

CONSTRAINT DRIVEN WEB SERVICE COMPOSITION IN METEOR-S

by

ROHIT AGGARWAL

(Under the direction of Amit P. Sheth and John A. Miller)

ABSTRACT

 Creating Web processes using Web service technology gives us the opportunity for

selecting new services which best suit our need at the moment. Doing this automatically

would require us to quantify our criteria for selection. In addition, there are challenging

issues of correctness and optimality. We present a Constraint Driven Web Service

Composition tool in METEOR-S, which allows the process designers to bind Web Services

to an abstract process, based on business and process constraints and generate an executable

process. Our approach is to reduce much of the service composition problem to a constraint

satisfaction problem. We were able to achieve Web service composition based on constraints,

starting with an abstract process. We were also able to bind an optimal set of services to the

abstract process. This work was done as part of the METEOR-S framework, which aims to

support the complete lifecycle of semantic Web processes.

INDEX WORDS: Web Service Composition, Semantic Web, Web Services, Semantic Web

Service Discovery, Optimization

CONSTRAINT DRIVEN WEB SERVICE COMPOSITION IN METEOR-S

by

ROHIT AGGARWAL

B.E., Punjab University, India, 2002

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2004

© 2004

Rohit Aggarwal

All Rights Reserved

CONSTRAINT DRIVEN WEB SERVICE COMPOSITION IN METEOR-S

by

ROHIT AGGARWAL

 Major Professor: Amit P. Sheth

 John A. Miller

 Committee: Maria Hybinette

 William S. York

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2004

iv

DEDICATION

To my parents Baldev and Veena

v

ACKNOWLEDGEMENTS

I would like to thank my advisors Dr. Amit P. Sheth and Dr. John A. Miller for their

direction, assistance and guidance. Dr. Miller has been very generous with his time and wisdom,

and Dr. Sheth has always provided me with guidance, help and assurance in difficult times.

Without their guidance and persistent help, this thesis would not have been possible. I would also

like to thank Dr. Maria Hybinette for her valuable suggestions and Dr. William S. York for being a

part of my committee. Special thanks to my friends and co-workers Kunal Verma, Preeda

Rajasekaran, Meenakshi Nagarajan, William Milnor, Matt Ross, Sayta Sahoo, Cartic

Ramakrishnan, Chris Thomas and Ranjit Mulye for their help and support. I would like to thank my

sister and brother-in-law, for their continuous encouragement and love. Finally, I sincerely thank

my parents for their support and the sacrifices they made to get me into graduate school. Words are

inadequate to express my gratitude to them for giving me the courage and strength I needed to

complete my goals.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES...viii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION...1

 2. METEOR-S ..6

 3. ARCHITECTURE .. 13

 4. ABSTRACT PROCESS DESIGNER.. 16

 5. DISCOVERY ENGINE .. 22

 6. CONSTRAINT ANALYSER.. 39

 7. BINDER ... 44

 8. METEOR-S PACKAGES ... 47

 9. RELATED WORK ... 52

 10. CONCLUSION AND FUTURE WORK... 55

REFERENCES ... 57

APPENDICES

 A ROSETTANET ONTOLOGY... 61

 B QOS ONTOLOGY.. 62

 C COMPUTER PART ONTOLOGY.. 63

vii

 D METEOR-S INSTALLATION INSTRUCTIONS... 64

 E METEOR-S USER MANUAL .. 65

 F METEOR-S BUILD ANT FILE .. 69

 G GLOSSARY OF ACRONYMS ... 72

 H GLOSSARY OF CONCEPTS ... 74

viii

LIST OF TABLES

Page

Table 1: Functional Semantics ..8

Table 2: Functional Semantics Example..9

Table 3: QoS Metrics of an operation..10

Table 4: QoS Metric Specification ..11

Table 5: Service Template...19

Table 6: Service Level Parameters ..20

Table 7: Service Template Example ..20

Table 8: Constraints for matching two concepts ..27

Table 9: Service Template (ST)...28

Table 10: Service Advertisement (SA) ..29

Table 11: OWL Expressions for Facts...40

Table 12: Aggregate QoS Parameters..42

Table 13: Abstract BPEL and Service Template Example ...45

Table 14: Matching Service and Executable BPEL Example...46

ix

LIST OF FIGURES

Page

Figure 1: Service Oriented Architecture for Web Services ..2

Figure 2: Snapshot of a part of RosettaNet Ontology...8

Figure 3: Custom sub-ontology of RosettaNet...9

Figure 4: Web Service Stack and METEOR-S .. 12

Figure 5: Architecture of METEOR-S... 13

Figure 6: Service level details of METEOR-S backend ... 15

Figure 7: IBM BPWS4J Editor.. 16

Figure 8: BPEL Semantic Annotator ... 17

Figure 9: Abstract Distributor Process... 18

Figure 10: Three Phases of the Selection Process .. 23

Figure 11: Enhanced UDDI... 24

Figure 12: Filters in METEOR-S semantic Web service discovery.. 28

Figure 13: Recall... 35

Figure 14: Precision .. 36

Figure 15: False Positives ... 37

Figure 16: False Negatives.. 38

Figure 17: Design Time and Process Instance Initiation Time Binding...................................... 44

1

CHAPTER 1

INTRODUCTION

Business integration has been possible as a result of standardized technologies that enable efficient

interoperability among heterogeneous computer systems. These technologies are referred to as Web

services. The introduction of Simple Object Access Protocol (SOAP) marked the dawn of Web

Services. SOAP was able to hide the implementation details and could be used for interaction

among distributed systems by using Extensible Markup Language (XML).

 In Service Oriented Architecture (SOA), a service can be defined as a reusable component for

use in a business process. A service converts a set of inputs to a set of outputs. The inputs may be

business data in a consistent state while the output can be information or business data in another

consistent state. Services are interoperable and are location independent. Web services use SOAP

messages to communicate with other Web services. The SOAP messages are described using Web

Service Description Language (WSDL) and can be transmitted over a standard communication

protocol such as Hyper-Text Transfer Protocol (HTTP).

 Due to the increasing interest in knowledge over data, and the rising popularity of the Semantic

Web as well as Web Services, there have been significant interest in developing technologies that

support Semantic Web Services. The Semantic Web industry is experiencing a need for identifying

and developing technology that will provide a firm and long-term foundation to support Web

services in the future. This foundation should support the universal approaches that are technically

2

feasible for service deployment. The foundation should have the features of flexibility and

extensibility, and consistency with the vision of the Semantic Web. Web Services based on

industry standards of Universal Description, Discovery and Integration (UDDI), WSDL and SOAP

focus only on operational and syntactic details for implementation and execution which makes

service publication, discovery and composition very restricted.

Figure 1: Service Oriented Architecture for Web Services

3

Figure 1 shows the Service Oriented Architecture for Web Services. Semantics in various

components are indicated.

 There have been many initiatives [3, 40] to support publication, discovery and composition of

semantic Web services. One of these initiatives is the METEOR-S project [31] at the Large Scale

Distributed Information Systems (LSDIS) Lab in the University of Georgia. Our approach is to add

semantics to the existing industry standards like UDDI, WSDL and BPEL. We capture high level

specifications with an abstract process containing abstract services. Templates can be built for

abstract services to define their functionality and other attributes. The abstract services are

placeholders for a set of services matching the abstract service’s template.

 There are two types of business processes: an executable process which models the actual

behavior of the participant in a business interaction and abstract processes which use process

descriptions for business protocols. Business interaction models include sequences of messages

from one party to another, both asynchronous and synchronous in long-running, stateful

interactions involving multiple parties. A business protocol is a formal specification of the message

exchange procedure used in business interactions. The process descriptions are used to indicate the

message exchange between the parties involved in the protocol without revealing their internal

behavior. A process can define a business protocol, using the notion of abstract process. For

example, in a supply-chain scenario, the manufacturer and the supplier are two parties, each having

an abstract process. In BPEL, partner links can be used to model the relationships between them.

The data is handled by the abstract processes in a way that is consistent with the public aspects of

the business protocol. So, abstract processes can be said to handle data which is pertinent to the

level of abstraction in the business protocol.

4

 Research initiatives in the areas of workflows, information systems and databases are being

directly employed by businesses to model, design and execute their critical processes. With the

growth of the process centric paradigms, a greater level of integration is seen across functional

boundaries, leading to higher productivity. There is, however, a growing need for dynamic

integration with other business partners and services. Several architectures have been postulated for

more flexible and scalable process environments. The growth of Web services and service oriented

architecture offer an attractive basis for realizing such architectures.

 There can be two approaches for Web process composition. We use an abstract process

containing abstract services as a starting point. An abstract service is a placeholder for a set of

services matching the template that can be constructed for the abstract service. In some cases, the

set may have cardinality greater than one, for example, multiple competing services which match

the template may be available. In this way, the topology of the service process is largely fixed;

however, actual service selection may be highly dynamic. An alternative approach [3] to

composition is to not start with a basic abstract process, but rather form a set of goals and build the

whole process. Several AI researches are investigating the use of planning agents for this purpose.

In the near term, we feel that having a well-designed abstract process as a starting point (i.e.,

having most of process topology pre-designed), is a useful and pragmatic initial step.

 The key to our approach is in allowing users to capture high level specifications as abstract

processes. We use Semantic Web [6] technologies to represent the requirements for each service in

the process. We build on earlier work on automated discovery [22, 9] of Semantic Web Services

based on the user’s requirements. After discovery, the candidate services must be selected on the

basis of process and business constraints. We present a multi-phase approach for constraint

representation, cost estimation and optimization for constraint analysis and optimal selection of

5

Web services. During optimization we select an optimal set of Web service which is one that best

satisfies the constraints and minimizes (or maximizes) an objective function.

 In this work, we present the Constraint Driven Web Service Composition in METEOR-S, which

is a comprehensive framework for the composition of Web services. The METEOR-S back-end

allows the manufacturers to bind services based on the given abstract process, requirements and the

process constraints. We implemented the enhanced UDDI, discovery engine, constraints analyzer,

optimizer and binder. We were able to achieve Web service composition starting from an abstract

process based on the constraints. We were also able to bind the optimal service set to the abstract

process.

 This work has been done as a part of the METEOR-S project in the LSDIS Lab at the University

of Georgia, which aims to create a comprehensive framework for composing Web processes.

Chapter 2 discusses the METEOR-S framework, while Chapter 3 explains the architecture of the

METEOR-S backend. Chapter 4 introduces the abstract process designer which involves creating a

representation of Web processes. Our Semantic Web service discovery algorithm is presented in

Chapter 5. Chapter 6 discusses the constraint analyzer followed by the binder module in Chapter 7.

In Chapter 8, we have described the METEOR-S packages. We compare our approach to other

related work in Chapter 9 and finally in Chapter 10, we present conclusions and future work.

6

CHAPTER 2

METEOR-S

The METEOR (Managing End-To-End OpeRations) project in the LSDIS Lab focused on

workflow management techniques for transactional workflows [28]. Its follow-on project, which

incorporates workflow management for semantic Web services, is called METEOR-S (METEOR

for Semantic Web Services). A key feature in this project is the usage of semantics for the complete

lifecycle of semantic Web processes, which represent complex interactions between semantic Web

services.

 The main stages of creating semantic Web processes have been identified as development,

annotation, discovery, composition and execution. An aspect of METEOR-S has been exploring

different kinds of semantics, which are present in these stages. We have identified Data, Functional

and Quality of Service as different kinds of semantics.

 From an architectural point of view, we divide METEOR-S in two main parts – the front-end

and the back-end. The back-end, which is the focus of this work, covers the abstract process design,

discovery, constraint analysis, binding and execution stages. The main components of the back-

end are the 1) Abstract Process Designer, 2) Discovery Engine, 3) Constraint Analyzer and 4)

Service Binder. The front-end of METEOR-S which covers annotation and publication is discussed

in [24].

7

We provide a representational framework for incorporating Data semantics, Functional semantics

and Quality of Service Semantics to support activities in the complete Web process lifecycle. For

background, we will provide brief descriptions of data, functional and QoS semantics in this

section.

2.1. DATA SEMANTICS

For Web services to communicate with each other, they should understand the semantics of each

others data. Data semantics represent the semantics of the data i.e., inputs and outputs of a service.

For example, ebXML Core Component Dictionary [13] or RosettaNet Technical Dictionary [26]

can be used to represent input/output/exception data in Web services. For the supply chain scenario

we are using the RosettaNet ontology [APPENDIX A]. The RosettaNet schema language is a

Document Type Definition (DTD) but we have converted a portion of it into Web Ontology

Language (OWL) [18] for greater precision. Figure 2, shows a snapshot of RosettaNet ontology

which we have created using RosettaNet PIP’s in OWL.

2.2. FUNCTIONAL SEMANTICS

The functional semantics of a Web service operation is a combination of its data semantics, and

classification of its operations functionality as well as its pre-conditions and post-conditions.

8

Figure 2: Snapshot of a part of RosettaNet Ontology

Let s be a service and o be one of its operations then, we define functional semantics of an

operation of a Web service as:

F(s, o) = <Fc(s,o), I(s,o), O(s,o), E(s,o), P(s,o), Po(s,o)>,

Table 1: Functional Semantics

Fc(s,o) Functional classification of operation ‘o’ in terms of ontological concepts

I(s,o) Inputs of operation ‘o’ in terms of ontology concepts

O(s,o) Outputs of operation ‘o’ in terms of ontology concepts

E(s,o) Exceptions throwable during execution of an operation ‘o’ in terms of

ontology concepts

9

P(s,o) Pre-conditions of operation ‘o’ in terms of ontological concepts

Po(s,o) Post-conditions of operation ‘o’ in terms of ontological concepts

For example, (see Table 2)

Table 2: Functional Semantics Example

 We have shown a custom sub-ontology in Figure 3 which is an extension of the of the

RosettaNet ontology shown in Figure 2. Functions of a Web service can be defined as a set of

related operations which can be mapped to concepts in the ontology in order to get functional

semantics of a Web service.

Figure 3: Custom sub-ontology of RosettaNet

Fc(s,o) #OrderBattery

I(s,o) #PurchaseOrderRequest

O(s,o) #PurchaseOrderConfirmation

E(s,o) InvalidContactInformation

P(s,o) ContactInformation <> null

Po(s,o) Valid PurchaseOrderNumber

10

2.3. QUALITY OF SERVICE (QOS) SPECIFICATIONS

 The Quality of Service (QoS) specifications of a Web service characterize performance and

other qualitative/quantitative aspects of Web services. In order for the suppliers of services to

understand each others QoS terms, a common understanding must be reached on the meaning of

the terms. Ontologies can be used to represent and explicate the semantics of these parameters. [9,

10, 30] have described generic QoS metrics based on time, cost, availability and reliability. We

have created an ontology to represent the generic metrics, as well as domain specific QoS metrics.

We have initially defined the QoS of an operation j of a Web service i as follows:

QoS(si, oj) = <T(si,oj), C(si,oj), R(si,oj), A(si,oj), DS1(si,oj), DS2(si,oj),..., DSN (si,oj)> where,

Table 3: QoS Metrics of an operation

T(s,o) Execution time of Web service ‘s’ when operation ‘o’ is invoked

C(s,o) Cost of Web service ‘s’ when operation ‘o’ is invoked

R(s,o) Reliability of Web service ‘s’ when oper ‘o’ is invoked

A(s,o) Availability of Web service ‘s’ when oper ‘o’ is invoked

DSi(s,o) Service/operation level domain specific QoS metrics

11

Each metric specification consists of a quadruple.

QoSq(s,o) = <name, comparisonOp, val, unit>, where ‘name’ is the parameter name,

‘comparisonOp’ is a comparison operator, ‘val’ is a numerical value, and ‘unit’ is the metric unit.

For example QoS can be represented as follows:

Table 4: QoS Metric Specification

Name Comparison Val Unit

Time < 60 Seconds

Cost < 100 Dollars

Reliability >= .9

Availability >= .8

The overall semantics of an operation are defined as:

OP(si,oj) = <F(si,oj), QoS(si,oj)> , where

F(si,oj) and QoS(si,oj) are functional semantics and QoS specifications of the required operation,

respectively. The former tells what the service operation does, while the latter tells how well it does

it. Services can be represented as Service Advertisements (SA) which is the actual services/WSDL

files published in the registry.

12

Figure 4: Web Service Stack and METEOR-S

Figure 4 shows the layers in the Web Service Stack. At the description layer we have the

METEOR-S Web Service Annotation Framework wherein we semantically annotate WSDL

documents. We also have the ability to annotate source code with semantics and then generate

annotated WSDL documents. The annotated WSDL documents can be published in the UDDI

using Semantic Web Service Publication API. For Discovery, we provide the facility to discover

semantic Web services using either an API (for automated discovery) or a graphical user interface.

At the Flow layer, we have the Constraint Driven Web Service Composition in METEOR-S which

deals with Semantic Web Process Composition.

13

CHAPTER 3

ARCHITECTURE

 Figure 5 shows the architecture of the METEOR-S which is made up of a front-end [24] and

back-end.

Figure 5: Architecture of METEOR-S

14

 In the front-end, the semantic Web service designer is used to create semantic Web services by

annotating source code with ontology concepts. This annotated source code can be converted into

annotated WSDL 1.1, WSDL-S or OWL-S document by the semantic description generator.

Annotated WSDL1.1 uses the extensible elements provided in WSDL to add semantics to it.

WSDL-S defines its own constructs to represent semantics. The descriptions can then be published

into enhanced UDDI which was created by adding a layer above UDDI v2 to add semantics to it.

 METEOR-S allows us to design and abstractly represent the functionality of the required

services using Service Templates (ST). The Discovery Engine is an interface over UDDI [20]

registries to provide semantic publication and discovery. The constraint analyzer module produces

approved (includes optimal, near optimal and ranked) sets based on business and process

constraints and objective functions. The execution engine binds a set of services to the abstract

process and generates an executable process.

 My contributions include designing and implementing the discovery engine, the abstract process

annotator (a graphical user interface to annotate abstract processes), the constraint analyzer and the

binder to bind the optimal set of Web services to the abstract process.

15

Figure 6: Service level details of METEOR-S backend.

Figure 6 shows the internal working of the METEOR-S backend at the Web service level for a

supply chain example using RosettaNet. The PriceAndAvailabilityRequest is sent to multiple

candidate services and responses are received. The response quotes are then processes and the most

optimized candidate is chosen and the PurchaseOrderRequest is then sent. We discuss all the

modules of METEOR-S backend in the following chapters.

16

CHAPTER 4

ABSTRACT PROCESS DESIGNER

This stage involves creating a representation of Web processes. We have chosen BPEL4WS [1] for

creating the abstract process as it is the de facto industry standard and provides a rich set of

constructs for modeling workflow patterns [34].

Figure 7: IBM BPWS4J Editor

Design of abstract processes involves the following tasks.

1. Creating the flow of the process using the control flow constructs provided by BPEL4WS

(see Figure 7).

2. Representing the requirements of each service in the process by specifying service

templates, which allow the process designer to bind to a known Web service or specify a

17

semantic description of the Web service. Figure 8 shows the graphical user interface we

made to annotate abstract services in the process. For each abstract Web service in the

process, we can specify a domain, location, input/output concepts, constraints on the service

as well as constraints on the overall process.

3. Specifying process constraints for optimization (see Figure 8).

Figure 8: BPEL Semantic Annotator

18

Let us examine the creation of the abstract process with the help of an example. Consider the

process of a distributor for processing customer orders. It starts by receiving the order from a

customer. Then the order is processed and potential suppliers are selected. This process also

includes a step, where potential suppliers may be contacted for quotes. After getting the quotes, the

best candidates are chosen on the basis of process and business constraints and the orders are sent

to them. This process can be designed by first deciding the flow of the different activities involved.

This can be done by creating the process flow in BPEL4WS. The abstract process flow is shown in

Figure 9.

19

Figure 9: Abstract Distributor Process

4.1. SERVICE TEMPLATE

 The designer can then decide which services to bind manually and which to bind dynamically

through METEOR-S. The internal distributor services for processing the order and selecting the

suppliers do not change so they may be statically bound to the process. However, the suppliers to

be contacted depend on the order, so the supplier services should be able to be dynamically selected

and bound to the process. This can be done by specifying service templates for the suppliers. We

have defined specifications for augmenting BPEL4WS activities with service templates. Figure 8

shows the creation of service templates for an abstract process. A service template is created by

using functional semantics as well as QoS specifications for an abstract operation from a suitable

Web service. A Service Template is defined as

<SL(ST), OP(ST,o1), …, OP(ST,om)>, where

Table 5: Service Template

SL(ST) Service Level Parameters

OP(ST,oi) Operation Semantics

SL(ST) = <B(ST), L(ST), D(ST)>, where

20

Table 6: Service Level Parameters

B(ST) Business Name of the service provider

L(ST) Geographic Location of the service

D(ST) Domain of the service

 Currently, the Location of the service is specified using the ISO 3166 Geographic Code System

and the domain is specified using the NAICS taxonomy [21]. For example we use United States as

the location from ISO 3166 and “Battery Manufacturing” as the domain from the NAICS

taxonomy. Also, our system is compatible with any other standards that can be used to specify the

location and domain. A Service Template can be serialized as a Java object or in XML.

 Here is an example of a service template for the service that supplies batteries in United States,

which provides operation for ordering batteries.

Table 7: Service Template Example

Feature Weight Constraint

L(ST) 1 United States

D(ST) 1 Battery Manufacturing

Fc(ST,o) 1 #OrderBattery

 I(ST,o) .8 #PurchaseOrderRequest

O(ST,o) 1 #PurchaseOrderConfirmation

R(ST,o) .8 > 0.9

C(ST,o) .9 < 100 Dollars

21

 While creating a service template, weights can be defined on the parameters to provide

more flexibility. In the above example, the input, reliability and cost is given a lesser weight than

other parameters.

4.2. SERVICE ADVERTISEMENT

WSDL is primarily syntactic in nature, and does not explicate the semantics of the service provider.

In an effort to be closely aligned to industry standards, semantic annotation of WSDL were

proposed in [29, 24]. A Service Advertisement is a representation of the actual service published in

the UDDI. Service Advertisements are represented by annotated WSDL files, conceptually we can

represent them as, SA (Service Advertisement), where

 SA = <SLP(SA), OP(SA,o1), …, OP(SA,om)>

22

CHAPTER 5

DISCOVERY ENGINE

UDDI v.2 is the current standard for Web service discovery and publication. Semantic search in

UDDI was first proposed by [22]. We have built a layer above UDDI to use the existing data-types

to add semantic descriptions of Web services. We call this layer as Enhanced UDDI. We have

implemented our own algorithms to support semantic querying for services annotated using

METEOR-S specifications. Service providers can annotate their services to create service

advertisements and publish them using the publishing API we have provided. Given a service

template, the discovery engine will return a set of service advertisements which match the template.

A service advertisement is considered as a match if it is compatible enough to be used directly or

after making some data transformations. The discovery engine also searches for the transformations

required to make a service advertisement match the template.

 WSDL is the industry standard for describing Web services. It is, however, primarily syntactic in

nature, and does not explicate the semantics of the service provider. DAML-S [2] (now replaced by

OWL-S [3]), presented semantic representation of Web services using an ontology based mark-up

language. To find an optimal service set, we have a three phase selection process. The first phase is

automated service discovery, followed by constraint analysis and then optimization based on user

constraints as shown in Figure 10.

23

Figure 10: Three Phases of the Selection Process

A detailed description of the METEOR-S discovery algorithm is provided in Section 5.1. The

remaining two phases are discussed in Chapter 6.

5.1. AUTOMATED DISCOVERY OF WEB SERVICES

In this section, we provide a description of our proposed discovery algorithm. We have

implemented this algorithm using the UDDI4J API [20]. We present a conceptual overview of the

algorithm, which quantifies the level of similarity between templates and advertisements based on

their semantics.

Figure 11 shows the structure of UDDI and the way semantics were added to the existing

data structures. We made use of the existing data structures in the UDDI like binding template,

category bag etc., to add semantics to it. We refer to similarity between a service template and

service advertisement by the operator ‘Sim’, which is defined as a product of the match between

the service level and operation level parameters of the template and advertisement.

Sim(ST, SA) = {match(SLP(ST), SLP(SA)) * match(OP(ST), OP(SA))}

Service
Discovery

Constraint

Analysis

Optimization

24

Figure 11: Enhanced UDDI

The match between the service level parameters is the product of the scores of comparing

the elements of the service level parameters which include business name, location and domain.

Match(SLP(ST), SLP(SA)) = ∏ [score(SLPi(ST), SLPi(SA))]

 SLPi ∈ST

 score(SLPi(ST), SLPi(SA)) = 1, if equal

 0, otherwise

25

Match between operation level parameters is represented as the product of matcheop between

each operation in semantic template with all operations in the service advertisement which is the

maximum of the matchop between the operation in the service template with all operations in the

service advertisement.

match(OP(ST), OP(SA)) = ∏ (matcheop(OP(ST,oi), OP(SA))

 i = 1 to m

matcheop(OP(ST,oi),OP(SA))=Max[matchop(OP(ST,oi),OP(SA, o1)) ,…, matchop(OP(ST,oi),

OP(SA, oj))] j=number of operation in advertisement

The matchop between an operation in the template with another operation in the

advertisement is a weighted mean of the matchopf between the functional parameters of the template

and advertisement and the matchopq between the QoS parameters of the template and advertisement

Matchop(OP(ST,oi),OP(SA,oj)) = (wa*matchopf(OPF(ST,oi),OPF(SA,oj))+

 (wb*matchopq(OPQ(ST,oi),OPQ(SA,oj)))/(wa+wb)

where wa and wb are the weights according to the priority given to the match between functional

and QoS parameters respectively of the template and the advertisement. The matchopf between

functional parameters of two operations in the template and advertisement respectively is the

weighted mean of the concept match between the operation concept, output and inputs.

matchopf(OPF(ST,oi),OPF(SA,oj))= [w1*matchC(OP(ST,oper(oi)),OP(SA,oper(oj)))+

26

 w2*matchC(OP(ST,output(oi)),OP(SA,output(oj)))+

w3*matchC(OP(ST,input(oi)),OP(SA,input(oj)))]/ (w1+w2+w3)

where w1, w2 and w3 are the weights according to the priority given to the matchC between the

operation, outputs and inputs respectively of the template and the advertisement. The matchopq

between QoS parameters of two operations in the template and advertisement respectively is the

weighted mean of the match between the time, cost, reliability and availability.

matchopq(OPQ(ST,oi),OPQ(SA,oj)) = w1*matchQT(OP(ST,T(oi)),OP(SA,T(oj)))+

w2*matchQC(OP(ST,C(oi)),OP(SA,C(oj)))+ w3*matchQR(OP(ST,R(oi)),OP(SA,R(oj)))+

w4*matchQA(OP(ST,A(oi)),OP(SA,A(oj)))]/ (w1+w2+w3+w4)

where w1, w2, w3 and w4 are the weights according to the priority given to the matchQx between the

time, cost, reliability and availability respectively of the template and the advertisement. matchC

between the data and functional parameters reduces to matching two concepts in an ontology.

For simplicity in representation let us represent

OP (ST, output(oi)) = A

OP (SA, output(oj)) = B

Let matchC (A,B) = Y and Y ∈ [0, 1]

The value of Y depends on the following constraints:

27

Table 8: Constraints for matching two concepts

Y=1 if A = B

Else Y = pow (x, d) if B is a super-class of A and dist (A,B) =d

Else Y = pow(x*x, d) if A is a super-class of B and dist (A,B)=d

Else Y = pow(x^3,d) where d=maxDistOfCommonParent (A,B)

Here x = PropertyMatch (A, B) =

(number of properties of A which are identical in B *2)/ (sum of properties of A and B)

Property match is calculated by comparing property name, range, domain, cardinality and any other

restrictions on the properties.

Depending on a threshold (T) for similarity measures, a set of candidate services can be returned

for each template in the abstract process specification. We expect the threshold to be very high for

dynamic binding. It can be lower if there is a human in the loop.

canditate (STi) = { N
i

j
i

0
i S...,,...SS } {1..N}j ∈∀ Sim (STi, SAj) > T

28

Figure 12: Filters in METEOR-S Semantic Web Service Discovery

Figure 12 shows how multiple filters are employed during semantic Web service discovery.

Consider the user is looking for a service advertisement matching the following service template:

Table 9: Service Template (ST)

Location United States

Domain Battery Manufacturing

Operation1 #RequestBatteryQuote

29

 Input #QuoteRequest

 Output #Quote

Operation2 #OrderBattery

 Input #PurchaseOrderRequest

 Output #PurchaseOrderConfirmation

Reliability > 0.7

Imagine the UDDI registry has the following service advertisement:

Table 10: Service Advertisement (SA)

Business Name CISCO

Location United States

Domain Battery Manufacturing

Operation1 #RequestBatteryQuote

 Input #QuoteRequest

 Output #Quote

Operation2 #OrderElectronicPart

 Input #PurchaseOrderRequest

 Output #PurchaseOrderConfirmation

Time = 50 seconds

Reliability = .9

Availability > .8

30

Matching the service level parameters:

match(SLP(ST), SLP(SA)) = ∏ [score(SLPi(ST), SLPi(SA))]

 SLPi ∈ST

match(SLP(ST), SLP(SA)) = score(B(ST), B(SA)) * score(L(ST), L(SA)) * score(D(ST), D(SA))

 = 1 * 1 * 1 = 1

The compute the match between the operation level parameters we matching first operation

requestBatteryQuote with the two operations in advertisement.

matcheop(“requestBatteryQuote”,{“requestBatteryQuote”, orderElectronicPart”})=

Max[matchop(“requestBatteryQuote”,“requestBatteryQuote”),

matchop(“requestBatteryQuote”,“orderElectronicPart”)]

Now, matchC (“requestBatteryQuote”,“requestBatteryQuote”) = 1

If we assume that requestBatteryQuote is a child of RequestQuote in the RosettaNet ontology. We

can see from Figure 2 (page 8) and Figure 3 (page 9) that requestBatteryQuote and

orderElectronicPart are siblings and the distance of common parent = 2.

matchC(“requestBatteryQuote”,“orderElectronicPart”) =pow(.9*.9*.9,2) = .5 (assuming a high

property match with x = .9)

Hence, matcheop(“requestBatteryQuote”,{“requestBatteryQuote”, orderElectronicPart”})=Max(1,

.5) = 1

31

Since the inputs and outputs are same for each operation,

matchC(OP(ST,output(o1)), OP(SA, output(o1))) = 1

matchC(OP(ST,input(o1)), OP(SA, input(o1))) = 1

If we give equal priority to operation, outputs and inputs, we can define w1, w2 and w3 each as 1

matchopf(OPF(ST,o1), OPF(SA,o1)) = (1*1 + 1*1+1*1)/3 = 1

Since the required reliability was > .7 and the reliability defined in the advertisement is .9, hence,

Match between quality parameters:

matchopq(OPQ(ST,o1), OPQ(SA,o1)) = 1

Hence, match between the two operations:

matchop (OP (ST,o1), OP (SA,o1)) = (1 * 1 + 3*1)/4 =1

Matching second operation ‘orderBattery’ with the two operations in the advertisement.

matcheop(“orderBattery”, {“requestBatteryQuote”, “orderElectronicPart”}) =

Max[matchop(“orderBattery”,“requestBatteryQuote”),

matchop(“orderBattery”,“orderElectronicPart”)]

32

Concept orderBattery is not a superclass of requestBatteryQuote and neither requestBatteryQuote is

a super-class of orderBattery. The max distance of common parent orderBattery and

requestBatteryQuote is 2.

matchC(“orderBattery”,“requestBatteryQuote”) = pow(.9*.9*.9 , 2) = .53

Now, orderPart is the parent concept of orderBattery in the functional ontology.

matchC(“orderBattery”,“orderElectronicPart”) = .9

matcheop(“orderBattery”,{“requestBatteryQuote”, orderelectronicPart”})=Max(.53, .9) = .9

Since the inputs and outputs are same for each operation,

matchC(OP(ST,output(oi)), OP(SA, output(oj))) = 1

matchC(OP(ST,input(oi)), OP(SA, input(oj))) = 1

If we give equal priority to operation, outputs and inputs we can define w1, w2 and w3 each as 1

matchopf(OPF(ST,oi), OPF(SA,oj)) = (1*.9 + 1*1+1*1)/3 = .97

Since the required reliability was > .7 and the reliability defined in the advertisement is .9, hence,

matchopq(OPQ(ST,oi), OPQ(SA,oj)) = 1

33

If we give higher priority to the QoS specifications then Wa = 1and Wb = 3

matchop (OP (ST,o2), OP (SA,o2)) = (1 * .97 + 3*1)/4 =.99

match (OP(ST), OP(SA)) = matchop (OP (ST,o1), OP (SA,o1)) *

 matchop (OP (ST,o2), OP (SA,o2)) =1*.99 =.99

Sim(ST, SA) = {match(SLP(ST), SLP(SA)) * match(OP(ST), OP(SA))} = 1 * .99 = .99

5.2 DISCOVERY TEST RESULTS

Traditional Web service discovery is based on keyword search on the description of Web services

published in the UDDI. It can also find Web services that extend a particular interface. To gauge

how well semantic Web service discovery performs over the traditional Web service discovery, we

performed a comparison of the two discovery techniques with the following setup:

1. Over 50 WSDL documents were downloaded from xmethods.net

2. Over 10 existing ontologies from different domains were downloaded for example,

a. http://reliant.teknowledge.com/DAML/SUMO.owl

b. http://reliant.teknowledge.com/DAML/Geography.owl

c. http://www.cs.uga.edu/~aggarwal/Banking.owl

d. http://www.cs.uga.edu/~aggarwal/StockBroker.owl

3. The WSDL files were annotated with relevant ontology concepts.

4. The annotated WSDL files were then published in the Enhanced UDDI using the publishing

API of the enhanced UDDI.

34

5. Each Web service had a description associated with it which was also stored in the UDDI.

6. The tests were run by doing a semantic search and a keyword based search on the Web

service descriptions.

7. We have measure the following for each test: Precision, Recall, False Positives and False

Negatives.

8. The test cases were: Case1: Search on Location, Case2: Search on domain, Case3: Search

with more specific concepts and Case4: Search with less specific concepts.

35

5.2.1. RECALL

Figure 14: Recall

Recall calculates the ratio of the number of relevant Web services discovered and the number of

relevant Web services in the UDDI. The number of relevant Web services (relevant to the search)

in the UDDI was decided manually. Since semantic search explicitly searches for the location and

domain of the Web service, the recall in these cases are high. When looking for more specific

concepts, the keyword search fails miserably. It is because the description of a Web service seldom

contains more keywords that specify more things that the Web service can do.

36

5.2.2. PRECISION

Figure 13: Precision

Precision calculates the ratio of number of relevant services discovered and the number of total

services discovered (includes both relevant and non-relevant). The precision for semantic search

was consistently higher except case 3 (search on more specific concepts). The precision here

decreased due to the presence of two very different concepts in the same sub-tree of the ontology.

The two concepts were although present in the same sub-tree of the ontology but were not a close

match as established by the discovery engine incorrectly. Since semantic search looks for common

parents, siblings and parent-child relationships, it yields better overall precision than keyword

based search.

37

5.2.3. FALSE POSITIVES

Figure 15: False Positives

False positives measure the ratio of the number of irrelevant results in the total results returned by

the search. The semantic search usually has no false positives except in case 3. This can again be

attributed to the fact that the ontology had a few very different concepts in the same sub-tree of the

ontology and the discovery engine returned one concept as a close match for the other during

discovery. Since some of these irrelevant results were included in this case, it has a higher ratio for

false positives.

38

5.2.4. FALSE NEGATIVES

Figure 16: False Negatives

False negatives measure the ratio of relevant services that were not included in the results. In case

2, while searching for Web service in a particular domain, the semantic search results in a high

percentage of false negatives. This is because the NAICS taxonomy provides with so many related

domains but the publisher has to choose only one of them. So when a query is made on one

domain, the results from other much related domains are not included which leads to false

negatives. In case 3, while searching with more specific concepts, the absence of more specific

keywords in the description makes the keyword discovery ignore a number of possible matches.

This leads to a high percentage of false negatives.

39

CHAPTER 6

CONSTRAINT ANALYZER

The constraint analyzer dynamically selects services from candidate services, which are returned by

the discovery engine. Dynamic selection of services raises the issues of optimality. Our approach is

to represent all criteria that affect the selection of the services as constraints or objectives. This

converts the problem to a constraint satisfaction/optimization problem. Any candidate set of

services for the process which satisfies the constraints is a feasible set. The constraints analyzer has

three sub-modules: the constraint representation module, the cost estimation module and the

optimization module. We discuss these modules in detail in the next sub sections.

6.1. CONSTRAINT REPRESENTATION MODULE

The constraint representation module allows us to represent the business constraints in ontologies.

A business constraint is defined as any constraint that affects the selection of a Web service for a

process. For example, some suppliers may be preferred suppliers for one part, but secondary

suppliers for another part. There may exist a number of such business constraints for a particular

process. Depending on the particular instance of the process, some constraints may be more

important than others. For example, a secondary supplier may be chosen over a preferred supplier if

it is cheaper. For illustration purposes, let us consider an example of representing business

constraints. We have developed an electronics part ontology [APPENDIX C] representing

40

relationships between electronic items such as network adapters, power cords and batteries. The

ontology is used to capture the suppliers for each part, their relationships with the manufacturer and

the technology constraints in their parts. Let us express the following facts in the electronics part

ontology derived from the RosettaNet ontology (Figure 2).

Table 11: OWL Expressions for Facts

Fact OWL expression

Supplier1 is an instance of

network adaptor supplier

Supplier1 supplies #Type1

Supplier1 is a preferred supplier.

<NetworkAdaptorSupplier rdf:ID="Supplier1">

<supplies rdf:resource="#Type1"/>

<supplierStatus>preferred </supplierStatus>

</NetworkAdaptorSupplier>

Type1 is an instance of

NetworkAdaptor

Type1 works with Type1Battery

<NetworkAdaptor rdf:ID="Type1">

 <worksWith> <Battery rdf:ID="Type1Battery">

</worksWith></ NetworkAdaptor >

 With the help of such statements the required business and technological constraints, which will

be critical in deciding the suppliers, can be encoded in the ontology. In the future, we will use

SWRL [14] along with OWL to provide more descriptive rules for specifying constraints.

41

6.2. COST ESTIMATION MODULE

The cost estimation module queries the information stored in the cost representation module for

estimating costs for various factors which affect the selection of the services for the processes. The

factors which affect service selection are the following:

• Service Dependencies

• Querying and cost estimation

• Process constraints

6.2.1. SERVICE DEPENDENCIES. It is possible for the selection of one service to depend on

another [32]. These dependencies may be based on a number of criteria like business constraints,

technological constraints or partnerships. One type of service captures the notion that the selection

of one service will affect choices of other services.

6.2.2. QUERYING AND COST ESTIMATION. Let us consider the supply chain for the

manufacturer we mentioned in the introduction. Here are some of the factors which may affect the

selection of the suppliers for a particular process.

• Cost for procurement

• Delivery time

• Compatibility with other suppliers

• Relationship with the supplier

• Reliability of the supplier’s service

• Response time of the supplier’s service

42

 Depending on the manufacturer’s preferences at process execution, all the factors can be more or

less important. For example, at a certain point of time a manufacturer may only want to deal with

preferred suppliers, while at other times he may choose the lowest cost alternative. In order to be

able to set priorities between these factors, the cost estimation module provides a way to specify

weights on each factor.

 Actual values for cost, supply time and other such factors can be obtained either from the UDDI,

or by querying internal databases/third parties (like consumer reports) or getting quotes from the

suppliers Web services.

6.2.3. PROCESS CONSTRAINTS. We refer to any constraints that apply to only that particular

process as process constraints. The constraints are set on either the actual values or the estimated

values. We model process constraints as constraints on Quality of Service specifications which

were discussed in section 2.3. The process level QoS is calculated as the aggregation of QoS [9, 10,

30] of all the services in the process. In this implementation, the user has to specify the

aggregation operators for QoS parameters.

QoS(p) = <T(p), C(p), R(p), A(p), DS1(p), DS2(p),...... DSN (p)>

Table 12: Aggregate QoS Parameters

T(p) Execution time of the entire Web process

C(p) Cost of invoking all the services in the process

R(p) Cumulative reliability of all services in process

A(p) Cumulative availability of all services in process

DSi(p) Cumulative scores for Domain specific QoS parameters.

43

QoSi (p) = {name, comparisonOp, val, unit, aggregationOp}, where ‘name’ is the name of the QoS

parameter, ‘val’ is a numerical value, ‘comparisonOp’ is a comparison operator, ‘unit’ is the unit of

measurement and ‘aggregationOp’ is aggregation operator. For most metrics, the process QoS can

be calculated using the aggregation operators’ summation, multiplication, maximum or minimum.

However, in some cases, the user may want to define a custom function for aggregation.

6.3. CONSTRAINT OPTIMIZER

The cost estimation module quantifies the process QoS parameters for all candidate services in the

process. The process constraints are directly converted to constraints for an Integer Linear

Programming Solver called LINDO [17]. The constraints specified by the user are stored in the

Service Template. The service providers can specify an operation in the service which can be

invoked to get the QoS Metrics or constraints of the service. The Optimizer module retrieves

constraints for the services matching the Service Template from either the UDDI or by invoking an

operation of the service specified by the provider. The objective function for optimization, which is

a linear combination of the parameters, is extracted from the Service Template defined by the user.

 These constraints and objective function, when fed into the LINDO Integer Linear Programming

solver, will produce a number of feasible sets which would be ranked from optimal to near optimal

solutions. The ranking is done on the basis of the value of the objective function. The value of each

individual constraint like time, cost, and partner preference is also provided for feasible sets. The

process designer is given the option of selecting the feasible set to be sent to the run-time module.

44

CHAPTER 7

BINDER

Figure 17: Design Time and Process Instance Initiation Time Binding

After sending the service templates to the discovery engine, discovering and optimizing, the last

stage in METEOR-S Constraint Driven composition deals with binding the abstract process to the

optimal set of services (which match the service templates and satisfy the given constraints) to

45

generate an executable process. The BPWS4J [12] engine provides a runtime environment to

execute Web processes represented in BPEL4WS of Active BPEL [39]. The output of the binder is

a BPEL file in which the process flow and data dependencies are specified between the Web

services and can be deployed on the BPWS4J engine. We are using the BPWS4J API to parse the

abstract BPEL file and make changes to it. The abstract BPEL file contains placeholders for the

actual service details to be filled in. Assuming the user gives the following abstract BPEL and

service template:

Table 13: Abstract BPEL and Service Template Example

Abstract BPEL Service Template

<invoke name="orderPart"

partner="Partsupplier" portType="?"

operation="?" inputVariable="?"

outputVariable="?"/>

Operation = #OrderBattery

Input:#PurchaseOrderRequest

Output:#PurchaseOrder

Confirmation

A service advertisement will be returned by the system along with the location of the WSDL

corresponding to the service. The WSDL file will be used to extract portType, namespace, etc. and

would be inserted at appropriate locations in the BPEL. Hence using the service advertisement and

the WSDL location we can construct the Executable BPEL:

46

Table 14: Matching Service and Executable BPEL Example

Matching Service Executable BPEL

Operation = SendOrder

Input= purchaseOrderRequest

Output= purchaseOrderConfirnation

wsdl= http://host/order.wsdl

<invoke name="orderPart"

partner="Partsupplier"

portType="sup:BatterySupplier"

operation="SendOrder"

inputVariable="purchaseOrderRequest"

outputVariable="purchaseOrderConfirnation"/>

We are using WSDL4J API [4] to extract Web service details like portType, namespace, etc. which

is then inserted into the BPEL file. We assume that the WSDL is complete and there is only one

portType corresponding to an operation. The final executable BPEL file is then sent to the BPWS4J

execution engine to be executed.

47

CHAPTER 8

METEOR-S PACKAGES

The METEOR-S tool is divided into multiple packages each providing a specific functionality e.g.,

annotation, publication, discovery and composition.

1. METEOR-S Web service annotation framework: The annotation framework in METEOR-S

is used to annotate WSDL documents with ontological concepts using schema matching

techniques. The annotation framework has the following packages and classes under it:

Package Name Class Name Description
mwsaf.matcher Mapping This class represents a mapping

between two concepts
mwsaf.matcher Mappings This class represents a set of mappings
mwsaf.matcher.element NGramMatcher This class implements the N Gram

matcher
mwsaf.matcher.element TokenMatcher This class implements a Matcher which

matches based on tokens.
mwsaf.matcher.schema SchemaGraphMatcher This class is used to get similarity

between two schema graphs
mwsaf.matcher.schema SchemaMatcher This class is used to get similarity

between two schemas
mwsaf.translator OwlTranslator Translates an OWL file to a graph
mwsaf.translator WSDLTranslator Translated a WSDL document into a

graph
mwsaf.ui AlgorithmManager Provides a user interface to add new

element level matching algorithms
mwsaf.ui Mapping panel This class visualizes the mappings
mwsaf.ui OntologyRenderer This class visualizes the ontology
mwsaf.ui SchemaNode This class is the visual representation

of a vertex.
mwsaf.ui WSDLRenderer This class visualizes the WSDL file
mwsaf.util MWSAFUtils This class provides methods for

manipulating the resources related to
the whole application

util.algo Gram This class implements a part of N-

48

Gram algorithm
util.algo NegativeDictionary This class represents a negative

dictionary i.e. a dictionary of
meaningless words.

util.algo NGram This class implements NGram
algorithm

util.algo PorterStemmer This class implements the stemming
algorithm

util.algo WordnetApp A class to retrieve Synonyms from
WORDNET

util.graph Edge This class represents an edge joining
two nodes in a graph.

util.graph Graph Graph is a collection of Nodes joined
by edges

util.graph Vertex This class represents a node in a graph.

2. METEOR-S semantic description generator provides the facility of converting a given

annotated source code to annotated WSDL document or WSDL-S document. It also

provides an API to extract the semantic information from WSDL and WSDL-S and publish

the Web service in UDDI. It has the following packages and classes under it:

Package Name Class Name Description
description.generate GenerateWSDL Creates an annotated WSDL file from an

annotated source code file
description.generate GenerateWSDL_S Creates a WSDL-S file from an annotated

source code file
description.parse WSDL_Parser Parses and extracts the semantic tags from

the WSDL file to be published
description.parse WSDL_Parser_WSDLS Parses and extracts the semantic tags from

the WSDL-S file to be published
description.publish Publish_WSDL Publishes the service represented by

annotated WSDL file to the enhanced
UDDI

description.publish Publish_WSDLS Publishes the service represented by
WSDL-S file to the enhanced UDDI.

3. METEOR-S back-end is used for publication, discovery and composition of Web services.

It provides an API to automatically publish and discover semantic Web services. It also

49

facilitates constraint driven Web service composition. It has the following packages and

classes under it:

Package Name Class Name Description
discover DiscoveryInterface Provides the graphical user interface for

semantic discovery of Web services.
discover EUDDIAPI This class is provides an API for extracting

semantic information from enhanced UDDI
discover Non_Semantic_Search Used to perform traditional keyword search

on the description of Web services.
discover WSDL_Output This class prints the results of the discovery

on the screen.
publish PublishInterface This class provides the graphical user

interface to publish semantic Web services.
compose Activity This class is used as a template to store the

the operation (recieve, invoke, reply)
information after parsing a BPEL file.

compose ActivityPanel This class is used to diaplay the information
about all the activities that are present in the
abstract BPEL

compose Assign This class emulates the assign construct in
the BPEL.

compose BPELBinder BPLEBinder is a class that converts the
abstract BPEL file into an executable BPEL
file by replacing placeholders in the abstract
file with values extracted from external
WSDL files discovered by the discovery
engine.

compose BpelInterface This class provides the graphical user
interface used to annotate the abstract BPEL
with semantics.

compose BPELModel This class creates the QoS Workflow model
from a given abstract process, adds
constraints to it and runs the composition
routine.

compose Catch This class represents the catch element in a
BPEL file.

compose DynamicInvoke This class is used to dynamically invoke the
partner Web services and get the quotes from
them.

compose FileViewer Used to view the abstract, executable BPEL
files and the process WSDL in the
METEOR-S tool

compose From This class represents the ‘from’ element in a
BPEL file.

50

compose Invoke This class represents the ‘invoke’ element in
a BPEL file.

compose OptimizedResults This class displays the optimized results
from the Constraint Analyzer and Optimizer
on the screen.

compose ParseBpel This class is a BPEL parser. It parses the
BPEL file and extracts information on the
various activities.

compose PartnerLink This class represents the ‘partnerLink’
element in a BPEL file.

compose PriceAndAvailabilityRequest Contains information sent to the partner Web
services to get the quotes

compose PriceAndAvailabilityResponse Contains information about the quotes
returned from the partner Web services.

compose Process This class represents the ‘process’ element in
a BPEL file.

compose PartnerLinkType This class represents the ‘partnerLinkType’
element in a BPEL file.

compose Variable This class represents the ‘variable’ element
in a BPEL file.

compose To This class represents the ‘to’ element in a
BPEL file.

compose WorkflowOptimizer This class deals with constraint analysis and
optimization of the set of services returned
by the discovery engine.

compose WSDLBinding This class is used to Bind the abstract BPEL
to the WSDL's of the partners.

compose WsdlWriter This class generates the process WSDL for
the executable BPEL process.

utils AllListing This class provides the facility to do
semantic Web service discovery. It provides
the facility to either return a list of the exact
matches or a list of relevant ranked matches.

utils Constraint Represents a constraint that can be specified
on an activity or the process

utils HttpWsdl This class supports get and post methods and
gets the contents of the URL as string

utils OntologyParser Used to parse OWL ontology files and infer
relations between concepts using Jena API.

utils PublishService Provides an API to publish a semantic Web
service in the enhanced UDDI.

utils QoSDimension Describes a dimension for the QoS
parameter

utils QoSMetric QoSMetric class represents an actual QoS
metric for a Web service.

utils QueryConstraints Provides a graphical user interface to specify

51

constraints on activities or the process
utils Service Represents a Web service
utils ServiceTemplate Represents a Service Template for searching

a Web service.
utils Task Represents a Task in a workflow or an

Activity in BPEL
utils TaskQoS Represents the QoS of the Task or activity in

BPEL.
utils Transition Represents a link between two tasks in a

workflow
utils Workflow Represents a workflow or a BPEL process
utils WSDL_Interface_Domain Opens the JAXR domain (NAICS) browser

included in JWSDP.
utils WSDL_Interface_Location Opens the JAXR location browser included

in JWSDP
utils WSDL_OntologyBrowser Provides a graphical user interface to browse

an ontology.
run Setup Sets up the UDDI for semantic Web service

publication and discovery
run BpelIDE This is the main graphical user interface of

the tool. It can be used to perform
annotation, publication, discovery and
composition of Web services.

52

CHAPTER 9

RELATED WORK

Semantics has been proposed as key to increasing automation in applying Web services and

managing Web processes that take care of interactions between Web services to support business

processes within and across enterprises [3, 15, 8]. Academic approaches like WSMO, OWL-S and

METEOR-S have tried to approach this solution by using ontologies to describe Web services. This

approach is consistent with the ideas of the Semantic Web, which tries to add greater meaning to all

entities on the Web using ontologies.

 Automated discovery of Web services requires accurate descriptions of the functionality of Web

services, as well as an approach for finding Web services based on the functionality they provide.

[35] has discussed classification of services based on their functionality. Another approach tries to

define the functionality of a Web service as the transformation of inputs to outputs [22]. Creating

process ontologies was discussed in [16]. Our discovery algorithm considers functional and data

semantics as well as QoS specifications.

 Highly intertwined with semantics (and considered in this thesis as part of semantic

specification) is the issue of Quality of Service (QoS), pursued from academic setting in [9, 10, 30],

and in industry setting under the Web Service Policy framework [7].

 Use of automation in composing Web processes is predicated on having sufficient machine

processable information about the process requirements as well as the available Web services.

Thus, Web services need semantic annotation and process requirements need to be specified at a

53

high level. These requirements may be specified as goals [8], application logic (e.g. using extended

Golog [19]) or hierarchal planning constructs [33]. None of the above approaches for automated

composition have considered a comprehensive framework for composition that would optimize

selection of Web services on the basis domain specific QoS constraints.

 We believe that the ability to choose services dynamically is crucial to the success of the service

oriented architecture. OWL-S is a markup language anchored in an OWL ontology for automatic

composition of Web services. It has not yet developed formalisms for optimization on the basis of

QoS.

 The Semantic Web Services Initiative Language Committee [36] is working on identifying

requirements for and developing a computer language technology which will standardize the

semantic information about Web services and develop a language for its declarative specification.

Initiatives like OWL-S, WSMO and First Order Ontology for Web Services (FLOWS) [37] in this

area are trying to come up with frameworks that satisfy these requirements. OWL-S v 1.1 will

make use of SWRL for describing business logic and rules. Although SWRL will increase the

expressivity of OWL-S, it is recursive and is in an early stage of development. Moreover, reasoning

in SWRL is semi-decidable. WSMO is based on F-logic which is a full First Order Logic. The

current standard of WSMO does not define how the orchestration is described which defeats the

purpose of having a semantic Web services language. The FLOWS ontology is based on PSL [38],

a dialect of situation calculus. Although PSL is extensible and has been proved to be a useful

exchange language, it is difficult to read or write. There is no presentation of the entire ontology

and no definition of concepts, composition, negotiation or dataflow is provided in the current

FLOWS standard.

54

An effort that comes closest to our research is Self-Serv [5], which provides an environment for

creation of processes. They have, however, not considered issues like handling dependencies

between Web services in a process. Another relevant work [30] proposed a linear programming

approach to optimize service selection across the process using generic QoS parameters. While

they focus solely on optimization on generic QoS issues, we provide a comprehensive framework,

which optimizes service selection based on multi dimensional criteria such as domain constraints,

inter-service dependencies and QoS.

55

CHAPTER 10

CONCLUSION AND FUTURE WORK

 In this work, we have presented an approach for achieving constraint driven Web service

composition. This work builds on the METEOR-S Web Service Composition Framework by

adding the abstract process designer, constraint analyzer, optimizer and binder modules. We have

extended the workflow QoS model in [10] to allow for global optimization and composition of

Web processes.

 METEOR-S adds the advantage of taking an abstract process as a starting point and

automatically binding services to it. To have dynamism in process composition, METEOR-S helps

to provide the plug-and-play support for dynamically selecting Web services by enhancing

discovery of relevant Web services using Semantics. It also reduces manual intervention during

Web process composition. It provides the facility of choosing the optimal set automatically or

having the user choose the best set from a list. Constraint analysis gives a better service and choice

to the clients by making sure that the services satisfy the constraints and also by making sure that

the optimal set of services is the one that is used to create the executable process.

 We believe that our cost estimation module adds great flexibility to our system by allowing us to

quantify selection criteria. We believe this is the first work to comprehensively address the issue of

composing business processes from an abstract process using business and process constraints. We

have described the METEOR-S package in Chapter 8 including the METEOR-S Web service

annotation framework, publishing, discovery, constraint analysis, optimization and composition.

56

An online flash demo of this work is available at [25] and the complete tool is scheduled to be

released in August, 2004. The appendices include the installation instructions, ant build files and

the user manual for this tool.

57

REFERENCES

[1] Andrews et al., Business Process Execution Language for Web Services Version 1.1, available

at http://www-106.ibm.com/developerworks/webservices /library/ws-bpel/ (2003).

[2] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S. Narayanan, M.

Paolucci, T. Payne, K. Sycara, H. Zeng), "DAML-S: Semantic Markup for Web Services", in

Proceedings of the International Semantic Web Working Symposium (SWWS), July 30-August 1,

2001

[3] Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott, D., McIlraith,

S.A., Narayanan, S., Paolucci, M., Payne T.R., and Sycara, K. The DAML Services Coalition,

"DAML-S: Web Service Description for the Semantic Web", The First International Semantic Web

Conference (ISWC), Sardinia (Italy), (2002).

[4] WSDL4J, Web Services Description Language for Java Toolkit , 2003,

http://www-124.ibm.com/developerworks/projects/wsdl4j/

[5] Boualem Benatallah, Quan Z. Sheng, Marlon Dumas: The Self-Serv Environment for Web

Services Composition. IEEE Internet Computing 7(1): 40-48 (2003).

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web, Scientific American, 284(5):34--

43, May 2001.

[7] Box et al., Web Services Policy Framework (WSPolicy), availab)le at http://www-

106.ibm.com/developerworks/library/ws-polfram, (2003).

58

[8] Bussler, C., Fensel, D. and Maedche, A. A Conceptual Architecture for Semantic Web Enabled

Web Services SIGMOD Record, Special Issue Semantic Web and Databases (2001).

[9] Jorge Cardoso, Amit P. Sheth: Semantic E-Workflow Composition. Journal of Intelligent

Information Systems 21(3): 191-225 (2003).

[10] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, Quality of Service for Workflows

and Web Service Processes, Journal of Web Semantics (accepted) (2004).

[11] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana: IEEE Internet

Computing: Spotlight - Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and

UDDI. IEEE Distributed Systems Online 3(4): (2002)

[12] Curbera et al., IBM Business Process Execution Language for Web Services JavaTM Run

Time, BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j

[13] ebXML, http://www.ebxml.org

[14] Horrocks et al., SWRL, A Semantic Web Rule Language Combining OWL and RuleML,

http://www.daml.org/2003/11/swrl/, 2003

[15] Michael Kifer and David Martin, Bring Services to the Semantic Web and Semantics to the

Web services, SWSC, (2002).

[16] M. Klein, and A. Bernstein. “Searching for Services on the Semantic Web using Process

Ontologies”, in The First Semantic Web Working Symposium (SWWS-1). 2001.

[17] LINDO API version 2.0, Lindo Systems Inc.

http://www.lindo.com/

[18] McGuinness et al., Web Ontology Language (OWL), Web-Ontology (WebOnt) Working

Group, http://www.w3.org/2001/sw/WebOnt/, 2002

59

[19]McIlraith, S. and Son, T., Adapting Golog for Composition of Semantic Web Services,

Proceedings of the Eighth International Conference on Knowledge Representation and Reasoning

(KR2002), Toulouse, France, April, (2002).

[20] UDDI, Universal Description, Discovery and Integration, http://www.uddi.org, 2002.

[21] North American Industry Classification System, US Census Beureau, 2002

[22] Paolucci, M. and Kawamura, T. and Payne, T.R. and Sycara, K. (2002) Importing the

Semantic Web in UDDI. Proceedings of Web Services, E-Business and Semantic Web Workshop,

CAiSE 2002., pages 225-236, (2002).

[23] A. Patil, S. Oundhakar, A. Sheth, K. Verma, METEOR-S Web service Annotation

Framework, To appear in the proceedings of the 13th International World Wide Conference, (2004).

[24] P. Rajasekaran et. al., Enhancing Web Services Description and Discovery to Facilitate

Orchestration, Proceedings of SWSWPC (In conjunction with ICWS’2004), pages 34-47, 2004

[25] METEOR-S Flash Demo,

http://lsdis.cs.uga.edu/~rohit/demo/METEOR-S-6.swf, 2004

[26] RosettaNet, http://www.rosettanet.org

[27] A. Sheth, “Semantic Web Process Lifecycle: Role of Semantics in Annotation, Discovery,

Composition and Orchestration,” Invited Talk, WWW 2003 Workshop on E-Services and the

Semantic Web, Budapest, Hungary, May 20, (2003).

[28] A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch, I.

Shevchenko: Supporting State-Wide Immunization Tracking Using Multi-Paradigm Workflow

Technology. VLDB 1996: 263-273

[29] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller: Adding Semantics to Web Services

Standards, Proceedings of 1st International Conference of Web Services, 395-401, (2003).

60

[30] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Sheng: Quality driven Web services

composition. WWW 2003: 411-421, (2003).

[31] Managing End-To-End OpeRations : Web services, METEOR-S, http://swp.semanticweb.org.

[32] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, On Accommodating Inter Service

Dependencies in Web Process Flow Composition, AAAI Spring Symposium PP: 37-43 on

Semantic Web Services.

[33] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web services

composition using SHOP2. Proceedings of 2nd International Semantic Web Conference

(ISWC2003), Sanibel Island, Florida, (2003).

[34] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-Based

Analysis of BPEL4WS, QUT Technical report, FIT-TR-2002-04, Queensland University of

Technology, Brisbane, 2002, available at http://tmitwww.tm.tue.nl/staff/wvdaalst/

Publications/p175.pdf, (2002).

[35] C. Wroe, R. Stevens, C. Goble, A. Roberts, M. Greenwood, A suite of DAML+OIL

Ontologies to Describe Bioinformatics Web Services and Data. in International Journal of

Cooperative Information Systems special issue on Bioinformatics, March 2003.

[36] SWSL Semantic Web Services Language Committee, http://www.daml.org/services/swsl/

[37] D.Berardi, M.Gruninger, R.Hull, S.McIlraith, The FLOWS (First Order Ontology for Web

Services) Proposal, presentation to SWSL Committee

[38] Process Specification Language, http://www.mel.nist.gov/psl/, 2004

[39] Active BPEL, http://www.activebpel.org/, 2004

[40] Christoph Bussler and Dieter Fensel, Web Services Modeling Ontology (WSMO),

http://www.wsmo.org/, 2004

61

APPENDIX A - ROSETTANET ONTOLOGY

[http://lsdis.cs.uga.edu/~azami/pips.owl]

62

APPENDIX B - QoS ONTOLOGY

[http://lsdis.cs.uga.edu/~rohit/thesis/ont/qos.owl]

63

APPENDIX C – COMPUTER PART ONTOLOGY

[http://lsdis.cs.uga.edu/~rohit/thesis/ont/part.owl]

64

APPENDIX D - METEOR-S INSTALLATION INSTRUCTIONS

1) Download the METEOR-S zip file from the METEOR-S page.

2) Extract the Zip File into a folder.

3) Make sure you have the following packages installed:

a. JWSDP v 1.4 from http://java.sun.com/webservices/jwsdp/index.jsp

b. BPWS4J Engine v 2.1 from http://www.alphaworks.ibm.com/tech/bpws4j

c. Tomcat v 4.1 from http://jakarta.apache.org/tomcat/

d. LINDO API from http://www.lindo.com

e. JDK 1.5.0-beta from http://java.sun.com

f. ANT v 1.6.1 from http://ant.apache.org/

4) In the build.properties file in the project folder, enter the path to the base folders of the

above packages.

5) Change the samples.prop file in the project folder to indicate the location of the UDDI.

6) On the terminal, change your directory to the directory of the extracted zip file.

7) Run the command: ant run

8) The METEOR-S tool will be launched.

65

APPENDIX E - METEOR-S USER MANUAL

1) The starting point of the Web service composition tool is the abstract process. This abstract

process can be either written using a text editor or by using a graphical user interface to

write BPEL e.g. IBM BPWS4J editor, Oracle BPEL Process Manager, etc.

2) Once you have your abstract BPEL file saved, launch the Meteor-S tool and click on the

Open Abstract BPEL File

3) Open the abstract BPEL file you just saved.

4) The first step in using the tool is to semantically annotate the activities in the abstract

process, so that the tool can discover optimal sets of services. To annotate activities, click

on the Bind tab and then the Annotate Activities option.

5) You should now be able to see the BPEL Semantic Annotator as shown in the figure below.

Select the first activity on the right pane to enter details for that activity.

6) Step 1: Enter the domain (category) of the service.

 Step 2: Specify the geographic location information of the required service.

Step 3: To enter the operation concept, click on the Concept button to view the Rosetta-Net

Ontology browser. Select the appropriate functional concept to annotate the activity.

66

Step 4: Select the input to annotate from the input list and click Add. Use the ontology

browser by clicking on the concept button to annotate the input concept. After annotating

the input concept, add the annotated input to the list by clicking on Add.

 Step 5: Select the output variable concept from an ontology.

Step 6: To specify constraints on this activity, click the Constraints button. The constraints

window opens for you to enter constraints for this activity as shown in figure below.

67

Specify appropriate constraints using the QoS ontology. The ontology can be viewed by

clicking on the Name button. Specify the range, direction and value for the constraint. This

panel also allows you to add multiple constraints for the same operation.

Step 7: Process Constraints, specified as global constraints can be added by clicking on the

global constraints button. Global constraints can be added similar to operation constraints.

Multiple global constraints can be specified.

Step 8: Select the service or item you want to order using this service.

Step 9: Specify the quantity required.

Step 10: After all information has been filled, click on the submit button to start Discovery

and Optimization.

7) All data entered is submitted to the discovery engine which discovers services that match

the semantics of the activities specified. The data is then sent to the optimizer to find the

best set of services that satisfy process constraints as given by the user.

8) The optimized results are returned as a set of services and their objective function values.

68

9) Select the service to be bound to the process and click on OK to finalize selection.

10) The tool binds the selected Web service set to the abstract process and generates an

executable BPEL and WSDL for the process. The executable BPEL and WSDL can then be

deployed on the BPWS4J engine.

69

APPENDIX F - METEOR-S BUILD ANT FILE

<project name="getJars" default="jars" basedir=".">

 <description> Getting all the jars in one location </description>

 <!-- set global properties for this build -->

 <property file="build.properties"/>

 <property name="meteorsHome" location="c:\meteor-s"/>

 <property name="thirdPartyJars" location="${meteorsHome}/lib/3rdParty"/>

 <property name="tmp" location="c:\meteorSTemp"/>

 <property name="classpath" value="c:\test\meteor-s\classes"/>

 <target name="jars" depends="createDirs, Ant, Log4j, Axis, UDDI4J, WSDL4J, TableLayout,

 Jena, CommonsHttpClient, Xerces, SOAP"> <delete dir="${tmp}"/> </target>

<target name="createDirs"> <mkdir dir="${meteorsHome}"/>

 <mkdir dir="${meteorsHome}/lib" /> <mkdir dir="${meteorsHome}\classes"/>

 <mkdir dir="${thirdPartyJars}"/> <mkdir dir="${tmp}"/> </target>

 <target name="Ant" description="Get the Ant jars"> <ftp action="get"

 server="apache.cs.utah.edu" remotedir = "pub/apache.org/ant/binaries"

70

 userid = "anonymous" password = ""> <fileset dir ="${tmp}">

 <include name="apache-ant-1.6.1-bin.zip"/> </fileset> </ftp>

 <unzip src="${tmp}/apache-ant-1.6.1-bin.zip" dest="${thirdPartyJars}">

 <patternset><include name="**/*.jar"/></patternset></unzip> </target>

 <target name="Log4j" description="Get the Log4j jars"> <ftp action="get"

 server="apache.cs.utah.edu" remotedir = "pub/apache.org/logging/log4j"

 userid = "anonymous" password = ""> <fileset dir ="${tmp}">

 <include name="jakarta-log4j-1.2.8.zip"/> </fileset></ftp>

 <unzip src="${tmp}/jakarta-log4j-1.2.8.zip" dest="${thirdPartyJars}"><patternset>

 <include name="**/*.jar"/></patternset> </unzip> </target>

 <target name="Axis" description="Get the Axis jars"> <ftp action="get"

 server="apache.cs.utah.edu" remotedir = "pub/apache.org/ws/axis/1_1"

 userid = "anonymous" password = ""> <fileset dir ="${tmp}">

 <include name="axis-1_1.zip"/> </fileset></ftp><unzip src="${tmp}/axis-1_1.zip"

 dest="${thirdPartyJars}"><patternset> <include name="**/*.jar"/>

 </patternset></unzip> </target>

 <path id="project.classpath"><pathelement location="."/><pathelement

location="${meteorsHome}/classes"/><fileset dir="${JWSDP.path}">

<include name="**/*.jar"/></fileset><fileset dir="${meteorsHome}/lib">

<include name="**/*.jar"/> </fileset><fileset dir="${BPEL.path}/lib">

71

 <include name="**/*.jar"/></fileset><fileset dir="${Apache.Home}/common/lib">

 <include name="**/*.jar"/></fileset><pathelement location="${Lindo.path}/lib/lindo.jar"/>

 </path>

 <target name="compile" depends="createDirs"> <javac srcdir="${meteorsHome}\src"

 destdir="${meteorsHome}\classes" includes="**/*.java" deprecation="off"

 debug="on"> <classpath refid="project.classpath"/> </javac></target>

 <target name="run" depends="compile"> <property name="my.classpath"

 refid="project.classpath" /> <echo> ${my.classpath} </echo><java classname="run.BpelIDE"

 fork="true" ><arg value="-noverify"/> <classpath refid="project.classpath"/>

 </java></target>

 <target name="pack" depends="compile" description="Package the meteor-S source into a jar">

 <jar destfile="${meteorsHome}/lib/meteor-s.jar" basedir="${meteorsHome}/classes"/>

 </target> </project>

72

APPENDIX G - GLOSSARY OF ACRONYMS

AI: Artificial Intelligence

BPEL: Business Process Execution Language

BPWS4J: Business Process Execution Language for Web Services JavaTM Run Time

DAML-S: Darpa Agent Markup Language- based Web Service ontology

DL: Description Logic

DTD: Document Type Definition

FLOWS: First Order Logic Ontology for Web Services

FOL: First Order Logic

HTTP: Hyper Text Markup Language

IOPE: Inputs, Outputs, Pre-conditions, Effects

LSDIS: Large Scale Distributed Information Systems

METEOR-S: Managing End-To-End OpeRations: for Web Services

ORL: OWL Rules Language

OWL: Web Ontology Language

OWL-S: OWL-based Web Service ontology

PSL: Process Specification Language

73

QoS: Quality of Service

SA: Service Advertisement

SOA: Service Oriented Architecture

SOAP: Simple Object Access Protocol

ST: Service Template

SWRL: Semantic Web Rule Language

SWSA: Semantic Web Services Initiative Architecture

SWSL: Semantic Web Services Language Committee

UDDI: Universal Description, Discovery and Integration

W3C: World Wide Web Committee

WSDL: Web Service Description Language

WSIF: Web Service Invocation Framework

WSMF: Web Service Modeling Framework

WSMO: Web Service Modeling Ontology

XML: Extensible Markup Language

XSD: XML Schema Definition

74

APPENDIX H – GLOSSARY OF CONCEPTS

Activity: An activity is a construct in BPEL where some computation or Web service

invocation takes place. Activities primarily deal with receiving and replying

to the client, invoking partner Web services in a sequence or in parallel,

waiting, terminating or compensating an activity and assigning variables.

Service: A service in the context of Web services is an application or software system

that can be identified with a Uniform Resource Locator (URI) and uses

XML for send and receive messages.

 OR

 In WSDL, a collection of ports define a service. A port is associated with a

network address and a binding, where binding specifies the protocol and data

specifications for a specific port type and port type specifies the set of

operations supported by the service.

Protocol: A protocol is an agreed-upon formal specification of rules and message

formats that two entities should follow for communication or message

exchange.

Process: A process involves execution of activities in prescribed order (either series or

parallel) in order to produce a specific output or to achieve a specific

functionality.

75

Syntax: The structural or grammatical rules that define how symbols in a language

are to be combined to form words, phrases, expressions, and other allowable

constructs. (http://www.fda.gov/ora/inspect_ref/igs/gloss.html)

Semantics: It refers to specification of meanings. It can also be defined as an agreed

upon meaning of messages and other vocabulary.

Ontology: “An ontology is a specification of a conceptualization.” Tom Gruber. An

Ontology is a representation of knowledge in a particular domain.

Logic: The branch of mathematics that investigates the relationships between

premises and conclusions of arguments.

 (http://wotug.ukc.ac.uk/parallel/acronyms/hpccgloss/all.html)

Description Logic: Description logics belong to a family of Knowledge Representation

languages with formal semantics based on First-Order Logics. Description

Logics use inferencing to discover implicit knowledge.

First Order Logic: First-order logic is branch of logic reasoning in which variables and

predicates form each sentence or statement. Predicate takes variables as

arguments and defines properties of variables using logical connectives of

and, or and not.

Horn Logic: Horn logic consists of Horn clauses which are a predicates (e.g., a and b and

c … and v implies z) where any number of propositions can be present

separated by ands, and it should contains only one solution.

