study the structure of L in detail.

The following examples roughly follow Friedman [Fri84, Section 5]. His exposition is

more general in most regards, but we choose to compute the entire lattice L, rather than

just its root sublattice.

Example 7.4.4. We first calculate the lattice L = h⊥ in the case of a family of 2 polarized

K3’s given as double covers of P2 over a sextic, where the sextic degenerates towards twice

a cubic. There may be a type An singularity in the total space along the double locus of the

central fiber, but assume for simplicity n = 0, i.e. the threefold is smooth in codimension 24.

The central fiber is now 2 planes meeting on a cubic D, with (generically) 18 singular points

in the 3-fold5 . We resolve these in such a way that the effect on the central fiber is to blow

up one of the planes 18 times at points on D. Call the component of X0 isomorphic to P2

Y1 and the blown up component Y2. We write H2(Y1) = 〈l1〉 and H2(Y2) = 〈l2, e1 . . . e18〉.

We now have:

E = 3l1 − (3l2 −
∑

ei)

h = l1 + l2

The classes αi = ei − ei+1 are visibly in 〈E , h〉⊥ and independent modulo E . These form

a full rank A17 sublattice of L. But L is in fact a strict overlattice of this root lattice,

4If not the central fiber of a Kulikov model will not be short.
5If one writes the family as z2 = f2

3 + tf6 these are the points over V (f3, f6).
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since by adding a multiple of E we can write a class in 〈E , h〉⊥ without using l1, l2 only

when the coefficient of l1 (=negative the coefficient of l2) is divisible by 3. Thus the class

l1 − l2 − 6e1 ∈ E⊥/E generates L/A17, and [A17 : L] = 3.

Example 7.4.5. Now consider a family of 2 polarized K3 surfaces degenerating towards

a double cover of P2 over twice a conic plus some other conic (in our situation , with all

surfaces elliptic, we call this the D̃16 case, for reasons that will soon be clear). As before this

representation is not semistable (it has a type An singularity. We assume that n = 1). A

single blowup will produce a semistable family, with central fiber X0. D, the double curve

of X0 is isomorphic to the conductor of the normalization of the original central fiber. Write

X0 = Y1 ∪ Y2, where Y1 ' P1 × P1 is the strict preimage of the original central fiber and

Y2 = Bl16F2 is a ruled surface blown up at 16 points on the bisection D.

We now calculate GrW2 H2(X0) and the lattice L in this case. We write H2(Y1) = 〈s1, f1〉

and H2(Y2) = 〈s2, f2, e1 . . . e16〉, where si, fi are sections and fibers and s2
2 = −2.

We have:

E = 2s1 + 2f1 − (2s2 + 4f2 −
∑

ei)

h = s1 + f1 + 2f2

We observe that α0 = s1 − f1 represents a root, and moreover that any class in h⊥ has even

intersection with α0. Thus 〈α0〉 ' A1 is actually a direct summand of L. α⊥0 is unimodular

since −α2
0 = h2 and in fact even since being in E⊥ implies that it contains an even number

of exceptional divisors, counting multiplicity. It is obvious by symmetry that α⊥0 ' D+
16, but

we explicitly can write:

R =

{∑
ai(−

1

2
f2 + ei)

∣∣∣∣∑ ai ≡ 2( mod 2)

}
.
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This is a D16 root lattice, with roots

α1 = −f2 + e1 + e2

αi = ei−1 − ei

and represents every class in 〈E , h, α0〉⊥ that can be written without using s1, f1 (i.e. those

that are written using even coefficients of s1). Additionally, though, we have the class of:

α17 = −s1 − f1 + s2 + e15 + e16

We check that these give a root basis for D+
16

In the case of elliptic surfaces this calculation does not work exactly as before. Instead

we start with a family of double covers of F4, and the natural model is X0 = Y0 ∪ Y1 with

Y0 ' F2, and Y2 ' Bl16F2. The calculation is entirely similar. The two models can be related

by flopping one exceptional curve from Y1 in the first model into Y0, so now we have Y1 as

the blowup of P2 at two points. If the points become infinitely close one of the roots (α0)

of L represents an (effective) Cartier divisor, the strict preimage of the first blowup, and

flopping the −1 curve in Y0 not meeting this back into Y1 results in the model specialized

to the elliptic case. In this case since α0 is Cartier, the map ψ factors through L/α0 = D+
16

and the simple roots of D+
16 are

α1 = −f2 + e1 + e2, αi = ei−1 − ei

with the affine root

α17 = s1 + 2f1 + s2 + f2 + e15 + e16.
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7.5 Type III

Similar statements hold for the type III case. We first describe the mixed hodge structure

on the central fiber. The content of this proposition is in Friedman-Scattone [FS86], though

the style of exposition more closely follows Laza [Laz08].

Let X0 be the type III combinatorial K3 with n components and dual complex Γ (a

triangulation of S2). Write L = GrW2 H2(X0).

Proposition 7.5.1. With the setup above

• L has rank 18 + n and is of type (1, 1).

• The mixed hodge structure on H2(X0) is an extension of Hodge structures

0→ W0H
2(X0)→ H2(X0)→ L→ 0 (*)

• W0H
2(X0) = H2(Γ)

• The possible extensions * are parameterized by maps φ : L→ C∗ where kerφ are exactly

the Cartier divisor classes in L.

Proof. The statement on the structure of H2 follows from the Mayer-Vietoris spectral se-

quence. Let Vi be the components of X0, Dij the double intersections and Tijk the triple

points. Then the E0 page is given by:

⊕
Ω0(Tijk) 0 0 0 0⊕
Ω0(Dij)

⊕
Ω1(Dij)

⊕
Ω2(Dij) 0 0⊕

Ω0(Vi)
⊕

Ω1(Vi)
⊕

Ω2(Vi)
⊕

Ω3(Vi)
⊕

Ω4(Vi)
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So the E1 page is: ⊕
H0(Tijk) 0 0 0 0⊕
H0(Dij) 0

⊕
H2(Dij) 0 0⊕

H0(Vi) 0
⊕

H2(Vi) 0
⊕

H4(Vi)

Since the Vi are rational surfaces, H2(Vi,Z) = Pic(Vi). The E2 page is then:

C 0 0 0 0

0 0 0 0 0

C 0 L⊗ C 0 Cn

Where L are the divisor classes l such that deg(l|Dij ⊂ Vi) = deg(l|Dij ⊂ Vj). The rank of

a rational surface is ρ = 10 −K2. If the surface has an anticanonical cycle {Di} of length

m we have ρ = 10 − 2m −
∑
D2
i . Now we sum over all components, using Euler’s formula

and the triple point formula. Each of the 3n− 6 edges appears twice in the sum, and by the

triple point formula contributes 2. Each of the 2n− 4 vertices appears 3 times, contributing

-2 each time, so dim
⊕

H2(Vi) = 10n + 2(3n − 6) − 3 · 2(2n − 4) = 4n + 12. The map⊕
H2(Vi)→

⊕
H2(Dij) is surjective, so the kernel has dimension 18 + n, as claimed.

The claim that the extensions are parameterized by maps φ : L → C∗ is a direct ap-

plication of Carlson theory [Car80], however the definition there is hard to use. We can

directly describe a map with the property that l ∈ L is a Cartier divisor if and only if

φ(L) = 1, which uniquely characterizes Carlson’s map. First choose a Cartier divisor l′ on

some neighborhood of
⋃
Dij such that deg(l′|Dij

) = deg(l|Dij
) (this makes sense even if l

is not Cartier). If l was Cartier then for any oriented cycle of rational curves C and map

c : C →
⋃
Dij c

∗(l) ∈ Pic0C = C∗ would be well defined. In particular there would be a

map γ : H1(Γ)→ C∗. H1(Γ) is generated by the oriented boundaries ∂Vi ⊂ Vi, with the one

relation
∑

i ∂Vi = 0. Hence the obstruction to l being Cartier is
∏

i l|∂Vi ⊗ l′|∂Vi = 1.
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We restate the d-semistability condition in terms of the extension map φ : L→ C∗.

Definition 7.5.2. Let X be a combinatorial K3 surface. For each component Vi define

ξi ∈ L as

ξi =
∑

Dij −
∑

Dji

Note the obvious relation
∑
ξi = 0. Indeed this is the only such relation For a general proof

see Laza [Laz08].

Recall X is d-semistable if and only if each of the classes ξi is Cartier.

Writing K = 〈ξi〉i and L = L/K the theorem shows that the mixed Hodge structure of

a smoothable surface is defined by a map φ : L → C∗. Indeed, we will show that the map

φ effectively determines the limit mixed Hodge structure of a smoothing. (Closely following

Friedman and Scattone)

First though, we breifly move on to discuss the relation between a combinatorial K3

surface and its normalization.

Definition 7.5.3. Let Vi be the components and Γ the dual complex of a combinatorial

K3 surface. Then a gluing of Vi (with Γ implicit) is a specific combinatorial K3 with those

components and dual complex.

Similarly, if X is a gluing of Vi and Γ and D some collection of double curves then a

regluing along D is a gluing of Vi, Γ isomorphic to X away from D.

Friedman ([Fri83]) discusses when a collection of surfaces Vi and dual complex may be

glued to form a d-semistable K3. His statement [Fri83][5.14] is unclear (to me) in that it’s

not clear how to handle double curves with self intersection 0 on one component. We give

the version there as well as one adapted to our needs.

First, notice that a choice of orientation on the dual complex of a surface induces iso-

morphisms Pic ∂Vi ' C∗ for each component and Hom(Dij, Dij) ' C∗ for each double curve.

We assume these.
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Lemma 7.5.4. Let Dij be a double curve in a combinatorial K3 surface X ′ with D2
ij =

a,D2
ji = −2−a. Let X be the combinatorial K3 surface obtained by replacing the isomorphism

Dij ' Dji with Dij = αDji with α ∈ Hom(Dji, Dji) = C∗. Then φX(ξj) = α2+aφX′(ξj) and

φX(ξi) = α−aφX′(ξi).

Proof. By symmetry we must only prove the statement for ξj. As in the proof of 7.5.1,

choose a Cartier divisor l′ in a neighborhood of the double locus of X ′ such that l′ ⊗ ξj|Vk

is numerically trivial for all components Vk. Then observing the proof of 7.5.1 one sees that

φX′(ξj) =
∏

k(l
′ ⊗ ξj)|Vk . If we replace X ′ by X we replace l′ by some l, which can be

taken to agree with l everywhere except on Dij, where l ⊗ l′−1 = αdeg ξj |Dij = α2+a. Then

l ⊗ ξj|∂Vk = l′ ⊗ ξj|∂Vk for k 6= i and l ⊗ ξj|∂Vk = α2+a(l′ ⊗ ξj|∂Vk).

Lemma 7.5.5. Let X be a K3 surface with no double curve having square 0 in either compo-

nent containing it. Let T be a spanning tree in the dual graph. Then there is a d-semistable

regluing of X along T .

Proof. For each edge Dij in T the possible isomorphisms Dij ' Dji are acted on by C∗.

The weights of this action on φ|〈ξi〉 are as given above 7.5.4. These weights are linearly

independent, so there is some gluing such that φ(ξi) = 1 for all except at most one ξ, say ξj.

But φ(ξj) = (
∏

i 6=j ξi)
−1, so the gluing is in fact d-semistable.

We can do a little better. (This lemma is unnatural, it’s simply the statement that will

be used later.)

Lemma 7.5.6. Let X be a K3 surface and Ui be some components such that OUi
(∂Ui)|∂Ui

=

OUi
.

Let Γgood be the subgraph of the dual graph with edges corresponding to the boundary of

the Ui and the double curves with nonzero square in both components containing them.

Call a component Nj negligible if it has a boundary component with square 0, and let N

be a set of double curves containing one with square 0 in each negligible component.
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Then for each tree T of Γgood containing all non-negligible components there is a d-

semistable regluing of X along T ∪N .

Proof. Using 7.5.4 first note that by regluing along N the ξj corresponding to negligible

components can be made Cartier without affecting the values of φ on the other ξi.

Similarly to before the regluings along edges in T give an action of (C∗)T on φ|〈ξi〉. The

weights are given in 7.5.4. These weights are not linearly independent if there is more than

one surface Ui, but (C∗)T is still easily seen to act transitively on Hom(〈ξj〉Vj /∈{Ui∪Nj},C∗);

in particular, one may reglue X along T to make ξj, Vj /∈ {Ui} Cartier. But the ξi are in the

span of Vj /∈ {Ui} and ∂Ui, and ∂Ui are assumed to be Cartier, so all the ξi are too.

Finally, this is a good place to state a modified form of a proposition of Friedman and

Scattone (we omit some of their conclusion, but extend to a lattice polarization. Their proof

goes through):

Proposition 7.5.7 (Friedman [FS86][5.5]). Let X0 be a type III d-semistable surface with

Cartier divisor classes d1, d2. Then there is a smoothing X/∆ with divisor classes d̄1.d̄2

specializing to d1, d2.

We move on to discussing the limiting mixed Hodge structure. For convenience we write

Wn = WnLH
2(X0), F n = F nLH2(X0), etc..

For a K3 surface, the structure of the monodromy transformation N and the correspond-

ing weight filtration can be made very explicit:

Proposition 7.5.8. • For type III degeneration the filtration W takes the form

W0 ⊂ W2 ⊂ W4

where dimW0 = 1 = dimW4/W2, and W0 is isotropic by self-duality.

70



• ([FS86] Lemma 1.1) Let γ be a generator of W0, and choose γ′ with γ · γ′ = 1. Put

δ = Nγ′. δ is well defined modulo W0 and we have

Nx = (x · γ)δ − (x · δ)γ

Proof. Write Hp,q
m = Wm ∩ F p ∩ F̄ q( mod Wm−1), where m = p + q. (These are simply

the bigraded pieces of the mixed Hodge structure on H2). Since W3 = kerN2 we have

W4/W3 6= 0. But GrW4 = H2,2
4 , and this is a quotient of a one dimensional space so dimW0 =

1 = dim GrW4 . Further, we have GrW3 = H1,2
3 ∪ H

2,1
3 . But dimF 2 =

∑
dimH2,i

2+i = 1, and

H1,2
3 = H2,1

3 , so dim GrW3 = dim GrW1 = 0.

The choice of γ′ was only well defined up to W2, but then the resulting δ is well defined

up to NW2 = W0.

For the claim on N , observe that if y ∈ W2 = γ⊥ we have Ny = aγ, where a = Ny · γ′ =

−y ·δ. Since (γ′ ·γ)δ−(γ′ ·δ)γ = 1 ·δ−0 ·γ the claimed result holds all of H2 = W2 +〈γ′〉.

Recall the Wang sequence:

0 = H1(X∞)→ H2(X )→ H2(X∞)
1−T−−→ H2(X∞)

(Note that topologically X retracts to a K3 fibration over S1). The Wang sequence is an

exact sequence of mixed Hodge structures, with H2(X∞) = LH2(X∞) being given the limit

Hodge structure. Our immediate goal is then to describe the map H2(X )→ LH2(X∞).

We start with the exact sequence for the pair (X ,X ):

H i(X ,X )→ H i(X )→ H i(X )→ H i+1(X ,X )→ H i+1(X )→ H i+1(X )→

and observe that since X0 is a retract of X , H i(X ,X ) = H i(X0) and H i(X ) = H i(X0). So
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our sequence is now:

H i(X0)→ H i(X0)→ H i(X )→ H i+1(X0)→ H i+1(X0)→ H i+1(X )→

But Alexander duality gives H i(X0) ' H6−i(X ,X ), which is again isomorphic to H6−i(X0).

So finally we have:

H6−i(X0)→ H i(X0)→ H i(X )→ H6−i−1(X0)→ H i+1(X0)→ H i+1(X )→

Observe that the image of the map H4(X0) → H2(X0) is 〈ξi〉 and H3(X0) = 0 so we can

replace H2(X ) in the Wang sequence to get:

0→
∑

ξi → 〈ξi〉 → H2(X0)
α−→ H2(X∞)

N−→ H2(X∞) (7.1)

Note that (1− T ) has been replaced with N . This is justified since ker(1− T ) = kerN .

But kerN = δ⊥ ∩W2, so we have shown the following claim:

Proposition 7.5.9. Consider L ⊂ GrW2 H2(X0). The sequence above gives an isomorphism

L→ δ⊥( mod W0).

Finally,

Proposition 7.5.10. ([FS86, 4.16]) The limit mixed Hodge structure LH2 is determined

up to a nilpotent orbit by the mixed Hodge structure on H2(X0) and the collapsing map

α : H2(X0)→ LH2.

Proof. The weight filtration of LH2 is determined by a choice of W0. But II2,18 has a unique

orbit of primitive isotropic vector so one may fix a weight filtration at the outset. The Hodge

filtration is determined by a choice of one dimensional subspace F 2 = Cv ⊂ W2⊗C. The map

α in equation 7.1 is a map of mixed Hodge structures, so α(F 1H2(X0)) is a subspace of F 1.
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In particular v ∈ α(F 1H2(X0))⊥. But codimα(H2(X0) = 2 and codimF 1(H2(X0)) = 1 and

α(F 1H2(X0)) 6⊂ F 1 so there is a 3 dimensional space A of candidates for v. The quadratic

form on A is nondegenerate so the possible choices for v with v2 = 0 form a conic in P(A)

(There is the additional linear condition v /∈ W2). The possible choices are seen to form a

conic in A2. The group expN acts nontrivially therefore transitively.

Remark 7.5.11. The data of the map α should be unnecessary so long as the central fiber

is known. Although there are a priori several ways to embed L̄ into II1,17, the topology of a

smoothing is determined by the central fiber ([PP81][2]).
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Chapter 8

Compactifications of D/Γ

In this chapter we describe the Baily-Borel and toroidal compactifications of Fell = D/Γ.

While both constructions exist in great generality (quotients of Hermitian symmetric domains

by arithmetic groups) we will specialize to the case of interest and only mention other cases

in passing.

The Baily-Borel compactification FBB

ell is canonical and in some sense minimal. Unfortu-

nately this very minimality causes FBB

ell to be quite singular, and to my knowledge it does

not carry a good modular interpretation. On the other hand the toroidal compactifications

FΣ

ell require the extra data of a fan Σ, but have very mild singularities. It is reasonable to

believe that for some Σ a strong modular interpretation exists.

The fundamental reference for this material is [AMRT10]. In the introduction to [Loo03]

(where Looijenga defines certain compactifications intermediate between the Baily-Borel and

toroidal) there is a very readable introduction, and Kondo ([Kon93]) gives a very concrete

description of parts of the theory. We draw inspiration from both sources.

These techniques are, in their easiest formulation, essentially analytic. Thus in this

chapter we will always work in the complex analytic category unless otherwise noted.
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As will quickly become apparent any toroidal compactification FΣ

ell dominates FBB

ell , and

so we begin by discussing the Baily-Borel compactification.

8.1 The Baily-Borel Construction

The general strategy of the Baily Borel construction is to enlarge the domain D by adjoining

some collection of “rational boundary components”, which are also Hermitian symmetric

domains. The resulting space D∗ is given a topology (the so-called Satake topology, which

restricts to the analytic topology on the interior and all boundary components) and a sheaf of

“analytic” functions, these simply being those continuous functions that restrict to holomor-

phic functions on each component. If this was done correctly then the quotient FBB

ell = D∗/Γ

is a complex analytic variety. Moreover, there is a natural Γ equivariant line bundle LBB on

D∗ such that FBB

ell = ProjH0(Ln)Γ.

One starts by embedding D into its compact dual D̂ by the Borel embedding. In our

case this is already done

D = one component of {w ∈ P(II2,18 ⊗ C)|w2 = 0, w · w̄ > 0} ⊂ {w|w2 = 0} = D̂

We remark for further reference that D̂ is the Grassmanian of positive definite oriented

planes in R20. Denote the closure of D in D̂ as D. Note that D \ D is exactly the set of

complex lines whose real and imaginary parts span a isotropic subspace of II2,18 ⊗ R. The

boundary components of D are simply the locally closed analytic subsets of D \ D, and the

rational boundary components are the boundary components defined over Q. In general the

boundary components correspond to the sets stabilized by parabolic subgroups of Γ(R), and

the rational boundary components to those stabilized by parabolic subgroups of Γ. In our

case then we see that rational boundary components are contained in the C spans of rational
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isotropic subspaces of II2,18 ⊗R. An isotropic vector corresponds to a point and a isotropic

plane corresponds to a copy of the upper half plane. Write D∗ as the union of D and the

rational boundary components.

Let Γ′ ⊂ Γ be a neat1 finite index subgroup (such things always exist). D∗/Γ′ is then

a quasi-projective variety, the homogeneous coordinate ring of which is generated by the

so-called “automorphic” forms for Γ, which are the sections of a line bundle LBB. LBB is

defined to be the quotient of the tautological line on D∗ (equipped with the appropriate

topology near the cusps) by the action of Γ′.

The images of the rational boundary components in FBB

ell are called cusps. They are in

bijection with Γ orbits of isotropic subspaces in II2,18. Specifically:

Proposition 8.1.1. FBB

ell has 3 cusps:

• A one dimensional cusp corresponding to the orbit of rational isotropic planes L with

L⊥/L ' E8 ⊕ E8

• A one dimensional cusp corresponding to the orbit of rational isotropic planes L with

L⊥/L ' D+
16

• A zero dimensional cusp corresponding to the unique orbit of a rational isotropic vector.

Equivalently, Γ has three conjugacy classes of parabolic subgroups, corresponding to the

stabilizers of the above subspaces.

Proof. The claims on the one dimensional cusps follow from Vinberg theory (5.2.19).

If v2 = 0 then there exists u with u · v = 1. 〈v, u〉 ' H is unimodular so II2,18 =

〈v, u〉 ⊕ II1,17. Thus any isotropic vector is conjugate to a standard one, proving the last

claim.

1A subgroup is neat if the eigenvalues of the elements generate a torsion free subgroup of C∗.
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We will refer to the one dimensional cusps/boundary components as “type II” and the

zero dimensional ones as “type III”, respectively.

8.2 The Toroidal Construction

The idea of the toroidal construction is to model a analytic neighborhood of each cusp as a

quotient of a subset of a torus. One can thus attempt to build a compactification modeled

by a (usually not of finite type) toric variety near each cusp. The canonical source for this

material is [AMRT10].

Let N(F ) be the parabolic subgroup stabilizing a rational boundary component F , let

W (F ) be the unipotent radical of N(F ) and let U(F ) = Z(W (F )) be its center, which

can be identified with a (real) vector space. We choose coordinates (z, w, τ) embedding

D ↪→ (U(F )⊗C)×Cm×F . U(F ) acts by real translation in the z coordinate and the fibers

of the projection to (w, τ) are translations of U(F )× iσF where σF ⊂ U(F ) is some self-dual

cone. Such a parameterization is called a Siegel domain2. In the special case where m = 0

U(F ) acts by translation and it is called a tube domain.

The quotient D/U(F ) is a bounded open subset of the toric variety TV (U(F )∩ Γ). The

one parameter subgroups in TV (U(F ) ∩ Γ) which limit to the cusp in FBB

ell are given by

the cone σF ∈ U(F ). By symmetry N(F ) acts on σF and so a toric compactification of

D/U(F ) near the cusp is given by a complete fan ΣF subdividing σF . We need to impose

some obvious conditions to make the corresponding partial compactification of Fell exist:

• N(F ) ∩ Γ acts on ΣF .

• The stabilizer Stab(σ ∈ ΣF ) of each cone σ ∈ ΣF is finite.

• There are a finite number of N(F ) orbits in ΣF .

2The precise definition is more specific, but unimportant to our case.
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• The cones in ΣF are rational polyhedral cones.

Fans of this type are called admissible. In general there is a compatibility condition among

the fans, where ΣF is determined by ΣF ′ for any F ′ ⊂ F , but this does not come into play

in our case, as there will turn out to be only one choice of fan for any one dimensional cusp.

In this case FΣ

ell is determined by the fan associated to the zero dimensional cusp, which we

simply call Σ.

The local compactifications then glue to a global compactification Fell
Σ which is a com-

plete projective variety with at worst toric quotient singularities.

8.3 Explicit description of FΣ
ell

This section describes the construction of the Siegel domains near one dimensional cusps

of FBB

ell more explicitly. The construction around one dimensional cusps is independent of

Σ, and the corresponding boundary strata of FΣ

ell are described. In the type III case a

description is given in terms of Σ. This material is largely adapted from Kondo [Kon93].

8.3.1 Type II Cusps

Let F be a type II boundary component associated with a conjugacy class of isotropic plane

in L ∈ II2,18. LK = F⊥/F is a rank 16 even unimodular negative definite lattice with

quadratic form given by some matrix K. Since LK is unimodular it is a direct summand of

II2,18. Concretely one may write II2,18 = LK⊕H2. WLOG assume that the first coordinates

of the hyperbolic summands generate F . Explicity, then, we can choose a basis such that

the quadratic form of II2,18 is given by the matrix
(

0 0 I
0 K 0
I 0 0

)
. Note that with respect to this

basis a choice of component of V (w2 = 0) amounts to choosing an orientation of the real

and imaginary parts of the last 2 coordinates.
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Using this coordinate system we write down the matrix forms for the parabolic subgroup

N(F ), its unipotent radical W (F ), and the center of the unipotent radical U(F ) = Z(W (F )).

N(F ) =




U V W

0 X Y

0 0 Z




such that

U tZ = I

X tKX = K

X tKY + V tZ = 0

ZtW +W tZ + Y tKY = 0

detU > 0

since any isomorphism stabilizing F must stabilize the flag F ⊂ F⊥ ⊂ II1,17. The last con-

dition restricts to the subgroup preserving D−. The remaining conditions are the definition

of orthogonality. The block diagonal Levi subgroup is simply O(LK)× SL(2,Z). Then:

W (F ) =




I V W

0 I Y

0 0 I


∣∣∣∣∣∣∣∣∣∣
KY + V t = W +W t + Y tKY = 0


and:

U(F ) =




I 0 W

0 I 0

0 0 I


∣∣∣∣∣∣∣∣∣∣
W +W t = 0
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We choose affine coordinates (t1, w, t19) for D (with w ∈ LK ⊗C) by homogenizing with

respect to the coordinate (t20) and noting that t2 is uniquely determined. Write z = t1, τ =

t19, and notice τ ∈ H+. These coordinates express D as a Siegel domain. The open condition

can be written 2=z=τ +=wtK=w > 0. The cone σF ∈ R is then simply R+, and cannot be

further subdivided. We identify U(F ) with R using a 7→ 1 0 Wa
0 1 0
0 0 1

, where Wa = 0 a
−a 0 then we

see that a · (z, w, τ) = (z + a, w, τ).

We proceed to discuss the quotient D/N(F ) in a neighborhood of F . First consider

D/(U(F ) ∩ Γ). This is a trivial C∗ bundle over D/U(F ):

D/(U(F ) ∩ Γ) = ∆∗ × LK ⊗ C×H+

We fill in the puncture (i.e. produce the partial compactification corresponding to the to

cone σF ) to get:

(D/(U(F ))σF ∩ Γ) = ∆∗ × LK ⊗ C×H+

Consider now the action of W (F )∩Γ. An element of W (F )/U(F ) is entirely determined

by Y (observe the matrix above) and acts on (D/(U(F ))σF by translation in the second

coordinate:w 7→ w + Y [ τ1 ]. The quotient is then a trivial ∆ fibration over E ⊗Z LK × H+

where E is the elliptic curve C/〈1, τ〉. One thinks of this ∆×E ⊗Z LK where E → H+ is the

usual elliptic curve with universal level structure.

Finally we discuss the action of the block diagonal Levi subgroup. If we write Z = [ a bc d ] ∈

SL(2,Z) the action of (X,Z) is given by

(z, w, τ) 7→(
dz + c(zτ + wTKw)

cτ + d
,X

w

cτ + d
, (aτ + b)/(cτ + d))

= (z +
cwTKw

cτ + d
,X

w

cτ + d
, (aτ + b)/(cτ + d))

.
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That is to say (Z,X) acts on E ⊗Z LK as Z ⊗X. (We do not calculate the effect on the

first coordinate.)

To summarize:

Theorem 8.3.1. Let C be a 1 dimensional cusp of FBB

ell and π : FΣ

ell → F
BB

ell be any toroidal

compactification.

• C is isomorphic to the j line H+/PSL(2,Z)

• π−1(C) = (E ⊗Z L)/O(L)× PSL(2,Z)

Where L = E8 ⊕ E8 or L = D+
16 is the lattice associated with the cusp C.

8.3.2 Type III Cusps

The situation over type III points is in some ways easier, insofar as we work with a tube

domain (type I) rather than a type III Siegel domain, and harder, insofar as it involves

the choice of fan in a nontrivial way. We first give explicit coordinates exhibiting D as

a tube domain, again closely following Kondo (in principle, some of the expressions will

look slightly different!). Write II2,18 = II1,17 ⊕H, where for similarity to the previous case

we consider II1,17 to have quadratic form induced by the matrix K, and we will let e be

our chosen isotropic vector. Using these coordinates, we can write D as one component

of {(w, z19, z20)|wtKw + 2z19z20 = 0,=wtK=w + =z19=z20 > 0} Note that z20 6= 03, so

we homogenize with respect to z20. Note that z19 is now determined by z19 = −wtKw/2.

The 2 components differ according to the sign of =z19. Choose =z19 > 0. We can write

D = {w ∈ LK ⊗C|=wtK=w > 0} = R18 + iC, where C is the forward light cone of LK ⊗R.

3Indeed, if not then the conditions reduce to <wtK<w−=wtK=w = 2<wtK=w = 0 and =w > 0, which
is clearly impossible by the signature of K
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Now, we have:

N(F ) =


A B

C D




with:

AtKA = K

bt2KA+ d22c1 = 0

b1 = c2 = 0

d21 = 0

bt2Kb
2 + 2d22d12 = 0

d11d22 = 1

where dij are matrix entries of D, and bi, c
t
i are the columns of B,Ct, respectively.

W (F ) = U(F ) =




I 0 b2

c1 1 d12

0 0 1


∣∣∣∣∣∣∣∣∣∣
Kb2 + c1 = 0, bt1Kb1 + 2d12 = 0


Observe that the action of N(F ) on D ⊂ LK ⊗ C is given by

( A B
C D ) · w =

1

d22

(Aw + b1).

D/(U(F )∩Γ) is a bounded neighborhood of the origin in (C∗)18 ' LK⊗ZC∗, and we partially

compactify this latter torus using the fan Σ, prior to dividing by (N(F ) ∩ Γ)/(U(F ) ∩ Γ).

That is, we construct a toric variety (C∗)18 ↪→ Tσ for each cone σ in the fan, and glue them

as indicated.
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Part II

A Modular Compactification
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Chapter 9

KSBA Stable Limits

Now that the background material has been introduced, it is reasonable to take some time

to remember the goals of this work. Recall (4.3) that there is a compact moduli space of

stable pairs (X, εB), where (X,L) is a K3 surface with an ample line bundle L of degree 2d

and B ∈ |L|. By choosing B =
∑
Ci, where Ci are all the rational curves in |L|, we can

embed F2d, the moduli space of 2d polarized K3’s, into the space of pairs, and by taking the

closure in the space of stable pairs produce a compact moduli space of polarized K3 surfaces,

which we call FRC
2d (for the rational curves composing the divisor).

The description of FRC
2d itself is a problem we won’t address here. However one notes

that Fell embeds as a divisor in each F2d by letting L = s + (d + 1)f . Thus as a first step

one may describe the closure of Fell ⊂ F2d in FRC
2d .

By the work of Bryant and Lueng [BL00] we know that the rational curves in |L| are

exactly the curves s+
∑d+1

1 fi, where fi are singular fibers. Hence the pairs we are considering

can be written more explicitly as (X, εB), B = N2d(s + d+1
24

∑24
i=1 fi), where N2d is the total

number of such curves. For large d we can then change notation and consider pairs (X,B)

with

B = ε
24∑
i=1

fi + δs, ε >> δ.
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This is justified by the fact that as long as d is reasonably large the corresponding moduli

spaces are identical, a corollary to the main theorem which we record below:

Corollary 9.0.2. Let X → ∆ be a (1 parameter) family with generic point a smooth K3.

For d1, d2 >> 0 write the corresponding (uniquely determined) divisors B1, B2. Then (X , B1)

is stable if and only if (X , B2) is.

Hence we define our main object of study:

Definition 9.0.3. The compact moduli space of elliptic K3 surfaces obtained by embedding

Fell → F2d by L = s + (d + 1)f is independent of d for large d, as is the corresponding

universal family. We call this space Fell.

Goal 9.0.4. Explicitly describe F ell and the corresponding universal family.

As a first step in this chapter we describe the possible stable limits parameterized by Fell.

Specifically, given a one parameter family X/∆◦ with generic fiber an elliptic K3 surface we

will first explicitly show how to complete X (perhaps after base change) to a stable family.

By the general theory the resulting family X is unique up to base change. We then elaborate

on this description. We discuss the singularities in the stable model of a degeneration, in the

process deriving a formula for the number of triple points in the central fiber of a Kulikov

model. Finally we elaborate on the types of components that may occur in a stable limit.

9.1 Description of Limit Pairs

The construction is straightforward and relies on reducing the 2-dimensional problem to a

manipulation of data supported on curves.

Recall from the chapter on elliptic surfaces 6.1.5 that an elliptic surface over a curve

C is determined by the Weierstrass data L ∈ Pic(C), A ∈ H0(4L), B ∈ H0(6L). We will
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additionally keep track of the discriminant ∆. As usual, we abuse notation where convenient

by using the same symbols to refer to the corresponding divisors.

The next task would be to describe the stability condition 4.3.3 in terms of the Weier-

strass data. Fortunately, we already did the necessary work to translate the condition on

singularities (6.1.8), and the numerical condition is immediate. The result is:

Lemma 9.1.1. Let π : X → P1 be a normal Weierstrass fibration with corresponding Weier-

strass data L,A,B. Assume X is of K3 or rational type, i.e. L = O(2) or L = O(1). Denote

by fi the singular fibers and choose some other special fibers F =
∑

i Fi.

The pair (X,F + δs+ ε
∑

fi /∈F fi) is stable if and only if

• The divisor π∗F is reduced and each point in π∗F is contained in at most one of A,B.

• Either degA|p < 4 or degB|p < 6 at every point p ∈ P1

• If L = O(1) then there is at least one special fiber (F is nonempty).

Similarly if π : X → P1 is a non-normal Weierstrass fibration with L = O(n) the pair

(X,B) = (X,F + δs+ ε
∑

fi /∈F fi) (for some fibers fi) is stable if and only if the sums of the

coefficients of the fibers in the divisor exceeds i− 2.

Proof. The first two items give the condition to have log canonical singularities. This state-

ment is simply 6.1.8. Note that if X has log canonical singularities then it must have at

least 2 singular fibers, since otherwise A and B , if nonzero, could only vanish at the image

of the singular fiber.

The last condition is the numerical condition. Recall KX = 0 if L = O(2), and KX = −f

if L = O(1). In either case the last condition guarantees that the class KX + F + δs +

ε
∑

fi /∈F fi) is ample.

In the non-normal case the condition on singularities is simply that no divisor appears

in B with coefficient > 1. The normalization of X is the ruled surface Fi and the conductor
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D is a bisection. Since any fiber f has f · B = 2 + δ and f ·KX = 0 we only need to check

that s ·B +KX > 0. But s ·Kx = i− 2, ε >> δ, and s ·D = 0 so the result follows.

We will now degenerate the Weierstrass data to produce stable limits.

Remark 9.1.2. Morally, we’re computing a “stable” map of Deligne-Mumford stacks to the

moduli stack of elliptic curves. This is probably a slight generalization of Abramovich and

Vistoli’s notion of twisted stable maps[AV00], since we allow small weights.

We first informally describe the construction of limits, with a formal statement and proof

after. Given a family X/∆◦ we have an associated family of Weierstrass data and of j maps

(the former notion we will avoid giving a formal definition of, for now). Recall that there is

a complete moduli space M̄0,24ε(P1, 24) of stable pointed maps (j : C → P1, pi), where C is

normal crossing, pa(C) = 0 and deg j = 24, with pi ∈ C◦ being 24 ordered marked points

taken with weight ε. Now a general elliptic K3 determines, by its j map, a point in M0,24

satisfying:

1. For each component of j−1(0) (resp. j−1(1)) there is a deleted neighborhood basis (in

the analytic topology) where j has local degree 3 (resp. 2).

2. pi ∈ j−1(∞) for all i

These properties are clearly maintained in the closure of the image of Fell
◦ which will be

called the Kontsevich compactification MK 1. The closures of the divisors A,B,∆ on C

give divisors on the limit curve C0. We proceed to modify the map C0 → P1
j to produce

Weierstrass data for the limit stable pair.

Definition 9.1.3. If C is a curve with at most nodal singularities and pa(C) = 0, a branch

B of C is a union of components such that both B and Bc are connected.

1The definition of Looijenga-Heckmann differs in that they do not consider the discriminant to have small
weight.
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To produce the stable limit, contract all branches B of C0 with total degree degB < 12

to get a map j : C̃0 → P1 and let Ã, B̃, ∆̃ be the images of the corresponding divisors in C0.

The result is Weierstrass data giving a stable model of the degeneration.

Formally:

Theorem 9.1.4. Stable limit pairs (X,B) are of one of the following forms.

• X is an elliptic K3 (with ADE singularities), B = ε
∑
fi + δs.

• X is the double cover of F4, branched over the divisor s+s1 +2s2, where the si intersect

transversely. There are four cuspidal fibers ci, and B = ε(2
∑
ci+

∑16
j=1 fj)+δs, where

fj are some additional fibers.

• X is a double cover of of a ruled chain F ' F2 ∪ F0 . . .F0 ∪ F2 branched over s + T ,

where T |F2 ' 3s + 6f is reduced and T |F0 = s1 + 2s2, si ' s. In this case B =

ε(
∑
fi +

∑
gj) + δs, where the fi are the singular fibers of the components at the end

of the chain, and the gi are fibers in the middle components, with the requirement that

each component contains at least one of the gi.

• Similar to the above, but T |F2 = s1 + 2s2 is non-reduced at one or both ends of the

chain and s1, s2 intersect transversely. The marked fibers are then twice each cuspidal

fiber and some additional fibers, for a total of 24 in the entire surface.

Recall that we do not yet make any claim as to whether an arbitrary pair of one of these

forms (other than actual K3 surfaces) is in fact smoothable.

Proof. The figure 9.1 gives a schematic representation of the construction.

Start with Weierstrass data corresponding to a family of elliptic K3 surfaces with ADE

singularities on Y = P1
∆o , so A ∈ H0(O(8)), B ∈ H0(O(12)). By base changing (marked

“base change” in the figure) we can assume A = A1 + A2 · · · + A8, B = B1 + B2 · · · + B12,

∆ = ∆1 + · · ·+ ∆24. We base change again and blow up P1
∆ in the central fiber Y0 such that:
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• The new central fiber Y ′0 is reduced.

• The closures A,B,∆ of the divisors A,B,∆ are in Y ′◦0 , the smooth locus of Y ′0 .

• For any pair D1, D2 where Di ∈ Aj, Bj,∆j D1 · Y0 = D2 · Y0 only if D1 = D2.

Note that if the original family was semistable, i.e. the divisors A and B were disjoint, this

would resolve the indeterminacy of the j map.

The dual graph of the central fiber Y ′0 is now a tree, where the leaves are exceptional

curves of the first type. Moreover for any p ∈ Y ′0 we have either vp(A) < 4 or vp(B) < 6,

since this condition holds generically. We now proceed to iteratively contract any leaf C

where ĀC < 4 or B̄C < 6. This is marked “contract” in the figure. Call this new smooth

family Ȳ .

By construction, Ȳ0 is a tree where each leaf C has AC ≥ 4 and BC ≥ 6, so it in fact

takes the form of a chain of smooth rational curves. If Y0 has more than one component, A

and B have degrees 4 and 6, respectively, on both end components, and 0 otherwise. Define

L to be the unique line bundle restricting to O(2) on the generic fiber that has degree 1

on the end components, and 0 otherwise. If there is only one component, A and B have

degrees 8 and 12, respectively, and we define L = OY(2). In either case, L, Ā, and B̄ give

Weierstrass data on Y , and so an elliptic surface π : X → Ȳ . Moreover ∆̄ is contained in

the discriminant locus of π. We write B = επ∗∆ + δs. Note that (A + B + ∆)|Y0 still has

smooth support, since we only contracted leaves.

We note that for any point p ∈ Y0 either p has multiplicity less than 4 in A|Y0 or has

multiplicity less than 6 in B|Y0 , since if p failed both conditions it would have been produced

by contracting a leaf C that already had AC ≥ 4 and BC ≥ 6. Noting that the divisors A

and B contain no components of Y0, we see that the surface X0 has at worst log terminal

singularities on each component (see lemma 9.1.1).
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It remains to show that the pair (X0, B) is slc along the double locus in each component.

Again, we note by construction that the double locus does not contain any of the marked

fibers fi, and that it has at worst An singularities (since the corresponding points on Y0 are

disjoint from A+B). Moreover these An singularities can be resolved by blowing up in such

a way as pullback of the double locus on that component is a cycle of -2 curves, hence the

pair is log canonical.

Finally, we apply MMP to produce a stable model from the slc model we now have.

The criterion for stability of a component (see lemma 9.1.1) is that it contains at least one

marked fiber. This is automatic for leaves, but may not be the case for interior components,

in which case MMP corresponds to a series of divisorial contractions (i.e. blowdowns).

The remaining claim of the theorem is that for the non-normal components of X0, each

cuspidal fiber occurs at least twice in the list of marked fibers. This follows from direct

calculation. Indeed, working in a formal neighborhood in X of a cuspidal fiber of X0 we

have the trisection of Y being given by a polynomial x3− sx2 + tn(a3x
3 +a2x

2 +a1x
1 +a0) ∈

C[[s, t]][x], where t is the parameter of the degeneration and s is a parameter on the base

curve. We can change variables so that one of a0, a1, a2 6= 0. Recalling that the discriminant

of a general cubic is given by

∆(ax3 + bx2 + cx+ d) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

we see that on the generic fiber t 6= 0 ∆ has degree at least 2 in s.

9.2 Singularities of Stable Models

From the construction we can now rapidly describe the singularities of a stable model. Indeed,

let Y be the base curve of the fibration. The central fiber is produced by contracting some
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set of -2 curves in a chain of smooth rational curves on a smooth model, so Y has type A

singularities. Write Y0 = f0 ∪ f1 ∪ · · · ∪ fn, where intersections are given by:

fi−1fi =
1

ci

f 2
i = − 1

ci
− 1

ci + 1

fifj = 0 if |i− j| > 1

Define di = ∆̃fi, where ∆̃ is the closure of the discriminant on the generic fiber. We wish to

find ai such that ∆ = ∆̃ +
∑n−1

i=1 aifi. Since ∆ ∈ H0(L12):

∆fi =


12 if i = 0, n

0 otherwise

which gives the relations:

di =
ai − ai−1

ci
− ai+1 − ai

ci+1

if 0 < i < n

12− d0 =
a1 − a0

c1

if i = 0

12− dn =
an−1 − an

cn
if i = 0

We see then that the values of ci, di give affine conditions uniquely determining ai, and that

everything is determined by a0 and the ci. One can think of this concretely by resolving the

singularities of Y to produce a semistable family with central fiber Y ′0 = f ′0 ∪ · · · ∪ f ′N , and

observing that (for this family) the dn are determined by the change of slope of the function

(1 . . . N) → N|i 7→ ai at the point n, with the initial and final slopes being 12 − d0 and

dN − 12, respectively. The ci are the lengths of sections of constant slope.
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The singularities in codimension 2 of the stable model are then given by type Aci−1 over

the double fibers and type Aai−1 along the double locus of each non-normal component.

We now can build on this to give a description of the number of triple points associated

to an arbitrary KSBA stable degeneration based on the singularities of the threefold.

Lemma 9.2.1. Let X is a degeneration with singularities of type Aci−1 along the fibers in the

double locus of the central fiber, and of type Aai−1 along the double locus of each non-normal

component of X0, the number of triple points of the degeneration is given by
∑
ci(ai−1 + ai),

where we formally consider a normal component of X0 to have ai = 0.

Proof. The degeneration is locally toric, where at a triple point of X0 the degeneration can

be given using Mumford’s construction where the slopes of the piecewise affine function the

components are (0, 0), (ci, 0), (0, ai−1), (ci, ai). A toric resolution of this degeneration then

corresponds to a triangulation of the lattice polygon defined by these slopes, with each

triangle corresponding to a triple point. The number of triangles obtained is twice the area,

so the result follows.

For further use we introduce coordinates to write the number of triple points as a

quadratic form in the algebraically defined combinatorics of the degeneration.

Lemma 9.2.2. Let X be a maximal degeneration with X0 having type E0 ⊕ A18
0 ⊕ E0. Let

the singularities along the fibers in the double locus be of types Aai−1, where i = −9 . . . 9

(this numbering makes the statement simpler). Then we have
∑
iai = 0 and the number of

triple points is given by the quadratic form 〈
∑
aiei,

∑
aiei〉 induced by the bilinear form with

〈ei, ej〉 = −min(i, j), restricted to the sublattice 0 =
∑
iai.

Proof. Still using notation from the previous section (excepting the different index conven-

tion) we have d−10 = d9 = 3, since a rational elliptic surface with an A8 singularity has 3

other singular fibers, and c−10 = c9 = 0, since type E surfaces have surjective j map. We
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see that cj =
∑

i≤j −iai (hence the condition 0 =
∑
iai). The number of triple points is∑

(ci−1+ci)ai, and upon expanding we observe that the monomial aiaj occurs with coefficient

-2 min(i, j) if i 6= j, and −i = −j otherwise.

The numerically admissible choices for ai form a cone, which we can write explicitly:

Proposition 9.2.3. The cone of ai with
∑
iai = 0 and ai, ci ≥ 0 for the corresponding ci is

19 sided, with walls2

β1 = 8e−9 − 9e−8, αi = ei−1 − 2ei + ei+1, β2 = −9e8 + 8e9

The intersection form of these walls is given by an A19 type diagram, but with β2
i = −72 and

β1α−8 = β2α8 = 9

Proof. Direct calculation. Note that the condition ci ≥ 0 is already implied by ai ≥ 0, and

that {(ai)i|
∑
iai = 0}⊥ = 〈e9〉, so simply write down the primitive vectors xêi + ye9 ∈ e⊥9

pairing positively with some interior element of the cone.

We state similar results for the other types of maximal degeneration:

Proposition 9.2.4. As above, let X have X0 of type D0⊕A16
0 ⊕D0. We have c−9−

∑
iai = c8

and the additional parity conditions 2 | c−9, 2 | c8. The number of triple points is given by

the quadratic form 〈c−9f−9 +
∑
aiei + c8f8, c−9f−9 +

∑
aiei + c8f8〉 induced by the bilinear

form:

〈ei, ej〉 = −min(i, j)

〈f1, ej〉 = 1

〈f1, f1〉 = 0

2 Where w being a “wall” means that w · x ≥ 0 defines a facet of the cone.
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(f2 is isotropic).

The cone of (ai) satisfying the above conditions and with ai ≥ 0 is 19 sided with walls:

γ1 = −8f1 + e−8,δ1 = 2f1 − 2e−8 + 2e−7, αi = ei−1 − 2ei + ei+1,

δ2 = 2e7 − 2e8 − 2f2, γ2 = e8 + 8f2

The intersection form is again given by an A19 diagram, with

γ2
i = −8, δ2

i = −4, γiδi = 2, δ1α−7 = δ2α7 = 2.

Proof. We now have d−9 = d8 = 4, so cj = d−9 +
∑

i≤j −iai. The relation on the variables is

c8 = c−9 +
∑
−iai, and reading the coefficients of

∑
(ci−1 + ci)ai gives the claimed quadratic

form. The claims on the cone again follow by writing down the dual vectors for each of ei

and fi, and observing the intersection form.

Similarly for the remaining case (proved identically):

Proposition 9.2.5. The cone for type E0 ⊕ A17
0 ⊕D0 has walls β1, α−8 . . . α7, δ2, γ2, with

notation as above.

These cones are clear candidates for the monodromy cones in the fan for a toroidal

description of F ell. We provisionally call them M cones.

9.3 Components of Stable Pairs

More specifically, the possible components of a degenerate K3 are then

• (In the middle of a chain) A non-normal surface whose normalization is isomorphic to

P1 × P1, with double locus two (0, 1) curves, and the ruling being given by the (1, 0)

curves. We call these An components.
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• (At the end of a chain) A non-normal surface whose normalization is isomorphic to F1

with the double locus being a bisection. In this case the polarizing divisor contains

each fiber tangent to the double locus twice, as well as n “extra” fibers. We call these

Dn components.

• (At the end of a chain) A Weierstrass fibration corresponding to a rational elliptic

surface. If there are n+ 3 singular fibers away from the attaching fibers we call this a

type En component. There are two distinct families (see below) which we call E1 and

E ′1

• (At the end of a chain with 2 components) A Weierstrass fibration corresponding to a

rational elliptic surface with nonsingular attaching fiber. We call this an Ẽ8 component.

• The surface is irreducible, with exactly one non-normal component. We call this type

D̃16.

As notation, if a surface is a chain of surfaces X = X1 ∪X2 . . . , where each component Xi

is named after a lattice Li, we will associate the surface to the lattice L1⊕L2 . . . , where we

will routinely abuse notation such that the order of the sum is meaningful, corresponding to

the order of the in the chain.

Definition 9.3.1. We refer to any chain of components as above with 24 marked fibers as

a stable elliptic K3.

For convenience, we explicitly describe the possible components of a type III degeneration

as double covers of ruled surfaces.

An A double cover of F0 = P1 × P1, with trisection being T = s+ 2s′, for s, s′ sections.

Dn A double cover of F2, with trisection T = s+ 2s′.
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En A double cover of F2, with trisection having intersecting the marked fiber twice at a

point, where there is a A8−n singularity oriented transversely to the marked fiber.

By blowing up at the An singularity of an En surface, and blowing down the resulting

−1 curve one can arrive at an equivalent model that is easier to deal with. We record the

resulting constructions below.

E8 A double cover of F2 with trisection simply tangent to the marked fiber.

E7, E6 Start with P2 and a quartic f4. Blow up at a smooth point on the quartic that is

not a flex, and blow up again at the intersection of the exceptional divisor and strict

pre-image of f4. Blowing down the new exceptional curve results in a ruled surface of

type F2 with trisection the strict transform of f4 and marked fiber the strict transform

of the exceptional divisor of the second blowup. This is Weierstrass data for a type E7

component except when the initial point lies on a bitangent, in which case it is an E6

component.

E5, E4 Similarly, start with F0 = P1×P1 and choose a 3, 2 curve f3,2. Blowing up at a point

of tangency to a (1, 0) curve3 further blow up twice along the intersections of the strict

pre-image of f3,2 and the exceptional divisors, and then blow down twice to arrive at

F2 with a trisection. The result is Weierstrass data for a component of type E5, unless

the (0, 1) curve through the initial point was tangent to f3,2, in which case we obtain

an E4 surface.

E3, E2, E1, E
′
1, E0 Similarly, start with P2 and an irreducible (not necessarily nonsingular)

cubic f3 with one flex point p0 distinguished. Blow up at a point p1 not on the line

tangent to p0 and not a double point of f3 and write the pullback of f3 as f ′3. Further

blow up three times along the strict preimage of f3 at the chosen flex point, and blow

3There are generically 8 choices for the location of the first blowup. Indeed, by adjunction pa(f3,2) = 2,
and so the 3:1 projection to a (0, 1) curve is ramified at 8 points.
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down 3 times. The result is an F2 with trisection given by the strict preimage of f ′3.

The Weierstrass data for all type En, n ≤ 3 surfaces arises this way, as follows:

E3 The line p0p1 is transverse to f3.

E2 p0p1 is tangent to f3 at a smooth point and p1 /∈ f3.

E1 p0p1 is tangent to f3 at p1.

E ′1 p0p1 meets f3 at a node and p1 /∈ f3.

E0 p0p1 passes through the cusp of f3.

One can now easily write down a parameter space for type En components (including

type E ′1). Be warned that this result is in some sense weaker (in that it doesn’t reveal the

orbifold structure) than we will prove later (10.1.1). It is complementary, though, in that it

provides explicit equations for the surfaces as a double cover of a ruled surface.

Theorem 9.3.2. The coarse moduli spaces for type En components are as follows:

E8 A8

E7 A7/Z2 where Z2 acts multiplicatively with weights (0, 0, 0, 0, 1, 1, 1).

E6 A6/Z3 where Z3 acts multiplicatively with weights (0, 0, 1, 1, 2, 2).

E5 A5/Z4 where Z4 acts multiplicatively with weights (0, 1, 2, 2, 3).

E4 A4/Z5 where Z5 acts multiplicatively with weights (1, 2, 3, 4).

E3 A3/Z6 where Z6 acts multiplicatively with weights (2, 3, 4).

E2 A1 ×Gm

E1 Gm

E ′1 A1
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E0 Rigid.

Before giving the proof, recall a fact from childhood will be used repeatedly.

Lemma 9.3.3. If rn−isi + an−i−1r
n−i−1si + · · · + ans

n is a polynomial on P1
r,s then there is

a change of variables r 7→ r′ expressing the form as rn−isi + a′n−i−2r
n−i−2 + . . . a′ns

n. This is

unique up to scaling the coordinate.

Proof. Indeed, take r 7→ r − an−i−1

n−i .

The starting data for each of the constructions is a pair isomorphic to a toric variety

and ample divisor. The proof of the theorem proceeds by rigidifying the models by choosing

a toric structure and fixing the values of some coefficients of monomials in the equation

determining the divisor, thus putting the equation into “standard form”. The possible rigid

pairs are then an affine space. In general there may be several ways to put a given pair into

the standard form, related by the action of a finite group.

Proof. Write the divisor as V (
∑
ai,jx

i,j). The coeffecients ai,j of the rigid models for E8 . . . E4

are shown in the figure 9.2, with “*” denoting those ai,j that can vary arbitrarily. We explain

the process in the first two cases, the remaining cases being similar.

In the E8 case one starts with the Weierstrass form, which amounts to fixing a section of

F◦2 and sets a•,1 = 0. By choosing the special fiber to be in the toric boundary we get

4a3
0,2 + 27a0,0a

2
0,3 = 0

with a, b 6= 0. Applying the childhood lemma gives a unique choice for the other boundary

fiber making a1,2 = 0. Note that a1,3 6= 0, since the divisor is assumed to be nonsingular

along the special fiber. We have now fixed the structure of a toric variety on F2. In particular

the only remaining freedom is the action of T 2. Since the lattice points (1, 3), (0, 3), (0, 2)

span the M lattice there is a unique t ∈ T 2 that makes a1,3 = 1, a0,3 = 2, a0,2 = 3. But then
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by 9.3 a0,0 = 1 as well. The coefficients corresponding to lattice points marked “*” can be

chosen arbitrarily, giving A8.

In the E7 case one wishes to give P2 the structure of a toric variety such that the flag

consisting of the given point p on the quartic f4 and the line tangent to f4 at that point is

in the toric boundary. This amounts to saying a0,0 = a1,0 = 0. Since p was not a flex we

have a3,0 6= 0, so by the childhood lemma we can choose the other boundary line through p

in such a way as to make a1,1 = 0. Finally since p was a smooth point of f4 we must have

a0,1 6= 0, so by the childhood lemma we can choose the remaining boundary divisor such that

a0,2 = 0. Since p was assumed not to lie on a bitangent one has a4,0 6= 0. The lattice points

(0, 1), (2, 0), (4, 0) span an index 2 sublattice M ′ ⊂ M , and so there there are 2 elements of

the torus orbit of f4 with a0,1 = a2,0 = a4,0 = 1, related by M/M ′ = Z2 acting with weight i

on ai,j.

We now turn to E3, E2, E1, E
′
1.

For E3, we have the starting data of an irreducible plane cubic f3, a flex p0 and another

point p1 not on the line through the flex such that p0p1 is transverse to f3. By starting with a

Weierstrass equation and translating x 7→ x+α we can assume that f3 = V (y2−x3−a1x
2−

a2x− a3), a3 6= 0 with p0 the point at infinity and p1 = (0, y1). By scaling x 7→ t2x, y 7→ t3y

we can assume a3 = 1. There were 6 possible choices for scaling related by the group Z6

acting with weights (2, 3, 4) on the coordinates (a1, y1, a2).

Similarly for E2 we can choose coordinates where f3 = V (y2 − x3 − a1x
2 − x) and

p1 = (0, y1), y1 6= 0. The choices are related by Z4 acting with weights (1, 2) on (y1, a1).

For E ′1 write f3 = V (y2 − x3 − x2), p1 = (0, y1), y1 6= 0. The choices made are related

by Z2 acting with weight 1 on y1.

For E1 write f3 = V (y2 − x3 − a1x
2 − x), p1 = (0, 0). The choices made are related by

Z4 acting with weight 2 on y1.

E0 is clearly rigid.
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Figure 9.1: Diagram of the stable reduction process for Weierstrass data corresponding to
an elliptic K3 surface. The red, blue, and green curves represent the divisors A,B and ∆,
respectively. Not all components of these divisors are shown.
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Figure 9.2: Diagrammatic representation of the permissible coefficients in the equation of a
divisor in standard form corresponding to the constructions for En, 4 ≤ n ≤ 8 given in the
text. The red triangles show nonzero constant coefficients for the standard form. The area
of these determines the number of distinct ways to put the corresponding pair into standard
form.
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Chapter 10

Torelli type theorems for components

of degenerations and applications.

We now move on to the problem of describing the boundary Fell \ Fell.

10.1 Torelli Theorems

Recall (9.1.4) that the stable models of such limits are chains of surfaces where the end

components are either rational elliptic (type En) or a non-normal surface with 2 cuspidal

fibers (type Dn) and the middle components are non-normal surfaces obtained by identifying

2 sections of P1×P1. All component surfaces come with a marked choice of section and some

marked fibers (see chapter 9 for details). There are no moduli in the gluing of such a surface

since the surfaces are glued along nodal curves with an additional marked point (from the

choice of section). As such we can attempt to parameterize the possible limits by separately

describing the moduli of each possible component. Here “possible component” means any

surface of the types listed in 9.3 and “possible limit” means any chain of possible components.

In particular we postpone showing that all “possible” limits actually occur to a later chapter.
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As was already hinted at in the notation we first assign a lattice LV and group ΓV to each

component V of a type II or III degeneration. For components of type III degenerations we

will continue to use the same notation for the lattice and the corresponding surface. Recall

the definitions of the lattice En given in (5.2.16). The assignments are given by the table:

Surface Type LV ΓV

D̃16 D16 AutD16

Ẽ8 E8 W (E8)

En En W (En)

Dn Dn AutDn

An An W (Dn)

Observe that the lattice En is the narrow Mordell-Weil lattice associated to a generic

surface of that type (6.2.1).

For type II surfaces there is also an associated elliptic curve JV . For Ẽ8 JV is the Jacobian

of the attaching fiber. In the D̃16 case it is the Jacobian of the conductor of the normalization.

For the other types we write JV = Gm. (For En components this is naturally associated to

the Jacobian of the attaching fiber, but this association is less obvious for types A and D.)

The reader may ask why the type II components are not associated with the appropriate

semidefinite lattices. This is probably an artifact of the piecemeal approach taken here. A

more uniform treatment may be able to resolve the issue. The slight irregularity in the choice

of ΓV is essential, though: it is responsible for much of the non-normality of F ell.

The Torelli theorem is as expected:

Theorem 10.1.1. The coarse moduli space for components of type V is given by Hom(LV , JV)/ΓV .

We call the map LV → JV associated to a surface V a period point.

Proof. We prove the result for non-normal components in a case by case manner, leaving

the harder case of describing rational elliptic surfaces as a lemma.
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An We describe the moduli of n + 1 points pi on a line with 0 and ∞ marked. Starting

with the points pi we need to produce a map An → C∗, where An = {(e1 . . . en+1) ∈

Zn+1|
∑
ei = 0}. Indeed, we simply choose an isomorphism P1 \{0,∞} ' C∗, and map

ei → pi. While this map depends on the choice of isomorphism (i.e. which point we

label 1), the map from An ⊂ Zn+1 does not. The converse construction is clear. Note

that W (An) acts by permuting the pi.

Dn Here we are given n points pi 6= q1 on a line with a marked origin q1 and two other marked

points q2, q3. The double cover of P1 branched over 2q1 + q2 + q3 is a nodal curve C.

We choose an isomorphism C◦ ' C∗ where q2, q3 correspond to the 2-torsion points,

and lifts p̃i of the pi. If we write Dn = {(e1 . . . en) ∈ Zn|
∑
ei ≡ 0( mod 2)} then the

choice of automorphism and lifts gives we have a well defined map Dn → C∗|ei 7→ p̃i.

The group AutDn ' Sn n (±1)n exactly accounts for the choices of labels and lifts.

Conversely any map Dn → C∗ determines a map Zn → C∗ (i.e. the p̃i) up to ±1, so

determines the pi.

D̃16 Similarly, given a map D16 → Ej, where Ej is an elliptic curve we choose a map

Z16 → Ej|ei 7→ p̃i extending it. This is well defined up to translation by a 2 torsion

point. But then the images pi of p̃i in (P1, 4pts.) are well defined up to automorphism,

since translation by 2 torsion induces automorphisms of the pair (P1, 4pts.). Conversely,

given pi the lifts p̃i are determined up to ±1, so the choices involved in the construction

are related by AutD16.

The remaining task is to derive the description of the moduli of rational elliptic surfaces

with a marked fiber of type In. The analogous result is attributed to Looijenga for the

moduli of del Pezzo pairs, though hard to find stated in the appropriate form. We give

an independent proof, the strategy of which is to express the relatively minimal model of
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the pair X,D as a blowup of P2 at 9 points on a cubic C (or in the case of E ′1, 4 points

on the boundary of an appropriate toric surface), and then demonstrate that the choices

involved in the construction are parameterized by the appropriate Weyl group. To start,

some definitions:

Definition 10.1.2. Write I1,n = 〈l, e0 . . . en−1〉 with l2 = 1, e2
i = −1. The simple roots of

(−3l +
∑
ei)
⊥ with respect to this basis are αi+1 = ei − ei+1 and α1 = l − e0 − e1 − e2.

A marking of a rational surface X is an isomorphism I1,n ' Pic(X) such that KX =

−3l +
∑
ei.

A geometric marking of X is a marking induced by a representation of X as an n-fold

iterated blowup of P2, where ei is the pullback of the (i − 1)st exceptional divisor and l is

the pullback of a line. The corresponding basis of PicX is called a geometric basis.

The following lemma is Dolgachev’s [Dol12, 8.2.35].

Lemma 10.1.3. Let X be a surface obtained by blowing up P2 at n points in almost general

position, with n ≤ 8. Let φ : I1,n → Pic(X) be any isomorphism with φ(−3l +
∑
ei = Kx).

Then there is a unique sequence of -2 curves ci such that the composition of reflections

σ =
∏
σci has σ ◦ φ ◦ σ−1 a geometric marking.

The same conclusion holds for n = 9, under the condition that e0 is the class of a -1

curve.

Proof. We use induction on n for n ≤ 8, the result being clearly true for n = 1. Let cj be

the classes of -2 curves. Note that the group generated by reflections in cj acts transitively

on the corresponding chambers1. Hence there exists some element of this reflection group

that sends e0 to a curve e′0 with e′0 · cj ≥ 0 for all j. e′0 is easily seen to be a -1 curve ([Dol12,

8.2.22]), so can be blown down, giving p : X → X ′. Choosing a basis l, e′i for Pic(X ′) with

p∗e′i = ei we apply the induction hypothesis to get a unique composition of reflections
∏
σc′i

1That is, connected components of Pic(X)⊗ R \ ∪c⊥j .
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giving a geometric marking of X ′. But the curves c′i pull back to -2 curves, so the result

follows.

In the case n = 9, the assumption that e0 is a -1 curve allows one to reduce to the n = 8

case as above.

Definition 10.1.4. Let X be a rational elliptic surface with marked fiber D of type In.

Let T ⊂ Pic(X̃) be the (type An) lattice spanned by the nonidentity components of D̃. A

marking 〈l, e0, . . . e8〉 is said to be adapted if all the effective roots of T are simple roots

relative to this basis, and α8 ∈ T . Write E = T⊥ and observe that the choice of marking

induces an isomorphism of E with a standard type E lattice.

Lemma 10.1.5. Let (X,D) be the relative minimal model of a type En (not including E ′1)

component. Then PicX has an adapted geometric basis.

Proof. By Dynkin’s results the root lattice T embeds primitively in 〈s, f〉⊥ ' E8 and this

embedding is unique up to OE8. Recalling the definition of En (5.2.16) we then have T⊥ '

En. The root sublattice extends to a basis of simple roots αi for K⊥ ∈ PicX, adding the

root αn+1. Choose e0 ∈ PicX to be the unique class with e0 ·KX = 1, e0 ·α2 = 1, e0 ·α2 = −1

and e0 · αi = 0 for i > 2. Then there is an adapted basis 〈l, ei〉 where the αi are the simple

roots.

By 10.1.3 this basis becomes geometric after some number of reflections in -2 curves.

Note that the root αn+1 can never be effective, though: the only -2 curves intersecting the

fiber D are components of D. Thus reflections in -2 curves don’t change the adaptedness of

the basis.

The choice of adapted basis determines a choice of orientation on D. We now show that

the different adapted bases giving the same orientation are related by the Weyl group W (En)
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Lemma 10.1.6. With notation as above Fix(T ) ⊂ O(K⊥X) = W (En).

Proof. Since En ⊥ T by definition W (En) fixes T . Conversely the embedding of the root sub-

lattice En⊕T ↪→ K⊥X/KX = E8 determines an isomorphism DiscEn ' DiscT . The diagram

automorphism of En acts non-trivially on DiscEn so cannot extend to an automorphism of

E8.

We may now introduce the period map.

Lemma 10.1.7. The restriction PicX → PicD gives a well defined element φX ∈ Hom(En,C∗)/W (En).

Proof. The choice of an orientation on D gives an isomorphism PicD ' C∗. By 10.1.6 the

various choices of adapted basis with a given orientation are related by W (En), so φ is well

defined after fixing an orientation. But any adapted basis with one orientation on D is pulled

back via the hyperelliptic involution from one with the opposite orientation on D and the

same period φX , so we’re done.

Proposition 10.1.8. The period map is a bijection.

Proof. Given φ : En → C∗ we must build a model. Start with a nodal cubic C ⊂ P2 and

write l for the class of a line. Choose one branch of C through the node and blow up 8− n

times along the strict preimage of this branch of C. The result is a rational surface with an

anticanonical cycle of 9−n lines. Call the pullback of the class of the i′th exceptional divisor

e10−i, so the new components of the anticanonical cycle are ei − ei+1. We now want to find

n points on the strict preimage C̃ to blow up. Using the basis and simple roots for En given

above note that c = 2α2 + α3 − α1 = l − 3e0 ∈ En. Choose p0 ∈ C̃ with φc = l · C̃ − 3p0.

Up to isomorphism there is only one possibility. Now for each root αi = ei − ei+1 ∈ En

choose pi with φ(αi) = pi − pi+1 Blow up at pi to form a degree 1 (weak) del Pezzo surface

X̃, call the classes of the exceptional divisors corresponding to pi ei. |KX̃ | has a unique base
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point which we blow up to form Xφ. Call the last exceptional divisor en+1. It is clear by

construction that φX = φ.

For injectivity one needs to show that Xφ is unchanged after conjugating φ by W (En).

We only need to show this for reflections in simple roots. Observing the construction we see

that reflection in a root ei − ej simply interchanges the points pi − pj. Reflection in a root

l − ei − ej − ek takes the point pi to the third point p′i on the line pjpk. But the blowup of

pi, pj, pk is isomorphic to the blowup of p′i, p
′
j, p
′
k.

Finally we need to deal with E ′1.

Proposition 10.1.9. A surface of type E ′1 is determined by φ : MW◦(X) → C∗, modulo

inversion.

Proof. Observe that MW 0(X) is cyclic, and generated by any section not intersecting the

identity. Our model will be built from P1×P1 by blowing up, as outlined in the accompanying

diagram10.1.

1. Blow up P1 × P1 at the toric fixed points.

2. Blow up p1, p2 on the curves e2, e3 meeting s̃1, the strict preimage of a section. Call

the exceptional divisors e5, e6. Up to the torus action there is no choice involved here.

3. Observe there is a unique curve c meeting the boundary once on e1 (and meeting e6).

Call q = c · e1. Choose p3 to be the unique point on e1 with φα1 = p3 − q and blow up

at p3, calling the exceptional divisor e7.

4. The resulting surface is a degree 1 del Pezzo, so blow up the base point of | −K| to

form X.

Letting e7 be the identity section we see this is a E ′1 surface, since it contains 2 torsion in

the Mordell-Weil group. Indeed, the section 2(e6 − e7) projects to a principal divisor in T⊥

as shown in the figure (see 6.2).
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Remark 10.1.10. The explicit description of these quotients is fairly well known. In par-

ticular if L is a root lattice then the ring of invariants k[L]W (L) is isomorphic to the monoid

ring k[Λ+ ∩ L], where Λ+ is the dominant Weyl chamber. Since the monoid of domininant

weights is freely generated the ring of invariants is easily calculated and the affine variety is

the quotient of ArankL by an action of DiscL. Compare to the result 9.3.2.

Remark 10.1.11. The reader may wonder why we refer to this theorem as a Torelli theorem.

It is an honest Torelli theorem in the case of En and Ẽ8, in which case it parameterizes the

surfaces by the mixed Hodge structure of their interior (i.e. the restriction of PicV to

Pic ∂V ). In the other cases it can be seen either as part of a (as yet unproved) Torelli

theorem for a neighborhood of V in F ell or as reflecting the period map for some component

in Kulikov models that get contracted in the stabilization process (a fact we also don’t show).

10.2 Automorphisms of stable pairs

Since toroidal compactifications of Fell are constructed in an essentially Hodge theoretic

manner, knowing the automorphisms of stable pairs accounts for stacky behavior of the

moduli space. Some of this is already apparent in the representation of F ell as an orbifold,

however highly degenerate surfaces may have some extra automorphisms.

Much of the complication is caused by the existence of automorphisms that act nontriv-

ially on the base.

Lemma 10.2.1. Let (V,B) be a component of a stable surface of type En (including E ′1).

The group H(V ) ⊂ Aut(V,B)/Z2 of automorphisms modulo the hyperelliptic involution that

act trivially on PicV is

• Z/3 if V has type E0

• Z/2 if V has type E1
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• Trivial otherwise.

Proof. Let Ṽ be the smooth minimal model. The map Ṽ → V contracts ADE configurations

of -1 curves. If the configuration spans a primitive sublattice then each reduced curve in the

fiber is intersected by a section. This is not true in the case of a configuration of -2 curves

not spanning a primitive sublattice. These are exactly the cases of an E8 or D8 configuration

or one type of E7 configuration. By Dynkin’s results (??) one sees that in all cases there are

no nontrivial automorphisms of the dual graph of the configuration of -2 curves fixing the

components intersecting sections. Therefore we see an automorphism acts trivially on PicV

if and only if it acts trivially on Pic Ṽ . Since a type E surface has at least 3 singular fibers

we can choose an isomorphism of the base curve with P1 such that the automorphisms in

H(V ) are induced by multiplication by roots of unity on the base curve. The quotient of a

type En surface by an automorphism of order m is a rational elliptic surface where the image

of the I9−n fiber is a I(9−n)/m fiber. Since the automorphism fixes H2(Ṽ ), the pullback map

on the Mordell-Weil group must be an isomorphism. But this can certainly never happen

when MW (V ) maps surjectively to the component group of the I9−n fiber, since a section

generating the component group could only be the pullback of a section passing through

a singular point of the I(9−n)/m fiber, contradicting the fact that all sections pass through

smooth points of their fibers. Either by observing the construction of type En surfaces in

the proof of 10.1.1 or by glancing at the table of Mordell-Weil groups in Oguiso-Shioda

[OS91] we see the only possibilities are E0 and E1. The unique surface of type E0 is a triple

cover of the surface with fiber type IV ∗I1I3. If V is of type E1 then there is a double cover

π : V → V ′ where V ′ is a surface of type I∗0I1I1I4. In both cases one can verify that the

pullback is an isomorphism of Mordell-Weil groups. Indeed, checking Oguiso-Shioda [OS91]

we see that the torsion parts of the Mordell-Weil group are the same, and that the lattice

structure on the non-torsion part of type I∗0I1I1I4 has one generator of square 1
8
, whereas

that of a type E1 surface (Kodaira type I9I1I1I1) has a single generator of square 1
2
. Since
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the double cover multiplies the intersection form by 2, π∗ : MW(V ′)→ MW(V ) must be an

isomorphism. There is a one dimensional family of type I∗0I1I1I4 surfaces, so all E1 surfaces

can be obtained from them.

We formally set H(V ) = 0 for V of types A or D.

The automorphisms of components are then a semidirect product with the group that

changes the marked period map:

Lemma 10.2.2. Let (V,B) be a component of a stable surface of type III with period map

φ : LV → C∗. Then

Aut(V,B) = (StabΓV
(φ)/W (kerφ)) nH(V )

with H(V ) as above.

Proof. In the type E case observe that ker(ΓV → O(MW(V ))) = W (kerφ), so the result

follows from the previous lemma.

In the type A and D cases, any automorphism must permute the marked fibers. Using

the standard embeddings An−1, Dn ↪→ In the roots are all of the form ei − ej in the type A

case and ±ei ± ej in the second. Observing the constructions in the proof of 10.1.1 we see

that φ(α) = 1 for a root α if and only if two marked fibers coincide. Conversely, if several

marked fibers coincide then kerφ contains a type A sublattice whose Weyl group permutes

them. Thus ker(Stab(φ)→ Aut(V,B)) = W (kerφ).
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Figure 10.1: Diagram showing the construction of surfaces of type E ′1.
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Chapter 11

Construction of type III

Degenerations

In this chapter we describe the structure of a Kulikov model for any type III degeneration,

as well as how to produce a d-semistable model from a given stable model and “monodromy”

(corresponding to the threefold singularities along the double curves in the central fiber, i.e.

a point in the appropriate M cone 9.2).

Given a degeneration X → ∆ to a stable pair (X0, B) we first produce a standard

semistable model. Recall that the base curve for X0 is a chain of rational curves. Arbitrarily

label the ends “right” and “left”. Using the notation of section 9.2, X has type Aai−1

singularities above the nodes of the base curve C, and type Adi−1 singularities along the

double curves in each component. We can resolve the singularities by first blowing up the

base surface (in any order) to resolve its singularities (this gives a new base curve C̃), and

then repeatedly move from right to left down the chain, blowing up the singularity along

each component of the base. After some small resolutions this will be a Kulikov model with

central fiber X ′0. Notice that the fibration on X0 extends to a map from X ′0 → C̃.
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Notation 11.0.3. As a matter of notation, we will introduce some terms for the anatomy

of such a model.

We call the strict preimages of the components of X0 (i.e. those components intersecting

the section) Vi,0, with i going from right to left. The “row” of components V•,0 adjoins 2

other rows. We choose one and label it V•,1, and continue to thus label the components in

succesive rows in a similar manner.

The preimage of each non-end component of C̃i ⊂ C̃ will be called a “ring” Ri.

The irreducible curves in X ′0 come in two types. The ones contained in a fiber we call

vertical. All others are horizontal.

The components and horizontal curves farthest away from the originals we refer to as the

“spine”.

We may choose the small resolutions in the construction so as the exceptional divisors all

end up in Vi,j rather than Vi,j+1. The result of this process for a surface of type E5A2A3E5

is shown in the diagram below 11.1.

We describe the resolution process in more detail. One goal of this discussion is to

demonstrate the following lemma:

Lemma 11.0.4. The dual complex ΓX′0 and normalization X ′ν0 of the limit fiber X ′0 produced

by this process depend only on:

• The pair (X0, B)

• The surface singularities along the double curves of X0, given by the numbers ai, ci.

• For each type D component in X0 with period φ : Dn → C∗( mod Aut(Dn)) a choice

of lift φ̃ : Dn → C∗( mod W (Dn)).

Moreover the construction of ΓX′0 and X ′ν0 given these data makes sense for any choice of

(X0, B).
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Figure 11.1: Diagram of the central fiber of a Kulikov degeneration with KSBA stable
model E5A2A3E5. The blue numbers show the self intersection of the labelled curve on the
appropriate component.

Notice that the specific surface X ′0 is still highly dependent on our choice of procedure for

performing the resolution. The point of the lemma is that very little information is needed

about the 3-fold to construct X0. In particular we define:

Definition 11.0.5. Starting with X0, ai, ci any one of the (at most 4 choices of) surfaces X ′0

produced as shown below defines a formal resolution (ΓX′0 , X
′ν
0 ).

The lemma says that formal resolutions exist.
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The first step is to resolve the singularities in the base curve. The effect on X0 is to add

in ci − 1 non-normal components with normalization isomorphic to P1 × P1 between the i

and (i+ 1) components of X0. We formally call these type A−1 components.

We will reuse the notation ai to refer to the order of vanishing of ∆ along the correspond-

ing component of C̃, labeled so that the index 1 refers to the leftmost component. In order

for this process to work it is required that the multiplicity of ∆ on the image of any type

Dn component be even.

We will first look at the double cover model of the pre-image of the interior C̃◦i of each

component of the base curve C̃. This is illustrated for types A and D in the figure 11.2. For

type E components, ai = 0, so there is nothing to do. For type An components one needs

to blow up the double curve in T
⌊
ai
2

⌋
times. If ai was even the new fiber’s top component

is C̃◦i × P1 with a reduced bisection B disjoint from the double curve and tangent to each of

the marked fibers from the original surface. This is unique up to isomorphism. If ai was odd

the bisection remains non-reduced. The trisection T in the threefold is simply tangent to

the central fiber and has singularities with local equation st− y2 = 0 at the points meeting

the marked fibers.

The type Dn case has slightly more subtlety. Again one blows up the double curve in

T ai
2

times. T now meets the middle surfaces in a pair of fibers and the top surface in a

bisection B. Again the map B → C̃◦i is branched exactly over the marked points. Given the

original component there are 2 distinct choices for the top component. In the case of type

Dn>0 these form a connected family, however in the case of type D0 the divisor B is always

reducible and there are 2 distinct choices , one where both components of B intersect the

boundary and one where one does twice.

The task now is to keep track of the blowing up procedure to include the vertical boundary

of the components and describe the gluing. Since the threefold is smooth, each blowup

originally introduces a ruled surface. The triple point formula tells which ruled surface we
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get: if the curve being blown up has self intersection i in the central fiber, the double curve

has square −i− 2 on the exceptional divisor if it is not over the end of a chain and −i− 1

if it was. A component Vi,j with j < 2ai will be further blown up at most once each on the

left and right boundary fibers. A component with j ≥ 2ai may be blown up further, but in

any case the blowing up always occurs on the trisection T , so is determined entirely by the

geometry of X0.

We then have:

Theorem 11.0.6. Every stable elliptic K3 is smoothable.

Proof. Let X ′0 be a formal resolution of X0. Then we first note that the strict preimages of

the double curves in X0 can be glued as they were in X0, so the section still exists as an

effective Cartier divisor. The main task is then to show there is a d-semistable regluing of

X ′0 along curves not intersecting the section. It is perhaps quicker for the reader to check

the hypothesis for 7.5.6 for herself than it is to describe an argument. Such a reader may

skip the next paragraph.

Notice that every component other than type E is ruled surface. If a component were

to have more than one vertical boundary divisor on either side 2 divisors on that side would

be -1 curves, and at least one would connect the component to one closer to the row of

components containing the section. A component with only one curve in one of its boundary

fibers would be negligible. The only remaining task is to show that the non-negligible, non

type E components containing the section can all be connected. But this is clear, since the

boundary of all except the rightmost such component contains −1 curves in different fibers

(the rightmost is negligible).

We apply 7.5.6 to get a d-semistable gluing. By 7.5.7 there is a smoothing where the

classes of the fiber and the section remain Cartier, so by cohomology and base change the

corresponding divisors extend. Moreover, examining the description for the resolution over

components of C̃ given in discussion above note that the marked fibers are exactly the
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points where the discriminant vanishes more than ai times. Hence the smoothing is in fact

a smoothing of stable elliptic K3’s.
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Figure 11.2: Diagram showing the resolution of the double cover representation of a stable
elliptic K3 over the interior of a type A or type D component. The red curve represents the
branch divisor. In the second case for type A the 3-fold has double point singularities at the
points shown in the non-reduced component of the branch curve.
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Chapter 12

Description of the Conjectural Fan

In this chapter we briefly review the properties of the Vinberg (reflection) fan V on a positive

light cone of II1,17, before introducing a certain subdivision of V which we shall call J . We

conjecture that (F ell)
ν = FJell. In support of this conjecture we describe a combinatorial

bijection between the cones of J and the strata of F ell \Fell.

We recall that there are 2 parabolic subdiagrams (Ẽ8 ⊕ Ẽ8 and D̃16) and that elliptic

subdiagrams can be obtained by deleting any subset of nodes with the requirement that at

least one node on the left and right of the center is deleted. Subdiagrams of the Vinberg

diagram correspond to both cones in the Vinberg fan and negative definite sublattice con-

taining a full rank root sublattice. They are named by the type of the root lattice, abusing

notation so as the order of the sum matters. (Note this system still isn’t perfect.)

Example 12.0.7. As an example we explicitly calculate primitive generators of the Vinberg

rays of types Ea ⊕ A17−2a ⊕ Ea and use computer calculations to determine the squares of

rays of types D8+a⊕E9−a and E9−a⊕Aa+b−1⊕E9−b. Observing the simple roots α that we

require (α, ca) = 0 we see that in each E8 summand ca projects as (s1 . . . s8) with

•
∑
si = 0
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• si = si+1 for i < 7, i 6= a

(resp. for ti). Moreover, in this situation we see that the coordinates in H are exactly

(s7 − s8, s7 − s8) (this forces the projections to the two E8 summands to agree). Clearly

the primitive member of this ray has coordinates ((9 − a, 9 − a), (0, . . . , 0, 1, . . . , 1, 1 −

a), (0, . . . , 0, 1, . . . , 1, 1− a), where there are a− 1 zeros in each E8 block. c2
a = 18− 2a.

For the D8+a⊕E9−a case, we machine computation to show that c2
a = 4a for a odd and a

for a even. (In this and the following example, the need for machine computation is obviated

by the primitivity computation below.

For E9−a ⊕ Aa+b−1 ⊕ E9−b machine computation shows c2
a,b = lcm(a, b, a+ b).

Primitivity of root lattices corresponding to Vinberg cones.

In the previous example one notices that many rays corresponded to non-primitive root

lattices. We analyse this phenomenon in slightly more generality:

Proposition 12.0.8. Let σ ⊂ N be a rational polyhedral cone with a single relation
∑
aiwi =

0 among the walls wi · ≥ 0. Let F be a face of σ with L = 〈wi〉i/∈I ⊂M . Let L = F⊥ be the

primitive closure. Then L/L is cyclic of order gcd{ai}i∈I .

Proof. Let v ∈ L \ L with nv ∈ L. We may assume v =
∑

iinI biwi. Then there is a relation

nv =
∑

i/∈I ciwi and so nbi = mai for some m. Hence L/L is generated by 1
gcd{ai}i/∈I

∑
i∈I aiwi.

The subdivision J

We now divide the maximal dimensional cone in V by 4 additional hyperplanes, and describe

certain details of the resulting structure. Indeed, let c1 = 2e2 + e3 − e1, c2 = 2e18 + e17 − e19

and d1 = e3 − e1, d2 = e17 − e19 (using the numbering shown in figure ??), and divide the

Vinberg cell by the hyperplanes defined by ci, di. The rays of this cone correspond to rank
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17 negative definite sublattices L spanned by some roots and possibly some of the ci, di. We

will consistently refer to such lattices as the maximal root sublattice adjoining at most one

extra root at each end (noting that e2 ∈ 〈c1, d1〉).

The only way for c1 to be in this lattice and not in the root sublattice R(L) is when the

root sublattice does not contain at least two of e1, e2, e3. (Similarly for c2). Similarly d1 is

in L \R(L) only if e1, e3 are not in L

We now describe the maximal dimensional cones in the fan.

Proposition 12.0.9. Up to Aut(II1,17) there are 6 orbits of maximal dimensional cone in

J , as follows:

1. V ∩ c−1 ∩ c−2 , where V is the Vinberg cell and x− represents the negative half space

relative to x. The 19 walls of this cone are perpendicular to the roots α2 . . . α18 and the

extra vectors ci.

2. V ∩ c+
1 ∩ c+

2 ∩ d−1 ∩ d−2 with 19 walls perpendicular to α3, α4 . . . α17 and di, ci.

3. V ∩ c+
1 ∩ c+

2 ∩ d+
1 ∩ d+

2 with 19 walls perpendicular to α1, α2, α4 . . . α16, α18, α19 and di.

4. V ∩ c−1 ∩ c+
2 ∩ d−2 with 19 walls perpendicular to α2 . . . α17 and ci, d2.

5. V ∩ c−1 ∩ c+
2 ∩ d+

2 with 19 walls perpendicular to α2 . . . α16, α18, α19 and c1, d2.

6. V ∩ c+
1 ∩ c+

2 ∩ d−1 ∩ d+
2 with 19 walls perpendicular to α3 . . . α16, α18, α19 and c1, di.

Proof. Machine computation using Porta.

Corollary 12.0.10. A maximal cone of J in c+
i ∩d−i reflects through the wall d⊥i to another

maximal cone.

Proof. Indeed, observing the list we only need to note that α1d1 = −α3d1, c1d1 = −2α2d1,

α1 − α3 = d1, and c1 − 2α2 = d1, since all the other walls are perpendicular to d1. The

statement with d2 is symmetric.
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Proposition 12.0.11. The maximal cones in J are rationally isomorphic. They are 18

dimensional cones given by inequalities ei · x ≥ 0 with the one relation
∑9

i=−9 iei = 0. The

faces of this cone are perpendicular to subsets of the ei containing neither {ei}9
i=1 nor {ei}19

i=11,

or perpendicular to both subsets.

Proof. We write down the relations among the walls of the cones above, and observe that

they are all rationally isomorphic to the given cone.

1. 3(−c1) + 8α2 + 7α3 · · · − 7α17 − 8α18 − 3(−c2) = 0

2. c1 + 4(−d1) + 7α3 · · · − 7α17 − 4(−d2)− c2 = 0

3. 2α2 + 4d1 + 7α1 + 6α4 + 5α5 · · · − 5α15 − 6α16 − 7α19 − 4d2 − 2α18 = 0

4. 3(−c1) + 8α2 + 7α3 · · · − 7α17 − 4(−d2)− c2 = 0

5. 3(−c1) + 8α2 + 7α3 · · · − 5α15 − 6α16 − 7α19 − 4d2 − 2α18 = 0

6. c1 + 4(−d1) + 7α3 · · · − 5α15 − 6α16 − 7α19 − 4d2 − 2α18 = 0

The remaining claim regards the face structure of the cone C. It suffices to show that

C ∩
⋂
i 6=j,k ei = 0 is nonempty if and only if ij ≤ 0, and that the rays defined when ij = 0

are identical. Indeed, if x ∈
⋂
i 6=j,k e

⊥
i , x · (jej + kek) = 0 so x · ej and x · ek have the same

sign iff jk < 0. If jk = 0 then x lies in the one dimensional subspace {ei}⊥i 6=0.

We want to show that the fan J somehow corresponds to the boundary of F ell
ν
. Unfor-

tunately we don’t have a description of how the boundary strata intersect. We can however

give a reasonable guess:

Assumption 12.0.12. The components of a non-minimal type III stable surface can be

smoothed independently. The results of a smoothing are as follow:

En Am−1 ⊕ En−m  En
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Dn Smoothing the attaching fiber: Am−1 ⊕Dn−m  Dn

Dn, n > 0 Smoothing the double locus: Dn  En+1

D0 Smoothing the double locus: D0  E1 for some monodromies.

D0 Smoothing the double locus: Dn  E ′1 for other monodromies.

An Am−1 ⊕ An−m  An

The manner in which the D0 components smooth is what distinguishes the various cones

with the same maximal degeneration.

The problem is now a combinatorial matter.

Proposition 12.0.13. The combinatorial types of degeneration are in bijection with orbits

of cones in J modulo reflections in di.

Types 1,4,5

Types 2,6

Type 3

E1

c1

A1
a2

A1
a3

A1
a4

A1
a5

E1

c1

A1
a3

D1
d1 A1

a4

A1
a4

A1
a5

A1
a5

A1
a6

D1
d1

E1'
a2

A1
a1

Figure 12.1: Left hand sides of maximally degenerate surfaces, showing correspondence
between walls of the corresponding cone and smoothable curves, and the possible simple
smoothings.
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Proof. We simply show how to identify maximal dimensional orbits with maximal degenera-

tions, and then show how the faces correspond to smoothings. The result then follows from

showing the identification is the same on the intersection of any two maximal dimensional

cones in different orbits.

The left hand sides of Weierstrass diagrams are shown for the degenerations above.

For the smoothing, observe the diagrams for the types of cones, where curves to be

smoothed are labelled with both the wall of the maximal cone and the type of component

obtained by smoothing that curve. Recalling that the borders between cones of different

types are perpendicular to di, ci, we need to check that smoothing the corresponding curves

in different starting diagrams gives an identically marked diagram. Explicitly:

• Smoothing the curve corresponding to c1 in the type 1 diagram results in a E1 com-

ponent and curves marked α2, α3 . . .

• Smoothing the curve corresponding to c1 in a type 2 or 6 component results in a surface

of type E1, A0 . . . with curves marked d1, α3, α4 . . .

• Smoothing the curve corresponding to d1 in a type 2 or 6 component results in a surface

of type D1, A0 . . . with marked curves c1, α3, α4 . . .

• Smoothing the curve marked d1 on a type 3 component results in a surface of type

D1, A0 . . . with curves corresponding to α2, α1, α4 . . .

The first and second cases agree because 〈α2, c1〉⊥ = 〈d1, c1〉⊥. The third and fourth agree

because 〈d1, c1〉⊥ = 〈d1, α2〉⊥

Relation toM cones Finally we demonstrate a rational (isometric) isomorphism between

the maximal cones above and the M cones introduced previously in section 9.2 consistent

with both the construction of the previous chapter and the interpretation of the strata in

this one.
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Type 1 βi 7→ 3ci, αi 7→ αi

Type 2 γi 7→ ci, δi 7→ −di, αi 7→ αi

Type 3 γ1 7→ 2α2, γ2 7→ 2α18, δi 7→ di, αi 7→ αi

Type 4 β1 7→ −3c1, γ2 7→ c2, δ2 7→ −d2, αi 7→ αi

Type 5 β1 7→ −3c1, γ2 7→ 2α18, δ2 7→ d2, αi 7→ αi

Type 6 γ1 7→ c1, γ2 7→ 2α18, δ1 7→ −d1, δ2 7→ d2, αi 7→ αi
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